First extraction of Transversity PDF from a global analysis of lepton-hadron scattering and hadronic collisions data

Marco Radici INFN - Pavia

in collaboration with A. Bacchetta (Univ. Pavia)

based on P.R.L. **120** (2018) 192001, arXiv:1802.05212 **plus updates**

a phase transition

quark	po	lariza	tion

nucleon polarization		U	L	Т
		f ₁		h_1^{\perp}
	L		g 1L	h1L [⊥]
	Т	f _{1τ} ⊥	g 1t	$h_1 h_{1T^{\perp}}$

3Dim TMDs

first global fit of f1(x, **k**_)

Bacchetta et al., JHEP **1706** (17) 081

a phase transition

first global fit (= lepton-hadron scatt. and hadron collisions) of **PDF h**1

transversity: a chiral-odd PDF

which channel addresses it at leading twist as a PDF ?

di-hadron semi-inclusive production

framework collinear factorization

advantage of 2-hadron-inclusive mechanism

exp. data for 2-hadron-inclusive production

exp. data for 2-hadron-inclusive production

take-away message

the kinematics

explore only valence quarks

the data set in more detail

the data set in more detail

choice of functional form

different funct. form whose Mellin transform can be computed analytically but keep main feature: comply with Soffer Bound at any x and scale Q²

$$h_1^{q_v}(x;Q_0^2) = F^{q_v}(x) \left[SB^q(x) + \overline{SB}^{\overline{q}}(x) \right]$$

$$\bigvee Soffer Bound$$

$$2|h_1^q(x,Q^2)| \le 2 SB^q(x,Q^2) = |f_1^q(x,Q^2) + g_1^q(x,Q^2)|$$

$$MSTW08 DSSV$$

choice of functional form

different funct. form whose Mellin transform can be computed analytically but keep main feature: comply with Soffer Bound at any x and scale Q²

$$h_1^{q_v}(x;Q_0^2) = F^{q_v}(x) \left[SB^q(x) + \overline{SB}^q(x) \right]$$

$$\begin{array}{c} & & \\ & & \\ & & \\ Soffer Bound \\ 2|h_1^q(x,Q^2)| \leq 2 SB^q(x,Q^2) = |f_1^q(x,Q^2) + g_1^q(x,Q^2)| \\ & & \\ MSTW08 \quad DSSV \\ \end{array}$$

$$x) = \frac{N_{q_v}}{\max_x[|F^{q_v}(x)|]} x^{A_{q_v}} \left[1 + B_{q_v} \operatorname{Ceb}_1(x) + C_{q_v} \operatorname{Ceb}_2(x) + D_{q_v} \operatorname{Ceb}_3(x) \right] \\ & & \\ \operatorname{Ceb}_n(x) \text{ Cebyshev polynomial} \end{array}$$

10 fitting parameters

constrain parameters

 F^{q_v}

 $|N_{q_v}| \le 1 \Rightarrow |F^{q_v}(x)| \le 1$ Soffer Bound ok at any Q²

choice of functional form

$$h_{1}^{q_{v}}(x;Q_{0}^{2}) = F^{q_{v}}(x) \left[SB^{q}(x) + \overline{SB}^{\overline{q}}(x) \right]$$

$$F^{q_{v}}(x) = \frac{N_{q_{v}}}{\max_{x}[|F^{q_{v}}(x)|]} x^{A_{q_{v}}} \left[1 + B_{q_{v}} \operatorname{Ceb}_{1}(x) + C_{q_{v}} \operatorname{Ceb}_{2}(x) + D_{q_{v}} \operatorname{Ceb}_{3}(x) \right]$$
if $\lim_{x \to 0} x SB^{q}(x) \propto x^{a_{q}}$ then $h_{1}^{q}(x) \approx x^{A_{q}+a_{q}-1}$
low-x behavior is important
constrain parameters
tensor charge $\delta q(Q^{2}) = \int_{x_{\min}}^{1} dx h_{1}^{q-\overline{q}}(x,Q^{2})$

$$- | \text{st option: finite tensor charge} \longrightarrow A_{q} + a_{q} > \frac{1}{3}$$
grants also error $O(1\%)$ for
MSTW08 $x_{\min}=10^{-6}$

$$- 2^{nd}$$
 option: finite violation of Burkhardt-Cottingham sum rule
$$\int_{0}^{1} dx y_{2}(x) \propto \int_{0}^{1} dx \frac{h_{1}(x)}{x} \longrightarrow A_{q} + a_{q} > 1$$

theoretical uncertainties

unpolarized Di-hadron Fragmentation Function D1

- quark D₁q is well constrained by $e^+e^- \rightarrow (\pi^+\pi^-) X$ (Montecarlo)
- **gluon** D_1^g is **not** constrained by $e^+e^- \rightarrow (\pi^+\pi^-) X$ (currently, LO analysis)
- **no data** available yet for $p p \rightarrow (\pi^+\pi^-) X$

we don't know anything about the gluon D_1^g

our choice: set
$$D_{I^g}(Q_0) = \begin{cases} 0 \\ D_{I^u}(Q_0) / 4 \\ D_{I^u}(Q_0) \end{cases}$$

deteriorates our e⁺e⁻ fit as $\chi^2/dof =$

$$\begin{cases} 1.69 & 1.28 \\ 1.81 & 1.37 \\ 2.96 & 2.01 \end{cases}$$

background ρ channels

shift each exp. data point by Gaussian noise within exp. variance \rightarrow create a replica of all exp. data points and fit them

Braun et al., E.P.J. Web Conf. 85 (15) 02018

Airapetian et al., JHEP **0806** (08) 017

Adolph et al., P.L. **B713** (12)

50 replicas

Braun et al., E.P.J. Web Conf. 85 (15) 02018

Airapetian et al., JHEP **0806** (08) 017

Adolph et al., P.L. **B713** (12)

100 replicas

Braun et al., E.P.J. Web Conf. 85 (15) 02018

Airapetian et al., JHEP **0806** (08) 017

Adolph et al., P.L. **B713** (12)

200 replicas

Braun et al., E.P.J. Web Conf. 85 (15) 02018

Adolph et al., P.L. **B713** (12)

all 600 replicas

Braun et al., E.P.J. Web Conf. 85 (15) 02018

Adolph et al., P.L. **B713** (12)

90% replicas

fit STAR asymmetry

X^2 of the fit

results

$$h_1^q(x) \stackrel{x \to 0}{\approx} x^{A_q + a_q - 1}$$

- Ist option: finite tensor charge
$$\longrightarrow A_q + a_q > \frac{1}{3}$$

grants also error O(1%) in calculation of tensor charge for MSTW08 $x_{min}=10^{-6}$

Х

Х

tensor charge $\delta q(Q^2) = \int dx h_1 q \overline{q} (x, Q^2)$

tensor charge $\delta q(Q^2) = \int dx h_1 q \overline{q} (x, Q^2)$

isovector tensor charge $g_T = \delta u - \delta d$

"transverse-spin puzzle" ?

there seems to be no simultaneous compatibility about δ_u , δ_d , $g_T = \delta_u - \delta_d$ between lattice and phenomenological extractions of transversity

so far, shown results from published PRL paper

add Compass deuteron pseudodata

1) recall: <u>deuteron</u> $A_{\text{SIDIS}} \sim h_1^{u_v} + h_1^{d_v}$ <u>proton</u> $A_{\text{SIDIS}} \sim 4h_1^{u_v} - h_1^{d_v}$

2) pseudodata with central value = 0

tried with values of old run 2004, but too strong tension with other data $\rightarrow \chi^2/dof \gtrsim 3-4$

future deuteron measurement will have strong selective impact on replicas

X^2 of the fit

global fit

+ pseudodata

pseudodata impact on down

pseudodata impact on up

pseudodata impact on up

pseudodata impact on tensor charge

-0.6

-0.8

impact of extrapolation outside data

impact of extrapolation outside data

impact of pseudodata for down: better precision everywhere for up: large uncertainties in extrapolation at low x

tensor charge $\delta q(Q^2) = \int dx h_1 q \overline{q} (x, Q^2)$

truncated $\delta q^{[0.0065, 0.35]}$ Q² = 10

+ pseudodata

global fit Radici & Bacchetta, P.R.L. **120** (18) 192001

TMD fit *Kang et al., P.R. D***93** (16) 014009

pseudodata impact on isovector tensor charge

apparent simultaneous compatibility because of large uncertainties coming from extrapolation outside the x-range of data (mainly at low x)

results

$$h_1^q(x) \stackrel{x \to 0}{\approx} x^{\mathbf{A}_q + a_q - 1}$$

- 2nd option: finite violation of Burkhardt-Cottingham sum rule

$$\longrightarrow$$
 $A_q + a_q > 1$

impact of low-x constraint

impact of low-x constraint

2- global fit 2nd option (finite violation of BC sum rule)

3- global fit 1st option (finite tensor charge)

Radici & Bacchetta, P.R.L. 120 (18) 192001

better down up still incompatible (similarly for isovector g_T)

general scenario confirmed

add Compass deuteron pseudodata

Adolph et al., P.L. **B713** (12)

private communication

adding again Compass deuteron pseudodata

impact of pseudodata

impact of pseudodata

- 1- global fit 2nd option + pseudodata
- 2- global fit 2nd option (finite violation of BC sum rule)
- 3- global fit 1st option (finite tensor charge)

Radici & Bacchetta, P.R.L. 120 (18) 192001

again better down but confirm general picture

summarizing

global fit 1st option (finite tensor charge) Radici & Bacchetta, P.R.L. 120 (18) 192001

color code of global fit

global fit 2nd option (finite violation of BC sum rule)

summarizing

global fit 1st option (finite tensor charge) Radici & Bacchetta, P.R.L. 120 (18) 192001

color code of global fit

global fit 2nd option (finite violation of BC sum rule)

1st option + pseudodata

2nd option + pseudodata

isovector

more constraints on extrapolation

- of course, need more data
- theoretical constraints from low-x behavior in dipole picture (generalize work on helicity $\Delta q^S(x,Q^2) \approx \left(\frac{1}{x}\right)^{\alpha_h} \alpha_h = \frac{4}{\sqrt{3}} \sqrt{\frac{\alpha_s N_c}{2\pi}}$ by *Kovchegov et al., P.L.* **B772** (17) 136

polarized BFKL: from *S*(*inglet*) to *NS*(*inglet*) to $\delta q(x,Q^2)$

To do list

→ refit di-hadron fragmentation functions using new data: $e^+e^- \rightarrow (\pi\pi) X$ constrains D_1^q Seidl et al.,

(currently only by Montecarlo) D_1^{q}

Seidl et al., P.R. D**96** (17) 032005

 use also other (multi-dimensional) data from STAR run 2011 (s=500) and (later) run 2012 (s=200)

Adamczyk et al. (STAR), P.L. **B780** (18) 332

Radici et al., P.R. D94 (16) 034012

- use COMPASS data on πK and KK channels, and from Λ[↑] fragmentation: constrain strange contribution ?
- → need data on p+p → $(\pi\pi) X$ constrains gluon D₁^g
- explore other channels, like inclusive DIS via Jet fragm. funct.'s

e⁺e⁻ cross section for ($\pi\pi$) in same hemisphere

same-hemisphere data: Mh1h2 dependence

- decomposition based on PYTHIA simulation
- clear differences in invariant-mass dependence between MC and data

Conclusions

- first global fit of di-hadron inclusive data leading to extraction of transversity as a PDF in collinear framework
- inclusion of STAR p-p[†] data increases precision of up channel; large uncertainty on down due to unconstrained gluon unpolarized di-hadron fragmentation function
- no apparent simultaneous compatibility with lattice for tensor charge of up, down, and isovector
- adding Compass pseudodata for deuteron confirms the scenario, but can be potentially very selective when inserting real central values
- need data spanning larger x range; meantime, look for other theoretical constraints on extrapolation (mostly, at low x)

THANK YOU

Back-up

the SIDIS Single-Spin Asymmetry

$$A_{UT}^{\sin(\phi_R + \phi_S)} = -\frac{B(y)}{A(y)} \frac{|\mathbf{R}|}{M_h} \sin \theta \frac{\sum_q e_q^2 h_1^q(x) H_{1,sp}^{\triangleleft q}(z, M_h^2)}{\sum_q e_q^2 f_1^q(x) D_1^q(z, M_h^2)}$$

x-dep. of SSA given by PDFs only

$$n_q^{\uparrow} = \int dz \int dM_h^2 \frac{|\mathbf{R}|}{M_h} H_{1,sp}^{\triangleleft q}(z, M_h^2)$$
$$n_q = \int dz \int dM_h^2 D_1^q(z, M_h^2)$$

separate valence u and d using symmetry of DiFFs

$$egin{aligned} n_q &= n_{ar{q}} \ n_q^{\uparrow} &= -n_{ar{q}}^{\uparrow} \ n_u^{\uparrow} &= -n_d^{\uparrow} \end{aligned}$$

point-by-point

extraction

Bacchetta, Courtoy, Radici,

P.R.L. 107 (11) 012001

Martin, Bradamante, Barone,

P.R. D91 (15) 014034

proton

$$xh_{1}^{p}(x) \equiv xh_{1}^{u_{v}}(x) - \frac{1}{4}xh_{1}^{d_{v}}(x)$$

$$= -\frac{A(y)}{B(y)} \frac{[A_{UT}^{\sin(\phi_{R} + \phi_{S})}]_{p}}{e_{u}^{2}n_{u}^{\uparrow}} \frac{9}{4} \sum_{q=u,d,s} e_{q}^{2}xf_{1}^{q+\bar{q}}(x)n_{q}$$

deuteror

extraction of DiFF from e+e-

Artru & Collins, Z.Ph. C69 (96) 277

$$A^{\cos(\phi_R + \overline{\phi}_R)}$$

$$_{R}^{R}$$
 = $\frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \frac{|\mathbf{R}_T|}{M_h}$

Boer, Jakob, Radici, P.R.D67 (03) 094003 Matevosyan et al., P.R.D97 (2018) 074019

$$\times \frac{\sum_{q} e_{q}^{2} H_{1,sp}^{\triangleleft q}(z, M_{h}^{2}) \overline{H}_{1,sp}^{\triangleleft \overline{q}}(\overline{z}, \overline{M}_{h}^{2})}{\sum_{q} e_{q}^{2} D_{1}^{q}(z, M_{h}^{2}) \overline{D}_{1}^{\overline{q}}(\overline{z}, \overline{M}_{h}^{2})}$$

 $|\overline{\mathbf{R}}_T|$

 \overline{M}_h

integrate on one hemisphere

$$A^{\cos(\phi_{R}+\bar{\phi}_{R})} = \frac{\sin^{2}\theta_{2}}{1+\cos^{2}\theta_{2}} \frac{|\mathbf{R}|}{M_{h}} \sin\theta \langle \sin\bar{\theta} \rangle \frac{\sum_{q} e_{q}^{2} H_{1,sp}^{\triangleleft q}(z, M_{h}^{2}) n_{\bar{q}}^{\uparrow}}{\sum_{q} e_{q}^{2} D_{1}^{q}(z, M_{h}^{2}) n_{\bar{q}}} \qquad n_{q}^{\uparrow} = \int dz \int dM_{h}^{2} \frac{|\mathbf{R}|}{M_{h}} H_{1,sp}^{\triangleleft q}(z, M_{h}^{2}) n_{\bar{q}}^{\uparrow} \qquad n_{q} = \int dz \int dM_{h}^{2} D_{1}^{q}(z, M_{h}^{2}) n_{\bar{q}}^{\uparrow}$$

Belle data for
Acos($\Phi_R + \overline{\Phi}_R$)symmetry
of DiFFs $n_q = n_{\bar{q}}$
 $n_q^{\uparrow} = -n_{\bar{q}}^{\uparrow}$
 $n_u^{\uparrow} = -n_d^{\uparrow}$ Vossen et al., P.R.L. 107 (11) 072004 $n_u^{\uparrow} = -n_d^{\uparrow}$

(determines the sign of $A^{\cos(\Phi_R + \overline{\Phi}_R)}$)

first extraction of DiFFs

Courtoy et al., P.R.D85 (12) 114023 Radici et al., JHEP 1505 (15) 123

e+e- cross section for ($\pi\pi$) in same hemisphere

R. Seidl, talk at SPIN2016

upcoming Belle data for (z, M_h) binning of unpolarized di-hadron e⁺e⁻ cross section

e+e- cross section for (hh) from all hemispheres

 $D_1(z_2)$ @low $z_1 \neq D_1(z_2)$ @high z_1

e+e- cross section for (hh) in different hemispheres

hadron-pairs: topology comparison

any hemisphere vs. opposite- & same-hemisphere pairs

• same-hemisphere pairs with kinematic limit at $z_1=z_2=0.5$

opposite hemisphere $0 < z_1 = z_2 < 1$

same hemisphere $0 < z_1 + z_2 < 1$ $0 < z_1 = z_2 < 0.5$

$\mathsf{DiFF}(\mathsf{z}_1,\mathsf{z}_2) \neq \mathsf{D}_1(\mathsf{z}_1) \mathsf{D}_1(\mathsf{z}_2)$

hadronic collisions in Mellin space

$$d\sigma (\eta, M_{h}, P_{T}) \text{ typical cross section for } a+b^{\dagger} \rightarrow c^{\dagger}+d \text{ process}$$

$$\frac{d\sigma_{UT}}{d\eta} \propto \int d|\mathbf{P}_{T}| dM_{h} \sum_{a,b,c,d} \int \frac{dx_{a}dx_{b}}{8\pi^{2}\bar{z}} f_{1}^{a}(x_{a}) h_{1}^{b}(x_{b}) \frac{d\hat{\sigma}_{ab^{\dagger} \rightarrow c^{\dagger}d}}{d\hat{t}} H_{1}^{\triangleleft c}(\bar{z}, M_{h})$$
to be computed thousands times... usual trick: use Mellin anti-transform
$$h_{1}(x, Q^{2}) = \int_{C_{N}} dN x^{-N} h_{1}^{N}(Q^{2}) \qquad N \in \mathbb{C} \qquad \overset{Stratmann \& Vogelsang, P.R. D64 (01) 114007}{PR. D64 (01) 114007}$$

$$\frac{d\sigma_{UT}}{d\eta} \propto \sum_{b} \int_{C_{N}} dN \int d|\mathbf{P}_{T}(h_{1b}^{N}(P_{T}^{2})) \int dM_{h} \sum_{a,c,d} \int \frac{dx_{a}dx_{b}}{8\pi^{2}\bar{z}} f_{1}^{a}(x_{a}) x_{b}^{-N} \frac{d\hat{\sigma}_{ab^{\dagger} \rightarrow c^{\dagger}d}}{d\hat{t}} H_{1}^{\triangleleft c}(\bar{z}, M_{h})$$
pre-compute F_{b} only one time on contour C_{N}

$$\lim N \uparrow$$

this **speeds up** convergence and facilitates $\int dN$, provided that h_1^N is known analytically

X^2 of the fit

 $\chi^2/dof = 2.08 \pm 0.09$

