# Status of the Neutron Production Experiment Proposal

Cheng-Ju Lin
Lawrence Berkeley National Laboratory

COMPASS Collaboration Meeting 17-May-2013











### **SOME OPEN QUESTIONS IN PARTICLE PHYSICS**

#### **Matter vs Anti-Matter**











### ↑ (Dirac or Majorana)





 $\theta_{13}$ 

$$\begin{vmatrix}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{vmatrix}
\begin{vmatrix}
\cos \theta_{13} \\
0 \\
-\sin \theta_{13}e
\end{vmatrix}$$



$$\begin{array}{c}
\sin \theta_{13} e^{-i\delta} \\
0 \\
\cos \theta_{13}
\end{array}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{pmatrix}$$

## **Plethora of Experiments to Tackle Those Mysteries**



THEY ARE ALL UNDERGROUND EXPERIMENTS!!

## **Cosmic-Ray Muon-Induced Backgrounds**

- Cosmic rays
- Rare searches need to go deep underground to shield detectors from cosmogenic backgrounds
- Mean muon energy at some of the deep underground labs is around 300 GeV
- Two categories of "problematic" muon-induced backgrounds:
  - Fast neutrons
  - Radioactive isotopes, such as <sup>9</sup>Li, <sup>8</sup>He, <sup>11</sup>C, <sup>7</sup>Be, etc. (isotope production is linked to neutron flux)
- Modeling of these backgrounds have proven to be very challenging
- Fast neutron is difficult to shield and is one of the most serious backgrounds for dark matter,  $0v\beta\beta$ , and other searches
- We would like to measure muon-induced neutron production in a controlled environment → beamline

- NA55 took data at M2 ~15 years ago was the last (and only?) expt that measured fast neutron productions at a muon beamline
- However, they used a "thin" target for spallation studies and only one muon beam energy (190 GeV)
- After all these years, differences between data and simulation (GEANT4, FLUKA) are still not fully understood

GEANT4 and NA55 Comparisons (Marino et al., NIM A582, (2007), 611) d³ dΩ dE (barn/sr/10MeV) ordΩdE (barn/sr/10MeV Exp Exp Neutron Energy (MeV) Neutron Energy (MeV) Other references: (a)  $\theta = 45^{\circ}$ (b) θ =90° NIM A545 (2005), 398 Astropart. Phys. 31 (2009) 366 −G4 ರ್ರೆ / dΩ dE (barn/sr/10MeV) + Geant4 Exp do / dΩ (barn/sr) Neutron Energy (MeV)

(d) Angular distribution.

(c) θ =135°

## **GOAL** of the Experiment

Provide a systematic set of data that can be used to better model fast neutron production for underground experiments

We want to measure neutron production properties:

- Rates and multiplicity
- Neutron energy spectrum
- Neutron angular distribution

We also want to make the measurements for:

- Different targets (lead, copper, graphite, H<sub>2</sub>O, etc.)
- Target thicknesses (probe different aspect of neutron production)
- and a range of muon beam energies (100 to 280 GeV)

### **Cartoon Sketch of the Neutron Production Experiment**



- Target radius is varied to measure neutron production vs. target thickness.
- Potential targets: graphite, copper, lead,
   H<sub>2</sub>0, liquid scintillator, etc.



### **Beam Test at M2 (2012)\***

- At last my presentation back in 2011, Alain and others strongly recommended that we take some measurements first to look for potential problems
- Conducted a beam test this past fall at M2 to study the feasibility of using the beamline to measure neutron production properties
- Surveyed beam backgrounds and evaluated neutron detector performance in beam environment
- Lau Gatignon also conducted a short test to demonstrate the feasibility and stability of running M2 at 280 GeV
- The beam test was very successful and addressed many technical concerns. Initial goal was just a feasibility study, but now trying to extract some physics results from the data

<sup>\*</sup> Many thanks to the COMPASS collaboration and CERN accelerator group

# Beam Test Setup



### **Beam Test Installation and Commissioning Photos**

Installing the Neutron Detector Assembly

Close-up of detector assembly





## Sample list of Data

#### Physics Runs (~0.1 MeV trigger threshold)

| ND<br>Location | Beam                   | Run #     | Comment     |
|----------------|------------------------|-----------|-------------|
| 90 degree      | 160 GeV $\mu^{-}$      | 1181-1193 | 2 Pb target |
| 90 degree      | 160 GeV $\mu^+$        | 1203-1213 | 1 Pb target |
| 90 degree      | 160 GeV $\mu^+$        | 1215-1227 | 2 Pb target |
| 90 degree      | 160 GeV μ <sup>-</sup> | 1234-1244 | 2 Pb target |

#### Trigger Efficiency Study Sample

| ND<br>Location | Beam                      | Run #                  | Trigger<br>Condition            |
|----------------|---------------------------|------------------------|---------------------------------|
| 90 degree      | 160 GeV μ (low intensity) | 122-1231<br>1232-1233  | ND+small paddle                 |
| 90 degree      | 160 GeV μ <sup>-</sup>    | 1299-1303              | ND + target top                 |
| 90 degree      | 160 GeV μ <sup>-</sup>    | 1304-1329              | ND + target bot                 |
| 90 degree      | 160 GeV μ <sup>-</sup>    | 1330-1332<br>1333-1334 | ND only. High and low intensity |
| 135 degree     | 160 GeV μ <sup>-</sup>    | 1444-1453              | ND only                         |

#### Physics Runs (1.0 MeV trigger threshold)

| ND<br>Location | Beam                   | Run #     |
|----------------|------------------------|-----------|
| 90 degree      | 160 GeV μ <sup>-</sup> | 1289-1297 |
| 45 degree      | 160 GeV $\mu^+$        | 1368-1391 |
| 45 degree      | 160 GeV μ <sup>-</sup> | 1418-1440 |
| 135 degree     | 160 GeV μ <sup>-</sup> | 1441-1443 |

#### **Source Calibration**

| Source<br>Type    | Run #      | Comments  |  |
|-------------------|------------|-----------|--|
| Cf <sup>252</sup> | 1194, 1197 | HV=-1.3KV |  |
| Cf <sup>252</sup> | 1199       | HV=-1.4KV |  |
| Cf <sup>252</sup> | 1202       | HV=-1.5KV |  |
| Co <sup>60</sup>  | 1352-1362  |           |  |
| Cf <sup>252</sup> | 1368-1391  |           |  |

+ other running configurations (e.g. target in/out, different target materials, etc.)

# **Preliminary Results**



## **TOF** Distribution



# TOF vs. Energy Deposit



# Beam Test Data Analysis

# Reconstruct kinetic energy assuming neutron mass



- Plan to complete data analysis (90deg, +45deg, -45deg) by this summer
- Working on extracting the neutron production rates now!
- One of the main systematic uncertainty is neutron detection efficiency. Plan to use 88" cyclotron at LBNL to constrain the efficiency
- GEANT4 and FLUKA simulation efforts are underway

# Schedule (one possible scenario)

Our plan follows closely to COMPASS' schedule

| YEAR | COMPASS                               | Neutron Production Measurement                                          |
|------|---------------------------------------|-------------------------------------------------------------------------|
| 2012 | Hadron and 160 GeV muon beam          | Feasibility study                                                       |
| 2013 | CERN shutdown                         | R&D                                                                     |
| 2014 | 6 weeks of low intensity hadron beam? | R&D Construction                                                        |
| 2015 | hadron beam?                          | Onsite installation and commissioning                                   |
| 2016 | 160 GeV muon beam                     | Take data parasitically                                                 |
| 2017 | 160 GeV muon beam?                    | Take data parasitically + some short runs with muon energy > 200 GeV??? |

Discuss with COMPASS to see if it is possible for us to have one month of high energy scan to complete our measurements in either 2017 or 2018

# **Summary**

- We propose to carry out an experiment to systematically measure muon-induced neutron production at CERN
- Feasibility study at CERN was very successfully. Have addressed main technical concerns of the "full experiment" (e.g. neutron detector performance, background level in the hall, systematic studies, etc.)
- Now trying to extract some physics (neutron production rates, neutron energy spectra and angular distributions) from the data
- Need to secure approval from the CERN SPSC and D.O.E. (in U.S.)
   and perhaps other agencies in Europe
- Continue to work with COMPASS to minimize interference with COMPASS physics program