The HERMES H/D Polarized Gas Target

- Introduction
- Hardware Description
- The Design of the Tranverse Magnet
- Beam Induced Depolarization Measurements
- Target Polarization
- Overview on Target Perfomance
- Conclusion

Benefits of Polarized Gas Targets

- High degree of polarization ($P^T > 0.8$)
- No dilution ($f \approx 1$)
- Fast spin reversal (< 1 s)

Polarized Target Setup

HERMES Physics Program

Longitudinal Polarization

- 1996 1997: Hydrogen
- 1999 2000: Deuterium

Transverse Polarization

- 2002 2005: Hydrogen
- **Unpolarized Program**
- 2006 2007

The Atomic Beam Source (ABS)

- Dissociator: from molecules to atoms
 - Air-cooled RF dissociator with $\approx 85\%$ degree of dissociation at 1.3 mbar·l/s
 - Small amount of O_2 improves discharge properties
- Sextupole Sytem: focus atoms with $m_s = +\frac{1}{2}$
 - 5 (tapered) magnets in a 3 magnet and a 2 magnet subsytem
- **RF Transitions**: HF states occupation exchange

Two injected hyp. states during data taking

The Storage Cell

- Technical Specifications
 - Material: Drifilm coated Alluminum
 - Length: 400 mm
 - Elliptical Cross Section:
 - * 29x9.8 mm (1996-'99)
 - * 21x8.9 mm (since 2000)
 - Temperature: 30 K $\leq T_{cell} \leq$ 300 K
- Advantages
 - Increased Target Thickness:
 - * Jet Target $\approx 10^{12}$ Nucleons/cm²
 - * Storage Cell $\approx 10^{14}$ Nucleons/cm²
- Possible Drawbacks
 - Atomic Recombination: wall collisions
 - Nuclear Depolarization: wall and spin-exchange collisions

The Longitudinal Magnet

- 000 U
- Superconducting Solenoid
- Intensity: $B_T = 350 \text{ mT} @ 45 \text{ A}$
- Homogeneity $\approx 1 \%$

The Target–Gas Analyzer (TGA)

- Task
 - Measure the atomic fraction of sample beam
- Measurement
 - Use of chopper to subtract background
 - Signals related to nucleon fluxes: $S_{
 m i}\propto\Phi_{
 m i}$
 - * Measurement of atomic signal S_{atom}
 - * Measurement of molecular signal S_{mol}
 - Degree of dissociation:

$$\alpha^{\text{TGA}} = \frac{S_{\text{atom}}}{S_{\text{atom}} + \sqrt{2}\kappa S_{\text{mol}}}$$

The Breit-Rabi Polarimeter (BRP)

- Task
 - Measure the hyperfine population of sample beam
- Measurement
 - Use of chopper for background subtraction
 - Measurements with different HFT modes: \Rightarrow linear system, solution for N_i
- Performance
 - Mininum time for polarization measurement $\approx \, 30 \, s$
 - Statistical uncertainty < 0.005, ~~ Systematic uncertainty ≤ 0.01

Transverse Target: the Basic Idea

- 2002 2005 \rightarrow Transversely Polarized Target (H)
- New Target Holding Field

Drawbacks and **Solutions**:

- Bending of the electron beam: Orbit compensation
- Synchrotron radiation emission: Avoid the spectrometer acceptance
- Possible beam induced nuclear depolarization: Conceive a holding field which minimizes this effect

The Magnet Design

- Conventional static vertical dipole
- $B_T > 280$ mT to inhibit spin relaxation
- $B_T < 400$ mT to minimize synchrotron radiaton

- $\Delta B < 0.15~{\rm mT}$ inside the cell (400 * 20 * 10mm³), to avoid beam induced depolarization
- Dimensional constraints: pole length < 650 mm, pole width < 200 mm

The Effects on the HERA e-Beam (I)

Bending ($B_T = 340 \text{ mT}$):

The Effects on the HERA e-Beam (II)

Synchrotron radiation ($B_T = 340 \text{ mT}$):

Depolarization by Beam Interaction

HERA e-beam structure:

- 220 Bunches
- Spacing: $\Delta t = 96 ns$
- Bunch width: $\sigma_t = 37.7 \, ps$

bunch no.

Fourier Analysis of the electron bunch:

Resonance Conditions:

$$\frac{|E_i - E_f|}{h} = \nu_n \qquad n = 1, 2, \dots$$

 \Rightarrow Depolarization!

Resonance Conditions (Nucl. Trans.)

$$|E_i - E_f|/h = \nu_n$$
 $n = 1, 2, ...$

But... ΔE_{if} depends on B_T !

- π -transitions ($B_{ST} \perp B_{RF}$) \Rightarrow Long. & Trans. Target
- σ -transitions ($B_{ST} \parallel B_{RF}$) \Rightarrow Trans. Target Only!

The Transverse Magnet

- Intensity: $B_T = 297 \,\mathrm{mT}$ @ 545 A
- Uniformity:
 - ΔB along z: 0.05 mT
 - ΔB along y: 0.18 mT
 - ΔB along x: 0.7 mT

Correction coils needed!

Cell-Embodied Correction Coils

• Aim

Improve x uniformity from 0.7 mT to 0.2 mT

- Technique Coils built in the Cell Support Structure
- Field Strength $\approx 0.4 \ mT$ along the cell axis
- Current $\approx 60 A$
- Cooling from cell's helium cryo system

σ Resonances Measurements

Spin-Flip Measurement with and without Correction Coils

- Beam Current $\approx 30 \text{ mA}$
- State $|4\rangle$ injeted (ABS)
- Target Field scanned around the working point
- Fast detection of states
 |1 > and |2 > (BRP)
- Correction Coils change Shape of Resonance

Polarization Measurement

Polarization Measurement with Correction Coils

- \$igma Res. Scan 040518a. I_start=36.2mA. I_end=31.9mA 0.85 0.845 Pz+ 0.84 ł • P7-0.835 Ŧ ŧ Į 0.83 ł ł 0.825 0.82 0.815 Ŧ 0.81 0.805 0.8⊑⊥ 338.8 338.9 339 339.1 339.5 339.2 339.3 339.4 339.6 B/mT
- Beam Current $\approx 30 \,\text{mA}$
- Target Field scanned around the working point
- $\Delta P \approx 2.5 \%$

Target Polarization Formula

 N_a Polarized H/D Atoms

 N_r Polarized H/D Molecules (Recombination on the Cell Wall)

 N_m Total Number of H/D Molecules (Recombination + Residual Gas + ABS Ballistic)

$$P^T = \alpha_0 [\alpha_r + (1 - \alpha_r)\beta] P_a$$

$$lpha_0 = rac{N_a + 2N_r}{N_a + 2N_m}$$
 Dilution Factor $lpha_r = rac{N_a}{N_a + 2N_r}$ Recombination

 P_a Atomic Polarization (possible depol. via wall and spin-exchange collisions)

 $\beta = P_m/P_a$ Relative Polarization of Recombined Molecules

Sampling Corrections

From TGA/BRP Measurements to Cell-Averaged Values

Measurement of β (Hydrogen 1997)

time (days since March 1st, 1997)

- $T_{cell} = 100 \text{ K}$: Nominal Temp.
- $T_{cell} = 260$ K: Measurement of β

	$T = 100 \mathrm{K}$	$T = 260 \mathrm{K}$
$lpha_0$	0.959 ± 0.029	0.969 ± 0.030
$lpha_r$	0.932 ± 0.044	0.260 ± 0.040
P_{a+}	0.908 ± 0.007	0.938 ± 0.016
P_{a-}	0.912 ± 0.007	0.940 ± 0.014

β : Measurement Technique

• Longitudinal DIS Asymmetry:

$$A_{||}^{meas} = \frac{\sigma^{\overrightarrow{\leftarrow}} - \sigma^{\overrightarrow{\Rightarrow}}}{\sigma^{\overrightarrow{\leftarrow}} + \sigma^{\overrightarrow{\Rightarrow}}} = \frac{1}{P_b P_T} \frac{(N/L)^{\overrightarrow{\leftarrow}} - (N/L)^{\overrightarrow{\Rightarrow}}}{(N/L)^{\overrightarrow{\leftarrow}} + (N/L)^{\overrightarrow{\Rightarrow}}}$$

- β : Measurement Strategy
 - T_{cell} =260 K to increase Recombination

$$- A_{||}^{100K} = A_{||}^{260K} \longrightarrow \frac{C_{||}^{100K}}{P_T^{100K}} = \frac{C_{||}^{260K}}{P_T^{260K}}$$

*
$$P_T^{100K} = \alpha_0^{100K} [\alpha_r^{100K} + (1 - \alpha_r^{100K})\beta^{100K}] P_a^{100K}$$

*
$$P_T^{260K} = \alpha_0^{260K} [\alpha_r^{260K} + (1 - \alpha_r^{260K})\beta^{260K}] P_a^{260K}$$

β^{260K} : Analysis and Result

 $\beta^{260K} = 0.68 \pm 0.09_{stat} \pm 0.06_{syst}$

From β^{260K} to β^{100K}

Recomb. Mechanism: atom from the volume inpinging onto an atom on the surface

$$\beta = \frac{P_m}{P_a} \qquad P_m = \frac{P_a + P_s}{2} e^{-n(B_c/B)^2}$$

(T. Wise et al. Phys. Rev. Lett. 87 (2001), 42701)

At HERMES $e^{-n(B_c/B)^2} = 0.9$ $P_a^{100K} = 0.9$

•
$$P_s = 0 \Rightarrow \beta_{min}^{100K} = 0.45$$

• $\beta^{260K} = \beta_{max}^{100K} = 0.68 + 0.15 = 0.83$ (260K \Rightarrow larger recomb. probability = lower depolarization on the surface)

• $\beta^{100K} = 0.64 \pm 0.19$

Target Performance in 1997 (H Long.)

time (days since March 1st, 1997)

- Fairly stable running conditions
- Injected Polarization: $P_{inj} \approx 97\%$
- Depolarization: $\Delta P \approx 7\%$
- Recombination: $1 \alpha_r \approx 7\%$

Average Polarization (T = 100 K) $P^T = 0.852 \pm 0.033$

 $\frac{\Delta P^T}{D^T} = 3.9\%$

Target Performance in 2000 (D Long.)

- Outstanding Performance
- $T_{cell} = 60 K$
- Tensor Polarization Injected
- Injected Polarization: $P_{inj} \approx 92\%$
- Depolarization: absent!
- Recombination:
 absent!

time (days since Jan 1st, 2000)

- $P_z^T + = +0.851 \pm 0.029$ (3.4%) 10.2 Million DIS Events!
- $P_z^T = -0.840 \pm 0.026 \qquad (3.0\%)$
- $P_{zz}^T + = +0.891 \pm 0.027 \qquad (3.0\%)$

 $P_{zz}^T - = -1.656 \pm 0.049$ (2.9%)

Target Performance in 2002/03 (H Trans.)

Average Polarization
$$P^T = 0.795 \pm 0.033$$
 $\frac{\Delta P^T}{P^T} = 4.2\%$

Target Performance in 2004 and 2005 (H Trans.)

- April 2004: cell warmed up to room temp. (detector problems)
- $P^T = 0.777 \pm 0.039 \rightarrow P^T = 0.648 \pm 0.090$
- Polarization recovered over monthes

- 2005: two cells employed
- First Cell: Poor Performance
- Second Cell: better, but not outstanding

Summary

- The HERMES Polarized Gas Target worked reliably over 10 years
- Longitudinal Polarization $P^T \approx 0.85$ $\Delta P_T/P_T \approx 3\%$
- Transverse Polarization $P^T \approx 0.80$ $\Delta P_T/P_T \approx 4\%$
- Target Thickness $\approx 10^{14}~\rm Nucleons/cm^2$

Bibliography

- The HERMES Collaboration; The HERMES Polarized Hydrogen and Deuterium Gas Target in the HERA Electron Storage Ring, *Nucl. Instr. and Meth. A*, **540 (2005)**, 68.
- The HERMES Collaboration; Nuclear Polarization of Molecular Hydrogen Recombined on a Non-metallic Surface, *Eur. Phys. J D*, **29 (2004)**, 21.
- C. Baumgarten *et al.*; A Gas Analyzer for the Internal Polarized Target of the HERMES Experiment, *Nucl. Instrum. and Meth. A*, **508 (2003)**, 268.
- A. Nass et al.; The HERMES Polarized Atomic Beam Source, Nucl. Instrum. and Meth. A, 505 (2003), 633.
- C. Baumgarten *et al.*; The Storage Cell of the Polarized H/D Internal Target of the HERMES Experiment at HERA, *Nucl. Instrum. and Meth. A*, **496 (2002)**, 277.
- C. Baumgarten *et al.*; Measurements of Atomic Recombination in the HERMES Polarized Hydrogen and Deuterium Storage Cell Target, *Nucl. Instrum. and Meth. A*, **496 (2002)**, 263.
- C. Baumgarten *et al.*; Time-of-Fligth Measurements in Atomic Beam Devices using Adiabatic High Frequency Transitions and Sextupole Magnets, *Nucl. Instrum. and Meth. A*, **486 (2002)**, 1.
- C. Baumgarten *et al.*; An Atomic Beam Polarimeter to Measure the Nuclear Polarization in the HERMES Gaseous Polarized Hydrogen and Deuterium Target, *Nucl. Instrum. and Meth. A*, **482 (2002)**, 606.
- C. Baumgarten et al.; Molecular Flow and Wall Collision Age Distributions, Eur. Phys. J. D, 18 (2002), 37.
- K. Ackerstaff *et al.*; Beam-Induced Nuclear Depolarisation in a Gaseous Polarised Hydrogen Target, *Phys. Rev. Lett.*, **82** (1999) 1164-1168.
- Summary of Ten Years HERMES Target, to appear on April Issue of CERN Curier

