
TECHNICAL UNIVERSITY OF MUNICH
TUM SCHOOL OF NATURAL SCIENCES

DEPARTMENT OF PHYSICS

Bachelor’s Thesis in Physics

Study of 𝐾−𝜋+ and 𝜋−𝜋+ Amplitudes in
𝐾−𝜋−𝜋+ Data from the COMPASS Experiment

Godo Kurten





TECHNICAL UNIVERSITY OF MUNICH
TUM SCHOOL OF NATURAL SCIENCES

DEPARTMENT OF PHYSICS

Bachelor’s Thesis in Physics

Study of 𝐾−𝜋+ and 𝜋−𝜋+ Amplitudes in
𝐾−𝜋−𝜋+ Data from the COMPASS Experiment

Analyse von 𝐾−𝜋+ und 𝜋−𝜋+ Amplituden in
𝐾−𝜋−𝜋+ Daten vom COMPASS Experiment

Author: Godo Kurten
1st Examiner and Supervisor: Prof. Dr. Stephan Paul
2nd Examiner: Prof. Dr. Lothar Oberauer
Advisor: Dr. Stefan Wallner
Submission Date: December 9, 2023

E

1 8



I confirm that this bachelor’s thesis in physics is my own work and I have documented all
sources and material used.

Munich, December 9, 2023 Godo Kurten



Abstract

The understanding of the strong interaction can be deepened
by a complete knowledge of the strange-meson excitation
spectrum. Since it is not yet fully known, we analyze the
largest 𝐾− + 𝑝 → 𝐾−𝜋−𝜋+ + 𝑝 diffractive scattering data
sample to date from the COMPASS experiment.
In a previous analysis of this data sample, resonances ap-
pearing in the 𝐾−𝜋−𝜋+ final-state have been analyzed with
a partial-wave analysis (PWA). A novel approach called the
freed-isobar analysis allows us to study in principle also res-
onances in the 𝐾−𝜋+ and 𝜋−𝜋+ subsystems of the 𝐾−𝜋−𝜋+

final-state. We have studied and proved the applicability of
the freed-isobar approach to our data sample by measuring
well known resonances, such as the 𝐾∗(892), 𝜌(770) and
𝐾∗

2 (1430). We found potential signals from excited strange-
meson states which we cannot clearly assign to a known
resonance. We studied the 𝐾−𝜋+ subsystem that contains the
𝐾∗

0 (700) resonance, which shows evidence of not being a pure
𝑞𝑞 state. Due to its unusual shape, multiple parameterizations
were compared, and the Palano-Pennington parameterization
was determined to perform best. Also, we investigated the
applicability of Wilks’ theorem to the calculations of the
significance of a resonant component. Lastly, we determined
possible analysis effects resulting from a final-state particle-
identification that does not cover the full kinematic range of
the final-state particles.
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1 Introduction

The strong interaction is the force that binds quarks together to form protons, neutrons, or other
hadronic particles. The strong interaction is carried by gluons, and acts only on quarks, who
cannot be observed individually because of the confinement. The quantum field theory that
describes the strong interaction is the quantum chromodynamics (QCD). At high energies, QCD
can be solved perturbatively, leading to precise, verified predictions. At low energies, around
the mass of hadrons, QCD cannot be solved perturbatively. The measurement of the excitation
spectrum of the simplest strongly bound states, called mesons, provides information about QCD
at low energies. Mesons consist of a constituent quark-antiquark pair 𝑞𝑞 bound by the strong
interaction [1]. Mesons composed of an (anti-)strange and an (anti-)up/down quark are called
strange-mesons. Our goal is to measure the strange-meson excitation spectrum and to compare
our values with previous measurements listed in the PDG [2].

One of the goals of the hadron spectroscopy program, of the COMPASS experiment, is the
measurement of excited strange-mesons via diffractively scattering1 of a beam of 𝐾− off a liquid
hydrogen target. At the high center-of-momentum energy of 19 GeV/𝑐2 of the beam-target
system, the strong interaction scattering process can be effectively modeled in Regge theory
by a Pomeron P exchange [3, 4]. The reaction studied in this analysis is illustrated in fig. 1.1.
The incoming 𝐾− beam scatters off the proton, creating an excited intermediate state 𝑋− . The
intermediate state decays into the three final-state particles𝐾−𝜋−𝜋+. The decay process is known
to be dominated by two-body resonances, so-called isobars, which is why the isobar-model is
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Figure 1.1: Schematic view of the reaction 𝐾− + 𝑝 → 𝐾−𝜋−𝜋+ + 𝑝 in the isobar-model. In
(a) the bachelor particle is the 𝐾− and the isobar 𝜉0 decays into 𝜋−𝜋+. In (b) the
bachelor particle is the 𝜋− and the isobar 𝜉0 decays into 𝐾−𝜋+.

1Diffractive scattering reactions are of inelastic nature with a comparably low exchange of energy between the beam
and target. One or both the hadrons get excited and then dissociate into a multi-particle final-state.
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1. Introduction

employed. The isobar-model models the decay of the intermediate state 𝑋− in two steps. First,
the intermediate state decays into an isobar 𝜉0 and a bachelor-particle 𝑏− , which can be either a
𝐾− or a 𝜋− . Then, the isobar decays into the two remaining final-state particles 𝜋−𝜋+ or 𝐾−𝜋+.
The target proton remains intact.

The kinematics of the process are given by the center-of-momentum energy 𝑠, the invariant
mass of the 𝐾−𝜋−𝜋+ system 𝑚𝐾 𝜋𝜋 , the invariant masses of the 𝐾−𝜋+ and 𝜋−𝜋+ subsystems
𝑚𝐾− 𝜋+ and 𝑚𝜋− 𝜋+ (or generally 𝑚ℎ−ℎ+), respectively, and the squared-four-momentum transfer
𝑡 between the 𝐾− and the proton. Instead of 𝑡, the reduced squared four-momentum transfer is
used for convenience

𝑡′ ≡ |𝑡 | − |𝑡 |min, (1.1)

where |𝑡 |min is the minimum squared four-momentum transfer2 required to produce an interme-
diate state 𝑋− of mass 𝑚𝐾 𝜋𝜋 . The dependence of the process on these kinematic factors is
analyzed.

To determine the spin 𝐽 and parity 𝑃 of the intermediate states, as well as their nominal masses
and widths, a Partial-Wave Analysis (PWA) must be performed. We have performed the PWA
in two steps. First, in the so-called Partial-Wave Decomposition (PWD) we disentangled the
contributions from different partial-waves, that describe the decay chain of a given intermediate
state 𝑋− with certain 𝐽𝑃 quantum numbers. In the conventional PWD, the amplitudes of the
three-body systems are measured. In this work, we employ an extended version of the PWD,
the so-called freed-isobar PWD, where in addition the amplitude of the resonances in the isobar
subsystems is measured. In the second step called Resonance-Model Fit (RMF), the 𝑚ℎ−ℎ+
dependence of the amplitude is modeled explicitly to extract the mass and width parameters of
the appearing meson resonances.

The freed-isobar PWD is a novel method in the PWA. It has already been successfully applied
in the analysis of the 𝜋−𝜋−𝜋+ final-state from the same data taking campaign [6–8]. The
data sample of the 𝜋−𝜋−𝜋+ final-state has about 100 times more measured events than our
𝐾−𝜋−𝜋+ data sample. The PWA of the 𝐾−𝜋−𝜋+ final-state for three-body states was developed
and performed in ref. [5]. We refer to this analysis as the 𝐾−𝜋−𝜋+ three-body analysis in
the rest of the text. In addition, the freed-isobar PWD for the [𝐾𝜋]𝑃, [𝜋𝜋]𝑃, [𝐾𝜋]𝐷 and
[𝐾𝜋]𝑆 isobar subsystems was performed in ref. [5]. The two letters in the square brackets
symbolize the two particles in the subsystem. The subscript of the brackets indicate the angular
momentum between the isobar 𝜉0 and the bachelor particle 𝑏− . A first few simple studies were
already performed in ref. [5]. The 𝐾−𝜋−𝜋+ three-body analysis also had to account for higher
background contributions than the 𝜋−𝜋−𝜋+ data sample analysis due to a more demanding
identification of the final-state particles. Therefore, methods to deal with the effects of the
demanding particle identifications were developed and applied.

In the RMFs, we model meson resonances by resonant components such as a Breit-Wigner
amplitude. To determine the statistical significance of such a component, likelihood-ratio
hypothesis tests are performed. Since the true Probability Density Function (PDF) of the

2 |𝑡 |min is given in eq. (2.3) in ref. [5].
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test statistic is not known, it is approximated by a 𝜒2-distribution using Wilks’ theorem [9].
However, the RMFs violate a precondition of Wilks’ theorem. To investigate whether Wilks’
theorem still provides a sufficient approximation of the true PDF, we studied the applicability of
Wilks’ theorem with extensive toy Monte Carlo studies of RMFs.

Due to the small number of events and higher background contributions in the 𝐾−𝜋−𝜋+ data
sample compared to the 𝜋−𝜋−𝜋+ data sample, the freed-isobar PWD is more challenging for the
𝐾−𝜋−𝜋+ data sample than in the 𝜋−𝜋−𝜋+ data sample. One of the objectives of this work is to
determine whether the freed-isobar method is still applicable to the 𝐾−𝜋−𝜋+ data sample, which
we studied with an extensive amount of RMFs. With the RMFs we also look for indications of
excited states in the four amplitudes. To find out which resonances contribute to our measured
amplitudes, the results of the RMFs are compared with previous measurements listed in the
PDG [2].

The methods to deal with the demanding particle identification developed for the 𝐾−𝜋−𝜋+

three-body analysis cannot be directly applied in the freed-isobar analysis. Therefore, another
scope of this work is to determine if and how the background contributions affect the measured
amplitude.

In most amplitudes we used a Breit-Wigner component to model resonant signals in our data.
In the [𝜋𝜋]𝑃 and [𝐾𝜋]𝑆 amplitudes different parameterizations for the resonant signals are
available. For example in the [𝐾𝜋]𝑆 amplitude, which contains very broad signals, four
parameterizations specifically designed for the [𝐾𝜋]𝑆 amplitude are compared. We want to
determine the parameterization that gives the best description of the measured [𝐾𝜋]𝑆 amplitude
up to about 𝑚ℎ−ℎ+ = 2.2 GeV/𝑐2.

Chapter 2 discusses the COMPASS experiment setup and the event selection. In chapter 3,
we discuss the concept of the partial-wave decomposition and the caveats, resulting from the
demanding particle identification. Chapter 4 explains the resonance-model fits. In chapter 5,
we discuss the calculation of the statistical significance of resonant components in the RMF. To
this end, we show extensive toy Monte Carlo studies of the applicability of Wilks’ theorem for
the significance calculation. In chapter 6, we show and discuss the results obtained in the RMFs
of the four subsystems we studied. In chapter 7, the results are concluded and an outlook to
further possible analysis steps is given.
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2 Strange-Meson Spectroscopy

2.1 COMPASS Experiment

The data for this analysis were collected in 2008 and 2009 as part of the hadron spectroscopy
program at the COMPASS experiment (COmmon Muon Proton Apparatus for Structure and
Spectroscopy). COMPASS has measured an unprecedented amount of data in high-energy 𝜋−

and 𝐾− diffractive scattering allowing high precision spectroscopy of light mesons. A brief
description of the COMPASS experimental setup is given below. A more detailed description
can be found in refs. [10, 11].

Figure 2.1 shows the COMPASS fixed-target experiment setup. COMPASS is located at CERN’s
M2 beam. Protons from the Super Proton Synchrotron (SPS), with a momentum of about
400 GeV/𝑐, are impinging a beryllium production target (not shown), producing a shower of
secondary hadrons, such as pions, kaons and (anti-)protons. From these, a negative hadron
beam at about 190 GeV/𝑐 is selected using magnets and collimators along the M2 beamline.
To separate the kaons from the other hadrons, two CEDAR detectors (ChErenkov Differential
counters with Achromatic Ring focus) are placed about 30 m upstream of the COMPASS target.

 

30 m

CEDARs
SM 2

Target
RPD

ECAL 2
HCAL 2

ECAL 1
HCAL 1

SM 1

Beam
RICH

LAS

SAS

Si detectors

Figure 2.1: Schematic representation of the COMPASS experiment. The hadron beam passes
two CEDAR detectors before hitting the recoil-proton detector (RPD). The final-state
particles are then measured by a Large-Angle (LAS) and a Small-Angle (SAS)
magnetic spectrometer. Both spectrometers consist of an array of detectors shown
in different colors. The figure is taken from ref. [5] and adapted from ref. [10].
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2. Strange-Meson Spectroscopy

The negative kaon beam then hits the cylindrical liquid hydrogen target. High-precision silicon
microstrip detectors are used to measure the hadron beam and final-state particles both upstream
and downstream of the target, respectively. This enables the precise reconstruction of the
interaction point between the beam particle and the target proton. Downstream of the silicon
microstrip detectors, two detector sections measure the momenta of the final-state particles
produced in the reaction. The first section is the Large-Angle magnetic spectrometer (LAS).
The LAS is built around the SM1 dipole magnet and detects particles with a polar angle of
±180 mrad with respect to the beam axis. The second section is the Small-Angle magnetic
spectrometer (SAS), which is built around the stronger SM2 dipole magnet. It detects particles
with a polar angle of ±30 mrad extending the precision of the spectrometers in this region.
The SAS can therefore detect particles with higher momentum. Both sections are equipped
with different types of detectors, such as Gas Electron Multipliers (GEM), micromesh gaseous
structure detectors (microgems), Scintillating Fibre counters (SciFi), Drift Chambers (DC) and
Multi-Wire Proportional Chambers (MWPC), which measure the position of the final state
particles. The species of the final-state particles is identified by a Ring-Imaging CHerenkov
detector (RICH). The Electromagnetic (ECAL) and Hadronic (HCAL) CALorimeter, which
measure the energy of the particles, were not used in this analysis.

2.2 Event Selection

During the 2008 and 2009 data taking campaigns COMPASS recorded a total of approximately
13.4 billion events [5]. A number of data cuts were performed to select only those events of the
reaction 𝐾− + 𝑝 → 𝐾−𝜋−𝜋+ + 𝑝. The event selection process is inspired by refs. [12, 13], but
was refined for the three-body analysis [5]. A more detailed description of the data selection
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Figure 2.2: Distribution of Cherenkov angles as a function of the final-state particle momentum
| ®𝑝R |. Figure taken from [5].
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2.2. Event Selection
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Figure 2.3: RICH efficiency to identify a 𝜋− as a function of the momentum. For this analysis
only the green data points with TR = 1.15 are of interest. Figure taken from ref. [5].
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Figure 2.4: Distribution of the momenta of the identified 𝜋− and 𝐾− . The figure is taken from
ref. [5].
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2. Strange-Meson Spectroscopy

process for this analysis can be found in ref. [5] and is summarized in the following. First, we
require the event to contain three charged final-state particles, and a single interaction vertex of
the beam particle and the target proton in the target region. Then, we require that the CEDAR
detectors identified the beam particle as a kaon.

The species of the three final-state particles must also be identified, for which the RICH detector
is used for. The measurement of the emission angle of the Cherenkov light produced when a
particles passes through the RICH detector, together with the measured particle momentum,
allows the particle species to be identified. At increasing momenta of the final-state particles
the distinction between kaons and pions becomes increasingly difficult, because the Cherenkov
angles of kaons and pions become more similar. Figure 2.2 illustrates this effect. Figure 2.3
shows the efficiency1 of correctly identifying pions as determined in ref. [5]. The efficiency
is high up to about 30 GeV/𝑐, where the efficiency drops. For particles with momenta above
40 GeV/𝑐 the efficiency is nearly zero. Thus, pions with momenta over 40 GeV/𝑐 are not
differentiable from other particles. Since the final-state particles have momenta up to 190 GeV/𝑐,
this leaves a blind spot in the phase-space distribution of the particles as illustrated in fig. 2.4,
by the | ®𝑝𝜋− | ≳ 60 GeV/𝑐, | ®𝑝𝐾− | ≳ 60 GeV/𝑐 square where no pions and kaons were identified.

We also require energy and momentum conservation by comparing the measured energy sum
and momenta of the final-state particle to the known initial state kinematics. This suppresses
events with at least one extra final-state particles that was not measured. Finally, we made cuts
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Figure 2.5: Invariant mass spectra of the 𝜋−𝜋+ (a) and 𝐾−𝜋+ (b) subsystems in the 𝐾−𝜋−𝜋+

final-state. The arrows indicate well known resonances in the spectra according to
the PDG [2].

1TR refers to the RICH threshold for the particle identification decision.
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2.2. Event Selection

on the kinematic region of interest, i.e. 0.1 ≤ 𝑡′ < 1.0 (GeV/𝑐)2 and 1.0 ≤ 𝑚𝐾 𝜋𝜋 < 3.0 GeV/𝑐2.
After all these cuts, a data set of about 720,000 events was obtained. This work deals with the
resonances in the 𝐾−𝜋+ and 𝜋−𝜋+ subsystems of the process 𝐾− + 𝑝 → 𝐾−𝜋−𝜋+ + 𝑝. The
invariant mass spectra of these two subsystems are shown in fig. 2.5, which also show the isobar
resonances that could contribute to the spectra. In order to disentangle the resonant structure
of the subsystems, a freed-isobar partial-wave analysis was performed. The formalism of the
freed-isobar partial-wave analysis is discussed in chapters 3 and 4. The results are discussed in
chapter 6.
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3 Partial-Wave-Decomposition

Figure 3.1 shows the reaction 𝐾− + 𝑝 → 𝐾−𝜋−𝜋+ + 𝑝 in the isobar model [14, 15], where
the intermediate state 𝑋−, with spin 𝐽, parity 𝑃 and spin projection 𝑀 𝜀 , first decays into a
bachelor particle 𝑏− , either a 𝐾− or a 𝜋− , and an isobar resonance 𝜉0 with spin 𝐽𝜉 and helicity
𝜆𝜉 . 𝐿 denotes the angular momentum between the bachelor particle 𝑏− and the isobar 𝜉0.
Then the isobar 𝜉0 decays into the two final-state particles ℎ−ℎ+, which can be 𝜋−𝜋+ or 𝐾−𝜋+.
In order to extract the resonances and measure their 𝐽𝑃 quantum numbers a Partial-Wave
Analysis (PWA) was performed. We took a two-step approach to the PWA. The first step is
called the Partial-Wave Decomposition (PWD), where the dependence of 𝑡′, 𝑚𝐾 𝜋𝜋 and 𝑚ℎ−ℎ+
is not modeled explicitly, but the amplitudes is measured independently in narrow 𝑡′ and 𝑚𝐾 𝜋𝜋
bins. In the second step, called Resonance-Model Fit (RMF), the goal is to extract the isobar
resonances with their resonance components, as discussed in chapter 4. Therefore, the 𝑚ℎ−ℎ+
dependence is modeled explicitly.

In the conventional PWD, discussed in section 3.1, the data are decomposed into contributions
from various partial-waves, which are given by the quantum numbers 𝐽𝑃𝑀 𝜀 of the intermediate
state 𝑋− , and their decay path given by the isobar resonance 𝜉0, the bachelor particle 𝑏− and the
relative orbital angular momentum 𝐿 between the bachelor particle and the isobar. The name of
a partial-wave is given by its partial-wave-label:

𝑎 = 𝐽𝑃𝑀 𝜀𝜉𝑏𝐿. (3.1)

To measure the amplitude of the isobar-systems, a so-called freed-isobar PWD was performed,
as discussed in section 3.2. Both the conventional and the freed-isobar PWD were performed in
ref. [5]. A more detailed explanation of the PWD used in this analysis can be found there.
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Figure 3.1: Schematic view of the reaction 𝐾− + 𝑝 → 𝐾−𝜋−𝜋+ in the isobar model, where an
intermediate state 𝑋− decays into the 𝐾−𝜋−𝜋+ final-state via an isobar 𝜉0.
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3. Partial-Wave-Decomposition

3.1 Conventional Partial-Wave-Decomposition
The reaction 𝐾− + 𝑝 → 𝑋− + 𝑝 is characterized by the center-of-momentum energy 𝑠 of the
beam 𝐾− and the target proton system, the reduced squared four-momentum transfer 𝑡′ (see
eq. (1.1)) and the invariant mass 𝑚𝐾 𝜋𝜋 of the 𝐾−𝜋−𝜋+ system. The decay of the intermediate
state 𝑋− at fixed 𝑚𝐾 𝜋𝜋 is described by five phase-space variables, the angular dependence of
the 𝑋−-decay 𝛺𝑋, the angular dependence of the isobar decay 𝛺 𝜉 and the invariant two-body
mass 𝑚ℎ−ℎ+ , which are summarized by 𝜏. The total measured intensity distribution is modeled
by:

I(𝜏, 𝑚𝐾 𝜋𝜋 , 𝑡′) =

������∑︁𝑎∈W(𝑚𝐾𝜋𝜋 ,𝑡 ′ )
T𝑎 (𝑚𝐾 𝜋𝜋 , 𝑡′)𝛹𝑎 (𝜏, 𝑚𝐾 𝜋𝜋)

������
2

, (3.2)

which is the number of counts as a function of the kinematic variables. The model intensity
sums the amplitudes of the partial-waves included in the considered set of wavesW1. Assuming
factorization of the production and decay of the 𝑋− system, we model these amplitudes as a
product of transition amplitudes T𝑎 (𝑚𝐾 𝜋𝜋 , 𝑡′), modeling the production and propagation of
𝑋−, and decay amplitudes𝛹𝑎 (𝜏, 𝑚𝐾 𝜋𝜋), which model the decay of 𝑋−.

Decay Amplitude
The decay amplitude can be written as

𝛹𝑎 (𝜏, 𝑚𝐾 𝜋𝜋) =
𝛹̃𝑎 (𝜏, 𝑚𝐾 𝜋𝜋)√︁
ℜ𝑎 (𝑚𝐾 𝜋𝜋)

, (3.3)

where ℜ𝑎 (𝑚𝐾 𝜋𝜋) is the normalization integral:

ℜ𝑎 (𝑚𝐾 𝜋𝜋) =
∫

(𝑚𝐾𝜋𝜋 ,𝑡 ′ )

d𝑚̃𝐾 𝜋𝜋d𝑡′
∫

d𝛷3 (𝜏)
��𝛹̃𝑎 (𝜏, 𝑚𝐾 𝜋𝜋)��2, (3.4)

where the squared absolute value of 𝛹̃𝑎 is integrated over a (𝑚𝐾 𝜋𝜋 , 𝑡′) cell and the phase-space
𝛷3. The total decay amplitude:

𝛹̃𝑎 (𝜏, 𝑚𝐾 𝜋𝜋) = Z(𝛺𝑋, 𝛺 𝜉 )Δ(𝑚ℎ−ℎ+ , 𝑚𝐾 𝜋𝜋), (3.5)

is written as a product of two parts: Z describes the angular dependence of the decay amplitude,
Δ describes the dependence on the invariant two-body mass 𝑚𝐾− 𝜋+ or 𝑚𝜋− 𝜋+ [16]. This term
is from a product

Δ(𝑚ℎ−ℎ+ , 𝑚𝐾 𝜋𝜋) = D𝜉 (𝑚ℎ−ℎ+ )𝐹𝐿 (𝑚𝐾 𝜋𝜋)𝐹𝐽𝜉 (𝑚ℎ−ℎ+ ), (3.6)

of two parts: (i) a dynamic amplitude D𝜉 , which encodes the amplitude of an isobar resonance;
and (ii) centrifugal-barrier factors 𝐹𝐿/𝐽𝜉 (𝑚𝐾 𝜋𝜋/𝑚ℎ−ℎ+), which account for the energy required
to produce an orbital angular momentum 𝐿/𝐽𝜉 . For 𝐹𝐿/𝐽𝜉 (𝑚𝐾 𝜋𝜋/𝑚ℎ−ℎ+) the parameterization
of von Hippel and Quigg was used [17].
1The set of considered partial-waves was determined in a so-called wave-set selection fit. The method and its results
can be found in chapter 5.2 of ref. [5].
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3.1. Conventional Partial-Wave-Decomposition

To model the decay amplitude, the dynamic amplitude D𝜉 must be explicitly parameterized.
For the dynamic amplitude at most isobars, a relativistic Breit-Wigner amplitude is used [4, 18]:

D𝐵𝑊 (𝑚) = 𝑚0Γ0

𝑚2
0 − 𝑚2 − 𝑖𝑚0Γ(𝑚)

, (3.7)

where 𝑚0 and Γ0 refer to the nominal mass and width of the resonance, respectively. The
dynamic width Γ(𝑚) is given by:

Γ(𝑚) = Γ0
𝑚0√
𝑚2

𝑞(𝑚)
𝑞(𝑚0)

𝐹𝐿𝜉 (𝑅𝑞(𝑚))
𝐹𝐿𝜉 (𝑅𝑞(𝑚0))

, (3.8)

where 𝑞(𝑚) is the two-body break-up momentum2

𝑞(𝑚, 𝑚1, 𝑚2) =
𝜆1/2 (𝑚2, 𝑚2

1, 𝑚
2
2)

2𝑚
, (3.9)

with 𝑚1 and 𝑚2 being the masses of the daughter particles. Finally, 𝐹𝐿 (𝑅𝑞(𝑚2)) is the
Hippel-Quigg [17] angular-momentum barrier factor, where 𝑅 is the momentum scale parameter
related to the potential radius, that defines the angular-momentum barrier. 𝐿 = 𝐽𝜉 for decays of
two pseudoscalars.

Not all resonances are well approximated by the Breit-Wigner amplitude. In our analysis
the 𝑓0(980) is parameterized by the so-called Flatté parameterization [19] with formulas and
parameters determined in ref. [20]. The so-called broad [𝜋𝜋]𝑆 amplitude, which is dominated
by the 𝑓0(500), is parameterized with an ansatz proposed by the VES collaboration [21],
with parameters determined from 𝜋𝜋 → 𝜋𝜋 scattering data [22]. The [𝐾𝜋]𝑆 amplitude is
parameterized by the so-called Palano-Pennington parameterization, which is discussed in
section 6.4.3.

With these parameterizations, the decay amplitudes in the isobar model are known and contain
no free parameters. A more detailed description of the decay amplitude used in the three-body
analysis can be found in ref. [5].

Transition Amplitude

The transition amplitudes are independent of 𝜏, unknown, and binned into narrow (𝑚𝐾 𝜋𝜋 , 𝑡′)
cells, that were chosen to be narrow enough that the transition amplitude can be assumed to be
constant within a (𝑚𝐾 𝜋𝜋 , 𝑡′) cell. This means that the transition amplitude is parameterized by
step-wise constant functions, which allows the measurement of the transition amplitudes to be
without model dependence.

The 𝑚𝐾 𝜋𝜋 bins have a width of 20 MeV/𝑐2 for 𝑚𝐾 𝜋𝜋 < 2.0 GeV/𝑐2 and 40 MeV/𝑐2 for
𝑚𝐾 𝜋𝜋 > 2.0 GeV/𝑐2. The borders of the four 𝑡′ bins are summarized in table 3.1.

2𝜆 is the Källèn function.
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3. Partial-Wave-Decomposition

Fit Procedure

The intensity model is proportional to the product of the probabilities of an event. This allows
to formulate a likelihood function that also takes into account various acceptance effects that
deform the measured distribution of events. An extended maximum likelihood function is then
formulated, which is fit to the data.

3.2 Freed-Isobar Partial-Wave-Decomposition
To extract the amplitude of the isobar systems, a freed-isobar PWD was performed in ref.
[5]. This section gives only a brief introduction to the freed-isobar PWD. A more detailed

Table 3.1: Borders of the four 𝑡′ bins used in the PWD fit. Taken from ref. [5]
[(GeV/𝑐)2] 0.10 0.15 0.24 0.34 1.00

Figure 3.2: Schematic illustration of the freed-isobar PWD fit. The blue curve shows a Breit-
Wigner amplitude in an isobar. The orange line represents the piecewise constant
function before the freed-isobar PWD fit is performed. The green curve represents
the fitted amplitude of the isobar system, which describes the Breit-Wigner amplitude
in the isobar. The figure is taken from ref. [5].
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3.2. Freed-Isobar Partial-Wave-Decomposition

explanation can be found in refs. [6, 7, 12]. The ansatz of the conventional PWD requires fixed
parameterizations for the dynamic amplitudes. In contrast to the angular dependence of the
decay amplitudes, which is known a priori, the dynamic amplitudes must be parameterized
explicitly and may therefore introduce a bias from the choice of the used parameterization. The
goal of the freed-isobar PWD is to measure this amplitude without the need for any model
dependence, hence the same approach is taken for the isobars as for the 𝑋−. To this end, the
fixed parameterization (blue curve in fig. 3.2) of a dynamic amplitude (see eq. (3.5)) is replaced
by piecewise constant functions (orange lines in fig. 3.2):

Dfree
𝜉 (𝑚ℎ−ℎ+ ) =

∑︁
𝑖

Dfree
𝜉 (𝑚𝑖ℎ−ℎ+ )𝛩(𝑚ℎ−ℎ+ ;𝑚𝑖ℎ−ℎ+ ), (3.10)

where the entire 𝑚ℎ−ℎ+ range is binned into narrow bins 𝑚𝑖
ℎ−ℎ+ . The choices of 𝑚ℎ−ℎ+ bin

widths are summarized in section 3.2.1. Similar to the conventional PWD, an intensity model
of the form

Ifree (𝜏, 𝑚𝐾 𝜋𝜋 , 𝑡′) =
�����∑︁
𝑎,𝑖

T𝑎,𝑖 (𝑚𝐾 𝜋𝜋 , 𝑡′)𝛹𝑎,𝑖 (𝜏, 𝑚𝐾 𝜋𝜋)
�����2 (3.11)

is formulated. The decay amplitude𝛹𝑎,𝑖 (𝜏, 𝑚𝐾 𝜋𝜋) is the normalized total decay amplitude
𝛹̃𝑎,𝑖 (𝜏, 𝑚𝐾 𝜋𝜋), which is defined analogously to eq. (3.5), where the dynamic amplitude in
eq. (3.6) is exchanged by the free amplitude in eq. (3.10). The normalization is given by:

ℜ𝑎 (𝑚𝐾 𝜋𝜋 ;𝑚𝑖ℎ−ℎ+ ) =
∫

(𝑚𝐾𝜋𝜋 ,𝑡 ′ )

d𝑚̃𝐾 𝜋𝜋d𝑡′
∫

d𝛷3 (𝜏)
�����𝛹̃𝑎 (𝜏, 𝑚̃𝐾 𝜋𝜋 ;𝑚𝑖

ℎ−ℎ+ )
Dfree
𝜉

(𝑚𝑖
ℎ−ℎ+ )

�����2. (3.12)

It is important to note that the freed-isobar transition amplitudes T𝑎,𝑖
T𝑎,𝑖 (𝑚𝐾 𝜋𝜋 , 𝑡′) ∝ T𝑎 (𝑚𝐾 𝜋𝜋 , 𝑡′)Dfree

𝜉 (𝑚ℎ−ℎ+ ) (3.13)

are a product of the T𝑎 of the 𝑋− and the freed dynamic amplitude Dfree
𝜉

and is proportional3

to the conventional transition amplitudes. Therefore, the transition amplitudes also depend
on the mass 𝑚ℎ−ℎ+ of the two-body system and models its 𝑚ℎ−ℎ+ mass dependence for fixed
𝑚𝐾 𝜋𝜋 and 𝑡′. The intensity model is very similar to the intensity model in the conventional
PWD. Thus the freed-isobar intensity model is fitted with respect to the freed-isobar transition
amplitudes T𝑎,𝑖 (green line in fig. 3.2), by an extended log-likelihood formalism.

Unlike in the conventional PWD, where the amplitudes in different (𝑚𝐾 𝜋𝜋 , 𝑡′) cells do not
interfere, in the freed-isobar PWD, interference between subsystems is possible at given 𝑚ℎ−ℎ+ .
For example, the 𝐾−𝜋+ subsystem at a given 𝑚𝐾− 𝜋+ interferes with the 𝜋−𝜋+ subsystem at all
𝑚𝜋− 𝜋+ , since fixing the𝑚𝐾− 𝜋+ does not fix the𝑚𝜋− 𝜋+ . This is also true for the 𝜋−𝜋+ and 𝐾−𝜋+

subsystems at fixed 𝑚𝐾− 𝜋+ . This means that we measure the absolute 𝑚ℎ−ℎ+ dependence of
the amplitude, i.e. the phase dependence, and not just the relative phase, as in the conventional
PWD of the three-body system. For more details on the freed-isobar PWD and how the fit was
performed, see ef. [5].

In this analysis only a single partial-wave was freed per freed-isobar PWD, because the
freed-isobar PWD introduces many additional parameters to the PWD fit. Freeing multiple
3Up to the normalization integral. For the full proportionality see eq. F.7 in ref. [5]

15



3. Partial-Wave-Decomposition

partial-waves in one freed-isobar PWD fit introduces too many free parameters to be determined
by our limited amount of data. The freed-isobar PWD fit was performed in four subsystems, the
[𝐾𝜋]𝑃 , [𝜋𝜋]𝑃 , [𝐾𝜋]𝐷 , and [𝐾𝜋]𝑆 . Each subsystem is defined by the two particles into which
the subsystem decays and the orbital angular momentum between the two exiting particles,
denoted by the subscript letter.

3.2.1 Bin Widths

Table 3.2 lists the bin widths for the 𝑚ℎ−ℎ+ two-body mass in the freed-isobar PWD. The
lowest and highest bins are always slightly wider than the other bins to accommodate the full
𝑚ℎ−ℎ+ spectrum. The lower limit of the mass bins is given by the phase-space barrier, i.e.
the minimum 𝑚ℎ−ℎ+ that can decay to 𝐾−𝜋+ or 𝜋−𝜋+. It is given by 𝑚min = 𝑚𝐾−/𝜋− + 𝑚𝜋+ .
The upper limit is given by the highest 𝑚ℎ−ℎ+ we can observe in the highest 𝑚𝐾 𝜋𝜋 bin, i.e.
𝑚max = 3.0 GeV/𝑐2 − 𝑚𝐾−/𝜋− .

3.2.2 Zero Modes
The amplitude measured with the freed-isobar PWD is not well defined and mathematical
ambiguities may arise, the so-called zero modes. We will only briefly introduce zero modes. A
more detailed description can be found in ref. [7]. There may exist T𝑎,𝑖 and T̃𝑎,𝑖 such that both
yield the same model intensity, i.e.∑︁

𝑎,𝑖

T𝑎,𝑖 (𝑚𝐾 𝜋𝜋 𝑡′)𝛹𝑎,𝑖 (𝜏, 𝑚𝐾 𝜋𝜋) =
∑︁
𝑎,𝑖

T̃ 𝑧
𝑎,𝑖

(𝑚𝐾 𝜋𝜋 , 𝑡′)𝛹𝑎,𝑖 (𝜏, 𝑚𝐾 𝜋𝜋), (3.14)

where T̃𝑎,𝑖 = T𝑎,𝑖 + ΔT . The ΔT is responsible for the ambiguities and is called zero-mode.
Typically, the ambiguities can only occur if at least two waves are freed. Then the zero mode
in one wave is figuratively compensated by a zero-mode in the other wave. Therefore, the
mathematical ambiguity can be avoided by fixing the amplitude of one wave, since this also
fixes the zero-mode and thereby the amplitude in the other wave. Since only one amplitude was
freed in each freed-isobar PWD fits, in this work no zero modes are expected in our results.

3.3 Limitations of Our Data Sample

In section 2.2, we discussed the limitations in identifying the final-state particles, which leads to
about 10 % of background data. In the three-body analysis, this background was accounted for
by additional parameters in the conventional PWD [5]. This is not possible in the freed-isobar
analysis, because the fit would have too many parameters to be determined by the data. This
leads to overfitting and the fit results do not represent the reality.
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3.3. Limitations of Our Data Sample

Table 3.2: Summary of the 𝑚ℎ−ℎ+ two-body mass bin widths in the freed-isobar PWD for a the
[𝐾𝜋]𝑃 , b the [𝜋𝜋]𝑃 , c the [𝐾𝜋]𝐷 and d the [𝐾𝜋]𝑆 amplitudes. Both 𝑚min and
𝑚max are rounded to three decimal places. Section 3.2.1 explains the reason why the
lowest and highest bins are wider. Table adapted from ref. [5].

(a) [𝐾𝜋]𝑃
𝑚𝐾− 𝜋+ Range 𝑚𝐾− 𝜋+ Bin width

{0.633; 0.800 GeV/𝑐2} 20 MeV/𝑐2

{0.800; 1.000 GeV/𝑐2} 10 MeV/𝑐2

{1.000; 1.720 GeV/𝑐2} 20 MeV/𝑐2

{1.720; 2.861 GeV/𝑐2} 40 MeV/𝑐2

(b) [𝜋𝜋]𝑃
𝑚𝜋− 𝜋+ Range 𝑚𝜋− 𝜋+ Bin width

{0.279; 0.640 GeV/𝑐2} 40 MeV/𝑐2

{0.640; 0.920 GeV/𝑐2} 20 MeV/𝑐2

{0.920; 2.506 GeV/𝑐2} 40 MeV/𝑐2

(c) [𝐾𝜋]𝐷
𝑚𝐾− 𝜋+ Range 𝑚𝐾− 𝜋+ Bin width

{0.633; 1.120 GeV/𝑐2} 40 MeV/𝑐2

{1.120; 1.720 GeV/𝑐2} 20 MeV/𝑐2

{1.720; 2.861 GeV/𝑐2} 40 MeV/𝑐2

(d) [𝐾𝜋]𝑆
𝑚𝐾− 𝜋+ Range 𝑚𝐾− 𝜋+ Bin width

{0.633; 2.861 GeV/𝑐2} 40 MeV/𝑐2

Another analysis artifact in the three-body analysis is the so-called leakage-effect. Partial-waves
affected by the leakage-effect show analysis artifacts in the form of an artificial intensity at
𝑚𝐾 𝜋𝜋 ≲ 1.6 GeV/𝑐2. The leakage artifacts occur due to the RICH detector not covering the
full momentum range of the final-state particles, as mentioned in section 2.2.

As discussed in section 3.2.2, zero-modes are mathematical ambiguities of the measured
amplitude. The mathematical ambiguity can be resolved by fixing the amplitude of one
partial-wave, since then the ambiguity is avoided as the partner amplitude gets a fixed shape.
If the chosen parameterization for the fixed amplitude is not a good representation of the
subsystem, this may lead to deformations in the measured amplitude, and thus analysis artifacts.
These effects are by definition no zero-modes, since they do not represent a mathematical
ambiguity. We will refer to these effects as zero-mode-like effects. It is still unclear if and how
these possible analysis artifacts appear in this analysis. One of the objectives of this work is to
investigate the effects by these possible analysis artifacts as discussed in chapter 6.
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4 Resonance-Model Fit

As discussed in chapter 3, in the first step of the PWA, the amplitude of an isobar system with
given quantum numbers was measured in narrow bins of 𝑚𝐾 𝜋𝜋 and 𝑡′ using the freed-isobar
PWD fit. The goal of the second step of the PWA, the Resonance-Model Fit (RMF), is to
identify and measure the mesonic resonances that appear in the freed-isobar amplitudes. To this
end, the 𝑚ℎ−ℎ+ dependence of the freed-isobar amplitude is modeled explicitly. In addition, all
four 𝑡′ bins and a selected range of 𝑚𝐾 𝜋𝜋 bins are fitted simultaneously in an RMF, to provide
as much data as possible for the fit. Also, we include only a limited 𝑚ℎ−ℎ+ range in the fit, in
order to study only the signals of interest, e.g. the ground-state resonance, while higher excited
resonances are excluded from the fit. We use the implementation of the RMF formalism as used
in ref. [5].

4.1 RMF Formalism
To identify the resonances that occur in the two-body systems, the 𝑚ℎ−ℎ+ dependence of
the measured amplitude of a two-body system must be modeled by the RMF. Therefore, we
constructed a model1 of the form:

T̂ (𝑚𝐾 𝜋𝜋 , 𝑡′;𝑚𝑖ℎ−ℎ+ ) =
√︃
ℜ(𝑚𝐾 𝜋𝜋 ;𝑚𝑖

ℎ−ℎ+ )𝑚𝐾 𝜋𝜋P(𝑚𝐾 𝜋𝜋 , 𝑡′)
∑︁
𝑘∈S

𝑘C(𝑚𝐾 𝜋𝜋 , 𝑡′)D𝑘 (𝑚𝑖ℎ−ℎ+ ; 𝜁𝑘),

(4.1)
i.e. as a coherent sum over model components 𝑘 , which we assume to contribute to the modeled
amplitude. The two terms ℜ and P describe the kinematic effects. ℜ is the wave-normalization
integral defined in eq. (3.12), and contains the centrifugal barrier factors and therefore depends
on 𝑚ℎ−ℎ+ . The factor P encodes the production factor2, which does not depend on 𝑚ℎ−ℎ+ .
The factor D is the dynamic amplitude of the model component. It depends on the invariant
two-body mass 𝑚ℎ−ℎ+ and the shape parameters 𝜁 . Depending on the parameterization used for
the dynamic amplitude, the shape parameters 𝜁 can consist, e.g. for a Breit-Wigner amplitude
of the nominal mass 𝑚0 and the nominal width Γ0 of the resonance, which is modeled by
component 𝑘 . The coupling parameter C encodes the strength and phase with which a model
component appears in the total amplitude. There is a coupling for each (𝑚𝐾 𝜋𝜋 , 𝑡′) cell. Hence,
we do not model the (𝑚𝐾 𝜋𝜋 , 𝑡′) dependence, but measure the piecewise-constant Coupling.
1The partial-wave label 𝑎 has been dropped for simplicity, because only one partial-wave was freed per freed-isobar
PWD.

2The production factor is an effective model of the of the scattering process via Pomeron exchange (see eq. (6.12) in
ref. [5]).
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4. Resonance-Model Fit

4.2 Dynamic Amplitudes

As discussed in section 4.1, the model contains a sum over model components 𝑘 , that we assume
contribute to the modeled amplitude. Each component 𝑘 is modeled by, among others, the
dynamic amplitude. In this work, we have most often used the Breit-Wigner amplitude as
the dynamic amplitude (see section 3.1). Parameterizations for special cases are discussed in
sections 6.2 and 6.4.

So far we have introduced some dynamic amplitudes. All these dynamic amplitudes model
only resonant contributions, but the final-state particles can also be produced without a decay
via an isobar 𝜉0, e.g. a direct decay of the intermediate state 𝑋− into the final-state particles
𝐾−𝜋−𝜋+. This process is called the nonresonant production of the final-state particles. In
order to take these contributions into account, a so-called nonresonant component can be added
as a dynamic amplitude in the RMF model. There are many different nonresonant processes
that can contribute, and there is no generally accepted theory model that parameterizes these
contributions. Therefore, an effective parameterization with a flexible shape is used. This
parameterization is inspired by ref. [23] and was implemented in previous COMPASS 𝜋−𝜋−𝜋+
analyses [24, 25]. The parameterization for nonresonant contributions reads:

D𝑁𝑅 (𝑞; 𝑏) = exp(−𝑏𝑞(𝑚ℎ−ℎ+ )), (4.2)

where 𝑞 is the two-body break-up momentum (see eq. (3.9)) of the two-body isobar system
and 𝑏 is a shape parameter. The shape parameter 𝑏 controls the dampening of the amplitude
towards higher 𝑚ℎ−ℎ+ .

Figure 4.1 outlines the color scheme used in the modeled amplitude plots as an example in an
intensity plot, i.e., the squared absolute value of the amplitude as a function of 𝑚𝐾− 𝜋+ . The
top right corner shows the subsystem in which the RMF was performed in. Below that is the
(𝑚𝐾 𝜋𝜋 , 𝑡′) cell. In the plot itself, the measured amplitude is shown by the blue data points.
All components describing resonant contributions are shown as a blue curve. The component
describing the nonresonant contribution is shown as a green curve. The model amplitude, which
is the sum over all resonant and nonresonant components, is shown as a red curve.

4.3 𝜒2 Formalism
The model in eq. (4.1) is fitted to the measured amplitude from the freed-isobar PWD in a 𝜒2

optimization. There, the modeled amplitude T̂ is directly compared to the measured amplitude
T . To this end, the vector ®𝜇 of the measured freed-isobar amplitude values is constructed. Its
elements,

𝜇 𝑗 (𝑚𝐾 𝜋𝜋 , 𝑡′) =
{
ℜ(T (𝑚𝐾 𝜋𝜋 ;𝑚 ⌈ 𝑗/2⌉

ℎ−ℎ+ )) ,if 𝑗 is even
ℑ(T (𝑚𝐾 𝜋𝜋 ;𝑚 ⌈ 𝑗/2⌉

ℎ−ℎ+ )) ,if 𝑗 is odd,
(4.3)

are the real and imaginary parts of the measured amplitude in different 𝑚ℎ−ℎ+ bins. For
example, elements one and two correspond to the real and imaginary parts of the first 𝑚ℎ−ℎ+
bin, respectively, and elements two and three correspond to the real and imaginary parts of the
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4.3. 𝜒2 Formalism
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Figure 4.1: Exemplary intensity spectrum of an RMF in the [𝐾𝜋]𝐷 subsystem at 𝑚𝐾 𝜋𝜋 ≈
1.71 GeV/𝑐2 in the lowest 𝑡′ bin. The results of the freed-isobar PWD are shown as
blue data points. The blue curve represents the resonant component of the RMF.
The green curve represents the nonresonant component in the RMF. The red curve
represents the model curve.

second 𝑚ℎ−ℎ+ bin, respectively. Analogously, the vector ®̂𝜇 encodes to the model amplitude:

𝜇̂ 𝑗 (𝑚𝐾 𝜋𝜋 , 𝑡′) =
{
ℜ(T̂ (𝑚𝐾 𝜋𝜋 ;𝑚 ⌈ 𝑗/2⌉

ℎ−ℎ+ )) ,if 𝑗 is even
ℑ(T̂ (𝑚𝐾 𝜋𝜋 ;𝑚 ⌈ 𝑗/2⌉

ℎ−ℎ+ )) ,if 𝑗 is odd.
(4.4)

Using these two vectors simplifies the 𝜒2 function, which reads:

𝜒2 =
∑︁

𝑡 ′ ,𝑚𝐾𝜋𝜋

∑︁
𝑖, 𝑗

𝛥𝜇𝑖 (𝑚𝐾 𝜋𝜋 , 𝑡′)Prec
[
𝜇𝑖 (𝑚𝐾 𝜋𝜋 , 𝑡′), 𝜇 𝑗 (𝑚𝐾 𝜋𝜋 , 𝑡′)

]
𝛥𝜇 𝑗 (𝑚𝐾 𝜋𝜋 , 𝑡′), (4.5)

where
𝛥𝜇𝑖 (𝑚𝐾 𝜋𝜋 , 𝑡′) = 𝜇𝑖 (𝑚𝐾 𝜋𝜋 , 𝑡′) − 𝜇̂𝑖 (𝑚𝐾 𝜋𝜋 , 𝑡′), (4.6)

and Prec[𝜇𝑖 , 𝜇 𝑗] is the precision matrix, which is the inverse of the covariance matrix obtained
from the freed-isobar PWD fit. More details on the covariance matrix can be found in section 4.4.
Before a fit is performed, start-parameter values for the free parameters are randomly chosen. The
𝜒2 optimization then minimizes the 𝜒2-value of the model with respect to the free parameters,
such as the shape parameters 𝜁 and the coupling amplitudes C. To avoid a bias due to the
randomly chosen start-parameters, each RMF is fitted 250 times with different start-parameters.
The result of the fit with the lowest 𝜒2-value, that meets our convergence criteria (see section 4.5),
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4. Resonance-Model Fit

is adopted. The free parameters must stay within predefined boundaries to ensure physical
results and stability of the fit, e.g. the boundaries for resonant components are chose so that
they do not overlap.

4.4 Statistical Uncertainties of the RMF
The statistical uncertainties of the RMF are represented by the covariance matrix. For a 𝜒2-fit it
is approximated by (

Cov−1
)
𝑖 𝑗
=

1
2

[
𝜕2𝜒2

𝜕𝜃𝑖𝜕𝜃 𝑗

]
𝜃=𝜃

, (4.7)

i.e. by the inverse of the 𝜒2 Hesse matrix evaluated at the parameters 𝜃 [26]. The square-root
of the diagonal elements of the covariance matrix give the uncertainty of the parameters, while
the off-diagonal elements encode the correlation between the parameters. For more details on
the covariance matrix of a log-likelihood function, see ref. z[26].

Our data set consists of about 720,000 events, which yields a small statistical uncertainty of our
results. The systematic uncertainties for the freed-isobar PWD have not yet been determined
in systematic studies, so we cannot provide systematic uncertainties. Therefore, the results of
the RMFs are rounded to a precision of 1 MeV/𝑐2 and reported without uncertainties, which is
enough precision to perform the proof-of-principle studies aimed at in this work.

4.5 Convergence Criteria

Two criteria have to be met to consider an RMF as converged. First of all a 𝜒2-minimum must
be found. This is the case if the covariance matrix is positive definite, i.e. all eigenvalues of
the covariance matrix are positive. Second, no parameter has reached its predefined parameter
limits. The bounds prevent the fit from finding an unphysical solution, such as negative masses
or widths much larger than any known resonance. The configuration of all RMFs performed for
this thesis, including the parameter bounds of the dynamic amplitudes, can be found in ref. [27].
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5 Applicability of Wilks’ Theorem to
Resonance-Model Fits

To estimate the statistical significance of model components, a hypothesis test was performed
on them. To this end, we performed two RMFs with different models. The so-called null model
is a model that does not contain the component for which the significance should be calculated.
The null model has ℎ free parameters. The alternative model includes the component of interest.
It has 𝑚 free parameters. The rest, e.g. the included 𝑚𝐾 𝜋𝜋 , 𝑡′ and 𝑚ℎ−ℎ+ bins, is the same
in both RMFs. Due to the smaller number of parameters, the 𝜒2-value of the null model will
be larger than that of the alternative model. The test statistic 𝑇 is given by the difference in
𝜒2-values of the two RMFs Δ𝜒2. With the Probability-Density Function (PDF) of the test
statistic the p-value can be calculated with the survival function:

𝑝(Δ𝜒2) =
∫ ∞

Δ𝜒2
𝑓 (𝑥; 𝜃)d𝑥, (5.1)

which integrates the PDF from the Δ𝜒2-value from which the p-value is desired of to infinity.
The resulting p-value can then be translated into a significance with the inverse survival function
of the standard normal distribution (𝜇 = 0, 𝜎 = 1). Wilks’ theorem states that the PDF can be
approximated by a 𝜒2-distribution [28]

𝑓 (𝑥) =
{

1
Γ (𝑑 𝑓 /2)2(𝑑 𝑓 /2) 𝑥

𝑑 𝑓 /2−1𝑒−𝑥/2 , 0 < 𝑥 < ∞
0 ,elsewhere,

(5.2)

with 𝑑𝑓 = ℎ − 𝑚 degrees of freedom [9]. Γ denotes the Gamma function [28]:

Γ(𝛼) =
∞∫

0

𝑦𝛼−1𝑒−𝑦d𝑦. (5.3)

The likelihoods must satisfy regularity conditions in the parameter space for Wilks’ theorem to
be applicable [28]. The RMF do not satisfy one of the regularity conditions, which states that
the PDFs 𝑓 (𝑥𝑖; 𝜃) with parameters 𝜃 must be distinct, i.e., if 𝜃 ≠ 𝜃′ then 𝑓 (𝑥𝑖; 𝜃) ≠ 𝑓 (𝑥𝑖; 𝜃′).
Our models with parameters 𝜃 = {ℜ(C),ℑ(C), 𝑚0, Γ0, ...}, where C is the coupling factor and
𝑚0 and Γ0 are the nominal mass and width of a Breit-Wigner component, respectively, do not
satisfy the regularity condition. If both models have a coupling amplitude of zero and different
mass and width parameters, then this implies that both PDFs are the same, as the coupling
amplitudes are zero, i.e. as the Breit-Wigner component does not contribute to the total model
curve. This condition is automatically fulfilled in our RMFs, since the null model does not
contain the Breit-Wigner component and has by default a coupling amplitude of zero. Thus, the
regularity condition is violated by RMFs.
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5. Applicability of Wilks’ Theorem to Resonance-Model Fits

5.1 Toy Studies of Applicability of Wilks’ Theorem to RMFs

To test for the discrepancy between the results from Wilks’ theorem and the actual significance,
which we will call the true significance, we performed toy studies. To this end, we randomly
generated toy datasets of an amplitude consisting of a single resonance to determine the true
significance under the assumption of the null hypothesis. As true amplitude a Breit-Wigner
amplitude with resonance parameters from the PDG for the 𝐾∗(892) (blue dots in fig. 5.1)
was used [2]. In total, 10 data points were evenly distributed in the mass range from 0.7 to
1.5 GeV/𝑐2. Each data point in the amplitude has the same uncertainty of

√︁
3/8 GeV/𝑐2. We

know from the previous analysis of the data sample that the uncertainty of the intensity is
proportional to its square-root, thus the uncertainty of the real and imaginary parts of the
amplitude are expected to be roughly constant. To create a random toy sample from this
amplitude, at each mass point, we randomly draw values for the real and imaginary parts from a
normal distribution centered around the corresponding true amplitude value with the standard
deviation given by the uncertainty (orange crosses in fig. 5.1).

The toy datasets are fitted by models in an RMF. The models contain either one or two Breit-
Wigner components, to model the null hypothesis or the alternative hypothesis, respectively.
We created four different scenarios to test our method and the discrepancy between Wilks’
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0.0
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|
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1e3
Toy data
K * (892) Breit-Wigner

Figure 5.1: Intensity Spectrum with a Breit-Wigner amplitude of the 𝐾∗(892) (blue dots). An
exemplary toy dataset is shown by the orange crosses.
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5.1. Toy Studies of Applicability of Wilks’ Theorem to RMFs

significance and the true significance. In the first scenario, we compare the distribution of
𝜒2-values obtained by fitting a Breit-Wigner component with fixed parameters to a real 𝜒2-PDF
with corresponding degrees of freedom (see section 5.1.1). Then, a second fixed-parameter
Breit-Wigner component is added, and the difference in 𝜒2-values of the one and two Breit-
Wigner component fits are compared to the corresponding 𝜒2-PDF (see section 5.1.2). In the
next two scenarios, the difference in significance calculated with Wilks’ theorem and the real
PDF is calculated. Here, the second Breit-Wigner component has free parameters. The toys of
the third scenario are performed with one bin (see section 5.1.3), while the toys of the fourth
scenario are performed with four bins (see section 5.1.4).

5.1.1 Model with One Breit-Wigner Component

The goal of the first toy study is to compare the real PDF of 𝜒2-values obtained in fitting several
toy samples to a 𝜒2-PDF. In this step, we actually did not use the full mass range mentioned
earlier, but a mass range from 0.7 to 1.1 GeV/𝑐2 with 10 equally spaced points, as this mass
range is enough to cover the single Breit-Wigner component. The toy samples were fitted with
a simple model containing only a Breit-Wigner component with resonance parameters fixed to
the same values as the Breit-Wigner amplitude. Thus, only the real and imaginary part of the
coupling amplitude for this single Breit-Wigner component were fitted. The degrees of freedom
are given by difference between the number of data points and the free parameters, i.e., 𝑑𝑓 = 18
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Figure 5.2: Histogram of 𝜒2-values obtained in toy samples with a single Breit-Wigner com-
ponent with fixed resonance parameters (blue bars). The 𝜒2-PDF function with
degrees of freedom of 18 is shown by the red curve.
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5. Applicability of Wilks’ Theorem to Resonance-Model Fits

1. We created 3600 toy samples with one fit attempt for each toy. The 𝜒2-value of each fit was
collected. Figure 5.2 shows the numerical approximation of the true PDF.

The histogram of the real distribution (blue bars) has a similar shape to the 𝜒2-PDF (red line).
Even though, the bars do not perfectly match the 𝜒2-distribution due to statistical fluctuations
resulting from the limited number of toys created, the real distribution is well approximated by
the 𝜒2-PDF, as expected. This first test was just to proof-the-principle of the further toy studies.

5.1.2 Models with Two Fixed Breit-Wigner Components

In the second set of toy studies, two models were fitted once on the same toy. The first model
is the same one used in section 5.1.1. The second model adds an additional Breit-Wigner
component with parameters fixed to the values of the 𝐾∗(1410)2 [2]. The additional Breit-
Wigner component does only fit statistical fluctuations, since the data sample just contains a
single Breit-Wigner amplitude. This makes a total of four free parameters all from the two
coupling factors. We are now interested in the distribution of the difference of the 𝜒2-values
Δ𝜒2. Wilks’ theorem states that Δ𝜒2 is distributed like a 𝜒2-PDF. In these studies, we want to
test this statement in a case where the regularity condition is fulfilled. The regularity condition
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Figure 5.3: Histogram of Δ𝜒2 obtained in toy studies with one Breit-Wigner component and
two Breit-Wigner components with fixed resonance parameters (blue bars). The
𝜒2-PDF with degrees of freedom equal to the difference in parameters of the two
models used is shown by the red curve.

1Note that the real and imaginary parts of the Breit-Wigner amplitude are counted as one degree of freedom each.
2Note that from now on all toys will have mass range from 0.7 to 1.5 GeV/𝑐2 to accommodate the second Breit-Wigner
component.
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5.1. Toy Studies of Applicability of Wilks’ Theorem to RMFs

is fulfilled, because the additional Breit-Wigner component has fixed resonance parameters,
thus these parameters are not part of the parameter space. Therefore, the PDFs are distinct. The
degrees of freedom of the 𝜒2-PDF are given by the difference in the number of parameters, i.e.,
𝑑𝑓 = 2. In this toy study, we generated 3600 toy samples to obtain the true distribution.

The true distribution of Δ𝜒2 is very well approximated by the 𝜒2-PDF as shown in fig. 5.3.
These toys do not represent the case we would expect in a normal analysis. There the resonance
parameters are not fixed, so in the following two toy studies the second Breit-Wigner component
has free resonance parameters.

5.1.3 Models with Two Breit-Wigner Components in One Bin

The goal of the third toy study is to get a first estimate of the discrepancy between the true
significance computed with the true distribution and the significance computed under the
assumption of Wilks’ theorem. To this end, the true distribution must be determined accurately
also in the tails of the distribution. Thus, we generated 100,000 toy samples. Each toy sample
was fitted by the model with only the 𝐾∗(892) Breit-Wigner component, and by the second

Table 5.1: Summary of the boundaries used for the second Breit-Wigner component.
Limits [GeV/𝑐2]

𝑚0 {1.1; 1.8}
Γ0 {0.100; 0.600}
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Figure 5.4: Same as fig. 5.3, but the second Breit-Wigner component in the second model has
free resonance parameters.
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Figure 5.5: Plot of Wilks’ approximated (vertical axis) and true (horizontal axis) value for the
significance (orange dots). The green line is a linear fit through the orange data
points to estimate the trend. The blue line corresponds to the identity line, i.e. the
line we would expect to see if the assumptions of Wilks’ theorem apply to our
system.

model, which is similar to the second model used in section 5.1.2. The only difference being that
the second Breit-Wigner component, i.e., not the 𝐾∗(892) one, has free resonance parameters.
To ensure to find the best minimum, i.e. the lowest 𝜒2-value for each toy sample, the first model
was fitted 10 times and the second model 30 times. Similar to the real RMFs, we limited the
values that the parameters could take to be realistic to the real analysis. The boundaries are
summarized in table 5.1. This model now has six free parameters in total, four of the coupling
amplitudes and one each for the nominal mass and width of the second Breit-Wigner component.
This means that the degrees of freedom of the 𝜒2-PDF are 𝑑𝑓 = 4.

The model with two Breit-Wigner components was only able to converge in 8.4 % of the toys.
This is due to the lack of a statistically significant structure in the toy samples that the second
Breit-Wigner component could describe. Since the second Breit-Wigner is used by the fit to
describe statistical fluctuations, the fits often yield resonance parameters at their boundaries.
Figure 5.4 shows the resulting distribution of Δ𝜒2-values. Overall, the true distribution is still
fairly well approximated by the 𝜒2-PDF, although the regularity condition is now violated. We
just observe that the Δ𝜒2-distribution has a higher peak than the 𝜒2-PDF, but therefore has
lower values towards higher Δ𝜒2 values.

We calculated the significance using the true distribution and the 𝜒2-PDF, as suggested by
Wilks’ theorem, and compared the values (see fig. 5.5). Wilks’ theorem slightly underestimates
the true significance, indicated by the orange points below the blue identity line. This means
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that Wilks’ theorem is a good approximation for the true significance.

5.1.4 Models with Two Breit-Wigner Components in Four Bins

In the analysis of the freed-isobar amplitudes, the data are binned into many (𝑚𝐾 𝜋𝜋 , 𝑡′) cells,
while in the toy studies discussed so far, we fitted to only a single amplitude spectrum, i.e. a
single (𝑚𝐾 𝜋𝜋 , 𝑡′) cell. Thus, the fourth toy study uses the same models as in section 5.1.3, but
with a toy sample that consists of four 𝑡′ bins. To this end, we draw four random amplitudes, that
are combined into one toy sample with four 𝑡′ bins, where each amplitude corresponds to one 𝑡′

bin. All four 𝑡′ bins are fitted simultaneously, similar to the real RMFs. As a consequence, the
ratio of resonance parameters to coupling amplitudes decreases, which is closer to the reality
of the RMFs. The first model, which contains only the 𝐾∗(892) Breit-Wigner component
now has 8 free coupling amplitudes, two for each 𝑡′ bin. The second model, now has 16 free
coupling amplitudes compared to two free resonance parameters. This results in 𝑑𝑓 = 10 for
the 𝜒2-distribution. To obtain significances with the true distribution up to 5𝜎, a total of about
three million toy samples, consisting each of four 𝑡′ bins, were generated and fit, of which 11 %
converged.

Figure 5.6 shows the resulting Δ𝜒2-distribution, which shows a slight right shift toward higher
Δ𝜒2-values compared to the 𝜒2-distribution. Nevertheless, the real distribution has a similar
shape as the 𝜒2-distribution. Calculating the significance values allows us to assess whether
Wilks’ theorem provides a good approximation of the true distribution. Figure 5.7 shows that
under the assumptions of Wilks’ theorem, the significance of the components is overestimated.
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Figure 5.6: Same as fig. 5.3. Here, the second Breit-Wigner component in the second model
has free parameters. The toys used contain 4 𝑡′ bins.
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Figure 5.7: Same as fig. 5.5, but with values obtained from toys containing four 𝑡′ bins.

Table 5.2: Summary of significance values computed with Wilks’ theorem and the real distribu-
tion.

Wilks’ 𝜎 Real 𝜎
0.0 -0.556032
0.4 -0.159442
0.8 0.311158
1.2 0.82477
1.6 1.19313
2.0 1.69158
2.4 2.13746
2.8 2.54311
3.2 2.9848
3.6 3.3869
4.0 3.80363
4.4 4.17549
4.8 4.5764
5.2 4.9682

At higher significance levels, the trend shows an approach of the true and Wilks significance. To
quantify the discrepancy between the real and Wilks’ theorem the significances are summarized
in table 5.2. It shows that the discrepancy between Wilks’ and the true significance in the region
3𝜎 to 5𝜎 is at about 0.3𝜎. In particle-physics there is the terminology that if a result has
a significance of 3𝜎 it is considered as an observation and with a significance over 5𝜎 it is
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considered as a discovery [29]. In the light of our toy studies, we recommend the significance
of components to read about 4𝜎 for an observation and about 6𝜎 for a discovery.

In this chapter, the problems of using of Wilks’ theorem in RMFs were discussed. In order
to narrow down the impact of the broken regularity condition of the significance calculation,
several toy studies were performed. First, we visually confirmed that the true distributions of
𝜒2 and Δ𝜒2 obtained in the toy studies take a 𝜒2-PDF form, when the regularity conditions are
not violated. Then, when violating the regularity condition as in the RMFs, the discrepancy
between the true significance and Wilks’ significance was determined. The discrepancy is at
about 0.3𝜎 in the interesting range of 3𝜎 to 5𝜎. From our studies, we recommend for our and
other analyses to add a buffer of about 1𝜎 to the significance obtained with Wilks’ theorem.
We cannot give a definitive answer to the size of the buffer, since there are some limitations to
the performed toy studies. We have assumed data points that are perfectly normally distributed,
which in nature does not have to be the case. And we only performed the toy studies with four 𝑡′

bins, and not a complete set of (𝑚𝐾 𝜋𝜋 , 𝑡′) cells that we use in the RMFs. Within the limitations
of our studies, it appears that violating the regularity condition does not have a major impact on
the results obtained using Wilks’ theorem.
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6 Results of Resonance-Model Fits

6.1 [𝐾𝜋]𝑃 Amplitude

The [𝐾𝜋]𝑃 amplitude represents the 𝐾−𝜋+ subsystem where both particles are in a P-wave
configuration. In this subsystem we expect 𝐾∗ resonances with quantum numbers 𝐽𝑃 = 1− , for
which the PDG states the 𝐾∗(892), 𝐾∗(1410) and 𝐾∗(1680). The 𝐾∗(892) is a well established
state. Therefore, this state is used as a standard candle to prove the concept of the freed-isobar
method. The measured amplitude is shown in fig. 6.1. The (𝑚𝐾 𝜋𝜋 , 𝑡′) cell for fig. 6.1(a) shows
best the structure of two peaks. In most of the other cells, the peak at about 1.5 GeV/c2 is not
as prominent (see fig. 6.1(b)). The peak at about 0.9 GeV/𝑐2 is clearly present in all cells. Its
position agrees with the 𝐾∗(892). The peak at about 1.5 GeV/𝑐2 indicates an excited 𝐾∗ state,
as discussed in section 6.1.2.
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Figure 6.1: Intensity spectra of the [𝐾𝜋]𝑃 amplitude as a function of the invariant mass of the
𝐾−𝜋+ subsystem. In (a), one (𝑚𝐾 𝜋𝜋 , 𝑡′) cell has been chosen that best represents
the structure of two peaks. (b) shows a cell in which the peak at about 1.5 GeV/𝑐2

is not as prominent.
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6. Results of Resonance-Model Fits

Table 6.1: Summary of components and data constraints of the performed systematic studies of
the RMF at the 1+0+ [𝐾𝜋]𝑃𝜋𝑆 wave. The first column shows the name of the RMF.
The second column shows the 𝑚𝐾 𝜋𝜋 bins that were included in the RMF. The third
column shows the 𝑚𝐾− 𝜋+ bins that were included in the RMF. The fourth column
shows the Resonant components that were used in the RMF. The fifth column shows
whether a nonresonant component was used and if so, whether its parameter was
fixed to zero or given as a free parameter to the RMF. The last column shows whether
the fit converged or not.

𝑚𝐾 𝜋𝜋 range 𝑚𝐾− 𝜋+ range Resonant Nonres Convergence
[GeV/𝑐2] [GeV/𝑐2] component component behavior

main 1 {1.1; 2.5} {0.0; 1.1} 1 Breit-Wigner None converged
study 1.a {1.1; 2.5} {0.0; 1.0} 1 Breit-Wigner None converged
study 1.b {1.1; 2.5} {0.0; 1.1} 1 Breit-Wigner free converged
study 1.c {1.1; 2.5} {0.0; 1.0} 1 Breit-Wigner free converged
study 1.d {1.1; 2.5} {0.0; 1.1} 1 Breit-Wigner fixed converged
study 1.e {1.1; 2.5} {0.0; 1.0} 1 Breit-Wigner fixed converged
study 1.f {1.16; 1.5} {0.0; 1.1} 1 Breit-Wigner None converged
study 1.g {1.16; 1.5} {0.0; 1.0} 1 Breit-Wigner None converged
study 1.h {1.16; 1.5} {0.0; 1.1} 1 Breit-Wigner fixed converged
study 1.i {1.16; 1.5} {0.0; 1.0} 1 Breit-Wigner fixed converged
study 1.j {1.16; 1.5} {0.0; 1.1} 1 Breit-Wigner free converged
study 1.k {1.16; 1.5} {0.0; 1.0} 1 Breit-Wigner free converged

6.1.1 Models with One Breit-Wigner Component

To study the peak at about 0.9 GeV/𝑐2, we include only the region 0 < 𝑚𝐾− 𝜋+ < 1.1 GeV/𝑐2 and
only 𝑚𝐾 𝜋𝜋 cells above 1.1 GeV/𝑐2 in an RMF modeled by a single Breit-Wigner component.
The data were chosen to ensure production of the 𝐾∗(892), while excluding excited states.
Figure 6.2 shows intensity spectra and phase plots of the [𝐾𝜋]𝑃 amplitude with the result of
the RMF as the red curve of main 1 (see table 6.1). The RMF reproduces well the intensity
spectra up to about 𝑚𝐾 𝜋𝜋 = 2 GeV/𝑐2 (see fig. 6.2(a)). For higher 𝑚𝐾 𝜋𝜋 cells, the RMF cannot
produce a curve that appears to pass through the data points (see fig. 6.2(c)). The phase plots
(figs. 6.2(b) and 6.2(d)) show a similar picture. In the lower 𝑚𝐾 𝜋𝜋 bin (fig. 6.2(b)) the RMF
phase curve reproduces the phase spectrum very well, while in the higher 𝑚𝐾 𝜋𝜋 bin (fig. 6.2(d)),
the RMF does not reproduce the phase spectrum as well.

To study the stability of the RMF, several studies have been conducted. The conditions of
the studies are summarized in table 6.1. First, the effect of different 𝑚𝐾− 𝜋+ upper limits was
studied in study 1.a. This study does not show any significant changes in the intensity spectra
nor in the resonance parameters. Next, the contributions of a nonresonant component was
investigated in studies 1.b-1.e. Here, we used both 𝑚𝐾− 𝜋+ bounds and added a nonresonant
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Figure 6.2: Intensity (left column) and phase (right column) diagrams of the 1+0+ [𝐾𝜋]𝑃𝜋𝑆
wave at 𝑚𝐾 𝜋𝜋 ≈ 1.31 GeV/𝑐2 (top row) and at 𝑚𝐾 𝜋𝜋 ≈ 1.41 GeV/𝑐2 (bottom row)
in the lowest 𝑡′ bin of main 1. The results of the freed-isobar PWD are shown as
blue data points. The red curve is the model curve calculated by the RMF.

component, whose parameter was once fixed to zero1 and once included as a free parameter
to the RMF. Figure 6.3 shows the intensity spectra for study 1.b. They are representative for
studies 1.b-1.e. Figure 6.3(a) shows the intensity spectrum of a low 𝑚𝐾 𝜋𝜋 bin in the lowest
𝑡′ bin. The nonresonant component does not make a big contribution to the model curve. In
higher 𝑚𝐾 𝜋𝜋 cells, a higher nonresonant background contribution is detected (see fig. 6.3(b)),

1This way the coupling for a fixed shape is determined to better understand the significance of the nonresonant
parameter to the model.
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Figure 6.3: Same as in fig. 6.2, but for the intensity of the (𝑚𝐾 𝜋𝜋 ≈ 1.35 GeV/𝑐2, 𝑡′ ≈
0.125 GeV/𝑐2) and (𝑚𝐾 𝜋𝜋 ≈ 2.34 GeV/𝑐2, 𝑡′ ≈ 0.125 GeV/𝑐2) cell of the RMF for
study 1.b from table 6.1. The intensity spectrum (a) is plotted on a logarithmic scale
in order to display the nonresonant background curve more visible.

Table 6.2: Same as table 6.1, but for two Breit-Wigner component models in the [𝐾𝜋]𝑃 . Note
that in studies 1.k and 1.m, all availabe 𝑚𝐾− 𝜋+ bins in a 𝑚𝐾 𝜋𝜋 cell are fitted.

𝑚𝐾 𝜋𝜋 range 𝑚𝐾− 𝜋+ range Resonant Nonres Convergence
[GeV/𝑐2] [GeV/𝑐2] component component behavior

study 1.k {1.5; 2.0} {0.7; 1.9} 2 Breit-Wigner free converged
study 1.l {1.2; 2.36} {0.7; 2.2} 2 Breit-Wigner free not converged
study 1.m {1.5; 2.0} {0.7; 2.7} 2 Breit-Wigner free not converged
study 1.n {1.1; 2.5} {0.0; 1.0} 2 Breit-Wigner free not converged

leading to high destructive interference with the Breit-Wigner component. This behavior can
be observed in cells with 𝑚𝐾 𝜋𝜋 ≳ 2 GeV/𝑐2. Finally the effect of a different set of 𝑚𝐾 𝜋𝜋
cells was studied. Therefore, main 1 and studies 1.a-1.e were repeated with a 𝑚𝐾 𝜋𝜋 range of
{1.16; 1.5}GeV/𝑐2 in studies 1.f-1.k. These studies lead to no significant changes, meaning that
the 𝑚𝐾 𝜋𝜋 range has only little effect on the RMF.

6.1.2 Models with Two Breit-Wigner Resonances

To study the peak at about 1.5 GeV/𝑐2, models with two Breit-Wigner components were
investigated. Models with different sets of (𝑚𝐾 𝜋𝜋 , 𝑡′) cells, without a nonresonant component
and also with one have been tried out. In the end, only four models were able to calculate
resonance parameters, of which only one fit converged. The fit conditions are summarized in
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6.1. [𝐾𝜋]𝑃 Amplitude

table 6.2. In the following two of these models are discussed.

First, we look at the only RMF that converged. This model curve reproduces the peak at about
0.9 GeV/𝑐2 very well (see fig. 6.4). Around this mass, the nonresonant component contributes
little to the model curve. The peak at about 1.5 GeV/𝑐2 is not well reproduced. The RMF
is unable to form a second peak and only forms a small plateau at higher energies. This
plateau is caused by high destructive interference between the Breit-Wigner and the nonresonant
component. Both phase spectra are well reproduced by the RMF. The phase shift of both

0 1 2 3

mK−π+ [GeV/c2]

0

1

2

3

In
te

ns
ity

[(
G

eV
/c

2 )−
1 ]

×104

0.15 ≤ t′ < 0.24 (GeV/c)2

1.70 ≤ mKππ < 1.72 GeV/c2

1+0+[Kπ]PπS

(a)

0 1 2 3

mK−π+ [GeV/c2]

0

200

400

φ
∗[

de
g]

0.15 ≤ t′ < 0.24 (GeV/c)2

1.70 ≤ mKππ < 1.72 GeV/c2

1+0+[Kπ]PπS

(b)

0 1 2 3

mK−π+ [GeV/c2]

0

1

2

3

In
te

ns
ity

[(
G

eV
/c

2 )−
1 ]

×104

0.15 ≤ t′ < 0.24 (GeV/c)2

1.82 ≤ mKππ < 1.84 GeV/c2

1+0+[Kπ]PπS

(c)

0 1 2 3

mK−π+ [GeV/c2]

0

200

400

φ
∗[

de
g]

0.15 ≤ t′ < 0.24 (GeV/c)2

1.82 ≤ mKππ < 1.84 GeV/c2

1+0+[Kπ]PπS

(d)

Figure 6.4: Same as in figure fig. 6.2, but for a model with two Breit-Wigner and a nonresonant
component (study 1.k). The three body mass bins are at 𝑚𝑋 ≈ 1.71 GeV/𝑐2 (top
row) and 𝑚𝑋 ≈ 1.83 GeV/𝑐2 (bottom row). Both are in the second 𝑡′ bin.
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Figure 6.5: Same as fig. 6.2, but for intensity of study 1.l of the [𝐾𝜋]𝑃 amplitude. The left plot
show the (𝑚𝐾 𝜋𝜋 ≈ 1.71 GeV/𝑐2, 𝑡′ ≈ 0.125 GeV/𝑐2) cell. The right plot shows the
(𝑚𝐾 𝜋𝜋 ≈ 1.83 GeV/𝑐2, 𝑡′ ≈ 0.125 GeV/𝑐2) cell.

resonances can be observed from the data points and the model curve.

The second RMF we want to present is the model 1.l. This RMF did not converge because
a minimum was found that does not meet the requirements for a valid minimum, as at least
one parameters from a Breit-Wigner component hit its bounds. The next best minimum that
met the requirements was used for this RMF. Here, the model does not use a large destructive
interference between the Breit-Wigner and the nonresonant background component to reproduce
the intensity spectrum (see fig. 6.5). Overall, the nonresonant component contributes little to
the model curve, which is similar to the one Breit-Wigner component fits.

6.1.3 Discussion

The RMF with one Breit-Wigner component yielded a mass of 𝑚 = 895 MeV/𝑐2 and a
width of Γ = 49 MeV/𝑐22. The PDG average lists the 𝐾∗(892) resonance at a mass of
𝑚PDG, 892 = (895.55 ± 0.20) MeV/𝑐2 and a width of ΓPDG, 892 = (47.3 ± 0.5) MeV/𝑐2 [2]. The
resonance parameters obtained from the studies and the two Breit-Wigner component fits are
summarized in fig. 6.6. Although a full set of systematic studies have not been performed, we
seem to observe a very clear 𝐾∗(892) signal. Not only do we observe a very clear peak in most
of the (𝑚𝐾 𝜋𝜋 , 𝑡′) cells, but also most of the RMFs gave resonance parameters, that are well
within the range of other measurements. The two outliers that can be seen in fig. 6.6 result from

2We give the results rounded to 1 MeV/𝑐2 without uncertainties, because the systematic uncertainties are not
determined yet, as discussed in section 4.4.
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Figure 6.6: Summary of the resonance parameters for the 𝐾∗(892) obtained in systematic
studies. The horizontal axis represents the mass and the vertical axis represents
the width. The plot includes the PDG average for the 𝐾∗(892) as well as the last 8
measurements that gave both a value for mass and width [2]. Note no uncertainties
are presented, as discussed in section 4.4. The results are rounded to a precision of
0.01 MeV/𝑐2 to better distinguish the individual points.

studies 1.m and 1.n described in table 6.2. These RMFs did not converge and should be treated
with caution.

The first RMF discussed in section 6.1.2 yielded a mass of 𝑚 = 1741 MeV/𝑐2 and a width of
Γ = 442 MeV/𝑐2 for the peak at about 1.5 GeV/𝑐2. The nearest known resonance, stated by
the PDG is the 𝐾∗(1680) with a mass of 𝑚PDG, 1680 = (1718 ± 18) MeV/𝑐2 and a width of
ΓPDG, 1680 = (322 ± 110) MeV/𝑐2 [2]. The second RMF, discussed in section 6.1.2, yielded a
mass of 𝑚 = 1503 MeV/𝑐2 and a width of Γ = 353 MeV/𝑐2. These resonance parameters are
closer to the 𝐾∗(1410), for which the PDG gives a mass of 𝑚PDG, 1410 = (1414 ± 15) MeV/𝑐2

and a width of ΓPDG, 1410 = (232 ± 21) MeV/𝑐2 [2]. The resonance parameters of all RMFs are
summarized in fig. 6.7. Using Wilks’ theorem on model 1.k (see table 6.2) a significance for
the peak at about 1.5 GeV/𝑐2 of 21.08𝜎 was determined. Therefore, this resonance is not a
statistical fluctuation, but may results from a resonance. However, this resonance cannot be
further characterized, since different models gave different results, either closer to the 𝐾∗(1410)
or the 𝐾∗(1680). Systematic studies of the two Breit-Wigner component RMF could help to
characterize the peak, but a slight change in the fitting conditions have caused the Breit-Wigner
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Figure 6.7: Same as fig. 6.6 for the resonance parameters of the 1.5 GeV/𝑐2 peak. The PDG
average for the 𝐾∗(1430) and 𝐾∗(1680) as well as all their previous measurements,
considered by the PDG, are included [2].

parameters to hit their predefined bounds, as seen in section 6.1.2. Regardless of how the bounds
were chosen, the same behavior was observed. Overall, the two Breit-Wigner component fits
were very unstable and should be treated with caution. Therefore, further characterization of
the peak is not possible. Further understanding of the freed-isobar PWD fit systematics could
help in its characterization.
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6.2. [𝜋𝜋]𝑃 Amplitude

6.2 [𝜋𝜋]𝑃 Amplitude

The [𝜋𝜋]𝑃 amplitude represents the 𝜋−𝜋+ subsystem, where both particles are in a P-wave
configuration. We study this amplitude in the 1+0+ [𝜋𝜋]𝑃𝐾𝑆 wave. We expect 𝜌 resonances
to contribute to this amplitude with quantum numbers 𝐽𝑃 = 1−, for which the PDG lists the
𝜌(770), 𝜌(1450) and higher excited states. Figure 6.8(a) shows the measured intensity spectrum
of the [𝜋𝜋]𝑃 amplitude in a (𝑚𝐾 𝜋𝜋 , 𝑡′) cell. It contains a peak at about 0.8 GeV/𝑐2, which
could correspond to the 𝜌(770) state. This state is well established and can also be used as
a standard candle to further prove the concept of the freed-isobar method. In higher 𝑚𝐾 𝜋𝜋
bins, starting at about 1.4 GeV/𝑐2, the intensity spectra exhibit an enhanced intensity in the
high-mass tail of the 0.8 GeV/𝑐2 peak, which we will call from now on enhanced intensity (see
fig. 6.8(b)). This enhanced intensity is not a clear peak in any (𝑚𝐾 𝜋𝜋 , 𝑡′) cells. It cannot be
assigned to any known excited 𝜌 state.

6.2.1 Models with One Breit-Wigner Component

To study the peak at about 0.8 GeV/𝑐2, an RMF with fit ranges 0 ≤ 𝑚𝜋− 𝜋+ ≤ 0.9 GeV/𝑐2 and
1.1 ≤ 𝑚𝐾 𝜋𝜋 ≤ 1.6 GeV/𝑐2 containing a single Breit-Wigner component was fitted. These fit
ranges yielded the lowest reduced 𝜒2-value of all RMFs with a single Breit-Wigner component.
Hence, these fit ranges are selected as the main 2 RMF. This main 2 RMF (red curve) reproduces
the measured intensity spectra (blue points) well for 𝑚𝐾 𝜋𝜋 ≲ 1.4 GeV/𝑐2 (see fig. 6.9(a)). The
phase exhibits a clear rise of about 180 ◦, typical for a Breit-Wigner resonance, which is also
well reproduced by the RMF (see fig. 6.9(b)). For higher 𝑚𝐾 𝜋𝜋 , in some (𝑚𝐾 𝜋𝜋 , 𝑡′) cells the
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Figure 6.8: Same as fig. 6.1, but for the [𝜋𝜋]𝑃 amplitude in the 1+0+ [𝜋𝜋]𝑃𝐾𝑆 wave in two
selected 𝑚𝐾 𝜋𝜋 bins in the lowest 𝑡′ bin.
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Figure 6.9: The first two rows are same as fig. 6.2, but showing the main 2 RMF of the [𝜋𝜋]𝑃
amplitude in the 1+0+ [𝜋𝜋]𝑃𝐾𝑆 wave at 𝑚𝐾 𝜋𝜋 ≈ 1.39 GeV/𝑐2 (top row) and at
𝑚𝐾 𝜋𝜋 ≈ 1.51 GeV/𝑐2 (middle row) in the second 𝑡′ bin. (e) shows the Argand
diagram, i.e. the real and imaginary parts of the amplitude, at 𝑚𝐾 𝜋𝜋 ≈ 1.51 GeV/𝑐2

in the second 𝑡′ bin. The orange cross indicates the data point of the lowest 𝑚𝜋− 𝜋+

bin and the blue shaded area represents the uncertainty ellipse.
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6.2. [𝜋𝜋]𝑃 Amplitude

Table 6.3: Same as table 6.1 for the one resonance component RMFs in the [𝜋𝜋]𝑃 amplitude.
𝑚𝐾 𝜋𝜋 range 𝑚𝜋− 𝜋+ range Resonant Nonres Convergence

[GeV/𝑐2] [GeV/𝑐2] component component behavior
main 2 {1.1; 1.6} {0; 0.9} 1 Breit-Wigner None converged
study 2.a {1.1; 1.6} {0; 0.9} 1 Breit-Wigner free converged
study 2.b {1.1; 1.6} {0; 0.9} 1 Breit-Wigner fixed converged
study 2.c {1.1; 1.6} {0; 0.8} 1 Breit-Wigner None converged
study 2.d {1.1; 1.6} {0; 0.8} 1 Breit-Wigner free converged
study 2.e {1.1; 1.6} {0; 0.8} 1 Breit-Wigner fixed converged
study 2.f {1.3; 2.48} {0; 0.8} 1 Breit-Wigner None converged
study 2.g {1.3; 2.48} {0; 0.8} 1 Breit-Wigner free converged
study 2.h {1.3; 2.48} {0; 0.8} 1 Breit-Wigner fixed converged
study 2.i {1.3; 2.48} {0; 0.9} 1 Breit-Wigner None converged
study 2.j {1.3; 2.48} {0; 0.9} 1 Breit-Wigner free converged
study 2.k {1.3; 2.48} {0; 0.9} 1 Breit-Wigner fixed converged
study 2.l {1.1; 1.6} {0; 0.8} 1 Gounaris-Sakurai None converged
study 2.m {1.1; 1.6} {0; 0.8} 1 Gounaris-Sakurai free converged
study 2.n {1.1; 1.6} {0; 0.8} 1 Gounaris-Sakurai fixed converged
study 2.o {1.1; 1.6} {0; 0.9} 1 Gounaris-Sakurai None converged
study 2.p {1.1; 1.6} {0; 0.9} 1 Gounaris-Sakurai free converged
study 2.q {1.1; 1.6} {0; 0.9} 1 Gounaris-Sakurai fixed converged

RMF underestimates the measured intensity. These (𝑚𝐾 𝜋𝜋 , 𝑡′) cells also show a very small
phase motion of only about 50 ◦ (see fig. 6.9(d)). The RMF cannot reproduce this small phase
motion as the RMF contains only one Breit-Wigner component, which by construction has a
phase motion of 180 ◦ . The corresponding Argand diagram explains the low intensity (see
fig. 6.9(e)). The Breit-Wigner amplitude forms a circle by construction, but the data does not
have a circular shape. This makes it impossible for the fit to reproduce the data. A larger circle
radius would result in a higher intensity of the model curve, but the amplitude would be less
well described. This pattern happens discontinuously, i.e. one (𝑚𝐾 𝜋𝜋 , 𝑡′) cell contains this
pattern, while its neighboring cell does not. A possible explanation for this enhanced intentisy
is discussed in section 6.2.4.

To further study the peak at about 0.8 GeV/𝑐2, we performed systematic studies listed in table 6.3.
The studies can be divided into groups of three: (i) RMFs without a nonresonant component,
(ii) RMFs with a phase-space shaped nonresonant component, and (iii) with a nonresonant
component with a free shape parameter. This set of studies was then repeated for different
fit ranges in 𝑚𝐾 𝜋𝜋 and 𝑚𝜋− 𝜋+ and for different parameterizations of the resonant component.
The RMFs with a wider 𝑚𝐾 𝜋𝜋 range yield similar results to the main 2 RMF. Up to 𝑚𝐾 𝜋𝜋 ≈
2.0 GeV/𝑐2 a clear peak at about 0.8 GeV/𝑐2 is visible and reproduced well by the RMF. At
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Figure 6.10: Same as fig. 6.1 for study 2.d (see table 6.3) at 𝑚𝐾 𝜋𝜋 ≈ 1.17 GeV/𝑐2 (top row), at
𝑚𝐾 𝜋𝜋 ≈ 1.51 GeV/𝑐2 (center row) and at 𝑚𝐾 𝜋𝜋 ≈ 1.45 GeV/𝑐2 (bottom row) in
the second 𝑡′ bin.

higher 𝑚𝐾 𝜋𝜋 bins, the noise in the data becomes so large that a clear peak is not visible in the
intensity spectrum. In these 𝑚𝐾 𝜋𝜋 bins, the RMFs yield a model curve of very small intensity.
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6.2. [𝜋𝜋]𝑃 Amplitude

Table 6.4: Same as table 6.1 for the RMFs with a Gounaris-Sakurai amplitude without angular
momentum barrier factors in the [𝜋𝜋]𝑃 amplitude.
𝑚𝐾 𝜋𝜋 range 𝑚𝜋− 𝜋+ range Resonant Nonres Convergence

[GeV/𝑐2] [GeV/𝑐2] component component behavior
study 2.r {1.1; 1.6} {0; 0.8} 1 Gounaris-Sakurai None converged
study 2.s {1.1; 1.6} {0; 0.8} 1 Gounaris-Sakurai free converged
study 2.t {1.1; 1.6} {0; 0.8} 1 Gounaris-Sakurai fixed converged
study 2.u {1.3; 2.48} {0; 0.8} 1 Gounaris-Sakurai None converged
study 2.v {1.3; 2.48} {0; 0.9} 1 Gounaris-Sakurai None converged
study 2.w {1.3; 2.48} {0; 0.9} 1 Gounaris-Sakurai free converged
study 2.x {1.3; 2.48} {0; 1.1} 1 Gounaris-Sakurai None converged

Also, changing the 𝑚𝜋− 𝜋+ range does not strongly influence the result of the RMFs. The
inclusion of a nonresonant component has a significant effect on the RMFs. We observe high
destructive interference between the Breit-Wigner and the nonresonant component for 𝑚𝐾 𝜋𝜋 ≲
1.3 GeV/𝑐2 (see fig. 6.10(a)), which we do not consider to be a physical solution. At higher
𝑚𝐾 𝜋𝜋 , the RMF develops a second peak that is driven by the nonresonant component. This
peak is in the extrapolation of the RMF model since the data points with 𝑚𝜋− 𝜋+ > 0.9 GeV/𝑐2

were excluded from the RMF. It is only observed in the (𝑚𝐾 𝜋𝜋 ,𝑡′) cells mentioned above
where the phase motion is very small (c.f. figs. 6.9(c) and 6.9(d)). In (𝑚𝐾 𝜋𝜋 , 𝑡′) cells with a
phase motion of about 180 ◦ a small contribution of the nonresonant component is observed,
and therefore a small interference between the nonresonant and Breit-Wigner component (see
figs. 6.10(e) and 6.10(f)).

6.2.2 Models with One Gounaris-Sakurai Component
We also studied the influence of the employed parameterization of the 𝜌(770) amplitude. To
this end, we performed studies where we have used a Gounaris-Sakurai amplitude [30–32]
instead of a Breit-Wigner amplitude. The Gounaris-Sakurai amplitude used is of the form

D𝐺𝑆 (𝑚𝜋𝜋) =
𝑚0Γ0

𝑚2
0 − 𝑚

2
𝜋𝜋 + 𝑓 (𝑚𝜋𝜋) − 𝑖𝑚0Γ(𝑚𝜋𝜋)

(6.1)

where 𝑚0 and Γ0 are the nominal mass and width of the resonance. The dynamic width is the
same used in the Breit-Wigner amplitude (see eq. (3.8)). The Breit-Wigner and Gounaris-Sakurai
amplitudes differ only in the parameterization of 𝑓 (𝑚𝜋𝜋). While the Breit-Wigner amplitude
uses 𝑓 (𝑚𝜋𝜋) = 0 (GeV/𝑐2)2, the Gounaris-Sakurai amplitude parametrizes it as

𝑓𝐺𝑆 (𝑚) =
Γ0𝑚

2
0

𝑞(𝑚2
0)3

[𝑞(𝑚)2 (ℎ(𝑚) − ℎ(𝑚2
0)) + 𝑞(𝑚

2
0)

2ℎ′ (𝑚2
0) (𝑚

2
0 − 𝑚

2)], (6.2)

with the two-body break-up momentum 𝑞(𝑚) (see eq. (3.9)) and

ℎ(𝑚) = 2
𝜋

𝑞(𝑚)
𝑚

ln
(
𝑚 + 2𝑞(𝑚)

2𝑚𝜋

)
. (6.3)
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6. Results of Resonance-Model Fits

It is important to note that previous measurements used the Gounaris-Sakurai amplitude
in two different configurations to measure the resonance parameters of the 𝜌(770). Some
measurements used the Gounaris-Sakurai amplitude without the angular momentum barrier
compensation factors and some with. We have tested both configurations. The studies 2.l
through 2.q summarized in table 6.3 are RMFs with the angular momentum barrier compensation
factors, while the RMFs described in table 6.4 do not.
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Figure 6.11: Same as fig. 6.1, but for study 2.o (see table 6.3) in the [𝜋𝜋]𝑃 amplitude. The
(𝑚𝐾 𝜋𝜋 , 𝑡′) cells were chosen to be same as in fig. 6.9.
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6.2. [𝜋𝜋]𝑃 Amplitude

Overall, the RMFs with a Gounaris-Sakurai amplitude give very similar results to those with a
Breit-Wigner component. Figure 6.11 shows the same (𝑚𝐾 𝜋𝜋 , 𝑡′) cells as fig. 6.9 demonstrating
the similarity between the two amplitudes. The model curve of an RMF with a Breit-Wigner
component is indistinguishable from that of a Gounaris-Sakurai component. The obtained
resonance parameters are also very similar as discussed in section 6.2.4.

6.2.3 Models with Two Breit-Wigner Components

In section 6.2.1, it was discussed that the RMFs with a single resonant component do not
describe the data well in some (𝑚𝐾 𝜋𝜋 , 𝑡′) cells. Giving the RMF more freedom to model the
amplitude, i.e. adding a nonresonant component, improved the amplitude modeling. These
RMFs still raise the question whether or not they are very physical, as described in section 6.2.1.
In order to model a potential excited resonance an additional Breit-Wigner component was
added to the RMFs. Performing RMFs with two Breit-Wigner components may also help to
resolve the question of the origin of the enhanced intensity visible in the intensity spectra (see
fig. 6.8(b)). In total, 7 RMFs with different𝑚𝐾 𝜋𝜋 and𝑚𝜋− 𝜋+ ranges were performed. All RMFs
consisted of two Breit-Wigner components and a free nonresonant component (see table 6.5).
All RMF did not converge, thus we did not achieve a stable fit of the enhanced intensity with a
Breit-Wigner component. We will still briefly discuss the results of study 2.ag, as they are used
to calculate the significance of the resonant component that describes the enhanced intensity.
The peak at about 0.8 GeV/𝑐2 is mostly described by the 𝜌(770) component (see fig. 6.12).
The second Breit-Wigner and the nonresonant component appear to contribute little to the
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Figure 6.12: Same as fig. 6.1, but for the intensity of the [𝜋𝜋]𝑃 amplitude in the 1+0+ [𝜋𝜋]𝑃𝐾𝑆
wave at 𝑚𝐾 𝜋𝜋 ≈ 1.63 GeV/𝑐2 (left) and at 𝑚𝐾 𝜋𝜋 ≈ 1.89 GeV/𝑐2 (right) in the
lowest 𝑡′ bin. The curves show the results of study 2.ag
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6. Results of Resonance-Model Fits

Table 6.5: Same as in table 6.1 for the two Breit-Wigner component RMFs in the [𝜋𝜋]𝑃
amplitude. Note that in studies 2.y to 2.ac, all availabe 𝑚𝐾− 𝜋+ bins in a 𝑚𝐾 𝜋𝜋 cell
are fitted.

𝑚𝐾 𝜋𝜋 range 𝑚𝜋− 𝜋+ range Resonant Nonres Convergence
[GeV/𝑐2] [GeV/𝑐2] component component behavior

study 2.y {1.1; 1.8} {0; 1.4} 2 Breit-Wigner free not converged
study 2.z {1.4; 1.8} {0; 1.4} 2 Breit-Wigner free not converged
study 2.aa {1.1; 1.8} {0; 1.4} 2 Breit-Wigner free not converged
study 2.ab {1.2; 1.8} {0; 1.4} 2 Breit-Wigner free not converged
study 2.ac {1.4; 1.8} {0; 1.4} 2 Breit-Wigner free not converged
study 2.ad {1.1; 2.48} {0; 1.4} 2 Breit-Wigner free not converged
study 2.ae {1.2; 2.48} {0; 1.4} 2 Breit-Wigner free not converged
study 2.af {1.1; 2.48} {0; 3.0} 2 Breit-Wigner free not converged
study 2.ag {1.2; 2.48} {0; 3.0} 2 Breit-Wigner free not converged

peak at about 0.8 GeV/𝑐2, as expected. They are used by the RMF to describe the enhanced
intensity. Some (𝑚𝐾 𝜋𝜋 , 𝑡′) cells show destructive interference between these two components
(see fig. 6.12(a)), while other cells show a second peak in the intensity spectrum driven by the
second Breit-Wigner component with overall a very small nonresonant component contribution
(see fig. 6.12(b)).

6.2.4 Discussion

The main 2 RMF with a single Breit-Wigner component (see section 6.2.1) yielded a mass
of 𝑚 = 766 MeV/𝑐2 and a width of Γ = 138 MeV/𝑐23. The PDG lists the neutral 𝜌(770)
determined for "other reactions" with a mass of 𝑚PDG, 770 = (769.0 ± 0.9) MeV/𝑐2 and a width
of ΓPDG, 770 = (150.9 ± 1.7) MeV/𝑐2 [2]. The resonance parameters determined in the main
2 RMF are both slighlty smaller than the PDG average. Overall, the systematic studies gave
very similar results, all in a close range, except for three outliers from studies 2.c, 2.f, and
2.l, which yielded a larger mass of 𝑚 > 775 MeV/𝑐2 (see fig. 6.13). The Breit-Wigner and
Gounaris-Sakurai amplitudes with angular momentum barrier compensation factors not only
give very similar model curves, but also similar resonance parameters. They both describe
the [𝜋𝜋]𝑃 amplitude equally well. The resonance parameters of the 𝜌(770) Breit-Wigner
component in the two Breit-Wigner component fits are stable, although the RMFs did not
converge. Overall, the peak at about 0.8 GeV/𝑐2 is well described in all performed RMFs and
very stable. This suggests a clear 𝜌(770) signal in our data. However, it must be kept in mind
that not a complete set of systematic studies have been performed yet and that the origin of the
enhanced intensity in some (𝑚𝐾 𝜋𝜋 , 𝑡′) cells is unclear.

3We give the results rounded to 1 MeV/𝑐2 without uncertainties, because the systematic uncertainties are not
determined yet, as discussed in section 4.4.
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Figure 6.13: Same as fig. 6.6, but for the RMFs of the 𝜌(770) in the [𝜋𝜋]𝑃 amplitude. As
reference the PDG average and its previous 9 measurements 4are included [2].

For better comparability, we compared the Gounaris-Sakurai amplitude with angular momentum
barrier compensation factors to the Breit-Wigner amplitude, since the Breit-Wigner amplitude
parameterization contains these compensation factors. Due to the small uncertainty of
the 𝜌(770) parameters, the results of RMFs with a Gounaris-Sakurai amplitude with angular
momentum barrier compensation factors are compared to results that also use these compensation
factors. The measurements in the PDG average "neutral only, 𝑒+𝑒−", did not use these
compensation factors, thus we can compare our results from the RMFs of table 6.4 we
these values. Since the resonance parameters obtained in our fits have a large spread, only
the upper and lower limits of our resonance parameters are presented. The RMFs yielded
masses of 769 MeV/𝑐2 ≤ 𝑚 ≤ 794 MeV/𝑐2 and widths of 111 MeV/𝑐2 ≤ Γ ≤ 151 MeV/𝑐2.
We could not find any systematic within the values and their fit environment. The PDG
calculated an average mass of 𝑚PDG,770,𝑒+𝑒− = (775.26 ± 0.23) MeV/𝑐2 and a width of
ΓPDG,770,𝑒+𝑒− = (147.4 ± 0.7) MeV/𝑐2 [2]. Overall, our results for the 𝜌(770) are comparable
to the PDG average. Since both Gounaris-Sakurai amplitudes with and without the angular-
momentum barrier compensation factors yield similar resonance parameters, the question
remains whether one of the two parameterizations performs better than the other. To this, we
cannot give a clear answer. The Gounaris-Sakurai amplitude with and without the angular
momentum barrier compensation factors performed equally well on average.

4Only values with both a mass and width from the PDG list "neutral only, other reaction" was used.
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Figure 6.14: Argand diagram of the 1++0+ [𝜋𝜋]1−−𝜋𝑆 wave at 𝑚3𝜋 ≈ 1.38 GeV/𝑐2, which is
affected by zero modes. The black data points show the measured amplitude
without any corrections. The blue data points show the amplitude with a correction
for the zero modes.And red is the RMF of a single relativistic Breit-Wigner [33].

With the two Breit-Wigner component fits, we searched for possible signals from an excited 𝜌
state. The RMFs do not provide resonance components and there is no known excited 𝜌 state in
this mass range. Using Wilks’ theorem, we calculated a significance of 26.41𝜎, which means
that the second Breit-Wigner component in the RMF is not of statistical origin. However, its
true nature remains hidden. The structure is most likely due to some analysis artifacts, maybe
also related to zero-mode-like effects.

As discussed in section 3.3, our amplitudes could be affected by zero-mode-like effects. The
Argand diagram of the amplitude in (𝑚𝐾 𝜋𝜋 , 𝑡′) cells exhibiting the enhanced intensity looks
similar to Argand diagrams known from the 𝜋𝜋𝜋 analysis, which are affected by zero-modes.
For reference, such an Argand diagram is shown in fig. 6.14 (see black data points). In addition,
the [𝜋𝜋]𝑆 amplitude, which is a partner wave of the [𝜋𝜋]𝑃 amplitude, is not perfectly modeled
because it is not well known. These two points suggest that our amplitude may be affected
by the zero-mode-like effects. This has to be investigated in further systematic studies of the
freed-isobar fit.

The [𝜋𝜋]𝑃 and [𝐾𝜋]𝑃 amplitudes contain well established ground states of the resonances that
have been used as standard candles to prove the freed-isobar method. So far, the ground states
have always appeared as clear signals in the amplitude as expected and were reproduced well
by the RMFs. This means that the freed-isobar method works in general, allowing us to study
excited states and not well known amplitudes. Thereby, we not only valiate the conventional
PWD in the freed-isobar analysis, but can also measure the amplitude of states that need
further confirmation and are in the focus of many current studies such as the [𝐾𝜋]𝑆 amplitude.
However, also possible analysis artifacts were discovered to contribute in our analysis.
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6.3. [𝐾𝜋]𝐷 Amplitude

6.3 [𝐾𝜋]𝐷 Amplitude

The [𝐾𝜋]𝐷 amplitude represents the 𝐾−𝜋+ subsystem where both particles are in a D-wave
configuration. We study this amplitude in the 2−0+ [𝐾𝜋]𝐷𝜋𝑆 wave. In this subsystem we expect
𝐾∗

2 resonances with quantum numbers 𝐽𝑃 = 2+, for which the PDG lists the 𝐾∗
2 (1430) and

𝐾∗
2 (1980). Figure 6.15 shows the intensity spectrum of a representative (𝑚𝐾 𝜋𝜋 , 𝑡′) cells of the

[𝐾𝜋]𝐷 amplitude. In the spectrum two peaks at about 1.4 GeV/𝑐2 and at about 2.0 GeV/𝑐2

are visible. The peak at about 1.4 GeV/𝑐2 could correspond to the well-known 𝐾∗
2 (1430). The

peak at about 2.0 GeV/𝑐2 is interesting to study because the PDG lists only the 𝐾∗
2 (1980), but

quark-model calculations of ref. [34] suggest two excited states in this mass range.

6.3.1 Models with One Breit-Wigner Component

To study the peak at about 1.4 GeV/𝑐2, we include only the region 0 < 𝑚𝐾− 𝜋+ < 1.6 GeV/𝑐2 and
all possible (𝑚𝐾 𝜋𝜋 , 𝑡′) cells 5 in an RMF with a single Breit-Wigner component. With these
boundaries the peak at about 2.0 GeV/𝑐2 is excluded from the fit. The RMF reproduces well the
intensity spectra for 1.6 ≲ 𝑚𝐾 𝜋𝜋 ≲ 2.4 GeV/𝑐2 (see fig. 6.16(a)). The corresponding phase
plot exhibits large statistical fluctuations (see fig. 6.16(b)). Starting at around 1.2 GeV/𝑐2, a
clear rising phase motion is observed. This phase is well reproduced by the RMF. For intensity
spectra outside the 1.6 ≲ 𝑚𝐾 𝜋𝜋 ≲ 2.4 GeV/𝑐2 range, the RMF underestimates the intensity of
the data points (see fig. 6.16(c)). Figure 6.16(d) shows that this happens due to the shape of the
amplitude. To increase the intensity in that (𝑚𝐾 𝜋𝜋 , 𝑡′) cell the model curve circle would have
to have a larger radius, resulting in less well described data.
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Figure 6.15: Same as fig. 6.1 for the [𝐾𝜋]𝐷 amplitude. The plot showcases the two peaks at
1.4 GeV/𝑐2 and 2.0 GeV/𝑐2.

51.4 ≤ 𝑚𝐾 𝜋𝜋 ≤ 3.0 GeV/𝑐2
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Figure 6.16: Same as fig. 6.9, but showing the intensity (left column), phase (upper right) and
Argand (lower right) diagram of the 2−0+ [𝐾𝜋]𝐷𝜋𝑆 wave at 𝑚𝐾 𝜋𝜋 ≈ 1.71 GeV/𝑐2

(top row) and 𝑚𝐾 𝜋𝜋 ≈ 2.41 GeV/𝑐2 (bottom row) in the third 𝑡′ bin.

Also in the [𝐾𝜋]𝐷 amplitude, we study the stability of the RMF in several studies (see Table 6.6).
Three different types of systematics have been studied: different 𝑚𝐾 𝜋𝜋 fit ranges, different
𝑚𝐾− 𝜋+ fit ranges, and contributions from a nonresonant component, whose shape parameter
was either fixed to zero or given as a free parameter. Varying the 𝑚𝐾 𝜋𝜋 range does not strongly
influence the results. The resulting resonance parameters are very close to the main 3.1 fit
(see section 6.3.3) and the intensity spectra are reproduced equally well. The only difference
from the RMF is the absence of the high 𝑚𝐾 𝜋𝜋 cells in the fit. Therefore, all (𝑚𝐾 𝜋𝜋 , 𝑡′) cells
are well reproduced by this RMF as long as 𝑚𝐾− 𝜋+ ≲ 1.6 GeV/𝑐2. Similarly different 𝑚𝐾− 𝜋+
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Table 6.6: Same as table 6.1 for one Breit-Wigner component fits for [𝐾𝜋]𝐷 amplitude.
𝑚𝐾 𝜋𝜋 range 𝑚𝐾− 𝜋+ range Resonant Nonres Convergence

[GeV/𝑐2] [GeV/𝑐2] component component behavior
main 3.1 {1.4; 3.0} {0.0; 1.6} 1 Breit-Wigner None converged
study 3.a {1.4; 3.0} {0.0; 1.8} 1 Breit-Wigner None converged
study 3.b {1.4; 3.0} {0.0; 1.6} 1 Breit-Wigner free converged
study 3.c {1.4; 3.0} {0.0; 1.8} 1 Breit-Wigner free converged
study 3.d {1.4; 3.0} {0.0; 1.6} 1 Breit-Wigner fixed converged
study 3.e {1.4; 3.0} {0.0; 1.8} 1 Breit-Wigner fixed converged
study 3.f {1.4; 2.2} {0.0; 1.6} 1 Breit-Wigner None converged
study 3.g {1.4; 2.2} {0.0; 1.8} 1 Breit-Wigner None converged
study 3.h {1.4; 2.2} {0.0; 1.6} 1 Breit-Wigner fixed converged
study 3.i {1.4; 2.2} {0.0; 1.8} 1 Breit-Wigner fixed converged
study 3.j {1.4; 2.2} {0.0; 1.6} 1 Breit-Wigner free converged
study 3.k {1.4; 2.2} {0.0; 1.8} 1 Breit-Wigner free converged
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Figure 6.17: Same as fig. 6.1, but for intensity of model 3.b in the [𝐾𝜋]𝐷 amplitude. The left
side shows the results of 𝑚𝐾 𝜋𝜋 ≈ 1.81 GeV/𝑐2 in the lowest 𝑡′ bin. The right side
shows the results of 𝑚𝐾 𝜋𝜋 ≈ 2.34 GeV/𝑐2 in the lowest 𝑡′ bin.

ranges do not lead to significant changes. Figure 6.17 shows the results from study 3.b. All
studies with a nonresonant component yielded similar results. The RMF reproduced the data
well for 1.6 ≲ 𝑚𝐾 𝜋𝜋 ≲ 2.2 GeV/𝑐2 (see fig. 6.17(a)). The Breit-Wigner component is the main
contributor to the model curve, the nonresonant contribution is negligible. Figure 6.17(b) shows
an example of an intensity spectrum outside the 1.6 ≲ 𝑚𝐾 𝜋𝜋 ≲ 2.2 GeV/𝑐2 region. Around
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6. Results of Resonance-Model Fits

Table 6.7: Same as table 6.1 for two Breit-Wigner component fits for [𝐾𝜋]𝐷 amplitude. Note
that in studies 3.k, all availabe 𝑚𝐾− 𝜋+ bins in a 𝑚𝐾 𝜋𝜋 cell are fitted.

𝑚𝐾 𝜋𝜋 range 𝑚𝐾− 𝜋+ range Resonant Nonres Convergence
[GeV/𝑐2] [GeV/𝑐2] component component behavior

main 3.2 {1.7; 2.48} {0.0; 2.1} 2 Breit-Wigner free converged
study 3.k {1.7; 2.48} {0.0; 2.6} 2 Breit-Wigner free converged
study 3.l {1.6; 2.8} {0.0; 2.1} 2 Breit-Wigner free converged
study 3.m {1.6; 2.8} {0.0; 2.6} 2 Breit-Wigner free converged
study 3.n {2.0; 2.8} {0.0; 2.1} 2 Breit-Wigner free converged
study 3.o {2.0; 2.8} {0.0; 2.6} 2 Breit-Wigner free converged

the 1.4 GeV/𝑐2 peak region, there is only a small nonresonant contribution. At higher 𝑚𝐾− 𝜋+

the nonresonant curve creates a second peak in the model curve, which does not reproduce the
measured intensity spectrum. This second peak stems from an extrapolation of the data points,
since the 𝑚𝐾− 𝜋+ region of said peak is not included in the fit range. The 𝑚𝐾− 𝜋+ region included
in this RMF is still well reproduced.

6.3.2 Models with Two Breit-Wigner Components

To study the peak at about 2.0 GeV/𝑐2, we include the region 1.7 < 𝑚𝐾 𝜋𝜋 < 2.48 GeV/𝑐2 and
0.0 <𝑚𝐾− 𝜋+ < 2.1 GeV/𝑐2 in an RMF (main 3.2 in table 6.7) with two Breit-Wigner components
and a nonresonant component6. Also this RMF reproduces the peak at about 1.4 GeV/𝑐2 well
(see fig. 6.18(a)). Around this peak, the nonresonant component contributes little to the model
curve. The peak at about 2.0 GeV/𝑐2 is mostly reproduced by the nonresonant component. In
fact, the intensity of the second Breit-Wigner component is so small that it is not visible in
the shown intensity spectrum. A very different picture is shown in fig. 6.18(c), where there
is overall a very low nonresonant contribution. The structure at about 1.4 GeV/𝑐2 is still very
well reproduced, and the main component contributing to the structure at about 2.0 GeV/𝑐2 is
the second Breit-Wigner component. In the 𝑚𝐾 𝜋𝜋 bin shown in fig. 6.18(b), the phase plot
of the [𝐾𝜋]𝐷 amplitude does not show a clear rise in the 𝑚𝐾− 𝜋+ region of the second peak.
Figure 6.18(d) shows a clear rising phase in the 𝑚𝐾− 𝜋+ region of the second peak. The RMF
with the second Breit-Wigner component reproduces this rising phase well.

To study the stability of the two Breit-Wigner component fits, 5 systematic studies were
performed. First, the presence of a nonresonant component were investigated. Models without
a nonresonant component failed to converge and yielded resonance parameters that hit their
bounds. The minima found by the fit are not of physical nature and therefore we did not
consider these results. Also, the effect of different 𝑚𝐾 𝜋𝜋 fit ranges were investigated with
studies 3.l and 3.n. These RMFs result large destructive interferences between the Breit-Wigner
6These 𝑚𝐾 𝜋𝜋 and 𝑚𝐾− 𝜋+ ranges were chosen as the main 3.2 fit as it had the lowest reduced 𝜒2-value of all tried
RMFs.
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Figure 6.18: Same as in fig. 6.1. Intensitiy (left) and phase (right) plots at𝑚𝐾 𝜋𝜋 ≈ 2.26 GeV/𝑐2

(top row) and 𝑚𝐾 𝜋𝜋 ≈ 2.38 GeV/𝑐2 (bottom row) in the lowest 𝑡′ bin of main 3.2
in [𝐾𝜋]𝐷 amplitude.

and nonresonant components. The individual components had an intensity 100 times higher
than the resulting total model curve. We do not consider such large destructive interferences
physical. Hence, these solutions are not further discussed. Finally, the effect of a higher fit
range in 𝑚𝐾− 𝜋+ was studied with studies 3.k, 3.m and 3.o. In study 3.k, the model curve is
similar to all other RMFs. Models 3.m and 3.o yielded very broad structures for the peak at
about 2.0 GeV/𝑐2. This is discussed further in section 6.3.3.

55



6. Results of Resonance-Model Fits

6.3.3 Discussion

The peak at about 1.4 GeV/𝑐2 is so dominant in the (𝑚𝐾 𝜋𝜋 , 𝑡′) cells that our data contain
a clear 𝐾∗

2 (1430)0 signal. The one Breit-Wigner component RMF yielded a mass of 𝑚 =

1430 MeV/𝑐2 and a width of Γ = 106 MeV/𝑐27 for the 𝐾∗
2 (1430)0. The PDG average

lists the 𝐾∗
2 (1430)0 at a mass of 𝑚PDG,1430,neutral = (1432.4 ± 1.3) MeV/𝑐2 and a width of

ΓPDG,1430,neutral = (109 ± 5) MeV/𝑐2 [2]. Our estimate agrees well with previous measurements
and with the PDG average (see fig. 6.19). From the stability of the 𝐾∗

2 (1430)0 in all studies we
conclude that the fit is very stable, thus confirming the resonance parameters from the main 3.1
RMF. However, it is important to keep in mind that the systematics of the freed-isobar fits have
not yet been determined.

The 𝐾−𝜋−𝜋+ sample is particularly interesting because it allows us to study the 𝐾∗
2 (1430)
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Figure 6.19: Same as fig. 6.6. The results from this analysis for the neutral 𝐾∗
2 (1430)0 are shown

by the red and violet crosses for the one and two Breit-Wigner fits, respectively.
The blue diamond shaped data points represent the resonance parameters from
other experiments. The PDG [2] average for the 𝐾∗

2 (1430)0 is shown in magenta,
its last 7 measurements in blue. The PDG average for the charged 𝐾∗

2 (1430)± is
shown in cyan. The COMPASS value, determined in the three body-analysis, in
lime [35].

7We give the results rounded to 1 MeV/𝑐2 without uncertainties, because the systematic uncertainties are not
determined yet, as discussed in section 4.4.
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Figure 6.20: Same as fig. 6.19 for the peak at about 2.0 GeV/𝑐2. The PDG average for the
𝐾∗

2 (1980), their previous measurements and quark-model predictions are included
[2, 34].

in its neutral state in the 𝐾−𝜋+ subsystem and in its charged states in the 𝐾−𝜋−𝜋+ system.
The PDG lists different resonance parameters for the charged and uncharged states. The
𝐾∗

2 (1430)± is listed with a mass of 𝑚PDG,1430,charged = (1427.3 ± 1.5) MeV/𝑐2 and a width
of ΓPDG,1430,charged = (100.0 ± 2.1) MeV/𝑐2 [2]. In the COMPASS three-body analysis a
mass of 𝑚COMPASS,1430,charged = (1430.9 ± 1.4) MeV/𝑐2 and a width of ΓPDG,1430,charged =

(111 ± 3) MeV/𝑐2 was determined for the charged state [35]. These parameters are similar
to the PDG average of the neutral state, not the charged state. Our resonance parameters are
also close to the PDG average of the nuetral state as well as to the COMPASS three-body
measurement. This does not confirm the mass difference that the PDG states for the 𝐾∗

2 (1430).

The main 3.2 two Breit-Wigner component RMF yielded a mass of 𝑚 = 1713 MeV/𝑐2 and
a width of Γ = 294 MeV/𝑐2 for the higher-lying resonance component (see fig. 6.20). The
only known excited state with quantum numbers 𝐽𝑃 = 2+ is the 𝐾∗

2 (1980) with a mass of
𝑚PDG,1980,neutral = 1994+60

−50MeV/𝑐2 and a width of ΓPDG,1430,neutral = 348+50
−30MeV/𝑐2 [2]. Our

RMF yielded a mass much smaller than the PDG average. Using Wilks’ theorem, a significance
of 20.46𝜎 is determined for the second Breit-Wigner component. Thus, this component is
statistically significant and does not describe only statistical fluctuation. However the RMFs
are not giving very consistent results. The main 3.2 RMF and models 3.k, 3.l, 3.n gave close
resonance parameters, while models 3.m and 3.o yield much larger widths. Hence, we cannot
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clearly state that our data contain an excited 𝐾∗
2 signal. Quark-model calculations suggest two

exited states with quantum numbers 𝐽𝑃 = 2+, which could explain the difference between our
measurement and the previous measurements. The first predicted state is the 𝑛2𝑆+1𝐿𝐽 = 23𝑃2

8

with a mass at about 𝑚23𝑃2 = 1896 MeV/𝑐2 and the second state is the 13𝐹2 with a mass at
about 𝑚13𝐹2 = 1964 MeV/𝑐2 [34]. The PDG listing of the 𝐾∗

2 (1980) agrees best with the 13𝐹2
state. Although our analysis yielded a mass much smaller than the predicted mass value for the
23𝑃2, our signal could originate from this state. Further systematic studies of the freed-isobar
fit and the RMF are needed to clarify the origin of this peak.

8𝑛 is the principal quantum number, 𝑆 is the total spin, 𝐿 refers to the angular momentum of the 𝑞𝑞 system and 𝐽 is
the total angular momentum of the 𝑞𝑞 system.
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6.4 [𝐾𝜋]𝑆 Amplitude

The [𝐾𝜋]𝑆 amplitude represents the 𝐾−𝜋+ subsystem where both particles are in an S-wave
configuration. We study this amplitude in the 0−0+ [𝐾𝜋]𝑆𝜋𝑆 wave. In this subsystem we
expect 𝐾∗

0 resonances with quantum numbers 𝐽𝑃 = 0+, for which the PDG lists the 𝜅/𝐾∗
0 (700),

𝐾∗
0 (1430) and 𝐾∗

0 (1950). The analysis of the 𝐾∗
0 (700) is of particular interest, since this state

cannot be assigned to a pure 𝑞𝑞 state [36]. The 𝐾∗
0 (700) resonance is a very broad state with

a width at about Γ ≈ 500 MeV/𝑐2. This resonance overlaps with the excited 𝐾∗
0 (1430) state,

which makes the modeling of the [𝐾𝜋]𝑆 amplitude challenging. We observe two peaks in the
intensity spectra of the [𝐾𝜋]𝑆 amplitude (see fig. 6.21). The first very broad peak is at about
1.2 GeV/𝑐2. It covers the mass region of both the 𝐾∗

0 (700) and the 𝐾∗
0 (1430). The second

peak is at about 1.9 GeV/𝑐2 and could correspond to the 𝐾∗
0 (1950) state. In this section we

describe RMFs to the [𝐾𝜋]𝑆 amplitude using four different parameterizations: Breit-Wigner
amplitudes, LASS amplitude, Palano-Pennington amplitude and Pelaez-Rodas amplitude. These
amplitudes except the Breit-Wigner amplitude are special parameterizations for the [𝐾𝜋]𝑆
amplitude. Most of them have so many free parameters that we cannot fit all of them, thus we
will measure resonance parameters only for parameterizations with few parameters. Also not all
parameterizations cover the entire 𝑚𝐾− 𝜋+ range. To model also a possible 𝐾∗

0 (1950) with these,
an additional Breit-Wigner component was added. In section 6.4.5, all the parameterizations
are compared in their ability to describe the measured [𝐾𝜋]𝑆 amplitude to find the best
parameterization for the [𝐾𝜋]𝑆 amplitude.
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Figure 6.21: Same as fig. 6.1, but for the [𝐾𝜋]𝑆 amplitude in the 0−0+ [𝐾𝜋]𝑆𝜋𝑆 wave in a
selected (𝑚𝐾 𝜋𝜋 , 𝑡′) cell.
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Table 6.8: Same as table 6.1 for two and three Breit-Wigner component fits for [𝐾𝜋]𝑆 ampli-
tude.Note that in studies 4.a, 4.c, 4.e, 4.f, 4.g and 4.h, all availabe 𝑚𝐾− 𝜋+ bins in a
𝑚𝐾 𝜋𝜋 cell are fitted.

𝑚𝐾 𝜋𝜋 range 𝑚𝐾− 𝜋+ range Resonant Nonres Convergence
[GeV/𝑐2] [GeV/𝑐2] component component behavior

study 4.a {1.60; 2.36} {0.0; 10.0} 2 Breit-Wigner None not converged
study 4.b {1.60; 2.20} {0.0; 1.8} 2 Breit-Wigner None not converged
study 4.c {1.60; 2.36} {0.0; 10.0} 2 Breit-Wigner free not converged
study 4.d {1.60; 2.20} {0.0; 1.8} 2 Breit-Wigner free not converged
study 4.e {1.60; 2.40} {0.0; 10.0} 3 Breit-Wigner None not converged
study 4.f {1.60; 2.40} {0.0; 10.0} 3 Breit-Wigner free not converged
study 4.g {1.60; 2.20} {0.0; 10.0} 3 Breit-Wigner None not converged
study 4.h {1.60; 2.20} {0.0; 10.0} 3 Breit-Wigner free not converged

6.4.1 Parameterization with Breit-Wigner Components

In order to test whether an RMF with Breit-Wigner components could possibly describe the
[𝐾𝜋]𝑆 amplitude, models with two and three Breit-Wigner components were fit to the data
(see table 6.8). All RMFs did not converge. Models consisting of only two Breit-Wigner
components are not able to represent well the shape of the intensity spectrum in any (𝑚𝐾 𝜋𝜋 , 𝑡′)
cell (see fig. 6.22(a)). For example, the total model curve underestimates the intensity of
the data for 𝑚𝐾− 𝜋+ ≈ 1.1 GeV/𝑐2. For 𝑚𝐾− 𝜋+ ≈ 1.5 GeV/𝑐2 the total model curve yields a
peak dominated by the 𝐾∗

0 (1430) Breit-Wigner component. The Breit-Wigner amplitude is an
approximation for narrow states. Since the 𝐾∗

0 (700) state is not very narrow, a Breit-Wigner
amplitude alone is not able to describe the intensity spectra of the [𝐾𝜋]𝑆 amplitude. Although
the RMF does not converge and the intensity spectra are poorly reproduced, the phase motion
of the system is well modeled by the total model curve (see fig. 6.22(b)). The inclusion of a
nonresonant component results in the total model curve describing the intensity spectrum much
better (see fig. 6.22(c)). The RMF uses interference between the Breit-Wigner component and
the nonresonant component at the lower 𝑚𝐾− 𝜋+ , to better describe the low 𝑚𝐾− 𝜋+ shoulder of
the peak at about 1.4 GeV/𝑐2. The RMF yields a Breit-Wigner component similar to that in
the model without the nonresonant component. As expected, the addition of the nonresonant
component also leads to a slightly better description of the phase spectrum (see fig. 6.22(d)).

As no RMF consisting of two Breit-Wigner components converged, we decided to test RMFs
with three Breit-Wigner components, aiming for more stable results. None of these studies
converged either. The 𝑚𝐾 𝜋𝜋 ≲ 2.0 GeV/𝑐2 region does not exhibit a clear second peak at about
1.9 GeV/𝑐2 and is similar to those in fig. 6.22(a). The third Breit-Wigner component at the
highest 𝑚𝐾− 𝜋+ does not contribute strongly for 𝑚𝐾 𝜋𝜋 ≲ 2.0 GeV/𝑐2. For 𝑚𝐾 𝜋𝜋 ≳ 2.0 GeV/𝑐2

the model curve describes the intensity spectrum very well (see fig. 6.23(a)). The peak at about
1.9 GeV/𝑐2 is mostly reproduced by the third Breit-Wigner component. The corresponding
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Figure 6.22: Same as fig. 6.1, but for the intensity (left) and phase (right) of the [𝐾𝜋]𝑆 amplitude
at 𝑚𝐾 𝜋𝜋 ≈ 1.71 GeV/𝑐2 in the lowest 𝑡′. The top row shows the results of study
4.b. The bottom row shows the results of study 4.d.

phase exhibits two rising phase motions, the main features of which are reproduced by the RMF
(see fig. 6.23(b)). In studies 4.f and 4.h, we added a nonresonant component to the RMF. The
nonresonant component picks up a large intensity (see fig. 6.23(c)). For𝑚𝐾− 𝜋+ ≲ 1.1 GeV/𝑐2, it
describes almost all of the measured intensity. There is nearly no contribution from the 𝐾∗

0 (700)
component. With the interference between the nonresonant and Breit-Wigner components, the
RMF reproduces the measured intensity spectrum for 𝑚𝐾− 𝜋+ ≲ 1.6 GeV/𝑐2 better than the
RMF without the nonresonant component. However, for 𝑚𝐾− 𝜋+ ≳ 1.6 GeV/𝑐2, the RMF with
the nonresonant component yields a model curve that is slightly worse. The corresponding
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Figure 6.23: Same as fig. 6.1, but for the intensity (left) and phase (right) of the [𝐾𝜋]𝑆 amplitude
at 𝑚𝐾 𝜋𝜋 ≈ 2.26 GeV/𝑐2 in the lowest 𝑡′ bin. The top row shows the results of
study 4.g. The bottom row shows the results of study 4.h.

phase is also well reproduced (see fig. 6.23(d)). Since none of the RMFs in table 6.8 converge
and all of them have high interferences between their components, which we do not consider to
be physical solutions. Therefore, these models will not be discussed further.

6.4.2 LASS Parameterization

A parameterization specifically constructed for the [𝐾𝜋]𝑆 amplitude is the so-called LASS
parameterization [37]. This parameterization basically takes a 𝐾∗

0 (1430) Breit-Wigner compo-
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nent and adds an effective-range nonresonant component such that the total amplitude fulfill the
unitarity constraint. The LASS amplitude reads:

D𝐿𝑎𝑠𝑠 (𝑚𝐾− 𝜋+ ) =
sin 𝛿𝐵 (𝑚𝐾− 𝜋+ )𝑒𝑖 𝛿𝐵 (𝑚𝐾− 𝜋+ ) + sin 𝛿𝑅 (𝑚𝐾− 𝜋+ )𝑒𝑖 (𝛿𝑅 (𝑚𝐾− 𝜋+ )+2𝛿𝐵 (𝑚𝐾− 𝜋+ ) )

𝜌(𝑚𝐾− 𝜋+ )
, (6.4)

where 𝜌(𝑚) = 2𝑞(𝑚)/𝑚2 is the 𝐾𝜋 phase-space with the two-body break-up momentum 𝑞(𝑚)
(see eq. (3.9)) of the 𝐾𝜋 system. The phases of the resonance 𝛿𝑅 and the effective range
background 𝛿𝐵 read:

tan 𝛿𝑅 (𝑚) =
𝑚0Γ(𝑚)
(𝑚2

0 − 𝑚2)
, cot 𝛿𝐵 (𝑚) =

1
𝑎𝑞(𝑚) +

𝑟𝑞(𝑚)
2

. (6.5)

The dynamic width Γ(𝑚) is defined in eq. (3.8). Figure 6.24 illustrates the intensity as well as
the real and imaginary part of the Lass amplitude.

6.4.2.1 Fixed Parameters

The LASS parameterization was developed to describe the [𝐾𝜋]𝑆 amplitude. To see how well the
parameterization performs, a number of RMFs were performed (see table 6.9), where we fixed the
parameters to those taken from ref. [38]. The parameters were measured with LASS scattering
data from ref. [39] and read: 𝑚0,fix = 1435 MeV/𝑐2, Γfix = 279 MeV/𝑐2, 𝑎fix = 1.95 MeV/𝑐2

and 𝑟fix = 1.76 MeV/𝑐2. First, we tested if the parameterization with fixed parameters can
represent our data. In some (𝑚𝐾 𝜋𝜋 , 𝑡′) cells, the RMF is able to provide an accurate description
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Figure 6.24: Dynamic amplitude of the LASS parameterization. (a) shows the intensity as a
function of 𝑚𝐾− 𝜋+ . (b) shows the Argand diagram, i.e. real vs. imaginary part of
the amplitude. The orange dot corresponds to the point with the lowest 𝑚𝐾− 𝜋+ in
the intensity plot.
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Figure 6.25: Same as fig. 6.9, but for the intensity (left) and Argand (right) of study 4.i of the
[𝐾𝜋]𝑆 amplitude. The top row shows the results at 𝑚𝐾 𝜋𝜋 ≈ 1.73 GeV/𝑐2 in the
lowest 𝑡′ bin. The bottom row shows the results at 𝑚𝐾 𝜋𝜋 ≈ 1.91 GeV/𝑐2 in the
lowest 𝑡′ bin.

of the measured intensity spectrum and amplitude (see figs. 6.25(a) and 6.25(b)). In the other
approximately 30 (𝑚𝐾 𝜋𝜋 , 𝑡′) cells, this is not the case. There, the data exhibit a bump at about
1.0 GeV/𝑐2, which is not reproduced by the LASS amplitude (see fig. 6.25(c)). In the same
(𝑚𝐾 𝜋𝜋 , 𝑡′) cells the data in the Argands diagram always exhibit an oval bulge, which correspond
to the bump in the data and which are not well reproduced by the RMF (see fig. 6.25(d)). This
bulge is not continuous in 𝑡′ or 𝑚𝐾 𝜋𝜋 . This behavior is very similar to the enhanced intensity in
the [𝜋𝜋]𝑃 amplitude described in section 6.2. We will call this behavior in the [𝐾𝜋]𝑆 amplitude
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Table 6.9: Same as table 6.1, but for RMFs with the LASS parameterization in [𝐾𝜋]𝑆 amplitude.
In the fourth row the parameters given in brackets lists the free parameters. If a
parameter is not listed, its value was fixed to the value from ref. [38]. Note that in
studies 4.k, 4.l and 4.p, all availabe 𝑚𝐾− 𝜋+ bins in a 𝑚𝐾 𝜋𝜋 cell are fitted.

𝑚𝐾 𝜋𝜋 range 𝑚𝐾− 𝜋+ range Resonant Nonres Convergence
[GeV/𝑐2] [GeV/𝑐2] component component behavior

study 4.i {1.6; 2.32} {0.0; 1.4} Lass None converged
study 4.j {1.6; 2.32} {0.0; 1.4} Lass free converged
study 4.k {1.6; 2.32} {0.0; 2.4} Lass None converged

1 Breit-Wigner
study 4.l {1.6; 2.32} {0.0; 2.4} Lass free converged

1 Breit-Wigner
study 4.m {1.6; 2.32} {0.0; 1.4} Lass(𝑚0, Γ0) None converged
study 4.n {1.6; 2.32} {0.0; 1.4} Lass(𝑎, 𝑟) None converged
study 4.o {1.6; 2.32} {0.0; 1.4} Lass(𝑚0, Γ0, 𝑎) None converged
study 4.p {1.6; 2.32} {0.0; 2.4} Lass(𝑚0, Γ0, 𝑎, 𝑟) None converged

1 Breit-Wigner

the bulgy amplitude.

Also, we performed RMFs with an additional nonresonant component (studies 4.j and 4.l).
The measured intensity spectra are well reproduced in all (𝑚𝐾 𝜋𝜋 , 𝑡′) cells (see figs. 6.26(a)
and 6.26(c)). The intensity of the nonresonant component is small in (𝑚𝐾 𝜋𝜋 , 𝑡′) cells that
do not exhibit the bulgy amplitude (see fig. 6.26(a)). In the corresponding Argand diagram,
we observe a model curve similar to that in the RMF without the nonresonant component
(c.f. figs. 6.25(a) and 6.26(a)). The contribution of the nonresonant component is large in
(𝑚𝐾 𝜋𝜋 , 𝑡′) cells exhibiting the bulgy amplitude (see fig. 6.26(c)). The total model curve in the
corresponding Argand diagram has a non-circular shape that does not perfectly match the shape
of the measured amplitude (see fig. 6.26(d)). It appears that the nonresonant component is only
used to compensate for the effects of the bulgy amplitude. Thus, the [𝐾𝜋]𝑆 amplitude does not
have a high background from the nonresonant production of the final-state particles.

To search for a signal of the 𝐾∗
0 (1950), a Breit-Wigner component with parameters fixed to the

PDG average of the 𝐾∗
0 (1950) was added to the RMF in study 4.k. For 𝑚𝐾 𝜋𝜋 ≲ 2 GeV/𝑐2 the

Breit-Wigner component has a very low intensity and contributes very little to the total model
curve (see fig. 6.27(a)). The RMF yielded the same features as the RMFs without the 𝐾∗

0 (1950)
Breit-Wigner component (c.f. fig. 6.27(b)). For 𝑚𝐾 𝜋𝜋 ≳ 2 GeV/𝑐2, the 𝐾∗

0 (1950) Breit-Wigner
contributes mainly at about 1.9 GeV/𝑐2 (see fig. 6.27(c)). The corresponding phase exhibits
two rising phase motions at about 1.1 GeV/𝑐2 and at about 2 GeV/𝑐2 (see fig. 6.27(d)). The
RMF reproduces the main features of the phase rises.

In an addition study 4.l, the RMF with the LASS prameterization and a Breit-Wigner component
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Figure 6.26: Same as in fig. 6.9, but for the intensity (left) and Argand (right) of study 4.j of the
[𝐾𝜋]𝑆 amplitude. The top row shows the results at 𝑚𝐾 𝜋𝜋 ≈ 1.73 GeV/𝑐2 in the
lowest 𝑡′ bin. The bottom row shows the results at 𝑚𝐾 𝜋𝜋 ≈ 1.91 GeV/𝑐2 in the
lowest 𝑡′ bin.

with fixed parameters, was repeated with an additional nonresonant component. This study
yielded results similar to study 4.j. The intensity spectra in (𝑚𝐾 𝜋𝜋 , 𝑡′) cells that do not exhibit
the bulgy amplitude, exhibit a small nonresonant contribution. In the (𝑚𝐾 𝜋𝜋 , 𝑡′) cells that
exhibit the bulgy amplitude, the intensity spectra show a large nonresonant contribution to the
total model curve.

Overall, the LASS parameterization yields a shape similar to the measured amplitude. Exceptions
are the approximately 30 (𝑚𝐾 𝜋𝜋 , 𝑡′) cells that exhibit the bulgy amplitude, where the RMF
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Figure 6.27: Same as fig. 6.9, but for the intensity (left), Argand (top right) and phase (bottom
right) of study 4.k of the [𝐾𝜋]𝑆 amplitude. The top row shows the results at
𝑚𝐾 𝜋𝜋 ≈ 1.71 GeV/𝑐2 in the lowest 𝑡′ bins. The bottom row shows the results at
𝑚𝐾 𝜋𝜋 ≈ 2.26 GeV/𝑐2 in the lowest 𝑡′ bin.

cannot reproduce the bulge without an additional nonresonant component. The addition of a
nonresonant component results in a better described amplitude, but the nonresonant component
is only used to correct for the effects by the bulgy amplitude. We do not think that the
nonresonant component has any physical meaning, since it has a non-continuous shape in
different (𝑚𝐾 𝜋𝜋 , 𝑡′) cells and almost no contribution from the nonresonant component is seen
in (𝑚𝐾 𝜋𝜋 , 𝑡′) cells that do not exhibit the bulgy amplitude. Due to the nonphysicality of the
nonresonant component and the bulgy amplitude that is non continuous in 𝑡′ and 𝑚𝐾 𝜋𝜋 , we
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assume that the bulgy amplitude results from an analysis artifact.

6.4.2.2 Free Parameters

All the RMFs discussed in section 6.4.2.1 used the LASS parameterization with fixed parameters
from ref. [38]. With these fixed parameters, the LASS parameterization showed a similar shape
to the measured amplitude. In studies 4.m to 4.p, some parameters of the LASS parameterization
were freed to see if we can measure the parameters as a consistency check. All these studies
showed agreement with the data and to their corresponding studies 4.i to 4.l. We have not
performed a full set of systematic studies of the parameters of the LASS parameterization, so we
will only report the maximum and minimum values we obtained for the parameters. We measured
the following values: 1438 MeV/𝑐2 < 𝑚0 < 1463 MeV/𝑐2, 253 MeV/𝑐2 < Γ0 < 404 MeV/𝑐2,
2.05 MeV/𝑐2 < 𝑎 < 2.96 MeV/𝑐2 and 1.05 MeV/𝑐2 < 𝑟 < 1.38 MeV/𝑐2. The values we ob-
tained are similar to those obtained in [38]. This confirms the good description of the measured
[𝐾𝜋]𝑆 amplitude by the LASS parameterization. In order to fully determine the parameters of
the LASS parameterization with our data, we must perform a full set of systematic studies of
the freed-isobar PWD and the RMFs.

6.4.3 Palano-Pennington Parameterization
Another parameterization to describe the [𝐾𝜋]𝑆 amplitude was developed by Palano and
Pennington [40]. They determined the parameters of the parameterization from a fit to scattering
data from LASS [39], a spectroscpoy experiment at SLAC [41] and BaBar [42]. Due well
known typos in the formulas in ref. [40], the corrected formulas from ref. [5] are used. This
parameterization accounts for the 𝐾∗

0 (700), 𝐾∗
0 (1430) and 𝐾∗

0 (1950) resonances by describing
the scattering amplitudes for the processes 𝐾𝜋 → 𝐾𝜋 and 𝐾𝜂 → 𝐾𝜋 in terms of a 𝑇-matrix.
The 𝑇-matrix from a two-channel parameterization, with channels 1 = 𝐾𝜋 and 2 = 𝐾𝜂, is taken
from ref. [40]. The 𝑇-matrix is parameterized in terms of a 𝐾-matrix with elements 𝐾𝑖 𝑗 . The
𝑇-matrix elements read:

𝑇11 =
𝐾11 − 𝑖𝜑2

2 det𝐾
𝛿

, and 𝑇21 = 𝑇12 =
𝐾12

𝛿
. (6.6)

Here, det𝐾 = 𝐾11𝐾22 − 𝐾2
12, 𝜑𝑖2 is the two-body phase space for the channel 𝑖 and

𝛿 = 1 − 𝑖𝜑1
2𝐾11 − 𝑖𝜑2

2𝐾22 − 𝜑1
2𝜑

2
2 det𝐾. (6.7)

The 𝐾-matrix is given by

𝐾𝑖 𝑗 =
(𝑚2

𝐾− 𝜋+ − 𝑠A)
𝑠𝐾 𝜋

[ ∑︁
𝛼=𝑎,𝑏

𝑔𝛼
𝑖
𝑔𝛼
𝑗

𝑠𝛼 − 𝑚2
𝐾− 𝜋+

+
3∑︁
𝑛=0

𝐶𝑖 𝑗 ,𝑛𝑋
𝑛

]
, (6.8)

which is a sum of the two poles at 𝑠𝑎, 𝑠𝑏 and a third-order polynomial in

𝑋 =
2𝑚𝐾− 𝜋+ − (𝑠top + 𝑠bot)

𝑠top − 𝑠bot
, (6.9)
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where 𝑠A = 0.87753𝑠𝐾 𝜋 , 𝑠top = 5.832 GeV2 and 𝑠bot = 0.36 GeV2 are fixed. The parameter
𝑠𝐾 𝜋 = 𝑚2

𝐾
+ 𝑚2

𝜋 is fixed. The amplitudes used in the RMF are:

D𝐾 𝜋→𝐾 𝜋 (𝑚𝐾− 𝜋+ ) = 𝑇11 (𝑚2
𝐾− 𝜋+ ) (6.10)

D𝐾𝜂→𝐾 𝜋 (𝑚𝐾− 𝜋+ ) = 𝑇12 (𝑚2
𝐾− 𝜋+ ) (6.11)

Figure 6.28 illustrates the intensity and real and imaginary part of the Palano-Pennington
amplitude.
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Figure 6.28: Dynamic amplitude of the Palano-Pennington parameterization. (a) shows the
intensity as a function of 𝑚𝐾− 𝜋+ . (b) shows the Argand diagram, i.e. real vs.
imaginary part of the amplitude. The blue dot corresponds to the point of the
𝐾𝜋 → 𝐾𝜋 amplitude with the lowest 𝑚𝐾− 𝜋+ in the intensity plot. The black dot
corresponds to the same point of the 𝐾𝜂 → 𝐾𝜋 amplitude.

Table 6.10: Same as table 6.1 for RMFs with the Palano Pennington parameterization in the
[𝐾𝜋]𝑆 amplitude. In the fourth row 𝐾𝜋 stands for the component describing 𝐾𝜋
scattering and 𝐾𝜂 stands for the component describing 𝐾𝜂 scattering. Note that in
studies 4.t and 4.u, all availabe 𝑚𝐾− 𝜋+ bins in a 𝑚𝐾 𝜋𝜋 cell are fitted.

𝑚𝐾 𝜋𝜋 range 𝑚𝐾− 𝜋+ range Resonant Nonres Convergence
[GeV/𝑐2] [GeV/𝑐2] component component behavior

study 4.q {1.6; 2.32} {0.0; 1.4} 𝐾𝜋 None converged
study 4.r {1.6; 2.32} {0.0; 1.4} 𝐾𝜋 & 𝐾𝜂 None converged
study 4.s {1.6; 2.32} {0.0; 1.4} 𝐾𝜋 free converged
study 4.t {1.6; 2.32} {0.0; 2.4} 𝐾𝜋 & 𝐾𝜂 None converged
study 4.u {1.6; 2.32} {0.0; 2.4} 𝐾𝜋 & 𝐾𝜂 free converged
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Figure 6.29: Same as fig. 6.9, but for intensity (left) and Argand (right) of the study 4.q of the
[𝐾𝜋]𝑆 amplitude. The top row shows the results at 𝑚𝐾 𝜋𝜋 ≈ 1.73 GeV/𝑐2 in the
lowest 𝑡′ bin. The bottom row shows the results at 𝑚𝐾 𝜋𝜋 ≈ 1.91 GeV/𝑐2 in the
lowest 𝑡′ bin.

To better compare the different parameterizations, the same fit ranges are used as in studies 4.i
to 4.l (see table 6.8). First, we fitted the mass region 𝑚𝐾− 𝜋+ ≤ 1.4 GeV/𝑐2 and used only the
D𝐾 𝜋→𝐾 𝜋 amplitude (study 4.q in table 6.10). This RMF shows a similar amplitude shape to
the LASS parameterization in study 4.i (c.f. figs. 6.25 and 6.29). Also the Palano-Pennington
parameterization cannot describe the bulgy amplitude exhibited in some (𝑚𝐾 𝜋𝜋 , 𝑡′) cells. This
indicates again an analysis artifact in the data. In study 4.r, both the D𝐾 𝜋→𝐾 𝜋 and D𝐾𝜂→𝐾 𝜋
amplitudes are included in an RMF. In intensity spectra of (𝑚𝐾 𝜋𝜋 , 𝑡′) cells that do not exhibit
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Figure 6.30: Same as fig. 6.9, but for the intensity (left) and Argand (right) of study 4.r in the
[𝐾𝜋]𝑆 amplitude. The top row shows the results at 𝑚𝐾 𝜋𝜋 ≈ 1.73 GeV/𝑐2 in the
lowest 𝑡′ bin. The bottom row shows the results at 𝑚𝐾 𝜋𝜋 ≈ 1.91 GeV/𝑐2 in the
lowest 𝑡′ bin.

the bulgy amplitude, the total model curve is similar to that with only the D𝐾 𝜋→𝐾 𝜋 amplitude
component (see fig. 6.30(a)). The D𝐾𝜂→𝐾 𝜋 amplitude contributes only little to the total model
curve. The same is true for the Argand diagram (see fig. 6.30(b)). The intensity spectra in
(𝑚𝐾 𝜋𝜋 , 𝑡′) cells that exhibit the bulgy amplitude, the total model curve better reproduces the
bulge than the RMF without the D𝐾𝜂→𝐾 𝜋 amplitude (see fig. 6.30(c)). This RMF also shows
a very small D𝐾𝜂→𝐾 𝜋 contribution. The Argand diagram is also better described than in
the RMF without the D𝐾𝜂→𝐾 𝜋 amplitude, since the RMF can now model the oval shape of
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Figure 6.31: Same as fig. 6.1, but for intensity (left) and phase (right) of the [𝐾𝜋]𝑆 amplitude
at 𝑚𝐾 𝜋𝜋 ≈ 2.26 GeV/𝑐2 in the lowest 𝑡′ bin of study 4.t.

the measured amplitude (see fig. 6.30(d)). The addition of a nonresonant component instead
of D𝐾𝜂→𝐾 𝜋 in study 4.s results in a total model curve similar to that in study 4.j with the
LASS parameterization and a nonresonant component (c.f. fig. 6.26). Again, the nonresonant
component is used to compensate for effects by the bulgy amplitude. In terms of their reduced
𝜒2-values, the study 4.s performs the best of the studies 4.q to 4.s.

To check for a possible 𝐾∗
0 (1950) state, the entire𝑚𝐾− 𝜋+ range of the [𝐾𝜋]𝑆 amplitude was fit in

an RMF with both theD𝐾 𝜋→𝐾 𝜋 andD𝐾𝜂→𝐾 𝜋 amplitudes (study 4.t). For𝑚𝐾 𝜋𝜋 ≲ 2.0 GeV/𝑐2,
the intensity spectra and Argand diagram look similar to fig. 6.30, with a small D𝐾𝜂→𝐾 𝜋
amplitude component contribution. Also study 4.t is unable to describe the bulgy amplitude.
For 𝑚𝐾 𝜋𝜋 ≳ 2.0 GeV/𝑐2, the data exhibit a peak at about 1.9 GeV/𝑐2 (see fig. 6.31(a)).
Both amplitudes contribute strongly to this region. The measured intensity spectrum is well
reproduced by the RMF. The corresponding phase exhibits two rising phase motions at about
1.1 GeV/𝑐2 and at about 2 GeV/𝑐2, both well described by the RMF (see fig. 6.31(b)). Overall,
the Palano-Pennington parameterization reproduces well the measured [𝐾𝜋]𝑆 amplitude.

6.4.4 Pelaez-Rodas Parameterization

The last parameterization we used is taken from an analysis of Pelaez and Rodas [43]. This
Pelaez-Rodas parameterization uses conformal mapping functions that parameterizes the data
without explicitly modeling the resonance content. Additional constraints were taken into
account, such as isospin conservation or elastic unitarity on partial waves. The data used to
determine the conformal mapping parameters are measured with scattering data from refs. [39,
41, 44–51], in addition J.R.Pelaez et.al. excluded data points that they consider to be outliers.
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Figure 6.32: Dynamic amplitude of Pelaez-Rodas parameterization. (a) shows the intensity as a
function of 𝑚𝐾− 𝜋+ . (b) shows the Argand diagram, i.e. real vs. imaginary part of
the amplitude. The orange dot corresponds to the point of the amplitude with the
lowest 𝑚𝐾− 𝜋+ in the intensity plot.

Table 6.11: Same as table 6.1 for RMFs with the Pelaez-Rodas parameterization in the [𝐾𝜋]𝑆
amplitude. Note that in studies 4.x to 4.z, all availabe 𝑚𝐾− 𝜋+ bins in a 𝑚𝐾 𝜋𝜋 cell
are fitted.
𝑚𝐾 𝜋𝜋 range 𝑚𝐾− 𝜋+ range Resonant Nonres Convergence

[GeV/𝑐2] [GeV/𝑐2] component component behavior
study 4.v {1.6; 2.32} {0.0; 1.4} Pelaez-Rodas None converged
study 4.w {1.6; 2.32} {0.0; 1.4} Pelaez-Rodas free converged
study 4.x {1.6; 2.32} {0.0; 2.4} Pelaez-Rodas None converged

1 Breit-Wigner
study 4.y {1.6; 2.32} {0.0; 2.4} Pelaez-Rodas free converged

1 Breit-Wigner
study 4.z {1.6; 2.32} {0.0; 2.4} Pelaez-Rodas None converged

In our models, we used the Pelaez-Rodas parameterization with parameters from their so-called
constraint fit to data (CFD). The amplitude was taken from a look-up table kindly provided by
Arkeitz Rodas [52]. Figure 6.32 illustrates the intensity and the real and imaginary parts of the
Peleaz-Rodas amplitude.

We conducted a total of five studies that differ in their components and fit ranges (see table 6.11).
Overall, the Pelaez-Rodas parameterization gives results very similar to the studies with the
LASS and Palano-Pennington parameterization. Hence, we do not give as detailed descriptions
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Figure 6.33: Same as fig. 6.9, but for intensity (left) and phase (right) of study 4.v in the [𝐾𝜋]𝑆
amplitude. The top row shows the results at 𝑚𝐾 𝜋𝜋 ≈ 1.73 GeV/𝑐2 in the lowest 𝑡′

bin. The bottom row shows the results at 𝑚𝐾 𝜋𝜋 ≈ 1.91 GeV/𝑐2 in the lowest 𝑡′

bin.

as in sections 6.4.2 and 6.4.3, but in study 4.v we test if the Pelaez-Rodas parameterization can
describe our measured amplitude. The Pelaez-Rodas parameterization yields a good description
of the measured [𝐾𝜋]𝑆 amplitude (see fig. 6.33). Also the Pelaez-Rodas parameterization is
unable to reproduce well the (𝑚𝐾 𝜋𝜋 , 𝑡′) cells that exhibit the bulgy amplitude. Including a
nonresonant component in study 4.w yields results similar to studies 4.j and 4.s. In all three
studies, the nonresonant component contributes stongly only in (𝑚𝐾 𝜋𝜋 , 𝑡′) cells that exhibit
the bulgy amplitude and is always used to describe the bulge.
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Figure 6.34: Same as fig. 6.9, but for the intensity (left) and Agrand (right) of the [𝐾𝜋]𝑆
amplitude at 𝑚𝐾 𝜋𝜋 ≈ 2.30 GeV/𝑐2 in the lowest 𝑡′ bin. The top row shows the
results of study 4.z. The bottom row shows the results of study 4.x.

To also study a potential 𝐾∗
0 (1950) signal in our data, a larger𝑚𝐾− 𝜋+ fit range was used in studies

4.x to 4.z. In study 4.z, only the Pelaez-Rodas parameterization is used to model the entire
measured amplitude including a possible 𝐾∗

0 (1950) signal. This study reproduces the structure
with the two peaks well (see fig. 6.34(a)). The main features of the two rising phase motions are
also reproduced (see fig. 6.34(b)). In study 4.x, where an additional Breit-Wigner component
with fixed parameters is added, the intensity spectrum at the 1.9 GeV/𝑐2 peak is slightly worse
reproduced than that without the additonal Breit-Wigner component (see fig. 6.34(c)). The
RMF underestimates the intensity in the whole 𝑚𝐾− 𝜋+ range. The Breit-Wigner component has
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a very small overall contribution to the total model. It only appears to make a small contribution
to the peak at about 1.9 GeV/𝑐2. The corresponding phase is modeled similar to the RMF
without additional Breit-Wigner component (see fig. 6.34(d)).

6.4.5 Discussion

In total, four different parameterizations of the [𝐾𝜋]𝑆 amplitude were tested. The attempts to
fit the [𝐾𝜋]𝑆 amplitude with the two/three Breit-Wigner components approach failed. Not a
single RMF converged, which emphasizes the non-Breit-Wigner like shape of the resonances in
the [𝐾𝜋]𝑆 amplitude. Therefore, special parameterization for the [𝐾𝜋]𝑆 amplitude have been
tested. The LASS, Palano-Pennington, and Pelaez-Rodas parameterization all showed similar
properties. The (𝑚𝐾 𝜋𝜋 , 𝑡′) cells that exhibit the bulgy amplitude were not well described due
to the oval shape of the amplitude. (𝑚𝐾 𝜋𝜋 , 𝑡′) cells that do not exhibit the bulgy amplitude
were all well described by the RMFs. When an RMF included a nonresonant component, it was
always used to model the bulge in the corresponding (𝑚𝐾 𝜋𝜋 , 𝑡′) cells. (𝑚𝐾 𝜋𝜋 , 𝑡′) cells that do
not exhibit the bulgy amplitude, always showed a small nonresonant component contribution.
Because of the non-continuous nature of the bulgy amplitude and shape of the nonresonant
component, we do not assume that they result from a physical process. Rather, they are remnants
of the analysis, i.e. analysis artifacts.

We assume that the analysis artifact is due to a poor description of the [𝜋𝜋]𝑆 amplitude, similar
to the enhanced intensity in section 6.2. The [𝜋𝜋]𝑆 amplitude contains the 𝑓0(500) resonance,
which has similar properties as the 𝐾∗

0 (700), making it difficult to parameterize. Since the
[𝜋𝜋]𝑆 amplitude may not be very well parameterized in the freed-isobar PWD fit, ambiguities
in the [𝐾𝜋]𝑆 amplitude may arise from zero-mode-like effects discussed in section 3.3. This is
only an assumption and has yet to be confirmed by systematic studies within the freed-isobar
PWD fit. If this is the cause of the discontinuous amplitude, then a better parameterization of
the [𝜋𝜋]𝑆 amplitude has to be determined, e.g. by freeing both waves. So far, the three-body
analysis parameterizes the [𝜋𝜋]𝑆 amplitude using the approach of the VES collaboration [21].
With an RMF in the freed-isobar [𝜋𝜋]𝑆 amplitude potential excited resonances contributing to
the [𝜋𝜋]𝑆 amplitude could be determined. With this information, better parameterizations for
the [𝜋𝜋]𝑆 amplitude could be determined and tested in the RMFs.

Table 6.12 lists a comparison of studies that have the same fit ranges and number of free
parameters. This enables a comparison of the 𝜒2-value within a group of three, because they
have the same fit ranges and number of free parameters. For a comparison between the groups,
the reduced 𝜒2-value must be considered as this value is independent of the number of degrees
of freedom. Except for the first group, the Palano-Pennington parameterization always performs
best. In the first group, where the lower 𝑚𝐾− 𝜋+ range without an additional nonresonant
component was fit, the Pelaez-Rodas amplitude performs slightly better than the Palano-
Pennington parameterization. The study that performed best overall is the study 4.s, which
consists of the D𝐾 𝜋→𝐾 𝜋 amplitude component of the Palano-Pennington parameterization and
a nonresonant component. For a higher range of 𝑚𝐾− 𝜋+ , both the D𝐾 𝜋→𝐾 𝜋 and D𝐾𝜂→𝐾 𝜋
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Table 6.12: Summary of the 𝜒2-values (third column), reduced 𝜒2-values (fourth column) and
the number of degrees of freedom (fifth column) for specially selected studies
(first column) of the [𝐾𝜋]𝑆 amplitude. The studies are arranged in groups of
three. Each study in the group has the same fit ranges and the same number of
free parameters, but different parameterizations, i.e. LASS (see table 6.9), Palano-
Pennington (see table 6.10) and Pelaez-Rodas (see table 6.11) parameterization
(second column). The last column indicates the used fit range and the whether a
nonresonant component was included in the RMF.

Parameterization 𝜒2 reduced 𝜒2 ndf Commonality
study 4.i LASS 8303.99 2.061 4032

𝑚𝐾− 𝜋+ ≤ 1.4 GeV/𝑐2study 4.q Palano-Pennington 8005.11 1.985 4032
study 4.v Pelaez-Rodas 7984.65 1.980 4032
study 4.j LASS 7221.46 1.897 3807

𝑚𝐾− 𝜋+ ≤ 1.4 GeV/𝑐2,
+nonresstudy 4.s Palano-Pennington 6891.06 1.810 3807

study 4.w Pelaez-Rodas 6892.78 1.811 3807
study 4.k LASS 12529.20 2.094 5984

𝑚𝐾− 𝜋+ ≤ 2.4 GeV/𝑐2study 4.t Palano-Pennington 12505.42 2.090 5984
study 4.x Pelaez-Rodas 12720.46 2.126 5984
study 4.l LASS 11377.46 1.976 5759

𝑚𝐾− 𝜋+ ≤ 2.4 GeV/𝑐2,
+nonresstudy 4.u Palano-Pennington 11196.24 1.944 5759

study 4.y Pelaez-Rodas 11528.54 2.061 5759

components of the Palano-Pennington parameterization should be considered since it performs
best, i.e. has the lowest reduced 𝜒2-value. This confirms the approch taken in the three-body
analysis of this data set, where the Palano-Pennington parameterization was used to model the
entire [𝐾𝜋]𝑆 amplitude [5].

The goal of the RMFs in the [𝐾𝜋]𝑆 amplitude was to test, whether our measurement agrees
with previous measurements. Therefore, we tested different parameterizations and determined
that the Palano-Pennington performs best in our [𝐾𝜋]𝑆 amplitude. However there is another
parameterization that decomposes the 𝐾𝜋 Scalar Form Factor (SFF) into individual components,
which can be fit to the data, allowing for more flexibility especially in the inelastic region [53].
The first attemps to fit these SFF-basefunctions to our data did not give reliable results. This
parameterization will be further investigated.
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7 Conclusion and Outlook

In this work, we have analyzed the [𝐾𝜋]𝑃 , [𝜋𝜋]𝑃 , [𝐾𝜋]𝐷 and [𝐾𝜋]𝑆 amplitudes measured in
the diffractive scattering reaction 𝐾− + 𝑝 → 𝐾−𝜋−𝜋+ + 𝑝 at the COMPASS experiment.

To this end, we first studied the applicability of Wilks’ theorem to the calculation of the
significance of a certain RMF component [9]. Formally, the RMFs violate a regularity condition
of Wilks’ theorem, which makes it inapplicable in principle [28]. We investigated the effect of
the violated regularity condition based on the significance calculation. Therefore, we performed
Monte Carlo toy studies. The true distributions we obtained from the Monte Carlo toy studies
showed shapes similar to the 𝜒2-distribution assumed using Wilks’ theorem. The significance
slightly underestimates the true significance. We conclude that Wilks’ theorem is a sufficiently
good approximation for calculating the significance of components in RMFs. We recommend
that Wilks’ significance gives about 4𝜎 for an observation and about 6𝜎 for a discovery. We
assumed perfectly normally distributed data points, which in nature does not have to be the
case. In addition, we only performed toy studies with four 𝑡′ bins and not with a complete set of
(𝑚𝐾 𝜋𝜋 , 𝑡′) cells as in the analysis of the 𝐾−𝜋+ and 𝜋−𝜋+ subsystems. Thus, we cannot give a
more definitive answer on the size of the buffer, due to the limitations from our toy studies.

In the [𝐾𝜋]𝑃 and [𝜋𝜋]𝑃 amplitudes, we have found clear peaks of the 𝐾∗(892) and 𝜌(770),
respectively. The resonance parameters obtained for the 𝐾∗(892) and 𝜌(770) in our data sample
are consistent with previous measurements. Thus, we conclude that the [𝐾𝜋]𝑃 and [𝜋𝜋]𝑃
amplitudes contain a significant 𝐾∗(892) and 𝜌(770) signal, respectively. This also verifies the
freed-isobar approach in the 𝐾−𝜋−𝜋+ data sample.

In the [𝜋𝜋]𝑃 amplitude, we compared the Breit-Wigner component with the Gounaris-Sakurai
component. Both parameterizations yielded similar shapes and described the [𝜋𝜋]𝑃 amplitude
equally well in terms of their reduced 𝜒2-values. The resonance parameters obtained with
both parameterizations are also very close. We therefore conclude that both parameterizations
describe the [𝜋𝜋]𝑃 amplitude equally well.

The [𝐾𝜋]𝐷 amplitude showed a clear peak of the 𝐾∗
2 (1430). Its measured resonance parameters

were very stable and consistent with previous measurements. Thus, we conclude that the [𝐾𝜋]𝐷
contains a clear 𝐾∗

2 (1430) signal. We compared our neutral 𝐾∗
2 (1430)0 measurement with

the charged 𝐾∗
2 (1430)± measurement of the three-body analysis of the same data sample [35].

Both yielded agreeing masses for the 𝐾∗
2 (1430) signal. We do not observe the mass difference

between the charged and uncharged 𝐾∗
2 (1430) that the PDG states [2].
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7. Conclusion and Outlook

In the [𝐾𝜋]𝑆 amplitude we tested four different parameterizations. The parameterization with
two or three Breit-Wigner components failed to describe the measured [𝐾𝜋]𝑆 amplitude. The
LASS [37], Palano-Pennington [40], and Pelaez-Rodas [43] parameterizations all showed similar
shapes and described the [𝐾𝜋]𝑆 amplitude well. We also compared the parameterizations in
terms of their reduced 𝜒2-values. Overall, the Palano-Pennington parameterization performed
the best in describing the entire 𝑚𝐾− 𝜋+ range and the 𝑚𝐾− 𝜋+ ≤ 1.4 GeV/𝑐2 range of the
[𝐾𝜋]𝑆 amplitude. Thus, we conclude that the Palano-Pennington parameterization is the
best parameterization for our data sample to model the [𝐾𝜋]𝑆 amplitude. This verifies the
approach taken in the three-body analysis, where the [𝐾𝜋]𝑆 amplitude was modeled by a
Palano-Pennington.

In both the [𝐾𝜋]𝑃 and [𝐾𝜋]𝐷 amplitudes we observed peaks at higher 𝑚𝐾− 𝜋+ beyond the
corresponding ground state. The significance for the components describing these peaks
gave values above 20𝜎. Therefore, they are statistically significant. The peak in the [𝐾𝜋]𝑃
amplitude could correspond to either the 𝐾∗(1410) or 𝐾∗(1680). Due to the instability of the
results in the performed studies, we cannot assign the peak to either state. The peak in the
[𝐾𝜋]𝐷 amplitude could correspond to the 𝑛2𝑆+1𝐿𝐽 = 23𝑃2 𝐾

∗
2 state predicted by quark-model

calculations [34]. However, our mass estimate is much smaller than the predicted value. As
the systematic uncertainties of the freed-isobar PWD have not yet been determined, we cannot
make a definitive statement about the origin of the peaks that do not correspond to the ground
states in the [𝐾𝜋]𝑃 and [𝐾𝜋]𝐷 amplitudes.

Both the [𝜋𝜋]𝑃 and [𝐾𝜋]𝑆 amplitudes showed structures in some (𝑚𝐾 𝜋𝜋 , 𝑡′) cells that do not
have the characteristics of a resonant signal. First of all, these structures do not appear in each
(𝑚𝐾 𝜋𝜋 , 𝑡′) cell and are not continuous in 𝑚𝐾 𝜋𝜋 and 𝑡′, i.e. the structures can be observed in
one (𝑚𝐾 𝜋𝜋 , 𝑡′) cell and not in the next one. Second, the shape of the measured amplitude
in these (𝑚𝐾 𝜋𝜋 , 𝑡′) cells is different from the shape of the resonance model. In (𝑚𝐾 𝜋𝜋 , 𝑡′)
cells that do not exhibit these structures, the measured amplitude and the resonance model
shape match. This leads us to conclude that this structure appears due to analysis artifacts.
The amplitude in the affected (𝑚𝐾 𝜋𝜋 , 𝑡′) cells show similar deformations as known from
zero-modes appearing in other freed-isobar PWDs. An imperfect description of the [𝜋𝜋]𝑆
amplitude could potentially lead to this type of deformation. Another possible explanation are
artifacts due to RICH acceptance effects, which could also lead to these kind of deformations in
the amplitudes. We can neither verify nor falsify contributions from either source, so further
systematic studies of the freed-isobar PWD are needed to determine the origin of the deformed
amplitudes.

Finally, we studied the contributions of nonresonant processes to the amplitude. Around the
ground states, the nonresonant component did not contribute strongly to the intensity. We only
observed contributions from the nonresonant component that compensated for the potential
analysis artifacts discussed above or RMF model imperfections such as the inability of the
second Breit-Wigner component to describe the peak of the potential excited resonant state.
Thus, we conclude that nonresonant processes do not contribute significantly to the measured
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freed-isobar amplitudes.

In summary, the freed-isobar method works in the strange-meson scattering data, as demonstrated
by the consistent observation of well-known resonances in the [𝐾𝜋]𝑃 and [𝜋𝜋]𝑃 amplitudes.
In the [𝐾𝜋]𝑃 and [𝐾𝜋]𝐷 amplitudes, we observe indications for excited strange-mesons which
are statistically significant. However, it is unclear from which resonance they originate, since
the RMFs are not very stable and the systematic uncertainties of the analysis have not yet been
determined. The [𝜋𝜋]𝑃 and [𝐾𝜋]𝑆 both showed structures that we attribute to analysis artifacts.
We observed only small contributions from nonresonant processes to our data sample.

To determine final results for the freed-isobar amplitudes, systematic uncertainties of the
measured resonances must be determined. For this work we just performed a limited amount of
systematic studies, thus to determine the full systematic uncertainties of the resonance, a full set
of systematic studies of the freed-isobar PWD and the RMFs have to be performed.

To further improve this analysis, methods to handle the analysis artifacts need to be developed.
To handle the zero-mode-like effects in the [𝜋𝜋]𝑃 and [𝐾𝜋]𝑆 amplitudes, both the subsystem
for the [𝜋𝜋]𝑃 or [𝐾𝜋]𝑆 and the [𝜋𝜋]𝑆 could be freed simultaneously, which would allow the
simultaneous measurement of both amplitudes. In an RMF, an additional parameter could
model the possible zero-mode, thus allowing to take into account zero-mode-like effects. The
problems caused by RICH acceptance effects could be solved by an approach similar to the one
used for the three-body analysis of our data sample, where additional parameters in the PWD
modeled these caveats [5].

The successor to the COMPASS experiment at CERN, called AMBER, has started its data-taking
campaign in 2023 [54]. Part of a possible upcoming phase-2 of the AMBER experiment
will be a high-precision measurement of the strange-meson spectrum. The aim is to obtain
about 10 times more strange-meson scattering events than measured by COMPASS. More
scattering events will allow further improvement of the analysis techniques used, e.g. more than
a single wave could be freed in the freed-isobar analysis. The results will then be less biased by
the parameterizations employed for the dynamic amplitudes. Another goal is to improve the
final-state particle identification, e.g. by implementing a second RICH detector, which would
lead to lower backgrounds. This would allow a much more refined analysis of the strange-meson
sector. We have laid the foundation for the analysis of such a data sample from AMBER to
improve the understanding of the strange-meson sector, similar to how the results of the 𝜋−𝜋−𝜋+

data sample have improved the understanding of the non-strange light meson sector [12, 25].
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