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Abstract22

In the naïve quark-model picture, strange mesons consist of
a strange and an up or down (anti)quark, which are bound by
the strong interaction. Although strange mesons have been
studied since more than 70 years, many parts of their excitation
spectrum are still unexplored.
The COMPASS experiment at CERN collected the so far
world’s largest sample of 720 494 exclusive events for the
diffractive-scattering reaction K− + p → K−π−π+ + p. This
sample allows us to study strange mesons decaying into the
K−π−π+ final state. In this thesis, we present the analysis of
this data sample, starting from the event selection, up to an
elaborate partial-wave analysis (PWA), with which we extract
the strange-meson resonances. We develop a novel method for
the identification of beam kaons using the full experimentally
available information, which doubles the efficiency for kaon
identification compared to the previously used method. We ex-
tend the classical PWA approach by employing model-selection
techniques in order to construct the partial-wave model, and by
applying Bootstrapping techniques in order to improve the pa-
rameter and uncertainty estimates. Furthermore, we develop a
novel approach to treat incoherent background contributions to
our K−π−π+ sample in the PWA. We perform extensive system-
atic studies as well as Monte Carlo studies in order to validate
the analysis results. Finally, we perform a first study of the
amplitudes of light mesons appearing in the π−π+ and K−π+

subsystems of the K−π−π+ final state.
Our analysis yields the so far most complete picture of the
strange-meson spectrum coming from a single analysis. In
total, we study 14 strange mesons. We find signals from well-
known strange mesons, as well as indications for states that
are not yet established. For example, we find indications for
the K2(2250), K3(2320), and K4(2500) for the first time in a
PWA of a final state other than Λp or Λp. In addition, we
find indications for three excited pseudoscalar kaons; i.e. the
K(1460), the K(1630), and the K(1830); while quark-model
calculations predict only two excited states in this mass region.
This hints towards an exotic nature of one of these three states.
Our estimates for the masses and widths of the 14 strange
mesons mostly agree with previous measurements and with
quark-model calculations. Our uncertainties for most of the
measured masses and widths are competitive with the corre-
sponding so far best measurements of these parameters by
previous measurements.
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Kurzzusammenfassung24

Entsprechend dem Quarkmodell bestehen leichte Mesonen mit
Strangeness aus einem Strange und einem Up (Anti-)Quark,
welche durch die starke Wechselwirkung gebunden sind. Seit
mehr als 70 Jahren werden diese Mesonen studiert und dennoch
sind Teile ihres Anregungsspektrums bis heute unbekannt.
Das COMPASS Experiment am CERN hat den bisher weltweit
größten Datensatz für die diffraktive Streureaktion K− + p→
K−π−π+ + p, bestehend aus 720 494 exklusiven Ereignissen
gemessen. Dieser Datensatz erlaubt es, leichte Mesonen mit
Strangeness in deren Zerfall in den K−π−π+ Endzustand zu
studieren. In dieser Arbeit präsentieren wir die zugehörige
Analyse, von der Ereignisauswahl bis hin zu einer umfangrei-
chen Partialwellenanalyse (PWA). Hierfür entwickeln wir eine
neuartige Methode zur Identifikation von Kaonen im Strahl,
die eine doppelt so hohe Effizienz verglichen mit der zuvor
verwendete Methode aufweist. Zudem erweitern wir den klas-
sischen PWA Ansatz um eine Methode zur systematischen Kon-
struktion des Partialwellenmodells mittels Modellselektionsver-
fahren, sowie um Bootstrapping-Verfahren zur Verbesserung
der Parameter- und Unsicherheitsbestimmung. Des Weiteren
entwickeln wir einen neuartigen Ansatz zur Modellierung inko-
härenter Untergründe und führen weitreichende systematische
sowie Monte Carlo Studien zur Verifizierung unserer Ergeb-
nisse durch. Abschließend messen wir erstmals die quanten-
mechanischen Amplituden von leichten Mesonen in den π−π+

und K−π+ Subsystemen des K−π−π+ Endzustandes.
In dieser Arbeit präsentieren wir das bisher umfassendste Bild
des Spektrums leichter Mesonen mit Strangeness, welches aus
einer einzigen Analyse stammt. Wir studieren insgesamt 14
leichte Mesonen mit Strangeness, wobei wir sowohl Signale
von wohlbekannten Zuständen, als auch Anzeichen für bisher
nicht etablierte Zustände finden. Beispielsweise beobachten
wir Anzeichen für die Zustände K2(2250), K3(2320) und
K4(2500). In dieser Arbeit werden sie das erste Mal in einer
PWA in einem anderen Endzustand als Λp oder Λp beobachtet.
Des Weiteren finden wir Anzeichen für drei pseudoskalare
Kaonen. Da das Quarkmodell nur zwei Zustände in dieser
Massenregion vorhersagt, deuten unsere Beobachtungen auf
eine exotische Natur eines dieser Zustände hin. Unsere Mes-
sung der Massen und Breiten der 14 Zustände stimmt mit
vorherigen Messungen überein. Die Unsicherheiten unserer
Messung sind meist ähnlich gut, wie die Unsicherheiten der
bisher besten Messungen dieser Parameter.

25
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1 Introduction178

Our current understanding of nature is that there are four fundamental interactions: (i) gravitation,179

which, e.g., binds planets and stars to solar systems and solar systems together with other180

components to galaxies; (ii) the electromagnetic interaction, which, e.g., binds electrons and181

nuclei to atoms and atoms to molecules; (iii) the strong interaction, which, e.g., binds quarks to182

hadrons, such as strange mesons, and hadrons to nuclei; and (iv) the weak interaction, which,183

e.g., is responsible for radioactive decays of nuclei.[a] Often, the study of bound systems184

allows us to gain more knowledge about the respective interaction. For example, the high-185

precision measurements of the fine and hyper-fine structure of the hydrogen atom, one of the186

simplest electromagnetically bound systems, contributed greatly to the development of Quantum187

Electrodynamics (QED), the fundamental theory of the electromagnetic interaction [1, 2]. For188

certain bound systems, their composition is not completely known, but the study of the properties189

of such bound systems gives access to their composition. For example, the density of dark190

matter in galaxies can be studied based on observations of the distribution and movement of the191

visible matter [3–5]. Similarly, the composition of strongly bound systems, i.e. hadrons, is not192

completely understood as we cannot study the individual components of hadrons separately due193

to the confinement. In the same spirit as the studies of systems bound by the electromagnetic194

interaction or gravitation, the goal of hadron spectroscopy programs, such as the strange-meson195

spectroscopy program at COMPASS, is to gain a better understanding of the strong interaction196

and its fundamental theory the Quantum Chromodynamics (QCD) by studying strongly bound197

systems.198

In the naïve quark-model picture [6–8], mesons are states build up from a constituent quark and199

antiquark pair (qq′). Hence, they are the simplest strongly bound system. Light mesons are build200

up from up, down, or strange (anti)quarks. Strange mesons are light mesons with strangeness ±1,201

i.e. they are build up from a strange (anti)quark and an up or down (anti)quark.202

Important properties of light mesons are their quantum numbers, i.e. their isospin I, their total203

spin J, and their parity P. The latter two are often written as JP.[b] In the quark model, light204

mesons form for each JP a SU(3) flavor nonet. Each nonet consists of two isoscalar mesons with205

I = 0, three isovector mesons with I = 1, and four strange mesons with I = 1/2.206

[a] We list the four fundamental interactions as they appear after electroweak symmetry breaking.
[b] In addition, neutral non-strange light mesons are characterized by their charge parity quantum number C. By

convention, the C parity of a neutral meson is often also assigned to its charged partners. Furthermore, one can
extend the idea of charge conjugation to charged mesons by introducing the G parity. Strange mesons are not
eigenstates of the C- or G-parity operators and hence do not have C-or G-parity quantum numbers.

March 1, 2022 18:18 1
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In the quark-model picture, the total spin Jtotal spin Jtotal spin Jtotal spin Jtotal spin Jtotal spin Jtotal spin Jtotal spin Jtotal spin Jtotal spin Jtotal spin Jtotal spin Jtotal spin Jtotal spin Jtotal spin Jtotal spin Jtotal spin J of the meson is given by the coupling of the total207

intrinsic spin Sqq′ of the qq′ system and the relative orbital angular momentum Lqq′ between the208

two constituent quarks. The half-integer spins of the two quarks can couple to a total intrinsic209

spin of210

Sqq′ = 0 or 1. (1.1)

The relative orbital angular momentum can take values of211

Lqq′ = 0, 1, 2, . . . (1.2)

The total spin of the meson is in the range212

|Sqq′ − Lqq′ | ≤ J ≤ (Sqq′ + Lqq′). (1.3)

The parityparityparityparityparityparityparityparityparityparityparityparityparityparityparityparityparity of the meson can be expressed as213

P = (−1)Lqq′+1. (1.4)

Finally, the so-called naturalitynaturalitynaturalitynaturalitynaturalitynaturalitynaturalitynaturalitynaturalitynaturalitynaturalitynaturalitynaturalitynaturalitynaturalitynaturalitynaturality of the meson is defined as214

η ≡ (−1)JP = (−1)J+Lqq′+1. (1.5)

Strange mesons are grouped into two families: (i) states with positive naturality called K∗J and215

(ii) states with negative naturality called KJ .[c]
216

Besides their quantum numbers, another important property of mesons is their mass. For light217

mesons, a large fraction of the meson mass is dynamically generated by the strong interaction.218

Hence, understanding the emergence of the meson masses by measuring the masses of a wide219

variety of mesons and comparing them to theory predictions leads to a better understanding of220

the strong interaction and its fundamental theory QCD. Furthermore, all strange mesons, except221

for the lightest strange meson, i.e. the kaon, quickly decay via the strong interaction to final-state222

hadrons such as pions, kaons, protons, or lambda baryons.[d] Hence, they have an extremely223

short lifetime and thus appear as resonances in the final states. The width of these resonances224

is another important property. Measuring the masses and widths of mesons is a major task of225

meson spectroscopy.226

For fixed JP, there are K∗J states with Lqq′ = J − 1 and with Lqq′ = J + 1. KJ states always have227

Lqq′ = J.[e] In addition, there are radial excitations of the qq′ system. Hence, there is not only228

one state for a given JP, but we expect from angular and radial excitations a whole excitation229

[c] There are two exceptions to this naming scheme. The pseudoscalar mesons with JP = 0−, which would be called
K0, are actually called K. The vector mesons with JP = 1−, which would be called K∗1 , are actually called K∗.

[d] These final-state particles are stable with respect to the strong and electromagnetic interaction, but can decay via
the weak interaction. However, weak decays proceed more slowly. Thus, these final-state particles are considered
as stable. The only exception is the π0, which can electromagnetically decay, but which has still a comparably long
lifetime of (8.43 ± 0.13) × 10−17 s [9] and hence can also be considered as stable.

[e] Because of equation (1.5), J + Lqq′ has to be even for a negative naturality state. This is possible only for Lqq′ = J
as S qq′ ≤ 1 [see equation (1.3)].

2 March 1, 2022 18:18



D
RA

FT

spectrum of states with increasing masses.[f] While K∗J states have always Sqq′ = 1,[g] KJ states230

can have Sqq′ = 0 or Sqq′ = 1. Thus, for a given JP, Lqq′ , and radial excitation there are two states231

KJ,a and KJ,b with different Sqq′ , which cannot be distinguished by their JP quantum numbers and232

which are close in mass. These two states can mix. Thus, the two physical states, for example233

the K1(1270) and the K1(1400), are actually a mixture of KJ,a and KJ,b.234

So far, we mainly discussed strange mesons in the context of the quark-model. However, QCD235

in principle allows for more than just constituent quark-model states, which are build up from236

a qq′ pair. For example, there could be states with four constituent quarks called molecules237

or tetraquarks. Also, so-called hybrids could exist, which have an excited gluon-field that238

contributes to their quantum numbers. Historically, states beyond the constituent quark-model239

are called exotics. In the non-strange light-meson sector, a candidate for such an exotic state is240

the π1(1600) [11], which has quantum numbers that are forbidden for a qq′ state. In order to241

establish exotic states, it is important to find their strange partners in the corresponding SU(3)242

flavor multiplet. In the strange-meson sector, exotic states have the same quantum numbers243

as ordinary quark-model states. Therefore, such exotic states are also called crypto-exotic.244

They appear only as supernumerary states in addition to the ordinary states of the quark-model245

SU(3) flavor nonets. Establishing exotic strange mesons hence requires to completely map out246

the strange meson spectrum and to compare it to quark-model predictions in order to identify247

supernumerary states.248

At the low energies of the light-meson masses, QCD cannot be solved perturbatively. The249

only available first-principles approach is lattice QCD, i.e. the numerical simulation of QCD250

on a discrete space-time lattice. This approach has recently made significant progress [12, 13].251

However, most lattice QCD calculations for hadron spectroscopy still need to be performed252

at unphysically high quark masses. This makes an extrapolation down to the physical point253

necessary and introduces additional uncertainties to the lattice QCD predictions. Nevertheless,254

lattice QCD provides important insight into the spectrum of mesons including the existence255

of potential exotic states. With improved methods and computing power, lattice QCD also256

started to study the strong decays of meson resonances, such as the K∗(892) [14–16]. This257

opens the possibility to compare first-principle QCD predictions for hadron resonances with258

experimental observations. However, such a comparison requires a complete and precise picture259

of the strange-meson spectrum from experiments.260

Strange mesons also appear as resonances in multi-body decays of heavy mesons or τ leptons261

with kaons in the final state. Hence, a complete understanding of such decays typically requires262

incorporating all appearing strange mesons in an amplitude analysis. This is a challenge especially263

in rare decays, because even with the largest data sets currently available, the precision is typically264

not high enough to determine all appearing mesons from the data set itself. Thus, also for these265

analyses a precise knowledge of the complete strange meson spectrum is mandatory as an input.266

Such rare decays of B and D mesons are studied, e.g., in searches for CP violation and in267

[f] Side note: According to the quark model calculation in ref. [10], the first radial excitation of a K∗J ground state,
which has Lqq′ = J − 1, is close in mass to the angular excitation, which has Lqq′ = J + 1.

[g] Because of equation (1.5), a positive naturality state must have Lqq′ , J, which can only be satisfied for S qq′ = 1
[see equation (1.3)].
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the measurements of the angles of the unitarity triangle of the CKM matrix performed at the268

Belle [17], LHCb [18], and BaBar [19] experiments. Strange mesons also play a role in the search269

for new physics, e.g. in the decay B0 → K+π−l+l−,[h] where a complete understanding of all270

strange-meson contributions to the K+π− system is mandatory [20, 21]. These requirements on a271

precise and complete picture of the strange meson spectrum will become even more demanding272

with upcoming high-precision data from experiments such as Belle II and LHCb. Therefore,273

strange-meson spectroscopy not only allows us to study QCD, but gives also important input to274

other fields of fundamental physics.275

At experiments, strange mesons can be produced in various ways in order to study them. At fixed-276

target experiments such as LASS at SLAC [22], and WA3 [23] and the Ω spectrometer [24] at277

CERN, strange mesons were produced in the scattering of high-energy kaon beams off stationary278

targets. In this process, the beam kaon is excited to K∗J and KJ states. The produced excited279

strange mesons were then observed in their decays to various final states such as Kπ or Kππ.280

Strange mesons can also be produced in the scattering of high-energy photon beams. Such281

photoproduction reactions are currently studied at the GlueX experiment at Jefferson Lab [25].282

Yet another way to access the strange meson spectrum is in multi-body decays of heavy mesons283

such as D0 → K∓π±π±π∓ [26], B+ → J/ψK+π+π− [27], or J/ψ→ K+K−π0 [28]; or in τ decays284

such as τ− → K−π+π−ντ [29]. Here, the strange mesons appear in subsystems of the multi-body285

final states such as the Kπ and Kππ subsystems. These studies of strange mesons were performed286

or are still ongoing at experiments such as LHCb, Belle (II), BESIII, and CLEO.287

Figure 1.1 shows the current status of our knowledge about the strange-meson spectrum. At288

the moment, the PDG [9] lists 25 strange mesons. Only 16 of them are considered as estab-289

lished states (blue data points). The remaining 9 states still need further confirmation (orange290

data points). The black horizontal lines in figure 1.1 represent the result of the quark-model291

calculation from ref. [10]. Many of the predicted states were not yet observed experimentally.292

Especially, in the high-mass region above about 1.8 GeV/c2, many of the predicted states still293

lack experimental evidence and most of the states listed in the PDG, e.g. the K3(2320) [30, 31]294

and the K4(2500) [31], were seen by only a few or even only a single experiment. A reason for295

this is that it is experimentally more challenging to find resonances in the high-mass region, due296

to the large overlap between the states given by the high density of states (see figure 1.1) and297

their typically large widths. Not only are many parts of the strange meson sector still unexplored298

after more than 70 years of experimental searches [32], but also most of the experimental studies299

of the strange-meson spectrum were performed more than 30 years ago. Only four additional300

strange mesons have been included in the PDG listening since 1990 [33]. Most of the more301

recent studies were performed based on large data samples of heavy-meson or τ decays from302

experiments such as Belle [27], BESIII [28], and LHCb [34]. However, even with these large303

data samples they could often study only a limited set of JP sectors and only limited mass ranges.304

In general, most of the previous measurements of strange mesons were focused only on limited305

mass ranges and only on limited sets of JP sectors, thereby neglecting the contributions of states306

outside these limits. For example, the two ground state K2(1770) and K2(1820) [34, 35] and307

the excited K2(2250) [31, 36, 37] were studied so far in completely separate sets of analyses,308

[h] l stands for lepton.
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Figure 1.1: Spectrum of strange mesons, i.e. nominal masses of strange mesons grouped by their JP

quantum numbers. The blue data points show the masses of established states, the orange data points
those of not established states as listed by the PDG [9]. The similarly colored boxes represent the
corresponding uncertainties. The black horizontal lines show the masses of states as predicted by the
quark-model calculation in ref. [10]. As we show only masses below 2.7 GeV/c2 for a better visualization,
the not-established K(3100) is omitted here.

although the K2(2250) partly overlaps with the ground states. A more complete analysis covering309

a wide mass range and considering many JP sectors simultaneously is still missing and would310

give a more complete and realistic picture of the strange-meson spectrum.311

The main goal of the spectroscopy program at the COMPASS experiment at CERN is to obtain a312

more complete picture of the non-strange and strange light-meson spectrum. Using the dominant313

π− contribution in the beam, COMPASS performed a detailed high-precision measurement of the314

isovector light-meson spectrum. COMPASS measured the largest data sample for the decay to315

the π−π−π+ final state in the reaction π− + p→ π−π−π+ + p. The COMPASS π−π−π+ analysisCOMPASS π−π−π+ analysisCOMPASS π−π−π+ analysisCOMPASS π−π−π+ analysisCOMPASS π−π−π+ analysisCOMPASS π−π−π+ analysisCOMPASS π−π−π+ analysisCOMPASS π−π−π+ analysisCOMPASS π−π−π+ analysisCOMPASS π−π−π+ analysisCOMPASS π−π−π+ analysisCOMPASS π−π−π+ analysisCOMPASS π−π−π+ analysisCOMPASS π−π−π+ analysisCOMPASS π−π−π+ analysisCOMPASS π−π−π+ analysisCOMPASS π−π−π+ analysis316

is the so-far most comprehensive analysis of this reaction, where novel analysis techniques were317

applied [11, 38–42]. An even more detailed analysis of the π−π−π+ final state at COMPASS is318

currently ongoing [43].319

The goal of this thesis is to obtain a more complete picture of the strange-meson spectrum by320

mapping out the spectrum of strange mesons similarly to the measurement of the isovector321

light-meson spectrum by COMPASS. Therefore, we used the K− contribution in the high-energy322

hadron beam at COMPASS and studied strange mesons in their decay to the K−π−π+ final state323

in the diffractive scattering reaction K− + p → K−π−π+ + p, which is similar to the reaction324

π− + p→ π−π−π+ + p used for isovector-meson spectroscopy. Based on a first analysis of only325

a subset of the COMPASS data [44], we aimed to extend and improve the event selection in326

order to obtain a large data sample of the reaction K− + p → K−π−π+ + p. In order to search327

for strange mesons in this data sample, our goal was to perform the so far most comprehensive328
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partial-wave analysis (PWA) of the K−π−π+ final state, which is split into two stages. In the first329

stage called partial-wave decomposition (PWD), the data are decomposed into contributions330

from various JP sectors. We aimed to develop and apply models and analyses techniques that go331

beyond what was used in previous analyses of the K−π−π+ final state. To this end, much of the332

experience gained in the COMPASS π−π−π+ analysis entered our analysis and was developed333

further, and some methods applied in our analysis were developed in close collaboration with334

the currently ongoing COMPASS π−π−π+ analysis. In the second stage of our analysis called335

resonance-model fit (RMF), strange-meson resonances are extracted and their masses and widths336

are measured. Here, our goal was to study a large variety for strange mesons from many JP
337

sectors and from a wide mass range simultaneously in a single analysis. Finally, we intended338

to scrutinize our analysis methods and results in extensive systematic studies and Monte Carlo339

input-output studies.340

In chapter 2, we discuss the reaction K− + p→ K−π−π+ + p and briefly introduce the COMPASS341

experimental setup. In chapter 3, we discuss improvements in the identification of beam kaons342

at COMPASS and the performance of the final-state particle identification, which were major343

challenges of our analysis. In chapter 4, we describe the event selection and present kinematic344

distributions of the K−π−π+ final state. In chapter 5, we describe the partial-wave decomposition.345

We also provide a first glimpse on the results of the PWD, and we discuss extensive studies to346

scrutinize the PWD. In chapter 6, we describe the resonance-model fit. We also provide a first347

glimpse on the results of the RMF, and we discuss extensive studies to scrutinize the RMF. In348

chapter 7, we discuss the major physics results of our analysis and compare them to previous349

measurements and to theory predictions. In chapter 8, we present a first attempt to also study350

mesons appearing in the K−π+ and π−π+ subsystems of the K−π−π+ final state using the so-called351

freed-isobar approach. Finally, in chapter 9, we conclude our results and present further prospects352

for strange-meson spectroscopy at COMPASS and at other experiments. Technical details of353

our analysis and additional results are given in appendices A to H. Important expressions and354

terminology specific to this analysis are underlined in the text and summarized in the glossary.355
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2 Strange-Meson Spectroscopy at the356

COMPASS Experiment357

2.1 The Studied Process: Diffractive Production of K−π−π+
358

Our goal is to explore the strange meson-spectrum with COMPASS by studying the diffrac-359

tive[a]scattering of a K− beam off a liquid-hydrogen target. At high center-of-momentum360

energies of the K−beam ptarget system, like at COMPASS, the scattering process is dominated by361

the t-channel exchange of a Pomeron P. Pomeron exchange is an effective description of the362

underlying strong-interaction processes using Regge theory [45, 46]. In the reaction of interest,363

the target proton remains intact, whereas the beam K− gets excited into an intermediate state364

X− with mass mX .[b] Here, X− represents the excited strange mesons that we aim to study. In365

this way, we can produce all K∗J and KJ states, except for K∗0 states.[c] Finally, we observe these366

strange mesons in their decays to final state particles. In this work, we focus on the decay to the367

K−π−π+ final state. The reaction is depicted in figure 2.1.368

xx

x x

X−
K−

π+

π−P

ptarget precoil

K−beam
t′

mKππ

mK−π+

mπ−π+

xx

Figure 2.1: Schematic view of the reaction K− + p→ K−π−π+ + p.

[a] Diffractive scattering reactions are inelastic scattering reactions, where the energy transfer between the two hadrons
is comparably small and where one or both hadrons dissociate into a multi-particle final state. Diffractive scattering
reactions are analogous to scattering off a gray disk in optics.

[b] In principle, there can be also excitations of the target proton. However, in our analysis excitations of the target
proton are experimentally suppressed by the event selection section 4.1.

[c] As the beam K− is a JP = 0− state, the relative orbital angular momentum LKP of the K−beamP system has to be
equal to the spin JP of the exchange particle in order to produce a J = 0 system. The P has positive naturality,
which means that it has a parity of (−1)JP . Hence, the parity of the K−beamP system with J = 0, i.e. the parity of X−

with J = 0, is (−1)1+JP+LKP = (−1)1+2JP = −1. Thus, only K states with JP = 0− can be produced in diffractive
kaon scattering, but no K∗0 states with JP = 0+.
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In addition to the center-of-momentum energy, the invariant mass mKππ of the K−π−π+ system,369

and the invariant masses mK−π+ and mπ−π+ of the K−π+ and π−π+ subsystems, respectively, the370

reaction is characterized by the Mandelstam variable t, which is the squared four-momentum371

transfer between the beam K− and the target proton. It is always negative and given by372

t = (pbeam − pX)2 = m2
beam + m2

X − 2
(
EbeamEX − |~pbeam| |~pX | cos θ

)
. (2.1)

Here, pbeam is the four-momentum of the beam particle, pX is the four-momentum of the X−, Ei373

are the corresponding energies, |~pi| are the corresponding magnitudes of the three-momenta, and374

θ is the scattering angle, i.e. the angle between the X− and the beam K− momenta. It is more375

convenient to use the reduced squared four-momentum transferreduced squared four-momentum transferreduced squared four-momentum transferreduced squared four-momentum transferreduced squared four-momentum transferreduced squared four-momentum transferreduced squared four-momentum transferreduced squared four-momentum transferreduced squared four-momentum transferreduced squared four-momentum transferreduced squared four-momentum transferreduced squared four-momentum transferreduced squared four-momentum transferreduced squared four-momentum transferreduced squared four-momentum transferreduced squared four-momentum transferreduced squared four-momentum transfer376

t′ ≡ |t| − |t|min, (2.2)

which takes into account the minimal squared four-momentum transfer,377

|t|min = −m2
beam − m2

X + 2
(
ECoM

beamECoM
X − |~p CoM

beam | |~p
CoM
X |

)
, (2.3)

necessary to produce an excited state with mass mX . Here, the energies ECoM
i and momenta378

|~p CoM
i | are given in the overall center-of-momentum frame of the K−beam ptarget system.[d] For the379

kinematic region analyzed in this work, |t|min � |t| and hence t′ ≈ |t|.380

2.1.1 Non-Resonant Production of the K−π−π+ Final State381

In addition to the reaction depicted in figure 2.1, there can be other processes that also end up in382

the K−π−π+ final state. However, these reactions do not proceed via intermediate resonances X−383

in the K−π−π+ system. Hence, they are called non-resonant processesnon-resonant processesnon-resonant processesnon-resonant processesnon-resonant processesnon-resonant processesnon-resonant processesnon-resonant processesnon-resonant processesnon-resonant processesnon-resonant processesnon-resonant processesnon-resonant processesnon-resonant processesnon-resonant processesnon-resonant processesnon-resonant processes.384

One class of such non-resonant processes are the so-called Deck-likeDeck-likeDeck-likeDeck-likeDeck-likeDeck-likeDeck-likeDeck-likeDeck-likeDeck-likeDeck-likeDeck-likeDeck-likeDeck-likeDeck-likeDeck-likeDeck-like reactions [47] depicted in385

figure 2.2. The dominant graph, where a virtual pion is exchanged and rescatters off the target386

proton, is shown in figure 2.2a. In forward direction in the laboratory frame, a fast intermediate387

resonance ξ is produced, which then decay into K−π+. Figure 2.2b shows another possible graph,388

where a virtual kaon is exchanged and a forward going π−π+ system is produced. Due to the389

higher mass of the kaon, this process is suppressed with respect to the pion-exchange process.390

Further possible non-resonant processes are central-production reactions shown in figure 2.3. In391

the dominant graph shown in figure 2.3a, both the target proton and the beam K− emit a Pomeron.392

The two Pomerons fuse and centrally[e] produce an intermediate resonance ξ, which then decays393

[d] In general, Ei and |~pi| depend on θ. However, in the overall center-of-momentum frame, the energies ECoM
i equal

to the two-body breakup energies and the momenta |~p CoM
i | equal to the two-body breakup momenta. This means

ECoM
i and |~p CoM

i | are independent of θ. Hence, in this frame, equation (2.1) has a maximum for cos θ = 1, which is
a minimum of |t|.

[e] Here, “centrally” means that the intermediate ππ resonance ξ is approximately at rest in the overall K−beam ptarget

center-of-momentum frame.
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K−
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p p
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(b)

Figure 2.2: Schematic view of Deck-like reactions with (a) pion exchange and (b) kaon exchange.
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π+ξP

P

p p

K−

(a)

xx

x x

π−

K−
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Figure 2.3: Schematic view of central-production reactions for a centrally produced π−π+ (a) or K−π+ (b)
subsystem.

into π−π+. Alternatively, a virtual K∗ can be exchanged at the top vertex in order to centrally394

produce an intermediate resonance ξ, which decays into K−π+ as shown in figure 2.3b. Further395

exchanges in addition to P and K∗ are in principle also possible.396

The main goal of this thesis is to study strange-meson resonances in the K−π−π+ system. Here,397

non-resonant processes are considered as background. We discuss the treatment of these back-398

grounds in section 6.1.2. However, studies of non-resonant processes, as done by JPAC based on399

COMPASS data on the ηπ and η′π final states [48], are an interesting topic for themselves.400

2.2 The COMPASS Experiment at CERN401

COMPASS (COmmon Muon Proton Apparatus for Structure and Spectroscopy) is a very ver-402

satile experiment designed to study QCD in the low-energy regime. It was used to study403

the internal structure of hadrons by measuring, for example, the polarizability of pions [50]404

or the contribution of the transverse quark spins to the nucleon spin [51]. The 2008 and405

2009 diffraction data-taking campaignsdiffraction data-taking campaignsdiffraction data-taking campaignsdiffraction data-taking campaignsdiffraction data-taking campaignsdiffraction data-taking campaignsdiffraction data-taking campaignsdiffraction data-taking campaignsdiffraction data-taking campaignsdiffraction data-taking campaignsdiffraction data-taking campaignsdiffraction data-taking campaignsdiffraction data-taking campaignsdiffraction data-taking campaignsdiffraction data-taking campaignsdiffraction data-taking campaignsdiffraction data-taking campaigns at COMPASS were mainly devoted to light-meson spec-406

troscopy. In the following, we briefly introduce the COMPASS experimental setup as it was used407

during 2008 and 2009. A detailed description can be found in refs. [49, 52].408
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RICH

LAS
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Figure 2.4: Schematic view of the COMPASS setup for measurements with hadron beams. The beam
(blue arrow) is entering the target region surrounded by the RPD (green) from the left side. The final-
state particles are measured with the COMPASS Large-Angle (LAS) and Small-Angle (SAS) magnetic
Spectrometer. Different detector types are represented by different colors. The CEDAR detectors placed
upstream of the COMPASS target are shown as an inset. The figure was taken from ref. [49] and adjusted.

COMPASS is a fixed-target experiment located at the M2 beam line at the CERN accelerator409

laboratory. The setup is shown in figure 2.4. Protons from the Super Proton Synchrotron (SPS)410

accelerator with a momentum of about 400 GeV/c impinge on a Beryllium production target (not411

shown), where showers of secondary hadrons; mainly pions, kaons, and protons; are produced412

with a large momentum spread. Then, particles in the desired momentum range are selected by a413

series of magnets and collimators along the about 1 km long beam line. For the diffraction data414

taking, we used a 190 GeV/c negative hadron beam, which corresponds to a center-of-momentum415

energy of about 19 GeV/c2 for the reaction shown in figure 2.1. This beam has a high nominal416

intensity of 5 × 106 s−1 with a low momentum spread of about 1 % [49]. It is mainly composed417

out of π− (96.8 %), with smaller contributions from K− (2.4 %) and p (0.8 %) [49]. To distinguish418

the beam-particle species, two alike CEDAR detectors (ChErenkov Differential counters with419

Achromatic Ring focus) are positioned approximately 30 m upstream of the COMPASS target.420

The negative hadron beam impinges on a cylindrical liquid-hydrogen target with a diameter of421

35 mm and a length of 400 mm. The latter corresponds to about 5.5 % of the nuclear interaction422

length [49]. Silicon microstrip detectors are placed upstream and downstream of the target to423

measure the tracks of charged beam and final-state particles with high precision. This allows us424

to reliably find and precisely reconstruct the interaction point of the beam particle with the target425

proton. Furthermore, the target is surrounded by a barrel-shaped recoil-proton detector (RPD),426

which measures the track of the recoiling proton. Detecting the recoil protons requires them to427

have a minimal kinetic energy, which imposes a lower limit on t′ of about 0.1 GeV/c2.[f]
428

[f] For t′ < 0.1 GeV/c2, the RPD acceptance quickly drops and becomes practically zero for t′ < 0.07 GeV/c2.
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The momenta of the forward-going charged final-state particles are measured by a two-stage429

magnetic spectrometer. The first stage called Large-Angle Spectrometer (LAS) covers polar430

angles of the final-state particles of up to 180 mrad [49]. It is followed by the Small-Angle431

Spectrometer (SAS), which extends the experimental acceptance to particles going in very432

forward direction with small polar angles in the range ±30 mrad [52]. Each of the two stages433

consists of a bending magnet (SM 1/2) surrounded by multiple layers of tracking detectors. For434

a high-precision measurement of tracks close to the beam axis micropattern gaseous detectors435

are used namely Gas Electron Multipliers (GEM) and micromesh gaseous structure detectors436

(micromegas), as well as Scintillating Fibre counter (SciFi). To cover larger areas up to 12 m2
437

further away from the beam axis, wire-based gas detectors are used such as Drift Champers438

(DC), Multi-Wire Proportional Chambers (MWPC), and straw-tube chambers. Final-state particle439

identification is performed by the Ring-Imaging CHerenkov detector (RICH), which distinguishes440

pions, kaons and (anti)protons. Furthermore, each spectrometer stage is equipped with an441

Electromagnetic CALorimeter (ECAL) used to measure high-energy photons and electrons and a442

Hadronic CALorimeter (HCAL). The calorimeters were not used in our analysis.443

Events are recorded only if they fulfill certain trigger criteria. The so-called Diffractive Trigger444

(DT0) was designed to perselect diffractive scattering events studied in this analysis. It requires445

coincidence of three signals: (i) an incoming beam particle is measured by two scintillator-based446

beam-trigger detectors placed upstream of the COMPASS target; (ii) a recoil proton is measured447

by the RPD; (iii) there is no signal from the veto system, which rejects events with beam particles448

that enter the setup outside the target region, events with final-state particles outside the LAS449

acceptance, or events with non-interacting beam particles. The DT0 trigger was designed to have450

a minimal bias on the selected events. For data management, the recorded data were grouped451

into up to approximately 2 hour long periods in time, the so-called runsrunsrunsrunsrunsrunsrunsrunsrunsrunsrunsrunsrunsrunsrunsrunsruns. Finally, the recorded452

data were processed by the COMPASS reconstruction and analysis software CORAL [53].453

The setups for 2008 and 2009 were nearby identical, with only minor changes. For example,454

between 2008 and 2009 one additional tracking detector was installed for detector testing and455

during 2009 the position of one of the beam trigger detectors was shifted, because a small part456

of the sensitive area of this detector was not working anymore. These effects had only a minor457

influence on the detector performance. Nonetheless, we take into account these changes in the458

partial-wave decomposition discussed in chapter 5 by splitting the total data set into three subsets459

labeled by: (i) 2008, (ii) 2009 W2X, (iii) 2009 W35.460

Due to its two-stage layout, COMPASS has a large experimental acceptance for charged particles,461

which uniformly covers a wide kinematic range. Furthermore, COMPASS has a high resolution462

for the measurement of the momenta of charged particles. The CEDAR and RICH detectors463

allow us to identify events with kaons in the initial and final state, which is important for the464

studied reaction K− + p → K−π−π+ + p studied. Hence, COMPASS is perfectly suited for465

strange-meson spectroscopy, which requires applying partial-wave analysis techniques that rely466

on a precise knowledge of the involved particles and their momenta.467
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3 Particle Identification468

One of the main experimental challenges in analyzing the reaction K− + p→ K−π−π+ + p is the469

identification of the particle species of the beam and final-state particles. Beam kaons have to be470

separated from the about 36 times larger pion content of the beam. In order to achieve a high471

efficiency of beam-kaon identification, while maintaining a sufficiently low pion contamination472

of the kaon-beam sample, we developed a novel likelihood approach using the information from473

two Cherenkov differential counters (CEDARs) [54], which is presented in section 3.1. Applying474

this method, we gained a factor two in beam-particle identification efficiency over a previously475

used method. The main task of the final-state particle identification is to distinguish the K−476

from the π− in the K−π−π+ final state. In section 3.2 we briefly introduce the method used to477

identify charged particles in the final state using information from the ring-imagine Cherenkov478

detector (RICH). In addition, we present in sections 3.1 and 3.2 performance studies of the479

applied methods, which were performed separately for the 2008 and 2009 diffraction data set.480

The results of the performance studies are discussed exemplary for the 2008 diffraction data set.481

The 2009 diffraction data set shows similar results.482

3.1 Beam-Particle Identification483

3.1.1 The CEDAR Detectors484

The negatively charged hadron beam at COMPASS is mainly composed out of pions (96.8 %),485

with smaller contributions from kaons (2.4 %) and antiprotons (0.8 %) [49]. To distinguish486

these particle species, two alike CEDAR detectors [55, 56] are positioned 30 m upstream of the487

COMPASS target. The central part of each CEDAR is a 6 m long vessel containing pressurized488

helium gas. Beam particles traverse the CEDAR approximately parallel to its optical axis, which489

is represented by the dashed line in figure 3.1. Since they move faster than the speed of light in490

the helium gas, they emit Cherenkov light, which is focused by a concave mirror and a system491

of lenses. Using a diaphragm, Cherenkov light that is emitted in a narrow angular range with492

respect to the optical axis is selected. Finally, the Cherenkov photons are detected by eight493

photomultipliers (PMTs) arranged on a ring around the optical axis. The momentum as defined494

by the beam optics is approximately the same for all beam particles. Therefore, the angle under495

which the Cherenkov light is emitted is the same for beam particles of the same species, but496

different for beam pions, kaons, or antiprotons. Each CEDAR detector can be tuned to identify497

a certain particle species, by selecting the pressure of the helium gas and the opening of the498
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Beam

Figure 3.1: Basic operation principle of a CEDAR detector. The dashed line represents the optical axis of
the detector, which coincides with the direction of the beam. The green and red lines represent the paths
of Cherenkov light, which is emitted under different angles. Taken from ref. [49] and modified.

diaphragm, such that the Cherenkov ring of the selected species is focused on the PMTs (green499

lines in figure 3.1), while the Cherenkov rings of the other species are shielded by the diaphragm500

(red lines in figure 3.1).501

For the diffraction data taking, both CEDARs were tuned to identify kaons. This means that the502

kaon Cherenkov ring was focused on the PMTs. Thus, a beam kaon should generate signals in503

the PMTs, while a beam pion or antiproton should not.504

3.1.2 Challenges of the CEDAR Beam-Particle Identification505

In previous analyses [44, 57], beam kaons were identified by requiring signals in the PMTs in506

coincidence with the incoming beam particle. Taking into account the imperfect efficiency of the507

PMTs, a signal in at least six out of the eight PMTs of one of the two CEDARs was required.508

Unfortunately, this so-called majority methodmajority methodmajority methodmajority methodmajority methodmajority methodmajority methodmajority methodmajority methodmajority methodmajority methodmajority methodmajority methodmajority methodmajority methodmajority methodmajority method has a low efficiency of only 40 to 50 % [44]. The509

main reason is the finite spread in the inclination of the beam particles with respect to the optical510

axis of the CEDAR detectors. This beam divergence is about 200 µrad and thus of the same511

order of magnitude as the difference between the kaon and pion Cherenkov angles, which is512

around 130 µrad for the CEDAR parameters used in the diffraction data taking. For particles513

traversing the CEDAR parallel to its optical axis (figure 3.2a), the Cherenkov ring of a kaon514

(green ring) is in the sensitive area covered by the PMTs (gray circular area) and the Cherenkov515

ring of a pion (red ring) is outside of the PMTs’ acceptance. However, if the beam particle has516

some finite inclination with respect to the optical axis its Cherenkov ring is shifted with respect517

to the diaphragm aperture. In the example shown in figure 3.2b, the Cherenkov light of a kaon518

would no longer hit the topmost three and bottommost three PMTs and only the leftmost and519

rightmost PMT would have a signal, while for a pion with the same inclination the topmost520
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dpy
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(a)
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Figure 3.2: Illustration of the Cherenkov rings in the inclination space of beam particles represented
by the red crosses. The green ring represents a beam-kaon Cherenkov ring. The red ring represents a
beam-pion Cherenkov ring. The gray band represents the acceptance for Cherenkov photons defined by
the diaphragm of the CEDAR. The black dots represent the position of the eight PMTs. (a) illustrates
kaons and pions that traverse the CEDAR parallel to its optical axis. (b) illustrates kaons and pions that
have some finite inclination in y-direction with respect to the optical axis.

PMTs would now give a signal. Therefore, for larger beam-kaon inclinations, fewer PMTs give a521

signal leading to the low efficiency of the majority method. However, figure 3.2 also shows that a522

certain hit pattern in the eight PMTs (i.e. which of the PMTs give a signal) is characteristic for a523

certain particle species at a given inclination. We exploit this to formulate a likelihood ansatz in524

section 3.1.3.525

In a previous analysis of the Primakoff reactions measured in a different COMPASS data-taking526

campaign; Friedrich J., et al. developed in ref. [58] already a likelihood-based approach for the527

beam-particle identification. In ref. [59], a first attempt to formulate another likelihood-based528

approach for the 2008 diffraction data set was developed. Both approaches have in common,529

that they use independent parameterizations for the likelihood of beam kaons and pions with530

independent sets of parameters. Therefore, both methods rely on large calibration samples of531

pure beam kaons and pure beam pions.532

In addition, the CEDAR parameters exhibit large modulations with time. For example, the helium533

gas density varied (see figure 3.5), caused by small gas leaks, which made a daily refilling of534

the gas vessel necessary. Also, the temperature of the CEDARs was not stable enough. These535

variations considerably effected the position of the Cherenkov rings making a time-dependent536

calibration mandatory. This exacerbates the requirement on the size of the calibration samples.537

For the diffraction data set, the size of such beam samples, especially of a pure kaon-beam538

sample, is very limited, as shown in section 3.1.6. Therefore, pure kaon-beam and pure pion-539

beam samples that are sufficiently large to perform a time-dependent calibration of the CEDARs540

could not be obtained from the diffraction data sets. The goal of the likelihood ansatz developed541

in the following section is to not rely on pure kaon and pion-beam samples, but to extract the542

calibration from a mixed sample of beam kaons and pions.543
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3.1.3 Likelihood Method544

The main difference between particle species S , e.g. kaons or pions, traversing the CEDAR545

detectors is their different Cherenkov angle[a]
546

cos θS
Ch =

1
nβ

=
1
n

√
1 +

(
mS

|~p|

)2

. (3.1)

The known beam momentum |~p|[b] and the refraction index of the helium gas n are the same for547

all particle species. The only particle-species specific quantity is the particle mass mS , which is548

known [9]. The CEDARs are designed to accept light emitted in a certain angular range with549

respect to their optical axis. The emission angle is determined by the value of the Cherenkov550

angle and by the inclination of the beam-particle’s trajectory with respect to the optical axis551

of CEDAR k. The inclination is defined by the beam particle momentum[c] in the small-angle552

approximation[d] as553

k(dpx

dpz

)
Beam

≡ kϑx and
k(dpy

dpz

)
Beam

≡ kϑy. (3.2)

Coordinate System554

The CEDAR response on a Cherenkov photon only depends on its emission angle with respect555

to the CEDARs optical axis. For a given emission angle, the response is independent of the556

particle species. Thus, the response of the individual PMTs can be parameterized uniformly for557

all particle species. As we did not measure the emission angle of individual photons, we first558

had to define a suitable coordinate system to parameterize the response of a PMT. Therefore,559

we find for a certain particle species all possible beam particle inclinations (red/orange points560

in figure 3.3a), where the corresponding Cherenkov rings (red/orange rings in figure 3.3a) hit561

the PMT centrally. In the inclination space, these beam particles lie on a circle around the PMT562

with radius given by the Cherenkov angle (dashed green circle in figures 3.3a and 3.3b). For a563

beam particle of species S with an arbitrary inclination, e.g. the magenta point in figure 3.3b, the564

probability for a signal in PMT j[e] mainly depends on the distance, to the ideal inclination that565

[a] The difference in the number of emitted Cherenkov photons (see equation 34.43 in ref. [9]) is about 1 % and hence
negligible.

[b] The beam-momentum spread is less than 1 % [49] and hence has a negligible effect on the Cherenkov angle
compared to the difference in mS .

[c] The beam particle inclination was measured by the silicon beam telescope near the target position with high
precision. From this, the inclination at the CEDAR position was calculated using a transport matrix determined
from the known beam optics [60]. The inclinations of the beam particle with respect to optical axes were calculated,
taking into account the CEDARs’ tildes with respect to the laboratory frame.

[d] The small beam inclinations of about 200 µrad allows to use the small-angle approximation, i.e. sinϑ ≈ ϑ
[e] The index, j, uniquely identifies each PMT in the two CEDARs. Therefore, j = 0, . . . , 15.
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ϑx

ϑy

(a)

ϑx

ϑy

θKCh
jΘ

j∆K

jϕ

(b)

Figure 3.3: Two-dimensional inclination space of a beam particle with respect to the CEDARs optical
axis. The gray box represents the center of the sensitive region of a PMT defined by the diaphragm. For
illustration, the coordinate system was rotated such that the center of the PMT is on the vertical axis. (a)
shows two exemplary beam inclinations (red/orange points), where the corresponding Cherenkov rings
for kaons (red/orange circles) and the PMTs sensitive region intersect. The green dash circle shows all
inclinations that fulfill this constraint. (b) shows a beam particle with arbitrary inclination (magenta point).

yields a signal in the PMT:566

j∆S (kϑx,
kϑy) = θS

Ch −

∥∥∥∥∥∥∥
kϑx

kϑy

 −  jΘ cos jΦ
jΘ sin jΦ


∥∥∥∥∥∥∥ . (3.3)

Here, jΘ and jΦ are the PMT’s “position” in the inclination space, i.e. the direction in which567

a photon has to be emitted in order to hit the PMT centrally. As the CEDARs were tuned to568

beam-kaon identification, jΘ ≈ θK
Ch.569

The PMT response depends also on the angle jϕ, which corresponds to the tilt of the Cherenkov570

ring with respect to the sensitive area of the PMT defined by the diaphragm. It is calculated from571

the measured inclination and the PMT position as572

sin
[

jϕ(kϑx,
kϑy)

]
=

kϑx
jΘ sin jΦ − kϑy

jΘ cos jΦ√(
kϑx

)2
+

(
kϑy

)2
+

(
jΘ

)2
− 2

(
kϑx

jΘ cos jΦ − kϑy
jΘ sin jΦ

)
jΘ

. (3.4)

Equations (3.3) and (3.4) define the coordinate transformation from (kϑx,
kϑy) to ( j∆S , jϕ), which573

is different for each PMT j and each particle species S .574
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Parameterization of the Likelihood575

The probability of a signal in PMT j, called hit probabilityhit probabilityhit probabilityhit probabilityhit probabilityhit probabilityhit probabilityhit probabilityhit probabilityhit probabilityhit probabilityhit probabilityhit probabilityhit probabilityhit probabilityhit probabilityhit probability jPPMT(Hit | j∆S , jϕ), is a detector576

property given by the PMT response to a Cherenkov photon. Its functional dependence on577

j∆S and jϕ is the same for all particle species. Thus, we could model it with one uniform578

parameterization using the same parameters for all particle species. The hit probability consist579

of a signal part and background part that accounts for hits, uncorrelated to the incoming beam580

particle. The j∆S dependence of the signal, which we discuss first, is dominated by the diaphragm,581

which selects a range in j∆S . We modeled this range by a rectangular function with a width582

of 2 jΓ. This rectangular function was smeared out e.g. by the uncertainty of the measured583

beam inclination or by chromatic aberration of the CEDAR optics. We took this into account584

by convoluting the rectangular function with a Gaussian function of width jσ. This equals to a585

difference of two error functions586

Signal( j∆S , jϕ) = Erf

 j∆S + jΓ( jϕ)
jσ( jϕ)

 − Erf

 j∆S − jΓ( jϕ)
jσ( jϕ)

 . (3.5)

To obtain the total hit probability, we added a constant background term jBkg to this signal. The587

sum was normalized to its maximum at j∆S = 0 and multiplied by an amplitude parameter jA,588

which takes into account the efficiency of the PMT. The final parameterization for a hit and for589

no hit in the PMT reads590

jPPMT(Hit | j∆S , jϕ) = jA( jϕ)
Signal( j∆S , jϕ) + jBkg

Signal(0 rad, jϕ) + jBkg
, and (3.6)

jPPMT(Hit | j∆S , jϕ) = 1 − jPPMT(Hit | j∆S , jϕ), (3.7)

respectively. We expected the hit probability to be only weakly modulated within the small range591

in jϕ of about 10 mrad covered by the beam divergence.[f] This modulation was modeled by a592

quadratic dependence of the jA, jΓ, and jσ parameters on jϕ:593

jA( jϕ) = jcA0 + jcA2 · (
jϕ)2 (3.8)

jΓ( jϕ) = jcΓ0 + jcΓ2 · (
jϕ)2 (3.9)

jσ( jϕ) = jcσ0 + jcσ2 · (
jϕ)2 (3.10)

In total, the parameterization in equation (3.6) contains seven free parameters.594

Assuming, that the hit probabilities for the eight PMTs are independent, the total probability to595

see a certain hit pattern in CEDAR k for a given particle species and particle inclination is596

kPC(Hit pattern | S ; kϑx,
kϑy) =

∏
j∈ CEDAR k

jPPMT(Hit pattern | S ; kϑx,
kϑy), (3.11)

[f] The beam divergence of about 200 µrad translates to a range in jϕ of ±10 mrad in the inclination space.

18 March 1, 2022 18:18



D
RA

FT

3.1 Beam-Particle Identification

where597

jPPMT(Hit pattern | S ; kϑx,
kϑy) =


jPPMT(Hit | j∆S , jϕ) if PMT j is hit
jPPMT(Hit | j∆S , jϕ) if PMT j is not hit

. (3.12)

Equation (3.11) is the likelihood function that the beam particle is of species S using the598

information from CEDAR k599

kLC(S ; Hit pattern, kϑx,
kϑy) = kPC(Hit pattern | S ; kϑx,

kϑy). (3.13)

For the coordinate transformations (kϑx,
kϑy)→ ( j∆S , jϕ), the positions of PMTs in the inclination600

space has to be known, which gives two additional free parameters per PMT. We used the601

difference, j∆Θ = jΘ − θK
Ch, of the PMT positions, jΘ, to the expected position of the kaon602

Cherenkov ring at θK
Ch as free parameter in the fit, which reduced the correlation among the603

fit parameters and therefore lead to a more robust fit. Also, the refraction index of the helium604

gas has to be known, which is one further parameter common for all PMTs of one CEDAR.605

Therefore, the employed likelihood parameterization for a single CEDAR detector has in total606

8(7 + 2) + 1 = 73 free parameters to be determined by from data. All of them are detector specific607

parameters, which are independent of the particle species.608

Finally, the information of both CEDARs was combined in a single likelihood609

L(S ; Hit pattern,ϑx,ϑy) = 1LC(S ; Hit pattern, 1ϑx,
1ϑy) ·

2LC(S ; Hit pattern, 2ϑx,
2ϑy). (3.14)

Based on this likelihood, two particle hypotheses can be compared by calculating the log-610

likelihood difference of hypotheses S and S ′:611

DC(S , S ′) = log10

[
L(S ; Hit pattern,ϑx,ϑy)

]
− log10

[
L(S ′; Hit pattern,ϑx,ϑy)

]
, (3.15)

which is the same as the log10 of the likelihood-ratio. We assumed a beam particle to be of species612

S ifDC(S , S ′) was above a chosen threshold TC(S ) using the information of the CEDARs.[g]
613

3.1.4 Likelihood Calibration614

In the section above, we formulated in equation (3.13) a likelihood for each CEDAR detector.615

Therefore, we could calibrate the two detectors separately. In order to account for the time616

dependence of the CEDAR parameters, we performed the calibration independently in up to 2617

hour long periods in time, the so-called runs.[h]
618

[g] We used the log10 as the likelihoods cover a wide dynamic range.
[h] In studies, we performed calibrations in time periods shorter than a run and compared the resulting likelihood

parameters. From these studies we concluded, that a run-by-run calibration is sufficient to resolve the time evolution
of the CEDAR parameters.
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Before calibrating the likelihood parameters, we determined the tilt of the CEDAR detectors with619

respect to the nominal beam axis in the laboratory frame and the time resolution of the PMTs,620

which determines when a signal in a PMT is associated to the event and considered to be a hit.621

The time resolution of the PMTs is about 0.13 ns and the tilt of the CEDARs is about 70 µrad.622

Details can be found in ref. [54].623

All 73 free parameters of the likelihood function in equation (3.13) are detector specific parame-624

ters that are independent of the particle species hypothesis. Therefore, any sufficiently large data625

sample with a mixture of particle species can be used to calibrate the likelihood. The precision of626

the measured beam-particle inclination is higher for a larger number of final-state particles.[i] In627

order to obtain a calibration sample that has a similar beam-inclination precision as the K−π−π+
628

sample analyzed in this work, but is much larger than the K−π−π+ sample, we used events with629

three charged hadrons in the final state for calibration. The applied event selection is explained630

in detail in appendix A.1.1. The number of calibration events per run is in the range of 1 × 104 to631

7 × 105 events, which is sufficient to perform an independent calibration in each run. In total, the632

calibration sample consists of 1.5 × 108 events for the 2008 and 1.3 × 108 events for the 2009633

diffraction data set.634

For calibrating the likelihood, we take into account only the pion and kaon hypothesis. Muons635

and electrons in the beam have almost the same Cherenkov angle as pions,[j] and thus cannot be636

separated from pions. Antiprotons in the beam have a Cherenkov angle much smaller than that637

of kaons.[k] Therefore, the vast majority of antiprotons will not produce a hit in any of the PMTs,638

similar to the majority of pions. This means, also antiprotons are indistinguishable from pions.639

Given the much larger pion fraction in the beam; electrons, muons, and antiprotons do not bias640

the result of the likelihood calibration.[l]
641

The admixture of beam pions and kaons in the calibration sample is taken into account in the642

formulation of the probability for seeing a certain hit pattern in CEDAR detector k:643

kPC(Hit pattern | kϑx,
kϑy,) = kPC(Hit pattern | π; kϑx,

kϑy) [1 − P(K)]

+ kPC(Hit pattern |K; kϑx,
kϑy) P(K).

(3.16)

This approach adds only one additional free parameter, which is the probability P(K) to find a644

kaon in the beam. The probabilities kPC(Hit pattern | π; kϑx,
kϑy) and kPC(Hit pattern |K; kϑx,

kϑy)645

share the same set of 73 likelihood parameters used to parameterize the CEDAR response. Their646

[i] The precision of the measured position of the beam particle in the target is given by the precision of the interaction-
vertex reconstruction. It is higher for a larger number of final-state particles, because more information entered the
vertex reconstruction. As the beam-particle inclination at the CEDAR position is related to its position in the target
region by the beam optics, the vertex reconstruction also determines the precision of the beam-particle inclination.

[j] Muons have almost the same mass as pions. The Chrerenkov angle of electrons is only 10 µrad larger than the one
of pions for the helium pressure of the CEDARs.

[k] For the CEDAR parameters during the diffraction data taking, the Cherenkov angle of antiprotons is approximately
350 µrad smaller than the Cherenkov angle of kaons, which is a large difference compared to the beam divergence
of about 200 µrad.

[l] In a study, we tried to include the antiproton hypothesis in the likelihood calibration. This lead to very unstable and
partly unrealistic results.
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only difference is the different transformation (kϑx,
kϑy) → ( j∆S , jϕ), which requires only the647

known particle masses. Finally, the likelihood function that is maximized in an unbinned648

maximum-likelihood fit to determine the 74 free parameters, {pC}, reads649

LFit({pC}) =

NEvents∏
ζ=1

kPC(Hit pattern(ζ) | kϑ
(ζ)
x , kϑ

(ζ)
y , {pC}). (3.17)

3.1.5 Agreement of the Likelihood Parameterization with the Calibration650

Sample651

To illustrate the results of the likelihood calibration, a single run[m] is used as an example. The hit652

probability for PMT0 of CEDAR1, i.e. the ratio of events with a PMT hit to the total number of653

events (data points in figure 3.4), is reproduced well by the result of the calibration fit (red dashed654

curves). In the central 0ϕ region shown in figure 3.4a, the hit probability distribution exhibits a655

clear peak at 0∆K ≈ −130 µrad, which is dominantly described by the pion contribution (orange656

curve below the red curve). Furthermore, the data show a slight shoulder around 0∆K = 0 µrad,657

which is described by the kaon contribution (green curve). As we chose to use the coordinate658

transformation for the kaon hypothesis (0∆K) to show the data, it is expected that the kaon peak659

is at 0∆K = 0 µrad and that the distance between the kaon and the pion peak corresponds to the660

difference between their Cherenkov angle, which is about 130 µrad. Also, the 0ϕ dependence of661

the hit probability is described well by the calibrated likelihood, as shown by the hit probability662

distribution in the outer 0ϕ region in figures 3.4a and 3.4b. Due to the limited beam spread,663

only half of the pion peak can be accessed in the outer 0ϕ region. Overall, the agreement of the664

calibrated likelihood function with the calibration sample is similarly good for all PMTs and665

runs of the diffraction data taking. Therefore, we can conclude, that the employed likelihood666

parameterization of equation (3.13) is able to describe the CEDAR response and that we are able667

to reliably determine its parameters from data.668

Time Evolution of the Likelihood Parameters669

In the following, the time dependence of the CEDAR likelihood parameters is discussed based670

on selected examples of the parameters of PMT0 in CEDAR1 during the 2008 diffraction data671

taking. The time evolution of the refraction index parameter is stable within small fluctuations672

on the 10−5 level, except for the last few days of the data taking (see black line with blue band673

in figure 3.5). However, it is not proportional to the measured density of the helium gas (red674

dots) as it would be expected. Despite, the positions jΘ of the PMTs in the inclination space,675

which are also free parameters, exhibit a clear correlation with the helium density, as shown676

exemplarily for PMT0 in CEDAR1 by the black line with blue band in figure 3.6. The reason677

is an approximate ambiguity in the likelihood function between the refraction-index parameter678

[m] We use the data from run number 70450.
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Figure 3.4: Hit probability distribution for PMT0 of CEDAR1 as a function of the distance 0∆K to the
nominal kaon ring for (a) the central and (b) an outer jϕ region. The points represent the data. The red
dashed curve is the result of the maximum-likelihood fit. The orange curve represents the pion and the
green curve the kaon contribution according to equation (3.6).[m]

and the PMT-position parameters.[n] As the refraction-index parameter cannot be determined679

precisely in the likelihood calibration, we obtained a roughly constant refraction-index parameter.680

The true variation of the refraction index of the helium gas is effectively accounted for by the681

PMT-position parameters.[o]
682

The time evolution of the width parameter jcΓ0 of the rectangular function of the hit-probability683

parameterization in equation (3.6) exhibits two clear steps as shown in figure 3.7. These steps684

coincide with the narrowing and widening of the diaphragm aperture during data taking. The685

determined value of jcΓ0 is approximately directly proportional to the measured aperture, as686

expected. Except for these steps, the parameter is stable. The width jcσ0 of the Gaussian smearing687

of the rectangular function is also stable with time (not shown) and is not affected by the changes688

of the diaphragm aperture.689

[n] The reason for this ambiguity is, that the position of the peaks in the hit probability distribution in j∆S (see figure 3.4)
is given by two parameters [see equation (3.3)]. First, the peak positions depend on the predicted Cherenkov angle,
θS

Ch, and thereby on the refraction-index parameter. Second, the peak positions can be shifted by adjusting the
PMT-position parameters jΘ. The PMT-position parameters cannot be determined from other constraints. The
refraction-index parameter could in principle be determined from two other constraints. Either from the radius
of the Cherenkov ring, i.e. the green dashed line in figure 3.3b. However, the beam illuminates only a very small
segment of this circle, which is insufficient to determine the refraction index. Or by the difference between the
pion and the kaon Cherenkov angle, given by the difference of the peak positions. However, this difference is less
sensitive on the refraction index than the absolute Cherenkov angle. Therefore, it is also insufficient to determine
the refraction index.

[o] The refraction index could not be calculated from the measured helium density, because it was not measured for
the full diffraction data taking.
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Figure 3.5: Time evolution of the refraction index n of the He gas in CEDAR1. The black line represents
the central values and the blue band the statistical uncertainties of the refraction index as determined by
the likelihood calibration fit. The red dots represent the density ρHe in CEDAR1 as measured during the
data taking. The CEDAR1 density was not measured continuously.
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Figure 3.6: Time evolution of the jΘ-position of PMT0 in CEDAR1. The black line represents the central
value and the blue band the statistical uncertainty of the difference between the PMT jΘ-position with
respect to the kaon Cherenkov ring as determined by the likelihood calibration fit. The red dots represent
the density in CEDAR1 as recorded during the data taking. The CEDAR1 density was not measured
continuously.
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Figure 3.7: Time evolution of the width parameter 0cσ0 of PMT0 in CEDAR1. The black line represents
the central values and the blue band the statistical uncertainties of the width parameter as determined by
the likelihood calibration fit.

Overall, we were able to determine all likelihood parameters reliably. Some parameters such690

as jcΓ0 follow the physical quantities their represent. Other parameters such as the refraction691

index and the PMT positions act as an effective parameterization of the corresponding physical692

quantities. This shows, that the likelihood parameterization is able to reproduce the physical693

properties of the CEDARs.694

3.1.6 Estimation of Particle Identification Performance695

As was shown in section 3.1.5, the likelihood parameterization in equation (3.17) is able to repro-696

duce the calibration sample and the obtained parameters correlate with the physical quantities of697

the CEDAR detectors, as expected. However, we still have to verify, that the likelihood-based698

beam-particle identification is able to separate kaons from pions. The efficiency of the particle699

identification, i.e. the fraction beam particles of species S that are identified as S , and its impurity,700

i.e. the fraction of beam particles of another species contained in a data set where the beam701

particle species was identified as S , has to be determined. This requires pure pion-beam and702

kaon-beam validation samples. In contrast to the calibration sample, the size of the validation703

samples may be significantly smaller. However, it must still be sufficiently large in order to be704

able to study the CEDAR performance for the 2008 and 2009 diffraction data set separately.705

To obtain a clean pion-beam sample, we selected events of the reaction π− + p→ π−π0π0 + p,706

where we identified all final-state particles. Thereby, we ensure that the beam particle is a pion707
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without using the CEDAR information.[p] The pion-beam sample consist of about 106 events708

each for the 2008 and 2009 diffraction data set. In order to obtain a pure kaon-beam sample,709

we selected decays of beam kaons into different final states: K− → µ−ν̄µ, K− → π−π−π+, and710

K− → π−π0; with about 80 × 103, 15 × 103, and 7 × 103 events; respectively; each for the 2008711

and 2009 diffraction data set. The K− → π−π−π+ and K− → π−π0 samples show non-negligible712

background, which is accounted for by performing a statistical background subtraction. The713

event selections for the calibration samples are explained in detail in appendix A.1.2.714

Likelihood Distributions and Particle Identification Cuts715

We verified the calibrated likelihood in equation (3.13) by identifying beam particles in the pion-716

and kaon-beam[q] samples selected from the 2008 diffraction data set using the information of717

only CEDAR1. The distribution of the log-likelihood difference is shown in figure 3.8a as a718

function of the beam-particle inclination,[r]
719

1ϑ =

√(
1ϑx

)2
+

(
1ϑy

)2
, (3.18)

for the pion-beam sample. As expected, the distribution concentrates mainly in the region where720

the log-likelihood difference is below 1, i.e. where the pion hypothesis is the more likely one.721

Likewise, the log-likelihood difference distribution for the kaon-beam sample (see figure 3.8b) is722

concentrated in the region where the log-likelihood difference is above 1, i.e. where the kaon723

hypothesis is the more likely one. With increasing beam-particle inclination, both distributions724

approach the central region where pion and kaon hypothesis become similar and therefore harder725

to distinguish (dashed line).726

Both distributions in figures 3.8a and 3.8b show clear bands. To understand their origin, we727

study the log-likelihood difference distribution of events with a certain number of hits in the728

PMTs of CEDAR1. Requiring hits in all eight PMTs projects out the topmost band of the729

log-likelihood difference distribution in the kaon-beam sample (see figure 3.8d), while the pion-730

beam sample contains practically no events with eight PMT hits (see figure 3.8c). Here, the731

discrimination between kaons and pions works best, which is exploited in the majority method732

(see section 3.1.2). However, figure 3.8d also shows, that the inclination for beam particles733

with eight PMT hits is limited to be below about 100 µrad. For larger inclinations, the kaon734

Cherenkov ring moves out of the PMTs’ acceptance defined by the diaphragm aperture. The735

validation data show similar limitations of the 1ϑ range for events with seven or six PMT hits.736

Therefore, the majority method is able to distinguish beam pions from kaons only in a limited737

inclination range, which explains its low efficiency. Beam pions and kaons with hits in only four738

[p] By ensuring that the final state consists only of pions, we ensured that the beam particle was also a pion and not a
kaon or antiproton, because of strangeness and baryon number conservation in diffractive scattering reactions.

[q] Here, we use only the K− → µ−ν̄µ sample. It is the only one that is nearly background free and sufficiently large.
[r] The beam-particle inclination with respect to the optical axis of CEDAR k, kϑ, is different from the beam inclination

in the laboratory frame due to the finite tilt of the CEDAR detectors of about 70 µrad, which is similar for both
CEDAR detectors. We chose to use 1ϑ to show the data.
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Figure 3.8: Difference of the kaon and pion log-likelihood for CEDAR1 as a function of the beam
inclination angle 1ϑ defined in equation (3.18). The left column shows the pion-beam sample, the right
column shows the kaon-beam sample. The first row shows all events, the second row shows events with
hits in all eight PMTs, and the last row shows events with hits in four PMTs. Histogram cells with zero
events are shown in light green.
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Figure 3.9: Difference of the kaon and pion log-likelihood for both CEDARs as defined in equation (3.15).
We chose the beam inclination angle, 1ϑ, with respect to the optical axis of CEDAR1 as coordinate
system. The left column shows the pion-beam sample, the right column shows the kaon-beam sample. The
dashed red line represents the threshold, TC(K) = 4.0, in log-likelihood difference for kaon identification.
Histogram cells with zero events are shown in light green.

PMTs cannot be discriminated using the majority method. However, the log-likelihood difference739

discrimination clearly favors the pion hypothesis for the pion-beam sample (see figure 3.8e) and740

the kaon hypotheses for the kaon-beam sample (see figure 3.8f). This improved discrimination741

power of the likelihood-based method compared to the multiplicity method arises from taking742

into account the difference in the hit patterns for pions and kaons, even for a small number of743

PMT hits. Hence, the likelihood-based method allows separating beam kaons from pions also for744

larger inclinations beyond 100 µrad.745

For the final decision about the beam-particle species, the likelihood of both CEDARs was com-746

bined into a single likelihood for a given particle-species hypothesis according to equation (3.14).747

The distribution of the combined log-likelihood difference again exhibits bands as shown in748

figure 3.9. Due to the combination of the information from both CEDARs, the bands are smeared749

out compared to the log-likelihood difference distribution of a single CEDAR discussed above.750

Comparing the log-likelihood difference distribution for the kaon- and pion-beam samples, a751

clear separation between kaons and pions in the likelihood space is observed. To identify a beam752

particle as a kaon, we required the log-likelihood difference in equation (3.15) to be above a753

certain threshold TC(K) (red dashed lines in figure 3.9). To identify a beam particle as a pion, we754

required the log-likelihood difference to be below another threshold TC(π).755
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Efficiency and Purity756

Efficiency and impurity of this method depend on the choice of the thresholds TC(π) and TC(K)757

in log-likelihood difference. For an optimum choice of these thresholds we determined estimates758

for efficiency and impurity as a function of the threshold. Therefore, we compared the number of759

pions or kaons before and after applying the CEDAR likelihood method to the pion or kaon beam760

validation samples, respectively. Details can be found in appendix A.1.3. As determining a single761

number for the efficiency or impurity implies averaging over the beam-particle inclinations, the762

distribution of the beam particles in the validation samples should be similar to the one in the763

K−π−π+ sample analyzed in this work. This holds approximately for the pion-beam sample. The764

inclination distributions of the three kaon-beam samples however differ slightly from the ones765

in the K−π−π+ sample (see figure A.1). To estimate the corresponding systematic effect, we766

determined efficiency and impurity from all three samples. TC(K) and TC(π) were optimized767

using the kaon-beam sample from K− → π−π−π+ decays of the 2008 diffraction data set.768

For the beam kaon identification, the dependence of efficiency and impurity on TC(K) is shown769

in figure 3.10a. To achieve a small impurity, but still maintain a high efficiency, we have chosen770

a threshold for the kaon identification of TC(K) = 4.0. Table 3.1 summarizes the results for all771

three kaon-beam samples and for the 2008 and 2009 diffraction data. The various kaon-beam772

samples give slightly different results, which provides a measure the systematic uncertainty on773

the measured efficiency and impurity. Overall, we obtained a kaon-identification efficiency of774

about 85 % at an impurity of about 3 %. The impurity of the identified-kaon sample due to the775

antiprotons in the beam is expected to be negligible.[s]
776

For the beam pion identification, which is important in other analyses[43, 61, 62], the dependence777

of efficiency and impurity on TC(π) is shown in figure 3.10b. As the impurity is already very778

small for all considered thresholds, we chose a pion identification threshold of TC(π) = 0779

to achieve a high efficiency of about 98 % with a low impurity of about 0.05 % as listed in780

table 3.2.[t] The impurity of the identified-pion due to the antiproton fraction in the beam cannot781

be larger than the overall antiproton fraction in the beam of about 1 % [63].782

In summary, the likelihood-based method developed in this work identifies the species of beam783

particles with high efficiency, while maintaining a low impurity from other species. The method784

provides a similar performance as the likelihood method developed in ref. [58] for the COMPASS785

Primakoff data set.[u] Using the fact, that the CEDAR response on Cherenkov photons emitted786

under a certain angle with respect to the CEDAR’s optical axis is independent of the particle787

[s] With the approach used here, we cannot make quantitative statements on the impurity of an identified-kaon sample
due to the antiprotons in the beam. However, as the antiprotons should mainly be tagged as pions (see section 3.1.4),
we expect a similar suppression for antiprotons and pions of about 10−3. Since the antiproton fraction in the beam
is small, the antiproton impurity of a kaon-identified sample is a negligible effect.

[t] We suspect, that the reason for the large impurity value from K− → π−π0 kaon-beam sample is that it is not
clean enough to obtain a reasonable value for the misidentification probability P(K → π) from it. The two other
validation samples give consistent results for the impurity value.

[u] To directly compare the results of both methods, we applied our method and the method from ref. [58] to a small
fraction of the Primakoff data. Both methods yielded similar results.
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Figure 3.10: Efficiency (blue) and impurity (red) for (a) kaon and (b) pion particle identification as a
function of the thresholds TC(K) and TC(π), respectively, applied to the log-likelihood difference. The
black dashed lines shows the chosen threshold values. The pion-beam sample is used to determine the
efficiency of the pion identification and the impurity an identified-kaon sample. The K− → π−π−π+ sample
is used to determine the efficiency of the kaon identification and the impurity of an identified-pion sample.

Table 3.1: Efficiency and impurity of the beam-kaon identification. The efficiency was obtained either from
the K− → π−π−π+, the K− → π−π0, or from the K− → µ−ν̄µ sample. The misidentification probability
was obtained from the pion-beam sample. The table lists the central values and statistical uncertainties.

K− → π−π−π+ K− → π−π0 K− → µ−ν̄µ

Efficiency (K → K)
2008 [%] 84.9 ± 1.0 88.9 ± 2.0 89.2 ± 0.5
2009 [%] 83.2 ± 1.0 84.4 ± 2.0 86.3 ± 0.6

Impurity (π→ K)
2008 [%] 3.04 ± 0.13 2.90 ± 0.14 2.89 ± 0.12
2009 [%] 2.89 ± 0.13 2.85 ± 0.14 2.79 ± 0.12

Table 3.2: Efficiency and impurity of the beam-pion identification. The efficiency was obtained from the
pion-beam sample. The misidentification probability was obtained either from the K− → π−π−π+, the
K− → π−π0, or from the K− → µ−ν̄µ sample. The table lists the central values and statistical uncertainties.
The value of the efficiency is independent of the used kaon-beam sample and therefore given only once.

Efficiency (π→ π)
2008 [%] 98.94 ± 0.13
2009 [%] 97.56 ± 0.13

K− → π−π−π+ K− → π−π0 K− → µ−ν̄µ

Impurity (K → π)
2008 [%] 0.049 ± 0.003 0.18 ± 0.05 0.038 ± 0.003
2009 [%] 0.050 ± 0.003 0.14 ± 0.05 0.044 ± 0.003
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species, the calibration of the likelihood method developed here does not require pure kaon-beam788

and pion-beam samples. This is a major advantage over the methods developed in refs. [58,789

59] and allowed us to perform a time-dependent calibration. Compared to the majority method790

used in previous analyses [44, 57], our method achieves a two times larger kaon-identification791

efficiency, mainly by being able to identity beam kaons also at larger inclinations.792

3.2 Final-State Particle Identification793

Final-state particles of various species are produced in the interaction of the high-energy hadron794

beam with the liquid-hydrogen target. In the analysis presented here, we are interested only795

in charged final-state particles. The charged final-state particles that are measured with the796

COMPASS spectrometer are electrons, muons, pions, kaons, or protons. These particle species797

are distinguished by employing the information from Cherenkov photons measured in the ring-798

imaging Cherenkov detector (RICH).799

3.2.1 Particle Identification using the RICH Detector800

High-energy final-state particles produce Cherenkov photons while traversing the 3 m long RICH801

vessel, which is filled with C4F10 as a radiator gas [49]. The Cherenkov photons are focused by a802

system of mirrors onto two arrays of position-sensitive photon detectors, [v] where they from803

rings. Measuring the radius of these rings allows to determine the Cherenkov angle defined in804

equation (3.1) under which the Cherenkov photons were emitted.805

The Cherenkov angle is directly related to the particle species by its mass, its measured momen-806

tum, and the known refraction index of the gas in the RICH volume. In contrast to beam particles,807

which have approximately the same momentum, final-state particles have a broad momentum808

distribution leading to a broad distribution of their Cherenkov angles. Therefore, the value of the809

Cherenkov angle is measured for each final-state particle and is compared to predictions for the810

various particle-species hypotheses to identify the particle.811

Figure 3.11 shows the distribution of the measured Cherenkov angles as a function of the812

particle momentum. This distribution exhibits clear bands from pions, kaons, and protons for813

momenta above about 2.5, 9, and 17 GeV/c, respectively. These lower limits are determined by814

the corresponding Cherenkov threshold,[w] which is given by the particle mass. Above about815

50 GeV/c, the Cherenkov angles of kaons and pions become similar, which limits the kaon-pion816

separation to lower momenta. Similarly, proton identification is limited to momenta below about817

[v] In the peripheral regions, multiwire proportional chambers with solid-state CsI photocathodes are used. In the
central region with higher background, multi-anode photomultiplier tubes are used.

[w] In order to reconstruct the Cherenkov ring and determine the Cherenkov angle, a minimum of four measured
Cherenkov photons is required. This translates so a minimal Cherenkov angle of about 20 mrad.
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Figure 3.11: Distribution of the measured Cherenkov angles as a function of the final-state particle
momentum, |~pR |, at the RICH position. We show the data sample with three charged particles per event
obtained by applying the preselection criteria (see section 4.1) to the 2008 diffraction data set.

80 GeV/c, because for higher momenta the Cherenkov angle of protons becomes similar to818

the angles of kaons and pions. Muons cannot be separated well from pions for most of the819

momentum range, due to their similar mass. Electrons have β ≈ 1 for most of the momentum820

range and therefore end up in the upper horizontal band at about 55 mrad. As we study hadronic821

reactions in this work, there is only a small contribution of electrons and muons in the final state822

from background reactions. Therefore, they play only a minor role in the final-state particle823

identification.824

The likelihood for a given final-state particle hypothesis S is formulated in terms of the probability825

of the measured hit pattern of individual Cherenkov photons in the RICH detector. Details can826

be found in appendix A.2.1 and in ref. [64]. Using this approach, we obtained for each final-state827

particle a likelihood L(S ) for each particle-species hypothesis S . In order to compare several828

hypotheses we calculated the likelihood ratio829

RR(S ) =
L(S )

max
S ′,S
L(S ′)

, (3.19)

where max
S ′,S
L(S ′) is the largest likelihood of all other particle hypothesis S ′ different from S . In830

order to assign a particle hypothesis S to a final-state particle, we required the likelihood ratio for831

S to be above a certain threshold,[x] i.e. RR(S ) > TR, where TR is the so-called RICH thresholdRICH thresholdRICH thresholdRICH thresholdRICH thresholdRICH thresholdRICH thresholdRICH thresholdRICH thresholdRICH thresholdRICH thresholdRICH thresholdRICH thresholdRICH thresholdRICH thresholdRICH thresholdRICH threshold.832

Thereby, we implicitly required, that we can distinguish hypothesis S from all other hypotheses833

that were taken into account in order to assign S to a final-state particle. We took into account834

[x] We used the same threshold for all particle-species hypotheses, which was optimized for a high efficiency and a
low misidentification probability.
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the hypotheses pion, kaon, proton, and background.[y] The background hypothesis represents835

Cherenkov photons that are uncorrelated to the final-state particle. If the background hypothesis836

was assigned to a particle, we treated this as if no hypothesis could have been assigned to it.837

A steel pipe of 5 cm radius around the nominal beam axis separates non-interacting beam particles838

from the RICH gas vessel, in order to avoid background. However, also final-state particles839

can traverse the RICH detector within this steel pipe volume. Such particles do not produce840

Cherenkov light within the RICH gas volume. Therefore, we did not assign a particle hypothesis841

to final-state particles that traverse the RICH within this steel pipe, i.e. if the distance of the842

particle position from the nominal beam axis at the RICH entrance window is smaller than843

5 cm.844

3.2.2 Final-State Particle Identification Performance845

In order to estimate the performance of the RICH particle identification; i.e. the efficiency to846

identify a particle, P(S → S ), and the misidentification probability, P(S → S ′), to assign the847

wrong particle hypothesis S ′, validation samples of final-state particles are required. These848

samples need to contain particles that were identified without using the RICH information. Such849

samples were obtained by selecting decays of known particles into daughter particles of a specific850

species. Following ref. [64], we used the decay K0
S → π−π+ as a source of pions, the decay851

φ(1020)→ K−K+ as a source of kaons, and the decay Λ
(−)

→ π± p(−) as a source of (anti)protons.[z]
852

Details can be found in appendix A.2.2.853

The efficiency and misidentification probability can depend on the particles charge on its kine-854

matics at the position of the RICH detector, especially on its momentum |~pR | and on the angle855

θR of its trajectory with respect to the beam axis.[aa] We took this into account by determining856

the efficiency and misidentification probability independently in cells of (|~pR |,
√
θR)[ab] and857

separately for positive and negative particles.858

Negative pions are identified efficiently for momenta above about 3 GeV/c (see figure 3.12a).859

Most of the pions below this limit are attributed to the background hypothesis or are unidentified.860

The maximum momentum for which pions can be identified efficiently is about 40 GeV/c. Above861

this limit, most of the pions are not identified, because they cannot be separated from kaons. The862

pion identification efficiency shows only a weak dependence on the angle of the particle track. In863

the center of the distribution, it is about 95 %.864

[y] We did not consider the muon and electron particle hypotheses, because they cannot be distinguished from pions
for momenta above about 10 GeV/c.

[z] Instead of Λ
(−)

decays, we used K0
S decays as a pion source, because they cover a broader kinematic range. This is

important, because this data sample is also used to model the RICH acceptance (see appendix C.2.3).
[aa] The particle kinematics (|~pR |, θR) at the position of the RICH detector are in general different from its kinematics

at the interaction vertex in the target region. We used the kinematics at the RICH entrance window for the
characterization of the RICH performance.

[ab] We use
√
θR instead of θR, because the former better maps out the region in which the efficiency changes (see

figure 3.12b).

32 March 1, 2022 18:18



D
RA

FT

3.2 Final-State Particle Identification

0 25 50 75

|~pR| [GeV/c]

0.0

0.2

0.4

√
θ R

[√
ra

d
]

P (π− → π−)

0.0 0.5 1.0

(a)
0 25 50 75

|~pR| [GeV/c]

0.0

0.2

0.4

√
θ R

[√
ra

d
]

P (K− → K−)

0.0 0.5 1.0

(b)

Figure 3.12: RICH efficiency for the identification of (a) negative pions and (b) negative kaons in cells of
the particle momentum |~pR | and the square-root of the track angle θR at the position of the RICH detector.
The plots show the 2008 diffraction data set for a likelihood-ratio threshold value of TR = 1.15. Regions
without calibration data are drawn in light green.

Due to the larger kaon mass, the minimum momentum necessary to identify a negative kaon of865

about 10 GeV/c is larger than for the identification of pions (see figure 3.12b). The maximum866

momentum for which kaons can be identified efficiently, depends on the angle of the particle867

track. For small angles, we can identify kaons only up to about 30 GeV/c, while for larger868

angles, kaon identification is possible up to about 50 GeV/c.[ac] In the central kinematic region869

we achieve a high efficiency of about 90 %.870

Figure 3.13 shows that the efficiencies and misidentification probabilities for the RICH final-state871

particle identification depend strongly on the choice of the likelihood-ratio threshold TR. The872

maximum efficiency for pion identification does not strongly depend on the choice of TR (see873

figure 3.13a). The lower momentum limit is not sensitive to TR, because it is given by the874

Cherenkov threshold. As expected, the drop in efficiency for high momenta strongly depends on875

TR. While for TR = 1.00, the efficiency to identify a pion is above 20 % also for momenta above876

50 GeV/c, it drops quickly in the region around 30 GeV/c when applying larger likelihood-ratio877

thresholds. However, for TR = 1.00, the misidentification probability increases drastically878

above 30 GeV/c (see figure 3.13b), while for TR = 1.15, it stays below 2 %. A likelihood-ratio879

threshold of TR = 1.00 means that we always assign the hypothesis with the largest likelihood.880

At high momenta, kaons cannot be separated from pions. Therefore, their likelihoods become881

similar and, for TR = 1.00, we almost randomly assign the pion or kaon hypothesis. This explains882

the comparably high misidentification probability and also the high efficiency above 20 %. For a883

[ac] The maximum momentum up to which the particle species can be identified is higher for kaons than for pions. The
reason for this is, that the Cherenkov angle of identified pions has an upper limit for β→ 1 and a lower limit given
by the kaon hypothesis, while the Cherenkov angle of identified kaons has only an upper limit given by the pion
hypotheses (see figure 3.11).
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Figure 3.13: (a) RICH efficiency to identify a negative pion and (b) probability to misidentify a negative
pion as a kaon as a function of the particle momentum at a track angle of about

√
θR = 0.15

√
rad for the

2008 diffraction data set. The different colors represent different RICH likelihood-ratio thresholds.

reliable identification of final-state particles of species S it is important to require a significantly884

larger likelihood for the hypothesis S , i.e. it is important to use a likelihood-ratio threshold885

greater than one. More details on the RICH performance can be found in appendix A.2.3.886

3.2.3 RICH Threshold Optimization for the K−π−π+ Final State887

As discussed in the previous section, the performance of the final-state particle identification888

depends on the kinematic distribution of the final-state particles. Therefore, the final choice of889

TR depends on the analyzed final state, which is K−π−π+ in this work, and must be optimized890

to achieve high efficiency purity. Here, the purity is the fraction of events where the K− and891

π− hypothesis were assigned correctly. Figure 3.14 shows how both quantities depend on892

the likelihood-ratio threshold. Details on how we estimated these numbers can be found in893

appendix A.2.4.894

As expected, the efficiency continuously decreases with increasing TR. In contrast, the purity895

rises steeply with increasing TR and saturates at about TR = 1.2. In order to achieve a high purity,896

while maintaining a high efficiency, we chose a likelihood-ratio threshold of TR = 1.15. Using897

this threshold, the K− and π− were identified correctly by the RICH for 98.1 % of the selected898

K−π−π+ events, while efficiency remains sufficiently high as the relative efficiency is 67.3 %.899
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Figure 3.14: Efficiency to identify the K−π−π+ final state relative to the efficiency for a likelihood-ratio
threshold of TR = 1.0 (blue curve). The orange curve represents the purity, i.e. fraction of events where
the K− and π− were correctly identified. Details on how we estimated these numbers can be found in
appendix A.2.4.
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4 Event Selection900

COMPASS collected data of various reactions during the data taking campaign in the years 2008901

and 2009. The main task of the event selection discussed in section 4.1 is to extract a clean902

sample of the diffractive dissociation reaction K− + p → K−π−π+ + p from the total data set.903

An additional challenge of the event selection of this reaction is to determine which of the three904

final-state particles belongs to which species.905

Unless stated differently, all plots in this section show the final K−π−π+ sample of the combined906

2008 and 2009 diffraction data set. The probability to measure a produced event, the so-called907

acceptanceacceptanceacceptanceacceptanceacceptanceacceptanceacceptanceacceptanceacceptanceacceptanceacceptanceacceptanceacceptanceacceptanceacceptanceacceptanceacceptance, is non-uniform in the kinematic variables of the K−π−π+ final state. Thus, the908

shapes of the measured kinematic distributions shown in this chapter are distorted with respect909

to the physical distributions. However, the measured distributions still exhibit qualitatively the910

main features of the physical distributions. Due to the high dimensionality of the kinematic911

distributions of the K−π−π+ final state and the complex dependence of the acceptance on these912

distributions, a correction of these acceptance effects is feasible only at the level of the partial-913

wave decomposition discussed in chapter 5.914

4.1 Selection of the K−π−π+ Final State915

In order to select the reaction K− + p→ K−π−π+ + p, we applied a series of selection criteria,916

called cutscutscutscutscutscutscutscutscutscutscutscutscutscutscutscutscuts, to the diffraction data set. They can be grouped into six stages: (i) preselection cuts to917

select events with three charged final-state particles, (ii) cuts on the event topology, (iii) cuts on918

the initial- and final-state particle species, (iv) cuts to ensure energy and momentum conservation,919

(v) cuts to suppress non-diffractive reactions that lead to the same final state, and (vi) cuts that920

limit the data sample to the kinematic region of interest. Figure 4.1 gives an overview over the921

number of events after the cuts for the 2008 and 2009 diffraction data set.922

The event selection was inspired by previous analyses of the reaction K− + p→ K−π−π+ + p [44]923

and other reactions [39] that were performed on a subset of the COMPASS diffraction data set.924

We improved and extended them, and we optimized their parameters in order to increase the size925

of the data sample and to improve the quality of the data.926
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All events

2008

397 701

540 591

588 989

3 764 203

3 953 098

7 523 191

382 287 574

497 184 624

7 389 600 316

2009

322 793

434 886

467 701

3 051 483

3 196 245

6 075 135

317 433 763

429 699 710

5 977 507 314

Figure 4.1: Number of selected events after applying the six stages of selection cuts for the reaction
K− + p→ K−π−π+ + p. The cuts on the initial- and final-state particle identification [stage (iii)] are listed
separately. The blue bars and the numbers in the first column show the results for the 2008 diffraction data
set. The orange bars and the numbers in the second column show the results for the 2009 diffraction data
set. The cuts are explained in the text.

Preselection Cuts927

Diffractive scattering of pion or kaon beams can produce a whole family of final states that928

consists of three charged particles. The first stage of the event selection aims to select a sample of929

event candidates of this generic type. This sample is used also in the analyses of other diffractive930

reactions such as π− + p→ π−π−π+ + p [43], π− + p→ π−K−K+ + p [65], π− + p→ π−π0ω + p931

with ω→ π−π+π0 [62], π− + p→ π−η + p with η→ π−π+π0 [66], and π− + p→ π−η′ + p with932

η′ → π−π+η [66].933

First, we required that at least one interaction point of a beam particle with a target proton, a934

so-called interaction vertexinteraction vertexinteraction vertexinteraction vertexinteraction vertexinteraction vertexinteraction vertexinteraction vertexinteraction vertexinteraction vertexinteraction vertexinteraction vertexinteraction vertexinteraction vertexinteraction vertexinteraction vertexinteraction vertex, was reconstructed in the target area.[a] Next, we required that three935

charged particles leave the interaction vertex.[b] As the beam particle is negatively charged, we936

required the charge sum of these three final-state particles to be minus one. Finally, we checked937

the stability of the data taking by studying the time evolution of various kinematic distributions938

of the reactions K− + p → K−π−π+ + p and π− + p → π−π−π+ + p (see appendix B.4). We939

removed data that show clear outliers in one of the studied kinematic variables.[c]
940

[a] We required the interaction-vertex position Zvtx along the beam direction to be within −200 ≤ ZVtx < 160 cm,
which includes the liquid-hydrogen target cell and additionally about 130 cm before and after the target.

[b] If more than one interaction vertex was reconstructed in the event, we chose the “best” vertex candidate, which is
the one with most associated particles and with the smallest χ2 value from the vertex reconstruction fit.

[c] First, we studied the time evolution of kinematic distributions after applying all event-selection cuts, except for
this cut on the time stability. Then, in a second iteration of the event-selection, we removed data that show clear
outliers.
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From the 13.4 billion events in the diffraction data set, we pre-selected 931 million event941

candidates of the generic type with three charged final-state particles. Roughly 54 % of the events942

were collected in 2008, the remaining 46 % were collected in 2009.943

Cuts on Event Topology944

The so-called DT0 triggerDT0 triggerDT0 triggerDT0 triggerDT0 triggerDT0 triggerDT0 triggerDT0 triggerDT0 triggerDT0 triggerDT0 triggerDT0 triggerDT0 triggerDT0 triggerDT0 triggerDT0 triggerDT0 trigger was designed to include diffractive scattering reactions with minimal945

bias as described in section 2.2. Therefore, we selected only events that were triggered by a DT0946

signal.947

Due to the high intensity of the hadron beam, it infrequently happened that two or more beam948

particles enter the experimental setup during the time window that defines an event. In cases949

where two or more beam particles interact with the target, we reconstruct multiple interaction950

vertices. To remove such events, we rejected events with more than one interaction vertex. In951

cases where we reconstruct only one interaction vertex, e.g. if only one of the beam particles952

interacts with the target, we ensured that we associated the correct beam particle with the953

interaction vertex. This is done by requiring a coincidence in time between the trigger signal and954

the measurement of the beam particle,[d] in addition to the spatial constraints, imposed by the955

interaction vertex reconstruction.956

Beam particles do not only interact with the protons in the liquid-hydrogen target, but may957

interact with any material on their path. This can be seen in figure 4.2a, which shows the958

distribution of interaction vertices along the direction of the beam. In addition to the plateau959

from about −65 to −25 cm, which corresponds to interactions within the 40 cm long target cell,960

the distribution exhibits a peak at about −68 cm. This peak arises from beam particles interacting961

with the cooling pipe of the target [57]. In the plane transverse to the beam axis, the hadron beam962

is well focused on the liquid-hydrogen target as shown in figure 4.2b. Still, some vertices lie963

outside the target cylinder indicated by the gray circle. To select only events where the beam964

particle interacts with a proton of the target, we required the interaction vertex position to be965

within −65 ≤ ZVtx < −30 cm along the beam axis and within a radial distance of RVtx < 1.5 cm966

in the plane transversal to the nominal beam axis.967

Cuts on Particle Species968

In order to separate the kaon component in the beam from the about 36 times larger pion969

component, we applied a novel likelihood approach, which employs the full information provided970

by both CEDAR detectors (see section 3.1 for details). Using a log-likelihood difference threshold971

[d] Coincidence in time of the trigger signal and the beam particle was enforced by selecting events only if the time of
the beam particle was within ±3σt around the trigger signal, where σt is the time resolution. The time of the beam
particle was calculated from the measured hit times in the tracking detectors.
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Figure 4.2: Spatial distribution of the interaction-vertex position. (a) shows the position along the beam
axis, without the cut on the vertex Z-position. (b) shows the position in the plane transverse to the beam
axis, without the cut on the vertex R-position. The gray lines represent the cuts on Z- and R-position,
respectively.

of TC(K) = 4.0 for the selection, we achieved a high kaon-identification efficiency of about972

85 %.973

The K−π−π+ final state has two negative particles of different species. To distinguish them, we974

employed the information from the RICH detector (see section 3.2.3). Particles can be identified975

as pions, kaons, protons, muons, electrons; or they can be not identified. We identified all three976

final-state particles separately, using a likelihood-ratio threshold of TR = 1.15 and limiting the977

particle identification to the momentum range where the RICH identification works with a high978

purity, and where we can describe the effects imposed by the RICH particle identification in the979

detector Monte Carlo simulation discussed in appendix C.2.3.[e]
980

As discussed in section 3.2.2, the final-state particle identification works efficiently only up to981

about 50 GeV/c. However, the final-state particles have momenta up to the beam momentum982

of about 190 GeV/c. Therefore, we cannot identify all three particles in the final state using the983

RICH detector. Therefore, we assumed that the data set contains only events of the K−π−π+
984

final state, because were able to select beam kaons with high purity using the CEDARs and the985

K−π−π+ final state it is the dominant final state for kaon diffraction into three charged particles.986

Under this assumption, the positive particle was assumed to be a pion and the main task of the987

final-state particle identifications is to separate the K− from the π−. We either identified both988

negative particles accordingly or we identified only one of the negative particles as a kaon or a989

pion and assumed for the not-identified particle the other particle species, respectively. If none of990

[e] The momentum ranges for particle identification are 3 ≤ | ~pπ | < 60 GeV/c for pions, 10 ≤ | ~pK | < 60 GeV/c for
kaons and 18 ≤ | ~pp | < 100 GeV/c for protons.
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the negative particles was identified or if the negative particles were identified to be both pions or991

both kaons, the event was rejected.992

To suppress events where the three reconstructed particles do not belong to the K−π−π+ final993

state, e.g. decays to K−K−K+, we rejected events where the assigned particle species hypothesis994

conflicts the K−π−π+ assumption, i.e. if the positive particle was identified as a kaon or if one995

of the three final-state particles was identified as a (anti)proton. However, this suppresses only996

a small fraction of the background, as the identification of the K− π− system requires one of997

the negative particles to have a momentum below about 50 GeV/c, which is the region where998

the RICH is efficient. Given the total beam momentum of about 190 GeV/c, the two remaining999

final-state particles therefore typically have momenta above 50 GeV/c, which is too large for the1000

particles to be identified by the RICH. Thus, the final-sate particle ID vetofinal-sate particle ID vetofinal-sate particle ID vetofinal-sate particle ID vetofinal-sate particle ID vetofinal-sate particle ID vetofinal-sate particle ID vetofinal-sate particle ID vetofinal-sate particle ID vetofinal-sate particle ID vetofinal-sate particle ID vetofinal-sate particle ID vetofinal-sate particle ID vetofinal-sate particle ID vetofinal-sate particle ID vetofinal-sate particle ID vetofinal-sate particle ID veto rejects only a small1001

number of events (see figure 4.1).1002

The limited momentum range of the final-state particle identification introduces large acceptance1003

effects. They can be best seen in the momentum distribution of the final-state particles that1004

have to be identified, i.e. the π− and the K−, shown in figure 4.3. We observe a horizontal and1005

a vertical band. For events in the horizontal band, the K− have momenta in the range of about1006

10 ≤ |~pK− | < 50 GeV/c, in which they are identified by the RICH. For events in the vertical band,1007

the π− have momenta in the range of about 3 ≤ |~pπ− | < 50 GeV/c, in which they are identified.1008

We find more events in the vertical band where the π− was identified. For events where both1009

negative particles have momenta above about 50 GeV/c, we could not decide which of the two1010

negative particles is which species. Therefore, we rejected those events. However, this leads to a1011

region with zero experimental acceptance in the triangular region of the momentum distribution1012

where both negative particles have momenta above about 50 GeV/c. This hole in the momentum1013

distribution introduces a non-uniform acceptance also in many other kinematic variables, in1014

particular in the mass spectra and angular distributions used in the partial-wave analysis. The1015

treatment of this acceptance effect and its consequences are one of the major challenges of this1016

analysis and will be a topic throughout this work.1017

Cuts on Energy and Momentum Conservation1018

The data set contains contamination from background events with more than three final-state1019

particles, but where some of these final-state particles were not detected. For example, reactions1020

of the type K− + p→ K−π−π+π0 + p, where the neutral π0 was not detected.[f] Such, so-called1021

non-exclusive events can be suppressed in the event selection by requiring energy and momentum1022

conservation of the measured energies and momenta of the initial- and final-state particles in the1023

scattering process.1024

[f] In the event selection presented here, we did not use the information from the electromagnetic calorimeters to detect
π0 and suppress events with π0 in the final state, as the electromagnetic calorimeters would require a computationally
expensive and complicated treatment in the detector Monte Carlo simulation. However, we performed a study
where we applied such a cut to suppress π0. This cut had a negligible effect on the final event sample.
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Figure 4.3: Distributions of the magnitudes of the reconstructed momenta of the identified K− π− subsystem
in the K−π−π+ final state.

Unfortunately, the energy of the individual beam particle was not measured by the experimental1025

setup. However, the energy spread of the beam is only about 1 % [49]. In addition, we can1026

calculate the beam particle energy from the measured three-momenta of the K−π−π+ final-state1027

particles and the measured inclination of the beam particle, which were both measured with high1028

precision (see section 2.2), by applying energy conservation. The calculation can be found in1029

appendix B.1. The distribution of the reconstructed beam-particle energy is shown in figure 4.4a1030

and exhibits a clear exclusivity peak at 191.29 GeV, which corresponds to the nominal beam1031

energy. We selected events if the reconstructed beam energy was within ±3σE around the peak1032

center, where σE is the Gaussian width of the peak of about σE = 1.71 GeV/c.[g]
1033

Due to momentum conservation, the projections of the total momentum of the K−π−π+ system1034

and the momentum of the recoil proton in the plane perpendicular to the beam-particle track1035

must be back-to-back for exclusive events. This means that the azimuthal angle between these1036

two projections must be 180°. We employed this constraint to suppress non-exclusive events in1037

our data by requiring that1038

∆φrecoil = 180° − ](~p⊥K−π−π+ , ~p⊥recoil) (4.1)

is compatible with zero within one standard deviation of the angular resolution of the RPD1039

detector, with which the recoil proton was measured.[h]
1040

[g] We fitted a single Gaussian function plus a third-order background polynomial to the peak region of 182 ≤ Ebeam

< 200 GeV to determine the Gaussian width of the peak, i.e. the width of the Gaussian function.
[h] The angular resolution of the RPD detector depends on the hit pattern in the scintillator segments and can be either
±8.432° or ±5.377°. We applied cuts on ∆φrecoil accordingly. See ref. [67] for details.
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Figure 4.4: Distribution of the kinematic variables used to select exclusive events. (a) shows the distribution
of the reconstructed beam energy after all cuts except for the cut on Ebeam. (b) shows the distribution of
∆φrecoil, which is a measure of momentum conservation (see text), versus the beam energy after all cuts,
except for the cuts on ∆φrecoil and Ebeam. The gray lines represent the applied cuts.[h]

We do not observe correlations between ∆φrecoil and the beam energy (see figure 4.4b). This1041

indicates, that both variables give independent information and applying both cuts helps to better1042

separate exclusive from non-exclusive events. The non-exclusive background in the final K−π−π+
1043

sample was estimated to be only about (2 ± 1 (sys.)) %.[i]
1044

Cuts to suppress Non-Diffractive Reactions1045

In addition to diffractive scattering, there are other exclusive processes that lead also to the1046

K−π−π+ final state (see section 2.1.1). Thus, these processes cannot be separated from diffractive1047

scattering in terms of their event topology, the particle species, or energy and momentum1048

conservation. A special role play central-production reactions. The kinematic characteristic of1049

central production is different from the one of diffractive scattering. In central production, the1050

kaon scatters elastically of the centrally produced π− π+ system. The scattered kaon goes mostly1051

in very forward direction. To characterize this, the Feynman-x variable of the final-state kaon is1052

used, which can be approximated by [9]1053

xK
F ≈

2pcm
‖
√

s
. (4.2)

[i] As there is no model for the distribution of the reconstructed beam energy for non-exclusive contributions, this is
only a rough estimate. See appendix B.2 for details.

March 1, 2022 18:18 43



D
RA

FT

4 Event Selection

0.00 0.25 0.50 0.75 1.00

xKF

0.00

0.25

0.50

0.75

E
ve

n
ts

/
0
.0

05

×104

(a)
1 2 3 4 5

mKππ [GeV/c2]

0.00

0.25

0.50

0.75

E
ve

n
ts

/
(2

0
M

eV
/c

2
)

×103

xKF ≥ 0.9

xKF < 0.9 (×1/150)

(b)

Figure 4.5: Kinematic distributions to study central-production reactions. (a) shows the distribution in xK
F .

The orange histogram in (b) shows the invariant mass spectrum of the K−π−π+ system for the subset of
data with xK

F ≥ 0.9. The blue histogram in (b) shows the corresponding distribution for the complementary
data set with xK

F < 0.9 scaled by a factor of 1⁄150. For all distributions, the cuts on the t′ and mKππ region
were not applied.

Here, pcm
‖

is the momentum component of the final-state kaon in the direction of the incoming1054

beam kaon in the K−π−π+ + p center-of-momentum frame and
√

s is the center-of-momentum1055

energy. We expect xK
F ≈ 1 for the forward-scattered kaon of central-production reactions.1056

Figure 4.5a shows the xK
F distribution. As xK

F is directly correlated with the momentum of the1057

scattered kaon, most of the structures observed in this distribution arise from acceptance effects1058

of the final-state particle identification shown in figure 4.3. In addition, a small peak at xK
F ≈ 0.921059

is observed, which might be caused by central-production reactions. To suppress these events, we1060

required xK
F < 0.9. The mKππ distribution of the central-production sample with xK

F ≥ 0.9 (orange1061

histogram in figure 4.5b) exhibits a broad bump at about 3.5 GeV/c2, with a small low-mass1062

tail leaking into the mKππ region of interest below 3 GeV/c2. A comparison with the selected1063

K−π−π+ sample (blue histogram in figure 4.5b) shows, that the central-production sample does1064

not contribute dominantly to the mKππ region of interest. In this low-mass tail, we observe1065

structures on top of the continuous tail, similar to those of the selected K−π−π+ sample. This1066

indicates, that by applying this cut, we also rejected a small fraction below 1 % of diffractive1067

scattering reactions.1068

It should be noted, that first Monte Carlo studies based on simple models for central-production1069

reactions [68, 69] also yielded a peak at large xK
F , but with a dominant tail towards smaller values1070

down to xK
F ≈ 0.5 for mKππ < 3 GeV/c2. This suggests, that the cut xK

F < 0.9 suppress only part1071

of the central-production contribution to the K−π−π+ sample, which, however, is in general small1072

for mKππ < 3 GeV/c2.1073
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Cuts on the Kinematic Region of Interest1074

As a last step, we defined the kinematic region of interest in t′ and mKππ. The lower limit of1075

t′ = 0.1 (GeV/c)2 is given by the minimal energy necessary for the recoil proton to produce a1076

signal in the recoil-proton detector (see section 2.2). For t′ > 1.0 (GeV/c)2 or for K−π−π+ <1077

1.0 GeV/c2, an insufficient amount of data is available to perform a partial-wave analysis. Up to1078

now, there are no well-known strange-meson resonances in the range mKππ & 2.5 GeV/c2 [9].1079

Therefore, we limited ourselves to the t′ range of 0.1 ≤ t′ < 1.0 (GeV/c)2 and the mKππ range of1080

1.0 ≤ mKππ < 3.0 GeV/c2.1081

Applying all cuts defined in this section, we obtained a final K−π−π+ sample of 307 701 events for1082

the 2008 and 322 793 events for the 2009 diffraction data set, in the kinematic region of interest.1083

In total, the COMPASS data sample for diffractive K−π−π+ production contains 720 494 events,1084

which is about 2.7 times larger than the sample from a previous unpublished COMPASS analy-1085

sis [44]. It is the so-far world’s largest sample of this reaction and is 3.6 times larger compared1086

to the previously world’s largest sample measured by the WA3 experiment [23].1087

4.2 Kinematic Distributions of the K−π−π+ Sample1088

In order to search for strange-meson resonances decaying into K−π−π+, the most interesting1089

kinematic variable to look at is the invariant mass spectrum of the K−π−π+ system shown in1090

figure 4.6a. In the simplest case we expect resonances to appear as peaks in this spectrum. We1091

observe clear peaks in the mass regions of the well-known K1(1270), K1(1400), and K2(1770)1092

resonances. These peaks sit on top of a broad spectrum starting at about 1 GeV/c2 and having a1093

long tail beyond 3 GeV/c2. In order to separate these signals and to also study weaker signals1094

hidden in the broad spectrum, a comprehensive partial-wave analysis is mandatory. This will be1095

discussed in chapters 5 to 8.1096

An important property of the diffractive scattering process is its dependence on the squared four-1097

momentum transfer t′. The t′ spectrum shown in figure 4.6b falls approximately exponentially1098

with t′. The slope becomes smaller for larger values of t′. In addition, the slope also changes1099

with mKππ. The extraction of the slope of the t′ spectrum as a function of mKππ is discussed1100

in appendix B.3. The measured slope parameters are similar to those found in the COMPASS1101

π−π−π+ analysis [39]. Since both final states were produced in diffractive scattering reactions,1102

this similarity demonstrates that the t′ dependence is a property of the production mechanism.1103

The observed approximately exponential t′ dependence is also expected from Regge theory [46].1104

However, the slope may be different for different K−π−π+ resonances. As the observed spectrum1105

arises from various resonances and non-resonant contributions, its shape is the result of a1106

superposition of many exponential shapes, which can only be separated by a partial-wave1107

analysis. The different t′ dependencies of the resonances also lead to a t′-dependent shape of the1108

mKππ spectrum. For example, the relative strengths of the peaks in the low-t′ (figure 4.6c) and1109

the high-t′ (figure 4.6d) region.1110
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Figure 4.6: Invariant mass spectrum of the diffractively produced K−π−π+ system (a) for the full analyzed
t′ range and in (c) and (d) for the low- and high-t′ region, respectively. In (b) we show the corresponding
t′ spectrum. The arrows in (a) indicate well-known kaon resonances decaying into K−π−π+ according to
the PDG [9].
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Also the invariant mass spectra of the K−π+ and π−π+ subsystems show clear peaks at the position1111

of well-known resonances. The K−π+-mass spectrum shown in figure 4.7a is dominated by the1112

K∗(892) resonance. A second peak appears at about 1.4 GeV/c2 where two kaon resonances1113

exist, the K∗2(1430) and the K∗0(1430). Both resonaces have a similar mass but a different spin.1114

They can be separated only by a partial-wave analysis.1115

The π−π+ mass spectrum shown in figure 4.7b is dominated by the well-known ρ(770) resonances,1116

sitting on a broad distribution. The shoulder in the high-mass tail of the ρ(770) at about 1 GeV/c2
1117

can be associated with the f0(980) resonance. The higher-lying peak corresponds to the f2(1270).1118

Similar structures are observed in the π−π+ subsystem of the π−π−π+ final state [39]. The narrow1119

peak at mπ−π+ ≈ 0.38 GeV/c2 is due to a small contamination of the K−π−π+ sample from1120

events of the reaction K− + p → K−φ(1020) + p, with φ(1020) → K−K+, where the RICH1121

erroneously identified the second K− and the K+.[j] The wrong mass assumption for the final-state1122

particles shifts the narrow φ(1020) peak to about 0.38 GeV/c2. From a coarse event selection1123

of the K−K−K+ final state using COMPASS data, we estimated the K−K−K+ backgroundK−K−K+ backgroundK−K−K+ backgroundK−K−K+ backgroundK−K−K+ backgroundK−K−K+ backgroundK−K−K+ backgroundK−K−K+ backgroundK−K−K+ backgroundK−K−K+ backgroundK−K−K+ backgroundK−K−K+ backgroundK−K−K+ backgroundK−K−K+ backgroundK−K−K+ backgroundK−K−K+ backgroundK−K−K+ background to the1124

K−π−π+ sample to be below 4 %.[k]
1125

The K−π− spectrum exhibits a broad continuous distribution with a maximum at about 1 GeV/c2.1126

No peaking or other resonant-like structures are observed, as expected as there are no known1127

doubly-negatively charged light mesons.1128

Finally, we compare our results to those from the ACCMOR collaboration [23] shown in1129

figure 4.8. In their data, the peak in the K2(1770) region of the mKππ spectrum (see figure 4.8a) is1130

less pronounced with respect to the double-peak in the K1 region (cf. figure 4.6a). This has two1131

reasons. First, ACCMOR analyzed a lower t′ region, which can have a different composition of1132

resonances. Second, the experimental acceptance of our measurement drops with lower mKππ (see1133

figure D.35a). This suppresses the double-peak in the K1 region with respect to the peak in the1134

K2(1770) region. The mK−π+ spectrum from ACCMOR shown in figure 4.8b exhibits clear peaks1135

from the K∗(892) and the K∗2(1430), in agreement with our observations (cf. figure 4.7a). Also,1136

their mπ−π+ spectrum shown in figure 4.8c exhibits similar structures (cf. figure 4.7b). Changes1137

in the relative strength of the observed structures might be caused by the different t′ range and1138

our experimental acceptance. Overall, at this level of the analysis the kinematic distributions1139

from ACCMOR are consistent with our observations, while the smoothness of our distributions1140

demonstrates the improved statistical precision due to our 3.6 times larger sample.1141

[j] Requiring the RICH to always identify the positive particle as a pion strongly suppresses the peak at about
0.38 GeV/c2 with respect to the rest of the spectrum. However, this requirement would also reduce the efficiency
of the K−π−π+ selection by about 30 %. Therefore, this cut was not applied in the K−π−π+ event selection.

[k] From the peak at about 0.38 GeV/c2 we estimated the φ(1020) contamination of the K−π−π+ sample to be about
0.26 %. From the mK−K+ spectrum of the COMPASS K−K−K+ sample, we estimated the fraction of φ(1020)
production in the K−K−K+ sample to be about 6.6 %. We assumed, that the fraction of φ(1020) in the K−K−K+

contamination of the K−π−π+ sample is the same as in the selected K−K−K+ sample.
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Figure 4.7: Invariant mass spectra of the two-body subsystems of the K−π−π+ final state: (a) K−π+,
(b) π−π+, and (c) K−π−. The arrows indicate well-known resonances appearing in these two-body systems
according to the PDG [9].
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(a) (b) (c)

Figure 4.8: Kinematic distributions of the K−π−π+ final state in the range 0 ≤ t′ ≤ 0.7 (GeV/c)2 as
measured by the WA3 experiment and analyzed by ACCMOR [23]. (a) shows the mKππ distribution. (b)
and (c) show the invariant mass distribution of the K−π+ and π−π+ subsystem, respectively.
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5 The Partial-Wave Decomposition1142

In order to separate the strange-meson resonances X− appearing in the K−π−π+ system, which1143

is produced in the reaction K− + p → K−π−π+ + p (see figure 4.6a), and to identify their JP
1144

quantum numbers, we performed a comprehensive partial-wave analysis (PWA)partial-wave analysis (PWA)partial-wave analysis (PWA)partial-wave analysis (PWA)partial-wave analysis (PWA)partial-wave analysis (PWA)partial-wave analysis (PWA)partial-wave analysis (PWA)partial-wave analysis (PWA)partial-wave analysis (PWA)partial-wave analysis (PWA)partial-wave analysis (PWA)partial-wave analysis (PWA)partial-wave analysis (PWA)partial-wave analysis (PWA)partial-wave analysis (PWA)partial-wave analysis (PWA) based on the1145

K−π−π+ sample described in the previous chapter 4. We performed the partial-wave analysis in1146

two stages. In the first stage called partial-wave decomposition (PWD)partial-wave decomposition (PWD)partial-wave decomposition (PWD)partial-wave decomposition (PWD)partial-wave decomposition (PWD)partial-wave decomposition (PWD)partial-wave decomposition (PWD)partial-wave decomposition (PWD)partial-wave decomposition (PWD)partial-wave decomposition (PWD)partial-wave decomposition (PWD)partial-wave decomposition (PWD)partial-wave decomposition (PWD)partial-wave decomposition (PWD)partial-wave decomposition (PWD)partial-wave decomposition (PWD)partial-wave decomposition (PWD), the data are decomposed1147

into amplitudes coming from intermediate states X− with various JP quantum numbers and1148

various decay paths. In the PWD, the mKππ dependence of the reaction is not modeled explicitly,1149

but our data are subdivided into narrow mKππ bins, and the PWD is performed independently in1150

these mKππ bins. In this way, we determined the mKππ dependence of the amplitudes from data. In1151

the same spirit, we subdivided each mKππ bin in four t′ bins to also determine the t′ dependence of1152

the amplitudes. In the second analysis stage called resonance-model fit, the mKππ dependence of1153

the amplitudes is then modeled explicitly, which allows us to identify strange-meson resonances1154

appearing in the K−π−π+ system and to measure their masses and widths.1155

An upper limit for the mKππ bin widths are mainly given by the widths of the appearing strange-1156

meson resonances, which are in the range of about 100 MeV/c2 or larger. Hence, we used1157

for mKππ < 2 GeV/c2 a bin width of 20 MeV/c2. For mKππ > 2 GeV/c2 we used a bin width1158

of 40 MeV/c2, because the K−π−π+ sample size quickly shrinks towards high mKππ, while at1159

the same time strange-meson resonances typically become wider at higher masses. Given the1160

approximately exponential shape of the t′ spectrum, we subdivided our data into four t′ bins,1161

which we chose such that the number of events in the first bin, the second bin, and the last two1162

bins combined is approximately the same.[a] The t′-bin borders are listed in table 5.1. In total,1163

we split the analyzed kinematic range of 1.0 ≤ mKππ < 3.0 GeV/c2 and 0.1 ≤ t′ < 1.0 (GeV/c)2
1164

into 300 (mKππ, t′) cells, in which the PWD was performed independently.1165

In this chapter, we first describe in section 5.1 the PWD formalism. In sections 5.2 to 5.4, we1166

present extensions of this general approach that were developed for our analysis. In sections 5.51167

and 5.6, we give a first glimpse on the results of the PWD. In sections 5.7 to 5.10, we present1168

systematic and pseudodata studies of the PWD. The resonance-model fit, which used the results1169

of the PWD as input, is presented in chapter 6. The physics results are discussed in chapter 7.1170

Table 5.1: Borders of the four t′ bins as used for the partial-wave decomposition.

[(GeV/c)2] 0.10 0.15 0.24 0.34 1.00

[a] We rounded the t′ bin borders to two significant digits in our analysis.
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5.1 Method1171

5.1.1 Isobar Model and Coordinate System1172

The mK−π+ and mπ−π+ distributions shown in figures 4.7a and 4.7b, respectively, are dominated1173

by various two-body resonances. This indicates that the intermediate state X− does not directly1174

decay to K−π−π+, but dominantly decays first into a two-body resonance ξ0 called isobarisobarisobarisobarisobarisobarisobarisobarisobarisobarisobarisobarisobarisobarisobarisobarisobar and the1175

third remaining particle b− called bachelor particlebachelor particlebachelor particlebachelor particlebachelor particlebachelor particlebachelor particlebachelor particlebachelor particlebachelor particlebachelor particlebachelor particlebachelor particlebachelor particlebachelor particlebachelor particlebachelor particle, and then the isobar decays into the two-body1176

subsystem. This is schematically shown in figure 5.1. Figure 5.1a shows the graph if the isobar1177

resonance is in the K−π+ subsystem and hence the π− is the bachelor particle. Figure 5.1b shows1178

the graph if an isobar resonance is in the π−π+ subsystem and hence the K− is the bachelor1179

particle. As the K−π− subsystem does not exhibit resonance signals (see figure 4.7c) and as there1180

are no known resonances that decay to K−π−, we considered isobars only in the K−π+ and π−π+
1181

subsystems in the PWD. In summary, we employ the isobar modelisobar modelisobar modelisobar modelisobar modelisobar modelisobar modelisobar modelisobar modelisobar modelisobar modelisobar modelisobar modelisobar modelisobar modelisobar modelisobar model [70, 71], i.e. we split the1182

reaction K− + p→ K−π−π+ + p into the inelastic two-body scattering process K− + p→ X− + p1183

and a series of two successive two-body decays: (i) X− → ξ0b−, (ii) ξ0 → K−π+ or ξ0 → π−π+
1184

xx

x x

X−

π−

K−

π+ξ0P

p precoil

K−

(a)

xx

x x

X−

K−

π−

π+ξ0P

p precoil

K−

(b)

Figure 5.1: Schematic view of the reaction K− + p → K−π−π+ + p in the isobar model, where the
intermediate state X− successively decays to the K−π−π+ system via a two-body resonance ξ0 called isobar.
(a) shows the reaction if the isobar resonance is in the K−π+ subsystem. (b) show the reaction if the isobar
resonance is in the π−π+ subsystem. The third remaining particle b− is called bachelor particle, which in
(a) is the π− and in (b) is the K−.

In order to disentangle the various contributions from the different intermediate states X−, the1185

PWD employs the full information from the measured kinematic distributions of the final-state1186

particles. The choice of the kinematic variables that describe the reaction K− + p→ K−π−π+ + p1187

is not unique. A convenient definition is motivated by the isobar-model picture. The inelastic1188

scattering reaction K− + p→ X− + p is described by the center-of-momentum energy s, which1189

is constant due to the fixed beam momentum; the reduced squared four-momentum transfer t′;1190

and the invariant mass mKππ of the K−π−π+ system. For fixed s, mKππ and t′, the X− decay is1191

described by five phase-space variables summarized by τ. The decay X− → ξ0b− is described1192

in the X− rest frame using the Gottfried-Jackson (GJ) frameGottfried-Jackson (GJ) frameGottfried-Jackson (GJ) frameGottfried-Jackson (GJ) frameGottfried-Jackson (GJ) frameGottfried-Jackson (GJ) frameGottfried-Jackson (GJ) frameGottfried-Jackson (GJ) frameGottfried-Jackson (GJ) frameGottfried-Jackson (GJ) frameGottfried-Jackson (GJ) frameGottfried-Jackson (GJ) frameGottfried-Jackson (GJ) frameGottfried-Jackson (GJ) frameGottfried-Jackson (GJ) frameGottfried-Jackson (GJ) frameGottfried-Jackson (GJ) frame shown in figure 5.2. This reference1193

frame is a right-handed coordinate system, where the~zGJ axis is given by the direction of the beam1194

K− and the ~yGJ axis is given by the normal of the X− production plane. The X− production planeproduction planeproduction planeproduction planeproduction planeproduction planeproduction planeproduction planeproduction planeproduction planeproduction planeproduction planeproduction planeproduction planeproduction planeproduction planeproduction plane1195

(orange plane in figure 5.2) is given by the momenta of the recoil proton and the beam K−. Since1196

in the X− rest frame the momenta of the ξ0 and the bachelor particle are back to back, the X−1197
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ξ

~yHF � ~zGJ × ~zHF
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X− production plane

Figure 5.2: Definition of the Gottfried-Jackson (GJ) and helicity (HF) frames used to describe the reaction
K− + p→ K−π−π+ + p with an intermediate state X− in the K−π−π+ system decaying to a two-body isobar
ξ0 and the bachelor particle b−. The Gottfried-Jackson frame is defined in the X− rest frame. The helicity
frame is defined in the ξ0 rest frame. The momenta of the beam K−, the target proton, and the recoiling
proton in the Gottfried-Jackson frame are ~p GJ

beam, ~p GJ
target, and ~p GJ

recoil, respectively. The unit vectors of the
coordinate axes are labeled ~xi, ~yi, ~zi. In this work, we consider two cases, which yield different coordinate
systems, one if the ξ0 is in the K−π+ subsystem and one if the ξ0 is in the π−π+ subsystem. Taken from
ref. [67] and adjusted.

decay is described by two decay angles of one of the daughter particles. We chose the polar1198

angle θGJ and the azimuthal angle φGJ of the isobar. The decay of the isobar ξ0 is described1199

in its rest frame using the helicity frame (HF)helicity frame (HF)helicity frame (HF)helicity frame (HF)helicity frame (HF)helicity frame (HF)helicity frame (HF)helicity frame (HF)helicity frame (HF)helicity frame (HF)helicity frame (HF)helicity frame (HF)helicity frame (HF)helicity frame (HF)helicity frame (HF)helicity frame (HF)helicity frame (HF). The helicity frame is constructed by boosting1200

from the X− rest frame to the ξ0 rest frame. The ~zHF axis is given by the momentum of ξ0 in1201

the Gottfried-Jackson frame. The ~yHF axis is given by the normal of the plane (green plane in1202

figure 5.2) that is defined by~zGJ and the momentum of ξ0. Since in the ξ0 rest frame the momenta1203

of the two decay products are back to back, the ξ0 decay is described by two decay angles of1204

one of the daughter particles. We chose the polar angle θHF and the azimuthal angle φHF of the1205

negative decay product, which is either the K− or the π−. In addition to the four angles, the1206

invariant mass of the two-body isobar subsystem completes the set of variables that span the1207

K−π−π+ phase space.1208

Given that we consider isobars in the K−π+ and π−π+ subsystems, there are two different1209

definitions of these phase-space variables that are used in the following: (i) if the isobar is in the1210

K−π+ subsystem, the phase-space variables are mKππ, t′, and τKπ = (θKπ
GJ , φ

Kπ
GJ ,mK−π+ , θK−

HF, φ
K−
HF);1211

(ii) if the isobar is in the π−π+ subsystem, the phase-space variables are mKππ, t′, and τππ =1212

(θππGJ , φ
ππ
GJ,mπ−π+ , θπ

−

HF, φ
π−

HF).1213
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5.1.2 Partial-Wave Decomposition Formalism1214

In the following, we give a brief introduction into the PWD formalism. A detailed and general1215

description of the PWD formalism used in our work can be found in ref. [72]. We mainly follow1216

the derivations, notation, and conventions given in ref. [72]. All formulas, except explicitly1217

stated otherwise are taken from ref. [72] or from references therein. The PWD formalism for the1218

special case of the COMPASS π−π−π+ analysis, which is similar to our analysis, can be found in1219

ref. [39].1220

Cross Section1221

The differential cross section for the reaction K− + p→ K−π−π+ + p is given by1222

dσ
dΦ4

=
|M|2

F
. (5.1)

Here, the flux factor,1223

F = 4
√

(pbeam ptarget)2 − m2
beamm2

target, (5.2)

is approximately a constant given by the fixed beam momentum. M is the Lorentz-invariant1224

matrix element that encodes the whole dynamics of the reaction K− + p→ K−π−π+ + p.[b] The1225

differential phase-space element dΦ4 of the K−π−π+ p final state can be split into the two-body1226

phase-space dΦ2 of the X−p system and the three-body phase-space dΦ3 of the K−π−π+ final1227

state, i.e.1228

dΦ4 = dΦ2dΦ3
2mKππ

2π
dmKππ. (5.3)

Expressing the two-body phase-space in terms of t′ and the azimuthal angle φ of the production1229

plan around the beam-particle direction yields:1230

dΦ4 =
1

2(2π)2

1
F

dφ dt′dΦ3
2mKππ

2π
dmKππ, (5.4)

where the flux factor is appearing again (see ref. [72]). Since we consider unpolarized reactions,1231

the matrix element does not depend on φ. Hence, integration over φ is trivial and yields for the1232

differential cross section in equation (5.1):1233

dσ(τ,mKππ, t′)
dΦ3 dmKππ dt′

=
1
F2

1
4π

2mKππ

2π
|M(τ,mKππ, t′)|2. (5.5)

Finally, the number density; i.e. the distribution of the number Nev of produced eventsproduced eventsproduced eventsproduced eventsproduced eventsproduced eventsproduced eventsproduced eventsproduced eventsproduced eventsproduced eventsproduced eventsproduced eventsproduced eventsproduced eventsproduced eventsproduced events, which is1234

the number of events that were actually produced in the experiment, differential in mKππ, t′, and1235

[b] Amplitudes from various incoherent contributions may contribute to the reaction. At this point, we absorb these
incoherent contributions in |M|2 before we explicitly formulate them in equation (5.14).
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the 5-dimensional K−π−π+ phase-space dΦ3; reads1236

dNev(τ,mKππ, t′)
dΦ3 dmKππ dt′

= L
dσ(τ,mKππ, t′)
dΦ3 dmKππ dt′

=
L

(2πF)2 mKππ|M(τ,mKππ, t′)|2, (5.6)

where L is the integrated luminosity. We chose the distribution of the number of events to be1237

differential in the Lorentz-invariant K−π−π+ phase-space element dΦ3(τ; mKππ), which contains1238

the respective Jacobian that may appear from the explicit choice of the phase-space variables as1239

discussed in section 5.1.3.1240

Matrix Element for a Single Intermediate State1241

We first formulate a model for |M(τ,mKππ, t′)|2 that considers only a single intermediate state1242

X− and a single decay chain of X−. The production, the propagation, and the decay of X− are1243

assumed to be independent of each other. Hence, the amplitude,1244

MK p→Xp→Kππp(τ,mKππ, t′) = PK p→Xp(mKππ, t′)DX(mKππ)Ψ̃X→Kππ(τ,mKππ) (5.7)

factorizes into three parts: (i) an amplitude PK p→Xp(mKππ, t′) that models the production of1245

X−, (ii) an amplitude DX(mKππ) that models the propagation of X−, and (iii) an amplitude1246

Ψ̃X→Kππ(τ,mKππ) that models the decay of X− via a particular decay chain.1247

Decay Amplitudes1248

The amplitude for the X− decay shown in figure 5.3 can be calculated in the isobar model. It1249

describes the decay of a certain intermediate state X− with spin J, parity P, and spin projection1250

Mε,[c], [d] into the bachelor particle and a certain isobar with spin Jξ and helicity λξ. In addition,1251

the bachelor particle and the isobar have a relative orbital angular momentum L. We call the1252

combination,1253

a = JP Mε ξ b L, (5.8)

of these quantum number a partial wavepartial wavepartial wavepartial wavepartial wavepartial wavepartial wavepartial wavepartial wavepartial wavepartial wavepartial wavepartial wavepartial wavepartial wavepartial wavepartial wave label.[e]
1254

It is a well-established experimental fact that the strong interaction conserves parity. Parity con-1255

servation can be implemented in the PWD formalism by using the so-called reflectivity basis [73]1256

for the subprocess K− + p→ X− + p. The reflectivity operation is a space inversion followed by1257

an 180° rotation about the production plane normal. This corresponds to a reflection through1258

the production plane. As all momenta of the four particles of the subprocess K− + p→ X− + p1259

[c] We define the reflectivity quantum number ε below.
[d] The ~zGJ axis in the Gottfried-Jackson frame is the quantization axis and defines the spin projection.
[e] For simplicity, the charge of the isobar and of the bachelor particle are dropped in the partial-wave labels. The spin

Jξ of the isobar does not explicitly appear in a as it is implicitly given by ξ, e.g. ξ = ρ(770) implies Jξ = 1. The
helicity λξ of the isobar is also not given as it is an internal quantum number and summed over in equation (5.9).
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X−
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h+ξ0
[Jξ λξ]

P

p precoil

K−

Figure 5.3: Schematic view of the reaction K− + p → K−π−π+ + p in the isobar model, where the
intermediate state X− with spin J, parity P, and spin projection Mε successively decays to the K−π−π+

final state via a two-body resonance ξ0 called isobar with spin Jξ and helicity λξ. L is the relative orbital
angular momentum between the bachelor particle b− and the isobar. h± are the two final-state particles of
the ξ0 decay. The colors correspond to the colors of the terms in equation (5.9).

lie in the production plane by construction (see figure 5.2), the reflection operation leaves those1260

momenta unchanged. In the following, we construct decay amplitudes that are eigenfunctions of1261

the reflectivity operator with eigenvalues ε called reflectivityreflectivityreflectivityreflectivityreflectivityreflectivityreflectivityreflectivityreflectivityreflectivityreflectivityreflectivityreflectivityreflectivityreflectivityreflectivityreflectivity. For mesons, the reflectivity can be1262

ε = ±1.[f] Partial waves with different ε do not interfere due to parity conservation [73].1263

In the reflectivity basis, M is defined to be M ≥ 0. For each M in the range 0 < M ≤ J, there1264

is one state with ε = +1 and one with ε = −1. In addition, there is one state with M = 0 and1265

ε = P(−1)J .[g] Hence, also in the reflectivity basis there are in total 2J + 1 states, as expected for1266

the total multiplicity of a state with spin J.1267

The main advantage of using the reflectivity basis is that in the limit of a high center-of-momentum1268

energy, the reflectivity is approximately identical to the naturality of the exchange particle in the1269

scattering process [74–76]. Since at COMPASS energies the scattering process is dominated1270

by Pomeron exchange, which has positive naturality, dominantly positive reflectivity states are1271

produced.[h] Hence, we may neglect negative-reflectivity states, which drastically reduces the1272

amount of states, i.e. partial waves, that need to be considered in the PWD by about a factor1273

two.[i]
1274

[f] In general, the reflectivity of bosons is ε = ±1.
[g] A detailed explanation can be found in section 5.2.3 of ref. [72].
[h] It was shown in ref. [48] that even at the high center-of-momentum energy at COMPASS, f2 exchange also has some

contribution to the scattering process. As the f2 exchange has also positive naturality, we still expect the reaction to
be dominated by positive-reflectivity states. Ref. [48] did not find significant contributions from exchanges with
negative naturality.

[i] For the wave-set selection discussed in section 5.2, we performed a study were we also considered partial waves
with negative reflectivity. However, none of the negative-reflectivity waves picked up significant intensity.
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Following the derivation in ref. [72], the total decay amplitude for a partial wave a reads1275

Ψ̃a(τ,mKππ) =
∑
λξ

αX→ξbL

√
2L + 1

4π

[
εDJ

Mλξ
(φGJ, θGJ, 0)

]∗
FL(mKππ)

(
L, 0; Jξ, λξ |J, λξ

)
× Dξ(mh−h+)

× αξ

√
2Jξ + 1

4π

[
DJξ
λξ0

(φHF, θHF, 0)
]∗

FJξ (mh−h+),

(5.9)

i.e. factorizes into three parts represented by the three lines in equation (5.9). The colors match1276

the respective parts in figure 5.3.1277

The first line shown in green represents the amplitude of the two-body decay X− → ξ0b−. Here,1278

the complex-valued coupling αX→ξbL encodes the strength and relative phase of the X− decay1279

into ξ0b− with a given L. The Wigner D-function in the reflectivity basis, εDJ
Mλξ

(φGJ, θGJ, 0),1280

describes the dependence of the decay amplitude on the angles in the X− decay (see equation1281

(177) in ref. [72]). The centrifugal-barrier factorcentrifugal-barrier factorcentrifugal-barrier factorcentrifugal-barrier factorcentrifugal-barrier factorcentrifugal-barrier factorcentrifugal-barrier factorcentrifugal-barrier factorcentrifugal-barrier factorcentrifugal-barrier factorcentrifugal-barrier factorcentrifugal-barrier factorcentrifugal-barrier factorcentrifugal-barrier factorcentrifugal-barrier factorcentrifugal-barrier factorcentrifugal-barrier factor FL(mKππ) accounts for the additional energy1282

needed to produce an orbital angular momentum of L. It is a model-dependent term, which1283

modifies the coupling at the X− decay vertex. We used the parameterization from von Hippel and1284

Quigg [77].[j] Finally, the Clebsch-Gordan coefficient
(
L, 0; Jξ, λξ |J, λξ

)
describes the coupling1285

of the orbital-angular momentum L and the isobar spin Jξ to the X− spin J in the L-S coupling1286

scheme used here.[k]
1287

The second line shown in orange represents the propagation amplitude of the isobar. It is1288

given by the dynamic amplitudedynamic amplitudedynamic amplitudedynamic amplitudedynamic amplitudedynamic amplitudedynamic amplitudedynamic amplitudedynamic amplitudedynamic amplitudedynamic amplitudedynamic amplitudedynamic amplitudedynamic amplitudedynamic amplitudedynamic amplitudedynamic amplitudeDξ(mh−h+) of the isobar resonance as a function of the invariant1289

mass mh−h+ of the two-body subsystem, i.e. as a function of mK−π+ or mπ−π+ . For most of1290

the considered isobar resonances, we used a relativistic Breit-Wigner amplitude. The various1291

dynamic amplitudes are separately discussed in section 5.1.4.1292

The third line shown in red represents the amplitude of the two-body decay of the isobar. Here,1293

the complex-valued coupling αξ encodes the strength and relative phase of the decay to K−π+ or1294

π−π+. The Wigner D-function DJξ
λξ0

(φHF, θHF, 0) [78, 79] describes the dependence of the total1295

decay amplitude on the angles in the ξ0 decay. FJξ
(mh−h+) is the centrifugal-barrier factor in the1296

ξ0 decay. As the two final-state particles are spin-less, the orbital angular momentum between1297

them equals to Jξ. The same parameterization is used as for FL(mKππ).1298

The helicity λξ of the intermediate isobar is an intermediate quantum number. The corresponding1299

decay amplitudes are constraint by the other quantum numbers and the Clebsch-Gordan coeffi-1300

cient. Hence, equation (5.9) contains a coherent sum over all allowed helicities, such that decay1301

amplitudes with different helicities interfere.1302

[j] See appendix D in ref. [72] for the definition of the centrifugal-barrier factors using z = [q(mKππ,mh−h+ ,mb− )/qR]2,
where q is the two-body break-up momentum of the X− → ξ0b− decay [see equation (5.41)] and qR = 197.3 MeV/c.

[k] Other Clebsch-Gordan coefficients that appear according to the general formula in equation (152) of ref. [72] are
one in our case of three spin-less final-state particles.
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One should note that the isobar model is only an approximation for the actual physical process.1303

For example, it neglects all kinds of rescattering effects among all three final-state particles, and it1304

neglects a direct three-body decay of X−. However, such effects are expected to be small, except1305

for very special cases, e.g. if triangle singularities appear in the rescattering amplitudes [80].1306

The total decay amplitude as given by equation (5.9) can be calculated up to the in general1307

unknown couplings αX→ξbL and αξ. To remove these unknowns, we define the normalized decay1308

amplitudes Ψa, also simply called decay amplitudesdecay amplitudesdecay amplitudesdecay amplitudesdecay amplitudesdecay amplitudesdecay amplitudesdecay amplitudesdecay amplitudesdecay amplitudesdecay amplitudesdecay amplitudesdecay amplitudesdecay amplitudesdecay amplitudesdecay amplitudesdecay amplitudes, in the following way:1309

Ψa(τ,mKππ) ≡
Ψ̃a(τ,mKππ)

αX→ξbL αξ
√
Na(mKππ)

. (5.10)

Here, we additionally divide by the square root of the wave-normalization integralwave-normalization integralwave-normalization integralwave-normalization integralwave-normalization integralwave-normalization integralwave-normalization integralwave-normalization integralwave-normalization integralwave-normalization integralwave-normalization integralwave-normalization integralwave-normalization integralwave-normalization integralwave-normalization integralwave-normalization integralwave-normalization integral,[l] which is1310

given by the integral of the absolute-squared of the total decay amplitude without couplings over1311

the (mKππ, t′) kinematic cell and over the K−π−π+ phase space, i.e.[m]
1312

Na(mKππ) =

∫
(mKππ,t′)

dm̃Kππd t̃′
∫

dΦ3(τ)

∣∣∣∣∣∣∣Ψ̃b(τ, m̃Kππ)
αX→ξbL αξ

∣∣∣∣∣∣∣
2

. (5.11)

Na incorporates the K−π−π+ phase-space volume accessible at mKππ and can be interpreted as1313

the phase-space volume filled by partial wave a.1314

Multiple Intermediate States and Incoherent Contributions1315

The amplitude in equation (5.7) describes the production and propagation of a single intermediate1316

state X− and its decay via a single decay path. However, a state can decay into the K−π−π+ final1317

state via various decay chains, i.e. via various isobars and various values for the orbital angular1318

momentum L. Also, as already seen in the mKππ distribution in figure 4.6a, various states X−1319

appear in our data. As these are all intermediate states, they interfere and thus have to be added1320

up coherently to obtain the total amplitude. Hence, equation (5.7) needs to be extended:1321

M(τ,mKππ, t′) =
∑
a∈W

∑
k∈Sa

Pk,a(mKππ, t′)Dk(mKππ)αk→ξbL

αξ √Na(mKππ)Ψa(τ,mKππ). (5.12)

Here, we use the normalized decay amplitudes given in equation (5.10). The outer sum runs1322

over the setW of all considered partial waves, i.e. over all considered JP Mε quantum number1323

combinations of X− and over all considered decay paths. We discuss in section 5.2 how we chose1324

W. The inner sum runs over all intermediate states X− labeled by k that may appear in partial1325

[l] Dividing by the wave-normalization integral yields the convenient property that the diagonal elements of the
integral matrix defined in equation (5.22) are one.

[m] The wave-normalization integral is proportional to the t′-bin width. As we used different t′-bin widths in our
analysis (see table 5.1), Na(mKππ) in principle also depends on t′. We omit this t′ dependence in the formulas for
simplicity.
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wave a, e.g. it runs over ground and excited states with the same JP quantum numbers. Since the1326

production amplitude not only depends on which state k is produced, but also depends on the1327

spin-projection Mε with which this state is produced, Pk,a(mKππ, t′) has an additional wave label1328

a, which includes Mε.1329

The PWD model for the distribution of the number Nev of produced events differential in mKππ,1330

t′, and the 5-dimensional K−π−π+ phase-space dΦ3 is obtained by inserting equation (5.12) in1331

equation (5.6):1332

dN̂
coh
ev (τ,mKππ, t′)

dΦ3 dmKππ dt′
= (5.13)∣∣∣∣∣∣∣∣∣

∑
a∈W

√
L

(2πF)2

√
mKππ

∑
k∈Sa

Pk,a(mKππ, t′)Dk(mKππ)αk→ξbL

αξ √Na(mKππ)Ψa(τ,mKππ)

∣∣∣∣∣∣∣∣∣
2

.

We use a hat to indicate that N̂ev is the PWD model prediction for the actual quantity Nev.1333

Up to now, we considered perfect coherence of the partial-wave amplitudes. However, there are1334

also reactions where the corresponding amplitudes do not interfere and hence have to be summed1335

incoherently in the total cross section. For example, scattering reactions with spin flip and spin1336

non-flip of the target proton have to be summed at the cross-section level as the proton spin was1337

not measured. Another example are background processes, which are discussed in section 5.3.1338

Generally, incoherent contributions are implemented in our formalism by an incoherent sum over1339

various coherent sectorscoherent sectorscoherent sectorscoherent sectorscoherent sectorscoherent sectorscoherent sectorscoherent sectorscoherent sectorscoherent sectorscoherent sectorscoherent sectorscoherent sectorscoherent sectorscoherent sectorscoherent sectorscoherent sectors labeled by z that may contribute to our data sample. Hence, the PWD1340

model for the distribution of the number of produced events reads1341

I(τ,mKππ, t′) ≡
dN̂ev(τ,mKππ, t′)
dΦ3 dmKππ dt′

= (5.14)

∑
z

∣∣∣∣∣∣∣∣∣
∑
a∈Wz

√
L

(2πF)2

√
mKππ

∑
k∈Sa

Pz
k,a(mKππ, t′)Dk(mKππ)αk→ξbL

αξ √Na(mKππ)Ψa(τ,mKππ)

∣∣∣∣∣∣∣∣∣
2

.

The quantity I is also called the model intensitymodel intensitymodel intensitymodel intensitymodel intensitymodel intensitymodel intensitymodel intensitymodel intensitymodel intensitymodel intensitymodel intensitymodel intensitymodel intensitymodel intensitymodel intensitymodel intensity. In general, the sets Wz of partial waves1342

may be different in the coherent sectors. Also, the production amplitudes may be different for1343

different production processes. Hence, Pz
k,a(mKππ, t′) has an additional z label. The propagation1344

depends only on the intermediate state k and the decay amplitude is completely determined by1345

the partial-wave label a. Hence, both amplitudes do not have a z label.1346

In addition to the partial waves defined in equation (5.8), we included a single so-called flat waveflat waveflat waveflat waveflat waveflat waveflat waveflat waveflat waveflat waveflat waveflat waveflat waveflat waveflat waveflat waveflat wave1347

in our model, which has a flat decay amplitude, i.e. Ψflat(τ,mKππ) = const. It is added incoherently1348

to the other partial waves, i.e. there is an own coherent sector containing only the flat wave. This1349

flat wave effectively models incoherent background in our data that has an isotropic phase-space1350

distribution.1351
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Transition Amplitudes1352

Within the isobar model, the decay amplitudes are known and can be calculated without free1353

parameters. We combine all other terms in equation (5.14), which are partly unknown, to the1354

so-called transition amplitudestransition amplitudestransition amplitudestransition amplitudestransition amplitudestransition amplitudestransition amplitudestransition amplitudestransition amplitudestransition amplitudestransition amplitudestransition amplitudestransition amplitudestransition amplitudestransition amplitudestransition amplitudestransition amplitudes1355

T z
a (mKππ, t′) ≡

√
L

(2πF)2

√
mKππ

∑
k∈Sa

Pz
k,a(mKππ, t′)Dk(mKππ)αk→ξbL

αξ √Na(mKππ). (5.15)

The transition amplitudes of a partial wave a incorporate the production and propagation of all1356

intermediate states that may appear in wave a. As the transition amplitudes contain the couplings1357

αk→ξbL and αξ, they incorporate also the strengths and phases of the decays of the intermediate1358

and isobar states. Using the transition amplitudes simplifies equation (5.14) to1359

I(τ,mKππ, t′) =
∑

z

∣∣∣∣∣∣∣∑a∈Wz(mKππ,t′)

T z
a (mKππ, t′)Ψa(τ,mKππ)

∣∣∣∣∣∣∣
2

. (5.16)

It is important to note, that the transition amplitudes depend only on mKππ and t′. The known1360

decay amplitudes are the only terms that depend on the K−π−π+ phase-space variables τ. As1361

mentioned at the beginning of this section, we performed the PWD independently in narrow1362

(mKππ, t′) cells. We chose these cells to be sufficiently narrow so that we can assume the transition1363

amplitudes to be approximately constant within each cell. Hence, the mKππ and t′ dependencies1364

of the transition amplitudes are not explicitly modeled in the PWD, but complex-valued piecewise1365

constant functions are used instead to approximate these dependencies in a model-independent1366

way. For a given (mKππ, t′) cell, the constant transition amplitudes are the free parameters that1367

are determined in the PWD fits described in section 5.1.3. Using this binned approach, the1368

mKππ and t′ dependence of the transition amplitudes are measured in the PWD. As indicated in1369

equation (5.16), also the setWz(mKππ, t′) of partial waves may depend on mKππ and t′, which is1370

discussed in section 5.2.1371

Spin-Density Matrix1372

Expanding the absolute-value-squared term in equation (5.16) yields1373

I(τ,mKππ, t′) =
∑

z

∑
a,b∈Wz(mKππ,t′)

T z
a (mKππ, t′)

[
T z

b (mKππ, t′)
]∗
Ψa(τ,mKππ)

[
Ψb(τ,mKππ)

]∗
, (5.17)

where the transition amplitudes appear in pairs. Exchanging the two sums in equation (5.17), the1374

model intensity can be expressed in terms of the so-called spin-density matrixspin-density matrixspin-density matrixspin-density matrixspin-density matrixspin-density matrixspin-density matrixspin-density matrixspin-density matrixspin-density matrixspin-density matrixspin-density matrixspin-density matrixspin-density matrixspin-density matrixspin-density matrixspin-density matrix1375

ρab(mKππ, t′) =
∑

z

T z
a (mKππ, t′)

[
T z

b (mKππ, t′)
]∗
. (5.18)
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If a wave a does not appear in coherent sector z, the corresponding transition amplitude is1376

zero. This means, if waves a and b appear only in different coherent sectors, the corresponding1377

spin-density matrix element is zero.[n] Using the spin-density matrix, the model intensity in1378

equation (5.17) reads[o]
1379

I(τ,mKππ, t′) =
∑
a,b∈W(mKππ,t′)

Ψa(τ,mKππ) ρab(mKππ, t′)
[
Ψb(τ,mKππ)

]∗
. (5.19)

It is important to note that the transition amplitudes cannot be uniquely determined, because any1380

unitary transformationUz′z of the transition amplitudes,1381

T ′
z′
a (mKππ, t′) =

∑
z

Uz′z T
z
a (mKππ, t′), (5.20)

results in the same model intensity [81]. The reason is, that the transition amplitudes always1382

appear in pairs in equation (5.17). Also, the spin-density matrix is invariant under such a unitary1383

transformation. Hence, the measured transition amplitudes T z
a (mKππ, t′) are in general different1384

from the transition amplitudes T pa (mKππ, t′) of individual physics processes p, e.g. spin flip and1385

spin non-flip, because p = z′ , z.1386

The measured transition amplitudes T z
a (mKππ, t′) that appear in equation (5.16) are only an1387

effective parameterization of the spin-density matrix. Different parameterizations of the spin-1388

density matrix are possible in order to fix the arbitrary unitary transformation. We used the1389

so-called Chung-Trueman parameterization [73], which is explained in Appendix E of ref. [72].1390

A model parameter that needs to be chosen is the rank of the spin-density matrixrank of the spin-density matrixrank of the spin-density matrixrank of the spin-density matrixrank of the spin-density matrixrank of the spin-density matrixrank of the spin-density matrixrank of the spin-density matrixrank of the spin-density matrixrank of the spin-density matrixrank of the spin-density matrixrank of the spin-density matrixrank of the spin-density matrixrank of the spin-density matrixrank of the spin-density matrixrank of the spin-density matrixrank of the spin-density matrix, which corre-1391

sponds to the number of incoherent sectors in the sum over z in equation (5.16).[p] Our choice1392

for the rank of the spin-density matrix is discussed in section 5.3.1393

Observables1394

The most important observable is the model intensity given in equation (5.19) as it is related to1395

the distribution of the measured K−π−π+ sample.1396

[n] For example, if z labels the two coherent sectors with positive and negative reflectivity, which do not interfere,
the wave set of the coherent sector with positive reflectivity and the wave set of the coherent sector with negative
reflectivity are disjoint. Hence, the corresponding spin-density matrix has block-diagonal form, where one block
corresponds to positive-reflectivity waves and the other block corresponds to negative-reflectivity waves.

[o] In equation (5.19), the sum goes over the full set W(mKππ, t′) of all partial waves from all coherent sectors, i.e.
W(mKππ, t′) =

⋃
z
Wz(mKππ, t′).

[p] As discussed above, we included an incoherent flat wave in our model. However, we do not count the flat wave for
what we call the rank of the PWD model or the rank of the spin-density matrix, because the main analysis yields
practically zero intensity for the flat wave as discussed in section 5.3. This means, e.g., that a spin-density matrix
of a rank=3 PWD model, i.e. a PWD model with a rank=3 spin-density matrix, technically has a rank of 4.
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The estimate for the total number of produced events in a (mKππ, t′) cell can be calculated by1397

integrating equation (5.19) over the ranges of the kinematic (mKππ, t′) cell and over all five1398

K−π−π+ phase-space variables τ, i.e.[q]
1399

N̂ev(mKππ, t′) =

∫
(mKππ,t′)

dm̃Kππd t̃′
∫

dΦ3(τ)I(τ, m̃Kππ, t̃′)

=
∑
a,b∈W(mKππ,t′)

ρab(mKππ, t′)
∫

(mKππ,t′)

dm̃Kππd t̃′
∫

dΦ3(τ)Ψa(τ, m̃Kππ)
[
Ψb(τ, m̃Kππ)

]∗
=

∑
a,b∈W(mKππ,t′)

ρab(mKππ, t′) Iab(mKππ, t′). (5.21)

In the last line, we introduce the so-called phase-space integral matrixphase-space integral matrixphase-space integral matrixphase-space integral matrixphase-space integral matrixphase-space integral matrixphase-space integral matrixphase-space integral matrixphase-space integral matrixphase-space integral matrixphase-space integral matrixphase-space integral matrixphase-space integral matrixphase-space integral matrixphase-space integral matrixphase-space integral matrixphase-space integral matrix1400

Iab(mKππ, t′) ≡
∫

(mKππ,t′)

dm̃Kππd t̃′
∫

dΦ3(τ)Ψa(τ, m̃Kππ)
[
Ψb(τ, m̃Kππ)

]∗
. (5.22)

Limiting the sum in equation (5.17) to only a single partial wave a yields the expected number of1401

produced events for this wave, i.e.1402

N̂a(mKππ, t′) ≡ ρaa(mKππ, t′) Iaa(mKππ, t′) = ρaa(mKππ, t′). (5.23)

Here, we use that Iaa(mKππ, t′) = 1, due to the normalization of the decay amplitudes in equa-1403

tion (5.10). N̂a(mKππ, t′) is also called the intensity of a partial waveintensity of a partial waveintensity of a partial waveintensity of a partial waveintensity of a partial waveintensity of a partial waveintensity of a partial waveintensity of a partial waveintensity of a partial waveintensity of a partial waveintensity of a partial waveintensity of a partial waveintensity of a partial waveintensity of a partial waveintensity of a partial waveintensity of a partial waveintensity of a partial wave and equals to the corre-1404

sponding diagonal element of the spin-density matrix. Accordingly, we call N̂ev(mKππ, t′) defined1405

in equation (5.21) also the total model intensitytotal model intensitytotal model intensitytotal model intensitytotal model intensitytotal model intensitytotal model intensitytotal model intensitytotal model intensitytotal model intensitytotal model intensitytotal model intensitytotal model intensitytotal model intensitytotal model intensitytotal model intensitytotal model intensity.1406

As explained in section 2.2, we split our total data set into three subsets (i) with slightly different1407

experimental acceptances η(i)(τ,mKππ, t′). The PWD model for the distribution of the number1408

N(i)
ev of produced events in data set (i) reads1409

dN̂
(i)
ev (τ,mKππ, t′)

dΦ3 dmKππ dt′
= r̂(i)(mKππ, t′)

dN̂ev(τ,mKππ, t′)
dΦ3 dmKππ dt′

= r̂(i)(mKππ, t′)I(τ,mKππ, t′). (5.24)

The so-called data-set fractiondata-set fractiondata-set fractiondata-set fractiondata-set fractiondata-set fractiondata-set fractiondata-set fractiondata-set fractiondata-set fractiondata-set fractiondata-set fractiondata-set fractiondata-set fractiondata-set fractiondata-set fractiondata-set fraction, i.e. the fraction of produced events in data set (i), are given by1410

r̂(i)(mKππ, t′) =
dN̂

(i)
ev (τ,mKππ, t′)

dΦ3 dmKππ dt′

/
dN̂ev(τ,mKππ, t′)
dΦ3 dmKππ dt′

= N̂
(i)
ev (mKππ, t′)

/
N̂ev(mKππ, t′). (5.25)

[q] In the second line, the fact that our piecewise parameterization for the transition amplitudes and hence the
spin-density matrix is constant within a (mKππ, t′) cell is used.

62 March 1, 2022 18:18



D
RA

FT

5.1 Method

The data-set fractions fulfill the condition1411 ∑
(i)

r̂(i)(mKππ, t′) = 1. (5.26)

As the data-set fractions correspond to the number of produced events and not to the number1412

of measured events, they cannot be directly calculated from the fractions of measured events in1413

the K−π−π+ sample. Therefore, the r̂(i)(mKππ, t′) are free real-valued parameters in the PWD fits1414

and their values are determined from data. The actual data-set fractions are global constants, i.e.1415

independent of (mKππ, t′). However, as the PWD fits are performed independently in (mKππ, t′)1416

cells, independent parameters for the data-set fraction are used in each (mKππ, t′) cell. The1417

consistency of the extracted the data-set fractions is discussed in section 5.5.1418

In order to compare the model intensity to the measured distributions, the experimental acceptance1419

has to be taken into account. The acceptance distorts the measured distribution of events with1420

respect to the model intensity, i.e. with respect to the distribution of produced events. The PWD1421

model for the distribution of the number N(i)
ev of measured events in data set (i) differential in1422

mKππ, in t′, and in the 5-dimensional K−π−π+ phase-space dΦ3 reads[r]
1423

dN̂(i)
ev(τ,mKππ, t′)

dΦ3 dmKππ dt′
= η(i)(τ,mKππ, t′) r̂(i)(mKππ, t′)I(τ,mKππ, t′). (5.27)

The acceptance modelsacceptance modelsacceptance modelsacceptance modelsacceptance modelsacceptance modelsacceptance modelsacceptance modelsacceptance modelsacceptance modelsacceptance modelsacceptance modelsacceptance modelsacceptance modelsacceptance modelsacceptance modelsacceptance models η(i)(τ,mKππ, t′); i.e. the models for the probability to measure an event1424

that was produced with mKππ, t′, and τ; are obtained by Monte Carlo simulations of the detector1425

as described in appendix C.2.1426

Analogously to equation (5.21), the expected total number of measured events in data set (i) in a1427

(mKππ, t′) cell is calculated as1428

N̂(i)
ev(mKππ, t′) =

∫
(mKππ,t′)

dm̃Kππd t̃′
∫

dΦ3(τ) η(i)(τ, m̃Kππ, t̃′) r̂(i)(m̃Kππ, t̃′)I(τ, m̃Kππ, t̃′)

=
∑
a,b∈W(mKππ,t′)

ρab(mKππ, t′) r̂(i)(mKππ, t′) Ī (i)
ab (mKππ, t′). (5.28)

Here, the so-called acceptance-integral matrixacceptance-integral matrixacceptance-integral matrixacceptance-integral matrixacceptance-integral matrixacceptance-integral matrixacceptance-integral matrixacceptance-integral matrixacceptance-integral matrixacceptance-integral matrixacceptance-integral matrixacceptance-integral matrixacceptance-integral matrixacceptance-integral matrixacceptance-integral matrixacceptance-integral matrixacceptance-integral matrix,1429

Ī (i)
ab (mKππ, t′) ≡

∫
(mKππ,t′)

dm̃Kππd t̃′
∫

dΦ3(τ) η(i)(τ, m̃Kππ, t̃′)Ψa(τ, m̃Kππ)
[
Ψb(τ, m̃Kππ)

]∗
, (5.29)

appears, which takes into account the experimental acceptance of data set (i).1430

[r] In equation (5.27), we neglect detector resolution effects that may lead to a smearing of the variables (τ,mKππ, t′),
because of the good detector resolution of COMPASS (see appendix C.4). Incorporating these effects would require
a convolution of equation (5.27) with the detector resolution function. The calculation of such high-dimensional
convolution integrals is computationally prohibitively expensive.
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Finally, the PWD model for the distribution of the number Nev of measured events in all data sets1431

reads1432

dN̂ev(τ,mKππ, t′)
dΦ3 dmKππ dt′

=
∑
(i)

dN̂(i)
ev(τ,mKππ, t′)

dΦ3 dmKππ dt′
=

∑(i) η(i)(τ,mKππ, t′) r̂(i)(mKππ, t′)

I(τ,mKππ, t′),

(5.30)
and the estimated total number of measured events in all data sets in a (mKππ, t′) cell is1433

N̂ev(mKππ, t′) =
∑
(i)

N̂(i)
ev(mKππ, t′) =

∑
a,b∈W(mKππ,t′)

ρab(mKππ, t′)

∑(i) r̂(i)(mKππ, t′) Ī (i)
ab (mKππ, t′)

 . (5.31)

5.1.3 Maximum-Likelihood Fit1434

In order to measure the mKππ and t′ dependence of the spin-density matrix elements, we subdi-1435

vided our data into narrows bins in mKππ and in t′. The number of events per (mKππ, t′) cell is1436

between 10 and 7000 events with about 2400 events on average. We fitted the PWD model in1437

equation (5.16) independently in each of the 300 (mKππ, t′) cells to data. The free parameters in1438

these fits are the transition amplitudes {T z
a }, which are complex-valued constants within each1439

(mKππ, t′) cell,[s] and the data-set fractions {r̂(i)}, which are real-valued constants within one1440

(mKππ, t′) cell. We performed an unbinned extended maximum-likelihood fit in each (mKππ, t′)1441

cell, where we maximized the likelihood function LPWD with respect to the free fit parameters.1442

Likelihood Function1443

First, we formulate the likelihood function L(i)
PWD for a single data set. This likelihood function1444

is the joint probability density function of the measured events in the given (mKππ, t′) cell, which1445

is the product of the probability density functions of the single events. The probability density1446

function of a single event is proportional to the density of the measured number of events in the1447

kinematic variables τ, mKππ, t′ as given in equation (5.27) and reads1448

p(i)(τ; mKππ, t′) =
Φ3(τ; mKππ) η(i)(τ,mKππ, t′) r̂(i)(mKππ, t′)I(τ,mKππ, t′)∫

(mKππ,t′)

dm̃Kππd t̃′
∫

dτΦ3(τ; mKππ) η(i)(τ,mKππ, t′) r̂(i)(mKππ, t′)I(τ,mKππ, t′)

=
Φ3(τ; mKππ) η(i)(τ,mKππ, t′) r̂(i)(mKππ, t′)I(τ,mKππ, t′)

N̂(i)
ev(mKππ, t′)

.

(5.32)

[s] In the Chung-Trueman parameterization of the spin-density matrix, some transition amplitudes are zero and some
are real-valued by construction.
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Here, we express the probability density for an explicit choice for the phase-space variables1449

τ using dΦ3 = dτΦ3(τ; mKππ), where Φ3(τ; mKππ) is the density of states in the phase-space,1450

which includes the Jacobian term that arises from the choice of variables. Interestingly, the1451

normalization integral, which appears in the denominator in equation (5.32), equals to the1452

predicted number of measured events for the given (mKππ, t′) cell in equation (5.28).1453

The intensity model enters linear in the numerator and the denominator of equation (5.32) and1454

the transition amplitudes appear quadratic in the intensity model in equation (5.16). Hence,1455

p(i)(τ; mKππ, t′) is invariant under a multiplication of all transition amplitudes by a common con-1456

stant, i.e. T z
a (mKππ, t′)→ cT z

a (mKππ, t′). The same holds for the data-set fraction r̂(i)(mKππ, t′).1457

To fix the scale of the transition amplitudes and the data-set fraction,[t]the extended maximum-1458

likelihood formalism is used. The corresponding extended likelihood function reads1459

L
(i)
PWD(mKππ, t′) =

[
N̂(i)

ev(mKππ, t′)
]N(i)

ev(mKππ,t′)
e−N̂

(i)
ev(mKππ,t′)

N(i)
ev(mKππ, t′)!

N(i)
ev(mKππ,t′)∏

k=1

p(i)(τk; mk
Kππ, t

′k). (5.33)

The fraction in equation (5.33) is the Poisson probability to actually measure N(i)
ev(mKππ, t′) events1460

given that we expect N̂(i)
ev(mKππ, t′) events according to equation (5.28).1461

Inserting equation (5.32) in equation (5.33) yields1462

L
(i)
PWD(mKππ, t′) =

e−N̂
(i)
ev(mKππ,t′)

N(i)
ev(mKππ, t′)!

[
r̂(i)(mKππ, t′)

]N(i)
ev(mKππ,t′)

×

N(i)
ev(mKππ,t′)∏

k=1

Φ3(τk; mk
Kππ) η(i)(τk,mk

Kππ, t
′k)I(τk,mk

Kππ, t
′k).

(5.34)

Here, the facts are used that the denominator of the probability density in equation (5.32) cancels1463

with the
[
N̂(i)

ev

]N(i)
ev

term of the Poisson probability and that the data-set fraction is the same for all1464

events within one (mKππ, t′) cell.1465

As the data sets are independent, the total likelihood is the product of the likelihoods of the1466

individual data sets, i.e.1467

LPWD(mKππ, t′) =
∏
(i)

L
(i)
PWD(mKππ, t′). (5.35)

[t] The transition amplitudes and the data-set fraction have two independent scales to be fixed, while the extended
maximum-likelihood formalism gives only one constraint. The other constraint is given by the normalization
condition of the data-set fraction parameters according to equation (5.26). This is discussed below in detail for
multiple data sets.
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Instead of maximizing LPWD, it is numerically more stable to minimize the negative log-1468

likelihood1469

− lnLPWD(mKππ, t′) = −
∑
(i)

lnL(i)
PWD(mKππ, t′). (5.36)

Inserting equation (5.34) into equation (5.36) yields1470

− lnLPWD(mKππ, t′) = −
∑
(i)

 − N̂(i)
ev(mKππ, t′) − ln

[
N(i)

ev(mKππ, t′)!
]

+ N(i)
ev(mKππ, t′) ln

[
r̂(i)(mKππ, t′)

]
+

N(i)
ev(mKππ,t′)∑

k=1

ln
[
Φ3(τk; mk

Kππ) η(i)(τk,mk
Kππ, t

′k)I(τk,mk
Kππ, t

′k)
] .
(5.37)

We can split this into multiple sub-terms1471

− lnLPWD(mKππ, t′) = −
∑
(i)

{
N(i)

ev(mKππ, t′) ln
[
r̂(i)(mKππ, t′)

]
− N̂(i)

ev(mKππ, t′)
}

−
∑
(i)

N(i)
ev(mKππ,t′)∑

k=1

ln
[
I(τk,mk

Kππ, t
′k)

]
+

∑
(i)

ln
[
N(i)

ev(mKππ, t′)!
]

−
∑
(i)

N(i)
ev(mKππ,t′)∑

k=1

ln
[
Φ3(τk; mk

Kππ) η(i)(τk,mk
Kππ, t

′k)
]
.

(5.38)

The first line (blue) in equation (5.38) represents the Ndataset conditions arising from the Poisson1472

terms of the extended maximum-likelihood ansatz. Together with the normalization condition for1473

the data-set fraction in equation (5.26),[u]they constrain the Ndataset data-set fraction parameters1474

and the absolute common scale of the transition amplitudes.1475

The second line (orange) in equation (5.38) takes into account the distribution of the data in the1476

K−π−π+ phase space. It constrains the transition amplitudes.1477

The last two lines (green) do not contain any free fit parameters. Hence, they are constant in the1478

likelihood maximization and can be dropped. Especially noteworthy, the experimental acceptance1479

for each of the measured events η(i)(τk,mk
Kππ), which is computationally very expensive to1480

calculate, can be dropped. The experimental acceptance enters only via the calculation of1481

[u] We implemented the normalization condition for the data-set fraction parameters by allowing for only (Ndataset − 1)
free data-set fraction parameters, while one data-set fraction parameter is calculated for each iteration from the
(Ndataset − 1) free data-set fraction parameters using equation (5.26).
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N̂(i)
ev(mKππ, t′) via the acceptance-integral matrices in equation (5.29). Thus, the acceptance does1482

not need to be calculated for each measured event in the PWD fit, but only the acceptance-1483

integral matrix has to be calculated using Monte Carlo integration techniques. Furthermore, the1484

acceptance-integral matrix does not contain any free fit parameters and can thus be calculated1485

before the PWD fit. This drastically reduces the computational costs of evaluating the negative1486

log-likelihood. Still, the computational costs for all PWD fits performed in this analysis are of1487

the order of a million CPUh. Also, the K−π−π+ phase-space Φ3(τ; mKππ), which incorporates1488

the Jacobian from the explicit choice of the set of phase-space variables, can be dropped.1489

PWD Fit Procedure1490

In order to obtain the maximum-likelihood estimates for the transition amplitudes and data-set1491

fractions, the negative log-likelihood function in equation (5.38) is minimized dropping the1492

constant terms shown in green.[v]
1493

The start-parameter values for the transition amplitudes and data-set fraction are generated in two1494

steps. In the first step, values for the real and imaginary parts of the transition amplitudes are ran-1495

domly drawn from a uniform distribution in the range from −
√

Nev(mKππ, t′) to
√

Nev(mKππ, t′).1496

In the second step, the data-set fractions and the absolute scale of the transition amplitudes are1497

calculated such that N̂(i)
ev(mKππ, t′) = N(i)

ev(mKππ, t′) based on the transition amplitudes that were1498

obtained in the first step. This second step turned out to be mandatory in the case of fitting1499

multiple data sets in order to achieve a stable fit that reliably finds the parameter values that1500

correspond to the smallest negative log-likelihood value. Fits without this second step get easily1501

trapped in local minima of the likelihood function far away from the physical solution.1502

5.1.4 Dynamic Amplitudes of the Isobars1503

So far, we introduced in sections 5.1.1 to 5.1.3 the well-established PWD formalism. Before1504

being able to perform a PWD fit to our K−π−π+ sample, an explicit PWD model has to be1505

constructed. We discuss the construction of the wave set and extensions of the PWD formalism1506

that are special to this analysis in sections 5.2 to 5.4. Important choices when formulating an1507

explicit PWD model are the employed parameterizations for the dynamic amplitudes of the1508

isobar resonances. For most of the isobar resonances considered in this analysis, we used a1509

relativistic Breit-Wigner amplitude [see equation (5.39) below]. However, the Kπ and ππ S -wave1510

amplitudes are not approximated well by Breit-Wigner amplitudes.1511

For the ππ S -wave amplitude, we used the same approach as in the COMPASS π−π−π+ analy-1512

sis [39]. The ππ S -wave amplitude contains dominantly three poles: the f0(500), the f0(980),1513

[v] As minimizer, we used the low-memory BFGS (LBFGS) [82–84] implementation of the NLopt package [85]. This
algorithm approximates the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [86–89] and is a quasi-Newton
method that was designed to have a low memory requirement.
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and the f0(1500). The couplings of each of these three poles to the total amplitude are different1514

for different intermediate states X− that decay to the ππ S -wave system. Therefore, we separated1515

the total ππ S -wave amplitude into three independent partial waves, each with its own transition1516

amplitude: (i) The f0(1500) is parameterized by a relativistic Breit-Wigner amplitude [see equa-1517

tion (5.39) below], (ii) the f0(980) is parameterized by the so-called Flatté parameterization [see1518

equation (5.43) below], (iii) the “remaining” broad ππ S -wave component [see equation (5.44)1519

below], which contains the f0(500).1520

Analogously to the ππ S -wave amplitude, the Kπ S -wave amplitude contains dominantly three1521

poles: the K∗0(700), the K∗0(1430), and the K∗0(1950). However, in contrast to the ππ S -wave1522

amplitude, where the small width of the f0(980) allows us to separate it from the broad ππ1523

S -wave component, the larger width of the K∗0(1430) prohibits such an approach for the Kπ1524

S -wave amplitude. Therefore, we present below an alternative approach to simultaneously take1525

into account all three poles [see equations (5.50) and (5.51) below].1526

Relativistic Breit-Wigner Amplitude1527

In this analysis, we used a relativistic Breit-Wigner amplitude [46, 90] of the form1528

DBW(m; m0, Γ0) =
m0Γ0

m2
0 − m2 − i m0 Γ(m)

, (5.39)

where m0 and Γ0 are the nominal mass and width of the resonance, respectively. The mass-1529

dependent width is modeled by the sum over the decay channels i1530

Γ(m) =
∑

i

Γi(m) =
∑

i

Γi
qi(m)

m
m0

qi(m0)

F2
L0

(m)

F2
L0

(m0)
, (5.40)

which takes into account the opening of the phase-space for the decay channel i in the two-body1531

approximation. The two-body break-up momentum,1532

qi(m) = q(m,m1,m2) =

√[
m2 − (m1 + m2)2

] [
m2 − (m1 − m2)2

]
2m

, (5.41)

is given by the masses m1 and m2 of the daughter particles. FL0
(m) is the centrifugal barrier factor1533

as used in the decay amplitudes, where L0 is the orbital angular momentum between the daughter1534

particles. The partial decay widths Γi sum up to the total decay width, i.e. Γ0 =
∑

i Γi.1535

For the parameterizations of the dynamic amplitudes of isobars, we included in the sum in1536

equation (5.40) only the K−π+ or the π−π+ decay channel, depending on the isobar, such that1537

Γ(m) = Γ0
q(m)

m
m0

q(m0)

F2
Jξ

(m)

F2
Jξ

(m0)
. (5.42)
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As the final-state particles are spin less, the orbital angular momentum between them equals to1538

the isobar spin, i.e. L0 = Jξ. The mass m0 and width Γ0 of the isobar resonances are taken from1539

the PDG [91].[w]
1540

Flatté Parameterization for the f0(980)1541

The f0(980) is very close in mass to the KK̄ threshold, which leads to strong deviations1542

of the amplitude from a Breit-Wigner shape. To take this into account, we employed the1543

Flatté parameterizationFlatté parameterizationFlatté parameterizationFlatté parameterizationFlatté parameterizationFlatté parameterizationFlatté parameterizationFlatté parameterizationFlatté parameterizationFlatté parameterizationFlatté parameterizationFlatté parameterizationFlatté parameterizationFlatté parameterizationFlatté parameterizationFlatté parameterizationFlatté parameterization [93] for the f0(980) isobar using the formula and the parameters deter-1544

mined by BESIII [94]1545

DFlatté(m) =
1

m2
0 − m2 − i

(
gππ ϕ

ππ
2 (m) + gKK̄ ϕ

KK̄
2 (m)

) . (5.43)

Here, the ϕi
2(m) are the two-body phase spaces terms for the two decay channels i = ππ and1546

i = KK̄ that are analytically continued below the threshold where they become complex-valued,1547

and the gi are the couplings.1548

AMPK Parameterization for the Broad ππ S-Wave Component1549

The broad ππ S -wave component, which contains the f0(500) is parameterized following the1550

ansatz suggested by the VES collaboration [95]. The so-called M solution obtained from1551

analyzing ππ→ ππ scattering and defined by equations (3.15) and (3.20) in ref. [96] provides a1552

parameterization of the ππ S -wave amplitude, which also includes the f0(980) pole. In order to1553

remove the f0(980) from this amplitude, the parameters f 1
1 , f 1

2 , f 3
1 , c4

11, and c4
22 and all diagonal1554

elements of the M matrix were set to zero. Finally, we used the ππ→ ππ element of the T -matrix1555

(T11) defined in equation (3.15) in ref. [96] as the amplitude for the broad ππ S -wave component1556

called [ππ]AMPK
S :1557

DAMPK(m) = T11(m). (5.44)

Figure 5.4 illustrates the intensity and the real and imaginary parts of this amplitude.1558

Palano-Pennington Parameterization for the Kπ S-Wave1559

A variety of elaborate models for the Kπ S -wave amplitude are on the market [97–101]. However,1560

many of them suffer from covering only a limited mass range, typically up to at most 1.5 GeV/c2.1561

However, analyzing an mKππ range up to 3 GeV/c2 demands a Kπ S -wave amplitude that is1562

valid up to mK−π+ ≈ 2.9 GeV/c2. We tried different parameterizations such as the classic LASS1563

[w] For some resonances, the PDG lists more than one average value. The masses and widths that were used in these
cases are listed in ref. [92].
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Figure 5.4: Dynamic amplitude of the [ππ]AMPK
S isobar. (a) shows the intensity as a function of mπ−π+ , (b)

shows the Argand diagram, i.e. real vs. imaginary part of the dynamic amplitude of the [ππ]AMPK
S isobar.

The orange dots in the Argand diagram are drawn at the same mπ−π+ values as the corresponding orange
dots in the intensity spectrum. The black arrow indicates the direction of increasing mπ−π+ . Figure 10
in ref. [39], which also shows the dynamic amplitude of the [ππ]AMPK

S isobar, is wrong due to a mistake.
Here, we show the correct amplitude.

parameterization [97] with parameters taken from ref. [102] and the generalized LASS (GLASS)1564

parameterization [99] with parameters taken from ref. [103]. At the end we obtained the best1565

results in terms of likelihood and in terms of fit stability using an approach that simultaneously1566

takes into account all three K∗0 poles as explained in detail in the following.1567

The scattering amplitude for the process i→ f , e.g. Kπ→ Kπ or Kη→ Kπ, can be described in1568

terms of the T matrix. If the final state f is not produced in a scattering process, but in the decay1569

of a heavier state, as in our case, the decay amplitude F f can be written in terms of the Q vector1570

equation1571

Ff (m) =
∑

i

Ti f (m)Qi(m), (5.45)

where m is the invariant mass of the initial and final state. Qi represents the production of the1572

intermediate state i in the decay, which then rescatters to the final state f . The rescattering is1573

expressed by the T -matrix element Ti f . The T matrix is independent of the process. Thus, it can1574

be determined from other experiments, e.g. from Kπ → Kπ scattering experiments, and used1575

as input here. Typically, the elements Qi(m) are parameterized by polynomials in m2, with the1576

leading term being constant. Using equation (5.45) as isobar parameterizations in equation (5.9)1577

and taking into account only the leading term Qi(m) ≈ const, allows us to merge the sum
∑

i in1578

equation (5.45) and the sum
∑

a over different waves in equation (5.16). Hence, the different1579

states i can be interpreted as independent partial waves. The constants Qi can be absorbed1580

into the transition amplitudes of the waves with the dynamic isobar amplitudes given by the1581

corresponding T -matrix element Ti f .1582

70 March 1, 2022 18:18



D
RA

FT

5.1 Method

We took the T -matrix elements from a two-channel K-matrix parameterization in ref. [100], with1583

the two channels 1 = Kπ and 2 = Kη. One should note that despite Kη is in principle the first1584

inelastic channel, it is well known from measurements that the inelasticity actually starts at the1585

higher-lying threshold of the Kη′ channel. Therefore, the second channel should be interpreted1586

as an effective inelastic channel, in addition to Kπ.1587

We shortly recapitulate the most important formulas here.[x] The T -matrix elements relevant for1588

the Kπ final state read in terms of the K-matrix elements Ki j:1589

T11 =
K11 − iϕ2

2detK
δ

, and T21 = T12 =
K12

δ
. (5.46)

Here, detK = K11K22 − K2
12, ϕi

2 is the two-body phase space for the channel i, analytically1590

continued for energies below the corresponding threshold, and[y]
1591

δ = 1 − iϕ1
2K11 − iϕ2

2K22 − ϕ
1
2ϕ

2
2detK. (5.47)

The K-matrix elements are parameterized by a sum of two poles at sa and sb and a third-order1592

polynomial:1593

Ki j =
(s − sA)

sKπ

 ∑
α=a,b

gαi g
α
j

sα − s
+

3∑
n=0

Ci j,nXn

 , (5.48)

where1594

X =
2s − (stop + sbot)

stop − sbot
(5.49)

depends on s = m2. The parameters sKπ = m2
K + m2

π, sA = 0.87753sKπ, stop = 5.832 GeV2, and1595

sbot = 0.36 GeV2 are fixed. The remaining parameters were determined in ref. [100] by a fit to1596

scattering data from LASS [97] and Estabrooks et. al. [104] and to BaBar data on the decay1597

ηc → K̄Kπ [105] (see TABLE I in ref. [100]).1598

Finally, the two dynamic functions included in the PWD are1599

D[Kπ]Kπ
S

(m) = T11(s = m2) (5.50)

D
[Kπ]Kη

S
(m) = T12(s = m2). (5.51)

Figures 5.5 and 5.6 show the isobar dynamic amplitudes in the mK−π+ range relevant for this1600

analysis.1601

The T11 element as determined in ref. [100] exhibits an unphysical behavior in the mass region1602

above 2.5 GeV/c2 as there are no experimental data to constrain the amplitude in this region.1603

Thus, we set both amplitudesD
[Kπ]Kπ

S
(m) = 0 andD

[Kπ]Kη
S

(m) = 0 above m = 2.4 GeV/c2.1604

[x] There are some known typos in the formulas of ref. [100], which are corrected here.
[y] In ref. [100], ∆ was used instead of δ.
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Figure 5.5: Same as figure 5.4, but showing the dynamic amplitude of the [Kπ]Kπ
S isobar. The gray lines

and points are the extrapolation beyond the region where we set the amplitude to zero.
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Figure 5.6: Same as figure 5.4, but showing the dynamic amplitude of the [Kπ]Kη
S isobar. The gray lines

and points are the extrapolation beyond the region where we set the amplitude to zero.
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5.2 Wave-Set Selection1605

In principle there is an infinite number of possible partial waves that may contribute to the data,1606

e.g. as the spins and orbital angular momenta can take any integer number. Not all of these1607

partial waves might be realized in reality and not all of the realized partial waves might contribute1608

significantly to the K−π−π+ sample such that they can be resolved with the given precision of1609

the measured data.[z] As we measured only a finite amount of data and only a finite amount of1610

computing resources is available, we have to truncate the sum over partial waves in the intensity1611

model in equation (5.16) by selecting a certain set of partial waves, the so-called wave setwave setwave setwave setwave setwave setwave setwave setwave setwave setwave setwave setwave setwave setwave setwave setwave set, that1612

we include in the model. On the one hand, a too large wave set causes overfittingoverfittingoverfittingoverfittingoverfittingoverfittingoverfittingoverfittingoverfittingoverfittingoverfittingoverfittingoverfittingoverfittingoverfittingoverfittingoverfitting in the PWD1613

fit, because the number of fit parameters is approximately proportional to the number of partial1614

waves included in the wave set. Overfitting can lead to findings in the PWD that arise from1615

noise in the data [106]. This is an issue especially in amplitude analysis like the PWD, because1616

the coherent sum squared over complex-valued amplitudes like in equation (5.16) introduces1617

non-linear effects in the model. For example, two or more amplitudes may destructively interfere1618

with each other. Such a destructive interferencedestructive interferencedestructive interferencedestructive interferencedestructive interferencedestructive interferencedestructive interferencedestructive interferencedestructive interferencedestructive interferencedestructive interferencedestructive interferencedestructive interferencedestructive interferencedestructive interferencedestructive interferencedestructive interference may lead to large artificial enhancements of the1619

interfering amplitudes, while it leads to only a small change in the total model intensity and1620

thus to only a small change in description of the data, which may be misused to describe noise1621

in the data. In addition, an overfitted model is less robust against systematic effects, e.g. from1622

background processes like K− + p→ K−K−K+ + p that also entered the K−π−π+ sample (see1623

section 4.2). On the other hand, a too small wave set, i.e. a wave set that is missing waves that1624

significantly contribute to the data, may lead to artifacts in the results of the PWD, because it1625

leaves structures in the data that arise from the missed waves undescribed. These structures1626

might be partly accounted for in the PWD fit by the waves that are included in the wave set. This1627

might lead to artificial structures in these waves. Additionally, the missed waves may contain1628

interesting physics signals that we would miss. As we present in this work the so-far world’s1629

largest sample of the reaction K− + p→ K−π−π+ + p, we are especially interested in such weak1630

signal that were not seen before. Therefore, the goal of the wave-set selection is to find a minimal1631

wave set that is sufficient to describe all significant structures in the K−π−π+ sample.1632

Traditionally, these wave sets had been constructed by hand in the following iterative process.1633

Starting from a wave set constructed based on previous knowledge, partial waves are manually1634

added or removed. Then, the result of a PWD of these modified wave sets is studied. Based on1635

pre-defined criteria the modified wave set is accepted or rejected. Such a criterion can be whether1636

a newly added wave shows “significant intensity”. Also, likelihood-ratio tests are used to decide1637

whether removing a wave leads to a similar good description of the data such that the wave1638

set without the corresponding wave can be accepted. This procedure of adding and removing1639

waves is repeated until a “good enough” wave set is found. Following this approach potentially1640

introduces observer bias. The selection of waves that are added or removed is a personal choice,1641

[z] In addition to the diffractive scattering reaction K−+ p→ K−π−π+ + p, for which the partial waves were constructed
in section 5.1.2, there are other processes, e.g. Deck-like reactions (see section 2.1.1) or incoherent background
from reactions like K− + p→ K−K−K+ + p, that also contribute to the K−π−π+ sample. As the partial waves were
not constructed to describe these processes, their contribution in the K−π−π+ sample projects in principle to all
partial waves, but not all of these projections contribute significantly to the data.
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because not all possible combinations of adding and removing waves can be tested. This holds1642

especially for partial-wave analyses, where the contribution of a partial wave to the data is caused1643

not only by its own intensity, but also by its interference with other partial waves [107]. A partial1644

wave may become significant only when it is added together with other waves. Also, often the1645

decisions when to accept or reject a wave and when to stop the procedure is taken based on1646

subjective criteria, which are hard to quantify and thus hard to reproduce.1647

In this work, we minimized this potential observer bias by inferring the wave set from data.1648

Various techniques exist for construction optimal models that consist of sets of individual1649

components, e.g. in our case partial-waves. These model-selection techniques have applications1650

also in other fields, e.g. in machine learning. They all have in common that they select an1651

optimal subset of model components that is sufficient to describe the data from a large pool of1652

potentially possible components. Such a method was first applied to partial-wave analyses in1653

ref. [107]. At COMPASS, such methods were applied in the analysis of the reaction π− + p→1654

π−π−π−π+π+ + p [67] and π− + p→ π−π−π+ + p [43, 108]. They all share the same idea. First, a1655

large set of waves, the so-called wave poolwave poolwave poolwave poolwave poolwave poolwave poolwave poolwave poolwave poolwave poolwave poolwave poolwave poolwave poolwave poolwave pool, is systematically constructed by including all waves1656

that are expected to potentially contribute to the data (see section 5.2.1). In the second step, the1657

so-called wave-set selection fitwave-set selection fitwave-set selection fitwave-set selection fitwave-set selection fitwave-set selection fitwave-set selection fitwave-set selection fitwave-set selection fitwave-set selection fitwave-set selection fitwave-set selection fitwave-set selection fitwave-set selection fitwave-set selection fitwave-set selection fitwave-set selection fit, the data are fitted using the whole wave pool. However, using1658

the likelihood in equation (5.38) would lead to massive overfitting, as the wave pool is typically1659

much lager than the wave set needed to describe the data. In order to circumvent overfitting,1660

regularization techniques are applied to the wave-set selection fit, with the goal to suppress1661

insignificant waves (see section 5.2.2). In the third step, the waves that acquire significant1662

intensity in the wave-set selection fit are selected for the wave set (see section 5.2.5). In the1663

final step, the set of selected waves is fitted to the data, without regularization. This fit yields1664

the final results for the PWD (see section 5.5). Applying this approach to each (mKππ, t′) cell1665

yields an individual wave set for each cell. Due to the finite amount of measured data, there1666

are fluctuations of the wave set between neighboring (mKππ, t′) cells. Such fluctuations can be1667

suppressed by impose a continuity criterion in the wave-set selection (see section 5.2.3).1668

5.2.1 Construction of the Wave Pool1669

As a starting point for the wave-set selection, we had to construct a pool of partial waves that1670

on the one hand contains all waves that potentially contribute significantly to our data, but that1671

on the other hand is still manageable in size. In order to avoid bias from the construction of1672

the wave pool, we considered large ranges of the partial-wave quantum numbers. We included1673

partial-waves with spin J ≤ 7 and orbital angular-momentum L ≤ 7. We considered only waves1674

with positive reflectivity[aa] and with spin projections M = 0, 1, 2. Finally, we considered twelve1675

isobars that are known to decay to the π−π+ and K−π+ final state [91], six in the π−π+ subsystem1676

and six in the K−π+ subsystem. They are listed in table 5.2.1677

[aa] Due to the high beam momentum, we assumed that production via Pomeron exchange dominates our data,
which produces only positive-reflectivity waves (see section 5.1). Also, in a wave-set selection study including
negative-reflectivity waves, none of the negative-reflectivity waves picked up significant intensity.
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Table 5.2: Two-body isobars included in the systematic construction of the wave pool. The first row shows
the quantum numbers. The second row gives the name of the isobar resonance. The third row gives the
parametrization used in the PWD model.

JPC
ξ 0++ 1−− 2++ 3−−

π−π+ isobars [ππ]AMPK
S f0(980) f0(1500) ρ(770) f2(1270) ρ3(1690)

Amplitude section 5.1.4 (5.43) (5.39) (5.39) (5.39) (5.39)

JP
ξ 0+ 1− 2+ 3−

K−π+ isobars [Kπ]Kπ
S [Kπ]Kη

S K∗(892) K∗(1680) K∗2(1430) K∗3(1780)
Amplitude (5.50) (5.51) (5.39) (5.39) (5.39) (5.39)

Within these weak limitations, we included all combinations of quantum numbers and isobars1678

that are allows by the conservation laws of strong interaction. This resulted in a large wave pool1679

of 596 partial waves plus the incoherent flat wave to be fitted to the data. The pool of considered1680

partial waves is much larger than the wave set constructed by hand in the ACCMOR analysis [23],1681

which consisted of only 21 waves with J ≤ 2 and L ≤ 2. Compared to other analyses that applied1682

wave-set selection techniques, the challenge in the analysis presented here is to determine the1683

wave set from a large wave pool with only a limited amount of data. The wave pool in ref. [107]1684

consisted of only 40 waves. In the COMPASS π−π−π+ analysis we used a wave-pool of similar1685

size, but the π−π−π+ sample is about 100 times larger than the K−π−π+ sample analyzed in this1686

work.[ab]
1687

Assuming that the K−π−π+ sample is dominated by high-energy diffractive scattering, which is1688

a coherent process,[ac] we used a rank=1 model for the wave-selection fit, i.e. we use a PWD1689

model with a rank=1 spin-density matrix as discussed in section 5.1.2. The number of 1194 free1690

parameters[ad] of the PWD model is small enough to be determined by the limited amount of1691

data and also technically manageable.[ae]
1692

[ab] In addition to the minimization of bias from the wave pool, another argument for constructing a larger wave pool is
that we require the PWD model to be flexible enough to describe also background contributions to the K−π−π+

sample as discussed in section 5.3. This is a challenge especially in this work, where the expected background
from other processes of about 10 % is large compared to, e.g., the COMPASS π−π−π+ analysis.

[ac] As discussed in section 5.1, spin flip of the target proton is suppressed at COMPASS energies.
[ad] The real and imaginary parts of the transition amplitudes of the 596 waves, with one of them being real-valued to

account for the unknown global phase, plus a real-valued amplitude for the flat wave, plus two data-set fraction
parameters, i.e. 2 · 596 − 1 + 1 + 2 = 1194

[ae] A rank=3 model would have nearly three times the number of parameters as the rank=1 model.
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5.2.2 Regularization of the Likelihood Function1693

Using the wave pool in a fit of equation (5.38) to the data would lead to massive overfitting, as1694

the number of free parameters is larger than the number of events in some (mKππ, t′) cells. In1695

order to avoid this, we used regularization methods. There are different approaches to implement1696

regularization. Here, we added for each coherent sector[af] z and each partial wave a in the1697

wave pool a so-called regularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization term lnLReg to the log-likelihood that imposes a penalty on1698

|T z
a | , 0, i.e.[ag]

1699

lnL′WSS = lnLPWD +
∑
z,a

lnLReg
[
|T z

a |; {pReg}
]
. (5.52)

Here, lnLPWD is the log-likelihood function of the PWD as defined in equation (5.38), which1700

contains the information from the data sample and {pReg} represents the set of additional pa-1701

rameters of the regularization term, which must be tuned. A wave that does not significantly1702

contribute to the data has no support from LPWD and is therefore driven by the regularization1703

term, which is designed to suppress this wave such that |T z
a | → 0.1704

Different forms for the regularization term are possible. We used the Cauchy regularizationCauchy regularizationCauchy regularizationCauchy regularizationCauchy regularizationCauchy regularizationCauchy regularizationCauchy regularizationCauchy regularizationCauchy regularizationCauchy regularizationCauchy regularizationCauchy regularizationCauchy regularizationCauchy regularizationCauchy regularizationCauchy regularization:1705

lnLReg
[
|T z

a |;Γ
z
a

]
= − ln

1 +
|T z

a |
2(

Γz
a
)2

 , (5.53)

which had been already applied successfully in the COMPASS analysis of the reaction π− + p→1706

π−π−π−π+π+ + p [67]. Its free parameter Γz
a sets the scale for the magnitude of the transition1707

amplitude and thereby the strength of the regularization. Figure 5.7a shows the shape of the1708

Cauchy regularization term in the complex plane of a transition amplitude. The term has a1709

maximum at |T z
a | = 0, as required to suppress insignificant waves.1710

We also performed tests using a LASSO regularization[ah] , a ridge regression,[ai] or a combination1711

of both. None gave satisfactory results. Either the intensities even of large and significant waves1712

were heavily suppressed or the intensities of insignificant waves were not suppressed enough1713

to perform a selection. We obtained similar results in the wave-set selection performed in the1714

COMPASS π−π−π+ analysis [43]. We concluded, that LASSO regularization or ridge regression1715

cannot handle well the large dynamic range of the partial-wave intensities of up to five orders1716

of magnitude. However, in the Cauchy regularization the logarithm brings the intensities to a1717

common scale on, which the regularization was performed. Furthermore, to study the systematic1718

effects of the wave set on the results of the PWD we constructed another wave set using principles1719

of information field theory as discussed in section 5.7.2.1720

[af] We used a rank=1 model with only one coherent sector for the 596 partial waves of the wave pool plus one sector
containing the incoherent flat wave.

[ag] Here, we drop the mKππ and t′ dependence for simplicity.
[ah] LASSO regularization uses the following regularization term [109]: lnLReg

[
|T z

a |; λ
]

= −λ|T z
a |.

[ai] Ridge regression uses the following regularization term [110]: lnLReg

[
|T z

a |; λ
]

= −λ|T z
a |

2.
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Figure 5.7: Properties of the Cauchy regularization term. (a) shows lnLReg in the complex plane of a
transition amplitude T z

a . (b) shows the dependence of Γa on mKππ defined in equation (5.56) for four
selected partial waves in the lowest t′ bin.

Whether a wave is significant and hence should be included in the wave set depends on whether1721

its intensity is large enough to be resolved with the given precision of our data. However, the1722

partial-wave intensities corresponds to the produced number of events if the data would contain1723

only the given wave, while the precision of the data depends on the total number of measured1724

events. Therefore, the partial-wave intensity cannot be compared directly to the precision of1725

the data, but acceptance effects have to be taken into account. As the acceptance is different for1726

different partial waves,[aj] this requires a different scale parameter Γz
a in the Cauchy regularization1727

term for each of the waves in the wave pool, which needs to be tuned. The same scale parameter1728

can be used if the same wave appears in different coherent sectors z, i.e. Γz
a = Γa. In order to1729

reduce this task to one common scale parameter for all waves, we applied the regularization1730

penalty to the number,[ak]
1731

N̂z
a = |T z

a |
2 Īaa, (5.54)

of measured events predicted for wave a by the model, i.e. the expected number of measured1732

events if the data would contain only wave a. As Nz
a incorporates the acceptance effects it allowed1733

us to use a common scale parameter Γ in the regularization, i.e.1734

lnLReg
[
|T z

a |;Γ
]

= − ln

1 +
N̂z

a

Γ2

 . (5.55)

[aj] As the acceptance is strongly modulated in the phase-space variables (see section 5.6), the average acceptance of a
partial wave depends on the phase-space distribution of the given wave.

[ak] Here, the diagonal element of the acceptance-integral matrix Ī 2008
aa (mKππ, t′) enters, which is the average acceptance

of wave a [see equation (5.29)]. As the experimental acceptance of the three different data sets considered in this
analysis are very similar, we used for simplicity only the acceptance-integral matrix of the 2008 data set in the
regularization term.
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We implemented this in equation (5.53) by using a different parameter Γa for each wave in each1735

(mKππ, t′) cell[al] given by1736

Γa(mKππ, t′) ≡
Γ√

Īaa(mKππ, t′)
. (5.56)

This is shown for four exemplary selected waves in figure 5.7b. The overall drop of Γa for all1737

partial waves is caused by the rise of the acceptance towards higher masses (see figure C.4b).1738

Also, the different acceptances of the waves due to their different kinematic distributions of the1739

final-state particles is taken into account here. This means that a wave with larger intensity can1740

be less significant than a wave with smaller intensity if the former has a lower acceptance and1741

thereby effectively contributes less to the measured data.1742

In this analysis, we chose Γ = 0.36. This value was tuned such that the effect from the Cauchy1743

regularization is as weak as possible in order to not strongly bias the results of significant waves1744

with large intensities, while still being strong enough to suppress insignificant waves, which is1745

necessary to perform the wave-set selection. Using equation (5.56), the choice of Γ becomes1746

independent of the acceptance of the analyzed channel. A similar value for Γ was found in the1747

COMPASS π−π−π+ analysis, where a different final state with a completely different acceptance1748

was studied [43].1749

5.2.3 Imposing Continuity of the Wave Set in mKππ1750

As the wave sets for each (mKππ, t′) cell were inferred from data, they exhibit statistical fluctua-1751

tions. For example, almost every of the considered 596 waves appeared in at least one (mKππ, t′)1752

cell when we fitted equation (5.52) to the data. To suppress these fluctuations, we imposed1753

continuity of the wave sets in mKππ. This was done by fitting multiple neighboring mKππ bins1754

simultaneously in one fit and by adding another penalty term for each wave that favors the1755

corresponding transition amplitudes to be continuous in mKππ. We do not impose a continuity1756

condition in t′.1757

As a measure of discontinuity, we used the sum of the squared deviations of the transition1758

amplitudes of one mKππ bin to the neighboring bin at mKππ + ∆mKππ in a limited mKππ range1759

(mStart
Kππ ,m

End
Kππ):[am]

1760

lnLCont
[
T z

a (mStart
Kππ , t

′), . . . ,T z
a (mEnd

Kππ, t
′); λ

]
= −

mEnd
Kππ−∆mKππ∑

mKππ=mStart
Kππ

λ
∣∣∣T z

a (mKππ, t′) − T z
a (mKππ + ∆mKππ, t′)

∣∣∣2 .
(5.57)

[al] The acceptance and thereby Īaa(mKππ, t′) depends on mKππ and t′.
[am] We used λ = 0.8, which was tuned in a similar way as the Γ parameter of the Cauchy regularization (see

section 5.2.2).
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The total log-likelihood function of the wave-set selection fit across multiple mKππ bins reads1761

lnLWSS =

mEnd
Kππ∑

mKππ=mStart
Kππ

lnL′WSS(mKππ; t′) +
∑
z,a

lnLCont
[
T z

a (mStart
Kππ , t

′), . . . ,T z
a (mEnd

Kππ, t
′); λ

]
. (5.58)

Maximizing lnLWSS, large fluctuations among neighboring bins are suppressed.1762

Since different mKππ regions are dominated by different resonances, the wave set is necessarily a1763

function of mKππ. Therefore, we included only a limited range of 15 consecutive mKππ bins that1764

are fitted simultaneously in the wave-set selection fit. Still, the wave-set selection was carried1765

out for each (mKππ, t′) cell individually using seven mKππ bins above and seven mKππ bins below1766

the (mKππ, t′) cell for which the wave-set selection was performed.[an], [ao]
1767

5.2.4 Sub-Threshold Decays of Isobar Resonances1768

The invariant mass of a two-body subsystem at a given three-body mass mKππ is kinematically1769

limited to be below mKππ − mb, where mb is the mass of the bachelor particle. If this limit1770

is smaller than the nominal mass mξ,0 of an isobar resonance in the corresponding two-body1771

subsystem we can only observe the low-mass tail of the resonance. Waves in mKππ regions,1772

where mKππ − mb is much smaller than mξ,0, the so-called sub-threshold wavessub-threshold wavessub-threshold wavessub-threshold wavessub-threshold wavessub-threshold wavessub-threshold wavessub-threshold wavessub-threshold wavessub-threshold wavessub-threshold wavessub-threshold wavessub-threshold wavessub-threshold wavessub-threshold wavessub-threshold wavessub-threshold waves, are not expected1773

to contribute significantly to the data, because the low-mass tail of the isobar resonances results1774

in a small decay amplitude of the corresponding wave. In addition, the low-mass tail of the isobar1775

amplitude of a sub-threshold wave has no clear signature, which would allow to unambiguously1776

distinguish this wave from other waves with the same quantum numbers but with a different1777

isobar resonance. For example, the phase of the isobar amplitude is approximately constant. This1778

lack of a clear signature of sub-threshold waves leads to ambiguities that are known, e.g. from1779

the COMPASS π−π−π+ analysis [43], to cause artifacts in the PWD.1780

Therefore, we fixed the amplitude of partial waves with heavy isobars[ap] to be zero below a1781

certain threshold mξ,thr
Kππ in the wave-set selection fits. We chose this threshold such that above1782

mξ,thr
Kππ, we are able to observe a significant part of the phase motion of the amplitude of the1783

isobar. Therefore, the threshold is defined by the two-body mass, where the phase motion of the1784

amplitude of the isobar is 1/8 of the total phase motion.1785

[an] At the borders of the mKππ spectrum, we still included 15 mKππ bins, but the mKππ cell for which the wave-set
selection fit was performed was no longer in the center of this range.

[ao] To avoid effects due to the change in the chosen mKππ binning, we used for all 15 bins the same bin width in mKππ

as in the (mKππ, t′) cell, for which the wave-selection fit was performed. For example, for (mKππ, t′) cells around
mKππ = 2 GeV/c2, where the bin width changes from 20 MeV/c2 to 40 MeV/c2, we used in the wave-set selection
fits for wave sets at mKππ < 2 GeV/c2 bins of 20 MeV/c2 width, also for those of the 15 bins with mKππ > 2 GeV/c2;
and vice versa for wave sets at mKππ > 2 GeV/c2.

[ap] We applied these thresholds to waves with K∗(1680), K∗3(1780), f0(980), f0(1500), and f2(1270) isobars.
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This translates into an mKππ threshold of[aq]
1786

mξ,thr
Kππ = mb + mξ,0 − 1.5Γξ,0, (5.59)

below which the respective partial wave amplitude was fixed to be zero in the wave-set selection1787

fit. Here, Γξ,0 is the nominal width of the isobar.1788

This approach has two effects. First, for (mKππ, t′) cells below mξ,thr
Kππ a wave with isobar resonance1789

ξ was not included in the selected wave sets. Second, as we fitted 15 consecutive cells in mKππ to1790

impose continuity (see section 5.2.3), the wave-set selection fits for (mKππ, t′) cells just above1791

mξ,thr
Kππ also included (mKππ, t′) cells below mξ,thr

Kππ. For those cells below mξ,th.
Kππ, we also fixed the1792

amplitude of the sub-threshold waves to zero. Due to the zero amplitude of sub-threshold waves1793

in (mKππ, t′) cells below mξ,th.
Kππ, the continuity criterion in equation (5.57) leads to an additional1794

regularization of the corresponding waves in (mKππ, t′) cells above mξ,thr
Kππ. Consequently, mξ,thr

Kππ is1795

not a hard threshold, but a constraint that smoothly becomes weaker for higher mKππ, similar to1796

how we expect such a wave to contribute to the data.1797

5.2.5 Results of the Wave-Set Selection Fit1798

Following the procedure described in sections 5.2.1 to 5.2.4, we fitted the likelihood in equa-1799

tion (5.58) to the data to obtain a wave set for each (mKππ, t′) cell. We performed 700 attempts1800

with random start paramter values for each cell in order to account for possible multimodality1801

of lnLWSS. From these 700 fit attempts, the best fit result, i.e. the result with the largest log-1802

likelihood value, is used to determine the wave set. As shown in figure 5.8a, for many (mKππ, t′)1803

cells, the best result was found multiple times, but there are some cells where the best result was1804

found only once. These bins suffer from multimodality of lnLWSS, which seems to be more1805

pronounced in the high-mKππ region. As an example, figure 5.8b show the likelihood distribution1806

of a (mKππ, t′) cell where the best solution was found only once. This distribution exhibits a 5001807

units wide continuous peak[ar] from which we conclude, that lnLWSS has a very large number1808

of local minima, which, however, yield similar description of the data. Similar results were1809

observed in other applications of the Cauchy regularization [43, 67]. A possible explanation1810

for this multimodality is the non-convex shape of the Cauchy regularization in equation (5.53),1811

which is known to induce multimodality [43, 111, 112].1812

In order to decide which waves enter the wave set, we ordered the waves by intensity in each1813

(mKππ, t′) cell as shown in figure 5.9. Figure 5.9b shows the typical behavior in an (mKππ, t′)1814

cell in the high-mass region. The intensities obtained from the best result (orange points) fall1815

[aq] Here, we used a relativistic Breit-Wigner amplitude and the nominal isobar mass and width from ref. [91] to
determine this threshold.

[ar] The first bin of the histogram shown in figure 5.8b has more than 300 entries and not 1 entry as it would be expected
for the likelihood distribution of a (mKππ, t′) cell where the best solution was found only once. The reason is that
in order to show the spread in lnL, the bin width of this histogram was chosen much wider than the 0.1 units in
lnLWSS different, which define two solutions to be the same. Therefore, the fist bin contains multiple different
solutions.
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Figure 5.8: Stability of the wave-set selection fits. (a) shows the number of fit results that yielded the best
solution, i.e. an lnLWSS value at most 0.1 units smaller than the overall largest lnLWSS value found in all
700 fit attempts, as a function of mKππ in the lowest t′ bin. (b) shows the distribution of the lnLWSS values
obtained by minimizing equation (5.58) relative to the overall largest lnLWSS value of the best fit result
from the wave-set selection fit in one (mKππ, t′) cell.

continuously until they reach a value of |T z
a |

2 ≈ 5, where the intensity distribution has a jump1816

discontinuity. The jump is followed by a long tail of about 550 waves nearly all of them with1817

|T z
a |

2 << 1. The waves in this tail do not significantly contribute to the data. Therefore, we1818

selected all waves with an intensity above a threshold given by the jump (black horizontal line in1819

figure 5.9). The sub-optimal solutions with lower lnLWSS are shown by the other colored points.1820

They exhibit a significant spread around the best solution, especially for the deselected waves.1821

The reason for this is, that insignificant waves are not pulled to exactly zero intensity by the1822

Cauchy regularization.[as] This leaves some freedom to the fit to distribute intensity among the1823

waves in the deselected tail without having a large influence on lnLWSS. As these fluctuations1824

mainly affects the deselected waves that have an intensity well below the threshold, it does not1825

strongly influence the selection of the wave set.1826

Figure 5.9a shows the typical behavior in the low-mass region. Also here, we observe a clear jump1827

at a similar intensity of |T z
a |

2 ≈ 5. In addition, we observe small jumps at higher intensities, i.e. in1828

the region of the selected waves. They seem to be driven by correlations among neighboring mKππ1829

bins, because if we did not use equation (5.57), those small jumps were much less pronounced.1830

Overall, the jumps always appear at a similar intensity of the order of 1, which means that a wave1831

has to contribute with a common minimum intensity to the data in order to be resolved. Still,1832

we determined the thresholds individually for each (mKππ, t′) cell using the method discussed in1833

appendix D.1.1. All waves that in the wave-set selection fit have an intensity above the respective1834

[as] This is because the gradient of lnLReg is zero at |T z
a | = 0. Other regularization approaches, e.g. LASSO, do not

have this drawback, but require special minimization techniques.
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(a) (b)

Figure 5.9: Partial waves ordered by their intensity in two neighboring mKππ bins in the lowest t′ bin. The
waves are ordered by intensity as obtained from the best result in each cell and numbered accordingly.
The orange points show the best result out of 700 fit attempts. The other colored points show the results
from the other fit attempts. Their color represents lnLbest

WSS − lnLWSS. Only results where this difference is
smaller than 500 units are plotted. Only the 100 waves with the largest intensity are shown. The black
horizontal line marks the threshold, above which waves were selected for the wave set.

threshold entered the wave set of the given (mKππ, t′) cell. The incoherent flat wave was always1835

included in the selected wave set, independent of the result of the wave-set selection.1836

5.2.6 The Selected Wave-Set1837

As discussed above, we determined the wave set individually for each (mKππ, t′) cell. Hence, a1838

wave might be deselected in individual cells, while it is selected in the neighboring cells. This1839

is observed, e.g., in the tails of K−π−π+ resonances where the intensity becomes small and1840

fluctuates around the threshold above which the wave is selected. However, this leads to a bias1841

towards larger intensities when studying such waves in the resonance-model fit discussed in1842

chapter 6. This is because statistical fluctuations towards smaller intensities favor the wave to be1843

deselected and thus are not considered in the χ2 statistics used in the RMF, while fluctuations1844

towards larger intensities favor the wave to be selected and thus are considered in the RMF. To1845

circumvent this effect, we manually included waves that show interesting signals into the wave1846

sets of all (mKππ, t′) cells considered by the resonance-model fit, independent of the result of1847

the wave-set selection fit. The list of those waves is given in table D.1 in the appendix. As this1848

procedure adds only a few waves in a few (mKππ, t′) cells, it only weakly affects other waves in1849

the PWD. We verified this by comparing the results of two PWD fits. One using the wave set1850

directly obtained from the wave-set selection fits and one using the modified wave set.1851
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Figure 5.10: Number of waves in the selected wave sets of the individual (mKππ, t′) cells as a function of
mKππ. The different line colors represent the four t′ bins. The gray line indicates the mKππ value where we
changed from 20 MeV/c2 to 40 MeV/c2 wide bins in mKππ.

The size of the selected wave sets exhibits a pronounced mKππ dependence as shown in figure 5.10.1852

The wave-set size ranges from about 15 waves in the lowest mKππ bins that contain only a few1853

events up to about 80 waves in the 2 GeV/c2 region. The wave-set size rises with increasing1854

mKππ up to about 2 GeV/c2 because at higher masses more decay channels and higher spins1855

contribute. As expected, doubling the mKππ bin width at 2 GeV/c2 leads to a jump of the wave-set1856

size, because more waves can be resolved due to the larges number of events. No significant1857

discontinuity at 2 GeV/c2 is observed in the results for the transition amplitudes (see section 5.5).1858

Above about 2 GeV/c2, the wave-set size decreases again, because the number of events becomes1859

smaller. Similarly, the selected wave set is smaller in the two highest t′ bins (green and red lines1860

in figure 5.10), which have about half the number of events compared to the two lowest t′ bins1861

(blue and orange lines in figure 5.10).1862

Overall, 238 partial waves[at] were selected in at least one (mKππ, t′) cell. Most of them were1863

selected over wide continuous mKππ ranges such as the 0− 0+ [Kπ]Kπ
S π S wave shown in fig-1864

ure 5.11. This proves that the continuity condition in equation (5.57) works. About 90 of 2381865

waves appear only in a few individual (mKππ, t′) cells such as the 0− 0+ ρ3(1690) K F wave shown1866

in figure 5.11. This represents the statistical uncertainty of the wave set.[au] The complete list1867

of selected partial waves can be found in appendix D.1.3 in figures D.3 to D.34. As expected1868

from the observed structures in the mK−π+ and mπ−π+ distribution shown in figures 4.7a and 4.7b,1869

respectively, a large fraction of the selected partial waves represent decays to ground-state isobar1870

resonances like the K∗(892), K∗2(1430), ρ(770), or the f2(1270). Furthermore, the selected partial1871

[at] This does not include the incoherent flat wave.
[au] We studied the influence of these about 90 noisy waves on the other waves, by performing a PWD using a wave set

without these noisy waves. The results are consistent with those from the PWD using the complete 238-wave set.
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Figure 5.11: Mass ranges of selected waves with JP = 0− in the lowest t′ bin. The gray vertical line
indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide bins.

waves are dominated by waves with J . 5, which is consistent with previous observations as1872

there is no known or expected strange-meson resonance with J > 5 (see figure 1.1). Therefore,1873

we conclude that the wave-set selection yielded reasonable results. We substantiate this statement1874

when studying the agreement between the PWD model and data in section 5.6.1875

Finally, the so-called 238-wave set238-wave set238-wave set238-wave set238-wave set238-wave set238-wave set238-wave set238-wave set238-wave set238-wave set238-wave set238-wave set238-wave set238-wave set238-wave set238-wave set that we inferred from data using the wave-set selection1876

approach as discussed in this section was used in equation (5.16) as the model for the PWD of1877

the measured K−π−π+ data. In addition, it was also used for many pseudodata studies discussed1878

in sections 5.8, 5.10, and 6.4.1879

5.3 Modeling Incoherent Background Processes1880

As discussed in section 5.1, the reaction K− + p→ K−π−π+ + p is dominantly a coherent process.1881

In the PWD, it can be modeled therefore by a rank=1 spin-density matrix in equation (5.18).1882

However, also events from other processes passed the event selection discussed in section 4.1 and1883

thereby entered the K−π−π+ sample. For example, there is contamination of beam pions in the1884

K−π−π+ sample (see section 3.1.6). These beam pions may also undergo diffractive scattering1885

reactions leading to a final state with three charged particles, i.e. the reaction π−+p→ π−π−π++p.1886

We expect this π−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ background to be the largest background component in the K−π−π+
1887

sample as discussed in detail in section 5.10. Another source of background are reactions with1888

three kaons in the final state, i.e. K−+ p→ K−K−K++ p. Such events entered the K−π−π+ sample1889

due to limitations of the final-state particle identification. We estimated the K−K−K+ background1890

to be about 4 % as discussed in section 4.2. All these background processes include different, i.e.1891

distinguishable final-state particles. Therefore, these processes cannot be modeled as a sum of1892

coherent amplitudes, but the corresponding amplitudes have to be summed incoherently.1893
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In order to treat these incoherent background processes using the formalism developed in sec-1894

tion 5.1, we formulated a spin-density matrix of the 238-wave set with rank > 1. This allows1895

for incoherence in the PWD model and thereby takes into account the incoherent background1896

components in an effective way. In section 5.3.1, we give a detailed motivation for this approx-1897

imation. We know of at least three processes contributing to the K−π−π+ sample: the signal1898

reaction K− + p → K−π−π+ + p, and the background reactions π− + p → π−π−π+ + p and1899

K− + p → K−K−K+ + p. Consequently, we formulated the PWD model in equation (5.19)1900

using a rank=3 spin-density matrix. In order to study whether a PWD model using a rank=31901

spin-density matrix is sufficient to take into account all incoherent background processes, we1902

performed a study in which we used a much larger rank. i.e. a rank=6 spin-density matrix. This1903

study yielded results consistent with those from the rank=3 PWD fits, which suggests that the1904

additional freedom in the rank=6 PWD fits from the almost two times larger number of free1905

parameters is not needed to describe the data. Thus, we conclude that the PWD model using1906

a rank=3 spin-density matrix, which is called rank=3 model in the following, is sufficient to1907

effectively take into account the incoherent background processes.1908

As discussed in section 5.2, the 238-wave set was constructed based on a rank = 1 model.1909

Historically, we initially had used a rank=1 model not only for the wave-set selection fits, but also1910

for the final PWD, analogously to the COMPASS π−π−π+ analysis [39]. Unfortunately, it turned1911

out that a later state of the analysis the incoherent background processes play a significant role,1912

i.e. when describing the results of the PWD in terms of a resonance model as done in the RMF1913

described in chapter 6. Hence, we had to take into account the incoherent background processes1914

in the RMF by incoherently adding background components to the coherent resonance model for1915

the process K− + p→ K−π−π+ + p. However, describing the results of the PWD that were based1916

on the coherent rank=1 model by an incoherent resonance model would have been inconsistent.1917

Thus, we had to treat the incoherent background processes also at the level of the PWD by using1918

a rank=3 model. Performing the wave-set selection again would have been very time-consuming1919

and computationally very expensive. Hence, we used the 238-wave set, which is based on a1920

rank=1 model, for the PWD using the rank=3 model, because by switching to a rank=3 model1921

we only added more freedom to the fit as the rank=1 model is a subset of the rank=3 model.1922

Furthermore, we observe overall the same structures in the partial waves when comparing the1923

results using the rank=3 and the rank=1 models. When introducing the higher rank, we observe1924

the largest change in the incoherent flat wave. While the flat wave contributed about 2 % to the1925

total intensity when using the rank=1 model, it became practically zero when using the rank=31926

model. As the flat wave models background from events where the three final state particles are1927

uncorrelated, the zero intensity of the flat wave indicates that there is a negligible fraction of such1928

events in the K−π−π+ sample. This underlines the selectivity of the event selection presented in1929

section 4.1. The non-vanishing flat wave when using the rank=1 model accounted for part of the1930

incoherent background processes, as it was the only incoherent model component in the rank=11931

model. However, as final-state particles from incoherent background processes are correlated,1932

the flat wave is only a rough approximation for these contributions only for data samples where1933

these incoherent backgrounds are small, e.g. in the COMPASS π−π−π+ analysis [39].1934
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5.3.1 Effective Background Description using a Higher Rank1935

In order to include the incoherent background processes in the PWD model, one would need to1936

write the total probability P
(
τKππ

)
to measure an event as a sum of probabilities of the K−π−π+

1937

and the background processes, bkg, i.e.[av]
1938

P
(
τKππ

)
= PKππ

(
τKππ

)
+

∑
bkg

Pbkg
(
τbkg

)
· J

(
bkg→ Kππ

)
. (5.60)

Here, the phase-space variables τKππ (see section 5.1.1) are used to formulate the total probability.1939

Depending on which process p we are assuming for the event, its probability to be measured1940

is described by a different set of phase-space variables τp. This introduces additional Jacobian1941

terms J that arise due to the transformation from the set τp of variables to τKππ. Modeling the1942

individual probabilities analogously to equation (5.32), yields:[aw]
1943

P
(
τKππ

)
∝ ηKππ

(
τKππ

)
· IKππ

Kππ

(
τKππ

)
+

∑
bkg

ηbkg
(
τbkg

)
· I

bkg
bkg

(
τbkg

)
· J

(
bkg→ Kππ

)
. (5.61)

Here, ηp is the experimental acceptance of the event assuming that it is of process p, and Ipq is1944

the model intensity formulated according to equation (5.16) for events produced by process q but1945

modeled in terms of partial waves assuming the process p. For example, IKππ
Kππ is the intensity1946

model for the K−π−π+ component in the data formulated in terms of partial waves of the reaction1947

K− + p→ K−π−π+ + p as given in equation (5.10).1948

Including the incoherent background processes according to equation (5.61) is impossible mainly1949

due to two reasons. First, this would require a model for Ibkg
bkg as input. However, for most1950

background processes such as K−+ p→ K−K−K+ + p, such a model is unknown.[ax] Second, the1951

calculation of the difference acceptances ηp(τp) of the various processes is not feasible here. As1952

shown in section 5.1.3, for a single process, the acceptance of each event can be combined from1953

all events to one summand,
∑

k η
Kππ(τKππ

k ), in the lnLPWD in equation (5.38). This summand is1954

independent of the fit parameters. Thus, this term can be dropped from the likelihood function, i.e.1955

it can be ignored in the maximum-likelihood fits.[ay] However, for multiple processes we would1956

have to use equation (5.61), where the acceptance is not a global coefficient, but the various1957

processes contribute with different acceptances. Therefore, for multiple processes the acceptance1958

of each event cannot be combined to one summand in lnLPWD and thus cannot be dropped.1959

Hence, we would need to determine the acceptance individually for each measured event and1960

for each considered process. In practice, it is not feasible to determine these acceptances in a1961

reasonable amount of time.[az] This prevents us from using equation (5.61).1962

[av] For simplicity, we drop the dependencies on mKππ and t′ here.
[aw] For simplicity, we omit the constant normalization factor.
[ax] The only exception is for the π−π−π+ background, for which we determined such a model in the COMPASS π−π−π+

analysis [39].
[ay] The acceptance is still correctly considered in the maximum-likelihood fits. It enters via the acceptance-integral

matrix given in equation (5.29).
[az] As described in section 5.1, we implemented acceptance effects in the PWD in the acceptance-integral matrix
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We circumvented these limitations and took into account the incoherent background processes by1963

effectively modeling the background contributions and their acceptances in terms of an intensity1964

model consisting of partial waves of the reaction K− + p→ K−π−π+ + p, i.e. we used1965

IKππ
bkg

(
τKππ

)
≡

ηbkg
(
τbkg

)
ηKππ

(
τKππ

)Ibkg
bkg

(
τbkg

)
· J

(
bkg→ Kππ

)
. (5.62)

With this, the total probability in equation (5.61) reads1966

P
(
τKππ

)
∝ ηKππ

(
τKππ

)
· IKππ

Kππ

(
τKππ

)
+

∑
bkg

ηKππ
(
τKππ

)
· IKππ

bkg

(
τKππ

)
. (5.63)

Now, each model intensity is multiplied by the same acceptance ηKππ. Therefore, the acceptance1967

can be factored out and dropped in the likelihood function, which resolves the issue of determining1968

ηKππ on an event-by-event basis.1969

Still, a model IKππ
bkg for the background processes is needed. However, as all terms in equa-1970

tion (5.63) are functions of the same set τKππ of phase-space variables, IKππ
bkg can be modeled in1971

terms of partial waves of the reaction K− + p → K−π−π+ + p, analogously to equation (5.16).1972

This yields for the probability of an event:[ba]
1973

P ∝ ηKππ

 ∑
zKππ

∣∣∣∣∣∣∣∑a∈WzKππ

T
zKππ
a Ψ

zKππ
a

∣∣∣∣∣∣∣
2

+
∑
bkg

∑
zbkg

∣∣∣∣∣∣∣∑a∈Wzbkg

T
zbkg
a Ψ

zbkg
a

∣∣∣∣∣∣∣
2
 . (5.64)

Grouping all incoherent sums over the coherent sectors z into a single sum and using the same1974

wave set W with the same set {Ψa} of decay amplitudes for all coherent sectors allows us to1975

describe the K−π−π+ signal and the background processes by a single condensed expression:1976

P ∝ ηKππ

 ∑
p={zKππ, zπππ, zKKK , ...}

∣∣∣∣∣∣∣∑a∈WT pa Ψa

∣∣∣∣∣∣∣
2
︸                                     ︷︷                                     ︸

≡ IKππ
tot

, (5.65)

i.e. by a single total model intensity IKππ
tot . Finally, IKππ

tot can be written in terms of a single1977

spin-density matrix [see equation (5.18)]1978

ρab =
∑

p={zKππ, zπππ, zKKK , ...}

T pa

[
T
p

b

]∗
. (5.66)

defined in equation (5.29). We calculated the elements of this matrix by a Monte Carlo integration based on
one reconstructed pseudodata sample. Here, we would need to determine the acceptance individually for each
measured event and for each considered process. This would require generating more and orders of magnitude
larger pseudodata samples and is thus computationally extremely expensive.

[ba] For simplicity, we drop the dependence on τKππ here as it is the same for all functions.
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The rank of this matrix and thereby the rank of the PWD model is given by the incoherent1979

processes, i.e. by the sum over p. Equation (5.65) has the same form as equation (5.32) with1980

coherent sectors now representing the K−π−π+ signal and the various background processes.1981

Therefore, when taking into account the incoherent background by using a rank > 1 PWD model,1982

we can use the same PWD formalism described in section 5.1, e.g. the same decay amplitudes1983

and the same likelihood function. Just the number of free parameters increases when using a1984

model with a higher rank.1985

As explained in section 5.1, in the PWD fits the measurable quantities are the spin-density matrix1986

elements. The transition amplitudes T z
a in equation (5.18) are an effective parameterization of1987

the spin-density matrix. In general, they are different from the transition amplitudes T pa of the1988

various physics processes p in equation (5.66) by an unknown unitary transformation. Thus, we1989

cannot determine the transition amplitudes of the individual processes uniquely. Therefore, we1990

cannot separate the K−π−π+ signal from the background processes at the stage of the PWD. This1991

is only possible at the level of the RMF as discussed in chapter 6.1992

In summary, using a PWD model with rank = 3 allows us to take into account incoherent1993

background processes in an effective way, while still employing the formalism presented in1994

section 5.1. This, however, requires the K−π−π+ PWD model to be flexible enough to approximate1995

the phase-space distribution of the background processes according to equation (5.62). We studied1996

this approximation for the dominant π−π−π+ background as discussed in section 5.10.2. Overall,1997

the PWD model using the 238-wave set is able to approximate the π−π−π+ background in the1998

K−π−π+ sample. Also in the resonance-model fit, we find consistent results for the background1999

contributions in the K−π−π+ sample as presented in section 6.2, which was the initial motivation2000

to formulate a rank=3 PWD model.2001

5.4 Improving Estimates of Partial-Wave Decomposition Results2002

The physics quantities that we determine in the PWD fits are the real and imaginary parts of the2003

spin-density matrix elements defined in equation (5.18). Our estimates for the values of these2004

quantities, together with the corresponding statistical uncertainties and correlations, enter the2005

RMFs as discussed in section 6.1.5. Hence, in addition to a precise and accurate estimation of2006

the values of the spin-density matrix elements, we aim for an accurate estimate of their statistical2007

uncertainties and correlations.[bb] The latter are represented by the entries of the covariance2008

matrix of the spin-density matrix elements.2009

Performing a maximum-likelihood fit of equation (5.38) to the measured K−π−π+ sample yields2010

the optimal parameter values for the fit parameters, i.e. the real and imaginary parts of the2011

transition amplitudes MLET z
a and the data-set fraction parameters. These optimal values are2012

called maximum-likelihood estimatesmaximum-likelihood estimatesmaximum-likelihood estimatesmaximum-likelihood estimatesmaximum-likelihood estimatesmaximum-likelihood estimatesmaximum-likelihood estimatesmaximum-likelihood estimatesmaximum-likelihood estimatesmaximum-likelihood estimatesmaximum-likelihood estimatesmaximum-likelihood estimatesmaximum-likelihood estimatesmaximum-likelihood estimatesmaximum-likelihood estimatesmaximum-likelihood estimatesmaximum-likelihood estimates. The covariance matrix of the fit parameters is estimated2013

[bb] Systematic uncertainties are discussed in section 5.7.
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by evaluating the inverse of the Hessian matrix of the log-likelihood function at its maxi-2014

mum (see equation (40.12) in ref. [9]). The observables we are actually interested in are the2015

spin-density matrix elements that are calculated from the transition amplitudes according to2016

equation (5.18). The maximum-likelihood estimates of the spin-density matrix elements are2017

calculated by inserting MLET z
a into equation (5.18). The corresponding covariance matrix is2018

calculated using linear uncertainty propagation, i.e. by a linear approximation of equation (5.18),2019

(see equation (40.42) in ref. [9]).2020

This maximum-likelihood approach was used in previous partial-wave analyses [39, 113, 114]2021

to obtain the estimates of the values and covariance matrix of the spin-density matrix elements.2022

However, this approach has limitations. First, the uncertainty estimation of the fit parameters2023

assumes that the log-likelihood function is approximated well a multivariate Gaussian function2024

in the fit parameters, which is true only for large data samples. For finite sample sizes as in this2025

analysis, this approximation may lead to biased uncertainties as discussed in ref. [108]. Second,2026

the linear uncertainty propagation is only an approximation when calculating the uncertainties2027

of observables that depend in a non-linear way on the fit parameters. For example, the real and2028

imaginary parts of the spin-density matrix elements depend on the products of real and imaginary2029

parts of the transition amplitudes:2030

<
(
ρab

)
=

∑
z

[
<

(
T z

a

)
<

(
T z

b

)
+ =

(
T z

a

)
=

(
T z

b

)]
(5.67)

=
(
ρab

)
=

∑
z

[
=

(
T z

a

)
<

(
T z

b

)
−<

(
T z

a

)
=

(
T z

b

)]
. (5.68)

The linear uncertainty propagation is a sufficient approximation only if the relative uncertainties2031

on the transition amplitudes are small. To overcome these approximations, we applied the method2032

of Bootstrapping [115] in order to obtain better estimates for the values and the covariance matrix2033

of the observables, e.g. of spin-density matrix elements. This is discussed in the following2034

section 5.4.1.2035

5.4.1 The Bootstrapping Method2036

In this section, we explain the Bootstrapping method on the example of spin-density matrix2037

elements. The same method can be applied for any other observable, e.g. for the data-set ratio2038

parameters. For the purpose of notation, we collect all real and imaginary parts of the spin-density2039

matrix elements in one real-valued vector ~λ. λi is the i th entry of ~λ as defined in equation (6.20),2040

i.e. the real or imaginary part of one spin-density matrix element. The maximum-likelihood2041

estimates λMLE
i of the spin-density matrix elements depend on the data sample from which2042

they were determined. The data sample is subject to statistical fluctuations. These fluctuations2043

propagate to λMLE
i , which means that they are also statistically distributed quantities. The2044

uncertainties of λMLE
i and the correlations between them are given by the covariance matrix2045

Cov
[
λMLE

i , λMLE
j

]
of this distribution.2046
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We approximated the underlying distribution of λMLE
i by a finite set {λ(h)

i } that is distributed2047

accordingly. Obtaining such a set requires a set of data samples indexed by h, where each2048

of these samples is distributed in the same way as the measured K−π−π+ sample. Since we2049

cannot remeasure the K−π−π+ sample multiple times, we employed an approximation method2050

that belongs to the class of so-called resampling methods [115, 116], to construct random data2051

samples from the measured K−π−π+ sample. The size of these data samples must be the identical2052

to the size of the measured K−π−π+ sample, because the precision of the data determines the2053

number of waves that can be resolved in the partial-wave decomposition (see section 5.2).2054

Applying the 238-wave set, which was optimized for the measured K−π−π+ sample, to a smaller2055

data sample may lead to overfitting and thereby bias the distribution of λMLE
i . This constrains the2056

choice of applicable resampling methods.2057

Due to the limitations discussed above, we used the Bootstrapping method [115]. Based on2058

this method we generated NBS Bootstrapping samplesBootstrapping samplesBootstrapping samplesBootstrapping samplesBootstrapping samplesBootstrapping samplesBootstrapping samplesBootstrapping samplesBootstrapping samplesBootstrapping samplesBootstrapping samplesBootstrapping samplesBootstrapping samplesBootstrapping samplesBootstrapping samplesBootstrapping samplesBootstrapping samples indexed by h by randomly drawing Nev2059

events from the Nev measured events of the K−π−π+ sample. This means that in a Bootstrapping2060

sample h some of the measured events are used more than once.[bc] The distribution of the2061

Bootstrapping samples approximates the underlying distribution of the K−π−π+ sample.[bd]
2062

Thus, they allow us to approximate the distribution of any observable obtained from the K−π−π+
2063

sample. For example, to study the distribution of the spin-density matrix elements, we determined2064

their maximum-likelihood estimates λ(h)
i for each Bootstrapping sample h. To this end, we first2065

performed a maximum-likelihood fit of equation (5.38) to each Bootstrapping sample, which2066

yielded the maximum-likelihood estimates of the transition amplitudes. Then, we calculated for2067

each Bootstrapping sample the spin-density matrix elements λ(h)
i from the maximum-likelihood2068

estimates of the transition amplitudes.2069

This procedure yielded for each spin-density matrix element i a set {λ(h)
i } of NBS estimates, one2070

from each Bootstrapping sample h. These sets approximate the underlying physical distribution2071

of the spin-density matrix elements. Thus, they allow us to estimate the covariance matrix of the2072

spin-density matrix elements2073

Cov
[
λMLE

i , λMLE
j

]
=

1
NBS − 1

NBS∑
h=1

(
λ(h)

i − 〈λi〉
) (
λ(h)

j − 〈λ j〉

)
. (5.69)

The mean value of the spin-density matrix elements, called Bootstrapping mean valueBootstrapping mean valueBootstrapping mean valueBootstrapping mean valueBootstrapping mean valueBootstrapping mean valueBootstrapping mean valueBootstrapping mean valueBootstrapping mean valueBootstrapping mean valueBootstrapping mean valueBootstrapping mean valueBootstrapping mean valueBootstrapping mean valueBootstrapping mean valueBootstrapping mean valueBootstrapping mean value, reads2074

〈λi〉 =
1

NBS

NBS∑
h=1

λ(h)
i . (5.70)

[bc] When adding an event to the Bootstrapping sample, we randomly selected it from the full sample of measured
events.

[bd] Formally, we approximated the underlying distribution of the K−π−π+ sample by the empirical distribution that is
based on the measured K−π−π+ sample [see equation (1.6) in ref. [117]]. Then we drew a set of samples from this
empirical distribution, which are the Bootstrapping samples.

90 March 1, 2022 18:18



D
RA

FT

5.4 Improving Estimates of Partial-Wave Decomposition Results

It is also used to approximate the bias on λMLE
i [117]:2075

bias
[
λMLE

i

]
≈ 〈λi〉 − λ

MLE
i . (5.71)

For each (mKππ, t′) cell we generated NBS = 2000 Bootstrapping samples. For each Bootstrapping2076

sample indexed by h in each (mKππ, t′) cell we performed 50 maximum-likelihood fit attempts of2077

equation (5.38) with randomly chosen start-parameter values. The fit with the largest likelihood2078

value determined the maximum-likelihood estimate λ(h)
i for Bootstrapping sample h. In total,2079

we performed 30 × 106 single PWD fits to obtain the Bootstrapping results discussed in the2080

following section 5.4.2.2081

5.4.2 Comparison of Bootstrapping and Maximum-Likelihood Estimates2082

First, we compare the Bootstrapping and maximum-likelihood estimates of the intensities, i.e.2083

the diagonal spin-density matrix elements. From each of the NBS = 2000 Bootstrapping samples2084

for each (mKππ, t′) cell we obtained an estimate for the partial-wave intensities. As an example,2085

the distributions of the Bootstrapping estimates of the intensity of the 1+ 0+ ρ(770) K S wave2086

are shown by the histograms in figures 5.12a and 5.12b for two neighboring mKππ bins. Both2087

distributions are approximated well by a Gaussian (orange curve) with expectation value and2088

width given by the mean and standard deviation of the Bootstrapping distribution according to2089

equations (5.69) and (5.70), respectively:2090

µi = 〈λi〉 and σi =

√
Cov

[
λMLE

i , λMLE
i

]
. (5.72)

In general, using the mean and the standard deviation of the distribution as the expectation value2091

and width of a Gaussian yield the best possible Gaussian approximation of this distribution2092

independent of the actual shape of the distribution.[be] We find similar agreement with a Gaussian2093

for most partial-waves that have an intensity value that is large compared to the uncertainty.2094

The red curves in figure 5.12 represent Gaussian distributions with expectation value and width2095

given by the maximum-likelihood estimates of the intensity value and its uncertainty from the2096

K−π−π+ sample. In figure 5.12a, the maximum-likelihood estimate yielded a slightly smaller2097

intensity and a slightly larger uncertainty compared to the estimates from Bootstrapping. Also in2098

figure 5.12b, the maximum-likelihood estimate of the intensity is only slightly smaller, but the2099

uncertainty estimate is unreasonably larger. We observe similarly large uncertainties from the2100

maximum-likelihood estimate in a few other (mKππ, t′) cells. We suspect these unreasonably large2101

uncertainties to arises from numerical instabilities due to the large number of free parameters2102

in the rank=3 PWD model, which lead to an approximately singular Hessian matrix of the2103

likelihood function. We did not observe such unreasonably large uncertainties when using a2104

[be] Using the mean and standard deviation of the distribution as expectation value and width of the Gaussian ap-
proximation minimizes the Kullback-Leibler divergence [118], which is a measure how different the Gaussian
approximation is with respect to the true distribution.
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Figure 5.12: Distribution of the intensity estimates for selected partial-waves in the given (mKππ, t′) cells as
obtained from the Bootstrapping samples (histograms). The orange curves are Gaussian distributions with
expectation values and widths given by the mean values (vertical orange lines) and standard deviations of
the distributions. The red curves are Gaussian distributions with expectation values and widths given by the
maximum-likelihood estimates of the intensity value (vertical red lines) and its uncertainty, respectively.
(a) and (b) show the intensity of the 1+ 0+ ρ(770) K S wave in two neighboring mKππ bins. (c) shows the
intensity of the 4+ 1+ ρ(770) K G wave. (d) shows the intensity of the 2+ 1+ ρ(770) K D wave from a PWD
using a rank=1 PWD model. (a) to (c) were obtained using a rank=3 PWD model.
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rank=1 PWD model. As we did not use the maximum-likelihood estimates of the uncertainties2105

in this analysis, we did not study this effect further.2106

For partial-waves in (mKππ, t′) cells that have intensity values that are small compared to their2107

uncertainties, the distributions of the intensity estimates deviate from a Gaussian. This is shown,2108

e.g., in figure 5.12c. As the intensity cannot be negative, the distribution is asymmetric with a tail2109

towards larger intensities. The maximum-likelihood estimate yielded a larger uncertainty than2110

the corresponding Bootstrapping estimate. The intensity value from the maximum-likelihood2111

estimate is close to zero and much smaller than the Bootstrapping mean value. A partial-wave2112

intensity, i.e. a diagonal element of the spin-density matrix, is the sum of the squared real and2113

imaginary parts of the transition amplitude [see equation (5.67) for a = b]. This means, that2114

the intensity depends quadratically on the individual fit parameters. Therefore, we expect its2115

distribution to be approximated well by a Gaussian only if its uncertainty is small compared to its2116

value. The deviation of the intensity distribution from a Gaussian is even more pronounced for2117

many waves when using a rank=1 PWD model. An extreme example is shown in figure 5.12d.2118

For a rank=3 model the sum in equation (5.67) has three times more terms than for a rank=12119

model. Due to the central-limit theorem, we expect the intensity distribution of a rank=3 model2120

to be more similar to a Gaussian.2121

On average, the maximum-likelihood estimates of the uncertainties are about twice as large as2122

the corresponding Bootstrapping estimates,[bf] with a large spread across the (mKππ, t′) cells.2123

This spread is independent of the (mKππ, t′) region as shown, for example, in figure 5.13a for the2124

uncertainty on the intensity of the 1+ 0+ ρ(770) K S wave in the lowest t′ bin. The bias of the2125

maximum-likelihood estimates of the intensities as defined in equation (5.71) is spread across2126

the (mKππ, t′) cells as exemplarily shown in figure 5.13b for the intensity of the 1+ 0+ ρ(770) K S2127

wave in the lowest t′ bin. Typically, this spread is smaller than the intensity’s uncertainty. On2128

average, the Bootstrapping means are similar to the maximum-likelihood estimates.2129

The distributions of the real and imaginary parts of the off-diagonal elements of the spin-density2130

matrix obtained from Bootstrapping are in good agreement with a Gaussian even in cases2131

where the values of the real and imaginary parts are small compared to their uncertainties as2132

shown in figure 5.14. Also, the maximum-likelihood estimate yielded similar results for the2133

values and the uncertainties of the off-diagonal elements. In contrast to the intensities, the2134

real and imaginary parts of the off-diagonal elements of the spin-density matrix are sums of2135

products of real and imaginary parts of different transition amplitudes [see equations (5.67)2136

and (5.68) for a , b]. Hence, the off-diagonal spin-density matrix elements depend linearly on2137

the individual fit parameters, i.e. they depend linearly on individual fit parameters if keeping2138

the other fit parameters fixed. If the correlations between the fit parameters are weak, this2139

means that the functional dependence of the off-diagonal spin-density matrix elements on all fit2140

parameters is better approximated by a linear function compared to the functional dependence2141

of the intensities. Therefore, the distribution of the off-diagonal spin-density matrix elements2142

is better approximated by a Gaussian. Also, the maximum-likelihood estimates agree better2143

[bf] This is in contrast to rank=1 PWD models, for which the maximum-likelihood estimates of the uncertainties are
typically slightly smaller than the corresponding Bootstrapping estimates.
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Figure 5.13: Difference between the estimates from Bootstrapping (BS) and the maximum-likelihood
estimates (MLE) for the 1+ 0+ ρ(770) K S wave as a function of mKππ in the lowest t′ bin. (a) shows the
relative difference between the uncertainty estimates. (b) shows the bias on the maximum-likelihood
estimate of the intensity as defined in equation (5.71) relative to the uncertainty as obtained from
Bootstrapping. The orange numbers and horizontal lines represent the corresponding average over all
mKππ bins.

with the results from Bootstrapping as calculating the maximum-likelihood estimates of the2144

spin-density matrix elements involves linear uncertainty propagation.2145

According to equation (5.69), Bootstrapping allows us to study the covariance matrix of the2146

spin-density matrix elements, including their linear correlations. Typically, the intensity values2147

exhibit small correlations. For example, the Pearson correlation coefficient [119]2148

Cov
[
λMLE

i , λMLE
j

] /√
Cov

[
λMLE

i , λMLE
i

]
Cov

[
λMLE

j , λMLE
j

]
(5.73)

of the intensities of the 1+ 0+ ρ(770) K S and the 2+ 1+ ρ(770) K D waves obtained from Boot-2149

strapping is only 0.04 for the (mKππ, t′) cell shown in figure 5.15a. Also, the real and imaginary2150

parts of the spin-density matrix elements show only small correlations, which are, however,2151

typically larger than the correlations between intensities. Figure 5.15b shows as an example the2152

distribution of the real and imaginary parts of a selected spin-density matrix element, which2153

yields a Pearson correlation coefficient of −0.13. Consistent with our findings for the uncer-2154

tainties, the maximum-likelihood estimate of the covariance matrix of real and imaginary parts,2155

represented by the red uncertainty ellipse in figure 5.15b, agrees well with the corresponding2156

Bootstrapping estimate (orange uncertainty ellipse), while the maximum-likelihood estimate of2157

the full covariance of the intensities in figure 5.15a yielded a larger uncertainty ellipse compared2158

the Bootstrapping estimate.[bg]
2159

[bg] The difference in the positions of the ellipses arises for the same reason as difference between the maximum-
likelihood estimates of the intensity values and the Bootstrapping means, also seen in figure 5.12.
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Figure 5.14: Distribution of (a) the real part<(ρab) and (b) the imaginary part =(ρab) of the spin-density
matrix element for a selected pair of waves as obtained from the Bootstrapping samples (histograms).
The orange curves are Gaussian distributions with expectation value and width given by the mean value
(vertical orange lines) and the standard deviation of the distributions. The red curves are Gaussian
distributions with expectation value and width given by the maximum-likelihood estimate of the intensity
value (vertical red lines) and its uncertainty, respectively.
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Figure 5.15: Correlations between spin-density matrix elements for the (mKππ, t′) cells with 1.30 ≤ mKππ

< 1.32 GeV/c2 and 0.10 ≤ t′ < 0.15 (GeV/c)2 as obtained from the Bootstrapping samples. (a) shows the
correlation between the intensities of the 1+ 0+ ρ(770) K S and the 2+ 1+ ρ(770) K D waves. (b) shows the
correlation between the real and imaginary part of the off-diagonal spin-density matrix element of the
same two waves. The orange crosses indicate the mean values from Bootstrapping. The orange uncertainty
ellipses represent the covariances. The red crosses indicate the maximum-likelihood estimates of the
spin-density matrix elements. The red uncertainty ellipses represent the covariances as obtained from the
maximum-likelihood estimates.
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Using the Bootstrapping method, we were able to estimate the uncertainties and correlations2160

of observables, e.g. spin-density matrix element or data-set fraction parameters, determined2161

from the results of the PWD in a reliable way. Thereby, we took into account non-linearities in2162

the calculation of the observables and we approximated their true distribution with a Gaussian2163

in the best possible way. Thus, we used the Bootstrapping estimates for the uncertainties and2164

correlations in all further analysis steps. Unless stated differently, we show in all figures that2165

present results of a PWD the uncertainties from Bootstrapping. As discussed above, we observe2166

a non-vanishing bias of the maximum-likelihood estimates for the values of observables, e.g.2167

the intensity values. This bias is spread across the (mKππ, t′) cells as exemplarily shown in2168

figure 5.13b. In order to reduce this bias, we used also the mean values from Bootstrapping2169

defined in equation (5.70) as central values for all data points. Unless state differently, we do2170

this when showing the results of a PWD. Furthermore, we used the Bootstrapping mean values2171

as data points in the RMFs. Although the covariance matrix obtained from Bootstrapping is2172

the covariance of the maximum-likelihood estimates, we used it as an approximation for the2173

covariance of the Bootstrapping mean values.[bh] We tested the effect of this approximation in a2174

systematic study that is discussed in section 6.3. For simplicity, we refer to the Bootstrapping2175

mean values of the spin-density matrix elements 〈λi〉 obtained from measured data as measured2176

values and use the symbol λi in the rest of the text. We do the same also for other observables,2177

e.g. for the data-set fraction parameters.2178

5.5 A First Glimpse on the Partial-Wave Decomposition Results2179

Using the formalism described in section 5.1, we performed a PWD of the COMPASS K−π−π+
2180

data sample. As a model, we used the 238-wave set, which was inferred from data in the wave-set2181

selection procedure described in section 5.2. At the level of the PWD we cannot separate the2182

reaction K− + p → K−π−π+ + p from incoherent backgrounds that are present in the K−π−π+
2183

sample. Therefore, we effectively modeled these incoherent contributions by using a rank=32184

model in the PWD as discussed in section 5.3. Finally, we obtained more accurate estimates for2185

the observables and their uncertainties from the PWD using the Bootstrapping method, which is2186

presented in section 5.4. In this section, we give a general overview over the results of the PWD2187

fit to the K−π−π+ sample, which is called the 238-wave PWD238-wave PWD238-wave PWD238-wave PWD238-wave PWD238-wave PWD238-wave PWD238-wave PWD238-wave PWD238-wave PWD238-wave PWD238-wave PWD238-wave PWD238-wave PWD238-wave PWD238-wave PWD238-wave PWD in the rest of the text. Especially,2188

we focus on the quality of the fit. The physics signals that we observe in the various partial waves2189

are discussed in chapter 7.2190

For each of the 2000 Bootstrapping samples in each (mKππ, t′) cell we performed 50 fit attempts2191

with random start-parameter values for the transition amplitudes and data-set fractions. Fig-2192

ure 5.16 shows the result of the 50 fit attempts of one exemplary Bootstrapping sample for each2193

[bh] As the Bootstrapping mean values are estimators of observables, they fluctuate statistically. To obtain an estimate
for the covariance matrix of the Bootstrapping mean values, we would need to perform a Bootstrapping of the
Bootstrapping. This is computationally prohibitively expensive.
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Figure 5.16: Stability of the 50 PWD fit attempts per (mKππ, t′) cell for an exemplarily selected Bootstrap-
ping sample as a function of mKππ in the lowest t′ bin. The green line shows the number of fit attempts
that found the best result, i.e. that found a value of lnLPWD that is at most 0.1 units worse than the largest
lnLPWD value.

mKππ bin in the lowest t′ bin. In all mKππ bins, all of the 50 fit attempts converged[bi] and hence2194

yielded a fit result. The best result, i.e. the one with the largest likelihood, was found in more than2195

10 of the 50 fit attempts in all mKππ bins as shown by the green histogram in figure 5.16. For most2196

of the mKππ bins, it was even found in more than 30 fit attempts. The mKππ regions that yielded2197

the best result less than about 20 times, e.g. at about 1.2 GeV/c2, correspond to the mKππ regions2198

with a large amount of events (see figure 4.6a). In these regions the higher precision of the data2199

leads to more distinct local minima. The other three t′ bins and all Bootstrapping samples behave2200

similarly. Only in a few Bootstrapping samples the result with the largest value of lnLPWD was2201

found only once. Hence, we may not have found the best result for these samples. However,2202

these rare occurrences do not influence our final estimates in equations (5.69) and (5.70) from the2203

averages over the Bootstrapping samples.[bj] Overall, the large number of fit attempts that found2204

the best solution shows that the PWD fit of the rank=3 model using the 238-wave set is stable. In2205

particular, the fit is much more stable than the wave-set selection fits shown in figure 5.8a. This2206

proves that the fit can reliably find the fit-parameter values that describe the data best.2207

The fraction of produced events in each of three data sets of the K−π−π+ sample are represented2208

by the data-set fraction parameters r̂(i)(mKππ, t′), which are independent free parameters in each2209

(mKππ, t′) cell as defined in equation (5.25). The estimates for r̂(i)(mKππ, t′) from the PWD are2210

shown in figure 5.17 for the lowest and highest t′ bins. We expect the data-set fractions to be2211

[bi] We used the low-memory BFGS (LBFGS) [82–84] implementation of the NLopt package [85] as minimizer, which
determines the convergence criteria.

[bj] We did two studies in a selected (mKππ, t′) cell where we performed only one random fit attempt and where we used
500 random fit attempts. Both studies yielded results that are consistent with the main analysis where we used 50
random fit attempts.

March 1, 2022 18:18 97



D
RA

FT

5 The Partial-Wave Decomposition

1 2 3

mKππ [GeV/c2]

0.00

0.25

0.50

0.75

1.00

r̂(
i)

(m
K
π
π
,t
′ )

0.10 ≤ t′ < 0.15 (GeV/c)2

2008

2009W2X

2009W35

(a)
1 2 3

mKππ [GeV/c2]

0.00

0.25

0.50

0.75

1.00

r̂(
i)

(m
K
π
π
,t
′ )

0.34 ≤ t′ < 1.00 (GeV/c)2

2008

2009W2X

2009W35

(b)

Figure 5.17: Data-set fractions, i.e. the fraction of produced events in each of the three data sets of the
K−π−π+ sample defined in equation (5.25), as a function of mKππ (a) in the lowest t′ bin and (b) in the
highest t′ bin. The colored horizontal lines show the corresponding average values .[bk]

the same in all (mKππ, t′) cell. This is because the physical distribution of events is the same2212

in each data set and because the data-set fractions represent the fraction of produced events,2213

which are not affected by acceptance effects that depend on (mKππ, t′). The data-set fractions in2214

the (mKππ, t′) cells show no systematic deviation from their corresponding average values,[bk]
2215

which are represented by the colored horizontal lines in figure 5.17. The average values are 0.56,2216

0.15, and 0.29 for the 2008, 2009W2X, and 2009W35 data sets, respectively. They agree with2217

the fractions of measured events of 0.55, 0.14, and 0.31 as expected, because the experimental2218

acceptance, which may bias the fraction of measured events with respect to fraction of produced2219

events, is similar for the three data sets. This agreement demonstrates, that our estimates of the2220

data-set fraction parameters reliably reproduce the physical quantities they represent. It is a first2221

successful test of the quality of the PWD fit.2222

A χ2 test using the average values as constant hypothesis yielded p-values of 0.003, 0.080, and2223

0.016 for the 2008, 2009W2X, and 2009W35 data sets, respectively.[bl] These p-values mean2224

that the deviations of the data points from the average are somewhat larger than expected by the2225

statistical uncertainties. As we assume that our estimates of the statistical uncertainties obtained2226

from Bootstrapping are realistic, these deviations indicate systematic effects in the estimates for2227

r̂(i)(mKππ, t′). However, the obtained p-values are still reasonably large. Hence, these systematic2228

effects are small. Furthermore, we do not observer an overall systematic deviation from a2229

constant. Thus, we conclude that we obtained realistic estimates for the data-set fractions in each2230

[bk] We determined the average of each data-set fraction over all (mKππ, t′) cells by calculating the variance-weighted
mean (see equation (7.26) in ref. [119]), which uses the uncertainty of the data-set fraction parameter as determined
from Bootstrapping. Doing so, we neglected correlations between the data-set fraction parameters.

[bl] See sections 4.5 and 4.7 in ref. [119] for details on the p-value calculation. As for the average, we neglected the
correlations between the data-set fractions for the p-value calculation.
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(mKππ, t′) cell. The imperfect statistical consistency that fluctuates from bin to bin indicates that2231

the data-set fractions are affected by systematic effects that are different from bin to bin. For2232

example, such small systematic effects may arise from the wave set. As we individually inferred2233

the wave set from data for each (mKππ, t′) cell as explained in section 5.2, also the wave set is2234

affected by fluctuations from cell to cell. These fluctuations may lead to small systematic effects2235

when using the wave sets in the PWD that is presented here. This is a first indication that the2236

statistical and systematic uncertainties of this analysis are of similar orders of magnitude.2237

We are mainly interested in the mKππ dependencies of the spin-density matrix elements of the2238

partial waves as they provide information about the resonances that decay to the K−π−π+ final2239

state. Before discussing the individual partial waves, we discuss the mKππ dependence of the2240

total model intensity, i.e. the distribution of the predicted number N̂ev of produced events in2241

mKππ according to equation (5.21). However, as we used a non-equidistant binning in mKππ,2242

N̂ev has a jump discontinuity at the mKππ position were the bin width changes. In order take2243

this into account, we show in the following the so-called intensity spectraintensity spectraintensity spectraintensity spectraintensity spectraintensity spectraintensity spectraintensity spectraintensity spectraintensity spectraintensity spectraintensity spectraintensity spectraintensity spectraintensity spectraintensity spectraintensity spectra, which represent the2244

number density in mKππ, i.e. the intensity divided by the mKππ-bin width as a function of mKππ.2245

The intensity spectra are continuous functions in mKππ. The blue points in figure 5.18 show2246

the intensity spectrum of the total model intensity summed over the analyzed t′ bins, which2247

is so-called t′-summed total intensity spectrumt′-summed total intensity spectrumt′-summed total intensity spectrumt′-summed total intensity spectrumt′-summed total intensity spectrumt′-summed total intensity spectrumt′-summed total intensity spectrumt′-summed total intensity spectrumt′-summed total intensity spectrumt′-summed total intensity spectrumt′-summed total intensity spectrumt′-summed total intensity spectrumt′-summed total intensity spectrumt′-summed total intensity spectrumt′-summed total intensity spectrumt′-summed total intensity spectrumt′-summed total intensity spectrum. As expected, it exhibits similar features as the2248

measured mKππ distribution shown in figure 4.6a,[bm] i.e. a double-peak in the mass region of2249

the K1(1270) and the K1(1400) and a second peak at about 1.8 GeV/c2 in the mass region of the2250

K∗2(1430).2251

The PWD enables us to study the contributions from partial waves with given JP quantum2252

numbers to the total intensity spectrum. Figure 5.18 gives an overview over these contributions.2253

The orange, green, red, and purple data points show for each JP included in the 238-wave set2254

the total intensity of all waves with the given JP quantum numbers, i.e. the predicted number2255

of produced events if only these waves are considered in the corresponding calculation in2256

equation (5.21). As expected, the 1+ waves represented by the green points in figure 5.18a2257

dominantly contribute to the double-peak structure at about 1.4 GeV/c2. Also, the 0− waves2258

(green points in figure 5.18a) strongly contribute to the mass region of the double-peak. Above2259

about 1.5 GeV/c2 they have a similar intensity as the 1+ waves. The 2− waves (green points2260

in figure 5.18b) strongly contribute to the second peak in the total intensity spectrum at about2261

1.8 GeV/c2. This supports our assumption that this peak arises from K2 resonances in the2262

spectrum. The 2+ waves (orange points in figure 5.18b) show a clear peak in the mass range of2263

the K∗2(1430). Except for this peak, the 2+ waves pick up only little intensity. Similarly, the 4+
2264

waves (orange points in figure 5.18c) contribute only little to the data, but they show a clear peak2265

at about 2 GeV/c2, i.e. in the mass region of the K∗4(2045) resonance.2266

The total intensities for waves with 3+, 4−, 4+, or 5+ quantum numbers (red points in figure 5.18b2267

and green, orange, and red points in figure 5.18c, respectively) show peaking structures in the2268

[bm] The total intensity spectrum represents the acceptance-corrected mKππ distribution, i.e. the underlying physical
mKππ distribution, according to the PWD results. The measured mKππ spectrum is distorted with respect to the
physical distribution due to the experimental acceptance.
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Figure 5.18: t′-summed spectrum of the total intensity according to equation (5.21) [blue data points in (a)
to (d)]. The differently colored data points show for each JP included in the 238-wave set the t′-summed
total intensity spectra of all waves with given JP.
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low-mass region of 1.2 to 1.6 GeV/c2. Also, the 2− waves (green points in figure 5.18b) show2269

intensity in this mKππ region. As there are no known or expected resonances with these quantum2270

numbers below about 1.6 GeV/c2 (see figure 1.1), these structures require a detailed investigation2271

in systematic and pseudodata studies. The conclusions on this so-called low-mass structureslow-mass structureslow-mass structureslow-mass structureslow-mass structureslow-mass structureslow-mass structureslow-mass structureslow-mass structureslow-mass structureslow-mass structureslow-mass structureslow-mass structureslow-mass structureslow-mass structureslow-mass structureslow-mass structures are2272

discussed in section 5.9.2273

The intensities of partial waves with high spin shown in figure 5.18d exhibit no resonance-like2274

structures. The waves with 6+ (orange points) and 7− (purple points) quantum numbers do not2275

pick up significant intensity. The 6− (green points) and 7+ (red points) waves pick up significant2276

intensity only above about 1.6 GeV/c2. Their intensity spectrum is flat. As there are no known2277

or expected strange-meson resonances with such high spins, we suspect the J = 6 and 7 waves2278

to be dominated by contributions from non-resonant processes. Especially, Deck-like reactions2279

introduced in section 2.1.1 are known to contribute to partial waves with high spin [11].2280

Overall, we observe that among waves with odd J, those with positive parity are enhanced2281

with respect to those with negative parity. For example, the total intensity of JP = 1+ waves2282

(green data points in figure 5.18a) is larger than the total intensity of 1− waves (red data points).2283

For waves with even J it is vice versa. The waves with enhanced intensity corresponds to KJ2284

states, while those with suppressed intensity correspond to K∗J states (see chapter 1). Hence, this2285

observation means that KJ states contribute more strongly to the K−π−π+ final state. This can2286

be explained with the fact that many K∗J stats dominantly decay to the Kπ final state, while KJ2287

states cannot decay to the Kπ final state. Hence, assuming that K∗J and KJ states are produced2288

with a similar strength in diffractive scattering, we expect a smaller contribution from K∗J states2289

to the K−π−π+ final state as some of them decay to the Kπ final state.[bn]
2290

We separate in the PWD not only the contributions of intermediate states with given JP, but we2291

also distinguish various spin projections Mε and decay modes when defining the partial waves in2292

equation (5.8). The intensity spectrum of a partial wave is the mKππ dependence of its intensity2293

defined equation (5.23). Figures 5.19a, d, and f show the intensity spectra of three selected2294

partial waves. Figure 5.19f shows the intensity spectrum of the 1+ 0+ ρ(770) K S partial wave.2295

This wave represents states with JP Mε = 1+0+ quantum numbers that decay to the ρ(770) isobar2296

and the bachelor K with both in an S -wave, i.e. with relative orbital angular momentum L = 0.2297

As the wave-set selection yielded a minimal wave set for each (mKππ, t′) cell, some waves were2298

selected only in certain mKππ regions. For example, the 1+ 0+ ρ(770) K S wave was selected only2299

for mKππ ≤ 2.5 GeV/c2 in the second highest t′ bin as shown in figure 5.19f. Furthermore, we do2300

not observe any discontinuity at mKππ = 2 GeV/c2, where we doubled the mKππ bin width.2301

The intensity spectrum of the 1+ 0+ ρ(770) K S wave exhibits a clear peak at about 1.3 GeV/c2.2302

The PDG lists the well established K1(1270) resonance in this mass region. As we expect Breit-2303

Wigner-like resonances to appear as peaks in the intensity spectra (see section 5.1.4), the peak at2304

1.3 GeV/c2 is consistent with a K1(1270) decaying to ρ(770) K. In section 7.1 we discuss this2305

signal in detail. Compared to the total intensity spectrum of all 1+ waves shown by the green data2306

[bn] K∗J and KJ states can also decay to other final states, e.g. the Kω final state. However, the possibility to decay to the
Kπ final state is the major difference between K∗J and KJ states.
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Figure 5.19: Representation of the spin-density matrix for the 2− 0+ K∗2(1430) π S , 2+ 1+ K∗(892) πD,
and 1+ 0+ ρ(770) K S waves in the second highest t′ bin. The diagonal elements show the partial-wave
intensities as defined in equation (5.23). To account for the different mKππ bin widths below and above
2 GeV/c2, the intensities are shown in units of number of events per 1 GeV/c2 interval. The off-diagonal
elements show the relative phases ∆ϕab(mKππ, t′) between wave a (given by the row) and wave b (given by
the column) as defined in equation (5.74). The relative phases represent the interference between partial
waves. The percentage number in the upper-right corner of each intensity spectrum is the relative intensity
of the corresponding wave as defined in equation (5.76).
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points in figure 5.18a, the peak in the 1+ 0+ ρ(770) K S wave is more clear. This demonstrates the2307

power of the PWD when studying individual partial waves. The intensity spectrum of the 2+ 1+
2308

K∗(892) πD wave shown in figure 5.19d exhibits a clear narrow peak at about 1.4 GeV/c2, i.e. in2309

the mass region of the well-established K∗2(1430) resonance. Although the 2+ peak corresponds2310

to only a small fraction of the total intensity (see figure 5.18b), we presumably were able to2311

extract a clean K∗2(1430) signal. In section 7.2 we discuss the 2+ waves in detail. The intensity2312

spectrum of the 2− 0+ K∗2(1430) π S wave shown in figure 5.19a exhibits a broad peak at about2313

1.8 GeV/c2 with a tail towards higher masses. The PDG lists two established resonances with2314

JP = 2− in this mass region, the K2(1770) and the K2(1820). The high-mass tail might arises2315

from the K2(2250) resonance, which is a state that needs further confirmation. The contributions2316

of these resonances can be separated only by modeling the partial-wave amplitudes in the RMF.2317

The results are discussed in section 7.4.2318

We observe a small backgrounds in the intensity spectra of the partial waves, e.g. below the2319

peak in the intensity spectrum of the 2+ 1+ K∗(892) πD wave shown in figure 5.19d. These2320

background might arise from background processes that also contribute to the K−π−π+ sample2321

(see sections 2.1.1 and 5.3). We account of these contributions in the resonance-model fit2322

described in chapter 6. Also, imperfections in the PWD model can bias the estimates, e.g., of the2323

intensity spectra, which might lead to the observed background. We tested such imperfections in2324

the systematic studies presented in section 5.7.2325

The PWD allows us to study not only the intensity spectra of partial waves but also the interference2326

between them, which is represented by the complex-valued off-diagonal elements of the spin-2327

density matrix. To more clearly see interference effects it is often more instructive to study2328

the phase of a wavephase of a wavephase of a wavephase of a wavephase of a wavephase of a wavephase of a wavephase of a wavephase of a wavephase of a wavephase of a wavephase of a wavephase of a wavephase of a wavephase of a wavephase of a wavephase of a wave a relative to a reference wave b, i.e. the relative phaserelative phaserelative phaserelative phaserelative phaserelative phaserelative phaserelative phaserelative phaserelative phaserelative phaserelative phaserelative phaserelative phaserelative phaserelative phaserelative phase of two partial-waves,2329

which is the phase of the corresponding off-diagonal element of the spin-density matrix:2330

∆ϕab(mKππ, t′) ≡ arg
[
ρab(mKππ, t′)

]
. (5.74)

The relative phases as a function of mKππ, the so-called phase motionphase motionphase motionphase motionphase motionphase motionphase motionphase motionphase motionphase motionphase motionphase motionphase motionphase motionphase motionphase motionphase motion, for the selected pairs of2331

waves are shown in figures 5.19b, c, and e. For the rank=3 model employed in this analysis,2332

the relative phases are in general different from the phases of the transition amplitudes of the2333

individual physics processes. In order to interpret the observed relative phases on a qualitative2334

level, we assume that the K−π−π+ sample is dominated by diffractive scattering into the K−π−π+
2335

final state,[bo] which is a coherent process. Inserting equation (5.18) in equation (5.74) yields2336

∆ϕab(mKππ, t′) = arg

∑
z

T z
a (mKππ, t′)

[
T z

b (mKππ, t′)
]∗

≈ arg
[
T z=Kππ

a (mKππ, t′)
[
T z=Kππ

b (mKππ, t′)
]∗]

= arg
[
T z=Kππ

a (mKππ, t′)
]
− arg

[
T z=Kππ

b (mKππ, t′)
]
. (5.75)

[bo] We estimated the incoherent background contributions to be about 10 % (see sections 4.2 and 5.10).
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Therefore, the relative phases obtained from the rank=3 PWD can be interpreted in terms of the2337

transition amplitudes of the process K− + p→ K−π−π+ + p on a qualitative level, especially in2338

terms of the amplitudes of resonances decaying to the K−π−π+ final state.[bp]
2339

Figure 5.19e shows the relative phase between the a = 2+ 1+ K∗(892) πD wave and the b = 1+ 0+
2340

ρ(770) K S wave. This phase drops sharply by about 120° around 1.3 GeV/c2 and then rises2341

again by about 120° around 1.4 GeV/c2. For Breit-Wigner-like resonances, we expect a rise2342

of the phase of the corresponding amplitude by 180° around the nominal resonance position2343

(see section 5.1.4). The rise around 1.4 GeV/c2 is consistent with a dominant contribution of2344

the K∗2(1430) resonance to the 2+ 1+ K∗(892) πD wave. As the 1+ wave enters with a minus2345

sign in equation (5.75), the drop of the phase around 1.3 GeV/c2 is consistent with the K1(1270)2346

resonance dominating the 1+ 0+ ρ(770) K S wave. We do not observe full 180° phase motion,2347

because the decreasing phase from the K1(1270) is partly compensated by the rising phase of the2348

K∗2(1430) in the intermediate 1.35 GeV/c2 mass region. In addition, non-resonant contributions2349

and incoherent background in the rank=3 PWD model can reduce the height of the phase motion,2350

i.e. can make the relative phases more shallow. The relative phase between the 2− 0+ K∗2(1430) π S2351

and the 1+ 0+ ρ(770) K S wave shown in figure 5.19c rises in the mass region around 1.8 GeV/c2,2352

where we also observe the peak in the intensity spectrum of the 2− wave. However, this rise2353

in the relative phase is slower compared to the one in figure 5.19e, which indicates that the2354

K2 states in this mass region have a larger width compared to the K1(1270) and the K∗2(1430).2355

This would be consistent with previous observations [9]. As the 2− 0+ K∗2(1430) π S wave shows2356

no significant structures below about 1.6 GeV/c2 and the 2+ 1+ K∗(892) π S wave shows no2357

significant structures above about 1.6 GeV/c2, the two waves do not share a mass region where2358

both have large intensities. Therefore, their relative phase shown in figure 5.19b has a large2359

uncertainty. This means, in order to obtain phase information from the PWD, we have to study2360

at least two waves simultaneously. In addition, these waves must have significant intensities in2361

overlapping mKππ regions in order to reliably determine their relative phase.2362

As shown by the red data points in figure 5.18, the 1+ waves contribute most to the total intensity.2363

The 1+ 0+ ρ(770) K S wave is one of the largest waves in the 238-wave set. It contributes about2364

4 % to the total intensity. This so-called relative intensityrelative intensityrelative intensityrelative intensityrelative intensityrelative intensityrelative intensityrelative intensityrelative intensityrelative intensityrelative intensityrelative intensityrelative intensityrelative intensityrelative intensityrelative intensityrelative intensity,2365 ∑
t′,mKππ

ρaa(mKππ, t′)∑
t′,mKππ

∑
a,b
ρab(mKππ, t′)Iab(mKππ, t′)

=

∑
t′,mKππ̂

Na(mKππ, t′)∑
t′,mKππ̂

Nev(mKππ, t′)
, (5.76)

is the ratio of the intensity of the wave summed over all (mKππ, t′) cells and the total intensity2366

defined in equation (5.21) summed over all (mKππ, t′) cells. The latter one takes into account the2367

interference between partial waves. This equals to the ratio of predicted number N̂a of produced2368

[bp] For the expert: We calculated the degree of coherence as defined in equation (H.1) of ref. [72]. For example, in the
second highest t′ bin the degree of coherence between the 2+ 1+ K∗(892) πD and 1+ 0+ ρ(770) K S waves shown in
figure 5.19 is mainly above 0.6 for mKππ < 1.6 GeV/c2, i.e. in the mKππ region of the peaks in both waves. This
value is sufficiently large to interpret the relative phase between both waves in the mKππ region of the peaks in terms
of the transition amplitudes of the process K− + p→ K−π−π+ + p on a qualitative level.

104 March 1, 2022 18:18



D
RA

FT

5.5 A First Glimpse on the Partial-Wave Decomposition Results

1.0 1.5 2.0 2.5 3.0

mKππ [GeV/c2]

0.0

0.5

1.0

In
te

n
si

ty
[(

G
eV
/c

2
)−

1
]

×105 2−0+ρ(770)KF

0.10 ≤ t′ < 1.00 (GeV/c)2

0.3 %

(a)
1.0 1.5 2.0 2.5 3.0

mKππ [GeV/c2]

0

2

4

6

In
te

n
si

ty
[(

G
eV
/c

2
)−

1
]

×104 4+1+K∗(892)πG

0.10 ≤ t′ < 1.00 (GeV/c)2

0.2 %

(b)

Figure 5.20: t′-summed intensity spectra, i.e. the partial-wave intensities in each mKππ bin summed over
the analyzed t′ bins, of (a) the 2− 0+ ρ(770) K F wave and (b) the 4+ 1+ K∗(892) πG wave. To account for
the different mKππ bin widths below and above 2 GeV/c2, the intensities are shown in units of number of
events per 1 GeV/c2 interval. The percentage number in the upper-right corner of each intensity spectrum
is the relative intensity of the corresponding wave as defined in equation (5.76).

events in all cells if there would be only wave a and the total predicted number N̂ev of produced2369

events in all cells. [bq]
2370

We observe signals not only in comparably large waves at the percent level, e.g. the waves that2371

are shown in figure 5.19, but also in waves at the per-mill level. In figure 5.20 we show the2372

t′-summed intensity spectra, i.e. the intensity of the partial waves according to equation (5.23)2373

summed over the analyzed t′ bins, of two small waves. The 2− 0+ ρ(770) K F wave shown in2374

figure 5.20a exhibits a narrow peak at about 1.8 GeV/c2. The peak is in the same mass region as2375

the peak in the 2− 0+ K∗2(1430) π S wave shown in figure 5.19a. This is expected, because both2376

waves have the same JP quantum numbers and hence the same K2 states should appear in both2377

waves. However, the two 2− waves represent different decay modes, i.e. the ρ(770) K F-wave2378

and the K∗2(1430) π S -wave decays. The various K2 states may couple to these two decay modes2379

with different strengths, which can explain the different shapes of the intensity spectra, e.g. the2380

narrower peak in the 2− 0+ ρ(770) K F wave compared to the 2− 0+ K∗2(1430) π S wave. It is one2381

of the advantages of the K−π−π+ final state, that we can study the same states in different decay2382

modes in a single consistent analysis.2383

In contrast to the high-mass tail, the low-mass tail of the intensity spectrum of the 2− 0+
2384

ρ(770) K F wave does become small, as it would be expected, but instead levels out at an2385

intensity of about 0.5 × 105 /(GeV/c2) for masses down to about 1.5 GeV/c2. Below 1.5 GeV/c2
2386

the wave-set selection did not include this wave in the PWD model. We observe similar2387

[bq] Unfortunately, the relative intensities are biased by the so-called leakage effect. The relative intensities can still be
used as measure of whether a wave is large or small as discussed in section 5.9.1.
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enhanced low-mass tailsenhanced low-mass tailsenhanced low-mass tailsenhanced low-mass tailsenhanced low-mass tailsenhanced low-mass tailsenhanced low-mass tailsenhanced low-mass tailsenhanced low-mass tailsenhanced low-mass tailsenhanced low-mass tailsenhanced low-mass tailsenhanced low-mass tailsenhanced low-mass tailsenhanced low-mass tailsenhanced low-mass tailsenhanced low-mass tails also for other small partial waves at the per-mill level, e.g. for the 4+ 1+
2388

K∗(892) πG wave shown in figure 5.20b. The high-mass tail of a potential signal from the2389

well-known K∗4(2045) resonance above 2 GeV/c2 is clearly visible, but below 2 GeV/c2 the2390

intensity is almost constant down to a mass of about 1.6 GeV/c2, below which the wave-set2391

selection did not select this wave. As the K∗4(2045) is the lightest known 4+ state, we would2392

expect the intensity of the 4+ 1+ K∗(892) πG wave to become small below the nominal K∗4(2045)2393

mass of about 2 GeV/c2. Furthermore, the amplitude of this wave is suppressed at low masses,2394

because of the additional energy needed to produced its high spin of J = 4 and its large orbital2395

angular momentum of L = 4.[br] Similar arguments hold for the enhanced low-mass tail in the2396

2− 0+ ρ(770) K F wave. Therefore, we suspect these enhanced low-mass tails to be artifacts of2397

our analyses. They may arise from the incoherent background in our data, which is studied in2398

section 5.10 or from imperfections in the analysis model, which are tested in various systematic2399

studies discussed in section 5.7. Furthermore, the enhanced low-mass tails are less pronounced2400

when using a rank=1 PWD model of the 238-wave set, which has about three times fewer free fit2401

parameters than the used rank=3 model. As the 238-wave set was constructed using a rank=12402

model (see section 5.2), the rank=3 model may contain more parameters than can be reliably2403

determined from data. This additional freedom of the rank=3 model might be misused by the2404

fit to account for imperfections of the PWD model, e.g. by leading to destructive interference,2405

and thereby causing such enhanced low-mass tails. Apart from the enhanced low-mass tails, we2406

do not observe any signs that would indicate a too large PWD model. For example, too large2407

models typically suffer from multimodality, but we reliably found the best fit result as discussed2408

at the beginning of this section. In contrast to the low-mass structures observed e.g. in the 3+
2409

waves as discussed above, the enhanced low-mass tails do not show any peaking resonance-like2410

signals. In addition, the enhanced low-mass tails are only a small effect. They only affect small2411

partial waves at the per-mill level. In this analysis, we focus mostly on large partial waves.2412

In our data, the K∗4(2045) is only a small signal at the per-mill level that is potentially affected by2413

model imperfection as discussed above. However, in general it is a well-established resonance2414

observed by various previous experiments and its mass and width are known [28, 120–122].2415

Therefore, we use the K∗4(2045) as a kind of standard candle in our analysis. It allows to test the2416

reliability of our results. Our results for the K∗4(2045) resonance are discussed in section 7.3.2417

From this first glimpse of the results of the PWD we conclude that the fits yielded stable and2418

consistent results. We observe resonance-like signals in various partial waves in mKππ regions2419

of well known strange-meson resonances. We also observe potential signals of excited states2420

that need further confirmation such as the K2(2250). Before modeling these signals in the2421

resonance-model fit presented in chapter 6 and interpreting them in chapter 7, we further study2422

the reliability of the results of the PWD. To do so, we compare in section 5.6 the predictions2423

of the PWD model with optimized parameters for kinematic distributions to the corresponding2424

measured distributions. In section 5.7 we study the influence of systematic effects from the2425

event selection and the PWD. In section 5.8 we study the consistency of the PWD based on a2426

pseudodata sample for the reaction K− + p→ K−π−π+ + p. Finally, in section 5.10, we study the2427

influence of incoherent background from the reaction π− + p→ π−π−π+ + p on our results.2428

[br] In the PWD model described in section 5.1, this effect is modeled by the angular-momentum barrier factors.
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5.6 Agreement between Partial-Wave Model and Data2429

The goal of the construction of the 238-wave set presented in section 5.2 was to find a minimal2430

set of waves that is sufficient to describe the data. In this section, we study how well the result of2431

the PWD fit using the 238-wave set describes the K−π−π+ sample. The maximum-likelihood2432

formalism presented in section 5.1.3 does not directly yield a goodness-of-fit criterion. Therefore,2433

we compare the predictions of the PWD model for the kinematic distributions of the measured2434

final-state particles according to equation (5.30) using the parameter estimates from the 238-wave2435

PWD,[bs]the so-called PWD predictionsPWD predictionsPWD predictionsPWD predictionsPWD predictionsPWD predictionsPWD predictionsPWD predictionsPWD predictionsPWD predictionsPWD predictionsPWD predictionsPWD predictionsPWD predictionsPWD predictionsPWD predictionsPWD predictions, to the corresponding measured distributions.2436

The five-dimensional phase space of the K−π−π+ final state can be represented by four angles2437

and the invariant mass of one of the three two-body subsystems as discussed in section 5.1.1.2438

Hence, different representations of the same K−π−π+ kinematics are possible, depending on2439

which two final-state particles are in the two-body isobar system. We consider here the K−π+
2440

and π−π+ isobar systems. The five phase-space variables are the decay angles cos θGJ and φGJ of2441

the isobar in the decay X− → ξ0b− defined in the Gottfried-Jackson rest frame of X−; the decay2442

angles cos θHF and φHF of the K− or π− in the decay ξ0 → K−π+ or ξ0 → π−π+, respectively,2443

defined in the helicity rest frame of the ξ0; and the invariant mass mK−π+ or mπ−π+ , respectively,2444

of the two-body isobar system.2445

In order to visualize the five-dimensional phase-space distribution, we show one- and two-2446

dimensional projection in the following. Figure 5.21 shows exemplarily the measured K−π−π+
2447

distribution (blue data points) and the corresponding PWD predictions (orange histograms),2448

in the mKππ region of the K1 double-peak in the five phase-space variables defined for the2449

π−π+ isobar system. The distributions of all analyzed mKππ regions and for both, the π−π+ and2450

the K−π+ isobar systems can be found in appendix D.2 in figures D.36 to D.47. Overall, the2451

PWD predictions agree well with the corresponding measured distributions. The PWD model2452

reproduces the features of the angular distributions of the X− decay, exemplarily shown in2453

figures 5.21a and 5.21b, and of the isobar decay, exemplarily shown in figures 5.21c and 5.21d.2454

As the angular distributions represent the spin and orbital angular momentum of the contributing2455

partial waves, this agreement suggests that we do not miss important waves with certain J and L2456

in the wave set, i.e. limiting ourselves to J ≤ 7 and L ≤ 7 when constructing the wave pool was2457

sufficient; and that the wave-set selection selected the significant waves. The structures observed2458

in the angular distributions in figures 5.21a to 5.21d are hard to interpret directly, because they2459

arise not only from waves with π−π+ isobars, but also from waves with K−π+ isobars. The latter2460

ones have a complicated distribution in the phase-space variables defined for the π−π+ isobar2461

system. Figure 5.21e shows the mπ−π+ spectrum, which exhibits a clear peak from the ρ(770)2462

resonances at about 0.8 GeV/c2 and two shoulders: one in the mass region of the f0(980) at about2463

1 GeV/c2 and one in the mass region of the f2(1270) at about 1.3 GeV/c2. The mK−π+ spectrum2464

shown in figure 5.22a exhibits a clear K∗(892) signal at about 0.9 GeV/c2 and a second peak in2465

the mass region of the K∗0(1430) and K∗2(1430) resonances. All these structures are reproduced2466

[bs] We determined the histograms that show the PWD predictions by weighting a reconstructed phase-space pseudodata
sample using weights that are proportional to the model intensity in equation (5.16) using the parameter estimates
from the 238-wave PWD. See appendix C.3 for details.
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Figure 5.21: Distributions of the five phase-space
variables defined for the π−π+ isobar system in the
mass range 1.5 ≤ mKππ < 2.0 GeV/c2 integrated
over the analyzed t′ range. The blue points show
the measured distributions. Their uncertainties are
calculated assuming a Poisson distribution in each
bin. The orange histograms show the correspond-
ing PWD predictions.[bs]
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Figure 5.22: Distributions of two phase-space variables defined for the K−π+ isobar system in the mass
range 1.5 ≤ mKππ < 2.0 GeV/c2 integrated over the analyzed t′ range. The blue points show the measured
distributions. The uncertainties are calculated assuming a Poisson distribution in each bin. The orange
histograms show the corresponding PWD predictions. (a) shows the distribution in mK−π+ . (b) shows the
distribution in cos θK−

HF of the decay ξ0
K−π+ → K−π+.

well by the PWD model; which suggest that we do not miss isobar resonances that contribute2467

significantly to the data, i.e. that the list of isobar resonances considered when constructing the2468

wave pool was sufficient (see table 5.2).2469

However, we also observe regions where the PWD model does not perfectly reproduce the2470

measured distributions. The angular distributions of the X− decay are not perfectly described as2471

shown, e.g. in figure 5.21b. This imperfection becomes more apparent in the 2D distribution of the2472

Gottfried-Jackson angles, i.e. when not marginalizing over cos θππGJ or φππGJ. The difference between2473

the measured distribution in the Gottfried-Jackson angles and the corresponding PWD prediction2474

is shown in figure 5.23a relative to the expected standard deviation in each (cos θππGJ , φ
ππ
GJ) cell2475

according to a Poisson distribution. We observe a band (blue region) where the PWD model2476

underestimates the measured number of events. This band coincides with the kinematic region2477

where the acceptance changes most and practically vanishes as shown by the dark blue region2478

in figure 5.23b. This strong modulation of the acceptance is caused by the limited momentum2479

range of the final-state particle identification by the RICH detector (see section 3.2.2). The2480

imperfection in the description of the measured distributions by the PWD model may indicate2481

that the treatment of acceptance effects caused by the RICH is not complete (see appendix C.2.32482

for details on how we modeled the RICH acceptance). We studied the robustness of the PWD2483

results against incompleteness in the treatment of the RICH acceptance in the systematic studies2484

described in section 5.7. The acceptance for the reaction K− + p→ K−π−π+ + p is discussed in2485

appendix D.2.2486
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Figure 5.23: Distribution of the two two-body decay angles for the decay X− → ξ0
π−π+ K− in the mass range

1.5 ≤ mKππ < 2.0 GeV/c2 integrated over the analyzed t′ range. (a) shows the difference between the
measured number of events and the corresponding PWD prediction[bs] divided by the square root of the
PWD prediction. (b) shows the acceptance.

As discussed in section 4.2, we expect about 4 % background from events of the reaction K−+p→2487

K−K−K+ + p in the K−π−π+ sample. A part of these background events, where the K− K+
2488

subsystem arises from a φ(1020) decay, manifests itself in a narrow peak at about 0.38 GeV/c2
2489

in the mπ−π+ spectrum observed in the measured data (blue data points in figure 5.21e). As2490

expected, this φ(1020) peak is not reproduced by the PWD model as the 238-wave set is not2491

able to effectively describe such a narrow signal. Furthermore, the background from φ(1020)2492

decays is more pronounced at mKππ above 2 GeV/c2 than in the low-mKππ region (compare2493

figures D.36e and D.40e). The K−K−K+ background should be also visible in the phase-space2494

variables defined for the K−π+ isobar system. For example, we observe an enhancement at2495

cos θK−
HF ≈ 0.9 as shown in figure 5.22b, which is not reproduced by the PWD model, similar to2496

the φ(1020) peak in the mπ−π+ spectrum. This enhancement accounts for about 2 % of the total2497

distribution. We expect this enhancement to mainly arise from part of the about 4 % K−K−K+
2498

background, because the angular distribution as predicted from a simplified model for the reaction2499

K− + p → K−φ(1020) + p with φ(1020) → K−K+ strongly peaks at cos θK−
HF ≈ 0.95, similar2500

to the enhancement observed in our data.[bt] Hence, the discrepancies between the measured2501

distribution and the PWD prediction discussed in this paragraph are mainly due to the non-2502

description of part of the K−K−K+ background. The other part of the K−K−K+ background2503

is effectively taken into account by using a rank=3 PWD model as discussed in section 5.3.2504

We do not expect that this small non-description biases significantly the physics results of this2505

analysis, i.e. the measurement of the resonance parameters discussed in chapter 6. The K−K−K+
2506

background belongs to a different coherent sector than the K−π−π+ resonance contribution that we2507

[bt] We generated a pseudodata sample of the reaction K− + p→ K−φ(1020) + p with φ(1020)→ K−K+, because the
events from φ(1020) decays are a significant contribution to the total K−K−K+ background. We used a simplified
model based on the findings in ref. [37] and analyzed this pseudodata sample applying the K−π−π+ hypothesis.
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Figure 5.24: Agreement between PWD model and data in the mass range 2.0 ≤ mKππ < 3.0 GeV/c2

integrated over the analyzed t′ range. The blue points show the measured distributions. The uncertainties
are calculated assuming a Poisson distribution in each bin. The orange histograms show the corresponding
PWD predictions. (a) shows the distribution in cos θKπ

GJ of the decay X− → ξ0
K−π+π

−. (b) shows the
distribution in cos θππGJ of the decay X− → ξ0

π−π+ K−.

are interested in. Furthermore, we tested the robustness of the PWD results against the influence2508

of the K−K−K+ background contributions in the systematic studies of the final-state particle2509

identification discussed in section 5.7.1, because weaker or more restrictive particle-identification2510

cuts change the fraction of the K−K−K+ background in the K−π−π+ sample.2511

Figure 5.24 shows the cos θGJ distributions for the X− decay in the mKππ region above 2 GeV/c2.2512

The distribution for the decay to the K−π+ isobar system shown in figure 5.24a peaks strongly2513

towards cos θKπ
GJ = +1, i.e. we observe an enhancement of events where the K−π+ system goes2514

in forward direction with respect to the direction of the beam K− in the K−π−π+ center-of-2515

momentum frame. The distribution for the decay to the π−π+ isobar system shown in figure 5.24b2516

peaks strongly towards cos θππGJ = −1, i.e. we observe an enhancement of events where the π−π+
2517

system goes backwards in the K−π−π+ center-of-momentum frame. This behavior is consistent2518

with models for non-resonant production. In Deck-like reactions, the K−π+ system is produced2519

at the upper vertex by exchanging a virtual pion (see figure 2.2a), so that the K−π+ system goes2520

mainly in the direction of the beam K− leading to a peak at cos θKπ
GJ = +1. Kinematically, this2521

peak becomes sharper at higher mKππ [123]. In central-production reactions (see figure 2.3a),2522

the beam K− scatters elastically and a π−π+ system is produced approximately at rest in the2523

overall K−beam ptarget center-of-momentum frame. In the Gottfried-Jackson angles defined in the2524

K−π−π+ center-of-momentum frame, this translates to cos θππGJ ≈ −1. At high mKππ, cos θππGJ is2525

kinematically anti-correlated with cos θKπ
GJ . Therefore, we attribute both peaks at cos θKπ

GJ = +12526

and cos θππGJ = −1 in our data to both, Deck-like and central-production reactions. Based only2527

on the angular distributions we cannot separate the two processes.[bu] The narrow peaks in the2528

[bu] Deck-like reactions with pion exchange exhibit structures from K−π+ resonances in the mK−π+ distribution and
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measured angular distributions can be described fairly well by the PWD model mainly by using2529

partial waves with high spin J & 5 shown in figures 5.18c and 5.18d. The description of the2530

non-resonant processes in terms of partial waves requires in principle infinitely high spins [124],2531

but including waves with J � 7 in the wave pool would significantly increase its size. Thus, we2532

decided to consider only waves with J ≤ 7 when constructing the wave pool in section 5.2.1, at2533

the expense of small imperfections in the description of the cos θGJ distribution for cos θKπ
GJ ≈ +12534

and accordingly cos θππGJ ≈ −1 at high mKππ.[bv]
2535

Overall, the PWD model describes the kinematic distributions of the K−π−π+ sample well.2536

Therefore, we conclude that the PWD fit yielded reliable results that can be interpreted in terms2537

of physics signals. The small remaining imperfections can be attributed to non-resonant and2538

incoherent background contributions, for which the K−π−π+ partial waves were not constructed,2539

or to potential imperfections of the detector model used to estimate the acceptance. We test the2540

influence of these imperfections in the systematic studies discussed in the following section 5.7.2541

5.7 Systematic Studies2542

Given the increasing size of data samples from high-precision experiments, the statistical uncer-2543

tainties become smaller and uncertainties imposed by systematic effects play a more important2544

role. This underlines the importance of performing detailed systematic studies to test the influ-2545

ence of systematic effects on the analysis results. For example, the systematic uncertainties of2546

measured masses and widths of isovector light-meson resonances observed in the COMPASS2547

π−π−π+ analysis are more than a factor 10 larger compared to the corresponding statistical2548

uncertainties [41].2549

Acceptance effects were taken into account in the PWD fits as explained in section 5.1.3.2550

Nonetheless, the model for the acceptance may be imperfect, which may introduce systematic2551

effects in the results of the PWD. This holds especially for analyses where the acceptance is2552

strongly modulated in the kinematic variables in which the analysis is performed, as it is the case2553

in this work (see figure 5.23b and appendix D.2). The strongest acceptance effect in the K−π−π+
2554

sample arises from the limited kinematic range of the final-state particle identification by the2555

RICH detector. Also, the misidentification of final-state particles by the RICH is the largest2556

source of background events in the K−π−π+ sample. Therefore, we present in section 5.7.1 three2557

systematic studies that test the influence of the final-state particle identification on the results of2558

the PWD.2559

a continuous spectrum in the mπ−π+ distribution, while central-production reactions with a centrally produced
π−π+ system exhibit structures from π−π+ resonances in the mπ−π+ distribution and a continuous spectrum in the
mK−π+ distribution. Still, based only on kinematics the two processes cannot be separated completely, because their
kinematic distributions overlap.

[bv] In the COMPASS π−π−π+ analysis, first studies were performed of including models for Deck and central-
production amplitudes into the PWD model to account for non-resonant contributions [43, 125]. In these studies,
the description of the data by the model improved. However, these studies did not yield a convincing description of
all non-resonant contributions yet [125].
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Another important source of systematic effects are assumptions entering the PWD model. The2560

most critical of these assumptions is the used wave set. In order to minimize systematic effects2561

caused by the chosen wave set, we inferred the wave set from data using the model-selection2562

techniques discussed in section 5.2. Nonetheless, the employed wave-set selection method may2563

induce systematic effects in the selected wave set and thereby in the PWD results. To test for2564

such effects, we present in section 5.7.2 an alternative approach for the wave-set selection.2565

In order to estimate the systematic effects, we compare in the following the results from the2566

studies to those from the 238-wave PWD of the main analysis shown in section 5.5. In particular,2567

we compare intensity spectra of partial waves, representative for the results of the PWD. However,2568

performing a Bootstrapping of the PWD fit as done in the main analysis (see section 5.4) is2569

computationally too expensive and cannot be done for the systematic studies. Thus, we show in2570

sections 5.7.1 and 5.7.2 the maximum-likelihood estimates of the partial-wave intensities. As2571

for the main analysis, we expect the bias from using the maximum-likelihood estimates to be2572

small on average (see figure 5.13b). As the maximum-likelihood estimates of the uncertainties2573

are strongly biased towards larger values (see section 5.4), we do not show error bars for the2574

results of the systematic studies. For the results of the main analysis, we show the estimates from2575

Bootstrapping for the values and uncertainties as in the rest of the text.2576

5.7.1 Final-State Particle Identification2577

In order to test for systematic effects introduced by the final-state particle identification, we2578

performed three systematic studies where we changed the acceptance and the misidentification2579

probability of the final-state particle identification in three different ways. We accounted for the2580

different acceptances by adjusting our acceptance model accordingly in the PWD fits. We used2581

the 238-wave set for the PWD, which is also used in the main analysis. In these RICH studies2582

we tested three aspects: (i) can the acceptance model reproduce the corresponding change in the2583

RICH acceptance; (ii) are the results of the PWD sensitive to the shape of the acceptance; and2584

(iii) is the PWD result robust with respect to bias caused by misidentified final-state particles?2585

The probabilities to identify and misidentify a final-state particle are functions of the particle2586

momentum that change when changing the RICH likelihood-ratio threshold TR as shown in2587

figure 3.13. Especially, the region between 30 and 60 GeV/c, where the efficiency drops, is2588

sensitive to the choice of TR. We performed two systematic studies in which we changed TR.2589

In one study, we used a weaker RICH threshold of TR = 1.05 instead of 1.15, which is used2590

in the main analysis. Using a lower RICH threshold increases the fraction of misidentified K−2591

and π− in the final state to about 8 %, which is a factor of 4 larger than in the main analysis (see2592

figure 3.14). In addition, the size of the data sample in this study is about 17 % larger than in the2593

main analysis. Also, the momentum range, in which the RICH identifies a particle efficiently,2594

is slightly enlarged when using the weaker RICH threshold (see figure 3.13a). Thus, we have2595

access to a larger fraction of the K−π−π+ phase-space in this study, which adds more information2596

to the PWD fit, at the expense of a reduced purity of the sample.2597
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In the second study, we used a more restrictive RICH threshold of TR = 1.30 instead of 1.15.2598

This reduces the misidentification probability only marginally, while it introduces much stronger2599

acceptance effects. In this study, the size of the data sample is about 30 % smaller than in the2600

main analysis. One should note, that for such a significantly reduced data sample the 238-wave2601

set, which was selected based on the larger K−π−π+ sample of the main analysis, might be too2602

large. This might introduce artifacts from overfitting in the PWD.2603

As presented in section 5.6, we observe imperfections in the description of the data by the PWD2604

model in kinematic regions where the acceptance decreases rapidly. These imperfections may2605

be caused by imperfections of the employed acceptance model in these regions. Therefore, we2606

excluded in the third RICH study the region in the final-state particle momenta, in which the2607

identification probability decreases most rapidly, i.e. we limited the RICH particle identification2608

to momenta below 40 GeV/c instead of 60 GeV/c, which was used in the main analysis. This2609

hard cut in the particle momenta can be perfectly reproduced by the acceptance model in this2610

study, while modeling the momentum dependence of the particle-identification probability as2611

done in the main analysis (see appendix C.2.3) implicates some approximations. For example,2612

the dependence of the particle-identification probability on other kinematic variables, such as the2613

position at which the particle traverses the RICH detector, is neglected.[bw] Applying the more2614

restrictive RICH momentum cut reduces the sample size by about 10 % compared to the main2615

analysis.2616

Figure 5.25 compares the results of the PWD from the three RICH studies to those from the2617

main analysis for four exemplary selected partial waves. Overall, we find good agreement of2618

the results from the three RICH studies and from the main analysis for most partial waves. For2619

example, the intensity spectrum of the 1+ 0+ ρ(770) K S wave shown in figure 5.25a exhibits the2620

same peak at about 1.3 GeV/c2 in all studies and in main analysis. Also, the shoulder at about2621

1.5 GeV/c2 and the high-mas tail of the intensity spectrum agrees among all results. Only for2622

the small plateau between about 1.0 and 1.2 GeV/c2, the study with a more restrictive RICH2623

threshold (red data points) yielded slightly higher intensities compared to the main analysis,2624

while the studies with a weaker RICH threshold (green data points) and with a more restrictive2625

momentum limit (orange data points) yielded a slightly lower intensity. Therefore, we conclude,2626

that this small plateau is an artifact from imperfections in our analysis.2627

Such artifacts may arise from overfitting or from destructive interferences, because both are2628

sensitive also to small systematic effects. Such artifacts are visible especially in small partial2629

waves at the per-mill level, e.g. in the 4+ 1+ K∗(892) πG wave shown in figure 5.25b. In the2630

mKππ region above 2 GeV/c2, where we expected the high-mass tail of the K∗4(2045) resonance,2631

the RICH studies yielded results that are similar to those from the main analysis, except for the2632

study with a more restrictive RICH threshold, which yielded slightly different results. However,2633

this difference can be explained by the 30 % smaller amount of data in this study, which may2634

[bw] The dependence of the particle-identification probability on other kinematic variables, except for the momentum
and the track angle of the particle, is assumed to be small. This assumption is supported by a first study of the π±

identification probability as a function of the position at which the particle traverses the RICH. This study revealed
only a weak dependence of the particle-identification probability on the position at which the particle traverses the
RICH.
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Figure 5.25: Comparison between the PWD re-
sults from the three RICH studies and from the
main analysis. (a) to (e) show the t′-summed in-
tensity spectra of four selected partial waves. The
blue data points show the Bootstrapping estimates
from the main analysis. The green, red, and or-
ange data points show the maximum-likelihood
estimates from the studies with a weaker RICH
threshold of TR = 1.05, with a more restric-
tive RICH threshold of TR = 1.30, and with a
more restrictive momentum limit of 40 GeV/c
for final-state particle identification, respectively.
We do not show uncertainties for the maximum-
likelihood estimates from the systematic studies
(see text).
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lead to artifacts from overfitting in addition to the statistical fluctuations. The enhancement2635

in the intensity below about 2 GeV/c2 is sensitive to systematic effects. Especially, the study2636

with weaker RICH threshold yields a smaller enhancement. We observe similar results for other2637

partial waves that exhibit such enhanced low-mass tails such as the 2− 0+ ρ(770) K F wave shown2638

in figure 5.20a. These observations support our assumption that these enhanced low-mass tails2639

are mainly analysis artifacts. They become smaller when adding information to the PWD fit as2640

done in the study with weaker RICH threshold.2641

Given the good agreement between the various systematic RICH studies and the main analysis2642

for most partial waves, we observe surprisingly large effects in some other waves. Two of these2643

waves are shown as an example in figures 5.25c and 5.25d. As expected, we observe in the main2644

analysis a double-peak structure in the intensity spectrum of the 1+ 0+ K∗(892) π S wave, which2645

presumably originates from the known K1(1270) and K1(1400) resonances. The RICH studies2646

yielded similar shapes, but with intensities that are different by a factor more than 2. Especially2647

the study with a more restrictive RICH threshold yielded an about 2.6 times larger intensity and2648

the study with a weaker RICH threshold yielded an about 2.5 times smaller intensity. Above2649

about 1.6 GeV/c2, we find again good agreement of the results from the RICH studies with the2650

main analysis. As already discussed for the total intensity distribution of waves with JP = 3+ in2651

section 5.5, we observe a peak-like structure in the intensity spectrum of the 3+ 1+ K∗(892) πD2652

wave in the mass range between about 1.2 and 1.6 GeV/c2 (see figure 5.25d). However, there2653

is no known or expected K3 state in this mass region (see figure 1.1). Furthermore, this low-2654

mass structure is very sensitive to systematic effects, similar to the double-peak in the 1+ 0+
2655

K∗(892) π S wave. The structure in the 3+ 1+ K∗(892) πD wave nearly vanishes in the study2656

with a weaker RICH threshold, while it becomes almost a factor 3 larger in the study with a2657

more restrictive RICH threshold. Interestingly, the mass range of about 1.0 to 1.6 GeV/c2, in2658

which we observe the large systematic effects described above, coincided with the mass range of2659

the low-mass structure seen in the 3+ 1+ K∗(892) πD wave. Also, the 2+ 1+ K∗(892) πD wave2660

shown in figure 5.25e is sensitive to systematic effects. While the shape of its intensity spectrum2661

is similar in the RICH studies and in the main analysis, its intensity becomes larger in the study2662

with a more restrictive RICH threshold and smaller in the study with a weaker RICH threshold,2663

analogously to the two waves discussed above. However, in the 2+ 1+ K∗(892) πD wave these2664

systematic effects are much weaker compared to the 1+ 0+ K∗(892) π S and 3+ 1+ K∗(892) πD2665

waves. Before being able to conclude on the origin of this effect in section 5.9, we add another2666

piece of information obtained from the pseudodata studies presented in section 5.8.2667

5.7.2 Alternative Approach for Wave-Set Selection2668

The potentially largest sources of systematic effects in the wave-set selection are the regularization2669

term used to suppress insignificant waves in equation (5.53) and the term in equation (5.57)2670

designed to impose continuity. In the main analysis, we chose a certain form for these terms based2671

on experience from previous analyses and based on tests using other forms (see sections 5.2.22672

and 5.2.3). Also, the choice of the parameter values for Γ and λ appearing in the regularization2673

and continuity terms may introduce systematic effects.2674

116 March 1, 2022 18:18



D
RA

FT

5.7 Systematic Studies

Therefore, we used in this study an alternative approach for the wave-set selection fit based2675

on information field theoryinformation field theoryinformation field theoryinformation field theoryinformation field theoryinformation field theoryinformation field theoryinformation field theoryinformation field theoryinformation field theoryinformation field theoryinformation field theoryinformation field theoryinformation field theoryinformation field theoryinformation field theoryinformation field theory (IFT) [126]. IFT is a Bayesian probability theory. It allows us to2676

apply regularization and to impose continuity as a function of mKππ consistently using a common2677

formalism. The regularization and continuity conditions are formulated in terms of the prior2678

probability. The so-called hyperparameters of the prior probability are inferred from data by2679

formulating hyperpriors for these parameters. Thereby, this approach potentially reduces the2680

bias in the wave-set selection that originates from the choice of these parameters. We present in2681

appendix G.1.1 the IFT model used in this study, which was developed in close collaboration with2682

the information field theory group at the Max Planck institute for Astrophysics [127, 128]. In the2683

IFT model, we formulated a prior probability that favors small partial-wave intensities and thus2684

suppresses insignificant waves. Continuity of the transition amplitudes in mKππ is represented in2685

terms of the correlations between the transition amplitudes at different mKππ locations. Continuity2686

is imposed by requiring a strong correlation between nearby mKππ locations in the prior term,2687

while allowing for weaker correlations between mKππ locations that are far apart. A detailed2688

introduction to IFT is given in ref. [126].2689

In the IFT study, we follow the same strategy as outlined in section 5.2: Based on the same2690

wave pool as used in the main analysis (see section 5.2.1) and applying the same thresholds for2691

sub-threshold decays of heavy isobar resonances (see section 5.2.4), we performed wave-set2692

selection fits that use the IFT approach to suppress insignificant waves and to impose continuity2693

in the wave set. As in the main analysis, we used a rank=1 model for the wave-set selection fits.2694

Based on the results of these wave-set selection fits, we constructed a wave set in each (mKππ, t′)2695

cell by requiring a minimal intensity for a partial wave to be selected, similar as in the main2696

analysis discussed in section 5.2.5.[bx] Finally, we performed a PWD fit using equation (5.38)2697

with these selected wave sets, which yielded the final results of the IFT study.2698

We used the Python framework NIFTy [129] to implement the IFT model in equation (G.15),2699

together with the likelihood of the PWD for a single data set given in equation (5.33). Fitting2700

of multiple data sets is not yet developed for this framework. Hence, we used only the K−π−π+
2701

sample from the 2008 diffraction data set for the wave-set selection fits in this study, which2702

corresponds to about 56 % of the full K−π−π+ sample. The reduced amount of data in this study2703

might lead to smaller wave sets, because small signals may become insignificant with respect2704

to the reduced precision. Employing the continuity condition as imposed by the IFT approach2705

required us to include the full analyzed mKππ range in a single IFT wave-set selection fit, while2706

in the main analysis we considered only small mKππ ranges of 15 bins in one fit. This prohibits2707

using an mKππ-dependent binning in mKππ. Hence, we used 20 MeV/c2 wide mKππ bins over the2708

full analyzed mKππ range. For the final PWD with the selected wave set we used the 2008 and2709

2009 sample, and we used 40 MeV/c2 wide bins for mKππ > 2 GeV/c2 as in the main analysis.2710

Figure 5.26 shows selected results from the IFT study. The size of the wave sets from the2711

IFT wave-set selection fits as a function of behaves similar mKππ as in the main analysis (cf.2712

[bx] The IFT method does not produce jump discontinuities in the ordered partial-wave intensities. Thus, we used a
constant intensity threshold of 3, which is the same value as used in the main analysis for (mKππ, t′) cells where the
automatic threshold detection failed (see appendix D.1.1).
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Figure 5.26: Results from the study using a wave set that was selected using IFT. (a) shows the size of the
wave sets obtained in the IFT study as a function of mKππ in the four t′ bins. (b) to (d) show the t′-summed
intensity spectra of three selected partial waves. The blue data points show the Bootstrapping estimates
from the main analysis. The violet data points show the maximum-likelihood estimates from the study
using the wave set constructed from the IFT wave-set selection fits. We do not show uncertainties for the
maximum-likelihood estimates form the systematic study (see text).
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figures 5.10 and 5.26a). Only the jump of the wave-set size at 2 GeV/c2 is not visible in the IFT2713

study as we did not change the mKππ binning here. The t′ dependence of the wave-set size is2714

also consistent with the main analysis. Given the potentially reduced bias in the IFT study by2715

inferring the prior hyperparameters from data, this good agreement between the IFT study and2716

the main analysis suggests that our choice for the regularization parameters was appropriate. This2717

means that the regularization in the main analysis was strong enough to suppress insignificant2718

waves so that the wave sets did not become too large and this means also the regularization in the2719

main analysis was not too strong so that significant waves were not suppressed.2720

Considering all (mKππ, t′) cells, the wave set from the IFT study consists of 104 partial waves.[by]
2721

This is significantly smaller than the 238-wave set selected in the main analysis. However, about2722

90 of the 238 partial waves contain only noise as discussed in section 5.2.6, while we find only six2723

noisy waves in the IFT wave set. That these noisy waves were not included in the IFT wave-set2724

demonstrates that IFT is a superior approach to impose continuity. One reason for this is that the2725

whole analyzed mKππ range could be considered in a single IFT wave-set selection fit.2726

Figures 5.26b to 5.26d compare the result of the PWD using the IFT wave set (violet data2727

points) to those from the main analysis (blue data points). For most partial waves, we find good2728

agreement between the IFT study and the main analysis, exemplarily shown in figure 5.26b2729

for the t′-summed intensity spectrum of the 1+ 0+ ρ(770) K S wave. Thus, we expect no large2730

systematic effects from the wave-set selection in the main analysis.2731

For some partial waves, we find low-mass enhancements in the IFT study. For example, the2732

2− 0+ K∗2(1430) π S wave shown in figure 5.26c is practically not selected in the main analysis in2733

mKππ bins below about 1.4 GeV/c2, while it was selected in the IFT study also below 1.4 GeV/c2
2734

resulting in a low-mass enhancement that peaks about 1.3 GeV/c2. As there are no known or2735

expected K2 states in this mass region, we assume this low-mass enhancement to be a model2736

artifact. The continuity of the wave set imposed by the IFT wave-set selection extends over the2737

full analyzed mKππ range. This leads to a wider mKππ range in which the 2− 0+ K∗2(1430) π S wave2738

was selected. However, in the mKππ region below about 1.4 GeV/c2, the 2− 0+ K∗2(1430) π S wave2739

may destructively interference with other waves, which can case such low-mass enhancements2740

as discussed for sub-threshold waves in section 5.2.4. For mKππ > 1.4 GeV/c2, the results from2741

the IFT study agree well with those from the main analysis.2742

For some partial waves at the per-mill level such as the 4+ 1+ K∗(892) πG wave shown in2743

figure 5.26d, the IFT study disagrees with the main analysis. In contrast to the main analysis, the2744

result of the IFT study does not exhibit a potential intensity peak from the K∗4(2045) resonance,2745

which is expected to be observed in this partial wave at about 2 GeV/c2. Partial waves with such2746

small intensities are most sensitive to bias from the selected wave set. Also the IFT method2747

has some parameters that must be chosen a priori, e.g. the parameters of the hyper-priors in2748

equations (G.13) and (G.14). As those parameters were not yet fine-tuned in the IFT study, their2749

choice might lead to some bias in small waves from the IFT wave-set selection.2750

[by] In addition to the 104 partial waves, we also included the incoherent flat wave in the PWD fits.
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Finally, we observe large systematic effects in those waves that exhibit low-mass structures and2751

that already showed large systematic effects in the RICH studies discussed in section 5.7.1. Such2752

a wave is, for example the 3+ 1+ K∗(892) πD partial wave shown in figure G.3g.2753

Overall, the wave-set selection using IFT yielded very promising results. However, there are2754

some caveats such as the missing K∗4(2045) signal, which have to be resolved before the IFT2755

wave-set selection can be used in the main analysis.2756

Reviewing all studies presented in this section 5.7, the systematic studies and the main analysis2757

agree well for most partial waves. From this we conclude that we expect no large systematic2758

effects on the results of the PWD for these waves. appendix G.1, we present an overview over2759

all systematic studies for those partial waves that are discussed in this work. However, for2760

some partial waves, we observe large systematic effects in the mass region below 1.6 GeV/c2
2761

together with unexpected low-mass structures in this mass region. These effects demand further2762

clarification, and we will conclude on them in section 5.9.2763

5.8 Pseudodata Studies using the K−π−π+ PWD Model2764

To further test the consistency of our PWD results, we studied our analysis in an environment2765

where we controlled the input, i.e. where we knew the distribution from which the events2766

were produced, how the measurement process distorted these distributions, and what values of2767

the spin-density matrix elements we expect. These input-output studies were carried out by2768

generating pseudodata samples. Hence, we call them pseudodata studiespseudodata studiespseudodata studiespseudodata studiespseudodata studiespseudodata studiespseudodata studiespseudodata studiespseudodata studiespseudodata studiespseudodata studiespseudodata studiespseudodata studiespseudodata studiespseudodata studiespseudodata studiespseudodata studies. What we will call2769

produced pseudodata samplesproduced pseudodata samplesproduced pseudodata samplesproduced pseudodata samplesproduced pseudodata samplesproduced pseudodata samplesproduced pseudodata samplesproduced pseudodata samplesproduced pseudodata samplesproduced pseudodata samplesproduced pseudodata samplesproduced pseudodata samplesproduced pseudodata samplesproduced pseudodata samplesproduced pseudodata samplesproduced pseudodata samplesproduced pseudodata samples are simulated samples of events that are distributed according to2770

a given physics model. In this section, we discuss samples that were generated according to2771

a PWD model as given in equation (5.16). In order to study apparatus effects, i.e. resolution2772

and acceptance effects, the produced pseudodata events are processed through the COMPASS2773

detector Monte Carlo simulation and the event reconstruction algorithm.[bz] Then we applied2774

the same event selection criteria as for the measured data. This procedure yields so-called2775

reconstructed pseudodata samplesreconstructed pseudodata samplesreconstructed pseudodata samplesreconstructed pseudodata samplesreconstructed pseudodata samplesreconstructed pseudodata samplesreconstructed pseudodata samplesreconstructed pseudodata samplesreconstructed pseudodata samplesreconstructed pseudodata samplesreconstructed pseudodata samplesreconstructed pseudodata samplesreconstructed pseudodata samplesreconstructed pseudodata samplesreconstructed pseudodata samplesreconstructed pseudodata samplesreconstructed pseudodata samples, which resemble the distribution of measured events. A de-2776

tailed description of how we generated these samples is given in appendix C.2777

In this section, we discuss pseudodata samples for the reaction K− + p→ K−π−π+ + p, which2778

were generated according to three different PWD models. All three models are based on the2779

results of a PWD fit of the 238-wave set to the measured K−π−π+ sample, which is called2780

the 238-wave pseudodata model238-wave pseudodata model238-wave pseudodata model238-wave pseudodata model238-wave pseudodata model238-wave pseudodata model238-wave pseudodata model238-wave pseudodata model238-wave pseudodata model238-wave pseudodata model238-wave pseudodata model238-wave pseudodata model238-wave pseudodata model238-wave pseudodata model238-wave pseudodata model238-wave pseudodata model238-wave pseudodata model in the text below.[ca]We applied the same procedure to the2781

[bz] We used the Monte Carlo simulation of the experimental setup of the 2008 diffraction data taking for all pseudodata
studies. The 2009 setup is nearly identical to the 2008 setup. Thus, the conclusions drawn from the pseudodata
studies using the 2008 setup can be applied to the main analysis of the measured K−π−π+ sample from 2008 and
2009.

[ca] We generated the pseudodata samples by applying equation (5.16) with the maximum-likelihood estimates of the
parameters from a PWD fit using a rank=1 model and the 238-wave set without applying table D.1. This model is
called the 238-wave pseudodata model. This was done, because historically, we generated the pseudodata samples
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pseudodata samples as in the main analysis; i.e. we applied the same event selection, which is2782

discussed in section 4.1, and we performed a PWD using a rank=3 model and the 238-wave2783

set.[cb] As for the systematic studies presented in section 5.7, performing a Bootstrapping of the2784

PWD for all pseudodata studies was computationally too expensive. Thus, we present in this2785

section the maximum-likelihood estimates from the PWD of the pseudodata samples, and we do2786

not show the corresponding uncertainties. In section 6.4, we present pseudodata studies where2787

we also performed a Bootstrapping.2788

5.8.1 Pseudodata Sample based on the 238-Wave Pseudodata Model2789

We generated a pseudodata sample of the reaction K− + p → K−π−π+ + p that is as similar2790

as possible to the measured K−π−π+ sample. To this end, we used the 238-wave pseudodata2791

model. In total, we generated 50 × 106 produced events in the analyzed mKππ and t′ range.2792

About 3.18 × 106 events of all produced events were reconstructed, i.e. passed all event-selection2793

criteria.[cc]
2794

Figure 5.27 shows the t′-summed intensity spectra of four exemplary selected partial waves from2795

the PWD of this pseudodata sample. The results of the PWD of the produced pseudodata sample2796

(cyan data points), i.e. the pseudodata sample without acceptance and resolution effects,[cd] agree2797

well with the reference model (blue crosses), i.e. the expectation from the 238-wave pseudodata2798

model. This demonstrates that the PWD formalism presented in section 5.1 works in the ideal2799

case with perfect acceptance and with a perfect PWD model, which by construction is able to2800

describe the data.2801

The results of the PWD of the reconstructed pseudodata sample are shown by the green data2802

points. The reconstructed pseudodata sample is afflicted with the same acceptance affects,2803

resolution effects, and misidentification of the final-state particles as the measured data. Thus,2804

we test in this pseudodata study whether our analysis is robust with respect to these apparatus2805

effects. The results of this study agree with the reference model for most partial waves. We2806

find good agreement for relatively large partial waves such as the 1+ 0+ ρ(770) K S wave shown2807

in figure 5.27a as well as for small waves at the per-mill level such as the 4+ 1+ K∗(892) πG2808

wave shown in figure 5.27b. In figure 5.25e we show that the intensity of the 2+ 1+ K∗(892) πD2809

before deciding to switch to a rank=3 spin-density matrix in the PWD, before extending the wave set from the
wave-set selection fits according to table D.1, and before using Bootstrapping. As all three changes in the PWD
resulted in a similar agreement between the PWD model and the measured data, the pseudodata samples based on
the 238-wave pseudodata model reproduce the measured K−π−π+ sample. As generating these pseudodata samples
is computationally very expensive, we did not regenerate the pseudodata samples after changing the analysis.

[cb] We used the 238-wave set without applying table D.1 to be consistent with the 238-wave pseudodata model.
[cc] The fraction of reconstructed events corresponds to an average acceptance of 6.44 %. However, this estimate is

strongly biased by the leakage effect as discussed in section 5.9.1. Based on the findings shown there, we estimated
an actual average acceptance of about 12 %. This comparably low acceptance is mainly due to the limited kinematic
range of the final-state particle identification.

[cd] As the produced pseudodata sample is not affected by acceptance effects, we used a perfect-acceptance model in
the corresponding PWD fit, i.e. we used η(i)(τ,mKππ, t′) = 1 in equation (5.27).
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Figure 5.27: t′-summed intensity spectra of four selected partial waves as obtained from the PWD of the
pseudodata sample that was generated using the full 238-wave pseudodata model. The cyan data points
represent the PWD of the produced pseudodata sample. The green data points represent the PWD of the
reconstructed pseudodata sample. The blue crosses represent the expected values, i.e. the values from
the 238-wave pseudodata model scaled such that its prediction for the total number of produced events
is equal to the number of produced pseudodata events. We show the maximum-likelihood estimates of
the intensities obtained from the pseudodata. The corresponding maximum-likelihood estimates of the
uncertainties are not shown (see text).
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Figure 5.28: Same as figure 5.27, but showing in addition to the results of the PWD of a subset of
720 × 103 events of the reconstructed pseudodata sample (violet data points).

wave exhibits a modest sensitivity to systematic effects. In contrast, we find here consistent2810

results for the intensity spectrum of the 2+ 1+ K∗(892) πD wave in figure 5.27c. Hence, the2811

2+ 1+ K∗(892) πD wave is interpreted in terms of physics signals as discussed in section 7.2.2812

From the findings discussed in this paragraph we conclude that the signals in most of the partial2813

waves are robust with respect to these apparatus effects.2814

As expected, we observe larger fluctuations of the results from the reconstructed pseudodata2815

sample compared to those from the produced pseudo data samples because the size of the2816

reconstructed pseudodata sample is about 20 times smaller. Still, the reconstructed pseudodata2817

sample is about 4.3 times larger than the measured K−π−π+ sample and thus more precise. To test2818

whether the sample size biases the results of the PWD, we performed a PWD where we used only2819

a sub-sample of 720 × 103 events of the reconstructed pseudodata sample, which hence has the2820

same size as the measured K−π−π+ sample. The violet data points in figure 5.28 show the results2821

of this study for two exemplary selected waves. The results are similar to those using the full2822

reconstructed pseudodata sample (green data points) and to the 238-wave pseudodata reference2823

model (blue crosses), even for waves at the per-mill level such as the 4+ 1+ K∗(892) πG wave2824

shown in figure 5.28b. Thus, we conclude, that our analysis is robust with respect to statistical2825

fluctuations, e.g. that we do not expect large artifacts from overfitting in most partial waves.2826

However, there is a certain set of partial waves for which the results from the reconstructed2827

pseudodata sample do not agree well with the 238-wave pseudodata reference model. For2828

example, the intensity spectrum of the 1+ 0+ K∗(892) π S wave obtained from the reconstructed2829

pseudodata sample (green points in figure 5.27d) is slightly but systematically smaller compared2830

to the reference model in the mKππ region below about 1.6 GeV/c2. Interestingly, we observe2831

these discrepancies only in the PWD of the reconstructed pseudodata sample, while the results2832

obtained from the produced pseudodata sample agree with the reference. As the difference2833
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between both pseudodata samples are acceptance effects, this suggests that this discrepancy2834

is related to effects from the experimental acceptance.[ce]Understanding these discrepancies2835

requires further investigations, which will be summarized in section 5.9.2836

5.8.2 Introducing Imperfections into the Pseudodata2837

In this section we test the robustness of our PWD with respect to imperfections in the analysis2838

model. To this end, we used the reconstructed pseudodata sample based on the 238-wave2839

pseudodata model, but performed a PWD fit using a detuned acceptance modeldetuned acceptance modeldetuned acceptance modeldetuned acceptance modeldetuned acceptance modeldetuned acceptance modeldetuned acceptance modeldetuned acceptance modeldetuned acceptance modeldetuned acceptance modeldetuned acceptance modeldetuned acceptance modeldetuned acceptance modeldetuned acceptance modeldetuned acceptance modeldetuned acceptance modeldetuned acceptance model. Instead of2840

using the acceptance model of the main analysis, which would be the correct one, we used the2841

acceptance model from the systematic study with a more restrictive momentum limit for the2842

RICH final-state particle identification (see section 5.7.1). This means we identified final-state2843

pions and kaons up to 60 GeV/c in the reconstructed pseudodata sample, but when fitting the2844

PWD model to this pseudodata sample, we wrongly set the probability to identify final-state2845

particles to zero in the range 40 ≤ |~p| < 60 GeV/c in the acceptance model. This introduced a2846

modest but not negligible imperfection in the PWD fit. In particular, the introduced imperfection2847

is located in a kinematic region where the acceptance in the main analysis strongly changes2848

and where we observe some deviations between the PWD model predictions and the measured2849

data in this kinematic region as discussed in section 5.6. Thus, we expect the PWD fit to be2850

sensitive to imperfections especially in this kinematic region. As we modeled the acceptance2851

in this kinematic region in the acceptance model used in the main analysis, we assume that the2852

imperfections in the measured data are not larger than the imperfections introduced in this study.2853

Hence, the study using the detuned acceptance model is suited well to test the robustness of the2854

PWD.2855

The orange data points in figure 5.29 represent the results of the PWD using the detuned2856

acceptance model. Given the introduced imperfection, we still find good agreement between the2857

results of this study and the 238-wave pseudodata reference model (blue crosses) for most of2858

the waves as exemplarily shown in figures 5.29a and 5.29b. Only in the low-mass tail of the2859

1+ 0+ ρ(770) K S wave shown in figure 5.29a, i.e. in the mKππ region below about 1.3 GeV/c2,2860

this study yielded intensities slightly larger than the reference model. This might indicate that2861

the imperfections due to the detuned acceptance model lead to small artifacts in the low-mass2862

region, similar to the low-mass enhancements discussed in section 5.5. Nonetheless, from the2863

good agreement found in most of the partial waves we conclude that our analysis model and2864

analysis procedure is robust with respect to such modest imperfections in the description of the2865

acceptance.2866

[ce] In addition to acceptance effects, the reconstructed pseudodata sample is also affected by resolution effects. We
excluded that the observed discrepancies are caused by resolution effects in a study, where we used the true
physical values of the kinematic variables, i.e. the values with which the event was produced, in the PWD of the
reconstructed pseudodata sample instead of using the reconstructed values. Hence, in this study the PWD fit is
free of resolution effects. The results of this study show similar discrepancies as those observed when using the
reconstructed quantities.
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Figure 5.29: Same as figure 5.27, but showing the result of the PWD of the reconstructed pseudodata
using the detuned acceptance model (orange data points).
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Using the detuned acceptance model yielded a slightly larger intensity of the 2+ 1+ K∗(892) πD2867

wave compared to the 238-wave pseudodata reference model as shown in figure 5.29c, while2868

the shape remains similar. This is consistent with our finding that the 2+ 1+ K∗(892) πD wave2869

from the measured K−π−π+ sample is only modestly sensitive to systematic effects as discussed2870

in section 5.7.1. Only in about four mKππ bins at about 1.3 GeV/c2, the intensity is much larger2871

than in the reference model. We do not observe such a deviation if we use the correct model2872

for the acceptance. Thus, the discrepancy may arise due to destructive interference of the 2+ 1+
2873

K∗(892) πD wave with other partial waves that were selected only in those mKππ bins. The2874

resulting, typically small, effect on the total model intensity from such a destructive interference2875

may be misused by the fit to partly account for the introduced imperfection.2876

Finally, we find large deviations for a certain set of partial waves when using the detuned2877

acceptance model. Among these waves are the 1+ 0+ K∗(892) π S , the 0− 0+ K∗(892) π P, and2878

the 3+ 1+ K∗(892) πD waves shown in figures 5.29d, 5.29e, and 5.29f; respectively. In all waves,2879

the intensity obtained using the detuned acceptance model is much larger than the reference2880

model. However, this discrepancy is limited to the mKππ region below about 1.6 GeV/c2. Most2881

of these waves have the K∗(892) isobar. As shown e.g. in figure 5.27d, we find discrepancies2882

in a similar set of waves also when using the correct model for the acceptance. However, these2883

discrepancies are much smaller. Interestingly, we find these small deviations in the same partial2884

waves for which we observe large systematic effects (see section 5.7) and in many of these waves2885

we observe unexpected low-mass structures (see section 5.5). In section 5.9, we will conclude on2886

this effect.2887

5.8.3 Pseudodata without the 1+ 0+ ρ(770) K S or 2+ 1+ K∗(892) π D Waves2888

In order to study artifacts due to wrongly assigned intensity in individual partial waves in more2889

detail, we generated pseudodata samples based on the 238-wave pseudodata model, but we2890

omitted in each study a single wave, i.e. we set the amplitude of this wave to zero. Thus,2891

the PWD of such a pseudodata sample should yield zero intensity for the omitted wave. Any2892

significant deviation from zero intensity would indicate artifacts in the omitted wave.2893

We generated a pseudodata sample where we omitted the 1+ 0+ ρ(770) K S wave.[cf] Figure 5.30a2894

shows the t′-summed intensity spectrum of the 1+ 0+ ρ(770) K S wave as obtained from this2895

pseudodata sample using the correct model for the acceptance (green data points) or using2896

the detuned acceptance model (orange data points). We used the same detuned acceptance2897

model as in section 5.8.2. Overall, the intensity of the 1+ 0+ ρ(770) K S wave obtained in2898

this study is small compared to the intensity observed in the measured K−π−π+ sample (blue2899

crosses).[cg] We obtained similar results when using the correct and the detuned acceptance2900

[cf] We generated 40 × 106 pseudodata events.
[cg] We determined the scale factor for the full 238-wave pseudodata model, such that the prediction for the number of

produced events from the 238-wave pseudodata model without the 1+ 0+ ρ(770) K S wave is equal to the number of
produced pseudodata events in this study. The scaled 238-wave pseudodata model gives the expected spin-density
matrix elements for all waves except for the 1+ 0+ ρ(770) K S wave, for which the expectation is zero.
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Figure 5.30: Results from the PWD of the pseudodata sample that was generated from the 238-wave
pseudodata model, but with the 1+ 0+ ρ(770) K S amplitudes set to zero. The t′-summed intensity spectra
of two selected partial waves are shown. The cyan data points represent the PWD of the produced
pseudodata. The green data points represent the PWD of the reconstructed pseudodata using the correct
model for the acceptance. The orange data points represent the PWD of the reconstructed pseudodata
using the detuned acceptance model. The blue crosses represent the full 238-wave pseudodata model
scaled accordingly.[cg] We show the maximum-likelihood estimates of the intensities obtained from the
pseudodata. The corresponding maximum-likelihood estimates of the uncertainties are not shown.

model. However, the intensity is not zero as expected. Especially, in the mKππ region below about2901

1.3 GeV/c2 we observe small artificial intensities in this partial wave. The PWD of the produced2902

pseudodata sample (cyan data points) yielded practically zero intensity in the 1+ 0+ ρ(770) K S2903

wave. Thus, we conclude that the small artifacts observed in the 1+ 0+ ρ(770) K S wave arise2904

from the limited acceptance, which is mainly caused by the limited range of the RICH final-state2905

particle identification. These artifacts are not sensitive to imperfections in the analysis model.2906

As discussed in section 5.7.1, we also observe small systematic effects in this mKππ region in2907

the 1+ 0+ ρ(770) K S wave obtained from the PWD of the measured K−π−π+ sample. The other2908

partial waves are not affected when omitting the 1+ 0+ ρ(770) K S wave as exemplarily shown in2909

figure 5.30b. In all pseudodata and systematic studies discussed so far, most of the partial waves2910

behave similar to the 1+ 0+ ρ(770) K S wave. Thus, we expect the conclusions drawn here for2911

the 1+ 0+ ρ(770) K S wave to hold also for most of the other waves.2912

One of the exceptions is the 2+ 1+ K∗(892) πD wave, which is affected by small systematic effects2913

(see figure 5.25e). Thus, we performed another pseudodata study using a pseudodata sample2914

where we omitted the 2+ 1+ K∗(892) πD wave.[ch] In the highest t′ bin shown in figure 5.31b,2915

we observe only little intensity in the 2+ 1+ K∗(892) πD wave, as expected. Only in two mKππ2916

bins at about 1.3 GeV/c2 and only when we used the detuned acceptance model (orange data2917

points), the 2+ 1+ K∗(892) πD wave picked up some intensity. We observe larger intensities in2918

[ch] We generated again 40 × 106 pseudodata events.
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Figure 5.31: Same as figure 5.30 but for the pseudodata study based on the 238-wave pseudodata model
without the 2+ 1+ K∗(892) πD wave component.

the lowest t′ bin shown in figure 5.31a. The intensity obtained using the correct model for the2919

acceptance (green data points) peaks at about 1.3 GeV/c2. This peak becomes larger when using2920

the detuned acceptance model (orange data points). It is even larger than the intensity obtained2921

from the measured K−π−π+ sample (blue crosses). Such a large artificial intensity is typical2922

for destructive interferences, which become enhanced when introducing imperfections, because2923

they are misused by the fit to account for the imperfections. The intensity obtained from the2924

PWD of the produced pseudodata sample (cyan data points) is practically zero, in agreement2925

with the reference model. From this pseudodata study, we expect modest artifacts in the 2+ 1+
2926

K∗(892) πD wave obtained from the PWD of the measured K−π−π+ sample mainly in the low-t′2927

and low-mKππ region, which is consistent with the findings in the systematic studies. The results2928

for the other waves (not shown) are not biased when omitting the 2+ 1+ K∗(892) πD wave.2929

Reviewing all studies presented in this section 5.8 we conclude that for most of the partial waves2930

we expect no considerable artifacts in our analysis caused by e.g. an imperfect acceptance model.2931

We find indications for modest artificial intensities in the 2+ 1+ K∗(892) πD wave mainly in the2932

low-t′ and low-mKππ region. However, there is a certain set of partial waves, e.g. the 1+ 0+
2933

K∗(892) π S wave, whose results are very sensitive to imperfections in the analysis model, e.g. to2934

a detuned acceptance model. We discuss this set of waves in the following section 5.9.2935
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5.9 The Leakage Effect2936

As discussed in section 5.7, there is a certain set of partial waves, for which we observe large2937

systematic effects, e.g. for which the various systematic studies yielded different intensity spectra.2938

In the PWD pseudodata studies discussed in section 5.8, we find a similar set of partial waves,2939

for which we obtained results that differ from the reference model, especially when using the2940

detuned acceptance model. Among these waves are the 1+ 0+ K∗(892) π S , 0− 0+ K∗(892) π P,2941

and 3+ 1+ K∗(892) πD waves, for which the discrepancies are largest. The deviations are limited2942

to the region mKππ . 1.6 GeV/c2. In the same mKππ region, we observe in the measured2943

data an unexpected peaking structure in the 3+ 1+ K∗(892) πD wave (see blue data points in2944

figure 5.25d), while there is no known or expected K3 state in this mass region. The peaking2945

structure dominates this wave, which contributes a surprisingly large fraction of 6.4 % to the total2946

intensity. Also, the 1+ 0+ K∗(892) π S and 0− 0+ K∗(892) π P waves exhibit peaking structures2947

in the low-mass region, which depend strongly on the details of the analysis procedure, e.g. on2948

the RICH threshold as shown in figure 5.25c. In contrast to the 3+ 1+ K∗(892) πD wave, there2949

are known resonances, which may contribute to these structures, i.e. the K1(1270), the K1(1400),2950

and the K(1460). In the rest of the text, we denote such unexpected low-mass structures that2951

have large systematic uncertainties and correspond to deviations in the PWD pseudodata studies2952

by the term leakage artifactsleakage artifactsleakage artifactsleakage artifactsleakage artifactsleakage artifactsleakage artifactsleakage artifactsleakage artifactsleakage artifactsleakage artifactsleakage artifactsleakage artifactsleakage artifactsleakage artifactsleakage artifactsleakage artifacts.2953

We observe leakage artifacts only in a limited set of partial waves, the so-called leakage wavesleakage wavesleakage wavesleakage wavesleakage wavesleakage wavesleakage wavesleakage wavesleakage wavesleakage wavesleakage wavesleakage wavesleakage wavesleakage wavesleakage wavesleakage wavesleakage waves.2954

The other partial waves are called non-leakage wavesnon-leakage wavesnon-leakage wavesnon-leakage wavesnon-leakage wavesnon-leakage wavesnon-leakage wavesnon-leakage wavesnon-leakage wavesnon-leakage wavesnon-leakage wavesnon-leakage wavesnon-leakage wavesnon-leakage wavesnon-leakage wavesnon-leakage wavesnon-leakage waves. Thus, the leakage artifacts must be linked2955

to the distributions of events in the phase-space variables as predicted for the leakage waves. The2956

distribution in the phase-space variables of a wave is characteristic for this wave and is given by2957

the corresponding decay amplitude defined in equation (5.10). In order to study the properties2958

of the decay amplitudes we study the phase-space integral matrix defined in equation (5.22).2959

Figure 5.32a shows the magnitude of the elements of this matrix. The phase-space integral matrix2960

can be interpreted as the Gram matrix [130] of the decay amplitudes. It is also similar to the2961

matrix of overlap integrals used in quantum chemistry [131]. The diagonal elements have a value2962

of one by construction. The off-diagonal elements called overlapsoverlapsoverlapsoverlapsoverlapsoverlapsoverlapsoverlapsoverlapsoverlapsoverlapsoverlapsoverlapsoverlapsoverlapsoverlapsoverlaps in this work are a measure for2963

the orthogonality of the decay amplitudes as a function of the phase-space variables. If |Iab| = 0,2964

the decay amplitudes of waves a and b are orthogonal. If |Iab| = 1, the decay amplitudes of2965

waves a and b are linearly dependent, i.e. the distribution of events in the phase-space variables2966

is identical for both waves. Overall, we observe very small overlaps (dark blue off-diagonal2967

cells in figure 5.32a). For example, the overlaps between waves with different JP are practically2968

zero as expected, because the Wigner D-functions are orthogonal. There are a few exceptions2969

of waves with larger overlaps (green and yellow off-diagonal cells in figure 5.32a), which are2970

understood as discussed in appendix D.3. They do not cause issues in the main analysis and are2971

not related to the leakage waves. In summary, the phase-space integral matrices do not give a2972

hint to understand the leakage artifacts.2973

However, we observe the leakage artifacts only in data affected by detector acceptance effects.2974

The phase-space integral matrix provides a measure of the orthogonality of waves in the full2975

phase space. However, the phase-space is non-uniformly covered by the detector acceptance. In2976
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Figure 5.32: Magnitude of the integral-matrix elements for the waves that were selected in the kinematic
cell at mKππ = 1.31 GeV/c2 in the lowest t′ bin. (a) shows the phase-space integral matrix given in
equation (5.22). (b) shows the acceptance-integral matrix given in equation (5.29) for the acceptance of
the i = 2008 setup. The incoherent flat wave is not shown.

particular, there are parts of the phase-space that are experimentally not accessible in measured2977

data, which is mainly caused by the limited kinematic range of the RICH final-state particle2978

identification (see figure 5.23b). This leads to a loss of information, i.e. there is no information2979

about a part of the phase-space distribution in the measured data. These acceptance effects are2980

taken into account in the acceptance-integral matrix defined in equation (5.29), which can be2981

interpreted as the Gram matrix of the decay amplitudes in the experimentally accessible part of2982

the phase space.[ci] Figure 5.32b shows the magnitude of the acceptance-integral matrix elements2983

in the mKππ region of the leakage artifacts. The acceptance-integral matrix exhibits completely2984

different features compared to the phase-space integral matrix in figure 5.32a. The diagonal2985

elements are smaller than one, because they represent the average acceptance of the corresponding2986

wave, i.e. the average acceptance if the data would contain only this wave. Particularly noteworthy2987

are the large overlaps with respect to the diagonal elements between almost all waves in the wave2988

set,[cj] also between waves with different JP. These large overlaps show a none-orthogonality2989

of the decay amplitudes that is caused by the loss of information due to the limited acceptance.2990

However, this does not mean that the partial waves cannot be distinguished at all in the PWD,2991

but the large overlaps indicate that the decay amplitudes are more similar in the experimentally2992

accessible region of the phase space. Thus, they are harder to distinguish and more sensitive to2993

systematic effects.2994

[ci] To be precise, the acceptance does not just select certain regions of the phase space, i.e. is not just zero or one,
but is a continuous function in the phase-space variables with values between zero and one (neglecting resolution
effects). When interpreting the acceptance-integral matrix as the Gram matrix of the decay amplitudes, we take into
account the limitation and distortion of the phase-space by the acceptance.

[cj] The magnitudes of the off-diagonal elements of Ī (i)
ab are not limited to the range 0 ≤ Ī (i)

ab ≤ 1. Still, the color scale
allows us to interpret off-diagonal elements that are green or yellow as large and those that are dark blue as small.
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In order to identify waves with large overlaps, we performed an eigenvalue decomposition of the2995

acceptance-integral matrix, i.e.[ck]
2996

Īab =
∑

h

e
h
v

h
a

[
v

h
b

]∗
. (5.77)

Here, eh are the eigenvalues of the acceptance-integral matrix labeled by h and vh
a is the element2997

of the eigenvector of eh that belongs to the partial wave a. In the eigenvalue basis, the PWD2998

prediction for the total number of measured events in a given (mKππ, t′) cell as defined in2999

equation (5.28) reads[ck]
3000

N̂ev =
∑
a,b∈W

ρab Īab =
∑

h

e
h
∑
a,b∈W

ρabv
h
a

[
v

h
b

]∗
. (5.78)

As the contribution of each eigenvector to N̂ev is multiplied by the corresponding eigenvalue,3001

eigenvectors of vanishing eigenvalues, i.e. eigenvalues close to zero, do not strongly influence3002

N̂ev. This means that the corresponding partial waves, i.e. partial waves with large corresponding3003

vh
a, may destructively interfere such that even large intensities in the individual partial waves3004

lead to only a small change in the description of the measured sample by the PWD model.[cl]
3005

Hence, these waves are only loosely constrained by the data. This may be an explanation for3006

the leakage effect. We therefore searched for vanishing eigenvalues and studied which partial3007

waves contribute to the eigenvectors that correspond to vanishing eigenvalues, i.e. we searched3008

for waves with large vh
a, while the corresponding eh is vanishing.3009

We find vanishing eigenvalues of the acceptance-integral matrix shown in figure 5.32b. The3010

smallest eigenvalue, which has a value of 0.0010, mainly arises from waves with [Kπ]Kπ
S ,3011

[Kπ]Kη
S , and [ππ]AMPK

S isobars as discussed in appendix D.3. Those waves exhibit similarly3012

large overlaps already in the phase-space integral matrix in figure 5.32a. Hence, the smallest3013

eigenvalue is not driven by acceptance effects. Since the leakage artifacts only appear in data3014

affected by acceptance effects, this smallest eigenvalue is not related to the leakage artifacts. The3015

second smallest eigenvalue, which has a value of 0.0021, arises from large contributions of the3016

0− 0+ K∗(892) π S , 3+ 1+ K∗(892) πD, 2− 0+ K∗(892) π P, 1− 1+ K∗(892) π P, 1+ 1+ K∗(892) S ,3017

and 1+ 0+ K∗(892) π S waves; ordered by the corresponding |vh
a| value; and other waves with3018

smaller |vh
a|. We find large contributions of similar partial waves to the two next largest eigenvalues3019

with values of 0.0027 and 0.0032. The fifth smallest eigenvalues becomes quickly larger with3020

a value of about 0.0068. Hence, the fifth and all other remaining eigenvalues are not further3021

interest here. With increasing mKππ, the smallest eigenvalues become significantly larger. For3022

example at mKππ ≈ 1.6 GeV/c2, the smallest eigenvalue has a value of 0.16. Thus, at higher3023

masses even the smallest eigenvalues do not vanish and contribute to the total model intensity.3024

[ck] Here, we drop the data-set label (i) for simplicity, because we want to demonstrate a general feature of the
acceptance-integral matrix.

[cl] The PWD model describes the distribution in the phase-space variables and not only Nev. Nonetheless, combinations
of waves that correspond to vanishing eigenvalues do not strongly contribute to the model predictions for the
phase-space distributions in equation (5.28). For example, if an eigenvalue is exactly zero, the corresponding linear
combination of decay amplitudes is exactly zero everywhere in phase space.
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This set of waves that mainly contributes to vanishing eigenvalues of the acceptance-integral3025

matrix agrees with the leakage waves observed in the systematic and pseudodata studies. Fur-3026

thermore, the vanishing eigenvalues become larger and the leakage artifacts become smaller at3027

a similar mKππ of about 1.6 GeV/c2. Thus, we conclude that the leakage artifacts are related3028

to the vanishing eigenvalues, i.e. they are related by the loss of information due to the limited3029

acceptance. This acceptance-induced effect is called leakage effect in the rest of the text. How-3030

ever, the eigenvalues that correspond to the leakage effect are not exactly zero, which means3031

that the leakage waves can be distinguished in principle. This is supported by our finding that3032

the leakage artifacts are small in the PWD pseudodata studies in section 5.8 where we used the3033

correct model for the acceptance and where we fitted a pseudodata sample that is much larger3034

than the measured K−π−π+ sample. However, in the measured K−π−π+ sample, where we have3035

only a limited amount of data available and where the analysis model is not perfect, e.g. due to3036

background in the sample, the leakage waves may easily be misused by the PWD fit to account3037

for imperfections in the model. This is strongly supported by our finding that the leakage artifacts3038

are much more pronounced in the pseudodata study where we used a detuned acceptance model3039

(see section 5.8.2).3040

5.9.1 Reproducing the Leakage Effect in Pseudodata3041

Having identified the cause of the leakage effect, we further studied it using additional pseudodata3042

samples. As the 1+ 0+ K∗(892) π S wave is the largest wave in our analysis with an intensity of3043

about 23 % of the total intensity and as this wave contributes strongly to the leakage effect, we3044

generated a pseudodata sample of 50 × 106 events according to only the 1+ 0+ K∗(892) π S wave3045

from the 238-wave pseudodata model.3046

The results of the PWDs of the produced pseudodata sample and of the reconstructed pseudodata3047

sample using the correct model for the acceptance (not shown) do not exhibit artifacts from the3048

leakage effect in any of the waves in the produced pseudodata and in any of the non-leakage3049

waves in the reconstructed pseudodata. They are consistent with the findings in the previous3050

pseudodata studies discussed in section 5.8. In the leakage waves we observe only small artifacts3051

from the leakage effect in the reconstructed pseudodata when using the correct model for the3052

acceptance.3053

The results of the PWD of the reconstructed pseudodata using the detuned acceptance model are3054

shown by the orange data points in figure 5.33. The intensity of the 1+ 0+ K∗(892) π S wave is3055

larger than the reference model, which is expected from the previous studies due to the leakage3056

effect. However, we observe surprising results for some of the leakage waves. For example,3057

although the reference model is zero for the 3+ 1+ K∗(892) πD wave, we find a peaking structure3058

in the corresponding intensity spectrum at about 1.3 GeV/c2 (orange data points in figure 5.33b),3059

which is similar to the 238-wave pseudodata model (blue crosses), which was obtained from the3060

measured K−π−π+ sample. Also, the intensity spectrum of the 0− 0+ K∗(892) π P wave (orange3061

data points figure 5.33c) is surprisingly similar to the one obtained from measured data in the3062

mass region below about 1.6 GeV/c2, although it is expected to vanish.3063
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Figure 5.33: Results from the PWD using the detuned acceptance model of the reconstructed pseudodata
sample that was generated using only the 1+ 0+ K∗(892) π S wave from the 238-wave pseudodata model
(orange data points). The blue crosses represent the full 238-wave pseudodata model scaled accordingly
(see figure 5.30). We show the maximum-likelihood estimates of the intensities obtained from the
pseudodata. The corresponding maximum-likelihood estimates of the uncertainties are not shown (see
section 5.8).
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As the intensity of the reference model of those 3+ and 0− waves is zero, the low-mass structures3064

in this pseudodata study are artifacts that are generated by our analysis procedure. As these3065

artifacts appear only in the PWD of the reconstructed pseudodata and only when using the3066

detuned acceptance model; and as these artifacts appear only in leakage waves, we conclude3067

that these artifacts arise from the leakage effect. This supports our conclusion, that the leakage3068

artifacts observed in the measured K−π−π+ sample are an acceptance-induced effect.3069

The low-mass structures observed e.g. in the 3+ and 0− waves in this pseudodata study are3070

similar to the low-mass structures observed in the measured K−π−π+ sample in the same waves.3071

Hence, we conclude that these low-mass structures observed in the measured K−π−π+ sample3072

are dominantly caused by the leakage effect. For example, for the 3+ 1+ K∗(892) πD wave3073

this is also consistent with the fact that there is no known or expected K3 state in this mKππ3074

region. Furthermore, when adding information to the PWD fit and thereby potentially weakening3075

the leakage effect, as done in the systematic study with a less restrictive RICH threshold, the3076

low-mass structure in the 3+ 1+ K∗(892) πD wave becomes much smaller (green data points in3077

figure 5.25d).[cm] When removing information and thereby potentially enhancing the leakage3078

effect, as done in the systematic study with more restrictive RICH threshold, the low-mass3079

structure in the 3+ 1+ K∗(892) πD wave becomes even larger (red data points in figure 5.25d).3080

Both observations are consistent with the assumption that the low-mass structure in the 3+ 1+
3081

K∗(892) πD wave arises mainly from the leakage effect. We find similar effects also in other3082

leakage waves, e.g. in the 0− 0+ K∗(892) π P wave.3083

Fortunately, the leakage effect affects only a limited and identifiable subset of the partial waves.3084

Most of them have a K∗(892) isobar. In general, waves with π−π+ isobar are not affected by the3085

leakage effect.[cn] In some cases, a different orbital angular momentum is already sufficient to3086

suppress artifacts from the leakage effect. For example, we observe large artifacts in the 2− 0+
3087

K∗(892) π P wave shown in figure 5.33e, which are even larger than the 238-wave pseudodata3088

model representing the measured data;[co]while the artifacts in the 2− 0+ K∗(892) π F wave shown3089

in figure 5.33f are negligibly small, i.e. they are two orders of magnitude smaller than in the3090

2− 0+ K∗(892) π P wave. The 2+ 1+ K∗(892) πD wave shown in figure 5.33d exhibits modest3091

artifacts from the leakage effect. They are mainly focused in the low-mass tail of the peak. This3092

is consistent with the modest systematic effects observed in this wave (see section 5.7). Hence,3093

an interpretation of the 2+ 1+ K∗(892) πD wave in terms of physics signals is possible.3094

[cm] In the study with a less restrictive RICH threshold, the intensity in the low-mass region of the 3+ 1+ K∗(892) πD
wave is drastically reduced, but there is a non-negligible remaining low-mass intensity, which indicates a remaining
bias from the leakage effect. As this study uses already a very low RICH threshold, we conclude that we cannot
circumvent the leakage effect. As such a very low RICH threshold leads to larger misidentification, it may cause
other systematic effects in our analysis. Thus, we kept the RICH threshold of the main analysis.

[cn] Only the 1+ 0+ [ππ]AMPK
S K P wave shows artifacts for mKππ < 1.6 GeV/c2. However, this wave is not discussed in

this work as it shows no physics signals. Furthermore, these artifacts may also arise from other effects than from
the leakage effect, e.g. from destructive interference with the 1+ 0+ f0(980) K P wave.

[co] The fact that the pseudodata study yielded even larger artifacts in the 2− 0+ K∗(892) π P wave than the leakage
artifacts observed in measured data indicates that we do not exactly reproduce the leakage artifacts in this pseudodata
study, especially in small waves such as the 2− 0+ K∗(892) π P wave. This is expected, because the imperfection
that we introduced in this pseudodata study by using the detuned acceptance model is different and probably larger
than the imperfections in the analysis of the measured data and because the leakage artifacts are triggered by
imperfections in our analysis.
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The appearance of the leakage effect in this pseudodata study allows us to also investigate its3095

footprint in the kinematic distributions. Figure 5.34 shows the distribution in the two-body3096

decay angles of the decay X− → ξ0
K−π+π

− in the Gottfried-Jackson frame (GJ). As expected, the3097

prediction of the reconstructed distribution from the PWD fit to the reconstructed pseudodata3098

using the detuned acceptance model (see figure 5.34b) agrees with the actual reconstructed3099

distribution of the pseudodata sample (see figure 5.34a).[cp] Figure 5.34c shows the distribution3100

of the produced pseudodata sample, i.e. without acceptance effects. The distribution is flat in3101

the Gottfried-Jackson angles as expected.[cq] However, the PWD prediction for the produced3102

distribution shown in figure 5.34d drastically deviates from the actual distribution in figure 5.34c.3103

The PWD model overestimates the distribution by more than a factor of six in the region where3104

the acceptance is practically zero (see dark blue regions in figure 5.34e). This large deviation3105

is caused by the leakage effect, which artificially predicts produced events in the region of3106

practically zero acceptance, i.e. in the region where we are blind experimentally. Hence, the3107

leakage effect has only little influence on the prediction for the reconstructed distributions, which3108

in the PWD fit is compared to the measured distribution (cf. figures 5.34a and 5.34b). Thus, the3109

leakage waves are only weakly constrained by the data.3110

The leakage effect biases not only the PWD prediction of the distribution of produced events, but3111

the PWD model also overestimates the total number of produced events N̂ev. In the pseudodata3112

study that is based on the full 238-wave pseudodata model in section 5.8.1, which is most3113

similar to the measured K−π−π+ sample, the PWD model overestimates the total number of3114

produced events by about a factor two. This also leads to a bias of the relative intensities defined3115

in equation (5.76), because N̂ev enters the denominator. Especially the relative intensities of3116

non-leakage waves are affected as the nominator in equation (5.76) is not biased by the leakage3117

effect. Assuming that the leakage effect appears with a similar strength also in the PWD of3118

the measured K−π−π+ sample, the relative intensities of non-leakage waves are underestimated3119

by about a factor 2 in the 238-wave PWD. Hence, the relative intensities cannot directly be3120

interpreted in terms of how much a wave contributes to the measured data. Nonetheless, the3121

relative intensities can be compared among non-leakage waves as the bias from the leakage effect3122

is the same for all of them. Thus, the relative intensities can sill be used as a measure of whether3123

a wave is large or small.3124

In the pseudodata study discussed above, we showed that if the pseudodata contain only the3125

1+ 0+ K∗(892) π S wave with an amplitude that is similar to the one obtained from the measured3126

K−π−π+ sample, we reproduce the leakage effect with a similar shape and strength as in the3127

measured K−π−π+ sample for most of the leakage waves. To study whether this is also the case3128

for other partial waves, we produced a pseudodata sample containing only the 3+ 1+ K∗(892) πD3129

[cp] The pseudodata distribution is less noisy than the corresponding distribution from the PWD prediction. The samples
to generate both distributions contain a similar number of events. While the events in the reconstructed pseudodata
sample are already distributed accordingly, we used reconstructed events that are phase-space distributed and
weighted them to obtain the PWD prediction for the reconstructed distribution (see appendix C.3). Given the same
number of events, the first sample contains more information. Therefore, the distribution of the pseudodata sample
is less noisy.

[cq] The pseudodata sample was generated based on the decay amplitude of the 1+ 0+ K∗(892) π S wave. We expect a
flat distribution in the Gottfried-Jackson angles as this wave has M = 0 and L = 0 [132].
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Figure 5.34: Distribution in the two-body decay
angles of the decay X− → ξ0

K−π+π
− from the

pseudodata containing only the 1+ 0+ K∗(892) π S
wave. (a) and (c) show the distribution of the
reconstructed and produced pseudodata sample,
respectively. (b) and (d) show the correspond-
ing predictions based on a PWD fit to the recon-
structed pseudodata using the detuned acceptance
model. (e) shows the acceptance. It is different
from figure D.43e as the marginalization over the
not-shown phase-space variables is based on a
model that contains only the 1+ 0+ K∗(892) π S
wave, while figure D.43e is based on the full
PWD model obtained in the main analysis. The
distributions are integrated over the mass range
1.0 ≤ mKππ < 1.5 GeV/c2 and over the full ana-
lyzed t′ range.
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Figure 5.35: Same as figure 5.33, but showing the PWD using the detuned acceptance model of the
reconstructed pseudodata sample that was generated using only the 3+ 1+ K∗(892) πD wave from the
238-wave pseudodata model.

wave from the 238-wave pseudodata model. Figure 5.35 shows the results of a PWD of these3130

pseudodata. The intensity spectrum of the 3+ 1+ K∗(892) πD wave obtained using the detuned3131

acceptance model (orange data points) agrees with the reference model (blue crosses). The other3132

partial waves exhibit only negligibly small artifacts from the leakage effect as exemplarily shown3133

for the 1+ 0+ K∗(892) π S wave in figure 5.35a. Thus, the 3+ 1+ K∗(892) πD wave alone does not3134

lead to a leakage effect similar to the one observed in the measured K−π−π+ sample.3135

In another pseudodata study, we tested whether the combination of all waves except for the 1+ 0+
3136

K∗(892) π S wave can reproduce the leakage artifacts. Therefore, we generated a pseudodata3137

sample using the 238-wave pseudodata model without the 1+ 0+ K∗(892) π S wave. Figure 5.363138

shows the results from this study. Using the detuned acceptance model causes artifacts in the3139

leakage waves exemplarily shown in figures 5.36a and 5.36b. As we expect the low-mass3140

structure in the 3+ 1+ K∗(892) πD wave in the reference model obtained from the measured3141

K−π−π+ sample (blue crosses) to be dominantly produced by the leakage effect and as we3142

obtained in this study a low-mass structure (orange data points), which is about twice as large as3143

the reference model, we conclude that the leakage artifacts in this study are of similar strength as3144

in the measured K−π−π+ sample.3145

From these pseudodata studies we conclude that the strength of the artifacts caused by the leakage3146

effect depends on the data. The leakage effect itself is given by the decay amplitudes of the3147

leakage waves and the acceptance and corresponds to an approximate ambiguity in the PWD3148

model. The amount by which this ambiguity creates artifacts in the partial waves is given by how3149

much the leakage waves actually contribute to the data sample. The 1+ 0+ K∗(892) π S wave is3150

the dominant contribution.3151
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Figure 5.36: Same as figure 5.33, but showing the PWD using the detuned acceptance model of the
reconstructed pseudodata sample that was generated using the 238-wave pseudodata model without the
1+ 0+ K∗(892) π S wave.
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5.9.2 Robustness of Non-Leakage Waves with respect to the Leakage Effect3152

As discussed in sections 5.7 and 5.8, the non-leakage waves are in general robust with respect3153

to systematic effects and imperfections in the analysis model. Having identified the cause of3154

the leakage effect, we performed further studies to explicitly test for a potential influence of the3155

leakage effect on the non-leakage waves. In the pseudodata studies discussed in section 5.9.1, in3156

which we reproduced the leakage effect, the non-leakage waves exhibited only small artifacts,3157

which are negligible compared to the physics signals in these waves, as shown e.g. in figures 5.33f3158

and 5.36c.3159

As the 3+ 1+ K∗(892) πD wave is one of the major waves affected the leakage effect and as we3160

assume the low-mass structure in this wave to be predominantly a leakage artifact, we performed a3161

PWD of the measured K−π−π+ sample using the 238-wave set but omitting the 3+ 1+ K∗(892) πD3162

wave for mKππ < 1.6 GeV/c2. Figure 5.37 shows the results from this systematic study (light3163

red data points) compared to the main analysis (blue data points). The intensity spectra of the3164

leakage waves obtained from this study deviate from the main analysis as shown in figures 5.37a3165

and 5.37b. This is expected, because by omitting the 3+ 1+ K∗(892) πD wave from the wave3166

set, we changed the eigenvalue decomposition of the acceptance-integral matrix and thereby3167

altered the leakage effect.[cr] The results of the non-leakage waves agree with the main analysis3168

as exemplarily shown in figure 5.37c. Even the 2+ 1+ K∗(892) πD wave shown in figure 5.37d,3169

which exhibits modest systematic effects and modest artifacts from the leakage effect in the3170

previous studies, is robust when omitting the 3+ 1+ K∗(892) πD wave. This is another indication3171

for the robustness of the non-leakage waves with respect to the leakage effect.3172

Reviewing our findings presented in this section 5.9, we can explain the large systematic effects3173

observed for some partial waves in section 5.7 and the deviations observe in the same waves in3174

the PWD pseudodata studies in section 5.8 in terms of the leakage effect. The leakage effect is3175

caused by the loss of information due to the limited detector acceptance, which is dominated3176

by the limited kinematic range of the RICH final-state particle identification. This effect is3177

visible in the acceptance-integral matrix. We identified those waves that are affected by the3178

leakage effect using three different approaches: (i) waves that exhibit unstable intensities in the3179

systematic studies, (ii) waves with deviations from the corresponding reference model in the3180

PWD pseudodata studies, and (iii) waves with large overlaps in the acceptance-integral matrix.3181

All three approaches yield a consistent set of leakage waves. Figure G.3 shows the intensity3182

distribution of all leakage waves that are discussed in this work. Furthermore, we identified the3183

mKππ range that is affected by the leakage effect to be mKππ . 1.6 GeV/c2. An interpretation3184

of the leakage waves in this mKππ region in terms of physics signals is possible only to a very3185

limited extend and only on a qualitative level. The leakage effect also strongly biases the PWD3186

model predictions for the distribution of produced events. The non-leakage waves are robust3187

with respect to the leakage effect. Thus, they can be interpreted in terms of physics signals as3188

done in the RMF introduced in chapter 6. The physics signals in the individual partial waves are3189

discussed in chapter 7.3190

[cr] However, as the leakage effect is caused by several leakage waves, we still expect the results from this study to be
biased by the leakage effect.
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Figure 5.37: Comparison between the results of the PWD of the measured K−π−π+ sample omitting the
3+ 1+ K∗(892) πD wave for mKππ < 1.6 GeV/c2 (maximum-likelihood estimates; light red data points)
and the main analysis (Bootstrapping estimates; blue data points). We do not show uncertainties for the
maximum-likelihood estimates (see section 5.7).
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5.10 π−π−π+ Pseudodata Studies3191

The treatment of incoherent background processes is an important task in the analysis of the3192

reaction K− + p→ K−π−π+ + p, as discussed in section 5.3. We expect the largest background3193

from events of the reaction π− + p → π−π−π+ + p, where the beam pion that was erroneously3194

identified as a kaon and where one of the final-state pions was wrongly assumed to be a kaon.3195

This background is called π−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ backgroundπ−π−π+ background. Since the pion component in the beam is 363196

times larger than the kaon component, this leads to a non-negligible π−π−π+ background in the3197

K−π−π+ sample, even considering the excellent misidentification probability for beam particle3198

identification of only 1 ‰. The final-state particle identification can suppress this background3199

only to a very limited extend, because we required only one of the two negative final-state particle3200

to be identified either as a K− or a π− and the K−π−π+ and the π−π−π+ final state both contain a3201

π−.3202

In order to study the π−π−π+ background in the K−π−π+ sample, we generated a pseudodata3203

sample for the reaction π− + p → π−π−π+ + p, which is called π−π−π+ pseudodata sampleπ−π−π+ pseudodata sampleπ−π−π+ pseudodata sampleπ−π−π+ pseudodata sampleπ−π−π+ pseudodata sampleπ−π−π+ pseudodata sampleπ−π−π+ pseudodata sampleπ−π−π+ pseudodata sampleπ−π−π+ pseudodata sampleπ−π−π+ pseudodata sampleπ−π−π+ pseudodata sampleπ−π−π+ pseudodata sampleπ−π−π+ pseudodata sampleπ−π−π+ pseudodata sampleπ−π−π+ pseudodata sampleπ−π−π+ pseudodata sampleπ−π−π+ pseudodata sample. In3204

order to follow the same approach as in the K−π−π+ pseudodata studies in section 5.8 requires3205

a PWD model of this reaction. Fortunately, COMPASS collected the so-far world’s largest3206

sample of the reaction π− + p → π−π−π+ + p using the dominant π− component in our beam.3207

Based on this sample, an extensive PWD was performed using the so-far world’s largest PWD3208

model in this channel [39]. The results of the COMPASS π−π−π+ analysis were studied in3209

detail and are well understood [38–41, 72, 80, 133]. Based on these results, an improved3210

re-analysis of this reaction based on the 2008 diffraction data set was performed and will be3211

presented in ref. [43].[cs] The COMPASS results hence provide a reliable and realistic model3212

for the reaction π− + p → π−π−π+ + p. We used the PWD model obtained in the analysis in3213

ref. [43] and summarized in appendix D.4.1 to generate a pseudodata sample for the reaction3214

π−+ p→ π−π−π+ + p. We generated 47 405 138 pseudodata events, which corresponds to exactly3215

1/3 of the number of produced events that we expect in the 2008 diffraction data set as predicted3216

by the PWD model.3217

To determine the amount and the kinematic distribution of the π−π−π+ background in the3218

measured K−π−π+ sample, we processed the produced π−π−π+ pseudodata events through3219

the COMPASS detector Monte Carlo simulation. Then, we misinterpreted them as K−π−π+
3220

events, i.e. we applied the CEDAR and RICH misidentification probabilities as described in3221

appendices C.2.2 and C.2.3, respectively. Finally, we applied the same event selection criteria3222

to the π−π−π+ pseudodata sample as applied to the measured K−π−π+ sample (see section 4.1).3223

This procedure yielded the reconstructed π−π−π+ pseudodata sample.3224

[cs] The 2009 diffraction data set was not used in the π−π−π+ analysis when obtaining the model for the π−π−π+

pseudodata, yet.
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5.10.1 The Reconstructed π−π−π+ Pseudodata Sample3225

The amount of π−π−π+ background in the measured K−π−π+ sample can be predicted from3226

the amount of reconstructed π−π−π+ pseudodata events. Analogously to the effective intensity3227

model for the background contributions in equation (5.62), the absolute detector acceptance3228

in the COMPASS π−π−π+ analysis and in this analysis enter the prediction for the amount of3229

π−π−π+ background. For the PWD only the modulation of the acceptance in the phase-space3230

variables is important. Imperfections in modeling the absolute acceptance do not bias the results3231

of the PWD.[ct] Therefore, the acceptance model was not fine-tuned for the determination the3232

absolute acceptance in either of the two analysis. However, the same approach to determine the3233

experimental acceptance as used in this analysis and described in appendix C.2 was also used3234

in the π−π−π+ analysis in ref. [43], from which we took the model for the π−π−π+ pseudodata3235

sample. Thus, potential systematic effects from imperfect estimates of the absolute acceptances3236

should cancel out to first order [see equation (5.62)]. Hence, we expect the π−π−π+ pseudodata3237

sample to yield a rough but realistic estimate for the predicted amount of π−π−π+ background.3238

From the 47 405 138 produced π−π−π+ pseudodata events 8934 events were reconstructed as3239

K−π−π+ events. Taking into account that the size of the produced pseudodata sample is only 1/33240

of the predicted number of produced π−π−π+ events in the measured data, we expect a π−π−π+
3241

background of 26 802 events in the measured K−π−π+ sample of the 2008 diffraction data set.3242

This corresponds to a π−π−π+ contamination of 6.7 %. Given the similar acceptance for the3243

2008 and 2009 diffraction data sets, we expect the same π−π−π+ contamination in the combined3244

2008 and 2009 K−π−π+ sample. Compared to other backgrounds, e.g. the background from3245

K− + p→ K−K−K+ + p events of about 4 %, we expect the π−π−π+ background to be the largest3246

background in the K−π−π+ sample. A detailed reasoning for the amount of π−π−π+ background3247

is given in appendix D.4.2.3248

In figure 5.38, we compare the π−π−π+ pseudodata sample reconstructed as K−π−π+ events (red3249

histograms) to the measured K−π−π+ sample (blue histograms). The π−π−π+ pseudodata exhibit3250

a broad distribution in mKππ shown in figure 5.38a. No clear peaks from π−π−π+ resonances3251

are observed. Thus, the peaks observed in the m3π spectrum in figure 5 of ref. [39] are smeared3252

out by the wrong final-state particle mass assumption and none of the peaks observed in the3253

measured mKππ spectrum is caused by the π−π−π+ background.3254

The mπ−π+ spectrum obtained from the reconstructed π−π−π+ pseudodata sample shows similar3255

structures as the one from the K−π−π+ sample (see figure 5.38b). Both show clear signals from3256

[ct] For example, the energies Ebeam, with which the beam particles in the pseudodata sample were produced, were
taken from a sample of measured beam energies in a chosen Ebeam range (see appendix C.2.1). This range is wider
than the Ebeam range, in which those pseudodata events were accepted in the K−π−π+ event selection, as described
in section 4.1. The choice of this Ebeam range, in which the pseudodata samples were generated, does not affect
the PWD. This is so because only the reconstructed pseudodata events that survived the K−π−π+ event selection,
i.e. that lied within the narrower Ebeam range of the event selection, affect the modulation of the acceptance in the
phase-space variables in the acceptance model. However, the choice of this Ebeam range, in which the pseudodata
samples were generated, affects the estimate for the absolute acceptance as it affects the fraction of produce
pseudodata events that were reconstructed.
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Figure 5.38: Distributions in the invariant masses of (a) the K−π−π+ system, (b) the π−π+ subsystem,
and (c) the K−π+ subsystem. The red histograms show the π−π−π+ pseudodata sample reconstructed as
K−π−π+ events (see text) and scaled such that the total number of reconstructed π−π−π+ pseudodata events
corresponds to the predicted amount of π−π−π+ background in the K−π−π+ sample. The blue histograms
show the measured K−π−π+ sample (same as figures 4.6a, 4.7a, and 4.7b, respectively).
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π−π+ resonances such as the ρ(770) and f2(1270), and a shoulder from the f0(980). This is3257

expected, because both reactions, i.e. π− + p→ π−π−π+ + p and K− + p→ K−π−π+ + p, contain3258

the π−π+ subsystem in the final states.3259

The mK−π+ spectrum from the reconstructed π−π−π+ pseudodata exhibits a broad distribution3260

shown by the red histogram in figure 5.38c. On top of this distribution we find a peak at about3261

0.94 GeV/c2. This peak corresponds to the ρ(770) resonance in the π−π+ subsystem of the3262

π−π−π+ final state. Compared to the nominal ρ(770) mass, it is shifted towards higher masses, i.e.3263

when erroneously identifying the π− as K−. Interestingly, this “ρ(770) peak” is at a similar mK−π+3264

position as the narrow peak in the measured K−π−π+ sample, which arises from the K∗(892)3265

resonance in the K−π+ subsystem. However, the “ρ(770) peak” is about 4 times broader than the3266

K∗(892) resonance. Furthermore, the mK−π+ spectrum from the reconstructed π−π−π+ pseudodata3267

sample exhibits a shoulder at about 1.4 GeV/c2, which corresponds to the f2(1270) resonance3268

in the π−π+ subsystem. Interestingly, this “ f2(1270) peak” is at a similar mK−π+ position as and3269

has an about 1.3 times larger width than the higher-lying peak in the measured K−π−π+ sample,3270

which partly arises from the K∗2(1430) resonance in the K−π+ subsystem. Despite the similar3271

resonance position, the signals in the measured K−π−π+ sample and in the reconstructed π−π−π+
3272

pseudodata sample arise from different resonances. Hence, they are in detail different and a3273

model for the reaction K− + p→ K−π−π+ + p may not be able to perfectly describe the π−π−π+
3274

background. This is discussed in the following section 5.10.2.3275

5.10.2 Partial-Wave Decomposition of π−π−π+ Pseudodata3276

In order to study the influence of the π−π−π+ background on the PWD of the measured K−π−π+
3277

sample, we performed a PWD of the π−π−π+ pseudodata sample that was reconstructed as3278

K−π−π+ events. In the rest of the text it is called the π−π−π+ background PWDπ−π−π+ background PWDπ−π−π+ background PWDπ−π−π+ background PWDπ−π−π+ background PWDπ−π−π+ background PWDπ−π−π+ background PWDπ−π−π+ background PWDπ−π−π+ background PWDπ−π−π+ background PWDπ−π−π+ background PWDπ−π−π+ background PWDπ−π−π+ background PWDπ−π−π+ background PWDπ−π−π+ background PWDπ−π−π+ background PWDπ−π−π+ background PWD.[cu]
3279

To compare the results of the π−π−π+ background PWD to those from the measured K−π−π+
3280

sample, we used the same 238-wave set. In the COMPASS π−π−π+ analysis, the measured3281

π−π−π+ sample is described well by a PWD model with a rank = 1 spin-density matrix.[cv]
3282

However, in the π−π−π+ background PWD performed here, we misinterpreted the pseudodata3283

events as K−π−π+ events, and we effectively modeled their distribution using partial waves of3284

the reaction K− + p→ K−π−π+ + p. This means, e.g., that events from different m3π bins, which3285

[cu] The reconstructed π−π−π+ pseudodata sample contains only 8934 events and is thus insufficient to perform a PWD.
Since, in the K−π−π+ event selection, it is mainly the beam-particle identification that suppresses the π−π−π+ events,
we omitted the beam-particle identification cut (BPID cut) when selecting the sample that was used for the PWD.
The BPID cut affects only the number of accepted events and their distribution in the inclination space of the
beam particle (see section 3.2 and figure C.3b). The distribution of the beam particle has a negligible influence
on the phase-space distribution of the final-state particles, which was verified. Omitting the BPID cut yielded a
reconstructed π−π−π+ pseudodata sample of about 8.37 × 106 events, which is well suited to perform a PWD.

[cv] The positive-reflectivity waves are modeled by a rank=1 spin-density matrix, the negative-reflectivity waves by a
rank=2 spin-density matrix. Also, an incoherent flat wave was added to the model. The latter two account for only
2.2 % and 3.1 % of the total intensity, respectively [39]. Hence, the π−π−π+ background PWD model is dominantly
a coherent rank=1 model.
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need to be treated incoherently, enter the same mKππ bin, which is described by one PWD model.3286

Therefore, the π−π−π+ background PWD requires a model with rank >1. This was confirmed3287

by tests using a rank=1 PWD model to describe the reconstructed π−π−π+ pseudodata sample,3288

which yielded unsatisfactory results for the π−π−π+ pseudodata sample based on the measured3289

π−π−π+ sample as well as for the measured K−π−π+ sample. For π−π−π+ pseudodata sample for3290

example, the description phase-space distribution of the π−π−π+ pseudodata by the rank=1 PWD3291

model was insufficient. Also, the obtained intensity spectra of the partial waves were strongly3292

fluctuating from mKππ bin to mKππ bin. For the measured K−π−π+ sample, taking into account3293

the π−π−π+ background in an RMF to the K−π−π+ PWD (see chapter 6) using a rank=1 model3294

for the π−π−π+ background PWD, the RMF was not able to describe the partial-waves. Thus,3295

we finally used a rank=2 PWD model in the π−π−π+ background PWD, which turned out to be3296

sufficient to remedy these imperfections as discussed in the following.3297

Performing a Bootstrapping of the π−π−π+ background PWD was computationally too expen-3298

sive.[cw] Thus, we give in the following the maximum-likelihood estimates from the π−π−π+
3299

background PWD and we do not give the corresponding uncertainty estimates for the same3300

reason as given in section 5.7.3301

Figure 5.39 shows the results of the π−π−π+ background PWD (orange data points), i.e. the3302

π−π−π+ background predicted in the various partial waves. We find large intensities in partial3303

waves with a ρ(770) isobar. Figure 5.39a shows exemplarily the intensity spectrum of the3304

2+ 1+ ρ(770) K D wave, which is the wave with the largest π−π−π+ background relative the3305

intensity spectrum obtained from the measured K−π−π+ sample (blue data points). These large3306

backgrounds in waves with a ρ(770) isobar are expected, as the π−π−π+ pseudodata contain3307

a large contribution from the ρ(770) isobar in the π−π+ subsystem as shown in figure 5.38b.3308

Interestingly, in the 2+ 1+ ρ(770) K D wave the π−π−π+ background PWD yielded a peaking3309

structure at about 1.5 GeV/c2, i.e. at a similar mass as the peak in the measured K−π−π+ sample,3310

which arises from the K∗2(1430) resonance. This similarity of physics and background signals3311

stresses the importance of a proper treatment of the π−π−π+ background contributions in the3312

PWD (see section 5.3) and in the RMF (see chapter 6).3313

Similarly, the intensity spectra of waves with an f2(1270) isobar show small but non-negligible3314

structures in the π−π−π+ background PWD, exemplarily shown for the intensity spectrum of3315

the 2− 0+ f2(1270) K S wave in figure 5.39b. In this wave, the π−π−π+ background peaks at3316

mKππ ≈ 1.9 GeV/c2, similar to the peak observed in the measured K−π−π+ sample.3317

The π−π−π+ background PWD exhibits negligible intensity in partial waves with a K∗(892) isobar3318

exemplarily shown in figure 5.39c. This is expected, because there is no K∗(892) resonance in3319

the π−π−π+ pseudodata and the structures in the mK−π+ spectrum of the reconstructed π−π−π+
3320

pseudodata sample, especially the peak at about 0.94 GeV/c2, which is caused by the ρ(770)3321

resonance (see figure 5.38c), differ from the shape of the K∗(892) isobar resonance.3322

[cw] Furthermore, given the much larger size of the π−π−π+ pseudodata sample as compared to the measured K−π−π+

sample and thus the higher precision, we expect the maximum-likelihood estimates from the π−π−π+ background
PWD to be not strongly biased by non-linearities, which are discussed in section 5.4.
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Figure 5.39: t′-summed intensity spectra of four selected partial waves as obtained from the π−π−π+

background PWD (orange data points). The blue data points show the corresponding results from the
PWD of the measured K−π−π+ sample. The percentages give the contribution of each wave to the total
intensity as obtained from the measured K−π−π+ sample. The results of the π−π−π+ background PWD are
scaled such that the total number of reconstructed π−π−π+ pseudodata events corresponds to the predicted
amount of π−π−π+ background in the K−π−π+ sample. We give the maximum-likelihood estimates from
the π−π−π+ background PWD. The corresponding uncertainties are not shown (see text).
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5.10 π−π−π+ Pseudodata Studies

In contrast to waves with a K∗(892) isobar, the intensity spectra of waves with K∗2(1430) isobar3323

show small but non-negligible structures in the π−π−π+ background PWD (see for example3324

figure 5.39d). Due to the larger width of the K∗2(1430) resonance compared to the K∗(892), waves3325

with K∗2(1430) isobar are used by the PWD more easily to effectively describe the distribution of3326

the π−π−π+ pseudodata. Furthermore, the shoulder at about 1.4 GeV/c2 in the mK−π+ distribution3327

of the reconstructed π−π−π+ pseudodata (see figure 5.38c) is similar to the shape of the K∗2(1430)3328

isobar. Hence, we expect a non-negligible intensity from the π−π−π+ background PWD in waves3329

with K∗2(1430) isobar.3330

As discussed in section 5.3, we effectively take into account incoherent background processes,3331

such as the π−π−π+ background, in the PWD of the measured K−π−π+ sample by using a3332

rank=3 PWD model. This requires the phase-space distribution of the background events to be3333

sufficiently well modeled by the K−π−π+ PWD model, i.e. by the partial waves of the reaction3334

K− + p → K−π−π+ + p that were selected in the 238-wave set. We tested this assumption for3335

the π−π−π+ background by comparing the prediction of the phase-space distribution from the3336

π−π−π+ background PWD to the actual distribution of the reconstructed π−π−π+ pseudodata3337

sample as shown in figure 5.40. Hence, we perform a similar comparison as for the measured3338

K−π−π+ sample in section 5.6.3339

The K−π−π+ PWD model (orange histogram) describes the mπ−π+ distribution of the reconstructed3340

π−π−π+ pseudodata sample (blue data points) well as show in figure 5.40a. This is expected,3341

because the K−π−π+ model contains waves with π−π+ isobars, which were designed to model3342

this distribution. Accordingly, the cos θππGJ distribution for the decay X− → ξ0
π−π+ K− shown in3343

figure 5.40b is also reproduced well by the K−π−π+ PWD model.3344

In the low-mKππ region shown in figure 5.40c, the mK−π+ distribution of the reconstructed π−π−π+
3345

pseudodata sample shows a narrow peak on top of a bump at about 0.9 GeV/c2. This shape arises3346

from a complicated interplay of π−π−π+ events where one of the π− was erroneously identified3347

as a K−. As the waves in the K−π−π+ PWD model are not explicitly designed to describe this3348

shape, it is effectively described by a combination of various partial waves. The K−π−π+ model3349

approximates well the mK−π+ distribution of the reconstructed π−π−π+ pseudodata sample. In the3350

high-mKππ region, the K−π−π+ PWD model only roughly reproduces the very broad bump in the3351

mK−π+ distribution of the reconstructed π−π−π+ pseudodata sample as shown in figure 5.40d.3352

Reviewing our findings presented in this section, the K−π−π+ partial wave model is able to3353

sufficiently well reproduce the distribution of the reconstructed π−π−π+ pseudodata sample.3354

Thus, our approach to treat the incoherent π−π−π+ background described in section 5.3 is3355

applicable. We expect waves with K∗(892) isobar to be mainly free of π−π−π+ background,3356

while we expect significant π−π−π+ background in waves with ρ(770) isobar. In waves with other3357

isobars, such as the K∗2(1430) or the f2(1270) isobar, we expect modest π−π−π+ background. As3358

the π−π−π+ background is expected to be the dominant background in the K−π−π+ sample and3359

hence demands the most accurate treatment, we assume that also other incoherent background3360

processes are treated sufficiently well by using a rank=3 PWD model. However, it is important3361

to note that this treatment does not separate physics signals from background at the stage of the3362

PWD. This separation is done at the stage of the resonance-model fits discussed in chapter 6.3363
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Figure 5.40: Distribution of selected phase-space variables in the mass range 1.5 ≤ mKππ < 2.0 GeV/c2

((a), (b), and (d)) and in the mass range 1.0 ≤ mKππ < 1.5 GeV/c2 (c), all integrated over the analyzed
t′ range. The blue data points show the distribution of the reconstructed π−π−π+ pseudodata sample.
The orange histograms show the corresponding predictions from the π−π−π+ background PWD (see
appendix C.3 for details on how these histograms were obtained). (a) shows the distribution in mπ−π+ . (b)
shows the distribution in cos θππGJ of the decay X− → ξ0

π−π+ K−. (c) and (d) show the distribution in mK−π+ in
the low- and high-mKππ region, respectively.
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6 The Resonance-Model Fit3364

The so-called resonance-model fit (RMF)resonance-model fit (RMF)resonance-model fit (RMF)resonance-model fit (RMF)resonance-model fit (RMF)resonance-model fit (RMF)resonance-model fit (RMF)resonance-model fit (RMF)resonance-model fit (RMF)resonance-model fit (RMF)resonance-model fit (RMF)resonance-model fit (RMF)resonance-model fit (RMF)resonance-model fit (RMF)resonance-model fit (RMF)resonance-model fit (RMF)resonance-model fit (RMF), which is the second stage of our analysis, aims to3365

identify strange-meson resonances that appear in the various partial waves and to measure their3366

masses and widths. To this end, the mKππ dependence of the spin-density matrix elements,3367

which was measured in the PWD, is modeled in the RMF. In order to employ all the available3368

information in a coherent way, all four t′ bins are fit simultaneously in one RMF. While in the3369

PWD, the full K−π−π+ sample must be modeled, in the RMF we can select a suitable subset of3370

partial waves that we want to study. This is a big advantage of our two-stage analysis approach,3371

as we can select partial waves with clear resonance-like signals, and we can avoid modeling the3372

leakage waves.3373

We first introduce in section 6.1 the RMF formalism. Then, in section 6.2 we give a first glimpse3374

on the results of the 10-wave RMF, which represents the main results of this analysis. Finally,3375

we discuss in sections 6.3 and 6.4 various systematic and pseudodata studies that we performed3376

in order to scrutinize our results.3377

6.1 Method3378

6.1.1 Modeling the Spin-Density Matrix3379

Our K−π−π+ sample does not only contain events of the signal reaction K− + p→ K−π−π+ + p,3380

but has also contributions from background reactions such as π− + p → π−π−π+ + p. At the3381

stage of the PWD, we took these background contributions into account in an effective way by3382

formulating a PWD model with a rank=3 spin-density matrix. However, in this approach we did3383

not yet separate the signal from the background contributions. As indicated by equation (5.66),3384

the spin-density matrix that was measured in the PWD is an incoherent sum over the K−π−π+
3385

signal and the various backgrounds. Hence, the measured spin-density matrix ρab(mKππ, t′) is3386

modeled by a sum of spin-density matrices, one for each contribution, i.e.3387

ρ̂ab(mKππ, t′) = ρ̂Kππ
ab (mKππ, t′) + ρ̂3π

ab(mKππ, t′) + ρ̂eBKG
ab (mKππ, t′). (6.1)

ρ̂Kππ
ab (mKππ, t′) represents the RMF model for the K−π−π+ spin-density matrixK−π−π+ spin-density matrixK−π−π+ spin-density matrixK−π−π+ spin-density matrixK−π−π+ spin-density matrixK−π−π+ spin-density matrixK−π−π+ spin-density matrixK−π−π+ spin-density matrixK−π−π+ spin-density matrixK−π−π+ spin-density matrixK−π−π+ spin-density matrixK−π−π+ spin-density matrixK−π−π+ spin-density matrixK−π−π+ spin-density matrixK−π−π+ spin-density matrixK−π−π+ spin-density matrixK−π−π+ spin-density matrix of the signal3388

reaction K− + p→ K−π−π+ + p, which is discussed in section 6.1.2. ρ̂3π
ab(mKππ, t′) represents the3389

RMF model for the π−π−π+ background, which is explicitly modeled as discussed in section 6.1.3.3390
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ρ̂eBKG
ab (mKππ, t′) represents the effective background component (eBKG)effective background component (eBKG)effective background component (eBKG)effective background component (eBKG)effective background component (eBKG)effective background component (eBKG)effective background component (eBKG)effective background component (eBKG)effective background component (eBKG)effective background component (eBKG)effective background component (eBKG)effective background component (eBKG)effective background component (eBKG)effective background component (eBKG)effective background component (eBKG)effective background component (eBKG)effective background component (eBKG), which effectively takes3391

into account all other background contributions. It is explained in section 6.1.4.3392

6.1.2 Modeling the K−π−π+ Signal3393

We used a naïve model of the reaction K− + p → K−π−π+ + p, which is based on a sum of3394

Breit-Wigner amplitudes for the resonances. In principle, there are more elaborate models to3395

parameterize resonance amplitudes such as K-matrix models [23] or N-over-D models [134].3396

However, they typically require to simultaneously model all decay channels of a studied res-3397

onance, while we have access to only a limited set of decay channels, i.e. those that finally3398

lead to the K−π−π+ final state. Also, these more elaborate approaches are theoretically and3399

computationally more demanding, and it turned out that in many cases they yield results similar3400

to those from simpler Breit-Wigner models (compare ref. [41] and ref. [135]). Hence, we used3401

sum-of-Breit-Wigner models in our analysis.3402

Modeling the Transition Amplitudes3403

Our model ρ̂Kππ
ab (mKππ, t′) for the spin-density matrix of the reaction K− + p→ K−π−π+ + p is3404

formulated in terms of a model T̂ Kππ
a (mKππ, t′) for the corresponding transition amplitudes. In this3405

model, multiple resonance componentsresonance componentsresonance componentsresonance componentsresonance componentsresonance componentsresonance componentsresonance componentsresonance componentsresonance componentsresonance componentsresonance componentsresonance componentsresonance componentsresonance componentsresonance componentsresonance components are included for the various strange-meson resonances3406

that appear in the partial waves. In addition, a single so-called non-resonant componentnon-resonant componentnon-resonant componentnon-resonant componentnon-resonant componentnon-resonant componentnon-resonant componentnon-resonant componentnon-resonant componentnon-resonant componentnon-resonant componentnon-resonant componentnon-resonant componentnon-resonant componentnon-resonant componentnon-resonant componentnon-resonant component is added3407

for each partial wave, which models the coherent non-resonant contributions from processes3408

such as Deck-like reactions discussed in section 2.1.1. The wave components are labeled by k.3409

Following equation (5.15), the transition amplitude of component k in wave a reads3410

kT̂ Kππ
a (mKππ, t′) =

√
L

(2πF)2

√
mKππP

Kππ
k,a (mKππ, t′)Dk(mKππ; ζk)αk→ξbL αξ

√
Na(mKππ), (6.2)

where ζk are the shape parametersshape parametersshape parametersshape parametersshape parametersshape parametersshape parametersshape parametersshape parametersshape parametersshape parametersshape parametersshape parametersshape parametersshape parametersshape parametersshape parameters of our parameterizationDk(mKππ; ζk) for the dynamic ampli-3411

tude of component k, e.g. in the case of a resonance components the mass and width of that3412

resonance. The shape parameters are determined in the RMFs.3413

The production amplitude PKππ
k,a (mKππ, t′) can be split into three parts. First, a complex-valued3414

coupling αMε

KP→k(t′), which represents the strength and phase with which each component k3415

in partial wave a is produced at the KP → k vertex (see X− production vertex in figure 5.3).3416

Second, a complex-valued coupling αa
pP→p(t′), which represents the bottom vertex in figure 5.3.3417

Both couplings depend in general on t′. Third, the production factorproduction factorproduction factorproduction factorproduction factorproduction factorproduction factorproduction factorproduction factorproduction factorproduction factorproduction factorproduction factorproduction factorproduction factorproduction factorproduction factor P
P

(mKππ, t′). This factor3418

models the scattering process via t-channel Pomeron exchange, which we assume to dominate at3419

the high center-of-momentum energy at COMPASS. The production factor is the same for all3420

partial waves and for all components. It is given in equation (6.12) below.3421
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With the factorization of the production amplitude discussed above and after re-ordering the3422

terms, equation (6.2) reads3423

kT̂ Kππ
a (mKππ, t′) =√
Na(mKππ)mKππPP(mKππ, t′)

√
L

(2πF)2α
Mε

KP→k(t′)αa
pP→p(t′)αk→ξbL αξDk(mKππ; ζk).

(6.3)

As only the mKππ dependence is explicitly modeled in the RMF, we collect all terms that do not3424

depend on mKππ in the so-called coupling amplitudescoupling amplitudescoupling amplitudescoupling amplitudescoupling amplitudescoupling amplitudescoupling amplitudescoupling amplitudescoupling amplitudescoupling amplitudescoupling amplitudescoupling amplitudescoupling amplitudescoupling amplitudescoupling amplitudescoupling amplitudescoupling amplitudes3425

kCKππ
a (t′) ≡

√
L

(2πF)2 α
Mε

KP→k(t′)αa
pP→p(t′)αk→ξbL αξ. (6.4)

The coupling amplitudes encode the overall strength and phase with which component k appears3426

in partial-wave a and are in general unknown. The t′ dependence of the coupling amplitudes is3427

parameterized by piecewise constant functions in t′, i.e. there is an independent complex-valued3428

parameter for each t′ bin for each coupling amplitude.[a] These parameters are determined in the3429

RMF. In this way, the t′ dependence of each model component in each partial wave in which it3430

appears is determined from the data in a model-independent way.3431

Finally, our model for the transition amplitude of a single component k in a wave a reads3432

kT̂ Kππ
a (mKππ, t′) =

√
Na(mKππ)mKππPP(mKππ, t′) kCKππ

a (t′)Dk(mKππ; ζk). (6.5)

The RMF model for the total transition amplitude of wave a hence reads3433

T̂ Kππ
a (mKππ, t′) =

∑
k∈Sa

kT̂ Kππ
a (mKππ, t′)

=
√
Na(mKππ)mKππPP(mKππ, t′)

∑
k∈Sa

kCKππ
a (t′)Dk(mKππ; ζk).

(6.6)

The sum in equation (6.6) runs over the set Sa of all components that we assume to contribute to3434

partial wave a.3435

Modeling the Spin-Density Matrix3436

In the RMF, the signal reaction K− + p → K−π−π+ + p is modeled as a fully coherent pro-3437

cess. Hence, ρ̂Kππ
ab (mKππ, t′) has rank=1. It is constructed from the transition amplitudes in3438

equation (6.6) in the following way3439

ρ̂Kππ
ab (mKππ, t′) = T̂ Kππ

a (mKππ, t′)
[
T̂ Kππ

b (mKππ, t′)
]∗
. (6.7)

[a] One coupling amplitude has to be chosen real-valued and positive in order to fix the indeterminable global phase.
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Parameterization of the Resonance Components3440

We parameterized the dynamic amplitudesDk(mKππ; ζk) of resonance appearing in the K−π−π+
3441

system by relativistic Breit-Wigner amplitudes according to equation (5.39). The dynamic width3442

of these Breit-Wigner amplitudes takes into account only the dominant decay channel of the3443

corresponding resonance as listed in tables E.1 and E.5. The shape parameters of the resonance3444

components are the nominal masses and widths of the resonances, i.e. ζk = (mk
0, Γ

k
0). In this way,3445

the masses and widths of the strange-meson resonances are measured in the RMF.3446

Parameterization of the Non-Resonant Components3447

As discussed in section 2.1.1, there are additional processes that also lead to the K−π−π+ final3448

state, but do not proceed via an intermediate strange-meson resonance in the K−π−π+ system.3449

Similar to the background contributions, they are effectively decomposed into partial waves in the3450

PWD, and they need to be explicitly treated at the stage of the RMF. In contrast to the background3451

contributions, the non-resonant contributions must be added coherently to the amplitudes for the3452

K−π−π+ resonances.3453

As there are various non-resonant processes that may contribute and as there are no generally3454

accepted theory models available for them, we parameterized the dynamic amplitudes of the3455

non-resonant components by a phenomenological parameterization with a flexible shape that is3456

adjusted to the data in the RMF. The employed parameterization is inspired by ref. [136] and3457

was used in previous analyses, such as the COMPASS π−π−π+ analysis [40, 41]. It reads3458

DNR
k (mKππ; ak, ck) = (mKππ − mthr)ak e−b(ck) q̃2

k (mKππ). (6.8)

Here, ak and ck are the free shape parameters that are determined by the RMF. One should note,3459

that each partial wave has its own non-resonant component with its own set of shape parameters.3460

The pre-factor (mKππ − mthr)ak allows the fit to adjust the low-mKππ behavior with respect to the3461 √
Na(mKππ)mKππPP(mKππ, t′) term in equation (6.6). Here, mthr = mK + 2mπ is the kinematic3462

threshold for mKππ. The exponential function in equation (6.8) damps the non-resonant amplitude3463

at large masses, i.e. large two-body break-up momenta q(mKππ) of the isobar-bachelor system, as3464

expected e.g. from models for Deck-like reactions [11, 41, 124].3465

The slop parameter b(ck) of the exponential function in equation (6.8) has to be greater than zero3466

such that the exponential function damps the non-resonant amplitude at large masses. As b(ck)3467

turned out to be close to zero for the non-resonant component in few partial waves, we limited3468

b(ck) to be in the range b > −1 (GeV/c)−2 by using the following parameter mapping of b(ck) in3469

terms of ck:3470

b(ck) = −1 (GeV/c)−2 + 1 (GeV/c)−2 · exp [ck] . (6.9)

3471
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q(mKππ) = q(mKππ,mξ,mb) is the two-body break-up momentum of the isobar-bachelor system3472

using the nominal mass mξ of the isobar resonance and the mass mb of the bachelor particle.3473

According to equation (5.41), it is not defined for mKππ < mξ + mb. However, there can be events3474

below this limit due to the finite width of the isobar resonance and equation (6.8) still needs3475

to be valid in these cases. Therefore, in equation (6.8), an extension of the two-body break-up3476

momentum is used, which takes into account the finite width of the isobar and is thus valid also3477

below this limit. It is given by3478

q̃k(mKππ) = q(mnorm,mξ,mb)
mKππNak

(mKππ)

mnormN
mnorm
ak (mKππ)

, (6.10)

where ak is the partial wave that belongs to the non-resonant component k. This approximation3479

is motivated by the facts that Na(mKππ) can be interpreted as the phase-space volume occupied3480

by wave a and that the two-body phase space of the isobar-bachelor system is proportional3481

to q(mKππ)/mKππ. By equalizing Na(mKππ) to the quasi-two-body phase space and requiring3482

q̃k(mnorm) = q(mnorm) at mnorm = 3 GeV/c2 one obtains equation (6.10), which is valid over the3483

full analyzed mKππ range.3484

For most of the studied partial waves, a simplified version of equation (6.8) with ak = 0 and3485

b(ck) = bk, i.e.3486

DNR
k (mKππ; bk) = e−bk q̃2

k (mKππ), (6.11)

turned out to be sufficient to describe the non-resonant components.3487

Parameterization of the Production Factor3488

For the production factor, the same parameterization as in the COMPASS π−π−π+ analysis [41,3489

72] is used. It is based on a phenomenological Regge approach to describe central-production3490

reactions by double-Pomeron exchange [69], analogously to those shown in figure 2.3a. It3491

reads[b]
3492 ∣∣∣P

P
(mKππ, t′)

∣∣∣2 =

 s
m2

Kππ

2αP (t′)−1

. (6.12)

Here, s is the overall center-of-momentum energy of the K−p system, which is fixed by the beam3493

momentum. For the Regge trajectory of the Pomeron,[c]
3494

αP(t′) = α0 − α
′t′, (6.13)

we used α0 = 1.2 as measured in ref. [137] and α′ = 0.26 (GeV/c)−2 as measured in ref. [138].3495

[b] For each of the four t′ bins, αP(t′) is evaluated at the bin center.
[c] Here, we use α(t) = α0 + α′t ≈ α0 − α

′t′, because t′ ≈ −t as |t|min is negligibly small in our kinematic range.
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Branching Amplitudes3496

The t′ dependence of the coupling amplitudes kCKππ
a (t′) defined in equation (6.4) only depends3497

on the production of the resonance, not on its decay. The same resonance may appear in different3498

partial waves with the same JP Mε quantum numbers, but with different decay modes. The3499

coupling amplitudes that correspond to the different decay modes are hence expected to be propor-3500

tional to each other. The complex-valued proportionality constant is called branching amplitudebranching amplitudebranching amplitudebranching amplitudebranching amplitudebranching amplitudebranching amplitudebranching amplitudebranching amplitudebranching amplitudebranching amplitudebranching amplitudebranching amplitudebranching amplitudebranching amplitudebranching amplitudebranching amplitude.3501

For a given component k, this constraint is implemented in the RMF by replacing the coupling3502

amplitudes kCKππ
b of all partial waves b that have the same JP Mε quantum numbers, except for3503

one selected wave a, by the coupling amplitudes kCKππ
a of wave a and one branching amplitude3504

k
bB

Kππ
a for each partial wave b, which is independent of t′, i.e.3505

kCKππ
b (t′) = k

bB
Kππ
a

kCKππ
a (t′). (6.14)

This drastically reduces the number of coupling amplitudes, which are free parameters in the3506

RMF, and thereby improves the fit stability.3507

6.1.3 Modeling the π−π−π+ Background3508

We modeled the π−π−π+ background by the results of the PWD of the π−π−π+ pseudodata sample3509

that was obtained from the π−π−π+ COMPASS analysis as discussed in section 5.10.2. This3510

means that the background is modeled based on data that where obtained in the same data taking3511

campaigns at the same experiment as our K−π−π+ sample. The π−π−π+ background component3512

in equation (6.1) is parameterized by3513

ρ̂πππab (mKππ, t′) =
∣∣∣∣Cπππ∣∣∣∣2 ρπππab (mKππ, t′). (6.15)

Here, ρπππab (mKππ, t′) is the spin-density matrix of K−π−π+ partial waves as obtained from the PWD3514

of the π−π−π+ pseudodata sample using the K−π−π+ 238-wave set, and the π−π−π+ pseudodata3515

sample is based on the π−π−π+ sample measured at COMPASS. It is important to note that3516

ρπππab (mKππ, t′) is fully determined by the pseudodata sample, i.e. it has no free parameters. This3517

means that at the stage of the RMF, a fixed parameterization for the π−π−π+ background in our3518

K−π−π+ sample is used. The absolute amount of π−π−π+ background in our sample is given by3519

the free parameter |Cπππ|2. This means |Cπππ|2 is determined from the measured K−π−π+ sample,3520

while ρπππab (mKππ, t′) is completely determined by the measured π−π−π+ sample.3521

6.1.4 Modeling the Effective Background3522

Other incoherent background processes, such as K− + p→ K−K−K+ + p, also contribute to the3523

K−π−π+ sample. As there are no explicit models available for these processes, we parameterized3524

them in an effective way by using the same approach as used for the non-resonant components.3525
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Following equation (6.5), the RMF model for the effective background components reads[d]
3526

T̂ eBKG
a (mKππ, t′) =

√
Na(mKππ)mKππPP(mKππ, t′) CeBKG

a (t′)DeBKG
ka

(mKππ; aka , cka). (6.16)

For the dynamic amplitudes of the effective background components, the same parameterizations3527

as for the non-resonant components are used, but with independent shape parameters. For most3528

of the partial waves, we used the simplified parameterization [same as equation (6.11)]:3529

DeBKG
k (mKππ; bk) = e−bk q̃2

k (mKππ). (6.17)

For some partial waves we used the full parameterization [same as equation (6.8)]:3530

DeBKG
k (mKππ; ak, ck) = (mKππ − mthr)ak e−b(ck) q̃2

k (mKππ). (6.18)

6.1.5 χ2 Formalism3531

In order to estimate the free parameters of the RMF model, we performed a χ2 fit. In order3532

to measure the deviation between the RMF Model ρ̂ab(mKππ, t′) and the measured spin-density3533

matrix elements ρab(mKππ, t′), the real-valued spin-density matrixreal-valued spin-density matrixreal-valued spin-density matrixreal-valued spin-density matrixreal-valued spin-density matrixreal-valued spin-density matrixreal-valued spin-density matrixreal-valued spin-density matrixreal-valued spin-density matrixreal-valued spin-density matrixreal-valued spin-density matrixreal-valued spin-density matrixreal-valued spin-density matrixreal-valued spin-density matrixreal-valued spin-density matrixreal-valued spin-density matrixreal-valued spin-density matrix,[e]
3534

Λab(mKππ, t′) =

<
(
ρab(mKππ, t′)

)
, if a ≤ b

=
(
ρba(mKππ, t′)

)
, if a > b

, (6.19)

is constructed. The diagonal elements of Λab(mKππ, t′) are the partial-wave intensities. The3535

upper-right triangular part of Λab(mKππ, t′) contains the real parts of the spin-density matrix3536

elements, whereas the lower-left triangular part of Λab(mKππ, t′) contains the imaginary parts of3537

the spin-density matrix elements. As the spin-density matrix is Hermitian, Λab(mKππ, t′) contains3538

the full information of ρab(mKππ, t′). The vector ~λ(mKππ, t′) is the vectorization of Λab(mKππ, t′),3539

whose elements read3540

λi(mKππ, t′) = Λab(mKππ, t′), where i = a · nwaves + b (6.20)

and where nwaves is the number of waves in the spin-density matrix.3541

Analogously, the equivalent quantities of the RMF model read3542

Λ̂ab(mKππ, t′) =

<
(
ρ̂ab(mKππ, t′)

)
, if a ≤ b

=
(
ρ̂ba(mKππ, t′)

)
, if a > b

, (6.21)

[d] As the transition amplitude for the effective background of each wave contains only one component, the coupling
amplitude CeBKG

a (t′) has no additional component label and the component label ka of the dynamic amplitude is
fixed by the wave label a.

[e] Here and in equations (6.20) to (6.22) we use the wave labels a and b as indices that run from 1 to nwaves, where
nwaves is the number of partial waves in the spin-density matrix.
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and3543

λ̂i(mKππ, t′) = Λ̂ab(mKππ, t′), where i = a · nwaves + b. (6.22)

Using the data and model vectors given in equations (6.20) and (6.22), respectively, the χ2
3544

function that is minimized in the RMF reads3545

χ2
RMF =

∑
t′,mKππ

nwaves∑
i, j=1

∆λi(mKππ, t′) Prec
[
λi(mKππ, t′), λ j(mKππ, t′)

]
∆λ j(mKππ, t′). (6.23)

The residuals ∆λi, which represent the difference between measured spin-density matrix elements3546

and the RMF model, are given by3547

∆λi(mKππ, t′) = λi(mKππ, t′) − λ̂i(mKππ, t′). (6.24)

The outer sum in equation (6.23) runs over all (mKππ, t′) cells, which are independent.3548

The precision matrix Prec[λi, λ j] is the inverse of the covariance matrix Cov[λi, λ j] of the3549

measured spin-density matrix elements λi. Cov[λi, λ j] is determined by our Bootstrapping3550

approach of the PWD that is discussed in section 5.4.3551

The maximal possible rank of Cov[λi, λ j] is n2
waves with nwaves being the number of considered3552

partial waves, because there are n2
waves real-valued spin-density matrix elements. However, we3553

limited the rank r of the spin-density matrix to be r = 3 when formulating the PWD model (see3554

sections 5.1.2 and 5.3.1). Consequently, the number of free parameters of the spin-density matrix3555

is given by3556

nρpara = r(2nwaves − r). (6.25)

This means that the n2
waves real-valued spin-density matrix elements are build up from nρpara3557

free parameters. In our case, nρpara is much smaller than n2
waves. Hence, there are functional3558

dependencies among the spin-density matrix elements. As a consequence, MLECov[λi, λ j] as3559

obtained from the covariance matrix of the maximum-likelihood estimates of the transition3560

amplitudes via linear error propagation, is singular and cannot be directly inverted.3561

However, we determined Cov[λi, λ j] using the Bootstrapping approach, which does not determine3562

the covariance matrix at a fixed point in the ~λ space, but determines the covariance matrix3563

from the spread in the distribution of ~λ. This distribution also includes non-linear effects3564

from the calculation of the spin-density matrix elements [see equations (5.67) and (5.68)].3565

Hence, the functional dependencies among the spin-density matrix elements are not exactly3566

implemented in Cov[λi, λ j] from Bootstrapping, so that Cov[λi, λ j] is not exactly singular3567

anymore. In fact, it has full rank and can be inverted. In order to make the inversion procedure3568

of Prec[λi, λ j] used in equation (6.23) numerically more stable[f] and to implement the mass3569

ranges as described below, we employed the Moore-Penrose pseudo-inverse [139–142][g] when3570

[f] Although, Cov[λi, λ j] is not exactly singular anymore, some eigenvalues of Cov[λi, λ j] are still numerically close
to zero. This leads to numerical instabilities when using the conventional matrix inverse.

[g] See equations (27) and (28) on page 207 of ref. [139].
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calculating Prec[λi, λ j].[h] A systematic study investigating effects from the rank of Cov[λi, λ j]3571

can be found in section 6.3.2.3572

Some mKππ ranges of partial waves that are studied in the RMF are excluded from χ2
RMF. An3573

elegant way of implementing these mass ranges in the RMF is to take advantage of the pseudo3574

inverse that is used to calculate Prec[λi, λ j]. To this end, for each (mKππ, t′) cell the elements3575

of Cov[λi, λ j] that belong to waves outside their mass ranges are set to zero before calculating3576

Prec[λi, λ j].3577

6.1.6 Fit Procedure3578

In an RMF, the χ2 function in equation (6.23) is minimized with respect to the free parameters3579

of the RMF model, which are shape parameters, e.g. the masses and widths of the resonance3580

components, and the coupling and branching amplitudes.[i] In general, the χ2 function is multi-3581

modal in the parameter space. In order to map out the parameter space, to avoid bias induced3582

by the choice of the start-parameter values, and to reliably find the parameter values that yield3583

the minimal χ2 value, multiple minimizations are performed for the same RMF model using3584

different start-parameter values.3585

While we have some prior knowledge about the shape parameters, e.g. from previous measure-3586

ments of the studied resonances, we have only poor prior knowledge about the coupling and3587

branching amplitudes. For the shape parameters of the resonance components, the non-resonant3588

components, and the effective background components, the start-parameter values are randomly3589

drawn from uniform distributions with ranges that we chose individually for each component3590

based on prior knowledge. These start-parameter ranges are listed and discussed in section 6.23591

and appendices E.1.1 and E.2. For the real and imaginary parts of the coupling amplitudes3592

and the branching amplitudes, the start-parameter values are randomly drawn from a uniform3593

distribution in the wide range (−1, 1).[j]
3594

Optimizing all parameters at once frequently leads to artificial solutions far away from the physics3595

parameters, because some parameters of the RMF model are highly correlated.[k] Therefore,3596

the fit procedure is performed in two steps. In the first step, the parameters for the coupling3597

[h] In order to calculate the Moore-Penrose pseudo-inverse a singular-value decomposition is used, where numerically
small singular values s j are set to zero in the inverse, i.e. a singular value is set to zero if s j < maxk[sk] · 10−14.
Here, j and k label the various singular values determined in the singular-value decomposition.

[i] We used the iminuit package [143] for minimization, which is a Python module that implements the MINUIT
minimizer.

[j] In the “sfitter” fitting software (see table H.1), the coupling and branching amplitudes defined in equations (6.4)
and (6.14) to (6.16) are normalized by introducing normalization constants, such that the magnitudes of the real
and imaginary parts of the coupling amplitudes are of the order of 1, i.e. of the same order as the shape parameters.
This was mandatory to improve the stability of the MINUIT minimization.

[k] We performed studies where the optimization was performed by freeing all parameter simultaneously in a single
step. This approach yielded the same best χ2 value as the two-step approach. However, it required much more
minimization attempts with different start-parameter values as the best solution was found less frequently. See
section 6.2.2 for a discussion on the stability of the RMF.
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and branching amplitudes are optimized, while keeping the shape parameters fixed to their3598

start-parameter values, which are based on prior knowledge. In the second step, the results from3599

the first step are used as start-parameters values and also the shape parameters are freed such that3600

all parameters are optimized simultaneously.3601

In summary, the RMF formalism described in this section 6.1 allowed us to identify strange-3602

meson resonances and to measure their masses and widths. In contrast to the PWD, the resonance,3603

non-resonant, and background contributions are explicitly modeled in the RMF. This allowed us3604

to separate the resonance signals from the non-resonant and background contributions.3605

6.2 The 10-Wave RMF3606

6.2.1 The 10-Wave RMF Model3607

In order to study resonances appearing in the K−π−π+ final state and to measure their masses3608

and widths, we used the formalism developed in section 6.1 to fit RMF models to the results3609

of the PWD of the measured K−π−π+ sample. We selected ten partial waves with JP = 1+, 2+,3610

2−, and 4+ to be included into the RMF. We chose waves that show interesting signals, e.g.3611

from excited states such as the K2(2250) that needs further clarification. We also chose waves3612

that show clear signals from well-known resonances such as the K∗2(1430). These clear signals3613

can be reliably modeled and act as reference amplitudes for weaker signals to interfere with,3614

which makes the fit more robust. In addition, comparing our measurements of the resonance3615

parameters of these well-known states to previous ones allows us to identify potential bias in the3616

analysis. The so-called 10-wave RMF10-wave RMF10-wave RMF10-wave RMF10-wave RMF10-wave RMF10-wave RMF10-wave RMF10-wave RMF10-wave RMF10-wave RMF10-wave RMF10-wave RMF10-wave RMF10-wave RMF10-wave RMF10-wave RMF is defined in the remaining of this section. Its results are3617

discussed in sections 6.2.2 and 7.1 to 7.4. When developing the so-called 10-wave RMF model10-wave RMF model10-wave RMF model10-wave RMF model10-wave RMF model10-wave RMF model10-wave RMF model10-wave RMF model10-wave RMF model10-wave RMF model10-wave RMF model10-wave RMF model10-wave RMF model10-wave RMF model10-wave RMF model10-wave RMF model10-wave RMF model3618

employed in the 10-wave RMF, we started with RMFs of individual waves, and then successively3619

added partial waves and model components, and tuned the parameters of the model. In total, we3620

performed more than 200 individual RMFs during this procedure. We studied further partial3621

waves from other JP sectors using the 10-wave RMF model as a starting point for extended3622

RMFs. These studies are discussed in sections 7.5 to 7.8.3623

Table 6.1 lists the waves included in the 10-wave RMF. In the following, we give a short3624

reasoning for how we constructed this model. A detailed discussion about the signals in the3625

individual waves can be found in chapter 7. The 2+ and 4+ waves exhibit resonance-like signals3626

of the corresponding ground-state resonances (see figures 5.19d and 5.20b). We modeled them3627

accordingly by including the K∗2(1430) and K∗4(2045) resonance components. Apart from these3628

dominant signals, the waves exhibit no further resonance-like structures. The 1+ and 2− waves3629

exhibit dominant signals in the mKππ region of the known ground-state resonances; which are the3630

K1(1270) and K1(1400) resonances, and the K2(1780) and K2(1820) resonances, respectively3631

(see figures 5.19f and 5.19a). Hence, we added the corresponding resonance components to our3632

model. In addition, some 1+ and 2− waves exhibit high-mass tails, which may arise from excited3633

states. We modeled them by including resonance components for the K′1 and K2(2250) states. As3634
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Table 6.1: List of partial waves and model components included in the 10-wave RMF. The second column
lists the resonance components included in Sa in equation (6.6). They are specified in table E.1. The third
column lists the parameterization used for the dynamic amplitudes of the non-resonant components (NR).
The fourth column lists the model used for the π−π−π+ background components. The fifth column lists
the parameterizations used for the dynamic amplitudes of the effective background components (eBKG)
in equation (6.16).[l] The last two columns list the mKππ range in which data from this partial wave are
considered in the RMF. A detailed discussion of the individual components is given in appendix E.1.1.

Partial Wave Resonances NR π−π−π+ eBKG
mKππ Range

GeV/c2

1+ 0+ ρ(770) K S
{
K1(1270),K1(1400),

K′1

}
(6.11) (6.15) (6.17) 1.10 2.50

1+ 1+ ρ(770) K S (6.11) (6.15) (6.17) 1.10 2.50

2+ 1+ K∗(892) πD
{
K∗2(1430)

}
(6.11) (6.15) (6.17) 1.20 1.70

2+ 1+ ρ(770) K D (6.11) (6.15) (6.17) 1.30 1.70

2− 0+ K∗(892) π F {
K2(1770),K2(1820),

K2(2250)

} (6.11) (6.15) (6.17) 1.60 2.00
2− 0+ K∗2(1430) π S (6.8) (6.15) (6.18) 1.50 2.80
2− 0+ ρ(770) K F (6.11) (6.15) (6.17) 1.60 2.00
2− 0+ f2(1270) K S (6.11) (6.15) (6.17) 1.60 2.80

4+ 1+ K∗(892) πG
{
K∗4(2045)

}
(6.11) (6.15) (E.1) 1.80 2.50

4+ 1+ ρ(770) K G (6.11) (6.15) (6.17) 1.80 2.50

our estimate for the mass of the K′1 component is significantly higher than the nominal mass of3635

the K1(1650) state, which is listed by the PDG, we call this component K′1 instead of K1(1650)3636

in our model (see discussion in section 7.1.1).3637

We chose the mKππ range in which we considered data points of the spin-density matrix elements3638

that correspond to a wave individually for each wave. The selected mKππ ranges cover the3639

resonances we want to study and a sufficiently large region around these resonances that allows us3640

to reliably determine not only the parameters of the resonances but also those of the non-resonant3641

and background components. With the given model we were not able to describe the region3642

mKππ ≥ 2 GeV/c2 of the 2− 0+ K∗(892) π F and 2− 0+ ρ(770) K F waves (see section 7.4). Thus,3643

we excluded this mass region from the RMF for these to waves. Also, we excluded the region3644

mK−π+ ≥ 1.7 GeV/c2 from the RMF for the two 2+ waves, because both waves exhibit no3645

resonance-like signal in this mass region.3646

We use the same set of resonance components for partial waves with the same JP quantum3647

numbers. Except for the 1+ waves, all waves with the same JP have also the same Mε. Hence,3648

we required that a resonance component has the same t′ dependence in all partial waves in which3649

it is included by applying equation (6.14). This leaves us with one set of t′-dependent coupling3650

amplitudes for each resonance component and one t′-independent branching amplitude for each3651

additional wave in which this resonance component appears. As the two included 1+ waves have3652

different Mε, we do not expect the t′ dependence of resonances appearing in both waves to be the3653
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same. Thus, we did not apply equation (6.14) for the K1(1270) and K′1 resonance components.3654

As discussed in section 7.1, the K1(1400) is only a weak signal in the included 1+ waves. In3655

order to reduce the number of free parameters and thereby stabilize the fit, we applied a modified3656

version of equation (6.14), where the expected change of the t′ shape due to the different spin3657

projections, which will be given in equation (6.29), is taken into account, i.e. we applied3658

K1(1400)CKππ
1+ 1+ ρ(770) K S (t′) =

√
t′ · K1(1400)

1+ 1+ ρ(770) K SB
Kππ
1+ 0+ ρ(770) K S ·

K1(1400)CKππ
1+ 0+ ρ(770) K S (t′). (6.26)

For all eight resonance components we used a relativistic Breit-Wigner amplitude given in3659

section 5.1.4 with a dynamic width that takes into account a single decay channel. In order to3660

measure the Breit-Wigner mass m0 and width Γ0, we optimized the corresponding fit parameters3661

in the RMF (see section 6.1.6 for details on the fitting procedure). We chose the parameter3662

limits for the m0 and Γ0 parameters to be as little restrictive as possible in order to not bias our3663

results. Furthermore, we selected the start-parameter ranges for m0 and Γ0 such that their cover a3664

reasonable range including previous measurements [91] plus a safety margin. The resonance3665

components, their parameter limits, and the start-parameter ranges are listed in table E.1. In3666

appendix E.1.1 we discuss their choice in more detail. As the K1(1400) is only a weak signal3667

in the two considered 1+ waves, we could not reliably determine its mass and width in the3668

10-wave RMF. Thus, we fixed the mass and width parameters of the K1(1400) component to the3669

corresponding PDG average values [91] as listed in table E.1.3670

Using the simplified shape for the non-resonant and effective background components given in3671

equations (6.11) and (6.17) turned out to be sufficient in most of the 10 waves (see table 6.1). Only3672

for the 2− 0+ K∗2(1430) π S and 4+ 1+ K∗(892) πG [l] waves, which exhibit larger non-resonant3673

and background contributions, we used the extended non-resonant and effective background3674

shapes in equations (6.8) and (6.18). We chose the parameter limits of the non-resonant and3675

effective background components in all 10 waves to be much larger than expected, i.e. larger than3676

observed in the first RMFs and larger than the typical values observed in the COMPASS π−π−π+
3677

analysis [41] where a similar non-resonant parameterization was used. Similarly, we chose the3678

start-parameter ranges to cover typical values for the non-resonant and effective background3679

parameters. The final choice of the parameter limits and start-parameter ranges is listed in3680

appendix E.1.1.3681

Finally, we modeled the π−π−π+ background using the results of the π−π−π+ partial-wave3682

decomposition as discussed in section 6.1.3. This model has only one free fit parameter, which is3683

the overall amount of π−π−π+ background in the K−π−π+ sample. We estimated this parameter3684

in the RMF.3685

[l] For the effective background component in the 4+ 1+ K∗(892) πG wave we used a modified version of equation (6.18)
as discussed in appendix E.1.1.
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In total, the 10-wave RMF model has 291 free fit parameters: 7 m0 and 7 Γ0 parameters of3686

7 resonance components,[m] 8 shape parameters of the non-resonant components,[n] 12 shape3687

parameters of the effective background components, and 257 parameters for the coupling and3688

branching amplitudes. These 291 free parameters are constrained by 7816 data points, i.e. the3689

real and imaginary parts of the spin-density matrix elements obtained from the PWD of the3690

K−π−π+ sample.3691

6.2.2 A First Glimpse on the Results of the 10-Wave RMF3692

We fitted the 10-wave RMF model defined in section 6.2.1 to the PWD results of the K−π−π+
3693

sample presented in section 5.5. In order to explore the parameter space of the RMF sufficiently3694

well we performed a large number of 2000 fit attempts with random start-parameter values.3695

Figure 6.1a shows the χ2 distribution obtained from these 2000 attempts. The best fit result3696

yielded a χ2 value of 6215.61, i.e. this is the smallest χ2 value found in all attempts. Taking into3697

account the number of degrees of freedom, this corresponds to a reduced χ2 of χ2
red = 0.826.3698

The interpretation of this value is discussed further in section 6.3.1. In total, 121 of the 2000 fit3699

attempts found this best result,[o] which represents the final result of this RMF, i.e. which yielded3700

the final parameter estimates. There are further results that were found frequently. However, they3701

all have a χ2 value that is at least 12 units larger, i.e. significantly worse, than the best fit result.3702

Hence, they are not of interest here. Finally, there are rarely found fit results with χ2 < χ2
best + 123703

as shown in figure 6.1b. These rare fit results have resonance parameters that agree with those3704

from the best fit result. Thus, they are also not of further interest. The large number of fit attempts3705

that found the best fit result, the consistency of the parameter values for fit results with similar3706

χ2, and the significantly larger χ2 of other fit results demonstrates that we reliably found the3707

minimal χ2, i.e. the set of parameters that describes the data best.3708

Figure 6.2 shows for illustration purposes the real and imaginary parts of the spin-density matrix3709

elements of the 10 waves included in the 10-wave RMF in the lowest t′ bin. The data points3710

represent the spin-density matrix elements obtained from the PWD of the measured K−π−π+
3711

sample. We refer to the corresponding intensities as measured intensitiesmeasured intensitiesmeasured intensitiesmeasured intensitiesmeasured intensitiesmeasured intensitiesmeasured intensitiesmeasured intensitiesmeasured intensitiesmeasured intensitiesmeasured intensitiesmeasured intensitiesmeasured intensitiesmeasured intensitiesmeasured intensitiesmeasured intensitiesmeasured intensities and to the off-diagonal3712

spin-density matrix elements as measured spin-density matrix elementsmeasured spin-density matrix elementsmeasured spin-density matrix elementsmeasured spin-density matrix elementsmeasured spin-density matrix elementsmeasured spin-density matrix elementsmeasured spin-density matrix elementsmeasured spin-density matrix elementsmeasured spin-density matrix elementsmeasured spin-density matrix elementsmeasured spin-density matrix elementsmeasured spin-density matrix elementsmeasured spin-density matrix elementsmeasured spin-density matrix elementsmeasured spin-density matrix elementsmeasured spin-density matrix elementsmeasured spin-density matrix elements in the following. The3713

1954 data points from the first t′ bin shown in blue are those that entered the RMF. In total, we3714

included all four spin-density matrices from the four analyzed t′ bins simultaneously in one RMF.3715

This results in a total amount for 7816 data points that entered the RMF. All four spin-density3716

matrices are shown in appendix E.1.2. These data points were calculated from the transition3717

amplitudes, i.e. from a smaller number of fit parameters compared to the number of real and3718

imaginary parts of the spin-density matrix elements. Hence, spin-density matrix elements from3719

[m] The mass and width of the K1(1400) component were fixed.
[n] The shape parameters of the non-resonant terms in the 2+ waves and in the 2− 0+ K∗(892) π F wave were fixed (see

appendix E.1.1).
[o] We consider two fit results to be the same if their χ2 values differ by less than 10−2 units, if for each parameter the

difference of the estimates is less than 10 % of the corresponding uncertainty from the best fit result, and if each for
each parameter the difference of the uncertainty estimates is less than 50 % of the uncertainty estimate from the
best result. The latter criterion was chosen to identify unrealistic uncertainty estimates appearing in unstable fits.
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Figure 6.1: χ2 distribution obtained from the 2000 attempts of the 10-wave RMF. (a) shows the full χ2

range of all 2000 attempts. (b) shows in log-scale only those attempts that yielded a χ2 that is at most
15 units worse than the smallest found χ2. The dashed dark-gray vertical line indicates χ2 = χ2

best+12 units.

the same (mKππ, t′) cell are strongly correlated. Spin-density matrix elements from different3720

(mKππ, t′) cells are independent. The red curves in figure 6.2 represent the result of the 10-wave3721

RMF. We discuss in the following the fit quality. Detailed discussions and interpretations of the3722

results for the individual waves are given in chapter 7.3723

Overall, the RMF is able to reproduce the measured intensities and the off-diagonal spin-density3724

matrix elements sufficiently well. Figure 6.3a shows exemplarily the t′-summed intensity3725

spectrum of the 1+ 0+ ρ(770) K S wave. The total RMF model (red curve) reproduces well3726

the features of the measured intensity spectrum (blue data points). As expected, the peak3727

at about 1.3 GeV/c2 is dominantly described by the K1(1270) component of the RMF (blue3728

curve). We find small contributions to the total model intensity from the non-resonant component3729

(green curve), the π−π−π+ background component (orange curve), and the effective background3730

component (brown curve). The RMF underestimates the measured intensity in the low-mass tail3731

of the peak, especially in the extrapolation below the fitted mKππ region shown by the gray data3732

points and lighter curves. We expect artifacts in form of these low-mass enhancements in our3733

analysis (see section 5.5). Thus, we excluded this low-mass region from the mKππ fit range.3734

Similarly, the peak at about 1.4 GeV/c2 in the 2+ 1+ ρ(770) K D wave shown in figure 6.3b is3735

reproduced well by the RMF, while it underestimates the measured intensity in the tails of the3736

peak. We find a large contribution of the π−π−π+ background component (orange curve) to this3737

wave, while the total RMF model curve seems to be completely saturated by the K∗2 component.3738

The reason is, that the K∗2 component destructively interferes with the non-resonant component in3739

this wave (green curve) such that the intensity ρ̂Kππ
aa (mKππ, t′) of the RMF model for the K−π−π+

3740

spin-density matrix is smaller than the measured intensity. Adding the π−π−π+ background3741

component, the total RMF model reproduced well the peak region.3742
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Figure 6.2: Real and imaginary parts of the spin-density matrix elements, i.e. Λab(mKππ, t′) in equa-
tion (6.19), as a function of mKππ in the lowest of the four t′ bins for the 10 partial waves that were
included in the 10-wave RMF. The figures on the diagonal show the intensity spectra. The upper-right
and lower-left off-diagonal figures show the real and imaginary parts of the off-diagonal elements of
the spin-density matrix, respectively. The blue data points represent the measured spin-density matrix
elements. The curves represent the result of the 10-wave RMF to these data points. The red curves
represent the total RMF model. The blue curves represent the individual resonance components, the green
curves the non-resonant components, the orange curves the π−π−π+ background components, and the
brown curves the effective background components. The extrapolations beyond the mKππ fit ranges are
shown in lighter colors. The corresponding data points are shown in gray. The ranges of the vertical axes
are different for each subplot. They are adjusted to the data shown in each subplot. Hence, we do not show
tick marks for the vertical axes.
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Figure 6.3: 10-wave RMF result for the t′-summed intensity spectra of three selected partial waves. The
blue data points represent the measured spin-density matrix elements. The curves represent the result of
the 10-wave RMF. The red curves represent the total RMF model. The blue curves represent the individual
resonance components, the green curves the non-resonant components, the orange curves the π−π−π+

background components, and the brown curves the effective background components. The extrapolations
beyond the mKππ fit ranges are shown in lighter colors. The corresponding data points are shown in
gray. The cyan data points in (b) show the result of the π−π−π+ background PWD scaled such that the
total number of reconstructed π−π−π+ pseudodata events corresponds to the predicted amount of π−π−π+

background in the K−π−π+ sample (same as orange data points in figure 5.39a).
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Figure 6.4: Same as figure 6.3, but for (a) the real part and (b) the imaginary part of the off-diagonal
spin-density matrix element of the 4+ 1+ K∗(892) πG and 2− 0+ K∗2(1430) π S waves in the lowest t′ bin.

The shape of the π−π−π+ background component is the same as the shape from the π−π−π+
3743

background PWD by construction (see section 6.1.3), while the amount of π−π−π+ background3744

is a free parameter in the RMF. Remarkably, the amount of π−π−π+ background as estimated3745

by the RMF based on the measured K−π−π+ sample agrees well with the expected amount of3746

π−π−π+ background (cf. orange curve and cyan data points in figure 6.3b, respectively). The3747

estimate of the π−π−π+ background from the RMF was obtained from the measured K−π−π+
3748

sample. The expected amount of π−π−π+ background is based on the π−π−π+ pseudodata, which3749

were obtained from the measured π−π−π+ sample, i.e. from an independent data sample. This3750

good agreement strongly supports our approach to effectively model the incoherent background3751

contributions by a rank=3 spin-density matrix in the PWD and explicitly model them at the level3752

of the RMF. As the strength parameter of the π−π−π+ background component is independent of3753

the partial wave by construction, we find the same good agreement in all 10 partial waves.3754

We observe discrepancies between the RMF curve and the measured intensity spectra of the 4+
3755

waves, exemplarily shown for the t′-summed intensity spectrum of the 4+ 1+ K∗(892) πG wave in3756

figure 6.3c. While the RMF roughly reproduces the shape of the spectrum, it underestimates the3757

overall intensity by about 20 %. However, the RMF reproduces well the measured off-diagonal3758

spin-density matrix elements of the 4+ 1+ K∗(892) πG wave with respect to all other partial3759

waves. Figure 6.4 exemplarily shows the real and imaginary parts of one of these off-diagonal3760

elements. Especially noteworthy is that the magnitudes of the measured off-diagonal elements3761

are not underestimated, which would naïvely be expected from the discrepancy observed in the3762

intensity spectrum. This suggests that there are contributions to the measured intensity spectrum3763

of this wave that do not enter the off-diagonal spin-density matrix elements and that are not3764

reproduced by the RMF.3765
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The spin-density matrix element for a given (mKππ, t′) cell is the sum over all physics processes3766

p that contribute to wave a or b:[p]
3767

ρab =
∑
p

T pa

[
T
p

b

]∗
. (6.27)

Assume, a process p1 contributes only to wave a but not to wave b, i.e. T p1
b = 0. This process3768

affects the intensity of wave a, because T p1
a

[
T
p1
a

]∗
appears in equation (6.27) for a = b. However,3769

p1 does not affect the off-diagonal spin-density matrix element of waves a and b, because3770

T
p1
a

[
T
p1
b

]∗
appears in equation (6.27) for a , b and T p1

b = 0. Hence, the off-diagonal spin-3771

density matrix elements are less affected by processes that dominantly contribute to only a subset3772

of waves.3773

We expect the process under study in this work, i.e. K− + p→ K−π−π+ + p, to contribute to all3774

partial waves as the wave set was designed for this process. However, background processes3775

may significantly contribute to only a subset of partial waves. For example, we know from the3776

π−π−π+ background PWD that this background does practically not contribute to waves with3777

K∗(892) isobar (see section 5.10.2). Therefore, we expect not only the intensities of waves3778

with K∗(892) isobar to be practically free of π−π−π+ background, but also the off-diagonal3779

spin-density matrix elements of all waves with respect to waves with K∗(892) isobar. Thus,3780

in general the intensities may be most affected by backgrounds. In addition, the model for3781

the effective background components is only an approximation, which may be imperfect (see3782

section 6.1.4). This may explain the discrepancy between the RMF curve and the measured3783

intensity spectra of the 4+ waves, while the off-diagonal elements of those waves are reproduced3784

well. Furthermore, one should note that 6504 of the 7816 data points that entered the RMF3785

represent off-diagonal spin-density matrix elements, while only 1312 represent intensities.[q]
3786

Hence, the off-diagonal elements influence the results of the RMF more strongly such that3787

imperfections in the description of the intensities may not strongly pull the results.3788

We performed the PWD independently in four bins in t′. This allowed us to determine not3789

only the mKππ dependence, but also the t′ dependence of the spin-density matrix elements. We3790

employed this t′ resolved information in the RMF, where we separate resonances from non-3791

resonant and background contributions. Hence, we studied the t′ dependence of the amplitudes of3792

the individual model components. However, given the low number of t′ bins, we could determine3793

only the coarse features of their t′ dependence. Due to the normalization of the measured spin-3794

density matrix elements,
∣∣∣kT̂ z

a (mKππ, t′)
∣∣∣2 from equation (6.5) represents the predicted number of3795

produced events in each (mKππ, t′) cell for a single wave a and the coherent sector z and if there3796

would be only component k in wave a. The corresponding intensity as a function of t′, i.e. the3797

[p] As discussed in section 5.1, we cannot disentangle the transition amplitudes T p
a of the physics processes. The

transition amplitudes T z
a that appear in the PWD model are only an effective parameterization of the spin-density

matrix.
[q] The number of off-diagonal elements and intensities must be calculated for each (mKππ, t′) cell individually and

summed up. This is because not all the 10 waves were considered in the RMF in all (mKππ, t′) cells (see table 6.1).
The number of considered waves ranges from one to eight. There are no (mKππ, t′) cells where all the 10 waves
are considered, because the 2+ and 4+ waves have non-overlapping fit ranges. On average, about five waves are
considered in each (mKππ, t′) cell.
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number density in t′ summed over the analyzed mKππ region, reads3798

k
Ia(t′) =

1
∆t′bin

∑
mKππ

∣∣∣∣kT̂a(mKππ, t′)
∣∣∣∣2 , (6.28)

where ∆t′bin is the width of the considered t′ bin. As each model component appears only in3799

one coherent sector, we dropped the sector label. In general, the t′ dependence of the intensity3800

of a model component may be different in different partial waves. However, for most of these3801

resonance components we applied equation (6.14). Hence, the t′ dependence of the intensities3802

of a such component in the various waves is the same by construction and only the total3803

intensities differ by mainly |kbB
z
a|

2.[r] As kIa(t′) depends in a complicated, non-linear way on the3804

fit parameters, determining its uncertainties requires elaborate and computationally expensive3805

Monte Carlo uncertainty propagation. As we discuss kIa(t′) only on a quantitative level in this3806

work, we show the central values without uncertainties in the following.3807

Figure 6.5 shows the t′-dependence of the intensity of the K1(1270) component in the 1+ 0+
3808

ρ(770) K S wave, i.e. the so-called t′ spectrumt′ spectrumt′ spectrumt′ spectrumt′ spectrumt′ spectrumt′ spectrumt′ spectrumt′ spectrumt′ spectrumt′ spectrumt′ spectrumt′ spectrumt′ spectrumt′ spectrumt′ spectrumt′ spectrum. It exhibits an approximately exponentially falling3809

shape. This is expected for resonances in waves with M = 0 from Regge theory, assuming3810

single Pomeron exchange in the scattering process [46]. For partial waves with M , 0, the3811

exponentially falling shape is modified by an additional factor (t′)|M| such that the expected shape3812

for the t′ spectra reads[s]
3813

k
Îa(t′) = k

Aa ·
(
t′
)|M|
· e−

kbat′ . (6.29)

Here, kAa is the parameter for magnitude of kÎa(t′) and kba the slope of the exponential function.3814

Figure 6.6 illustrates the effect of the additional factor (t′)|M| on the t′ spectra for a wave with3815

M = 0 and a wave with M = 1, where both t′ spectra have a similar slope and magnitude in the3816

high-t′ region.3817

Finally, the quantities we are mainly interested in are the resonance parameters, i.e. the masses3818

and widths of the appearing strange-meson resonances. Table 6.2 lists our estimates for m0 and Γ03819

of the seven resonance components that were freely fitted in the 10-wave RMF. These values are3820

discussed in the corresponding sections of chapter 7. We give the χ2 estimates for the statistical3821

uncertainties of the resonance parameters (symmetric uncertainties in table 6.2).[t] Realistic3822

estimates for systematic uncertainties of the resonance parameters require a comprehensive set3823

[r] Due to the different wave-normalization integrals in equation (6.5) for different partial waves, the total value and the
convolution of the production factor with the other functions in equation (6.5) is different for different partial waves.
As the production factor depends on t′, the t′ dependence of a component in various waves is slightly different,
even if equation (6.14) is applied. However, this effect is small.

[s] For M , 0, the intensity is suppressed when the X− goes in forward direction in the reaction K− + p → X− + p.
This suppression is purely of kinematic origin and is given by the forward-limit of the Wigner D-functions, which
yields the (t′)|M| factor in the intensity [46, 72].

[t] We determined the χ2 estimates for the uncertainties from the inverse of the Hessian matrix in the minimum of the
χ2 function in equation (6.23) (see equation (40.24) in ref. [9]). In principle, those uncertainty estimates may be
improved using the same Bootstrapping approach as discussed in section 5.4 for the PWD. However, this requires a
very robust RMF model. Bootstrapping of the RMF was beyond the scope of this work. As the systematic effects
on the resonance parameters are typically larger than the statistical uncertainties, we expect the χ2 estimates for the
statistical uncertainties to be sufficiently accurate.
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Figure 6.5: The t′ spectrum of the K1(1270)
component in the 1+ 0+ ρ(770) K S wave as ob-
tained from the 10-wave RMF. The horizontal
blue bars represent the intensity in each t′ bin
according to equation (6.28).
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of studies of all relevant systematic effects that may bias the results of the RMF as has been3824

done for the COMPASS π−π−π+ analysis in ref. [40]. We present in sections 5.7 and 6.3 several3825

systematic studies of the PWD and the RMF, respectively. However, a complete set of studies3826

was beyond the scope of this work. Hence, our estimates for the asymmetric uncertainties in3827

table 6.2 should be considered as are lower limits on the actual systematic uncertainties. Based3828

on the studies presented in section 6.3 the systematic effects are at least as large as the statistical3829

uncertainties. The parameter estimates for the shape parameters of the non-resonant and effective3830

background components are listed in tables E.2 and E.3, respectively.3831

6.3 Systematic Studies3832

In addition to the various systematic effects discussed in section 5.7, also the formalism of the3833

RMF and the employed model may introduce systematic effects. During the development of the3834

10-wave RMF, we already performed many studies with different RMF models, which gave us a3835

first impression on systematic effects. Once we finished the 10-wave RMF, we performed six3836

dedicated systematic studies described in the following sections 6.3.1 to 6.3.3 and labeled by3837
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Table 6.2: Resonance parameters as obtained from the 10-wave RMF. The first quoted uncertainties
are statistical, the second systematic uncertainties. The quoted systematic uncertainties determined
from a limited set of performed systematic studies represent only a lower limit on the actual systematic
uncertainties (see section 6.3). The parameters of the K1(1400) component were fixed to the corresponding
PDG average values. The values and uncertainties are rounded to the same precision according to the PDG
rounding [9]. The number of significant digits is given by the total uncertainty. For the total uncertainty,
we quadratically add the statistical uncertainty to the upper and lower systematic uncertainties. For
comparison, the PDG averages from ref. [9] are listed. The PDG lists more than one average value for the
K∗2(1430) resonance. We list here the PDG average values for the charged K∗2(1430) from measurements
of only the Kπ final state.

(a) K1-like resonances

K1(1270) K′1
Discussed in section 7.1 7.1

COMPASS m0 [MeV/c2] 1267.7 ± 1.9 + 1.6
− 4.5 1940 ± 10 + 90

− 70

Γ0 [MeV/c2] 83 ± 4 +15
− 4 462 ± 22 + 27

−119

PD
G m0 [MeV/c2] 1253 ± 7 1672 ± 50

Γ0 [MeV/c2] 90 ± 20 158 ± 50

(b) K2-like resonances

K2(1770) K2(1820) K2(2250)
Discussed in section 7.4 7.4 7.4

COMPASS m0 [MeV/c2] 1715 ± 4 + 1
− 6 1848 ± 5 + 6

−20 2230 ± 11 + 7
− 61

Γ0 [MeV/c2] 139 ± 7 +14
− 7 250 ± 10 +17

−23 266 ± 29 +225
− 16

PD
G m0 [MeV/c2] 1773 ± 8 1819 ± 12 2247 ± 17

Γ0 [MeV/c2] 186 ± 14 264 ± 34 180 ± 30

(c) K∗J-like resonances

K∗2(1430) K∗4(2045)
Discussed in section 7.2 7.3

COMPASS m0 [MeV/c2] 1430.1 ± 1.5 +1.3
−2.0 2059 ± 6 + 9

− 1

Γ0 [MeV/c2] 109 ± 3 +6
−2 188 ± 11 +27

−18

PD
G m0 [MeV/c2] 1427.3 ± 1.5 2048 + 8

− 9

Γ0 [MeV/c2] 100.0 ± 2.1 199 +27
−19
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A to F to investigate systematic effects.[u] We selected studies to investigate the potentially largest3838

systematic effects on the RMF. Performing a complete set of systematic studies was beyond the3839

scope of this analysis. We studied whether the assumptions and approximations that entered the3840

χ2 function in equation (6.23), which is minimized in the RMFs, may introduce systematic effects.3841

Such effects are discussed in sections 6.3.1 and 6.3.2. We also studied potential systematic effects3842

introduced by the K1(1400) and K2(1820) components that are discussed in section 6.3.3. In the3843

same section also the influence of our choice for the rank of the K−π−π+ spin-density matrix is3844

discussed. The resonance parameters obtained in the six systematic studies are listed in table 6.4.3845

Findings that are specific to individual waves are discussed in chapter 7 and only general findings3846

are discussed in the following subsections.3847

6.3.1 Effects from Using Bootstrapping vs. Maximum-Likelihood Estimates3848

As discussed in sections 5.4.2 and 6.1.5, we not only used the Bootstrapping estimates for the3849

covariance matrix of the measured spin-density matrix elements, but also for the measured values3850

of the spin-density matrix elements, i.e. the central values of the data points that entered the3851

RMF. To study the effect of this approach, we performed an RMF in study A where we used the3852

maximum-likelihood estimates[v] as data points, i.e. we used λi(mKππ, t′) = λMLE
i (mKππ, t′) in3853

equation (6.23). For the covariance matrix of the spin-density matrix elements, we still used the3854

Bootstrapping estimates as done in the main analysis.3855

Compared to the main analysis, study A yielded slightly different resonance parameters. These3856

differences have a similar size as other systematic effects (see table 6.4). Hence, we consider the3857

results of this study to be consistent with the results of the main analysis within the expected3858

uncertainties.3859

The main analysis, which used the Bootstrapping means as data points, yielded and χ2
red value of3860

0.826. This χ2
red value corresponds to an unexpectedly large p-value of practically one. Such a3861

low χ2
red may arise for two reasons. First, the RMF has too much freedom and overfits the data.3862

However, this would disagree with the statistically large deviations between some measured3863

spin-density matrix elements and the corresponding RMF result in the main analysis. Such3864

deviations are discussed for example for the intensity spectrum of the 4+ 1+ K∗(892) πG wave in3865

section 6.2.2. Hence, we expect the χ2
red value to be even larger than one. i.e. χ2

red & 1.0. Second,3866

the uncertainty estimates of the measured spin-density matrix elements are too large.3867

[u] Except for the changes explicitly mentioned in the systematic studies discussed in the following; the RMF model,
the χ2 definition, and the fitting procedure remain the same as in the main analysis discussed in sections 6.1 and 6.2.
To reduce the computational costs of the systematic studies, we performed about 200 fit attempts with random
start-parameter values for each study. This turned out to be sufficient to reliably find the best result, i.e. to find the
result with the lowest χ2 value in more than 10 of the 200 fit attempts.

[v] As defined in section 5.4, the maximum-likelihood estimates are the results of the maximum-likelihood fit of
equation (5.38) to the measured K−π−π+ sample.
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6 The Resonance-Model Fit

Study A, which used the maximum-likelihood estimates as data points, yielded an increased3868

χ2
red value of 1.071, which is in agreement with our expectation of χ2

red & 1.0.[w] This χ2
red value3869

corresponds to a low p-value of about 10−5.3870

The uncertainties of the spin-density matrix elements from Bootstrapping were determined3871

from the distribution of the maximum-likelihood estimates that were obtained from each of3872

the Bootstrapping samples. Hence, the uncertainties estimate the uncertainty of the maximum-3873

likelihood estimates. Using in study A the maximum-likelihood estimates as data points yielded3874

an χ2
red value in the expected range. Thus, we conclude that the Bootstrapping yielded realistic3875

estimates for the uncertainties of the maximum-likelihood estimates. However, using these3876

uncertainty estimates in the main analysis together with the Bootstrapping means as data points3877

yielded an unexpectedly small χ2
red. This indicates that the uncertainty estimates for the maximum-3878

likelihood estimates overestimate the uncertainties of the Bootstrapping means. This can be3879

directly observed in some spin-density matrix elements. For example; in figure 6.4 the scatter of3880

the data points, which are the Bootstrapping means, is smaller than expected from the shown3881

uncertainties.[x]
3882

A possible explanation for the larger uncertainties, i.e. larger spread, of the maximum-likelihood3883

estimates compared to the Bootstrapping means is the leakage effect discussed in section 5.9.3884

It leads not only to large artifacts in the leakage waves. As it is approximately an ambiguity3885

in the partial-wave model, whose magnitude is given by the specifics of the data sample, e.g.3886

by fluctuation, the leakage effect may also introduce an additional spread in the distributions3887

of the spin-density matrix elements from the different Bootstrapping samples, thereby yielding3888

larger the uncertainty estimates. Even non-leakage waves may be influenced by this spread to a3889

small degree. Also, the maximum-likelihood estimates from the measured K−π−π+ sample are3890

affected by the leakage effect, i.e. by one realization of this ambiguity with a certain magnitude3891

given by the specifics of the measured K−π−π+ sample. Thus, we expect the uncertainties from3892

Bootstrapping to yield a realistic estimate for the actual uncertainties of the maximum-likelihood3893

estimates by including the leakage effect. In contrast, when calculating the Bootstrapping means,3894

the additional spread introduced by the leakage effect may average out to some extent, because3895

we average over different data samples, which potentially have a different magnitude of the3896

leakage effect. Thus, the Bootstrapping means should be less biased by the spread introduced by3897

the leakage effect and should have smaller uncertainties.[y] This would be consistent with the3898

observation that our estimates of the uncertainties overestimate the actual uncertainties of the3899

Bootstrapping means.3900

We used the Bootstrapping means in the main analysis as data points in order to potentially3901

reduce the bias, e.g. from the leakage effect, on the measured spin-density matrix elements. We3902

[w] We used the same 10-wave RMF model for the main analysis and for study A. Similar to the main analysis, the
RMF could not describe some measured spin-density matrix elements.

[x] One should note that considering individual spin-density matrix elements gives an incomplete picture as the
spin-density matrix elements from the same (mKππ, t′) cell are strongly correlated.

[y] While calculating the Bootstrapping means may reduce the spread introduced by the leakage effect, it cannot purge
the leakage effect. This means in particular that we still expect the leakage waves to be biased by the leakage effect.
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did this at the expense of using potentially overestimated uncertainties.[z] This also means, that3903

the χ2 value of the RMF in equation (6.23) is systematically too small. However, it is still a valid3904

measure for the deviation of the RMF from the measured spin-density matrix elements and can3905

thus be used to estimate the parameter values of the RMF model. Only its interpretation in terms3906

of a χ2 distributed test statistic is limited. For example, this means that χ2
red values from fits with3907

different numbers of degrees of freedom are hard to compare.3908

6.3.2 Effects from the Eigenvalue Spectrum of the Precision Matrix3909

As discussed in section 6.1.5, for a single PWD fit the rank of the covariance matrix of the3910

real-valued elements of the spin-density matrix is the number of free parameters nρpara of that3911

spin-density matrix. However, we estimated the covariance matrix of the spin-density matrix3912

elements from Bootstrapping, i.e. from the distribution of 2000 independent PWD fits. The rank3913

of this covariance matrix does not correspond to nρpara of a rank=3 spin-density matrix. In fact,3914

the covariance matrix has full rank. Hence, also the precision matrix, which is the inverse of3915

the covariance matrix, that appears in the χ2 formulation of the RMF in equation (6.23) has full3916

rank. To test for potential systematic effects from the higher rank of the precision matrix, we3917

performed an RMF in study B where we constructed a precision matrix with rank nρpara. To this3918

end, we considered only the nρpara largest eigenvalues of the covariance matrix when constructing3919

the precision matrix in each (mKππ, t′) cell, i.e.3920

Prec′[λi, λ j] =

nρpara∑
h=1

1
eh v

h
i

[
v

h
j

]∗
. (6.30)

Here, eh is the h’th largest eigenvalue of the covariance matrix of the spin-density matrix3921

elements and vh
i is the i’th entry of the corresponding eigenvector. The precision matrix as3922

given in equation (6.30) is similar to the Moore-Penrose pseudo-inverse as used in the main3923

analysis. However, here we did not only set the inverse of zero eigenvalues to zero, but we3924

also set the inverse of all but the nρpara largest eigenvalues to zero, and we used the eigenvalue3925

decomposition[aa] instead of the singular-value decomposition.3926

This means that there are some directions in the ~λ(mKππ, t′) space in which deviations between3927

the measured spin-density matrix elements and the RMF are not considered in χ2
RMF. These3928

directions are given by the eigenvectors belonging to eigenvalues whose inverse is set to zero3929

according to equation (6.30). In principle, the elements of a rank=3 spin-density matrix are3930

already constrained in these directions by the limited rank. However, the Bootstrapping means3931

of the spin-density matrix elements, which are used as data points in the RMF, do not exactly3932

fulfill this constraints due to the averaging in the mean calculation. Also, the RMF model3933

for the spin-density matrix in equation (6.1) has rank=[ 4], which is larger than the rank of3934

the measured spin-density matrix, and hence is less constrained. Thus, neglecting in χ2
RMF all3935

[z] Explicitly determining Bootstrapping estimates for the uncertainties of the Bootstrapping means would be compu-
tationally prohibitively expensive (see section 5.4.2).

[aa] See equation (8) on page 43 and equation (19) on page 156 of ref. [139].
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directions belonging to eigenvalues whose inverse is set to zero according to equation (6.30)3936

removes constraints from the RMF and is hence not exactly correct. Furthermore, we determined3937

these directions only with a finite precision given by the precision with which we measured the3938

covariance matrix of the spin-density matrix elements in the Bootstrapping. Hence, study B is an3939

extreme test for effects from the eigenvalue spectrum of the precision matrix.3940

Using the precision matrix given in equation (6.30) in the RMF in study B yielded χ2
red = 0.899,3941

which is slightly worse than χ2
red = 0.826 from the main analysis.[ab] A reason for this may be,3942

that the eigenvectors of the nρpara largest eigenvalues only approximately span the space of the3943

degrees of freedom of a rank=3 spin-density matrix. This is mainly because of two effects: (i)3944

the finite precision of the eigenvectors given by the finite precision, with which the covariance3945

matrix was determined from the finite set of Bootstrapping samples; (ii) the non-linear effects in3946

the calculation of the spin-density matrix elements, which are discussed in section 5.4. For some3947

resonance parameters, the parameter estimates from study B define the extreme deviations with3948

respect to the estimates from the main analysis. Hence, systematic effects from the eigenvalue3949

spectrum of the precision matrix are part of our systematic uncertainties. However, in general the3950

systematic effects observed in study B, which can be considered as an extreme test for the effects3951

from the eigenvalue spectrum of the precision matrix, are of similar size as other systematic3952

effects (see table 6.4). Therefore, we expect no artifacts from the eigenvalue spectrum of the3953

precision matrix on the results of the RMF.3954

6.3.3 Effects from the Formulation of the K−π−π+ RMF Model3955

Effects from the K1(1400) Component3956

As the K1(1400) is only a weak signal in the 1+ waves included in the 10-wave RMF, we fixed its3957

resonance parameters to the corresponding PDG average values in the main analysis. Although3958

the K1(1400) is one of the best known strange mesons, previous measurements of its resonance3959

parameters exhibit a considerable spread (see section 7.1). To test whether the PDG average3960

values for the K1(1400) are consistent with our data, we performed an RMF in study C where we3961

left the mass and width parameters of the K1(1400) component as free fit parameters.3962

To study the influence of the K1(1400) component on the measurement of the other resonance3963

parameters, we performed an RMF in study D where we omitted the K1(1400) component from3964

the RMF model, i.e. where we modeled the 1+ waves by only two resonances.[ac] The results of3965

these studies are discussed in section 7.1.3966

[ab] Using equation (6.30) reduces the number of degrees of freedom in the RMF; because by setting the inverse of
certain eigenvalues to zero, we ignore certain direction in the ~λ space. This means we effectively remove some data
from the χ2 term. The number of degrees of freedom in the RMF B is the sum over the rank of Prec′[λi, λ j] from
all (mKππ, t′) cells minus the number of free parameters in the fit.

[ac] The model for the 1+ waves still included the non-resonant components, the π−π−π+ background components, and
the effective background components as in the 10-wave RMF model in table 6.1.
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Effects from the K2(1820) Component3967

As discussed in section 7.4, many previous measurements of the K2 resonances considered3968

only one K2 state in the region 1.7 ≤ mKππ < 2.0 GeV/c2, while we included the K2(1780)3969

and K2(1820) components in the 10-wave RMF. To obtain resonance parameter estimates that3970

are directly comparable with these previous measurements, we performed an RMF in study E3971

where we omitted the K2(1820) component, i.e. where we modeled the low-mKππ region of the3972

2− waves by only the K2(1780) component.[ad] As the model without the K2(1820) component3973

represents a fundamentally different interpretation of the 2− waves for mKππ . 2 GeV/c2, we3974

did not consider the results of this study in our estimates for the systematic uncertainties of the3975

resonance parameters of the K2(1770) in table 6.2. The results of this study are discussed in3976

section 7.4.3977

Effects from the Chosen Rank of the Model for the K−π−π+ Spin-Density Matrix3978

When constructing the RMF model for the K−π−π+ spin-density matrix in section 6.1.2, we3979

assumed that the reaction K−+p→ K−π−π++p is dominated by Pomeron exchange. Accordingly,3980

we modeled the K−π−π+ spin-density matrix ρ̂Kππ
ab in equation (6.7) as a rank=1 matrix. To3981

study this choice we performed an RMF in study F where we constructed a rank=2 spin-density3982

matrix,3983

ρKππ
ab (mKππ, t′) =

2∑
z=1

T Kππ,z
a (mKππ, t′)

[
T

Kππ,z
b (mKππ, t′)

]∗
, (6.31)

to model the reaction K− + p → K−π−π+ + p. Therefore, we defined two sets of transition3984

amplitudes analogously to equation (6.6),3985

T̂ Kππ,z
a (mKππ, t′) =

√
Na(mKππ)mKππPP(mKππ, t′)

∑
k∈Sa

kCKππ,z
a (t′)Dk(mKππ; ζk) (6.32)

one for each of the two coherent sectors z, including the same resonance components with the3986

same mass and width parameters in both sectors, but with independent coupling amplitudes3987

kC
Kππ,z
a (t′).[ae] The non-resonant components were included only in the first set of transition3988

amplitudes with z = 1. In this study F, we significantly increased the number of free fit3989

parameters from 291 parameters in the main analysis to 391 parameters.3990

The reduced χ2 decreased in this study from χ2
red = 0.826 as obtained in the main analysis to3991

χ2
red = 0.738. This means that the measured spin-density matrix elements are better described3992

by the RMF model using a K−π−π+ spin-density matrix of rank=2. However, as discussed in3993

[ad] The model for the 2− waves still included the K2(2250) component for the high-mKππ region and the non-resonant
components, the π−π−π+ background components, and the effective background components as in the 10-wave
RMF model in table 6.1.

[ae] As in the main analysis, we also enforced the t′ dependence of a resonance component that appears in multiple
waves with the same JP Mε to be the same by applying equation (6.14). We introduced an independent set of
branching amplitudes k

bB
Kππ,2
a for the additional set of transition amplitudes.
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section 6.3.1, the χ2 defined in equation (6.23) can be interpreted in terms of a χ2 distribution3994

only to a limited extend. Furthermore, the shape parameters bk of the effective background3995

components of the 2− 0+ K∗(892) π F and 4+ 1+ ρ(770) K G waves end up at the lower parameter-3996

limit of −0.1 (GeV/c)−2. This indicates that for these waves the result of this study is biased3997

towards an unphysical solution.[af] For some resonance parameters, e.g. for the mass and width3998

of the K′1, this study yielded the largest deviation from the results of the main analysis. These3999

deviations are discussed in chapter 7.4000

6.4 Pseudodata Studies using the K−π−π+ RMF Model4001

In this section, we discuss input-output studies based on pseudodata samples to investigate the4002

consistency of the full analysis chain up to the measurement of resonance parameters in the4003

RMF, similar to section 5.8, where we used pseudodata samples to investigate effects on the4004

results of the PWD. To this end, we generated pseudodata samples based on the results of the4005

10-wave RMF. Hence, we know a priori which resonances appear in the pseudodata with which4006

strength and, most notably, which resonance parameters they have. As we explicitly modeled the4007

background contributions and hence separated the backgrounds from the signals in the RMF, we4008

also control the background contributions in these pseudodata samples. This is in contrast to the4009

K−π−π+ PWD pseudodata studies presented in section 5.8 and allows us to test for systematic4010

effects from our treatment of background contributions (see sections 5.3, 6.1.3, and 6.1.4).4011

First, we generated a pseudodata sample of 50 × 106 events, whose distribution is given only4012

by the resonances and the non-resonant contributions. To this end, we took from the result4013

the 10-wave RMF discussed in section 6.2.2 only the K−π−π+ signal part given by the K−π−π+
4014

spin-density matrix in equation (6.7).[ag] We used the 10-wave RMF result of ρ̂Kππ
ab (mKππ, t′)4015

as input to a PWD model as defined in equation (5.19). Using this PWD model, we produced4016

a pseudodata sample applying the same approach as in section 5.8. We call this sample the4017

10-wave pseudodata sample10-wave pseudodata sample10-wave pseudodata sample10-wave pseudodata sample10-wave pseudodata sample10-wave pseudodata sample10-wave pseudodata sample10-wave pseudodata sample10-wave pseudodata sample10-wave pseudodata sample10-wave pseudodata sample10-wave pseudodata sample10-wave pseudodata sample10-wave pseudodata sample10-wave pseudodata sample10-wave pseudodata sample10-wave pseudodata sample. It is distributed according to the resonant and non-resonant com-4018

ponents of the 10 waves included in the 10-wave RMF. The contributions from the other 2284019

waves of the 238-wave set are zero. Hence, the 10-wave pseudodata sample does not follow the4020

same distribution as the full K−π−π+ sample. Still, this pseudodata sample allow us to study the4021

consistency of the measurement of resonances parameters. Finally, only both sets of pseudodata4022

studies, those based in the K−π−π+ RMF model discussed here and those based on the 238-wave4023

PWD discussed in section 5.8, yield a complete picture of our analysis.4024

We applied the complete analysis chain presented in this work to the produced 10-wave pseu-4025

dodata sample. This means, we processed it through the COMPASS detector Monte Carlo4026

simulation (see appendix C.2) and we applied the same event selection criteria as applied to the4027

[af] The lower parameter limit of −0.1 (GeV/c)−2 was chosen such that fit results with this parameter value are not
completely unphysical and can still be interpreted in terms of physics signals to some extent. However, we consider
such results to be not sufficient for the main analysis.

[ag] Technically we achieved this by setting Cπππ(t′) = 0 in equation (6.15) and kCeBKG
a (t′) = 0 in equation (6.16).
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measured K−π−π+ sample (see section 4.1). Then, we performed a PWD of the reconstructed4028

pseudodata sample using the rank=3 model of the 238-wave set.[ah] In contrast to all previous4029

pseudodata and systematic studies, we performed here a Bootstrapping of the PWD as discussed4030

for the main analysis in section 5.4. This allows us to study the consistency of our Bootstrapping4031

approach. Finally, we performed a fit of the 10-wave RMF model defined in section 6.2.1 to the4032

results from the Bootstrapping of the PWD.4033

The 10-wave pseudodata sample described above is free of background as we used only the4034

K−π−π+ RMF model part of the 10-wave RMF to generate it. In order to study effects from inco-4035

herent background processes, we admixed events from the reconstructed π−π−π+ pseudodata sam-4036

ple (see section 5.10) to the reconstructed 10-wave pseudodata sample on an event-by-event basis.4037

Hence, the combined 10-wave pseudodata sample with admixed π−π−π+ background10-wave pseudodata sample with admixed π−π−π+ background10-wave pseudodata sample with admixed π−π−π+ background10-wave pseudodata sample with admixed π−π−π+ background10-wave pseudodata sample with admixed π−π−π+ background10-wave pseudodata sample with admixed π−π−π+ background10-wave pseudodata sample with admixed π−π−π+ background10-wave pseudodata sample with admixed π−π−π+ background10-wave pseudodata sample with admixed π−π−π+ background10-wave pseudodata sample with admixed π−π−π+ background10-wave pseudodata sample with admixed π−π−π+ background10-wave pseudodata sample with admixed π−π−π+ background10-wave pseudodata sample with admixed π−π−π+ background10-wave pseudodata sample with admixed π−π−π+ background10-wave pseudodata sample with admixed π−π−π+ background10-wave pseudodata sample with admixed π−π−π+ background10-wave pseudodata sample with admixed π−π−π+ background mimics4038

the situation in the measured K−π−π+ sample as realistically as possible. We chose the amount of4039

admixed π−π−π+ events such that it corresponds to the amount of π−π−π+ background in the mea-4040

sured K−π−π+ sample as predicted by the π−π−π+ pseudodata.[ai] Analogously to the 10-wave4041

pseudodata sample without admixed π−π−π+ background, we performed a PWD with Bootstrap-4042

ping,[aj]and we performed an RMF to the results of this PWD. As the π−π−π+ background is4043

the only background in the 10-wave pseudodata sample with admixed π−π−π+ background, we4044

expect the effective background components as obtained from this RMF to be small. Furthermore,4045

we performed an additional RMF omitting the effective background components from the model.4046

4047

Table 6.5 lists the resonance-parameter estimates from the RMFs to the 10-wave pseudodata4048

sample with and without admixed π−π−π+ background.For some resonance parameter, e.g.4049

the m0 parameter of the K1(1270) component, the estimates deviate from the reference value,4050

i.e. the result of the 10-wave RMF from the measured K−π−π+ sample, by more than their4051

statistical uncertainty. However, all deviations are smaller than the systematic effects discussed4052

in section 6.3, except for the m0 parameter of the K2(2250) component, whose deviation is,4053

however, still of similar size as the systematic effects.[ak] This means that the bias on our4054

resonance-parameter estimates as determined in this pseudodata study is small. This also4055

indicates that our first estimates for systematic uncertainties have a realistic size (see section 6.3).4056

4057

[ah] We used the correct acceptance model in the PWD fits, in contrast to the previous studies where we used the
detuned acceptance model as discussed e.g. in section 5.8.2.

[ai] As the 10-wave RMF model represents only part of the K−π−π+ sample, while the π−π−π+ background distributes
to all 238 K−π−π+ partial waves, the fraction of π−π−π+ background events in the 10-wave pseudodata sample with
admixed π−π−π+ background is not 6.7 % as predicted for the total measured K−π−π+ sample (see section 5.10.1).
The reconstructed 10-wave pseudodata sample with admixed π−π−π+ background contains about 28 % π−π−π+

background events.
[aj] As the π−π−π+ background distributes to all 238 K−π−π+ partial waves, we used a rank=3 model of the 238-wave

set as in the main analysis. Therefore, we expect the same projections of the π−π−π+ background into the individual
partial waves as predicted by the π−π−π+ background PWD.

[ak] The largest positive deviation for the m0 parameter of the K2(2250) component observed in the systematic studies
is 7 MeV/c2, i.e. smaller than the deviation of 26 MeV/c2 found in the pseudodata studies. However, the largest
negative deviation observed in the systematic studies is −61 MeV/c2, i.e. larger in magnitude than the deviation
found here.
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Table 6.5: Resonance parameters of seven resonance components obtained from fits of the 10-wave
RMF model to the 10-wave pseudodata sample with and without admixed π−π−π+ background. For the
pseudodata sample with admixed π−π−π+ background, we performed two RMFs, one with the full 10-wave
RMF model and one omitting the effective background (eBKG) components from the 10-wave RMF
model. The “Reference” column lists the resonance parameters used to generate these pseudodata samples,
which are the resonance parameters obtained in the 10-wave RMF to the measured K−π−π+ sample (see
table 6.2). The last column shows the largest positive and negative deviation from the reference values
observed in all three studies. We do not list the resonance parameters of the K1(1400) component as they
were fixed in all three studies. We do not give uncertainties. The values are rounded according to the
corresponding statistical uncertainty from the main analysis following the PDG rounding rules [9].

Reference 10-wave pseudodata Extremes

π−π−π+ admixed 3 3 8

eBKG component 3 8 3

K1(1270)
m0 [MeV/c2] 1267.7 1267.4 1264.1 1263.5 + 0.0

− 4.2

Γ0 [MeV/c2] 83 88 88 88 + 5
− 0

K′1
m0 [MeV/c2] 1938 1940 1945 1944 + 7

− 0

Γ0 [MeV/c2] 462 433 453 454 + 0
−29

K∗2(1430)
m0 [MeV/c2] 1430.1 1431.4 1431.9 1431.8 + 1.8

− 0.0

Γ0 [MeV/c2] 108.9 111.4 110.2 111.6 + 2.7
− 0.0

K2(1770)
m0 [MeV/c2] 1714.6 1714.5 1713.3 1713.5 + 0.0

− 1.3

Γ0 [MeV/c2] 139 144 143 142 + 5
− 0

K2(1820)
m0 [MeV/c2] 1848 1853 1850 1849 + 5

− 0

Γ0 [MeV/c2] 250 249 247 245 + 0
− 5

K2(2250)
m0 [MeV/c2] 2230 2240 2256 2253 +26

− 0

Γ0 [MeV/c2] 266 267 248 255 + 1
−17

K∗4(2048)
m0 [MeV/c2] 2059 2057 2058 2060 + 1

− 2

Γ0 [MeV/c2] 188 179 196 200 +13
− 8
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Figure 6.7 shows the results of the RMF to the 10-wave pseudodata sample with admixed π−π−π+
4058

background as solid curves exemplarily for the t′-summed intensity spectrum of the 2+ 1+
4059

ρ(770) K D wave. The result for the K∗2(1430) component (solid blue curve) agrees well with4060

the K∗2(1430) component in the reference (dash-dotted blue curve), i.e. with the result of the4061

10-wave RMF from the measured K−π−π+ sample. We find similar agreement for all resonance4062

components included in the 10-wave RMF. This means that we were able to reproduce not only4063

the resonance parameters but also the coupling and branching amplitudes of the resonances4064

components in this pseudodata study. Also, the shape of the non-resonant component obtained4065

from the pseudodata sample (solid green curve) agrees well with the reference (dash-dotted4066

green curve). The RMF slightly overestimates the amount of the non-resonant contribution in4067

this wave. This overestimation is small compared to typical systematic effects on the yield of4068

the model components. We find similar agreement for the non-resonant components also in4069

the nine other partial waves. Hence, we conclude that we are able to consistently extract also4070

the non-resonant contributions and separate them from resonance signals in the RMFs. The4071

non-resonant contributions are typically harder to determine, because they have less distinctive4072

features compared to resonances, e.g. we assume that their amplitudes have a constant phase4073

independent of mKππ. Thus, a consistent separation of resonant and non-resonant contributions is4074

a strong indication for the reliability and robustness of our results.4075

The π−π−π+ background component as obtained from the RMF to the pseudodata (solid orange4076

curve) underestimates the actual amount of π−π−π+ background, shown by cyan data points,4077

by about a factor of 0.4.[al] We also find a significant contribution of the effective background4078

component (solid brown curve), while there is no such background contribution in the pseudodata.4079

We observe a similar behavior also in other waves. Hence, the RMF describes the π−π−π+
4080

background by a combination of the π−π−π+ and the effective background components. To4081

further study this behavior, we performed an RMF where we omitted the effective background4082

components from the model. Figure 6.8a shows the result of this study. Again, the resonant and4083

non-resonant components agree well with the reference (cf. solid and dash-dotted curves). The4084

π−π−π+ component is larger compared to the previous RMF, because it is the only incoherent4085

component in the model that can be used to account for the π−π−π+ background. However, the4086

π−π−π+ component still underestimates the amount of π−π−π+ background by about a factor of4087

0.5. In a further study, we admixed three times more π−π−π+ background events to the 10-wave4088

pseudodata sample. This yielded an underestimation of the π−π−π+ background by about the4089

same factor. Hence, we conclude that the RMF systematically underestimates the amount of4090

π−π−π+ background by about a factor of 0.5 in the pseudodata studies.4091

Also, the 10-wave RMF to the measured K−π−π+ sample yielded an amount of π−π−π+ back-4092

ground that is smaller than predicted by the π−π−π+ pseudodata sample (see figure 6.3b). How-4093

ever, it is smaller by a factor of only about 0.8. A possible explanation is that the amount of4094

π−π−π+ background predicted by the π−π−π+ pseudodata sample is too small, assuming that the4095

RMF underestimated the amount of π−π−π+ background in the measured K−π−π+ sample by the4096

same factor as in the pseudodata studies. This explanation may be the case, because the prediction4097

[al] The shape of the π−π−π+ component and of the π−π−π+ background PWD are the same by construction (see
section 6.1.3).
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Figure 6.7: Results from fitting the 10-wave RMF model to the PWD of the 10-wave pseudodata sample
with admixed π−π−π+ background (solid curves) for the t′-summed intensity spectrum of the 2+ 1+

ρ(770) K D wave. The blue data points represent the PWD of the 10-wave pseudodata sample with
admixed π−π−π+ background. The dash-dotted curves represent the model reference, i.e. the results of
the 10-wave RMF to the measured data (same as solid curves in section 6.2.2), scaled according to the
number of produced pseudodata events. The cyan data points show the results of the π−π−π+ background
PWD, scaled such that it corresponds to the amount of π−π−π+ background in the pseudodata sample. The
effective background component was not included in the pseudodata model. Also, the π−π−π+ component
was not included in the pseudodata model, but π−π−π+ events from the π−π−π+ pseudodata sample were
admixed to the 10-wave pseudodata sample. Hence, we do not show the background component, the
π−π−π+ component, and the total model curve for the model reference. The red curve represents the
total RMF model. The blue curves represent the resonance component. The green curves represent the
non-resonant component. The orange curve represents the π−π−π+ background component. The brown
curve represents the effective background component. The extrapolation to the mKππ region that was not
included in the RMF is shown in brightened colors. The corresponding data points are shown in gray.
Only the range 1.0 ≤ mKππ < 2.0 GeV/c2 is shown. The percentage gives the relative intensity of this
wave in the PWD of the pseudodata sample.
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Figure 6.8: Same as figure 6.7, but (a) for the RMF omitting the effective background components in the
model, and (b) for the RMF to the 10-wave pseudodata sample without admixed π−π−π+ background.

by the π−π−π+ pseudodata sample is only a rough estimate, because the absolute acceptance4098

is not accurately known as discussed in section 5.10.1.[am] Another possible explanation is4099

based on the fact that the 10-wave pseudodata sample represents only a part of the measured4100

K−π−π+ sample. Whether the π−π−π+ background is admixed to the full K−π−π+ sample as4101

in the measured data, or only to the 10-wave pseudodata sample may affect the result of the4102

PWD of the π−π−π+ background. This is because the background contributions are treated only4103

effectively in the PWD (see section 5.3), and imperfections in this description of the π−π−π+
4104

background may have different implications depending on the other contributions in the data sam-4105

ple. We also observe that the fit uses a combination of the π−π−π+ and the effective background4106

components to describe the actual π−π−π+ background when including the effective background4107

component in the RMF model. This indicates that the exact shape of the π−π−π+ background4108

in the partial waves slightly differs from the π−π−π+ background PWD.[an] Hence, the bias on4109

the RMF estimate of the amount of π−π−π+ background may be larger in the pseudodata studies4110

than in the 10-wave RMF to the measured K−π−π+ sample. In the worst case, we expect that the4111

RMF underestimates the actual amount of π−π−π+ background in the measured K−π−π+ sample4112

by at most a factor of 0.5.4113

To further study the separation between signal and background components in the RMF and4114

to test whether the π−π−π+ and effective background components can be partly misused by4115

the RMF to account for other effects in the data, we performed an RMF that included both4116

background components to the 10-wave pseudodata sample without admixed π−π−π+ background.4117

Figure 6.8b shows the result of this study exemplarily for the intensity spectrum of the 2+ 1+
4118

[am] In contrast to the measured K−π−π+ sample, we know the amount of π−π−π+ background in the pseudodata sample
exactly.

[an] This difference must be small, because the RMF results for the resonance and non-resonant components are
consistent with the reference.
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ρ(770) K D wave. As in the previous studies, the results for the resonant and non-resonant4119

components (solid blue and green curves) agree with the corresponding references (dash-dotted4120

curves). The π−π−π+ and effective background components (solid orange and brown curves)4121

practically do not contribute to the total model intensity.[ao] This is expected, because the4122

analyzed pseudodata sample does not contain background events. Hence, we conclude that the4123

RMF does not misuse the π−π−π+ and effective background components to describe other effects4124

in the data. This is a strong indication that the RMF is able to reliably separate resonance and4125

non-resonant contributions from background.4126

The pseudodata studies presented in this section allowed us to test our full analysis chain: starting4127

with the event selection, over the Bootstrapping of the PWD, up to the RMF. Reviewing our4128

findings, the extraction of the resonance parameters, which is the main goal of this analysis,4129

is consistent within the systematic effects discussed in section 6.3 in all performed studies. It4130

is not strongly affected by the estimate for the π−π−π+ background. Hence, we conclude that4131

our treatment of the π−π−π+ background works sufficiently well. As the π−π−π+ background4132

is the largest background contribution to the K−π−π+ sample and as we treat other background4133

contributions similarly (see sections 5.3 and 6.1.4), we expect that the RMF is able to separate4134

resonance and non-resonant contributions from background contributions sufficiently well. As4135

the results from the pseudodata studies for also the non-resonant components agree with the4136

reference, we conclude that the RMF is able to separate well resonances from non-resonant4137

contributions. We hence conclude from our pseudodata studies that our analysis scheme is able4138

to reliably measure the resonance parameters of strange mesons decaying to the K−π−π+ final4139

state.4140

[ao] Also, the magnitude of the non-resonant component is small for mKππ . 1.6 GeV/c2. However, the non-resonant
component is coherently added to the resonance component (see section 6.1.2), while the π−π−π+ and effective
background components are added incoherently. Hence, even the small non-resonant component can significantly
contribute to the total model intensity via its interference terms with the large resonance components. These
contributions of the non-resonant components can be seen by the difference between the total model (red curve)
and the resonance components (blue curves).
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In the previous chapters, we have discussed the main stages of our analysis starting from the4142

measurement of the data sets (see chapter 2), over the selection of K−π−π+ event candidates4143

(see chapters 3 and 4), and over the partial-wave decomposition using the 238-wave set (see4144

chapter 5), up to the resonance-model fit of 10 selected partial waves (see chapter 6). We4145

performed extensive systematic and pseudodata studies (see sections 5.7, 5.8, 5.10, 6.3, and 6.4)4146

to verify the robustness and reliability of our analysis results. All of this allows us to finally4147

interpret the results in terms of physics signals, i.e. strange-meson resonances appearing in the4148

K−π−π+ final state, to measure their masses and widths, and to compare our results to previous4149

measurements.4150

In sections 7.1 to 7.4, we discuss the results for partial waves with JP = 1+, 2+, 4+, and 2−;4151

i.e. with JP quantum numbers of the waves included in the well-studied 10-wave RMF. If not4152

explicitly stated differently, we show data from the first t′ bin or show t′-summed distributions to4153

exemplarily represent our results. Our estimates for the masses and widths of these resonances4154

are summarized in table 6.2. In table 6.2 and in the following, the first quoted uncertainties are4155

statistical, the second systematic uncertainties. The quoted systematic uncertainties determined4156

from a limited set of performed systematic studies represent only a lower limit on the actual4157

systematic uncertainties (see section 6.3). In sections 7.5 to 7.8, we discuss the results for further4158

partial waves with JP = 3−, 0−, 3+, and 4−. In order to study a possible resonance content of4159

these waves, we performed extended RMFsextended RMFsextended RMFsextended RMFsextended RMFsextended RMFsextended RMFsextended RMFsextended RMFsextended RMFsextended RMFsextended RMFsextended RMFsextended RMFsextended RMFsextended RMFsextended RMFs, where we added selected waves from these JP
4160

sectors to the 10-wave RMF model. However, these extended RMFs are not as well studied as4161

the 10-wave RMF. Hence, their results must be interpreted as a first attempt to also study signals4162

in these waves, and we only quote rough values for our estimates on the corresponding resonance4163

parameters rounded to a precision of 10 MeV/c2 without giving the uncertainties. The technical4164

details of the extended RMFs are summarized in appendix E.2. In section 7.9, we discuss further4165

interesting results from the PWD.4166

7.1 J P = 1+ Partial Waves4167

The blue data points in figure 7.1a show the measured intensity spectrum of the 1+ 0+ ρ(770) K S4168

wave in the lowest t′ bin as obtained from the 238-wave PWD. The spectrum exhibits a clear peak4169

at about 1.3 GeV/c2. The RMF describes this peak using dominantly the K1(1270) component4170

(blue curve) with a mass of (1267.7 ± 1.9 +1.6
−4.5) MeV/c2 and a width of (83 ± 4 +15

− 4) MeV/c2. The4171

March 1, 2022 18:18 183



D
RA

FT

7 Results for Selected Partial Waves

1.0 1.5 2.0 2.5
0

50

100

In
te

n
si

ty
[1

0
4
(G

eV
/c

2
)−

1
]

3.7 %

1+0+ρ(770)KS

0.10 ≤ t′ < 0.15 (GeV/c)2

RMF model curve
Resonance components
Non-resonant component
π−π−π+ background
Effective background

(a)

0

90

180

270

360

∆
ϕ
a
b

[d
eg

]

1+1+ρ(770)KS

(b)

1.0 1.5 2.0 2.5 3.0

mKππ [GeV/c2]

0

20

40

1+
1+
ρ
(7

70
)K

S

1.8 %

(c)

Figure 7.1: Representation of the Spin-density matrix in the lowest t′ bin of the two waves with JP = 1+

that were included in the 10-wave RMF. The figures on the diagonal show the intensity spectra. The
off-diagonal figure shows the relative phase as defined in equation (5.74).[c] It represents the off-diagonal
element of the spin-density matrix, i.e. the interference term between the two waves. The blue data points
represent the measured spin-density matrix elements. The curves represent the result of the 10-wave
RMF. The red curves represent the total RMF model. The blue curves represent the individual resonance
components, the green curves the non-resonant components, the orange curves the π−π−π+ background
components, and the brown curves the effective background components. The extrapolations beyond
the mKππ fit ranges are shown in lighter colors. The corresponding data points are shown in gray. The
percentages given in the graphics showing intensity spectra give the relative intensity as defined in
equation (5.76).
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RMF yielded only a small intensity for the K1(1400) component, with a peak reaching about 104
4172

produced events per GeV/c2as shown in figure 7.2a. Leafing the resonance parameters of the4173

K1(1400) component free in the RMF as done in systematic study C or removing the K1(1400)4174

component from the RMF model as done in systematic study D has only small effects on the other4175

resonance parameters (see table 6.4).[a] All of these effects are similar in size or smaller than4176

other systematic effects. Hence, using fixed resonance parameters for the K1(1400) component4177

does not significantly bias the results of our analysis.4178

The intensity spectrum of the 1+ 0+ ρ(770) K S wave exhibits a shoulder at about 1.5 GeV/c2,4179

which is clearly seen in the t′-summed intensity spectrum in figure 7.2a. This shoulder is too4180

high in mKππ in order to arise from the K1(1400) resonance. Also, the RMF does not use the K′14181

component (see table 6.1) to describe it. Even in an additional study where we added another4182

resonance component to the RMF model that was dedicated to describe the 1.5 GeV/c2 shoulder,4183

it was not described by any resonance component. Hence, this shoulder is not consistent with4184

a Breit-Wigner resonance. Also, we observe no phase motion that would be consistent with4185

a resonance at 1.5 GeV/c2. Overall, the non-resonant (green curve), the π−π−π+ background4186

(orange curve), and the effective background components contribute only little to the total RMF4187

model intensity (red curve). The intensity spectrum of the 1+ 0+ ρ(770) K S wave exhibits a4188

small, broader shoulder at mKππ ≈ 1.9 GeV/c2 as shown in figure 7.2a. The RMF describes this4189

shoulder by a dominant contribution of the K′1 component with a mass of (1940 ±10 +90
−70) MeV/c2

4190

and a width of (462 ± 22 + 27
−119) MeV/c2.4191

We also included the 1+ 1+ ρ(770) K S wave in the 10-wave RMF, i.e. a wave with the same4192

quantum numbers and decay mode, except for the spin-projection which is M = 1. The M = 14193

wave has about half the intensity of the M = 0 wave. Figure 7.1c shows the intensity spectrum4194

of this wave in the lowest t′ bin. It exhibits the same narrow peak as the intensity spectrum4195

of the M = 0 wave. As for the M = 0 wave, the peak in the M = 1 wave is described4196

by a large contribution of the K1(1270) component.[b] Figure 7.1b shows the relative phase4197

between the 1+ 0+ ρ(770) K S wave and the 1+ 1+ ρ(770) K S wave.[c] It is practically constant4198

for mKππ & 1.2 GeV/c2 with a phase difference of about 180°. Interpreting this relative phase as4199

the phase difference between the corresponding transition amplitudes of the coherent process4200

K− + p→ K−π−π+ + p [see equation (5.75)], this means that the amplitudes of both waves have4201

the same phase motion, but opposite sign. It is expected that the amplitudes of both waves have4202

the same phase motion as both waves are dominated by the same K1(1270) resonance. Below4203

1.2 GeV/c2 the relative phase is larger than 180°. This may be caused by the enhanced low-mass4204

tail in both waves, which we assume to be analysis artifacts. Compared to the 1+ 0+ ρ(770) K S4205

wave, the 1+ 1+ ρ(770) K S wave exhibits a more pronounced high-mass tail, which is described4206

in the RMF mainly by the K′1 component.4207

[a] In study C, the largest effect is that the the K′1 becomes about 30 MeV/c2 lighter. In study D, the largest effects are
that the K1(1270) becomes about 4 MeV/c2 lighter and the K∗2(1430) becomes about 6 MeV/c2 broader.

[b] We use the same K1(1270) component in the M = 0 and M = 1 waves with the same mass and width parameters.
[c] In contrast to other figures of relative phases, which show the phase in the range −180 ≤ ∆ϕab(mKππ, t′) < 180°, we

chose in figure 7.1b the range 0 ≤ ∆ϕab(mKππ, t′) < 360° in order to better visualize the phase offset between the
two 1+ waves.
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Figure 7.2: t′-summed intensity spectra of (a) the 1+ 0+ ρ(770) K S wave in log-scale, (b) the 1+ 0+

K∗(892) π S wave, and (c) the 1+ 0+ K∗(892) πD wave. The blue data points represent the measured
intensities. The gray shaded area indicates the mKππ range affected by the leakage effect (see section 5.9).
The percentages give the relative intensity as defined in equation (5.76). The curves in (a) represent the
result of the 10-wave RMF. The red curve represents the total RMF model. The blue curves represent
the individual resonance components, the green curve the non-resonant component, the orange curve
the π−π−π+ background component, and the brown curve the effective background component. The
extrapolations beyond the mKππ fit ranges are shown in lighter colors. The corresponding data points are
shown in gray.

186 March 1, 2022 18:18



D
RA

FT

7.1 JP = 1+ Partial Waves

0.2 0.4 0.6 0.8 1.0

t′ [(GeV/c)2]

105

106

107

108

k
I
a
(t
′ )

[(
G

eV
/c

)−
2
]

1+0+ρ(770)KS

K1(1270)

K ′1

(a)
0.2 0.4 0.6 0.8 1.0

t′ [(GeV/c)2]

105

106

107

108

k
I
a
(t
′ )

[(
G

eV
/c

)−
2
]

1+1+ρ(770)KS

K1(1270)

K ′1

(b)

Figure 7.3: t′ spectra of the K1(1270) (blue bars) and the K′1 (orange bars) components (a) in the 1+ 0+

ρ(770) K S wave and (b) in the 1+ 1+ ρ(770) K S wave as obtained from the 10-wave RMF. The horizontal
bars represent the intensity in each t′ bin according to equation (6.28). The blue bars in (a) are the same as
in figure 6.5.

The RMF yields a large effective background component (brown curve) for the 1+ 1+ ρ(770) K S4208

wave that peaks at a slightly higher mass than the K1(1270) component. In general, we do not4209

expect such large and peaking background contributions. In a study, where we excluded such a4210

peaking shape for the effective background component by using a more restrictive the parameter4211

limit of the corresponding shape parameter yielded a parameter value at the more restrictive4212

parameter limit. Hence, there is no fit solution without such a peaking effective background4213

component. Furthermore, in this study the RMF was not able to describe the intensity spectrum4214

of the 1+ 1+ ρ(770) K S wave sufficiently well. We studied this peaking effective background4215

component also using the 10-wave pseudodata that do not contain background contributions (see4216

section 6.4).[d] Thus, the effective background component in RMFs to this pseudodata sample is4217

expected to be small. Indeed, we find practically zero contribution from the effective background4218

component to the 1+ 1+ ρ(770) K S wave in all pseudodata studies. In particular, the RMFs did4219

not yield any peaking effective background. Hence, we conclude that the peaking effective4220

background component that we observe in the measured data is driven by the data and not by the4221

construction of the RMF model. Therefore, it is needed in the RMF in order to describe the data.4222

However, the fact that we need such unexpected component in order to describe the data points4223

towards the limitations of the Breit-Wigner RMF model employed in our analysis.4224

Figure 7.3 shows the t′ spectra as defined in equation (6.28) for the K1(1270) and K′1 components4225

in the two 1+ waves. In the 1+ 0+ ρ(770) K S wave, both components show an approximately4226

an exponential t′ dependence, as expected. The t′-dependencies of the resonance components4227

are independent in the 1+ 0+ ρ(770) K S and 1+ 1+ ρ(770) K S waves. The K′1 component in the4228

[d] In some studies, we admixed π−π−π+ background events to the 10-wave pseudodata sample. However, these
contributions should be accounted for by the π−π−π+ background component in the RMF.
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1+ 1+ ρ(770) K S wave (orange bars in figure 7.3b) shows an approximately exponential t′ shape,4229

which flattens towards t′ = 0.1 (GeV/c)2 as mainly seen in the lowest t′ bin. This flattening4230

is expected for an M = 1 wave due to the additional (t′)|M| factor as given in equation (6.29).4231

However, the K1(1270) component in the M = 1 wave exhibits no flattening for the approximately4232

exponential t′ shape. In particular, in the lowest t′ bin, the intensity of the K1(1270) component is4233

much larger than expected. A reason for this may be that the RMF cannot reliably assign intensity4234

to the K1(1270) component due to its interplay with the peaking effective background component4235

in this t′ bin. In summary, our observation that the t′ dependencies of the resonance components,4236

except for the K1(1270) component in the lowest t′ bin of the M = 1 wave, follow the expected4237

shape is another indication for a reliable extraction of the K1(1270) and K′1 contribution to the4238

data in the RMF.4239

We observe structures also in other waves with JP = 1+ that were not included in the 10-wave4240

RMF, for example, in the 1+ 0+ K∗(892) π S wave, which is the largest wave in our wave set.[e]
4241

Its intensity spectrum is shown in figure 7.2b. It exhibits a clear double-peak in the mKππ region4242

of the K1(1270) and K1(1400) resonances, as expected. We observed this double peak already4243

in the measured mKππ spectrum shown in figure 4.6a. However, the 1+ 0+ K∗(892) π S wave is4244

strongly affected by the leakage effect for mKππ . 1.6 GeV/c2. This prevents us from interpreting4245

the observed structures on a quantitative level.4246

Figure 7.2c shows the intensity spectrum of the 1+ 0+ K∗(892) πD wave. The low-mKππ region4247

of also this wave is affected by the leakage effect. It exhibits a broad enhancement at about4248

1.3 GeV/c2 that is very jumpy and that is strongly biased by the leakage effect. Also, we observe4249

a peak at about 1.8 GeV/c2 that may arise from the K′1 resonance. As this wave is also affected4250

by the leakage effect, we did not include it in the RMF.4251

7.1.1 Discussion4252

The PDG [9] lists three strange mesons with 1+ quantum numbers; i.e. the well-established4253

K1(1270) and K1(1400),[f]and an excited K1(1650) that was just recently marked as an established4254

state. The PDG averages for their masses and widths are shown by the blue, red, and green stars,4255

respectively, in figure 7.4.4256

[e] As discussed in section 5.9.1, the intensities of leakage waves are overestimated by potentially more than a factor
two due the leakage effect. Hence, the relative intensities of leakage waves cannot be directly compared to those of
other waves, especially to those of non-leakage waves. However, the relative intensity of the 1+ 0+ K∗(892) π S
of about 22.7 % is significantly larger than the 10.7 % of the second-largest leakage wave, which is the 0− 0+

K∗(892) π P wave, and is much larger than the relative intensity of 3.7 % of the largest non-leakage wave, which is
the 1+ 0+ ρ(770) K S wave. Hence, we can reliably state that the 1+ 0+ K∗(892) π S wave is the largest wave in our
wave set.

[f] In the quark-model picture, there is a spin-triplet and a spin-singlet SU(3)-nonet for states with JP = 1+ and an
orbital angular momentum of L = 1 in the qq′ system. The K1(1270) and K1(1400) states are assumed to be
mixtures of these two SU(3) eigenstates [144].
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Figure 7.4: Masses m0 and widths Γ0 of K1 resonances. The dots represent the parameter values as
obtained from the 10-wave RMF and listed in table 6.2. The thin error bars and gray boxes around
the dots indicate our estimates for the total uncertainties, which we calculated by quadratically adding
the statistical uncertainties to the corresponding upper and lower systematic uncertainties. One should
note that the systematic uncertainties given in this work are only a lower limit on the actual systematic
uncertainties (see section 6.3). The stars and colored boxes represent the PDG average values and their
uncertainties, respectively [9]. The pluses in lighter color represent the central values of all previous
measurements that entered the PDG averages for m0 and Γ0. The error bars represent the corresponding
total uncertainties calculated by quadratically adding the statistical uncertainties to the corresponding
upper and lower systematic uncertainties, if given. Uncertainties that are larger than the shown m0 and Γ0
ranges are indicated by an arrowhead at the figure frame. In the 10-wave RMF we fixed the resonance
parameters of the K1(1400) component to the corresponding PDG average values.

The K1(1270)4257

Our estimate for the width of the K1(1270) agrees well with the PDG average value, while our4258

estimate for its mass is slightly larger. However, also previous measurements of the K1(1270)4259

(blue pluses in figure 7.4) cluster mainly around two values for its resonance parameters. There4260

is a high-mass cluster of measurements of a mass above about 1270 MeV/c2 [23, 26, 145, 146].4261

Many of these measurements also yielded a small width below 100 MeV/c2.[g] There is also a4262

low-mass cluster of measurements of a mass below about 1250 MeV/c2 [27, 29, 147]. All of4263

these measurements of a lower mass also yielded a large width above 100 MeV/c2.4264

Among the four previous measurements that entered the PDG average for the K1(1270) resonance4265

parameters, our estimates for the K1(1270) parameters agree well with those from ref. [145],4266

who measured the K1(1270) resonance parameters from its decay to the ρ(770) K final state4267

only, as in this analysis, and with those from the ACCMOR analysis [23]. Compared to our4268

[g] There are several previous measurements that are excluded from the PDG average, which yielded a mass above
1270 MeV/c2, but a width above 100 MeV/c2.
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analysis, ACCMOR formulated a more elaborate resonance model based on a K-matrix approach4269

including two resonances and six decay channels, which they fitted simultaneously to the partial4270

waves representing the K∗(892) π S , ρ(770) K S , K∗0 π P, f0 K P, and K∗(892) πD decays.[h] The4271

good agreement between the ACCMOR analysis and our results validates the application of our4272

Breit-Wigner RMF model.4273

The measurement of the K1(1270) resonance parameters in the reaction τ− → K−π−π+ντ by4274

CLEOII in ref. [29] yielded the largest value of all previous measurements for the width of4275

Γ0 = (260 +90
−70 (stat.) ± 80 (sys.)) MeV/c2. Even considering its large uncertainty this value is4276

clearly larger than the PDG average and our estimate for the K1(1270) width. The CLEO value4277

is the result of a limited[i] Dalitz-plot analysis with a series of assumptions. The authors did not4278

allow for a relative phase offset between the different resonance components, i.e. their coupling4279

amplitudes where fixed to be real, which may not be the case. For example, in the COMPASS4280

π−π−π+ analysis a phase offset of about 180° was found between many ground and excited4281

states [41]. Furthermore, they fixed the branching fraction ration of K1(1270)→ K∗(892)π and4282

K1(1270) → ρ(770)K to the corresponding PDG average value. Finally, contributions from4283

pseudoscalar resonances in the K−π−π+ system were neglected, while the τ− may also decay4284

to excited pseudoscalar kaons that further decay to K−π−π+ [81]. For example, the τ− has a4285

similar branching fraction to decay to the pseudo-scalar ground state, i.e. to K−ντ, (6.96 ‰) and4286

to K−π−π+ντ (3.45 ‰) [9]. All these potentially coarse assumptions may bias the resonance4287

parameter estimates of ref. [29].4288

The Belle collaboration [27] performed a recent analysis of the decay B+ → J/ψK+π+π−, which4289

allowed them to study the K1(1270) in the ρ(770) K and K∗(892) π decays. They obtained very4290

precise and accurate resonance parameters of m0 = (1248.1 ± 3.3 (stat.) ± 1.4 (sys.)) MeV/c2
4291

and Γ0 = (119.5 ±5.2 (stat.) ±6.7 (sys.)) MeV/c2. Their estimate for the mass is slightly smaller4292

and their estimate for the width is slightly larger than the PDG average values and then our4293

estimates. However, they fitted the resonance parameters of only the K1(1270). The resonance4294

parameters of the other states included in the fit were fixed to the corresponding PDG averages,4295

which for some have large uncertainties. Furthermore, they did not include an excited K′1 that4296

may contribute to the 1+ waves. All of these effects may bias their measurement for the K1(1270)4297

parameters. However, they did not consider any of these effects when determining the systematic4298

uncertainties. Hence, the uncertainties in ref. [27] may be underestimated. In our analysis, we4299

considered more ground and excited states as in the Belle analysis. As discussed in section 6.3,4300

we also give a first estimate of systematic uncertainties that may arise from excluding certain4301

model components and from fixing resonance parameters to their PDG averages. Considering the4302

good agreement of our measurement with the results from refs. [23, 145] and the caveats of the4303

measurements in refs. [27, 29], the two clusters of measured values of the K1(1270) resonance4304

parameters may be a pure measurement effect enhanced by underestimated uncertainties.4305

[h] ACCMOR used an S -wave ππ scattering amplitude to parameterize the f0 isobar and a Breit-Wigner amplitude
with m0 = 1250 MeV/c2 and Γ0 = 600 MeV/c2 to parameterize the K∗0 isobar. Both parameterizations approximate
the corresponding physical amplitudes only roughly (see section 5.1.4).

[i] In ref. [29], only the mKππ, the mK−π+ , and the mπ−π+ mass spectra were fitted. This was sufficient to determine the
K1(12700) contribution as they assumed that the K−π−π+ system consists only of axial-vector states.
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The authors of ref. [144] suggested that the K1(1270) is not a single state, but arises from two4306

states, i.e. from two poles of the scattering amplitude in the complex plane of the squared energy.4307

From the data of the ACCMOR analysis [23], ref. [144] determines a lighter and broader state4308

at m0 ≈ 1200 MeV/c2 and Γ0 ≈ 250 MeV/c2 that couples stronger to the K∗(892) π decay;4309

and a heavier and narrower state at m0 ≈ 1280 MeV/c2 and Γ0 ≈ 150 MeV/c2 that couples4310

dominantly to the ρ(770) K decay. As different production mechanisms, which may prefer4311

different K1(1270) poles, were employed and different decay modes where studied in the various4312

previous measurements, the two-pole model suggest in ref. [144] may explain the two clusters of4313

previous measurements of the K1(1270) resonance parameters. Our estimates for the K1(1270)4314

resonance parameters are determined from waves with ρ(770) K decay mode only and agree with4315

the cluster of heavier and narrow measurements. Hence, our data would fit into this two-pole4316

scenario suggestion in ref. [144].4317

The K1(1400)4318

The resonance parameters of the K1(1400) are determined rather well from previous experiments4319

(red data points in figure 7.4). As for the K1(1270), the measurement of the K1(1400) width in the4320

reaction τ− → K−π−π+ντ by CLEOII [29] yielded the largest width of all previous measurements4321

of (300 +370
−110 (stat.) ± 140 (sys.)) MeV/c2. This might indicate a systematic bias towards larger4322

values for the widths in the analysis in ref. [29]. Still, their parameter estimates agree within the4323

large uncertainties with the PDG average values.4324

In our analysis, the K1(1400) is only a small contribution in the two considered 1+ waves. This4325

is consistent with previous observations, e.g. the PDG lists a ρ(770) K branching fraction of only4326

(3.0 ± 3.0) % [9]. In the main analysis, we fixed the resonance parameters of the K1(1400) to the4327

corresponding PDG average values. In systematic study C, we allowed the K1(1400) resonance4328

parameters to float. Study C yielded a K1(1400) width of 178 MeV/c2, which is in good agree-4329

ment with the PDG average value of (174 ± 13) MeV/c2, and a K1(1400) mass of 1514 MeV/c2,4330

which is about 100 MeV/c2 larger than the PDG average value of (1403 ± 7) MeV/c2. The larger4331

mass of may be driven by the high-mass shoulder at about 1.5 GeV/c2, which we observe on4332

the 1+ waves. Given the small size of the potential K1(1400) signal in the two considered 1+
4333

waves and the potentially large systematic uncertainties on the results of study C, we conclude4334

that the PDG average values used in the main analysis for the resonance parameters of the4335

K1(1400) are consistent with our data. More detailed conclusions on the K1(1400) could only4336

be drawn by studying the 1+ 0+ K∗(892) π S wave, which exhibits a strong potential K1(1400)4337

signal. Unfortunately, this is not possible with the COMPASS data as the 1+ 0+ K∗(892) π S4338

wave is affected by the leakage effect.4339
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Excited K1 States4340

The PDG lists a higher-lying K1 state called K1(1650) with a mass of (1672 ± 50) MeV/c2 and a4341

width of (158 ± 50) MeV/c2 [9]. It is much lighter and narrower than our parameter estimates4342

for a potential excited K1, which we called K′1.4343

The K1(1650) has been studied in about 10 000 events of the reaction K+ p→ φK+ p at the CERN4344

Omega spectrometer [24]. In their analysis, a model consisting of the sum of a Breit-Wigner4345

amplitude and a non-resonant component was fitted to only the intensity spectrum of the 1+ wave,4346

which is shown in figure 7.5a.[j] This fit yielded a mass of (1650 ± 50) MeV/c2 and a width4347

of (150 ± 50) MeV/c2. It is not clear whether their uncertainty estimates include systematic4348

uncertainties. Given the size of their data sample and the fact that they fitted their model to only4349

one intensity spectrum, a combined statistical and systematic uncertainty of only ±50 MeV/c2
4350

appears to be rather small, compared to the uncertainties in other [34] and in our analysis.4351

Ref. [34] presents a recent analysis of 4289 events of the decay B+ → J/ψφK+ by LHCb,[k]
4352

which allows them studying strange mesons in the φK subsystem. They performed a partial-wave4353

analysis including resonances up to J = 2 in the φK subsystem. In contrast to, e.g., the CLEO4354

analysis [29], the resonance parameters of all considered resonances were free in the fit. Two4355

excited K1 states, K(1+) and K′(1+), were included in the analysis in ref. [34]. Unfortunately, the4356

reaction B+ → J/ψφK+ gives access to only a limited mass range of 1.5 . mφK . 2.2 GeV/c2.4357

Some strange mesons have nominal masses just outside this mass range, e.g. the K∗2(1430)4358

or the K2(2250). The parameters of such strange mesons cannot be determined given the4359

limited mφK range. Hence, such states were not included in the analysis in ref. [34]. However,4360

their high- or low-mass tails still may contribute to the analyzed mφK range. Thus, omitting4361

strange mesons with nominal masses just outside the accessible mass range may bias the4362

estimates of ref. [34] for the resonance parameters of the included resonances. In ref. [34], these4363

effects were taken into account in the systematic uncertainties. In our analysis, we can access4364

the full mKππ range, which is one of the major advantages of using diffractive production to4365

study strange mesons. Figure 7.5b shows the mφK spectrum (black points) together with the4366

contributions from the two K1 components. For the lighter state, LHCb measured a mass of4367

(1739 ± 59 (stat.) +153
−101 (sys.)) MeV/c2 and a width of (365 ± 157 (stat.) +138

−215 (sys.)) MeV/c2. The4368

PDG included this measurement in the average of the K1(1650) parameters. However, due to4369

its large uncertainties, it has only a minor influence on the PDG average values. Hence, the4370

PDG average values for the K1(1650) are mainly driven by the measurement from ref. [24].4371

For the heavier state, LHCb measured a mass of (1968 ± 65 (stat.) 70
−172 (sys.)) MeV/c2 and a4372

width of (396 ± 170 (stat.) +174
−178 (sys.)) MeV/c2. This heavier state contributes less strongly to4373

the reaction B+ → J/ψφK+ and has a significance of only 1.9σ. Recently, LHCb published an4374

updated analysis of the reaction B+ → J/ψφK+ based on a three times larger sample [149]. They4375

obtained consistent parameters for both excited K1 states. However, owing to the larger sample,4376

they had to include resonances with nominal masses outside their accessible mass range, but4377

where the tails of these states enter their accessible mass range, as discussed above.4378

[j] Figure 7.5a shows the total JP = 1+ intensity, i.e. summed over both helicity states of the φ decay.
[k] A more detailed discussion and technical aspects of the analysis in ref. [34] can be found in ref. [148].
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Figure 7.5: Previous studies of excited K1 states. (a) shows the intensity of the 1+ partial wave (vertical
lines) measured in the reaction K+ p → φK+ p at the CERN Omega spectrometer [24]. The crosses
represent the prediction of a model for the Deck process. (b) shows the invariant φK mass spectrum
measured in the reaction B+ → J/ψφK+ at LHCb [34]. The black data points represent the measured
distribution. The red data points represent the total partial-wave model. The differently colored data points
represent the contribution from the two model components representing K1 states. (c) shows the 1+ 0+

K∗(892) πD wave as obtained in the ACCMOR analysis [23].

Also, ACCMOR observed a potential signal with JP = 1+ at about 1800 MeV/c2, e.g. in the4379

1+ 0+ K∗(892) πD wave shown in figure 7.5c. However, they did not perform an RMF of this4380

signal and hence did not determine its resonance parameters.4381

Our parameter estimates for the K′1 component are consistent with both states considered by4382

LHCb in ref. [34] and are closer to the central values of the higher-lying state. Our estimate for4383

the K′1 mass is also consistent with the signal observed by ACCMOR in the 1+ 0+ K∗(892) πD4384

wave. Furthermore, we observe a similar peak at about 1.8 GeV/c2 in this wave (see figure 7.2c).4385

In summary, except for the measurement by the CERN Omega spectrometer in ref. [24], all4386

previous measurements and also our measurement have indications for one or two excited K14387

states with a mass of about 1800 MeV/c2 or above. Only CERN Omega claims to have observed4388

a much lighter state. As CERN Omega employed the same production mechanism as ACCMOR4389

and as in our analysis, and as CERN Omega studied the same decay mode as the LHCb analysis,4390

there is no clear reason why a different state may appear in the CERN Omega data. Given4391

the limitations of the CERN Omega analysis, the excited K1(1650) as listed by the PDG may4392
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actually be a state at about 1800 MeV/c2 or above, which would also be in agreement with the4393

quark-model prediction from ref. [10] (see figure 1.1).4394

7.2 J P = 2+ Partial Waves4395

We included two waves with JP = 2+ quantum numbers in the 10-wave RMF. The intensity4396

spectrum of the first wave, the 2+ 1+ K∗(892) πD wave, in the lowest t′ bin is shown in figure 7.6a.4397

It exhibits a clear peak at about 1.4 GeV/c2. This peak is reproduced well by the RMF using, as4398

expected, mainly the K∗2(1430) component with a mass of (1430.1 ±1.5 +1.3
−2.0) MeV/c2 and a width4399

of (109 ±3 +6
−2) MeV/c2. We also find a small contribution of the effective background component4400

in this wave.[l] The 2+ 1+ K∗(892) πD wave also exhibits enhanced low- and high-mass tails,4401

which are not reproduced well by the RMF as they are presumably driven by model artifacts.4402

Hence, we excluded these mKππ regions from the RMF. We do not find any other clear resonance4403

signals, e.g. from excited K∗2 states, in the 2+ 1+ K∗(892) πD wave.4404

The second wave with JP = 2+ that we included in the 10-wave RMF is the 2+ 1+ ρ(770) K D4405

wave. Its intensity spectrum in the lowest t′ bin is shown in figure 7.6d. The relative intensity4406

of the 2+ 1+ ρ(770) K D wave is about four times smaller than the one of the 2+ 1+ K∗(892) πD4407

wave. Also the 2+ 1+ ρ(770) K D wave exhibits a clear peak at about 1.4 GeV/c2, which is4408

reproduced well by the RMF using, as expected, mainly the K∗2(1430) component. Compared to4409

the 2+ 1+ K∗(892) πD wave, we find more pronounced enhanced low- and high-mass tails. For4410

such a small wave, it is expected that artifacts are relatively large. As discussed in section 6.2.2,4411

the π−π−π+ background PWD predicts a large π−π−π+ background in the 2+ 1+ ρ(770) K D wave.4412

Given the consistent results we obtained from the systematic studies discussed in section 6.3 and4413

especially from the pseudodata studies with and without admixed π−π−π+ background discussed4414

in section 6.4, we conclude that we can reliably model the π−π−π+ background, and that it does4415

not significantly bias our estimates for the resonance parameters. We do not find any other clear4416

resonance signals, e.g. from excited K∗2 states, in the 2+ 1+ ρ(770) K D wave.4417

Figure 7.6b shows the relative phase between the 2+ 1+ K∗(892) πD and the 2+ 1+ ρ(770) K D4418

waves. As expected, it is almost constant, because both waves are dominated by the same4419

K∗2(1430) resonance. We find a phase offset of about 0° between the two 2+ waves, as typically4420

observed for the same resonance in two partial waves. The remaining shallow phase motion4421

observed in figure 7.6b may be caused by the different background contributions in both waves.4422

Figure 7.6c shows the phase of the 2+ 1+ K∗(892) πD wave relative to the 1+ 0+ ρ(770) K S wave4423

in the lowest t′ bin. It exhibits a similar behaviour as in the second highest t′ bin shown in4424

[l] In the 2+ 1+ K∗(892) πD wave in figure 7.6a, the total model intensity (red curve) is similar to only the K∗2(1430)
component (blue curve), while there is also a non-negligible contribution from the effective background component
(brown curve) in this wave. In fact, the K∗2(1430) component and the non-resonant component (too small to be
visible in figure 7.6a) interfere destructively in the peak region, such that the intensity ρ̂Kππ

aa (mKππ, t′) of only the
K−π−π+ part of the RMF model is smaller than the intensity of the total model.
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Figure 7.6: Same as figure 7.1, but for the two waves with JP = 2+ that were included in the 10-wave
RMF and the 1+ 0+ ρ(770) K S wave serving as phase reference. The lowest t′ bin is shown.
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Figure 7.7: Same as figure 7.3, but for the K∗2(1430) component in the 2+ 1+ ρ(770) K D wave.

figure 5.19: it first drops by about 90° around 1.2 GeV/c2 and then rises again by about 90°4425

around 1.4 GeV/c2. Above about 1.5 GeV/c2 the relative phase is approximately constant. This4426

phase motion is reproduced well by the RMF. The sharp drop of the phase is caused by the4427

K1(1270) resonance in the 1+ 0+ ρ(770) K S wave, which enters with a minus sign in the relative4428

phase [see equation (5.74)]. The following rise of the phase is caused by the K∗2(1430) resonance4429

in the 2+ 1+ K∗(892) πD wave. This rise is less sharp than the drop caused by the K1(1270),4430

which reflects the larger width of the K∗2(1430) compared to the K1(1270). The phase of the4431

2+ 1+ ρ(770) K D wave relative to the 1+ 0+ ρ(770) K S waves exhibits similar features as shown4432

in figure 7.6e. In summary, we observe clear signals from the K∗2(1430) and K1(1270) not only4433

in the intensity spectra, but also in the interferences terms represented by the relative phases.4434

Figure 7.7 shows the t′ spectrum of the K∗2(1430) component. By construction, it is the same4435

in both 2+ waves up to a global factor [see equation (6.14)]. The t′ spectrum of the K∗2(1430)4436

exhibits an approximately exponential shape, which flattens towards t′ = 0.1 (GeV/c)2. As both4437

2+ waves have a spin-projection of M = 1, the shape of the t′ spectrum qualitatively matches4438

the expected shape for a resonance component as defined in equation (6.29). This is another4439

indication for the reliable extraction of the K∗2(1430) resonance by the RMF.4440

Except for the 2+ 1+ K∗(892) πD wave and the 2+ 1+ K∗(892) πD wave, none of the five other4441

waves with JP = 2+ exhibit significant structures. They were included into the PWD model by4442

the wave-set selection only in a few scattered (mKππ, t′) cells.4443
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Figure 7.8: Same as figure 7.4, but showing in blue the resonance parameters of the charged K∗2(1430) and
in red the resonance parameters of the neutral K∗2(1430).[n]

7.2.1 Discussion4444

The PDG lists the measurements of the charged and of the neutral K∗2(1430) separately. The4445

blue and red stares with uncertainty boxes in figure 7.8 represent the PDG average values of4446

the resonance parameters of the charged and neutral K∗2(1430), respectively. The mass and4447

width values of the neutral K∗2(1430) are slightly larger than those of the charged K∗2(1430).4448

Our estimate for the mass of the charged K∗2(1430) agrees with the PDG average value within4449

uncertainties. However, our estimate for the width of the charged K∗2(1430) is 9 MeV/c2 larger4450

than the PDG average value, such that the corresponding uncertainty intervals to no overlap.[m]
4451

Interestingly, our estimate for the width of the charged K∗2(1430) is in good agreement with the4452

PDG average width value for the neutral K∗2(1430). Also, our mass estimate is in good agreement4453

with the PDG average mass value for the neutral K∗2(1430).4454

The individual measurements of the K∗2(1430) parameters that entered the PDG averaging do4455

not clearly group into two clusters of mass and width values, i.e. one for the charged and one4456

for the neutral K∗2(1430).[n] Not only our measurement, but also other measurements of the4457

charged K∗2(1430) parameters (blue pluses in figure 7.8) yielded mass and width values that are4458

in good agreement with the PDG average values for the neutral K∗2(1430). At the same time,4459

the measurement of the neutral K∗2(1430) in ref. [151] yielded mass and width values that are4460

[m] Here, we quadratically added our estimated for the statistical uncertainty to the lower systematic uncertainty.
[n] The measurement in ref. [150], which was included in the PDG average values for the neutral K∗2(1430), is not

shown in figure 7.8 as it lies outside of the shown m0 region. It yielded a mass of (1471 ± 12) MeV/c2 that is much
larger than the mass from any other measurement and a width of (143 ± 34) MeV/c2 that is among the largest
values for the width from all previous measurements. The different values obtained in ref. [150] may be explained
by the fact that they fitted their resonance model to only the intensity spectrum of only the 2+ 1+ K∗(892) πD wave.
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in good agreement with the PDG average values for the charged K∗2(1430). However, a later4461

measurement [97] of the same reaction performed by the same experiment as in ref. [151] yielded4462

mass and width values that are in good agreement with the PDG average value for the neutral4463

K∗2(1430).4464

Furthermore, the PDG considered for the averaging of the resonance parameters of the charged4465

K∗2(1430) only measurements of its decay to the Kπ final state. For example, they did not consider4466

the ACCMOR analysis [23], that measured the resonance parameters of the charged K∗2(1430) in4467

the K−π−π+ final state. Figures 7.9a and 7.9b show the intensity spectra of the 2+ 1+ K∗(892) πD4468

and 2+ 1+ ρ(770) K D waves, respectively, as obtained in the ACCMOR analysis in a t′ range4469

that is similar to our analyzed t′ range. The intensity spectra exhibit the same peak at about4470

1.4 GeV/c2 as in our analysis (see figures 7.9c and 7.9d). ACCMOR observed instabilities in4471

the 2+ 1+ K∗(892) πD wave for mKππ . 1.3 GeV/c2 [23], which are not present in our analysis.4472

However, we observe an enhanced low-mass tail in the 2+ 1+ ρ(770) K D wave below about4473

1.3 GeV/c2, which is not present in the ACCMOR analysis. Fitting a resonance model to the4474

intensity spectra of both 2+ waves and to their relative phases, ACCMOR obtained a mass of4475

1430 MeV/c2 and a width of 110 MeV/c2 for the K∗2(1430). These values are nearly identical to4476

those found by our analysis.4477

In summary, the resonance parameters of the K∗2(1430) as obtained in our analysis agree with4478

many previous measurements. The PDG grouping of the measurements by the charge state of4479

the K∗2(1430) does not necessarily follow the clustering of the measured resonance parameters.4480

The difference between the PDG average values of the resonance parameters of the charged and4481

neutral K∗2(1430) might have other reasons. A reason may be that for the averaging of the charged4482

K∗2(1430) only measurements of the Kπ final state were considered, which may introduce a bias4483

as Breit-Wigner parameters are not independent of the reaction.4484

7.3 J P = 4+ Partial Waves4485

Figures 7.10a and d show for the lowest t′ bin the intensity spectra of the 4+ 1+ K∗(892) πG4486

and 4+ 1+ ρ(770) K G waves, respectively, which were included in the 10-wave RMF. Apart4487

from these two waves, no other 4+ waves exhibit clear resonance-like signals. The 4+ 1+
4488

K∗(892) πG wave exhibits a peak at about 2 GeV/c2. As discussed in section 6.2.2, the RMF4489

model overall underestimates the intensity of the 4+ 1+ K∗(892) πG wave, while the off-diagonal4490

spin-density matrix elements for this wave are reproduced well by the RMF. The 2 GeV/c2
4491

peak is mainly described by the K∗4(2045) component with a mass of (2059 ± 6 +9
−1) MeV/c2

4492

and a width of (188 ± 11 +27
−18) MeV/c2. The K∗4(2045) component sits on top of a broad bump4493

from the effective background component. The non-resonant component is mainly used by the4494

RMF to try to describe the enhanced intensity in the low-mass tail of the K∗4(2045). The non-4495

resonant component contributes only little to the K∗4(2045) mass region. The π−π−π+ background4496

component does practically not contribute to the 4+ 1+ K∗(892) πG wave.4497
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Figure 7.9: Intensity spectra of (left column) the 2+ 1+ K∗(892) πD wave, and (right column) the 2+ 1+

ρ(770) K D wave. The top row shows the results as obtained in the ACCMOR analysis in the range
0.05 ≤ t′ ≤ 0.7 (GeV/c)2 [23]. The data points represent the results of the PWD. The curves represent
the total resonance model from the ACCMOR analysis. The bottom row shows the results obtained in
our analysis in the range 0.1 ≤ t′ < 1.0 (GeV/c)2. Note the different mass scales of the plots. Same color
code as in figure 7.2.
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Figure 7.10: Same as figure 7.1, but for the two waves with JP = 4+ that were included in the 10-wave
RMF and the 1+ 0+ ρ(770) K S wave serving as phase reference. The lowest t′ bin is shown.
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The 4+ 1+ ρ(770) K G wave has about half the relative intensity of the 4+ 1+ K∗(892) πG wave.4498

Its intensity spectrum exhibits a peak-like structure in the K∗4(2045) mass region as shown in4499

figure 7.10d. As for the 4+ 1+ K∗(892) πG wave, the RMF overall underestimates intensity of4500

the 4+ 1+ ρ(770) K G wave, while the off-diagonal spin-density matrix elements of this wave are4501

reproduced well by the RMF. The peak is mainly described by the K∗4(2045) component, which4502

destructively interferes with the small non-resonant component such that the intensity of the4503

total RMF model is actually smaller than the intensity of the K∗4(2045) component in the peak4504

region. The π−π−π+ background component contributes only little to this wave. The effective4505

background component is mainly used by the RMF to account for the enhanced high-mass tail4506

above about 2.2 GeV/c2.4507

The relative phase between the 4+ 1+ K∗(892) πG and 4+ 1+ ρ(770) K G waves in the lowest t′4508

bin is shown in figure 7.10b. It is centered approximately around zero with a shallow drop of4509

about 50° around 1.9 GeV/c2, which presumably is caused by the different non-resonant and4510

background contributions to these waves. Figure 7.10c shows the phase of the 4+ 1+ K∗(892) πG4511

wave relative to the 1+ 0+ ρ(770) K S wave, which rises by about 120° in the region around4512

2 GeV/c2. We observe a similar rise in the relative phase of the 4+ 1+ ρ(770) K G wave with4513

respect to the 1+ 0+ ρ(770) K S wave as shown in figure 7.10e. All three relative phases are4514

reproduced well by the RMF and are hence consistent with a dominant contribution of the4515

K∗4(2045) to both 4+ waves.4516

Figure 7.11 shows the t′ spectrum of the K∗4(2045) component in the 4+ 1+ ρ(770) K G wave.[o]
4517

Except for the lowest t′ bin, the spectrum approximately has the expected shape according to4518

equation (6.29). In the lowest t′ bin, the expected suppression due to the (t′)|M| factor is not4519

observed. This suggests that the intensity of the K∗4(2045) component is not reliably estimated in4520

the lowest t′ bin.4521

7.3.1 Discussion4522

Figure 7.12 compares our estimates for the mass and width of the K∗4(2045) (circle) to the PDG4523

average values (star) and to the previous measurements that entered the PDG averaging (pluses).4524

Our estimate for the width of the K∗4(2045), which is the so-far most precise measurement of4525

this parameter, agrees well with the PDG average value and accordingly with the values from4526

previous measurements. Our estimate for the mass of the K∗4(2045) is slightly larger than the4527

corresponding PDG average value. Still, both agree within their uncertainties. Our estimate for4528

the mass agrees particularly well with the measurements in refs. [28, 122]. The PDG average4529

value for the mass is driven by mainly the measurement in ref. [121], which yielded a low4530

mass with small uncertainties of (2039 ± 10) MeV/c2. However, it is not clear whether their4531

uncertainties include systematic uncertainties.[p] Hence, the uncertainty quoted in ref. [121]4532

[o] By construction, the t′ spectrum of the K∗4(2045) component is the same in both 4+ waves up to a global factor [see
equation (6.14)].

[p] For example, ref. [122], where a similar reaction was under study as in ref. [121], estimated a statistical uncertainty
for the K∗4(2045) mass of ±14 MeV/c2 based on a data sample of about 151 000 events; similar to the total
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Figure 7.11: Same as figure 7.3, but for the K∗4(2045) component in the 4+ 1+ ρ(770) K G wave.
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Figure 7.12: Same as figure 7.4, but for the resonance parameters of the K∗4(2045).

might be underestimated, which would bias the PDG average value towards a smaller K∗4(2045)4533

mass, i.e. away from our estimate.4534

Despite the small intensity of the K∗4(2045) signal at the per-mill level in our data, we were4535

able to reliably extract the K∗4(2045) component in the 10-wave RMF. This was verified in all4536

uncertainty given in ref. [121] based on a data sample of only about 35 000 events. Hence, the total uncertainty
given in ref. [121] might be purely statistical. Ref. [122] quotes a systematic uncertainty of a similar order of
magnitude as their statistical uncertainty.
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performed systematic and pseudodata studies, and this is also reflected in the comparably small4537

uncertainties of our estimates for the resonance-parameter of the K∗4(2045), which are in good4538

agreement with previous measurements. Also, the overall good agreement of the shape of the t′4539

spectrum of the K∗4(2045) component with the expectation indicates a reliable extraction of the4540

K∗4(2045). This supports our statement in section 6.2.2, that the imperfections in the description4541

of the intensity spectra of the 4+ waves by the RMF do not strongly bias the determination of the4542

K∗4(2045), because the RMF is driven mainly by the off-diagonal spin-density matrix elements.4543

Hence, we are not only able to accurately measure the mass and width of the K∗4(2045), but the4544

good agreement of our estimates for the parameters of the well-known K∗4(2045) with previous4545

measurements demonstrates that we are able to determine even signals at the per-mill level and4546

with significant artifacts, e.g. in the corresponding intensity spectra.4547

7.4 J P = 2− Partial Waves4548

We selected four waves with JP = 2− for the 10-wave RMF, which are shown in figures 7.134549

and 7.15 in the second-lowest t′ bin, where the interesting features are seen clearly. The4550

largest of these four waves is the 2− 0+ K∗2(1430) π S wave. Its intensity spectrum is shown4551

in figure 7.13a and exhibits a broad peak at about 1.8 GeV/c2, with a peak-like high-mass4552

shoulder at about 2.2 GeV/c2. The peak position moves with t′ from about 1.74 GeV/c2 in the4553

lowest t′ bin to about 1.87 GeV/c2 in the highest t′ bin (cf. figures 7.14a and 7.14b). Overall,4554

the RMF reproduces well the intensity spectra of the 2− 0+ K∗2(1430) π S wave in all four t′4555

bins. The shift of the position of the 1.8 GeV/c2 peak with t′ is reproduced by the RMF as4556

a complex interplay of the various components, which changes with t′. Overall, the RMF4557

describes the peak by an interference of the K2(1770) component with a mass of (1715 ±4558

4 +1
−6) MeV/c2 and a width of (139 ± 7 +14

− 7) MeV/c2, the K2(1820) component with a mass of4559

(1848 ± 5 + 6
−20) MeV/c2 and a width of (250 ± 10 +17

−23) MeV/c2, and the non-resonant component.4560

The K2(1820) component dominates the total intensity of the RMF model. In addition, in the two4561

lowest t′ bins shown in figures 7.13a and 7.14a, the low-mass tail of the 1.8 GeV/c2 peak is mainly4562

described by an unexpectedly strongly peaking effective background component, similar to the4563

one observed in the 1+ 1+ ρ(770) K S wave (see figure 7.1c). In the highest t′ bin, the effective4564

background component vanishes and the peak is mainly described by the K2(1820) component4565

(see figure 7.14b). The high-mass shoulder of the 2− 0+ K∗2(1430) π S wave is described well by4566

the RMF using the K2(2250) component with a mass of (2230 ± 11 + 7
−61) MeV/c2 and a width of4567

(266 ± 29 +225
− 16) MeV/c2. Overall, there is only a small contribution of the π−π−π+ background4568

component to the 2− 0+ K∗2(1430) π S wave.4569

The 2− 0+ f2(1270) K S wave has a relative intensity of about 1.1 %, which is similar to the one4570

of the 2− 0+ K∗2(1430) π S wave. The intensity spectrum of the 2− 0+ f2(1270) K S wave in the4571

second-lowest t′ bin is shown in figure 7.13d and exhibits a clear peak at about 1.7 GeV/c2, i.e.4572

at slightly lower mass than the peak in the 2− 0+ K∗2(1430) π S wave. The peak is reproduced4573

well by the RMF with a dominant contribution of the K2(1770) component. Also, the 2− 0+
4574

f2(1270) K S wave exhibits a high-mass shoulder at about 2.2 GeV/c2. The RMF is able to4575
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Figure 7.13: Same as figure 7.1, but for the JP = 2− waves with K∗2(1430) or f2(1270) isobars that
were included in the 10-wave RMF and the 1+ 0+ ρ(770) K S wave serving as phase reference. The
second-lowest t′ bin is shown.
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Figure 7.14: Same as figure 7.2, but for the intensity spectra of the 2− 0+ K∗2(1430) π S wave (a) in the
lowest t′ bin and (b) in the highest t′ bin. The gray vertical lines at mKππ = 1.74 GeV/c2 indicate for
comparison the peak position in the lowest t′ bin.

reproduce this shoulder using the K2(2250) component. The non-resonant, π−π−π+ background,4576

and effective background components contribute only little to the 2− 0+ f2(1270) K S wave.4577

The phase of the 2− 0+ K∗2(1430) π S wave relative to the 1+ 0+ ρ(770) K S wave in the second-4578

lowest t′ bin is shown in figure 7.13c. It rises by about 90° in the mass region of the 1.8 GeV/c2
4579

peak. After a short plateau, it rises again in the mass region of the high-mass shoulder. The4580

relative phases of the 2− 0+ K∗2(1430) π S wave are reproduced well by the RMF, which supports4581

the resonance interpretation of the 1.8 GeV/c2 peak and the high-mass shoulder. The relative4582

phase of the 2− 0+ f2(1270) K S wave with respect to the 1+ 0+ ρ(770) K S wave shows similar4583

features (see figure 7.13e), and is also reproduced well by the RMF. Figure 7.13b shows the4584

relative phase between the 2− 0+ K∗2(1430) π S wave and the 2− 0+ f2(1270) K S wave in the4585

second-lowest t′ bin. It drops by about 90° around 1.7 GeV/c2 and slowly rises again by about4586

30 °aboveabout1.9 GeV/c2. The drop of the relative phase can be explained by the K2(1770)4587

resonance contributing more dominantly to the 2− 0+ f2(1270) K S wave, while the following4588

slow rise of the relative phase hints towards more dominant contributions of the K2(1820) and4589

the K2(2250) to the 2− 0+ K∗2(1430) π S wave. Both phase motions are reproduced well by the4590

RMF and are hence consistent with the resonance interpretation of the signals in the 2− 0+
4591

K∗2(1430) π S and 2− 0+ f2(1270) K S waves by the RMF.4592

The 2− 0+ K∗(892) π F wave has about half the relative intensity of the 2− 0+ K∗2(1430) π S wave.4593

Its intensity spectrum exhibits a peak at about 1.75 GeV/c2 as exemplarily shown in figure 7.15a4594

for the second-lowest t′ bin. This peak is reproduced by the RMF by an interference between4595

the K2(1770) and K2(1820) components and a broad non-resonant component. Here; in contrast4596

to the K∗2(1430) and f2(1270) waves, which are dominated either by the K2(1820) component4597

or by the K2(1770) component; the t′-summed intensities of both resonance components are of4598
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Figure 7.15: Same as figure 7.1, but for the JP = 2− waves with K∗(892) or ρ(770) isobars that were
included in the 10-wave RMF and the 1+ 0+ ρ(770) K S wave serving as phase reference. The second-
lowest t′ bin is shown.

a similar order of magnitude. The π−π−π+ background and effective background components4599

contribute only little to the 2− 0+ K∗(892) π F wave. The high-mass tail above about 2 GeV/c2
4600

changes its shape from t′-bin to t′-bin.[q] We were not able to model the high-mass tail in the4601

RMF. Hence, we excluded this wave in the region mKππ > 2 GeV/c2 from the RMF. Below4602

about 1.6 GeV/c2, the 2− 0+ K∗(892) π F wave exhibits an enhanced low-mass tail as observed4603

also for other small waves and discussed in section 5.5. Hence, we also excluded this wave in the4604

region mKππ < 1.6 GeV/c2 from the RMF.4605

The 2− 0+ ρ(770) K F wave is the smallest of the four 2− waves included in the 10-wave RMF.4606

It has about a quarter of the relative intensity of the 2− 0+ K∗2(1430) π S wave. Similar to the4607

[q] For example, while there is almost no enhanced high-mass tail in the lowest t′ bin (not shown), the enhanced
high-mass tail in the second-lowest t′ bin has two peaks at about 2.1 GeV/c2 and 2.3 GeV/c2.
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2− 0+ K∗(892) π F wave, the intensity spectrum of the 2− 0+ ρ(770) K F wave exhibits a peak at4608

about 1.75 GeV/c2 (see figure 7.15d). This peak is described by the RMF by an interference of4609

the K2(1770) and K2(1820) components and the high-mass tail of the non-resonant component.4610

Like for the K∗(892) wave, the t′-summed intensities of both resonance components are of a4611

similar order of magnitude. Summed over all t′ bins, the RMF yielded a small contribution from4612

the effective background component and a vanishing contribution from the π−π−π+ background4613

component to the 2− 0+ ρ(770) K F wave. As for the 2− 0+ K∗(892) π F wave, we observe4614

enhanced low- and high-mass tails in the regions mKππ < 1.6 GeV/c2 and mKππ > 2 GeV/c2,4615

which we could not model in the RMF. Hence, we excluded this wave in these mass regions4616

from the RMF.4617

The phases of the 2− 0+ K∗(892) π F and 2− 0+ ρ(770) K F waves relative to the 1+ 0+ ρ(770) K S4618

wave rise by nearly 180° in the mass region of the K2(1770) and K2(1820) resonances as shown4619

in figures 7.15c and e, respectively. The RMF is able to reproduce these phase motions well.4620

Above 2 GeV/c2, we do not observe a rise of the relative phase of the 2− 0+ K∗(892) π F wave4621

that would indicate a contribution of the K2(2250) to this wave. Thus, the high-mass tail of the4622

2− 0+ K∗(892) π F wave might not arise from the K2(2250), but might be, for example, a model4623

artifact. The relative phase of the 2− 0+ ρ(770) K F wave rises by about 30° above 2 GeV/c2.4624

Still, we were not able to model this wave in the region mKππ > 2 GeV/c2 by the K2(2250)4625

component. The relative phase between the 2− 0+ K∗(892) π F wave and the 2− 0+ ρ(770) K F4626

wave in the second-lowest t′ bin is shown in figure 7.15b. It is centered around approximately4627

zero in the fitted mass region and rises around 1.7 GeV/c2 by about 60°. This phase motion4628

is caused by the different strengths with which the various components in the two 2− waves4629

interfere and is reproduced by the RMF.4630

Figure 7.16 shows the t′ spectra of the three K2 components included in the 10-wave RMF in4631

the 2− 0+ K∗2(1430) π S wave. All four 2− waves have M = 0 quantum number. Therefore, the4632

shape of the t′ spectra of each of the three K2 components by construction is the same in all four4633

2− waves because of equation (6.14). In the second-lowest t′ bin, the fit assigns less intensity to4634

the K2(1820) component than expected from the other t′ bins, which approximately follow the4635

expected exponential shape (see figure 7.16b). Also, the intensity of the K2(1770) component4636

does not follow the expected shape in the two lowest t′ bins (see figure 7.16a). This is due4637

to a different interference pattern between both components in the two lowest t′ bins, which4638

result in a similar description of the data. Hence, the yields of individual components are not4639

determined as reliable as the resonance parameters by the RMF. This holds especially in cases4640

where the resonance components overlap in mass as it is the case for the K2(1770) and K2(1820)4641

components. The t′ spectrum of the K2(2250) component exhibits the expected exponential4642

shape as shown in figure 7.16c. This indicates a reliable extraction of the K2(2250) from our4643

data.4644

The 2− waves represent the largest spin-parity sector in the 238-wave set. In the following, we4645

show a selection of further 2− waves with potentially interesting signals. The t′-summed intensity4646

spectrum of the 2− 0+ K∗(892) π P wave is shown in figure 7.17a. The mKππ . 1.6 GeV/c2
4647

region of this wave is strongly affected by the leakage effect. Above this region, the 2− 0+
4648

K∗(892) π P wave exhibits a peak between about 1.7 GeV/c2 and 1.8 GeV/c2, similar to the4649
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Figure 7.16: Same as figure 7.3 but for (a) the K2(1770) component, (b) the K2(1820) component, and (c)
the K2(2250) component in the 2− 0+ K∗2(1430) π S wave.
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Figure 7.17: Same as figure 7.2, but for four selected partial waves with JP = 2− that were not included in
the 10-wave RMF.
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2− 0+ K∗(892) π F wave, which was included in the 10-wave RMF. The intensity of the peak4650

is about twice as large as the intensity of the 1.75 GeV/c2 peak in the 2− 0+ K∗(892) π F wave,4651

which is expected because of the higher energy needed to produce the larger orbital angular4652

momentum of the F wave. Also, the 2− 0+ ρ(770) K P wave shows a narrow peak between about4653

1.7 GeV/c2 and 1.8 GeV/c2 as shown in figure 7.17b. Similar to the two waves with K∗(892)4654

isobar, the peak in the 2− 0+ ρ(770) K P wave has about twice the intensity of the 1.75 GeV/c2
4655

peak in the 2− 0+ ρ(770) K F wave. Although the 2− 0+ ρ(770) K P wave does not exhibit artifacts4656

that could directly be related to the leakage effect in our studies, its intensity spectrum exhibits a4657

strongly enhanced intensity for mKππ . 1.6 GeV/c2, which presumably is an analysis artifact.[r]
4658

The 2− 1+ ρ(770) K P wave, i.e. the same wave but with M = 1, is shown in figure 7.17d. It has4659

about half the intensity of the M = 0 wave, which is consistent with the expectation that waves4660

with a higher spin projection M are suppressed. The 2− 1+ ρ(770) K P wave exhibits much fewer4661

artifacts in the low-mass region than the M = 0 wave. It also exhibits a clear peak, which however4662

sits at a lower mass of about 1.6 GeV/c2. This shift may be caused by a different composition4663

of the various possible contributions to this wave. A potential origin of this shift could only be4664

studied by including this wave in an RMF, which was not possible here due to the remaining4665

artifacts in this wave. All of these three waves; i.e. the 2− 0+ K∗(892) π P, 2− 0+ ρ(770) K P, and4666

2− 1+ ρ(770) K P waves; exhibit non-zero intensity for mKππ ≥ 2 GeV/c2. However, no clear4667

signal from the K2(2250) can be observed in any of these three waves. Finally, the t′-summed4668

intensity spectrum of the 2− 1+ K∗2(1430) π S wave is shown in figure 7.17c. It has about a4669

quarter of the intensity of its partner wave with M = 0 in the 10-wave RMF, which is the 2− 0+
4670

K∗2(1430) π S wave. The 2− 1+ K∗2(1430) π S wave exhibits a clear peak at about 1.8 GeV/c2,4671

similar to its M = 0 partner wave. However, we do not observe a pronounced high-mass shoulder,4672

which indicates that the K2(2250) is suppresses in the M = 1 wave with respect to M = 0 wave. A4673

similar effect was observed for the π2(2005) resonance in the COMPASS π−π−π+ analysis in the4674

2−+ 0+ f2(1270) π S and 2−+ 1+ f2(1270) π S waves [41]. In summary, the 2− sector compromises4675

many waves with interesting signals in addition to the four wave selected for the 10-wave RMF.4676

However, most of them exhibit artifacts or are small. Hence, they were not included in the4677

10-wave RMF.4678

7.4.1 Discussion4679

The PDG [9] lists three states with JP = 2− quantum numbers: the established K2(1770)4680

and K2(1820), which are close in mass; and the K2(2250), which needs further confirmation.4681

Figure 7.18 shows the PDG average values for the masses and widths of these states as blue, red,4682

and green stars, respectively.4683

[r] For example, the intensity of the 2− 0+ ρ(770) K P wave in the region mKππ . 1.6 GeV/c2 strongly changes in the
various systematic studies as shown in figure G.2b. Especially, it seems to be sensitive to the choice of the wave-set.
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Figure 7.18: Same as figure 7.4, but for the resonance parameters of the K2 resonances.

The K2(1770) and the K2(1820)4684

The different signals in the four waves with JP = 2− included in the 10-wave RMF, and especially4685

the large phase motions in the relative phases between these waves indicate a complicated4686

interference of various components in the 1.8 GeV/c2 mass region. However, our approach to4687

simultaneously model these four waves in all t′ bins in one RMF gives us the possibility to4688

reliably separate these contributions and to measure their parameters, i.e. the masses and widths4689

of the K2(1770) and K2(1820).4690

Our estimate for the mass of the K2(1770) (blue point) is smaller than the PDG average value.4691

We also obtained a slightly smaller width compared to the PDG average value. Our estimate4692

for the width the K2(1820) (red point) is in good agreement with the PDG average value. Our4693

estimate for its mass is slightly larger than the PDG average value, but they still agree within4694

their uncertainties.4695

Only two measurements entered the PDG averaging for the resonance parameters of the K2(1770)4696

and the K2(1820), i.e. the measurement of the LASS experiment of the reaction K−p →4697

K−ωp [35] and the measurement of the LHCb experiment of the reaction B+ → J/ψφK+ [34],4698

which was already discussed in section 7.1.1. LASS quotes very small uncertainties for their4699

estimates of the K2(1770) mass and width. Especially, they are much smaller than the uncer-4700

tainties of the LHCb measurement. Consequently, the LASS measurement dominates the PDG4701

average values for the K2(1770). However, it is not clear whether the uncertainties quoted by4702

LASS in ref. [35] include systematic effects. Thus, the total uncertainties of the PDG average4703

values for the resonance parameters of the K2(1770) might be underestimated. Furthermore, as4704

discussed in section 6.3, it was not possible to perform a full set of systematic studies within the4705

scope of this work. Therefore, also our estimate for the systematic uncertainty of the mass of the4706
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K2(1770) might be underestimated. This may cause the discrepancy between our estimate for4707

the K2(1770) mass and the PDG average value. It should also be noted that our estimates for the4708

resonance parameters of the K2(1770) are in agreement with the LHCb measurement within their4709

large uncertainties. In addition, our estimate for the mass of the K2(1770) is in better agreement4710

with the prediction of 1709 MeV/c2 from a quark-model calculation in ref. [10] (see figure 1.1),4711

than the PDG average value. This further supports our estimate for this parameter.4712

There are other previous studies of the 2− sector in the mass region below about 2 GeV/c2 [24,4713

37, 152, 153]. However, they typically considered only one K2 state, which yielded a mass4714

of this state of about 1770 MeV/c2, i.e similar to the PDG average value for the K2(1770). To4715

compare to these results, we performed in systematic study E an RMF where we included only4716

one K2 component for the mass region below 2 GeV/c2 (see section 6.3). This study yielded a4717

mass of this state of about 1740 MeV/c2, which is more consistent with previous observations4718

(see table 6.4). This demonstrates the sensitivity of the obtained resonance parameters on the4719

employed RMF model. Furthermore, study E yielded a reduced χ2 of 0.844, which is slightly4720

worse than the reduced χ2 value of 0.826 obtained in the main analysis. Hence, our data prefer4721

two K2 resonances for the mass region below 2 GeV/c2. However, given the limited precision of4722

our data, we cannot exclude the hypothesis of a single K2 in the mass region below 2 GeV/c2.4723

Also, the results from LASS “clearly prefer the model with two JP = 2− resonances” [35],[s] while4724

they cannot exclude the single-K2 hypothesis and LHCb [34] determined the significance of the4725

K2(1770) to be 5.0σ and that of the K2(1820) to be 3.0σ. Thus, none of the measurements of the4726

2− sector, including our analysis, could individually exclude the single-K2 hypothesis. However,4727

many analyses prefer the two-K2 hypothesis. Therefore, K2(1770) and K2(1820) are both now4728

considered established states, which is also supported by our measurement. Furthermore, also4729

quark-model calculations predict two K2 states in this mass region [10].4730

In addition to the measurements discussed above, also ACCMOR studied four 2− waves in4731

their analysis of the reaction K− + p → K−π−π+ + p [23]. Analogously to our analysis, they4732

studied the 2− 0+ K∗2(1430) π S and 2− 0+ f2(1270) K S waves shown in figures 7.19a and 7.19b,4733

respectively. Both waves exhibit similar signals as found in this analysis (cf. figures 7.13a and4734

d). In addition, ACCMOR studied the 2− 0+ K∗(892) π P wave shown in figure 7.19c, which4735

is affected by the leakage effect in our analysis. In exchange for this wave, we used the 2− 0+
4736

K∗(892) π F wave, which exhibits an even clearer signal. The 2− 0+ K∗(892) π F wave was not4737

considered in the ACCMOR analysis. ACCMOR also included the 2− 0+ ρ(770) K P wave in4738

their wave set. However, a signal in this wave “is barely significant” [23] in their data. We4739

observe a peak in this wave (see figure 7.17b) and an even clearer signal in the 2− 0+ ρ(770) K F4740

wave (see figure 7.15d), which was also not considered in the ACCMOR analysis. Since the4741

COMPASS K−π−π+ sample is about 3.6 times larger than the one used in the ACCMOR analysis,4742

our parameter estimates are not only more precise, but we were also able to study more waves4743

including waves at the per-mil level such as the 2− 0+ K∗(892) π F and 2− 0+ ρ(770) K F waves.4744

These waves exhibit more clean resonance signals, which also mitigates systematic effects. From4745

their fits, ACCMOR obtained only rough estimates for the resonance parameters of the K2(1770)4746

[s] In ref. [35], fitting a model with only a single K2 component to their data yielded a low mass value of the K2 state
of (1728 ± 7) MeV/c2, which surprisingly is in better agreement with our estimate for the mass of the K2(1770).
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(a) (b)

(c) (d)

Figure 7.19: Intensities and phases of three 2− waves as obtained from a partial-wave decomposition
performed by the ACCMOR collaboration [23] in the range 0.0 ≤ t′ ≤ 0.7 (GeV/c)2 (data points). (a), (b),
and (c) show the intensity spectra of the 2− 0+ K∗2(1430) π S , 2− 0+ f2(1270) K S , and 2− 0+ K∗(892) π P
waves, respectively. (d) shows the relative phase between the 2− 0+ f2(1270) K S wave and the 2− 0+

K∗2(1430) π S wave. The solid curves represent the results of an RMF with a single resonance component
and a background component to these waves. The dashed curves represent the results of an RMF of two
resonance components and a background component to these waves.

and K2(1820), which were excluded from the PDG averaging. While their estimates for the mass4747

and width of the K2(1820) are in good agreement with our results, they obtained for the K2(1770)4748

a larger mass of about 1780 MeV/c2 and a larger width of about 210 MeV/c2 with respect to our4749

analysis.4750

ACCMOR also tested the one-K2 hypothesis (solid curves in figure 7.19) and the two-K24751

hypothesis (dashed curves in figure 7.19). While models based on both hypotheses reproduce4752

the 2− 0+ K∗2(1430) π S and 2− 0+ K∗(892) π P waves fairly well (see figures 7.19a and 7.19c),4753

the description of the 2− 0+ f2(1270) K S wave is improved when including two K2 components4754
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(see figure 7.19b). In particular, ACCMOR observed a rise in the relative phase between the4755

2− 0+ f2(1270) K S wave and the 2− 0+ K∗2(1430) π S wave in the mass region of the peak (see4756

figure 7.19d), similar to the one observed in our analysis (cf. figure 7.13b). This phase motion4757

cannot be reproduced with only one K2 component. ACCMOR concluded, that “fits with two4758

resonances are slightly better” [23], but they also could not exclude the one-K2 hypothesis.4759

The K2(2250)4760

In the mass region above 2 GeV/c2, the PDG lists one state with JP = 2−, i.e. the K2(2250).4761

We find a potential signal from the K2(2250) and no evidence for additional states in this mass4762

region. Our estimate for the mass of the K2(2250) agrees with the PDG average value and also4763

with the values from previous measurements (see green point, star, and pluses in figure 7.18).4764

However, our estimate for the width of the K2(2250) is about 90 MeV/c2 larger than the PDG4765

average value and is also larger than all previous measurements. Still, our estimate for the4766

K2(2250) width agrees with the PDG average value within two times their uncertainties.[t]
4767

Except for the measurement in ref. [152], which did not enter the PDG averaging, all previous4768

measurements studied the K2(2250) in its decay to the Λp or Λp final state [30, 31, 36, 154, 155].4769

However, the K2(2250) is close in mass to the phase-space threshold of the Λ
(−)

p(−) final states and4770

the obtained resonance parameters may be sensitive to the employed model for kinematic effects4771

such as the centrifugal-barrier factors. We studied, for the first time,[u] the K2(2250) decaying4772

to K∗2(1430)π and f2(1270)K in a partial-wave analysis. For the first time, we simultaneously4773

studied resonances in the mass regions below and above 2 GeV/c2 in one RMF. This allowed4774

us to consistently take into account the high-mass tails of the K2(1770) and K2(1820) when4775

modeling the mass region of the K2(2250) and the low-mass tail of the K2(2250) when modeling4776

the mass region of the K2(1770) and K2(1820). In summary, we gained a new view on the4777

K2(2250) in our analysis, which may contribute to establish this state.4778

7.5 J P = 3− Partial Waves4779

The main 10-wave RMF does not include waves from the JP = 3− sector. However, the K∗3(1780)4780

with JP = 3− is a well-known state. In order to study this state in our data, we present studies4781

extending the 10-wave RMF by 3− waves. We find potential resonance-like signals only in4782

two 3− waves, i.e. in the 3− 1+ K∗(892) π F and 3− 1+ ρ(770) K F waves. These waves are small4783

with relative intensities of about 0.3 % and 0.1 %, respectively, i.e. only at the per-mill level.4784

[t] In our analysis, the width of the K2(2250) has a large systematic uncertainty. Further systematic studies, which are
missing, might reveal larger uncertainties towards a lower value. This would bring our estimate for the width of the
K2(2250) in better agreement with the PDG average value.

[u] According to the PDG listing [9], the K2(2250) was studied so far only in Λ
(−)

p(−) final states, except for the
measurement in ref. [152]. In ref. [152], where the K2(2250) was studied in the KSKSKL system in the reaction
π−C → KSKSKL + Y , no partial-wave analysis was performed, but only a cut-based analysis was performed
followed by fitting the mass spectra of the KSKSKL and KSKS systems.
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Figure 7.20: Same as figure 7.1, but showing the results of an extended RMF, where the 3− 1+ K∗(892) π F
and 3− 1+ ρ(770) K F waves were included in addition to the waves of the 10-wave RMF. The 1+ 0+

ρ(770) K S wave serves as phase reference. The lowest t′ bin is shown.

As exemplarily shown in figure 7.20a for the lowest t′ bin, the intensity spectrum of the 3− 1+
4785

K∗(892) π F wave exhibits a peak at about 1.8 GeV/c2 and practically zero intensity above about4786

2 GeV/c2. The mass region below 1.6 GeV/c2 cannot be interpreted in terms of physics signals,4787

because it is affected by the leakage effect. In contrast, the intensity spectrum of the 3− 1+
4788

ρ(770) K F wave exhibits a broad bump peaking at about 2.0 GeV/c2 with a high-mass tail4789

reaching up to almost 3 GeV/c2 (see figure 7.20d).4790

The phase of the 3− 1+ K∗(892) π F wave relative to the 1+ 0+ ρ(770) K S wave is shown for4791

the lowest t′ bin in figure 7.20c. It rises between 1.5 and 2.0 GeV/c2 by about 140°, which is4792

consistent with a resonance causing the peak in the intensity spectrum of the 3− 1+ K∗(892) π F4793

wave. Interestingly, also the phase of the 3− 1+ ρ(770) K F wave relative to the 1+ 0+ ρ(770) K S4794

wave rises in the same mass region by about 120° (see figure 7.20e). The relative phase between4795
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the 3− 1+ K∗(892) π F wave and the 3− 1+ ρ(770) K F wave is approximately constant with a4796

phase offset of about 140°. Both observations point towards the same resonance contributing to4797

both 3− waves, even if their intensity spectra are significantly different.4798

In order to perform a first study of a possible resonance content in the 3− 1+ K∗(892) π F and4799

3− 1+ ρ(770) K F waves, we performed an extended RMF including these two waves in addition4800

to the waves of the 10-wave RMF. We modeled the 3− waves by a K∗3(1780) component in4801

addition to non-resonant and background components (see appendix E.2 for details). This4802

extended RMF yielded resonance parameters for the K1, K2, K∗2 , and K∗4 components that agree4803

with the results from the 10-wave RMF.[v] The extended RMF describes the main features of the4804

intensity spectrum of the 3− 1+ K∗(892) π F wave reasonably well as shown by the red curve in4805

figure 7.20a. The fit yields a large contribution of the K∗3(1780) component The extended RMF4806

cannot reproduce the broad bump in the intensity spectrum of the 3− 1+ ρ(770) K F wave (see4807

figure 7.20d). However, the extended RMF describes well all the off-diagonal spin-density matrix4808

elements of the 3− 1+ K∗(892) π F and 3− 1+ ρ(770) K F waves as exemplary shown in figure 7.21.4809

The good description of the off-diagonal spin-density matrix elements by the extended RMF can4810

also be seen in the relative phases of the 3− 1+ K∗(892) π F and 3− 1+ ρ(770) K F waves, which4811

are all reproduced well by the RMF (see figures 7.20b, c, and e). The imperfect description of4812

only the intensity spectrum of the 3− 1+ ρ(770) K F wave, which is at per-mill level, is similar4813

to the one observed for the 4+ waves (see section 7.3). Following the same argumentation, we4814

can still use this wave to study the K∗3(1780). The RMF yields a considerable contribution of the4815

K∗3(1780) also to the 3− 1+ ρ(770) K F wave.4816

7.5.1 Discussion4817

The K∗3(1780) was observed by various previous experiments [22, 97, 156, 157]. Our rough esti-4818

mate for its mass of 1790 MeV/c2 [w]agrees with the PDG average value of (1779 ± 8) MeV/c2.4819

Our rough estimate for its with of 210 MeV/c2 is slightly larger than the PDG average value4820

of (161 ± 17) MeV/c2 [9]. However, the latter is mainly determined by the measurement in4821

ref. [157], which obtained a width of only (135 ± 22) MeV/c2. Other measurements, such as a4822

recent study of the decay ψ(3686) → K+K−η performed by BES III [156] or a measurement4823

by LASS [97] obtained a width of about 200 MeV/c2, i.e. in good agreement with our rough4824

estimate. Hence, we conclude that we observe clear indications for the K∗3(1780) contributing to4825

the 3− 1+ K∗(892) π F and 3− 1+ ρ(770) K F waves consistent with previous observations of this4826

known state. This means, that the K∗4(2045) is not the only known state at the per-mill level that4827

we can extract, which further supports the robustness of our analysis.4828

[v] Except for the value of the K2(2250) width, all resonance parameters obtained from this extended RMF are
consistent with the results from the 10-wave RMF within the corresponding uncertainties. The extended RMF
yielded a 55 MeV/c2 smaller width of the K2(2250). This discrepancy is slightly larger than the corresponding
negative uncertainty of 33 MeV/c2 as obtained from the 10-wave RMF. However, our estimates for the systematic
uncertainties may be underestimated (see section 6.3). Thus, we consider the results from this extended RMF to
agree with the results from the 10-wave RMF.

[w] As no systematic studies of the extended RMFs were performed, we only quote rough values for our estimates on
the resonance parameters rounded to a precision of 10 MeV/c2, and we do not give the corresponding uncertainties.
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Figure 7.21: Same as figure 7.2, but showing the results of an extended RMF, where the 3− 1+ K∗(892) π F
and 3− 1+ ρ(770) K F waves and the waves of the 10-wave RMF were included, for (a) the real part and
(b) the imaginary part of the off-diagonal spin-density matrix element of the 3− 1+ ρ(770) K F and the
1+ 0+ ρ(770) K S waves in the lowest t′ bin.

7.6 J P = 0− Partial Waves4829

Among the 0− waves included in the 238-wave set, the 0− 0+ ρ(770) K P wave exhibits the4830

clearest potential signals of excited pseudoscalar kaons. The intensity spectrum of this wave4831

in the second-lowest t′ bin, where the interesting features are seen clearly, is shown in figure4832

7.22a. It exhibits a peak at about 1.4 GeV/c2 followed by a second peak at about 1.7 GeV/c2
4833

and a small bump at about 1.9 GeV/c2. In the 1.4 GeV/c2 region, the intensities have large4834

uncertainties, which indicates that we cannot reliably determine the contribution of this wave4835

in this mass region. This may be caused by the large leakage effect on other JP = 0− waves as4836

discussed below, which may influence also the 0− 0+ ρ(770) K P wave via its correlation with the4837

other 0− waves.4838

The phase of the 0− 0+ ρ(770) K P wave relative to the 1+ 0+ ρ(770) K S wave is shown in figure4839

7.22b. Similar to the intensity, it is not well determined in the 1.4 GeV/c2 region. In the mass4840

region of the 1.7 GeV/c2 peak, we observe a rise in this relative phase of about 60°. Also the4841

phase of the 0− 0+ ρ(770) K P wave relative to the 2+ 1+ ρ(770) K S wave rises in this mass4842

region (see figure 7.22c). Together, the peak in the intensity and the rise of the phases of the4843

0− 0+ ρ(770) K P wave relative to various other waves indicate the presence of a resonance at4844

about 1.7 GeV/c2. We do not observe a clear phase motion in the relative phases of the 0− 0+
4845

ρ(770) K P wave in the mass region of the 1.9 GeV/c2 bump. However, in this mass region there4846

are also resonances in the reference waves, such as the K′1, which may partly compensate the4847

phase motion caused by a potential K resonance at about 1.9 GeV/c2.4848
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Figure 7.22: Same as figure 7.1, but showing the results of an extended RMF, where the 0− 0+ ρ(770) K P
wave was included in addition to the waves of the 10-wave RMF. The 1+ 0+ ρ(770) K S and 2+ 1+

ρ(770) K D waves serve as phase references. The second-lowest t′ bin is shown.
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In order to perform a first study of a possible resonance content in the 0− 0+ ρ(770) K P wave, we4849

performed an extended RMF including this wave in addition to the waves of the 10-wave RMF.4850

We modeled this 0− wave by three K resonance components; i.e. the K(1460), the K(1630),4851

and the K(1830); in addition to non-resonant and background components (see appendix E.24852

for details). This extended RMF yielded resonance parameters for the K1, K2, K∗2 , and K∗44853

components that agree with the results from the 10-wave RMF.[x] While this extended RMF4854

reproduces reasonably well the off-diagonal spin-density matrix elements of the 0− 0+ ρ(770) K P4855

wave, the description of the intensity spectrum of this wave by the RMF is imperfect. In particular,4856

it fails to reproduce the overall magnitude of the intensity in this wave, similar to the results4857

for the 3− waves (see section 7.5) and for the 4+ waves (see section 7.3). Given the small yield4858

of the potential K(1830) signal, we performed another extended RMF where we omitted the4859

K(1830) component from the RMF model. This RMF yielded an only slightly worse reduced χ2
4860

value of 0.840 compared to 0.837 when including the K(1830) component. Also, the resonance4861

parameters of the K(1460) and K(1630) components are not strongly affected when omitting the4862

K(1830) component. Hence, the K(1830) component describes an only weak signal in the 0− 0+
4863

ρ(770) K P wave.4864

The largest wave of the 0− sector is the 0− 0+ K∗(892) π P wave. Its t′-summed intensity spectrum4865

is shown in figure 7.23a. The mKππ . 1.6 GeV/c2 region of this wave is affected by the leakage4866

effect. Hence, we cannot study the K(1460) in this wave. At about 1.6 GeV/c2, the 0− 0+
4867

K∗(892) π P wave exhibits a shoulder, which may arise from the K(1630). However, as this4868

shoulder is just at the border of the mass region affected by the leakage effect, we cannot draw4869

hard conclusions on a K(1630) signal in the 0− 0+ K∗(892) π P wave. The intensity spectrum of4870

the 0− 0+ K∗(892) π P wave also exhibits a bump between 1.8 GeV/c2 and 1.9 GeV/c2, which4871

may arise from the K(1830). In order to validate this hypothesis, the 0− 0+ K∗(892) π P wave4872

would have to be included in an RMF, but the leakage effect prohibits this.4873

The last 0− wave in our analysis that exhibits potential resonance-like signals is the 0− 0+
4874

[Kπ]Kπ
S π S wave shown in figure 7.23b. Also in this wave, the mKππ . 1.6 GeV/c2 region of is4875

affected by the leakage effect. Above this mass region, its intensity spectrum exhibits a broad4876

peak at about 1.7 GeV/c2 with a long high-mass tail that extends beyond 2 GeV/c2. This peak4877

may arise from the K(1630) and the K(1830) may contribute to the high-mass tail. However, we4878

were not able to describe the 0− 0+ [Kπ]Kπ
S π S wave together with the 0− 0+ ρ(770) K P wave in4879

one RMF. Hence, the signals in both waves may not be fully compatible within the limitations of4880

our Breit-Wigner RMF model.4881

[x] Except for the value of the K1(1270) width, all resonance parameters obtained from this extended RMF are
consistent with the results from the 10-wave RMF within the corresponding uncertainties. The extended RMF
yielded a 12 MeV/c2 smaller width of the K1(1270). This deviation is slightly larger than the corresponding
negative uncertainty of 6 MeV/c2 as obtained from the 10-wave RMF. However, our estimates for the systematic
uncertainties may be underestimated (see section 6.3). Thus, we consider the results from this extended RMF to
agree with the results from the 10-wave RMF.
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Figure 7.23: Same as figure 7.2, but showing the t′-summed intensity spectra of (a) the 0− 0+ K∗(892) π P
wave and (b) the 0− 0+ [Kπ]Kπ

S π S wave.

7.6.1 Discussion4882

Unfortunately, many of the JP = 0− waves are affected by the leakage effect. Consequentially,4883

we can study excited pseudoscalar states reliably only in the 0− 0+ ρ(770) K P wave. The PDG4884

lists three excited pseudoscalar states: the K(1460), the K(1630), and the K(1830). While4885

the K(1460) is considered an established state, the K(1830) and the K(1630) still need further4886

confirmation.4887

The K(1460)4888

The K(1460) has been studied in an analysis of the decay D0 → K∓π±π+π− by LHCb [26],4889

as well as in the ACCMOR analysis [23] and in the analysis of data from SLAC in ref. [158],4890

which both analyzed the same reaction as in our work. The PDG does not provide average4891

values for the K(1460) resonance parameters. Our rough estimate for its mass of 1360 MeV/c2
4892

is smaller than the masses observed by the previous experiments, which are in the range of 14004893

to 1480 MeV/c2 [9]. Our rough estimate for its width of 420 MeV/c2 is larger than the widths4894

observed by previous experiments, which are in the range of 250 to 340 MeV/c2 [9]. However,4895

given the large uncertainties of measured spin-density matrix elements of the 0− 0+ ρ(770) K P4896

wave in the 1.4 GeV/c2 mass region and the fact that we considered only one 0− wave, our4897

estimates for the K(1460) resonance parameters have large statistical uncertainties and may have4898

systematic uncertainties. Hence, we consider our results on the K(1460) to not contradict the4899

previous measurements.4900
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The K(1830)4901

So far, the K(1830) has been studied by the CERN Ω′ spectrometer in the reaction K−p →4902

K−K−K+ p [37] and by LHCb in the analysis of the decay B+ → J/ψφK+ [34]. Our rough4903

estimate for the K(1830) mass of 1870 MeV/c2 is in good agreement with the mass estimate4904

by LHCb. Our rough estimate for its width of 80 MeV/c2 is smaller than the width estimate of4905

(168 ± 90 +280
−104) MeV/c2 by LHCb, but still consistent within their large uncertainties. CERN Ω′4906

gives only rough estimates for the resonance parameters of the K(1830) without uncertainties.4907

Hence, our rough estimates for the K(1830) resonance parameters are consistent with the results4908

from the limited set of previous studies of this state.4909

The K(1630)4910

While the PDG lists three exited pseudoscalar states, quark-model calculations [10, 159] predict4911

only two states (see figure 1.1). The lower-mass quark-model state can be associated with the4912

K(1460), and the higher-mass quark-model state can probably be associated with the K(1830).4913

Hence, the K(1630) is a candidate for a supernumerary state with respect to the quark model,4914

which points towards a possible exotic nature of the K(1630).4915

The K(1630) was studied so far only in the reaction π−p → (K0
Sπ

+π−)X+π−X0 by a single4916

bubble-chamber experiment at CERN [160, 161]. While the PDG lists the K(1630) as a K state,4917

i.e. with JP = 0−, its quantum numbers are not jet well determined [161]. Our rough estimate4918

of 1680 MeV/c2 for the K(1630) mass is similar to the value of (1629 ± 7) MeV/c2 obtained in4919

ref. [160]. However, we obtained a larger value of 150 MeV/c2 for its width compared to the4920

16+19
−16 MeV/c2 [9] obtained in ref. [160]. However, one would expect a much larger width for an4921

excited pseudoscalar state.4922

In the ACCMOR analysis, a model consisting of a single Breit-Wigner component for the K(1460)4923

and a simple background component was fitted to the 0− 0+ ρ(770) K P, 0− 0+ K∗(892) π P, and4924

0− 0+ [ππ]S K S waves [23]. While their model reproduces well the 0− 0+ K∗(892) π P and 0− 0+
4925

[ππ]S K S intensities and relative phases, it is not able to perfectly reproduce the intensity and4926

the relative phase of the 0− 0+ ρ(770) K P wave at a mass of about 1.7 GeV/c2, i.e. in the mass4927

region in which we potentially observe the K(1630) in the same wave (cf. curve and data points4928

in figure 7.24a). For example, ACCMOR also observed a rise in the relative phase of the 0− 0+
4929

ρ(770) K P wave around about 1.7 GeV/c2 similar to what we find in our analysis. However,4930

their model with only the K(1460) could not reproduce this rise. Thus, it seems that signs of the4931

K(1630) are visible already in the ACCMOR analysis, but they did not consider this state in their4932

RMF.4933

In the LHCb analysis in ref. [26], the authors performed a model-independent partial-wave4934

analysis (MIPWA), which is similar to our so-called freed-isobar analysis that is presented in4935

chapter 8 and which allowed them to extract the amplitude for the JP = 0− K−π−π+ system in4936
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(a) (b)

Figure 7.24: Results from previous studies of excited pseudoscalar resonances. (a) shows the intensity
spectrum of the 0− 0+ ρ(770) K P wave as obtained in the ACCMOR analysis in the range 0 ≤ t′ ≤
0.7 (GeV/c)2 [23]. The curve represents the results of a fit of a model consisting of one Breit-Wigner
component and a simple background component to this wave and to the 0− 0+ K∗(892) π P and 0− 0+

[ππ]S K S waves. (b) shows the Argand diagram of the amplitude for the K−π−π+ system being in a
JP = 0− state as obtained from a model-independent partial-wave analysis by LHCb [26]. The curve
shows a cubic spline that interpolates between the data points.

bins of mKππ instead of imposing a Breit-Wigner shape for it. They used this approach to confirm4937

the resonance nature of the K(1430). Figure 7.24b shows the Argand diagram as obtained from4938

their MIPWA. In addition to the clear circle caused by the K(1460), the last three data points4939

might indicate the beginning of another circle at about 1.6 GeV/c2, which might be related4940

to the K(1630). Unfortunately, LHCb could not study the 0− amplitude beyond 1.64 GeV/c2
4941

because of the limited kinematic reach of their analysis given by the D0 mass. This clearly shows4942

the advantage of studying strange mesons in diffractive production where the full mass range4943

and hence the complete spectrum of strange mesons is accessible in a single self-consistent4944

analysis. Hence, we can directly count the number of appearing states unambiguously, while4945

determining the number of states from multiple measurements that studied only a single state4946

requires assigning these measurements to the corresponding states, which may be ambiguous to4947

the measurement uncertainties. The three signals we observe in the 0− 0+ ρ(770) K P wave point4948

towards a supernumerary, excited pseudoscalar state in the 1.7 GeV/c2 mass region. However,4949

further systematic studies are needed in order to establish this state.4950

7.7 J P = 3+ Partial Waves4951

Among the waves with JP = 3+, the 3+ 0+ K∗3(1780) π S and 3+ 1+ K∗2(1430) π P waves exhibit4952

the clearest signals of a potential K3 resonance. Both waves have a relative intensity at the4953

per-mill level of only about 0.1 %. The intensity spectrum of the 3+ 0+ K∗3(1780) π S wave in the4954

second-lowest t′ bin, where the interesting features are seen clearly, is shown in figure 7.25a.4955

It exhibits a narrow peak at about 2.1 GeV/c2 with a high-mass shoulder at about 2.5 GeV/c2.4956
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Figure 7.25: Same as figure 7.1, but showing the results of an extended RMF, where the 3+ 0+ K∗3(1780) π S
and 3+ 1+ K∗2(1430) π P waves were included in addition to the waves of the 10-wave RMF. The 1+ 0+

ρ(770) K S wave serves as phase reference. The second-lowest t′ bin is shown.

The intensity spectrum of the 3+ 1+ K∗2(1430) π P wave continuously falls from about 1.8 to4957

2.5 GeV/c2, i.e. in the mass region in which this wave was included in the 238-wave set (see4958

figure 7.25d).4959

Figure 7.25e shows the phase of the 3+ 1+ K∗2(1430) π P wave relative to the 1+ 0+ ρ(770) K S4960

wave in the second-lowest t′ bin. We observe a clear rise by about 130° between about 1.9 and4961

2.4 GeV/c2, even though there is no clear peak visible in the corresponding intensity spectrum.4962

The phase of the 3+ 0+ K∗3(1780) π S wave relative to the 1+ 0+ ρ(770) K S wave exhibits large4963

fluctuations (see figure 7.25c). Overall, it exhibits only the tendency of a rise between 2.0 and4964

2.4 GeV/c2, even though there is a clear peak visible in the corresponding intensity spectrum.4965

Hence, we find indications for a resonance at about 2.1 GeV/c2 in both 3+ waves, i.e. in the4966

intensity of the 3+ 0+ K∗3(1780) π S wave and in the relative phase of the 3+ 1+ K∗2(1430) π P4967
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wave. The relative phase between the 3+ 0+ K∗3(1780) π S wave and the 3+ 1+ K∗2(1430) π P wave4968

in the second-lowest t′ bin is shown in figure 7.25b. It exhibits no clear phase motion below4969

2.2 GeV/c2, as expected if both waves are dominated by the same resonance.4970

In order to perform a fist study of a possible resonance content in the 3+ 0+ K∗3(1780) π S and4971

3+ 1+ K∗2(1430) π P waves, we performed an extended RMF including both 3+ waves in addition4972

to the waves of the 10-wave RMF. We modeled the 3+ waves by the K3(2320) component4973

in addition to non-resonant and background components (see appendix E.2 for details). The4974

extended RMF yielded resonance parameters for the K1, K2, K∗2 , and K∗4 components that are4975

consistent with the results from the 10-wave RMF. The model curve of the extended RMF has a4976

peak in the intensity spectrum of the 3+ 0+ K∗3(1780) π S wave, similar to the one observed in4977

the measured intensity spectrum (see figure 7.25a). This peak is dominated by the K3(2320)4978

component. The continuously falling intensity spectrum of the 3+ 1+ K∗(892) π P wave is repro-4979

duced by the extended RMF by large contributions of the non-resonant and effective background4980

components together with the K3(2320) component. Also, the relative phases of both 3+ waves4981

are reproduced well by the extended RMF.[y]
4982

7.7.1 Discussion4983

The PDG lists one strange meson with JP = 3+, the K3(2320), which is not considered an4984

established state [9]. So far, it has been seen by only two experiments in the Λp and Λp4985

final states [30, 31].[z] The analysis in ref. [30] yielded a width of (150 ± 30) MeV/c2 and the4986

analysis in ref. [31] yielded a width of about 250 MeV/c2.[aa] The latter one agrees well with4987

our rough estimate of 270 MeV/c2. On average, both experiments measured a K3(2320) mass4988

of (2324 ± 24) MeV/c2 [9], which is slightly larger than our rough estimate of 2120 MeV/c2.4989

Interestingly, the mass of the K3(2320) as obtained from the Λp and Λp final states agrees with4990

the quark-model prediction from ref. [10] for the first excitation of the K3 spectrum, while our4991

estimate from K∗3(1780) π and K∗2(1430) π final states is in good agreement with the predicted4992

ground states (see figure 1.1). Hence, different states may appear in our analysis and in the4993

analyses in refs. [30, 31], due to the different decay modes that are studied. However, the4994

assignment of our measurement and of the measurements in refs. [30, 31] to the corresponding4995

quark-model states may be ambiguous, because the systematic uncertainties on our estimates4996

for the K3(2320) resonance parameter may be large. Also, the systematic uncertainties on the4997

estimates for the K3(2320) resonance parameter from refs. [30, 31] may be large, because it is not4998

clear whether the authors of refs. [30, 31] used centrifugal-barrier factors to model the threshold4999

behavior.[ab] Omitting the centrifugal-barrier factors biases the mass estimates towards larger5000

[y] In general, the extended RMF reproduces well the off-diagonal spin-density matrix elements of the 3+ 0+

K∗3(1780) π S and 3+ 1+ K∗2(1430) π P waves (not shown).
[z] According to the PDG listing [9].

[aa] In ref. [31], the value of the K3(2320) width was not optimized in a fit to data, but tuned by hand.
[ab] The authors of refs. [30, 31] only give the statement that they fit a relativistic Breit-Wigner to the partial waves, but

they do not give the exact formula. Hence, it is not clear whether their model includes centrifugal barrier factors.
Ref. [30] does not make any statement about centrifugal barrier factors and ref. [31] only states that they “have
imposed correct threshold behavior by drawing smooth curves ∝ pL through the moments ...” [31].
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values, in particular for the K3(2320), because its mass is close to the phase-space threshold5001

of the Λ
(−)

p(−) final state and because of the large orbital angular momentum involved in the Λ
(−)

p(−)

5002

decay.5003

7.8 J P = 4− Partial Waves5004

The 4− 0+ K∗2(1430) πD wave exhibits the cleanest resonance-like signal with JP = 4−. This5005

wave has a relative intensity of only about 0.1 %. The corresponding intensity spectrum is shown5006

in figure 7.26a exemplarily for the lowest t′ bin. It exhibits a broad peak at about 2.3 GeV/c2. In5007

the same mass region, we observe a rise by about 100° of the phase of the 4− 0+ K∗2(1430) πD5008

wave relative to the 1+ 0+ ρ(770) K S wave as shown in figure 7.26b. Both, the intensity peak5009

and the rise of the relative phase, indicate the presence of a K4 resonance at about 2.3 GeV/c2.5010

In order to perform a first study of a possible resonance content in the 4− 0+ K∗2(1430) πD wave,5011

we performed an extended RMF including this 4− wave in addition to the waves of the 10-wave5012

RMF. We modeled this 4− wave by one resonance component, i.e. the K4(2500), in addition to5013

non-resonant and background components (see appendix E.2 for details). This extended RMF5014

yielded resonance parameters for the K1, K2, K∗2 , and K∗4 components that are consistent with the5015

results from the 10-wave RMF. The model curve of extended RMF has a peak in the intensity5016

spectrum of the 4− 0+ K∗2(1430) πD wave similar to the one observed in the measured intensity5017

spectrum (see figure 7.26a). However, the RMF underestimates the total intensity in this wave,5018

similar to other waves at the per-mill level (see section 7.3). In addition to a broad effective5019

background component, the RMF assigns a large intensity to the K4(2500) component. The rise5020

in the phase of the 4− 0+ K∗2(1430) πD wave relative to the 1+ 0+ ρ(770) K S wave is reproduced5021

well by the extended RMF.5022

7.8.1 Discussion5023

The PDG lists the K4(2500) as a not-established state [9]. So far, it has been seen by only a single5024

experiment in the reaction K+ p→ Λpp [31].[ac] They measured a mass of (2490 ± 20) MeV/c2,5025

which is larger than our rough estimate of 2260 MeV/c2, and a width of about 250 MeV/c2
5026

similar to our rough estimate of 300 MeV/c2.[ad] Similar to the discussion of the K3(2320) in5027

section 7.7, the mass of the K4(2500) as obtained from the Λp final state agrees better with5028

a quark-model prediction from ref. [10] for the first excitation of the K4 spectrum, while our5029

estimate is in good agreement with the predicted ground states. However, the assignment of our5030

measurement and of the measurement in refs. [31] to the corresponding quark-model states may5031

be ambiguous, as already discussed for the K3(2320).5032

[ac] According to the PDG listing [9].
[ad] In ref. [31], the value of the K4(2500) width was not optimized in a fit to data, but tuned by hand.
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Figure 7.26: Same as figure 7.1, but showing the results of an extended RMF, where the 4− 0+ K∗2(1430) πD
wave was included in addition to the waves of the 10-wave RMF. The 1+ 0+ ρ(770) K S wave serves as
phase reference. The lowest t′ bin in shown.
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7.9 Further Interesting Partial Waves5033

In this section we summarize or findings in partial waves with JP quantum numbers that are5034

not discussed in sections 7.1 to 7.8. The PDG lists two excited K∗ state, i.e. the K∗(1410)5035

and the K∗(1680) [9]. Both are considered as established states.[ae] In our analysis, the 1−5036

waves are strongly affected by the leakage effect. Thus, we cannot study the K∗(1410) in our5037

analysis as it lies in the affected mass region. Figure 7.27a exemplarily shows the t′-summed5038

intensity spectrum of the 1− 1+ ρ(770) K P wave. It exhibits an enhancement between about5039

1.6 and 1.9 GeV/c2, i.e. in the mass region of the K∗(1680). However, this enhancement is not5040

accompanied by a clear rise of the relative phases of this wave (not shown), which would indicate5041

a K∗(1680) signal in this wave. In general, we do not observe any clear resonance-like signals in5042

JP = 1− waves in our data. Hence, we did not study 1− waves in RMFs.5043

The last group of partial waves that were not yet discussed are waves with high spins os J ≥ 5.5044

The PDG lists only one state with J ≥ 5, the K∗5(2380), which has been seen so far only by the5045

LASS experiment in the K−π+ final state [122]. In our analysis, we observe in all corresponding5046

5− waves negligible intensity over the analyzed mass range (not shown). Hence, we do not5047

observe a K∗5(2380) in our data. In general, the partial waves with J ≥ 5 that were selected5048

by the wave-set selection procedure in section 5.2 have only small intensity at the per-mill5049

level. Most of these high-spin waves have a K−π+ isobar such as the K∗(892). Figures 7.27b5050

to 7.27d show exemplarily the t′-summed intensity spectra of three selected waves. Typically, the5051

mKππ . 2 GeV/c2 regions exhibit a noncontinuous intensity spectrum, e.g. at about 1.9 GeV/c2
5052

in figure 7.27c. We assume this mass region of the high-spin waves to be dominated by artifacts,5053

because of three reasons: (i) it is partly affected by the leakage effect, (ii) the intensity spectra5054

are sensitive to systematic effects, and (iii) we do not expect a state with J ≥ 5 in this low-mass5055

region. Above about 2 GeV/c2, the high-spin waves typically exhibit a broad bump in their5056

intensity spectra. These broad intensity bumps are not accompanied by any clear phase motions.5057

In general, we observe no evidence for resonances in the high-spin waves. However, more5058

detailed studies might be able to reveal small resonance signals.5059

A possible explanation for the broad intensity bumps in the high-spin waves is that these waves5060

are dominated by non-resonant contributions such as contributions from Deck-like reactions,5061

which are described in section 2.1.1. We discussed the importance of high-spin waves to describe5062

non-resonant contributions already when discussing the narrow peaks at cos θKπ
GJ = +1 and5063

cos θππGJ = −1 shown in figure 5.24. From the COMPASS π−π−π+ analysis, where similar Deck-5064

like non-resonant contributions appear, it is known that these contributions cause broad bumps in5065

the intensity spectra of partial waves with high spin, which are not accompanied by pronounced5066

phase motions [11, 124]. We expect qualitatively similar contributions from Deck-like reactions5067

also in our analysis. Furthermore, given the much larger mass of the K− compared to the π−, we5068

assume the contributions from Deck-like reactions with pion exchange shown in figure 2.2a to be5069

dominant compared to the ones with kaon exchange shown in figure 2.2b. Deck-like reactions5070

[ae] Waves with JP = 1− would be interesting to study, not only because they may exhibit excitations of the K∗(892)
ground state, but also because one of these excited states may be the strange partner of the spin-exotic π1(1600)
resonance, which was observed e.g. in the COMPASS π−π−π+ analysis [41].
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Figure 7.27: Same as figure 7.2, but showing the t′-summed intensity spectra of the 1− 1+ ρ(770) K P wave
and of three high-spin waves with J ≥ 5.
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with pion exchange proceed via K−π+ isobars. Hence, the fact the most of the high-spin waves5071

have a K−π+ isobar supports the hypothesis that the high-spin waves are dominated by Deck-like5072

reactions.5073
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8 The Freed-Isobar Analysis5074

The main focus of our analysis is the study of strange mesons appearing in the K−π−π+ system5075

as it was done in the conventional PWDconventional PWDconventional PWDconventional PWDconventional PWDconventional PWDconventional PWDconventional PWDconventional PWDconventional PWDconventional PWDconventional PWDconventional PWDconventional PWDconventional PWDconventional PWDconventional PWD and in the RMFs discussed in chapters 5 to 7. However,5076

non-strange and strange light mesons appear also as isobars in the π−π+ and K−π+ subsystems,5077

respectively. So far, this fact was used in the conventional PWD to disentangle the various decay5078

modes of the strange mesons into the K−π−π+ system by employing fixed parameterizations5079

for the dynamic amplitudes of the corresponding isobars (see section 5.1.4). However, the5080

appearance of light mesons in the π−π+ and K−π+ subsystems allows us to also study these5081

states. Therefore, we performed so-called freed-isobar PWD fitsfreed-isobar PWD fitsfreed-isobar PWD fitsfreed-isobar PWD fitsfreed-isobar PWD fitsfreed-isobar PWD fitsfreed-isobar PWD fitsfreed-isobar PWD fitsfreed-isobar PWD fitsfreed-isobar PWD fitsfreed-isobar PWD fitsfreed-isobar PWD fitsfreed-isobar PWD fitsfreed-isobar PWD fitsfreed-isobar PWD fitsfreed-isobar PWD fitsfreed-isobar PWD fits. The freed-isobar approach5082

was developed and successfully applied already in the COMPASS π−π−π+ analysis [11, 39,5083

42, 125] and is similar to approaches called (Quasi-)Model-Independent-Partial-Wave-Analysis5084

(Q)MIPWA applied in the analysis of multi-body heavy-meson and τ decays [26, 162].5085

Figure 8.1: Schematic illustration of the freed-isobar method. The blue curve shows the intensity of a
relativistic Breit-Wigner amplitude as used for the fixed isobar dynamic amplitudes as a function of the
two-body mass. The horizontal orange lines represent the piecewise constant functions before the PWD
fit to the data. The vertical gray lines indicate the mass bins. The horizontal green lines represent the
piecewise constant functions after the PWD fit. In this illustration, the bins were chosen to be much wider
than in the acutal analysis for better visualisation. From ref. [163].
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In the freed-isobar PWD the fixed parameterizations for the dynamic amplitudes of the isobars5086

(blue curve in figure 8.1) are replaced by piecewise constant functions in the two-body mass5087

(orange lines in figure 8.1). The function values in the two-body mass bins are adopted to the5088

data during the PWD fit. This parameterization is hence very flexible and does not make any5089

assumptions on the resonance content in the particular two-body subsystem. In this way, we5090

measure the amplitudes of π−π+ and K−π+ subsystems in the freed-isobar PWDs (green lines in5091

figure 8.1). Although the dynamic amplitudes of the isobars are free in the freed-isobar PWDs,5092

still the isobar model is employed. This means we consider the decay of a K−π−π+ intermediate5093

state with well-defined quantum numbers JP Mε into a bachelor particle and into a π−π+ or5094

K−π+ isobar two-body subsystem, which has a well-defined relative orbital angular momentum5095

l between both particles. The species of isobar resonances appearing in the studied π−π+ and5096

K−π+ subsystems are fully determined by l, i.e. their spin equals to l; their parity equals to (−1)l;5097

and their isospin equals to 1/2 for K−π+ isobars, 1 for π−π+ isobars with odd spin, and 0 for5098

π−π+ isobars with even spin. The bachelor particle and the isobar system have a well-defined5099

relative orbital angular momentum L. Thus, in a freed-isobar PWD, we measure the [ππ]l and5100

[Kπ]l isobar amplitudes as a function of the invariant mass, i.e. mπ−π+ and mK−π+ , respectively,5101

of the isobar system in a certain partial wave. We do this independently for each (mKππ, t′) cell.5102

This means, for each (mKππ, t′) cell we measure an independent isobar amplitude. The formalism5103

of the freed-isobar PWD is presented in appendix F.5104

As the freed-isobar approach increases drastically the number of free parameters of the PWD5105

model, its application is possible only for high-precision data samples as it is the case for the5106

COMPASS π−π−π+ sample. Compared to the COMPASS π−π−π+ sample, our K−π−π+ sample5107

is about 70 times smaller.[a] Hence, we cannot free the dynamic amplitudes of multiple isobars5108

simultaneously as it was done in the COMPASS π−π−π+ analysis [125]. Still, our K−π−π+
5109

sample is sufficiently large to perform proof-of-principle tests of the freed-isobar approach for5110

single isobars. We performed four independent freed-isobar PWDs. In each, we freed only5111

a single isobar dynamic amplitude; i.e. the [ππ]P, [Kπ]P, [Kπ]D, and [Kπ]S amplitudes; in a5112

single partial wave, while keeping the other partial waves as in the conventional 238-wave PWD.5113

Finally, we performed RMFs to the two-body mass dependence of the measured freed-isobar5114

amplitudes in order to study their resonance content. As we performed no systematic studies5115

yet, we cannot give systematic uncertainties for the parameter estimates of the isobar resonance.5116

Hence, we give no uncertainties, and we quote the resonance parameters only rounded to a5117

precision of 1 MeV/c2. The results of the four freed-isobar analyses are discussed in sections 8.15118

to 8.4.5119

[a] Here, we refer to the size of the COMPASS π−π−π+ sample as used for the first freed-isobar PWD presented in
ref. [39]. Compared to the COMPASS π−π−π+ sample that was obtained in the improved analysis that will be
presented in ref. [43], our K−π−π+ sample is about 150 times smaller.
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8.1 The [ππ]P Amplitude5120

Among the isobars resonances that were considered in the conventional PWD (see table 5.2), the5121

ρ(770) is one of the best known states. Thus, studying the corresponding dynamic amplitude5122

in the freed-isobar analysis and comparing the results to previous measurements of the ρ(770)5123

parameters allows us to verify the freed-isobar approach for our K−π−π+ sample. The ρ(770)5124

dominantly decays to two pions, where the pion pair is in a P wave, i.e. the pions have one unit5125

of orbital angular momentum. Hence, our goal is to determine the [ππ]P amplitude by employing5126

the freed-isobar PWD. The largest partial-wave with a ρ(770) isobar is the 1+ 0+ ρ(770) K S5127

wave (see section 7.1). Thus, we performed a freed-isobar PWD, where we replaced the5128

1+ 0+ ρ(770) K S wave included in the conventional 238-wave PWD by a freed 1+ 0+ [ππ]P K S5129

wave.5130

Figure 8.2 shows the measured [ππ]P freed-isobar amplitude in two exemplarily selected mKππ5131

bins in the lowest t′ bin. The intensity spectrum of the [ππ]P freed-isobar amplitude in the mKππ5132

region of the K1 double peak exhibits a clear pear at mπ−π+ ≈ 0.75 GeV/c2 (see figure 8.2a).5133

The high-mass part of the peak is cut off by the phase-space border. As shown in figure 8.2b,5134

the corresponding Argand diagram of the real and imaginary parts of the [ππ]P freed-isobar5135

amplitude exhibits a circle, which is characteristic for a Breit-Wigner like resonance. Figure 8.2c5136

exemplarily shows the intensity spectrum of the [ππ]P freed-isobar amplitude at higher mKππ. It5137

also exhibits a peak at mπ−π+ ≈ 0.75 GeV/c2, which is, however, more noisy. The corresponding5138

Argand diagram does not show a clear circle starting at the origin. However, a circle-like shape5139

may be recognized, whose starting point is shifted away from the origin. Such a shift may be5140

caused by a background contribution to this amplitude.5141

The red curves in figure 8.2 represent the result of an RMF to the measured [ππ]P freed-isobar5142

amplitude, which we modeled by a single Breit-Wigner component. The RMF reproduces5143

well the [ππ]P amplitude in the mKππ region of the K1 double peak. We obtained a mass of5144

about 766 MeV/c2 and a ρ(770) width of about 148 MeV/c2. Both values are close to the5145

corresponding PDG average values of (769.0 ± 0.9) MeV/c2 and (150.9 ± 1.7) MeV/c2 [9]. In5146

the higher mKππ region shown in figures 8.2c and 8.2d, the RMF cannot reproduce the [ππ]P5147

freed-isobar amplitude as the RMF model consists of only a Breit-Wigner resonance component5148

without a background component. However, one should note that the mπ−π+ position of the peak5149

in the intensity spectrum agrees well with the expected position of the ρ(770) peak also in the5150

higher mKππ region shown in figures 8.2c and 8.2d. Furthermore, the agreement between the5151

RMF and the measured [ππ]P freed-isobar amplitude is better again for mKππ & 1.7 GeV/c2.5152

We cannot observe clear indications for excited ρ states in the measured [ππ]P freed-isobar5153

amplitude.5154

In summary, the [ππ]P freed-isobar amplitude from the 1+ 0+ [ππ]P K S partial wave exhibits a5155

clear ρ(770)-like signal, whose mass and width agree with previous measurements. This proves5156

that the freed-isobar approach works in principle, even for our comparatively small K−π−π+
5157

sample. Furthermore, this demonstrates the applicability of the isobar model and of the ρ(770)5158

Breit-Wigner parameterization with mass and width taken from the PDG in the conventional5159
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Figure 8.2: Intensities (left column) and Argand diagram (right column), i.e. real vs. imaginary parts
of the [ππ]P freed-isobar amplitude in the 1+ 0+ [ππ]P K S wave at mKππ ≈ 1.33 GeV/c2 (top row) and
mKππ ≈ 1.51 GeV/c2 (bottom row) in the lowest t′ bin. The blue data points represent the result of the
freed-isobar PWD. In (b) and (d), the blue shaded areas represent the corresponding uncertainty ellipses
and the orange crosses indicate the data point that corresponds to the lowest mπ−π+ bin, i.e. the start
point of the Argand diagram. The red curves are the model curves from an RMF to the measured [ππ]P

freed-isobar amplitude. The green data points and the corresponding green points on the model curves
indicate the mπ−π+ bin that is closest to the nominal mass of the ρ(770) resonance as obtained in the RMF.
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fixed-isobar PWD. Additional effects, such as final-state interactions, i.e. rescattering within the5160

three-body final state,[b] seem to have only a minor influence on the dynamic amplitude of the5161

isobars in the reaction K− + p → K−π−π+ + p. Hence, the freed-isobar analysis of the [ππ]P5162

amplitude confirms in a model-independent way our observation of the K1(1270) and K′1 decays5163

to the ρ(770)K final state, which are discussed in section 7.1.5164

8.2 The [Kπ]P Amplitude5165

Besides the ρ(770), also the K∗(892) is a well-known state, which decays dominantly to the5166

K−π+ final state where both are in a P wave. We study the corresponding [Kπ]P freed-isobar5167

amplitude in the largest partial wave with a K∗(892) isobar, which is the 1+ 0+ K∗(892) π S wave.5168

Hence, we performed a freed-isobar PWD, where we replaced the 1+ 0+ K∗(892) π S and 1+ 0+
5169

K∗(1680) π S waves included in the conventional 238-wave PWD by a freed 1+ 0+ [Kπ]P π S5170

wave. However, one should note that both replaced waves are affected by the leakage effect in the5171

conventional PWD. Thus, the leakage effect may also bias the results of the freed-isobar PWD5172

for the [Kπ]P amplitude.5173

Figure 8.3 shows the measured [Kπ]P freed-isobar amplitude in two exemplarily selected mKππ5174

bins in the lowest t′ bin. The intensity spectrum of the [Kπ]P freed-isobar amplitude exhibits5175

a clear narrow peak at mK−π+ ≈ 0.9 GeV/c2 as shown in figure 8.3a for the mKππ region of the5176

K1(1400). The corresponding Argand diagram exhibits a circle as expected for the K∗(892)5177

resonance (see figure 8.3b). Figures 8.3c and 8.3d show the [Kπ]P amplitude in a higher mKππ5178

bin. Also here, we observe a clear K∗(892) peak in the intensity spectrum and a circle in the5179

Argand diagram. In addition, we observe a small high-mass shoulder at mK−π+ ≈ 1.2 GeV/c2.5180

The red curves in figure 8.3 represent the result of an RMF to the measured [Kπ]P freed-isobar5181

amplitude, which we modeled by a single Breit-Wigner component. The RMF reproduces well5182

the intensity spectra of the [Kπ]P freed-isobar amplitude over the analyzed mKππ range. Also,5183

the Argand diagrams are overall reproduced well. However, at higher mKππ, the Argand diagram5184

of the [Kπ]P freed-isobar amplitude appears to be rotated and shifted with respect to the RMF5185

curve (see figure 8.3d). As for the [ππ]P freed-isobar amplitude discussed in section 8.1, this5186

rotation and shift may indicate small background contributions to the measured [Kπ]P freed-5187

isobar amplitude. For mK−π+ > 1 GeV/c2, the [Kπ]P intensity exhibits an enhancement over5188

the RMF curve, which includes only the K∗(892). However, in additional RMFs we could not5189

model sufficiently well this mK−π+ region by the excited K∗(1410) and K∗(1680), which are both5190

listed as established states by the PDG [9]. Hence, we do not observe clear signals of excited5191

K∗ states in the measured [Kπ]P freed-isobar amplitude. We obtained a mass for the K∗(892)5192

component of about 895 MeV/c2 and a width of about 49 MeV/c2. Both values agree well with5193

the corresponding PDG average values of (895.55 ± 0.20) MeV/c2 and (47.3 ± 0.5) MeV/c2,5194

respectively.5195

[b] See ref. [164] for a discussion on effects from final-state interactions on the amplitudes of two-body subsystems in
three-body decays of heavy mesons.
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Figure 8.3: Same as figure 8.2, but showing the [Kπ]P freed-isobar amplitude from the freed 1+ 0+

[Kπ]P π S wave at mKππ ≈ 1.41 GeV/c2 (top row) and mKππ ≈ 1.51 GeV/c2 (bottom row) in the lowest t′

bin.
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In summary, we observe a clear K∗(892) signal in the [Kπ]P freed-isobar amplitude as determined5196

from the freed-isobar PWD, whose mass and width agree with previous measurements, and we5197

do not observe pronounced signals from excited K∗(1410) or K∗(1680). This further confirms the5198

applicability of the freed-isobar approach to our K−π−π+ sample and demonstrates that the PDG5199

average values for the K∗(892) mass and width used in the conventional PWD are consistent with5200

our data. This good agreement is somewhat surprising and means that the leakage effect does not5201

seem to induce a large bias on the shape of the measured [Kπ]P freed-isobar amplitude.5202

8.3 The [Kπ]D Amplitude5203

In our analysis, the K∗2(1430) appears not only in the K−π−π+ system in partial waves with5204

JP = 2+ (see section 7.2), but also in the K−π+ subsystem as an isobar. In order to study the5205

K∗2(1430) also in the K−π+ subsystem, we measured the [Kπ]D amplitude in a freed-isobar5206

analysis. The largest wave in the 238-wave set with a K∗2(1430) isobar is the 2− 0+ K∗2(1430) π S5207

wave. However, it still has a small relative intensity of only 1.2 %. We performed a freed-isobar5208

PWD, where we replaced the 2− 0+ K∗2(1430) π S wave included in the conventional 238-wave5209

PWD by a freed 2− 0+ [Kπ]D π S wave.5210

Figure 8.4 shows the measured [Kπ]D freed-isobar amplitude in an exemplarily selected mKππ bin5211

at the K2(1770) in the lowest t′ bin. The intensity spectrum of the [Kπ]D freed-isobar amplitude5212

exhibits a clear peak at mK−π+ ≈ 1.4 GeV/c2. The corresponding Argand diagram show a circle5213

as expected for the K∗2(1430) resonance.5214
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Figure 8.4: Same as figure 8.2, but showing the [Kπ]D freed-isobar amplitude from the freed 2− 0+

[Kπ]D π S wave at mKππ ≈ 1.73 GeV/c2 in the lowest t′ bin.
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The red curves in figure 8.4 represent the result of an RMF to the measured [Kπ]D freed-isobar5215

amplitude, which we modeled by a single Breit-Wigner component. The RMF reproduces5216

well the intensity spectra of the [Kπ]D freed-isobar amplitude over the analyzed mKππ range as5217

exemplarily shown in figure 8.4a. Also, the Argand diagrams are reproduced well. From the5218

freed-isobar analysis, we obtained a mass of the K∗2(1430) component of about 1430 MeV/c2
5219

and a width of about 106 MeV/c2, which are in good agreement with our estimates for the mass5220

and width of the K∗2(1430) in the K−π−π+ decay as obtained from the conventional PWD (see5221

section 7.2). Given that we study the neutral K∗2(1430) in the K−π+ decay and the charged5222

K∗2(1430) in the K−π−π+ decay and considering that both measurements yielded the same mass,5223

we do not observe a significant mass difference between the neutral and the charged K∗2(1430)5224

as indicated by the PDG average values (see discussion in section 7.2). We do not observe any5225

pronounced signal from an excited K∗2(1980) in our data.5226

In summary, the [Kπ]D freed-isobar amplitude exhibits a clear K∗2(1430) signal. This demon-5227

strates that the freed-isobar approach works even for small waves at the percent level, such as5228

the 2− 0+ K∗2(1430) π S wave, and confirms the partial waves with a K∗2(1430) resonance in the5229

conventional PWD.5230

8.4 The [Kπ]S Amplitude5231

Among the isobar subsystems that can be studied in the freed-isobar analysis, the [Kπ]S freed-5232

isobar amplitude is of special interest. It plays a major role in multi-body final states with a Kπ5233

subsystem as the K−π−π+ final state studied here, but also in many other analyses [26, 162, 165,5234

166]. At the same time, the analytical structure of the [Kπ]S amplitude is complicated and not5235

yet well-known. It is hence in the focus of theoretical investigations [98, 101, 167].5236

The largest wave in the 238-wave set with a [Kπ]Kπ
S isobar is the 0− 0+ [Kπ]Kπ

S π S wave with a5237

relative intensity of 5.0 %. Hence, we performed a freed-isobar PWD, where we replaced the5238

0− 0+ [Kπ]Kπ
S π S and 0− 0+ [Kπ]Kη

S π S waves included in the conventional 238-wave PWD by a5239

freed 0− 0+ [Kπ]S π S wave.5240

Figure 8.5 shows the measured [Kπ]S freed-isobar amplitude in three exemplarily selected5241

(mKππ, t′) cells. At mKππ ≈ 1.73 GeV/c2, the [Kπ]S intensity spectrum shown in figure 8.5a5242

exhibits a peak at mK−π+ ≈ 1.4 GeV/c2 with a pronounced low-mass shoulder reaching down to5243

the phase-space border. The corresponding Argand diagram is shown in figure 8.5b. It exhibits5244

a deformed half-circle in the mK−π+ region of the 1.4 GeV/c2 peak. In the mK−π+ region of the5245

low-mass shoulder, the amplitude in the Argand diagram moves only slowly with a bulge. Both,5246

the intensity spectrum and the Argand diagram show similarities to the fixed [Kπ]Kπ
S isobar5247

dynamic amplitude used in the conventional PWD (see figure 5.5).[c] Hence, the 1.4 GeV/c2
5248

[c] The measured [Kπ]S freed-isobar amplitude also includes phase-space effects, in contrast to the fixed [Kπ]Kπ
S isobar

dynamic amplitude shown in figure 5.5. However, these phase-space effects are only slowly changing with mass
and not introduce peaks.
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Figure 8.5: Same as figure 8.2, but showing the [Kπ]S freed-isobar amplitude in the 0− 0+ [Kπ]S π S
wave at mKππ ≈ 1.73 GeV/c2 (top row) and mKππ ≈ 2.22 GeV/c2 (middle row) in the lowest t′ bin and at
mKππ ≈ 2.22 GeV/c2 in the second-lowest t′ bin (bottom row).
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peak indicates a K∗0(1430) signal in our data and the low-mass shoulder is presumably driven by5249

the K∗0(700).5250

At higher mKππ, we still observe the same features in the intensity spectra and the Argand diagram5251

for mK−π+ . 1.6 GeV/c2 as exemplarily shown in figures 8.5c to 8.5f for mKππ ≈ 2.22 GeV/c2 in5252

the two lowest t′ bins. In the—now accessible—mK−π+ & 1.6 GeV/c2 region, the intensity spectra5253

of the [Kπ]S freed-isobar amplitude exhibit another peak at about 1.9 GeV/c2 (see figures 8.5c5254

and 8.5e). This peak is accompanied by structures at the end of the Argand diagrams, which5255

are clearest in the (mKππ, t′) cell shown in figure 8.5f. However, due to the limited precision5256

of our K−π−π+ sample, we cannot resolve a clear circle at mK−π+ ≈ 1.9 GeV/c2, which would5257

clarify the resonance character of the intensity peak. Still, the peak at mK−π+ ≈ 1.9 GeV/c2 is an5258

indication for a possible K∗0(1950) isobar signal in our data.5259

In summary, the similarities of the measured [Kπ]S freed-isobar amplitude to the fixed model used5260

for the [Kπ]Kπ
S and [Kπ]Kη

S dynamic amplitudes indicate the observation of K∗0(700), K∗0(1430),5261

and possibly K∗0(1950) signals in our data. Since in particular the K∗0(700) and K∗0(1430) are5262

overlapping due to their large widths, the modeling of the [Kπ]S freed-isobar amplitude would5263

require a more elaborate RMF model than a simple sum of Breit-Wigner amplitudes. With the5264

help of such a more elaborate model, we could also measure the properties of the K∗0 sates, i.e.5265

their pole parameters. Furthermore, the freed 0− 0+ [Kπ]S π S wave has an isotropic distribution5266

in all decay angles.[d] As an isotropic distribution is less characteristic and thus harder to5267

distinguish, e.g. from background, we expect the [Kπ]S wave to be more likely affected by5268

systematic effects or analysis artifacts. This would need to be studied in dedicated systematic5269

and pseudodata studies, which are beyond the scope of this work. However, the first glimpse on5270

the [Kπ]S freed-isobar amplitude presented in this section, as well as the consistent results from5271

the three other freed-isobar analyses, demonstrate that the COMPASS K−π−π+ sample has the5272

potential to also deepen our knowledge about the [ππ]P, [Kπ]P, [Kπ]D, and [Kπ]S systems.5273

[d] The orbital angular momentum L in the isobar-bachelor system is 0 as well as the orbital angular momentum in the
K−π+ isobar subsystem.
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We employed the diffractive-scattering reaction K− + p→ K−π−π+ + p to explore the excitation5275

spectrum of strange mesons based on a data sample that was collected during the 2008 and 20095276

diffraction data-taking campaigns of the COMPASS experiment. The event selection was based5277

on an unpublished study of this reaction at COMPASS [44] and was considerably improved. One5278

of the major challenges of this event selection is the separation of beam kaons from the about 365279

times larger pion contribution in the beam. To this end, we developed a novel likelihood-based5280

approach that exploits the full information from both CEDAR detectors. Our approach yields5281

an excellent performance for beam-kaon identification with an efficiency of about 85 %—about5282

twice as large as the efficiency of the previously used method—while maintaining a low impurity5283

from pions of about 3 %. Our optimized event selection yields the so far world’s largest K−π−π+
5284

sample of 720 949 events, which is about 3.6 times larger than the previously world’s largest5285

K−π−π+ sample obtained by the WA3 experiment at CERN [23].5286

Based on this data sample, we performed a partial-wave decomposition (PWD), where we extract5287

the mKππ and t′ dependence of the transition amplitudes of partial waves with well-defined5288

quantum numbers and decay modes of the K−π−π+ system. We inferred the set of partial waves5289

that need to be included in the PWD model from the data. To this end, we started with a large5290

pool of 596 allowed waves considering spins up to J = 7. To select those waves that significantly5291

contribute to the data, we added regularization terms to the likelihood function that are based5292

on model-selection techniques to select those waves that significantly contribute to the data. In5293

comparison to previous analyses applying model-selection techniques [67, 108], we extended the5294

approach by incorporating effects from the experimental acceptance in the regularization terms5295

and by imposing continuity in mKππ for the selected wave sets. Both extensions clearly improved5296

the selected wave sets. Furthermore, we improved the estimates for the parameter values and5297

their uncertainties determined from the PWD by using Bootstrapping techniques starting at the5298

event-sample level. In addition, we performed first studies of applying the freed-isobar technique,5299

which allowed us to study for the first time the amplitudes of the K−π+ and π−π+ subsystems in5300

the diffractively produced K−π−π+ final state.5301

We observe artificially enhanced partial-waves intensities in a limited set of partial waves for5302

mKππ . 1.6 GeV/c2. These artifacts are caused by the loss of information due to the limited5303

kinematic coverage of our final-state particle identification. This so-called leakage effect limits5304

the physics reach of our analysis. However, we could clearly identify waves affected by the5305

leakage effect using three different approaches, which yielded consistent results. This allowed us5306

to still study strange mesons in the large set of non-leakage waves, which covers a variety of JP
5307

sectors and decay modes.5308
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We searched for strange mesons and measured their masses and widths by performing resonance-5309

model fits (RMFs) to the spin-density matrix elements of selected waves, which were extracted5310

by the conventional and the freed-isobar PWDs. For the main analysis, we selected a subset5311

of 10 partial waves, which included 7 resonance components. We extended this 10-wave RMF5312

model in dedicated studies of further resonances. To construct the RMF models, we employed5313

Breit-Wigner amplitudes. It is worth stressing that we obtained our estimates for the masses and5314

widths of the strange mesons by fitting simultaneously a large set of partial waves from different5315

JP sectors taking into account all interference terms between these partial waves. We also freed5316

the mass and width parameters for all studied strange-meson resonances,[a] in contrast to many5317

previous analyses [23, 24, 26, 27, 30].5318

One of the major challenges of our analysis is the treatment of incoherent background in our5319

K−π−π+ sample. We developed an ansatz where we effectively treat these incoherent background5320

contributions at the level of the PWD and explicitly model them in the RMFs. The largest5321

incoherent background of about 6.7 % arises from events of the reaction π− + p→ π−π−π+ + p.5322

We take into account this background component by employing a high-quality model obtained5323

by the analysis of the COMPASS π−π−π+ sample [43].5324

Finally, we performed extensive studies to verify our analysis approach and to estimate systematic5325

effects. We performed a variety of pseudodata studies of the PWD and RMF. With these studies5326

we showed the self-consistency of our analysis. For example, we performed an input-output5327

studied by applying our full analysis chain to a pseudodata sample that includes resonances5328

with known masses and widths. Then we measured these masses and widths again in the RMF.5329

Especially noteworthy, we demonstrated that we can separate K−π−π+ signals from π−π−π+
5330

background by mixing pure K−π−π+ and π−π−π+ pseudodata samples. We performed also a first5331

set of systematic studies covering potential influences from the event selection, the PWD model,5332

and the 10-wave RMF model. From these studies, we obtained lower bounds for systematic5333

uncertainties, which are typically of comparable size as the statistical uncertainties.5334

In summary, we performed the so-far most comprehensive analysis of the K−π−π+ final state.5335

We determined the parameters of 7 strange mesons by simultaneously fitting the intensities5336

and interference terms of 10 selected waves. The parameters of 6 further strange mesons were5337

determined in dedicated studies. Finally, the ρ(770), K∗(892), and K∗2(1430) mesons appearing5338

in the π−π+ and K−π+ subsystems were studied in freed-isobar analyses. In total, the extracted5339

resonances cover almost all JP sectors as shown in figure 9.1. This way we obtained the so-far5340

most complete picture of the strange-meson spectrum coming from a single analysis.5341

We observe signals of well-known strange mesons, such as the K1(1270) and the K∗J states, but5342

also of states that need further confirmation, such as the K2(2250), in the partial-wave intensities5343

and in the interference terms represented by the relative phases. Given the large size of our5344

K−π−π+ sample we could study small signals down to the per-mil level such as the K∗4(2045).5345

By binning our data in t′, we also studied the t′ dependencies of the extracted resonances,5346

[a] The K1(1400) could not be studied, because it is only a very small signal in the analyzed 1+ waves. We had to fix
the parameters of the corresponding component to the PDG average values in the RMFs.
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Figure 9.1: Spectrum of strange mesons, i.e. nominal masses of strange mesons grouped by their JP

quantum numbers. The crosses represented our measured mass values as obtained from the 10-wave RMF
(red) or from the corresponding dedicated studies (violet) (see chapter 7). The magenta pluses represent our
measured mass values as obtained from the freed-isobar analysis (see chapter 8). Analogously to figure 1.1,
the blue data points show the masses of established states, the orange data points those of not established
states as listed by the PDG [9]. The similarly colored boxes represent the corresponding uncertainties. The
black horizontal lines show the masses of states as predicted by the quark-model calculation in ref. [10].
As we show only masses below 2.7 GeV/c2 for a better visualization, the not-established K(3100) is
omitted here.

which typically show the expected behavior. This supports the resonance nature of the observed5347

signals. In most cases, our estimates for the masses and widths of the 14 studied strange mesons5348

agree with previous measurements and with quark-model calculations (see figure 9.1). Our5349

uncertainties for most of the measured masses and widths are competitive with the corresponding5350

so far best measurements of these parameters. For the widths of the K∗4(2045) and K2(1820), we5351

obtained even the so far smallest uncertainties.[b]
5352

Our analysis not only provides a high-precision measurement of the masses and widths, but also5353

adds complementary information. For example, we performed the first search[c] for the K2(2250)5354

in final states other than Λ
(−)

p(−). In contrast to previous analyses of the JP = 2− sector [24, 30, 31,5355

34–37, 152–155], we studied a wide mass range in a single self-consistent analysis by including5356

three K2 states and by simultaneously fitting four 2− partial waves, which represent different5357

decay modes. Similarly, we also studied the K3(2320) and K4(2500) for the first time in final5358

states other than Λ
(−)

p(−).5359

[b] Disregarding measurements that were not included in the corresponding PDG average and measurements for
which it is not clear whether their uncertainties include systematic uncertainties, we obtained in addition the so far
smallest uncertainties for the masses of the K′1, K2(1770), K2(1820), and K∗4(2045), and for the widths of the K′1
and K2(1770).

[c] According to the PDG listing [9].
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Furthermore, we performed a first study of excited pseudoscalar kaons over a wide mass range5360

in a single analysis. We find indications for three excited pseudoscalar kaons; i.e. the K(1460),5361

the K(1630), and the K(1830); while quark-model calculations predict only two states in this5362

mass region. Especially, the K(1630) signal is the clearest among these three signals and is least5363

compatible with the two quark-model states (see figure 9.1). This suggests that the K(1630) is a5364

supernumerary state and thus a candidate for a crypto-exotic state.5365

Another way to represent our results is in the form of a Chew-Frautschi plot as shown in figure 9.2.5366

As first discussed by Chew and Frautschi [45], mesons group into families, which lie on so-called5367

Regge trajectories. It is a long-known experimental observation that these Regge trajectories5368

correspond to approximately straight lines in the Chew-Frautschi plot [46].[d]
5369

Also, our measurements of strange mesons nicely group into three families in the Chew-Frautschi5370

plot, i.e. the K∗J ground states, the KJ ground states, and the KJ excited states. The members of5371

these three families follow approximately linear Regge trajectories,5372

J(m0) = α0 + α′m2
0, (9.1)

which are represented by the orange, green, and blue lines in figure 9.2.[e] Table 9.1 lists the5373

parameters of all three Regge trajectories.[f] Our estimates for the parameters of the Regge5374

trajectories are in agreement with those determined from a quark-model calculation in ref. [10]5375

and with those determined from previous measurements in ref. [170], except for the trajectory of5376

the KJ excited states, which has a slightly smaller slope value in our case and a larger intersect.[g]
5377

In summary, our analysis yields a Chew-Frautschi plot with three Regge trajectories up to high5378

meson spins of J = 4, and gives a consistent picture of the strange-meson spectrum. This5379

again demonstrates that we explored a large fraction of the known strange-meson spectrum at5380

COMPASS using data from only a single reaction K− + p→ K−π−π+ + p.5381

9.1 Outlook and Further Prospects5382

In this work, we performed a first set of systematic studies. In order to obtain estimates for5383

the full systematic uncertainties, a complete set of systematic studies has to be performed in a5384

further analysis. Obtaining such a complete set of systematic studies was not possible within the5385

[d] Also, QCD string models [168] and calculations using Salpeter equations [169] predict linear Regge trajectories.
More detailed studies allow for a non-zero curvature of the Regge trajectories, from which conclusions on the
“appropriate dynamic equation and potential to describe mesons” [170] can be drawn.

[e] Our estimate for the K4(2500) mass (violet point for J = 4) might be too low to fit onto the corresponding linear
Regge trajectory (green line). This may indicate a non-zero curvature of the Regge trajectory as observed in
e.g.ref. [170]. However, since we do not yet have systematic uncertainties for this mass estimate, we cannot make a
clear statement on the curvature of the Regge trajectories here.

[f] See caption of figure 9.2 for details on the fitting of the three Regge trajectories.
[g] The smaller slope value for trajectory of the KJ excited states can partly be explained by our comparably low mass

estimate for the K(1460), for which we have, however, no systematic uncertainty. This may also explain the larger
intersect.
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Figure 9.2: Chew-Frautschi plot of strange mesons, i.e. spin J of the state versus its nominal-mass squared
as obtained from our analysis. The stars represent K∗J ground states, the dots represent KJ states. The
red stars and dots show the results obtained from the 10-wave RMF, the violet stars and dots show the
results of the corresponding extended RMF. The magenta pluses show the results for the K∗(892) and
K∗2(1430) as obtained from the freed-isobar analyses. The orange, green, and blue lines represent fits of
Regge trajectories to the K∗J states, KJ ground states, and KJ excited states, respectively. The K2(1820) is
not considered for the green Regge trajectory of the KJ ground states. The K(1460) is considered for the
blue Regge trajectory of the excited KJ states. The K(1630) and K(1830) were not considered for the fit,
because they belong to higher excitations or are potential supernumerary states. In order to obtain the
linear Regge trajectories, we performed χ2 fits where we took into account only the statistical uncertainties
of our mass estimates and where we neglected all correlations for simplicity.

Table 9.1: Intersects α0 and slopes α′ of the three Regge trajectories of the K∗J ground states, KJ ground
states, and KJ excited states (K′J). The first line lists our rough estimates for the parameters of the Regge
trajectories, the second line lists the parameters as obtained from a quark-model calculation in ref. [10],
the third line lists the parameters as obtained from previous measurements (prev. meas.) in ref. [170]. As
we do not yet have systematic uncertainties for the parameter estimates from the extended RMFs and the
freed-isobar analyses, we cannot give systematic uncertainties for our parameters of the Regge trajectories.
Hence, we quote here only rough estimates without uncertainties. Also, in ref. [170] no uncertainties are
quoted and we do not list the uncertainties from ref. [10] for a clear arrangement.

K∗J KJ K′J
α0 α′ α0 α′ α0 α′

[(GeV/c2)−2] [(GeV/c2)−2] [(GeV/c2)−2]

COMPASS 0.35 0.81 −0.19 0.74 −1.24 0.64

Quark model 0.318 0.839 −0.197 0.780 −2.240 0.964
Prev. meas. 0.25 0.89 −0.15 0.69 −2.1 0.97
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scope of this work. For example, systematic effects from the choice of partial waves and model5386

components included in the RMFs have to be studied. Nonetheless, we expect our first estimates5387

for the systematic uncertainties to not drastically underestimate the full systematic uncertainties.5388

Also, systematic studies of the extended RMFs and the freed-isobar analyses still have to be5389

performed.5390

There are also aspects of our analysis that may be improved in the future in order to reduce5391

systematic uncertainties. Furthermore, by comparing the results of improved analyses to our5392

results, our results could be further scrutinize. While we used a rank=3 model in the final 238-5393

wave PWD, we performed the wave-set selection using only a rank=1 model, because a wave-set5394

selection using a rank=3 model is computationally and technically much more demanding. This5395

in principle can lead to a too large wave set. However, we do not find artifacts that hint at a5396

too large wave set in the results of the 238-wave PWD. In a future analysis, performing the5397

wave-set selection using a rank=3 model could validate our results. Also, Breit-Wigner models5398

as used in our RMFs are good approximations only in the case of narrow isolated resonances.5399

In cases of overlapping resonances, such as the K2(1770) and K2(1820), more elaborate models5400

that incorporate constraints imposed by unitarity and analyticity may in principle improve the5401

RMF results. In particular, such elaborate models would allow a future analysis to determine the5402

pole parameters and couplings, which—in contrast to Breit-Winger parameters and branching5403

fractions—represent the actual, fundamental, and process-independent properties of a resonance.5404

A step in this direction was achieved by the authors of ref. [134], who developed such a model5405

for the η(′)π final state. However, three-body final states, such as the K−π−π+ final state analyzed5406

in our work, are much more complicated and there are no already applicable models for them5407

available. Developing such models for three-body final states requires close collaboration5408

between experimentalists and theorists.5409

At COMPASS, the K−π−π+ final state is the flag-ship channel for strange-meson spectroscopy.5410

The COMPASS samples for other charge combinations such as the K−π0π0 or the K0
Sπ
−π0

5411

final states are expected to be significantly smaller due to the smaller experimental acceptance5412

for detecting and reconstructing a π0. However, as the π0 and the K0
S are identified by their5413

reconstruction, the charged particles in these final states do not need to be positively identified by5414

the RICH. Thus, in contrast to our analysis, these two channels do not suffer from acceptance5415

effects from the RICH particle identification. Therefore, the study of the K−π0π0 and K0
Sπ
−π0

5416

final states may give complementary information to our analysis.5417

While the Kππ final state allows us to study in principle the full strange-meson spectrum,5418

strange mesons can be studied at COMPASS also in other final states, which provide additional5419

information on parts of the strange-meson spectrum. For example, an analysis of the K0
Sπ
− final5420

state, in which K∗J states can be studied with high precision, is currently ongoing [65, 171].[h]
5421

States at higher masses can be addressed in final states with heavier particles such as K−φ, K−ω,5422

and Λp. At COMPASS, also these final states can in principle be studied. Hence, COMPASS5423

will contribute further to improve our understanding of the strange-meson sector.5424

[h] Unfortunately, K∗0 states, i.e. the [Kπ]S amplitude, cannot be studied in this final state, because states with JP = 0+

cannot be produced in diffractive scattering of a kaon beam.
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Furthermore, strange mesons will be studied in the decays of heavy mesons and τ leptons using5425

upcoming high-precision data from currently running experiments such as Belle II, BES III,5426

and LHCb. For example, strange mesons can be studied in the decay τ− → K−π−π+ντ, for5427

which Belle II will measure a large sample. However, τ decays are dominated by only K1 states.5428

Also, often only a limited mass range is accessible in the decays of heavy mesons and τ leptons,5429

as discussed, for example, in section 7.1.1 for the B+ → J/ψφK+ decay studied by LHCb at5430

CERN [34]. Still, with continuously growing data samples, we can expect more precise studies5431

of the strange-meson sector form decays of heavy mesons or τ leptons.5432

Another laboratory to study strange mesons are photo-production reactions. There are plans [172,5433

173] to study final states with strange mesons such as KKππ at the GlueX experiment at Jefferson5434

Lab by employing an upgraded final-state particle identification based on a DIRC detector5435

originally used by the BaBar experiment [25, 174]. This would allow GlueX to study strange5436

mesons appearing in the Kππ and Kπ subsystems using methods similar to our freed-isobar5437

approach. Also at Jefferson Lab, a proposal for strange-hadron spectroscopy with a secondary5438

K0
L beam using the GlueX spectrometer was recently approved [175]. The meson spectroscopy5439

part of the physics program focuses mainly on the Kπ final state, with the goal to study K∗J states5440

with high precision.5441

While the spectroscopy program of the PANDA experiment, which is currently under construction5442

at GSI, focuses on mainly charm and hyperon physics, PANDA can in principle also study strange5443

mesons in reactions such as pp→ K+K0π−π+π− [176].5444

Finally, there is a letter of intent for a new QCD facility at CERN’s M2 beam line called5445

AMBER [177]. A pilot run for the first phase of this experiment using the existing M2 beam5446

line has already been approved by CERN [178]. The second phase of this experiment proposes5447

to upgrade the M2 beam line in order to allow radio-frequency separation of the beam particles5448

and thereby drastically increasing the antiproton and kaon fraction in the hadron beam. The5449

very broad physics program of the second phase includes strange-meson spectroscopy. The goal5450

is to collect a K−π−π+ sample of more than 10 × 106 events, i.e. roughly 10 times larger than5451

our existing COMPASS K−π−π+ sample. With such a data sample, AMBER could map out the5452

strange-meson spectrum with unprecedented detail and precision, similar to what the analysis of5453

the large COMPASS π−π−π+ sample did for the non-strange light-meson sector [39, 41]. With5454

our work, we prepared the road map for such an analysis by applying sophisticated techniques5455

such as the wave-set selection, the correction for the π−π−π+ background, and the freed-isobar5456

analysis.5457

In summary, with our results from the K−π−π+ final state at COMPASS and with many upcoming5458

results from various experiments, strange-meson spectroscopy is entering a high-precision era.5459

This will lead to a more precise and in particular a more complete picture of the excitation5460

spectrum of strange mesons. It will deepen our understanding of the strong interaction, which5461

forms these mesons, and it will also have an impact on other fields of physics, such as the search5462

for CP violation in multi-body decays of heavy mesons, where these strange mesons appear as5463

well.5464
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A Particle Identification5465

A.1 Beam-Particle Identification5466

A.1.1 Calibration Data Sample5467

In section 3.1.4, we developed a method for beam-particle identification using the information5468

of both CEDAR detectors, based on a likelihood ansatz. The parameters of the corresponding5469

likelihood function in equation (3.13) can be determined by any calibration sample containing a5470

mixture of the different beam-particle species. The only requirement for this calibration samples5471

is that it needs to be sufficiently large to perform a time-dependent calibration.5472

Preselection5473

First, a preselection was performed, which is common to the calibration sample and the per-5474

formance validation samples discussed in appendix A.1.2. The following cuts were applied:5475

5476

• DT0 trigger5477

• Exactly one candidate for the interaction vertex of the beam particle was reconstructed5478

• Beam track was measured with the silicon detectors of the beam telescope[a]
5479

• The beam track coincides with the event in time: |tBeam| < 5 ns[b]
5480

Final Selection5481

To obtain a large calibration sample with good quality, we used an event sample with three5482

charged hadrons in the final state. In addition, this sample has a similar resolution of the measured5483

beam-particle inclination as the K−π−π+ sample, which important for the likelihood calibration5484

as discussed in section 3.1.4 of the main text. The following cuts were applied:5485

[a] This is done by requiring that the last measured z position of the beam track was at most 200 cm upstream of the
target.

[b] The time of the event, i.e. the time of the trigger signal is by construction ttrigger = 0 ns.
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• Preselection as discussed above5486

• Three charged tracks leave the interaction vertex5487

• Vertex z position in the target region: −65 cm < zPV < −30 cm5488

• Exclusivity: |Esum − 191 GeV| < 8 GeV with Esum =
∑3

i=1 Etrack,i5489

It is very important to use the DT0 trigger. Otherwise, the CEDAR trigger, which was tuned to5490

trigger on events with incoming beam kaons, heavily biases the result of the calibration.5491

A.1.2 Validation Data Samples5492

To study the properties of the likelihood-based beam-particle identification and to determine its5493

efficiency and impurity, clean pion-beam and kaon-beam samples are needed.5494

A pion-beam sample with small kaon contribution was obtained by selecting events of the5495

reaction π− + p→ π−π0π0 + p. In this channel, the complete final state can be identified. The π0
5496

were identified via their decay π0 → γγ using the ECALs and the π− was identified using the5497

RICH detector. The following selection cuts were applied to the events:5498

• Preselection (see appendix A.1.1)5499

• One charged track leaving the interaction vertex5500

• Vertex z position in the target region: −65 cm < zPV < −30 cm5501

• Exactly four ECAL clusters without associated charged track called neutral clustersneutral clustersneutral clustersneutral clustersneutral clustersneutral clustersneutral clustersneutral clustersneutral clustersneutral clustersneutral clustersneutral clustersneutral clustersneutral clustersneutral clustersneutral clustersneutral clusters with:5502

(see ref. [179] for details)5503

* ECluster > 0.6 GeV for ECAL1 or ECluster > 1.2 GeV for ECAL25504

* |tCluster − t0(ECluster)| < 3σECAL(ECluster)[c]
5505

• Exactly one combination of these four clusters to build two π0 candidates that each fulfills5506

|mγiγ j − 135 MeV/c2| < 11 MeV/c2
5507

• Exclusivity: |Eπ−π0π0 − 191 GeV| < 10 GeV5508

• The charged outgoing particle was identified as a pion using the RICH detector5509

* Particle momentum in the range 10 GeV/c < pπ− < 30 GeV/c5510

* RICH likelihood: LRICH(π) ≥ 1.4LRICH(K) and LRICH(π) ≥ 1.4LRICH(p)5511

Applying these cuts, we obtained pion-beam samples of 1 223 190 events for the 2008 and5512

1 159 220 events for the 2009 diffraction data set, which are large enough to make reliable5513

statements about efficiency and impurity. Figure A.1a shows the ratio of the distribution of the5514

beam-particle inclinations for this pion-beam sample and the corresponding distribution of the5515

three-hadron sample used to calibrate the likelihood parameterization (see section 3.1.4). Both5516

distributions are normalized to their data set size. In the important central region, the ratio is5517

[c] This cut was applied only to the 2008 diffraction data set, because there is no calibration of the time resolution
available for the 2009 diffraction data set.
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Figure A.1: Ratios of the beam inclination distribution for the various validation samples and the three-
hadron sample used for calibration. Before calculating the ratio, each distribution was normalized to the
number of events in the corresponding data sample. (a) shows the pion-beam sample and (b), (c), and (d)
show the kaon-beam samples from the K− → µ−ν̄µ, π−π−π+, and π−π0 decays, respectively.

around one, which means that the pion-beam sample illuminates the CEDARs in a similar way5518

as the three-hadron sample. Therefore, the efficiency and impurity values we obtained from the5519

pion-beam sample are expected to be comparable to the ones for the three-hadron sample and5520

thus to the ones for the K−π−π+ data.5521

We obtained a clean kaon-beam sample by selecting decays of beam kaons into various final5522

states. The first kaon-beam sample is based on the decay K− → µ−ν̄µ, where the following cuts5523

were applied:5524
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• Preselection (see appendix A.1.1)5525

• One charged track leaving the reconstructed vertex5526

• Vertex z position upstream of the target: −270 cm < zPV < −70 cm5527

• Sum of energies deposited into both ECALs < 5 GeV5528

• Outgoing track is identified as a muon: Track traversed > 60 radiation lengths5529

• Momentum of the outgoing muon track pµ < 180 GeV/c5530

• Reconstructed beam-particle mass |mµν̄ − 493.677 MeV/c2| < 42 MeV/c2 [d]
5531

(see figure A.2b)5532

Applying the above cuts, we obtained a K− → µ−ν̄µ sample of 84 313 events for the 2008 and5533

71 274 events for the 2009 diffraction data set. In contrast to the pion-beam sample, the beam5534

inclination distribution of the K− → µ−ν̄µ sample has relatively more events in the center as5535

compared to the three-hadron sample (see figure A.1b). This may slightly bias the efficiency5536

towards larger values as the efficiency for kaon identification is higher for kaons traversing the5537

CEDARs parallel to their optical axes. Similarly, also the impurity value determined from this5538

sample may be slightly biased.5539

To overcome this problem and to get an estimate for the systematic uncertainty of the efficiency5540

and impurity values, two further kaon-beam samples were used. The second kaon-beam sample5541

is based on the kaon decay K− → π−π−π+. The following cuts were applied:5542

• Preselection (see appendix A.1.1)5543

• Three charged tracks leaving the interaction vertex5544

• Vertex z position upstream of the target: −270 cm < zPV < −70 cm5545

• Exclusivity: |Eπ−π−π+ − 191 GeV| < 8 GeV5546

• Reconstructed mass |mπ−π−π+ − 493.677 MeV/c2| < 14 MeV/c2 (see figure A.2a)5547

With only 15 212 events for the 2008 and 14 969 events for the 2009 diffraction data set, this5548

kaon-beam sample is significantly smaller than the K− → µ−ν̄µ sample. This is mainly due to5549

the smaller branching fraction of the K− → π−π−π+ decay. The beam inclination distribution5550

is not in perfect agreement with the one of the three-hadron sample, but more similar than the5551

K− → µ−ν̄µ sample (see figure A.1c). Thus, this kaon-beam sample can be used to obtain a5552

better estimated for the efficiency and impurity values.5553

The third kaon-beam sample is based on the kaon decay K− → π−π0. The following cuts were5554

applied:5555

• Preselection (see appendix A.1.1)5556

• One charged tracks leaving the reconstructed vertex5557

• Vertex z position upstream of the target: −270 cm < zPV < −70 cm5558

[d] The neutrino momentum is given by ~pν̄ = ~pBeam − ~pµ, where ~pbeam = 190 GeV/c · (dx/dz, dy/dz, 1) using the
measured beam inclination and an average beam momentum of approximately 190 GeV/c. The neutrino energy is
Eν̄ = |~pν̄|c.
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• Neutral ECAL cluster with the largest energy must have an energy of at least 10 GeV5559

• Exactly one combination of the highest-energy neutral ECAL cluster with another neutral5560

ECAL cluster, where5561

* Energy of the second neutral ECAL cluster was larger than 2 GeV5562

* |mγiγ j − 135 MeV/c2| < 10 MeV/c2
5563

• Energy of the second neutral ECAL cluster with lower energy larger than 8 GeV[e]
5564

• Exclusivity: |Eπ−π0 − 191 GeV| < 8 GeV5565

Applying the above cuts we obtained 94 890 events for the 2008 and 93 639 events for the 20095566

diffraction data set. However, in the kaon peak, we find only approximately 7500 events in5567

the 2008 and 6300 events in the 2009 diffraction data set (see figure A.2c). Therefore, the5568

K− → π−π0 sample is the smallest of all validation samples. Compared to the three-hadron5569

sample, the beam inclination distribution exhibits an increased number of events above the main5570

beam spot for 1ϑy > 200 µrad and therefore a reduced number of events for 1ϑy . 0 µrad (see5571

figure A.1d). The reason for this could be the comparably large background below the kaon peak5572

(see figure A.2c). Also, the distribution within the main beam spot is different from that of the5573

three-hadron sample.5574

Each of the kaon-beam samples has some caveats. However, comparing the results from all three5575

samples provides a handle on the systematic uncertainties of the efficiency and impurity values5576

and yields more reliable results.5577

A.1.3 Determination of Efficiency and Purity5578

To determine the efficiency PID(K → K) for kaon identification, we applied the CEDAR5579

particle identification cut for kaons, i.e. the log-likelihood different smaller than TC(K) [see5580

equation (3.15)], to all three kaon-beam samples. We estimated the efficiency as the ratio of5581

the event numbers before and after applying the CEDAR particle identification cut. Due to5582

the pion contamination of the kaon-beam sample, this approach only gives a lower limit for5583

the efficiency. For the K− → π−π0 and K− → µ−ν̄µ valiation samples, the kaon peak sits on a5584

considerable background (see figures A.2b and A.2c). To extract the efficiency also from these5585

samples, we fitted a Gaussian signal function plus a second-order background polynomial to the5586

π− π0 and µ−ν̄µ mass spectra. Then, we calculated the efficiency as the ratio of the integrals of5587

the Gaussian signal functions before (figure A.2c) and after (figure A.2d) applying the CEDAR5588

particle identification cut for kaons. Similarly, the efficiency for pion identification is the ratio5589

of the pion-beam sample before and after applying the CEDAR particle identification cut for5590

pions.5591

[e] First, we applied the more relaxed constrained of a cluster energy larger than 2 GeV in order to allow for more
combinations of neutral clusters in one event. Then we required that exactly one of these combinations exist. This
reduced combinatorial background.
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Figure A.2: Kaon peak in the invariant mass spectra of the kaon-beam samples. (a) π−π−π+ invariant
mass spectrum of the K− → π−π−π+ sample, (b) µ−ν̄µ invariant mass spectrum of the K− → µ−ν̄µ sample,
and (c) π− π0 invariant mass spectrum of the K− → π−π0 sample before applying the CEDAR particle
identification cut for kaons. (d) π− π0 invariant mass spectrum of the K− → π−π0 sample after applying
the CEDAR particle identification cut for kaons. The dark blue histogram represents the data. In (b)-(d),
the red curve is the result of a fit with a the Gaussian signal function plus a second-order background
polynomial. The green curve is the Gaussian signal function, and the orange curve is the background
polynomial. The sample of the decay K− → π−π−π+ shown in (a) is background free. Therefore, we did
not perform a fit to extract the number of kaon decays, but we directly used the number of selected events.

254 March 1, 2022 18:18



D
RA

FT

A.2 Final-State Particle Identification

To estimate the probability PID(π→ K) to misidentify a pion as a kaon, we applied the CEDAR5592

particle identification cut for kaons on the pion-beam sample and calculated the ratio of the5593

remaining events and the total number of events of the pion-beam sample. Similarly, the5594

probability to misidentify a kaon as a pion was obtained from each kaon-beam sample by5595

applying the cut on the CEDAR particle identification for a pion.5596

To determine the purity of the identified-kaon sample, the impurity from pions, muons, electrons,5597

and antiprotons in the beam had to be determined. The total impurity is dominated by the5598

impurity from misidentified pions in the identified-kaon sample, which was calculated in the5599

following way5600

Impurity(K) =
NK→π

NK→K + Nπ→K
=

PID(π→ K) · RπK

PID(K → K) + PID(π→ K) · RπK
, (A.1)

taking into account the number ratio of pions to kaons RπK = 35.9 ± 1.0 in the beam [63]. The5601

impurity of an identified-pion sample from misidentified kaons was calculated in an analogous5602

way.5603

A.2 Final-State Particle Identification5604

A.2.1 The Likelihood Approach5605

The likelihood for a given particle-species hypothesis S for a final-state particle is formulated5606

in terms of the probability of the observed hit pattern of individual Cherenkov photons, j, in5607

the RICH. The distribution of measured Cherenkov angle θ j of a single photon is modeled5608

by a Gaussian function with width σθ. A uniform distribution of emitted Cherenkov photons5609

is assumed in the azimuthal angle ϕ j around the direction of the particle. Finally, the total5610

probability to observe a photon in the RICH detector under the Cherenkov angle θ j is modeled in5611

ref. [64] as:5612

f (θ j, ϕ j|S ) =
A

√
2πσθ

exp

− (θ j − θ
S
Ch)2

2σ2
θ

 ε(θ j, ϕ j) + b(θ j, ϕ j). (A.2)

Here, A = A0 sin2 θS
Ch is the expected number of Cherenkov photons, ε(θ j, ϕ j) the probability5613

that a photon emitted with the angles (θ j, ϕ j) reaches the photon detector and is detected, and5614

b(θ j, ϕ j) is the strength of background contributions[f] that are uncorrelated with the final-state5615

particle.5616

[f] The strength of the background can be computed as a function of the photon position in the photon-detector plane
as explained in ref. [64].
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The information from all N measured photons is combined in one extended likelihood:[g]
5617

L̃(S ) = e−F(S )
N∏

j=1

f (θ j, ϕ j; S ). (A.3)

Here, F(S ) is the expected number of photons. It is calculated by integrating f (θ j, ϕ j; S ) over5618

the (θ j, ϕ j) reference region defined by the RICH acceptance (see ref. [64]).5619

The likelihood is normalized to the number of photons:5620

L(S ) =
N
√
L̃(S ). (A.4)

This allows to consistently tune the likelihood-ratio threshold for particles with different number5621

of photons.5622

A.2.2 Validation Samples5623

In order to estimate the performance of the RICH particle identification; i.e. the efficiency5624

P(S → S ) to identify a particle and the misidentification probability P(S → S ′) to assign the5625

wrong particle hypothesis S ′, validation samples of final-state particles are required. These5626

samples need to contain particles that were identified without using the RICH information. We5627

determined efficiency and misidentification probability separately for π+, K+, p and π−, K−, p.5628

We also treated the 2008 and 2009 diffraction data sets individually.5629

Kaon Validation Sample5630

We used φ(1020) → K−K+ decays as source of kaons. As the φ(1020) is very short-lived, we5631

cannot separate its decay vertex from the interaction vertex where the φ(1020) was produced,5632

which is the point of interaction of the beam particle with the target. Therefore, we considered5633

only events where the interaction vertex is within the region of the target, i.e. −65 ≤ ZVtx5634

< −30 cm. For all events with at least two charged particles leaving the interaction vertex, we5635

considered all possible combinations of two oppositely charged particle pairs. Assuming the5636

kaon hypothesis, we calculated the mass of the K−K+ system and required that it is around the5637

φ(1020) mass, i.e. 0.98 ≤ mKK < 1.07 GeV/c2.[h] To keep the signal-to-background ratio of the5638

φ(1020) ignal sufficently large, we required that one of the two kaons was identified by the RICH.5639

[g] For each final-state particle, all photons with θ j < 70 mrad were considered in equation (A.3). This threshold
of 70 mrad is lager than the maximum possible Cherenkov angle. For final states with more than one particle,
there can be ambiguities in the association of Cherenkov photons to particles. This combinatorial background was
accounted for by b(θ j, ϕ j).

[h] We estimated the combinatorial background below the φ(1020) peak. For about 5 % of all K− K+ combinations
whose invariant mass lies within five standard deviations around the φ(1020) peak, one of the two kaons was used
multiple times also in other combinations.

256 March 1, 2022 18:18



D
RA

FT

A.2 Final-State Particle Identification

Thus, when selecting the K+ validation sample, we identified the K− via the RICH information5640

using a likelihood-ratio threshold of TR = 1 and vice versa.[i] For the 2008 diffraction data set,5641

we obtained 44 059 131 events for the K− and 40 828 357 events for the K+ validation sample.5642

For the 2009 diffraction data set, we obtained 35 105 832 events for the K− and 31 887 217 events5643

for the K+ validation sample. However, only 3.6 % of these events come from φ(1020)→ K−K+
5644

decays.5645

From these data samples, we can determine the probability that a particle hypothesis S is assigned5646

to a kaon by the RICH:5647

P(K → S ) =
NK→S

Ntot
, (A.5)

where Ntot is the total number of kaons in the validation sample and NK→S is the number of5648

kaons that were identified as species S . The probability P(K → K) is the kaon identification5649

efficiency and P(K → S ) with S , K are the misidentification probabilities.5650

Figure A.3a shows the invariant mass spectrum of the K−K+ system for the K− validation5651

sample, i.e. when identifying the K+. It exhibits a clear peak at about 1.02 GeV/c2 from the5652

decay φ(1020) → K−K+. However, the φ(1020) peak sits on a large background. Thus, in5653

equation (A.5) we could not directly use the numbers of particles in the data sample, but we5654

had to determine the number of φ(1020) decays in the peak. Therefore, we modeled the mKK5655

distribution as a sum of signal functions for the φ(1020) decays and a smooth background5656

component, which was modeled by a second-order polynomial in mKK . The measurement5657

resolution in mKK of about 1.5 MeV/c2 is at the same order of magnitude as the total decay5658

width of the φ(1020) of 4.249 MeV/c2 [9]. Therefore, we used a Voigt function [180], which is5659

a convolution of a non-relativistic Breit-Wigner shape with FWHM Γ and a Gaussian function5660

with standard deviation σ to parameterize the signal component. In total, our model function is5661

given by5662

dN
dmKK

= A Voigt(mKK − m0;σ, Γ) + a + b(mKK − m0) + c(mKK − m0)2. (A.6)

Here; A, m0, σ, a, b, and c are free parameters that were determined by a fit to the data. We fixed5663

the width, Γ, of the Breit-Wigner term to its know value from ref. [9]. We determined the number5664

of φ(1020) decays by integrating the signal function over the range 1.0 ≤ mKK < 1.05 GeV/c2.[j]
5665

By performing this fit individually for the total data sample and for the subsamples where the5666

kaon was assigned the hypothesis S , we can determine Ntot and NK→S , respectively.[k] The5667

results are discussed in appendix A.2.3. Figure A.3b shows exemplarly the mKK distribution in a5668

selected (|~pR |,
√
θR) cell. The red curve represents a fit of the model function in equation (A.6)5669

to the distribution. It reproduces well the data with a p-value of 0.73.5670

[i] The identification of both particles is independent. Thus, identifying one kaon using the RICH does not bias the
identification probabilities of the other one. However, the kinematic range of the other particle might be limited.

[j] In practice we, calculated the integral of the histogram and the integral of the background function, because this
method has proven to be more robust with respect to systematic effects.

[k] As m0 and σ should be the same for the subsamples, we fixed these parameters in the fits to the subsamples to the
values obtained in the fit to the full sample. This improved the fit stability and thereby reduced systematic effects.
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Figure A.3: Invariant mass spectrum of the K−K+ system in the 2008 K− validation sample, i.e. after
identifying the positive particle as a K+ (see text). (a) shows the complete data set. (b) shows a subset of
the data in a (|~pR |,

√
θR) cell around (18.75 GeV/c, 0.19

√
rad). The blue histograms represents the data.

The red curve in (b) represents the result of a fit of equation (A.6) to the data. The orange curve shows the
background component in equation (A.6).

Preselection for Pion and Proton Validation Samples5671

We used K0
S → π−π+, Λ → π−p, and Λ̄ → π+ p decays as a sources of pions and (anti)protons.5672

As the decay of these neutral particles, which are commonly caleld V0 particles, proceeds via the5673

weak interaction, the V0 particles have long lifetimes. Thus, their decay vertex is displaced from5674

the interaction vertex where they were produced. These displaced vertices of V0 decays were5675

reconstructed from the two measured charged daughter particles.5676

We considered all displaced decay vertices with two oppositely charged tracks leaving the vertex5677

within the region −28 ≤ Zddv < 150 cm after the target.[l] We required that the decaying V0
5678

particle was produced in a interaction vertex. To do so, we reconstructed the direction of the V0
5679

particle by summing the measured momenta of the two daughter particles. We required, that5680

the distance of closest approach between the direction of the reconstructed V0 track and the5681

interaction vertex that is closest to this track is smaller than 3 mm. Finally, we ensured that none5682

of the two daughter tracks was associated with this closest interaction vertex.5683

This sample contains contributions from two-body decays of K0
S, Λ, and Λ̄; which appear as arks5684

with only little background in the Armenteros plot in figure A.4.[m]
5685

[l] We excluded the target region to exclude vertices from beam interactions that were erroneously reconstructed as
displaced decay vertices.

[m] The Armenteros plot shows the momentum component, pT, of one of the daughter particles that is transversal to
the V0 momentum, pT, versus the assymmetry of the longitudinal momentum components, p±L, of the positive and
negative daughter particles. By construction, pT is the same for both daughter particles.
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Figure A.4: Armenteros plot[m] of the V0 data sample of the 2008 diffraction data set.

Pion Validation Sample5686

In order to obtain a clean pion sample from K0
S → π−π+ decays, we needed to reject background5687

contributions from Λ and Λ̄ decays from teh V0 sample. Therefore, we calculated the invariant5688

pion-proton mass and rejected events in the range within ±7 MeV/c2 around the peak position of5689

1116.1 GeV/c2, which is consistent with the nominal Λ mass [9].[n] For the 2008 diffraction data5690

set, we obtained 72 608 756 K0
S decay candidates (see figure A.5). For the 2009 diffraction data5691

set, we obtained 60 865 406 K0
S decay candidates.5692

The K0
S sample exhibits only little background in the signal region of the mπ−π+ spectrum, in5693

contrast to the kaon valdidation sample discussed above. Therefore, we performed only a side-5694

band subtraction to account for the background when determining the number of K0
S decays.5695

We used a signal region of 450 ≤ mππ < 550 MeV/c2 and sideband regions of 420 ≤ mππ5696

< 450 MeV/c2 and 550 ≤ mππ < 580 MeV/c2.5697

Using this sample, we determined efficiency and misidentification probability for negative and5698

positive pions using equation (A.5) in the same way as discussed for negative and positive5699

kaons.5700

[n] The peak position was determined from a fit of a sum of two Gaussian and a second-order polynomial to the mass
spectrum.
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Figure A.5: Invariant mass distribution of the π− π+ system for the V0 sample from the 2008 diffraction
data set.

Proton Validation Sample5701

We used the decays Λ → π−p and Λ̄ → π+ p̄ as sources of protons and antiprotons. To reject5702

the K0
S background contribution in the V0 sample, we rejected events where the invariant π− π+

5703

mass, mπ−π+ , is within 20 MeV/c2 around the K0
S peak at 499 MeV/c2, which is consistent with5704

the nominal K0
S mass [9].[n]

5705

Λ decays are well separated from Λ̄ decays in the Armenteros plot (see figure A.4). In order5706

to obtain a clean proton sample from Λ decays and a clean antiproton sample from Λ̄ decays,5707

we selected evetns with α > 0 and α < 0, respectively. For the 2008 diffraction data set, we5708

obtained 10 930 951 Λ decay candidates (see figure A.6a) and 11 825 422 Λ̄ decay candidates5709

(see figure A.6b). For the 2009 diffraction data set, we obtained 10 038 288 Λ decay candidates5710

and 11 256 626 Λ̄ decay candidates. Analogous to the pion validaiton sample, we determine5711

the number of Λ and Λ̄ decays from a side-band subtraction of the mπ−p and mπ+ p̄ spectra,5712

respectively. The signal region is 1100 ≤ mπ± p(−) < 1130 MeV/c2. The sideband regions are5713

1080 ≤ mπ± p(−) < 1100 MeV/c2 and 1130 ≤ mπ± p(−) < 1150 MeV/c2.5714

Using this sample, we determined efficiency and misidentification probability for protons and5715

antiprotons using equation (A.5) in the same way as discussed for negative and positive kaons.5716
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Figure A.6: Invariant mass distribution of the pion-proton system. (a) shows the mπ−p distribution for the
Λ decay assumption. (b) shows the mπ+ p̄ distribution for the Λ̄ decay assumption. Both plots show the
2008 diffraction data set.

A.2.3 RICH Particle-Identification Performance5717

In this section, we present the results of the RICH performance studies, i.e. the efficiency and5718

misidentification probabilities shown in figures A.7 to A.9 for the 2008 diffraction data set and a5719

threshold of TR = 1.15 of the RICH likelihood ratio in equation (3.19). The same threshold value5720

was used for the event selection of the reaction K− + p→ K−π−π+ + p discussed in section 4.1.5721

Here, we will discuss technical aspects of the RICH performance matrices. The main aspects of5722

the RICH performance are discussed in the main text in section 3.2.2.5723

Figure A.7 shows the efficiency and misidentification probabilities for negative kaons. Fig-5724

ure A.7a shows the sum over all probabilities in each (|~pR |,
√
θR) cell. It is in good agreement5725

with one, except at the kinematic borders of the kaon validation sample, were the number of5726

events becomes small. It is not exactly one as we estimated NK→S and Ntot in equation (A.5)5727

from independent fits. The overall good agreement with one proves, that we are able to reliably5728

estimate efficiencies and impurities from fits to the mKK spectrum.5729

Figure A.8 shows the efficiency and misidentification probabilities for negative pions.Since the5730

pion validation sample is much larger than the kaon validation sample, we used a finer binning in5731

(|~pR |,
√
θR). Also here, sum over all probabilities is in good agreement with one, showing that5732

the side-band subtraction approach introduces only small systematic effects.5733

Figure A.9 shows the efficiency and misidentification probabilities for antiprotons. As for the5734

pion validation sample, the sum over all probabilities is in good agreement with one. Due to5735

the higher antiproton mass, we can identify antiprotons only above about 18 GeV/c. The upper5736
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Figure A.7: RICH efficiency and misidentification probability for negative kaons in cells of the particle
momentum |~pR | and the square-root of the track angle θR at the RICH position for the 2008 diffraction
data set using a likelihood-ratio threshold of TR = 1.15. (b) shows the identification efficiency. (c) to
(e) show the probability to misidentify the kaon as a pion, antiproton, or as background, respectively. (f)
shows the probability to not identify a kaon. (a) shows the sum over (b) to (f). (b) to (f) have the same
color scale. Regions without calibration data are drawn in light green.
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Figure A.8: RICH efficiency and misidentification probability for negative pions in cells of the particle
momentum |~pR | and the square-root of the track angle θR at the RICH position for the 2008 diffraction
data set using a likelihood-ratio threshold of TR = 1.15. (b) shows the identification efficiency. (c) to
(e) show the probability to misidentify the pion as a kaon, antiproton, or as background, respectively. (f)
shows the probability to not identify a pion. (a) shows the sum over (b) to (f). (b) to (f) have the same
color scale. Regions without calibration data are drawn in light green.
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momentum limit depends on the track angle and reaches up to 75 GeV/c. In the center of the5737

distribution, we achieve a high antiproton identification efficiency of about 86 %.5738

The RICH efficiencies and misidentification probabilities for positive kaons, pions, and protons5739

are in good agreement with those for the corresponding negative particle species discussed above,5740

except for small differences between the efficiency of negative and positive pions at the kinematic5741

borders of the validation sample. As those differences are the borders, they are not important5742

here.5743

The RICH performance studies for the 2009 diffraction data set yielded similar results as those5744

for the 2008 diffraction data set. Figure A.10 shows as an example the efficiencies for negative5745

pions and kaons. Nonetheless, we still threat the RICH performance separately for both years as5746

the experimental setup for both years was slightly different.5747

A.2.4 RICH Threshold Tuning for the K−π−π+ Final State5748

We estimated the efficiency to identify the K−π−π+ final state for a given TR by comparing the5749

number of events that pass the K−π−π+ event selection described in section 4.1, relative to the5750

number of selected K−π−π+ events for TR = 1.00. The blue curve in figure 3.14 shows the5751

efficiency determined from the 2008 diffraction data set.5752

The purity (orange curve in figure 3.14) is the fraction of events where the K− and π− hypotheses5753

were correctly attribute to the final-state particles. As the determination of the purity requires5754

knowledge about the true particle species, we used a pseudodata sample of K−π−π+ events that5755

is uniformly distributed in the K−π−π+ phase space to estimate the purity. The Monte Carlo5756

method used to obtain such a pseudodata sample is described in appendix C. This estimate may5757

be biased, because in the measured data K−π−π+ events are not uniformly distributed in phase5758

space. However, at this stage of the analysis, i.e. before the partial-wave decomposition, this was5759

the best approximation which could be employed. Furthermore, here we are not interested in5760

the absolute value of the purity, but we are mainly interested in its TR dependence, which is less5761

sensitive to the distribution of the final-state particles.5762

264 March 1, 2022 18:18



D
RA

FT

A.2 Final-State Particle Identification

0 25 50 75

|~pR| [GeV/c]

0.0

0.2

0.4

√
θ R

[√
ra

d
]

∑
S′ P (p̄→ S′)

0.8 1.0 1.2

(a)
0 25 50 75

|~pR| [GeV/c]

0.0

0.2

0.4

√
θ R

[√
ra

d
]

P (p̄→ p̄)

0.0 0.5 1.0

(b)

0 25 50 75

|~pR| [GeV/c]

0.0

0.2

0.4

√
θ R

[√
ra

d
]

P (p̄→ π−)

(c)
0 25 50 75

|~pR| [GeV/c]

0.0

0.2

0.4

√
θ R

[√
ra

d
]

P (p̄→ K−)

(d)

0 25 50 75

|~pR| [GeV/c]

0.0

0.2

0.4

√
θ R

[√
ra

d
]

P (p̄→ Bkg)

(e)
0 25 50 75

|~pR| [GeV/c]

0.0

0.2

0.4

√
θ R

[√
ra

d
]

P (p̄→ No PID)

(f)

Figure A.9: RICH efficiency and misidentification probability for antiprotons in cells of the particle
momentum |~pR | and the square-root of the track angle θR at the RICH position for the 2008 diffraction
data set using a likelihood-ratio threshold of TR = 1.15. (b) shows the identification efficiency. (c) to
(e) show the probability to misidentify the antiproton as a pion, kaon, or as background, respectively. (f)
shows the probability to not identify a antiproton. (a) shows the sum over (b) to (f). (b) to (f) have the
same color scale. Regions without calibration data are drawn in light green.
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Figure A.10: RICH efficiency for (a) kaons and (b) pions in cells of the particle momentum |~pR | and
the square-root of the track angle θR at the RICH position for the 2009 diffraction data set using a
likelihood-ratio threshold of TR = 1.15. Compare figures A.7b and A.8b, respectively.
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B.1 Reconstruction of Beam Energy5764

At COMPASS, the energy of the beam particle was not directly measured by the experimental5765

setup. However, we reconstructed it from the measured three-momenta of the K−π−π+ final-state5766

particles and the measured inclination of the beam particle track; assuming an exclusive event,5767

assuming the target particle to be a proton, and assigning the beam and final-sate particle masses5768

according to the CEDAR and RICH information, respectively. The energy of the beam particle5769

reconstructed in this way is an important quantity to ensure the exclusivity of an event. It was5770

used to suppress background events where not all final-state particles were detected.5771

To calculate the energy Ebeam of the beam kaon we used the following approach. First, we5772

determine the magnitude |~pbeam | of its three-momentum. From the four-momenta pi of the5773

final-state particles we calculate the total four-momentum,5774

pX = (EX , ~px) =

3∑
i=1

pi, (B.1)

of the final-state system X.5775

The Mandelstam variable t can be calculated in two different ways (see figure B.1): (i) from the5776

kinematics of the beam vertex in the laboratory frame, i.e.5777

t = (pbeam − pX)2 = m2
beam + m2

X − 2
(
EbeamEX − |~pbeam| |~pX | cos θ

)
, (B.2)

where θ is the scattering angle, i.e. the angle between the momentum of the X-system and of5778

the beam particle. It is calculated from ~pX in equation (B.1) and the measured beam-particle5779

inclination; (ii) from the kinematics of the target vertex, i.e.5780

t = (ptarget − precoil)2 = 2mtarget(mtarget − Erecoil) = 2mtarget(EX − Ebeam), (B.3)

where we use that the target proton is at rest in the laboratory frame and where we assume that5781

the target proton stays intact in the scattering reaction. Therefore, the energy transferred between5782

the upper and lower vertex is (mtarget − Erecoil) = (EX − Ebeam).5783
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Figure B.1: Schematic view of the diffractive scattering reaction K−+ p→ K−π−π+ + p with the kinematic
variables of interest. s is the total center-of-momentum energy of the K−beam ptarget system; t is the squared
four-momentum transferred between the beam kaon and the target proton; and mX is the invariant mass of
the K−π−π+ final state.

Combining equations (B.2) and (B.3)5784

m2
beam + m2

X − 2
(
EbeamEX − |~pbeam| |~pX | cos θ

)
= 2mtarget(EX − Ebeam) (B.4)

and substituting the beam energy by the beam momentum via Ebeam =

√
m2

beam + |~pbeam| yields5785

m2
beam + m2

X − 2
(
EbeamEX − |~pbeam| |~pX | cos θ

)
= 2mtarget(EX − Ebeam) (B.5)

2mtargetEX − m2
beam − m2

X − 2|~pbeam||~pX | cos θ = −2(EX − mtarget)
√

m2
beam + |~pbeam|2. (B.6)

By taking the square of equation (B.6) and sorting the result by powers of |~pbeam|, we obtain a5786

quadratic equation in |~pbeam|:5787

0 =

≡ a︷                                      ︸︸                                      ︷[
4(|~pX | cos θ)2 − 4(EX − mtarget)2

]
|~pbeam|

2

+
[
4(m2

beam + m2
X − 2mtargetEX)|~pX | cos θ

]︸                                             ︷︷                                             ︸
≡ b

|~pbeam|

+
[
(m2

beam + m2
X − 2mtargetEX)2 − 4(EX − mtarget)2m2

beam

]︸                                                                  ︷︷                                                                  ︸
≡ c

(B.7)

Solving equation (B.7) allows to calculate the beam momentum from measured quantities:[a]
5788

|~pbeam| =
−b +

√
b2 − 4ac

2a
. (B.8)

[a] Only one of the two solutions of the quadratic equation in equation (B.7) is physical, i.e. yields a positive
momentum.
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Finally, the beam energy is calculated from the beam momentum via5789

Ebeam =

√
m2

beam + |~pbeam|2. (B.9)

B.2 Estimation of the Non-Exclusive Background5790

In order to estimate the non-exclusive background in the final K−π−π+ sample, we needed to5791

separate exclusive from non-exclusive contributions in the distribution of the reconstructed beam5792

energy Ebeam shown in figure B.2.5793

The finite width of the peak in the beam-energy distribution of exclusive events arises from5794

the intrinsic energy spread of the resolution of the apparatus. As a rough approximation, we5795

parameterized the peak by a sum of two Gaussian functionsN with different means µi and widths5796

σi.5797

As there are many possible sources for non-exclusive events contributing to our data, there5798

is no physics model for their Ebeam distribution. We assumed that the Ebeam distribution of5799

non-exclusive events has a non-peaking shape in the energy region around the nominal beam5800

energy and that it vanishes above this region, because the total energy in any reaction is limited5801

by the beam energy. We parameterize the non-exclusive contributions by an arcus-tangents5802

function, which models the vanishing background above the peak region, multiplied by a fourth5803

order polynomial in the beam energy. The full model reads:5804

f (Ebeam) =N(Ebeam, µ1, σ1) +N(Ebeam, µ2, σ2)

+

 4∑
i=0

ai
(
Ebeam − µ1 − ∆E

)i

 · [π2 − arctan
{
b
(
E − µ1 − ∆E

)}]
︸                                                                          ︷︷                                                                          ︸

BG(Ebeam)

, (B.10)

where µi, σi, ai, b, ∆E are the free parameter, which we fit to the data.5805

Figure B.2 shows the result of a fit[b] of equation (B.10) to the distribution after applying all cuts,5806

except for the cut on Ebeam. The non-exclusive contribution, BG(Ebeam) shown by the orange5807

curve, drops quickly above the nominal beam energy of about 191 GeV.5808

Using this fit result we estimated the total number of events and the number of non-exclusive5809

events in our selected data sample by integrating the red and orange curves over the selected Ebeam5810

range. We obtained 402 051 events for the total number of events, which deviates only slightly5811

from the measured number of 397 701 events in this energy region. This shows, that the model5812

[b] We performed a binned maximum-likelihood fit using a Poisson assumption for the distribution of the number of
events in each bin. We fit a wide energy region from 155 to 221 GeV, to determine the parameters especially of the
non-exclusive background term.
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Figure B.2: Distribution of the reconstructed beam energy of the K−π−π+ sample (blue histogram) after
applying all cuts, except for the cut on Ebeam, (a) in linear scale and (b) in logarithmic scale. The red
curves show the fit of equation (B.10) to the distribution. The orange curves show the non-exclusive
contributions BG(Ebeam) [see equation (B.10)].

describes the data well. Given the ad-hoc nature of our parameterization BG(Ebeam) for the non-5813

exclusive contributions, the result may depend on this choice. To investigate this, we performed5814

systematic studies were we reduced and increased the order of the background polynomial5815

in equation (B.10). We also tested other fit ranges. Finally, we estimated a contribution of5816

non-exclusive events to our data sample of (2 ± 1 (sys.)) %.5817

B.3 Fit of t′ Spectra5818

In section 4.2, we qualitatively discuss the t′ distribution. In this section, we parameterize the5819

shape of the t′ distribution and determine its parameters and its mKππ dependence. The shape of5820

the t′ distribution is also required as input to generate pseudodata (see appendix C). Since this is5821

done independently for the years 2008 and 2009, we studied the t′ distribution independently for5822

both years. Here, we discuss only the results for 2008. The results for 2009 are similar.5823

The slope of the t′ spectrum is steeper in the low- than in the high-t′ region. In order to5824

describe the full t′ spectrum with one parameterization, we modeled it by a double-exponential5825

distribution5826

dN̂ev(t′; mKππ)
dt′

= A(mKππ)
[
e−b1(mKππ)t′ + R(mKππ)e−b2(mKππ)t′

]
, (B.11)

where bi(mKππ) are the slope parameters and R is the ratio between the strength of second and5827

first exponential contribution. b1, b2, A, and R depend on mKππ.5828
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The measured t′ spectrum is distorted by acceptance effects caused by the experimental setup.5829

In order to take these effects into account, we approximated the acceptance in two-dimensional5830

cells of mKππ and t′ based on a Monte Carlo sample that is uniformly distributed in the phase5831

space (see appendix C for details).[c] We parameterized the t′ dependence of the acceptance η in5832

a given mKππ bin by5833

η(t′; mKππ) = η0 +
1

(t′ − t′0)α
[
a + bt′ + ct′2

]
, (B.12)

where η0, t′0, α, a, b, and c are free parameters. These free parameters are determined from a fit of5834

equation (B.12) to the acceptance obtained from the Monte Carlo sample. The fit was performed5835

in the t′ range 0.08 ≤ t′ < 2.0 (GeV/c)2. Figure B.3a shows the result of such a fit in the range5836

1.2 ≤ mKππ < 1.4 GeV/c2. In the shown and in all other mKππ ranges, the used parameterization5837

describes the acceptance well.5838

Finally, we modeled the measured t′ spectrum as5839

dN̂ev(t′; mKππ)
dt′ = η(t′; mKππ) · dN̂ev(t′; mKππ)

dt′

= η(t′; mKππ) · A(mKππ)
[
e−b1(mKππ) t′ + R(mKππ) e−b2(mKππ) t′

]
. (B.13)

We fitted equation (B.13) to the t′ spectrum in the range 0.1 ≤ t′ < 2.0 (GeV/c)2 independently5840

in 400 MeV/c2 wide bins of mKππ to determine the mKππ dependence of the free parameters bi, A,5841

and R.[d] Figure B.3b shows, for example, the t′ spectrum in the range 1.2 ≤ mKππ < 1.6 GeV/c2.5842

Our model (red curve) reproduces the measured t′ spectrum well. This also holds for all other5843

mKππ ranges.5844

Figure B.4a shows the slope parameters as a function of mKππ. The first exponential term5845

exhibits a steeper slope, i.e. a larger slope parameter, than the second exponential by construction5846

of the fitting procedure. The steeper exponential becomes shallower with increasing mKππ,5847

while the slope of the shallower exponential stays almost constant with a maximum at about5848

mKππ ≈ 2 GeV/c2. The low-mKππ region is dominated by the steeper exponential as shown by5849

the ratio of their strength in figure B.4b. In the high-mKππ region at about 3 GeV/c2 the shallower5850

exponential becomes more significant, but its contribution stays below about 11 %. We observed5851

qualitatively similar features in the COMPASS data of the reaction π− + p→ π−π−π+ + p [39].5852

B.4 Time Stability5853

In order to reject data where some of the detectors were malfunctioning, we tested the time5854

stability of the data taking. Therefore, we studied the change of various kinematic distributions5855

with time for the reactions K− + p→ K−π−π+ + p and π− + p→ π−π−π+ + p [43]. We mainly5856

[c] Doing so, we neglected the non-uniform distribution of the measured events in the phase space. However, this has
only a minor effect on the acceptance in t′ and hence, it does not strongly influence the extracted slope parameters.

[d] We performed a binned maximum-likelihood assuming a Poisson distribution for the number of events in each bin.
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Figure B.3: Result of fits to extract the t′ slope parameters form the 2008 diffraction data set. (a) shows the
experimental acceptance as a function of t′ in the range 1.2 ≤ mKππ < 1.4 GeV/c2 (blue points) together
with a fit of equation (B.12) (solid red curve). The dashed red curve shows the extrapolation beyond the
fitted t′ range. (b) shows the measured t′ spectrum in the range 1.2 ≤ mKππ < 1.6 GeV/c2 (blue histogram)
together with a fit of equation (B.13) (red curve).

studied distributions in final-state kinematic variables, which are analyzed in the partial-wave5857

decomposition (see section 5.1). As a simple test to check for changes in the distributions, we5858

determined the moments of the distributions as a function of time and check for deviations from5859

the average value of the corresponding moment.5860

Figure B.5 shows the mean value, i.e. first moment, of the mKππ distribution as a function of5861

time represented by the run number. Outliers, i.e. data points that significantly deviate from the5862

average value, in this or one of the other studied kinematic distributions that could be correlated5863

to problems in the experimental setup were removed from the final data sample (see section 4.1).5864

These data are shown as gray points. The remaining data, shown as blue points, exhibit no5865

significant time dependence. Using a χ2 test,[e] for example the time dependence of the mean5866

value of mKππ is consistent with a constant with a p-value of 0.7. With this approach, we were5867

able to clean up our data sample from artifacts caused by problems during the data taking.5868

[e] See sections 4.5 and 4.7 in ref. [119] for details on the χ2 test.
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Figure B.4: Results of fitting equation (B.13) to the measured t′ spectra in bins of mKππ as obtained from the
2008 diffraction data set. (a) shows the slope parameters of the first (blue) and second (orange) exponential.
(b) shows the ratio of the strength of the second and the first exponential term in equation (B.13). The
uncertainties are smaller than the marker size for most of the data points.
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Figure B.5: Time stability of the mKππ distribution. The mean mass 〈mKππ〉 per chunk of data in time,
called run, is shown, versus the number of the run ordered in time. The blue points show the selected data,
the gray points show the rejected data. The errors bars represent the statistical uncertainty of the mean
values.
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Monte Carlo simulations are an important tool in partial-wave analyses. They allow us to verify5870

the applied analysis methods or to trace the origin of some systematic effects. In addition, they are5871

necessary to study effects caused by the finite probability to experimentally observe a produced5872

event, i.e. by the acceptance.5873

We performed Monte Carlo simulations by generating so-called produced pseudodataproduced pseudodataproduced pseudodataproduced pseudodataproduced pseudodataproduced pseudodataproduced pseudodataproduced pseudodataproduced pseudodataproduced pseudodataproduced pseudodataproduced pseudodataproduced pseudodataproduced pseudodataproduced pseudodataproduced pseudodataproduced pseudodata samples5874

of events that are randomly distributed according to a certain model input. We used different5875

physics models or generated samples that are uniformly distributed in the phase-space variables.5876

The procedure is described in appendix C.1.5877

To study the experimental acceptance and resolution and to take the effects they cause into5878

account when comparing models to measured data, we applied both to the produced pseudo-5879

data samples. The procedure is described in appendix C.2. Thereby, we obtained so-called5880

reconstructed pseudodatareconstructed pseudodatareconstructed pseudodatareconstructed pseudodatareconstructed pseudodatareconstructed pseudodatareconstructed pseudodatareconstructed pseudodatareconstructed pseudodatareconstructed pseudodatareconstructed pseudodatareconstructed pseudodatareconstructed pseudodatareconstructed pseudodatareconstructed pseudodatareconstructed pseudodatareconstructed pseudodata samples.5881

The distributions of the reconstructed pseudodata, called reconstructed distributionsreconstructed distributionsreconstructed distributionsreconstructed distributionsreconstructed distributionsreconstructed distributionsreconstructed distributionsreconstructed distributionsreconstructed distributionsreconstructed distributionsreconstructed distributionsreconstructed distributionsreconstructed distributionsreconstructed distributionsreconstructed distributionsreconstructed distributionsreconstructed distributions, mimic the5882

measured distributionsmeasured distributionsmeasured distributionsmeasured distributionsmeasured distributionsmeasured distributionsmeasured distributionsmeasured distributionsmeasured distributionsmeasured distributionsmeasured distributionsmeasured distributionsmeasured distributionsmeasured distributionsmeasured distributionsmeasured distributionsmeasured distributions of data recorded by the experiment, which we refer to as measured datameasured datameasured datameasured datameasured datameasured datameasured datameasured datameasured datameasured datameasured datameasured datameasured datameasured datameasured datameasured datameasured data5883

in the following. The distributions of produced pseudodata events, called produced distributionsproduced distributionsproduced distributionsproduced distributionsproduced distributionsproduced distributionsproduced distributionsproduced distributionsproduced distributionsproduced distributionsproduced distributionsproduced distributionsproduced distributionsproduced distributionsproduced distributionsproduced distributionsproduced distributions,5884

are the “true” distribution of the underlying physics process, i.e. without acceptance and res-5885

olution effects. We also call the “true” distributions of the underlying physics process of5886

measured data produced distributions of produced events. Finally, the reconstructed valuesreconstructed valuesreconstructed valuesreconstructed valuesreconstructed valuesreconstructed valuesreconstructed valuesreconstructed valuesreconstructed valuesreconstructed valuesreconstructed valuesreconstructed valuesreconstructed valuesreconstructed valuesreconstructed valuesreconstructed valuesreconstructed values of5887

kinematic variables of reconstructed pseudodata mimic measured valuesmeasured valuesmeasured valuesmeasured valuesmeasured valuesmeasured valuesmeasured valuesmeasured valuesmeasured valuesmeasured valuesmeasured valuesmeasured valuesmeasured valuesmeasured valuesmeasured valuesmeasured valuesmeasured values of measured data and5888

the produced valuesproduced valuesproduced valuesproduced valuesproduced valuesproduced valuesproduced valuesproduced valuesproduced valuesproduced valuesproduced valuesproduced valuesproduced valuesproduced valuesproduced valuesproduced valuesproduced values are the true values of the kinematic variable with which the event was5889

produced.5890

As the measurement effects induced by the apparatus can be different for the diffraction data5891

taking campaigns in 2008 and 2009, we treated both years separately. In this chapter, we discuss5892

the main features of the measurement effects exemplarily for the 2008 setup. The measurement5893

effects of the 2009 setup show similar features.5894
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C.1 Generating Pseudodata of Diffractive Scattering Reactions5895

In this section, we will briefly summarize how to generate pseudodata samples of diffractive5896

scattering reactions. The generic topology of these reactions is depicted in figure C.1. An5897

example of such a reaction is the reaction K− + p→ K−π−π+ + p analyzed in this work.5898

xx

x x

X

h1

h2

hn−1

hn

...

htarget hrecoil

hbeam

Figure C.1: Schematic view of diffractive scattering of a high-energy hadronic beam particle hBeam off

some hadronic target particle htarget. In this process, the target particle scatters elastically and the beam
particle gets excited into some intermediate state X, which further decays into a hadronic n-body final
state.

As we analyzed our data independently in kinematic cells of the invariant mass mX of the X5899

system and of the reduced four-momentum transfer squared t′, we generate pseudodata samples5900

independently in (mX , t′) cells. For fixed mX and t′, the probability of an event is proportional5901

to the decay rate of the intermediate state X to the n-body final state, which is proportional to5902

two factors (see equation (43.10) in ref. [9]): (i) the matrix element squared |M|2 and (ii) the5903

differential n-body phase-space volume dΦn. The first one encodes the properties of the physical5904

process, the latter one is a purely kinematic factor.5905

In order to generate events that are distributed according to their reaction cross-section, we first5906

generated a sample of events that is uniformly distributed in the n-body phase space, i.e. the5907

probability to produce an event is proportional only to dΦn.5908

Second, we obtained a produced pseudodata sample of a given model for |M|2 by randomly5909

accepting events from the phase-space distributed sample according to their probability, which5910

is proportional to |M|2.[a] For example, when generating a pseudodata sample from the results5911

of a partial-wave decomposition, i.e. from the modeled intensity distribution I(τ,mKππ, t′) [see5912

equation (5.16)], we used |M(τ,mKππ, t′)|2 ∝ I(τ,mKππ, t′). The mX and t′ dependence is5913

accounted for by generating a number of events in each (mX , t′) cell that is proportional to the5914

number of events predicted by the model.5915

A special case are pseudodata samples that are distributed uniformly in the n-body phase space5916

of the final-state particles, i.e. |M|2 = 1. For example, such so-called phase-space pseudodataphase-space pseudodataphase-space pseudodataphase-space pseudodataphase-space pseudodataphase-space pseudodataphase-space pseudodataphase-space pseudodataphase-space pseudodataphase-space pseudodataphase-space pseudodataphase-space pseudodataphase-space pseudodataphase-space pseudodataphase-space pseudodataphase-space pseudodataphase-space pseudodata5917

samples were used to accounting for acceptance effects in the partial-wave decomposition. For5918

these samples, we drew mX uniformly in the analyzed mass range and t′ according to the t′5919

[a] See [181, 182] for details on this accept-reject method.
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spectra we observed in the corresponding measured sample (see appendix B.3 for the t′ spectra5920

of the K−π−π+ sample).5921

C.2 Monte Carlo Simulation of the Experimental Setup5922

Although, the COMPASS experimental setup covers a wide kinematic range, its acceptance and5923

measurement resolution are finite. These measurement effects distort the distribution of produced5924

events. Thus, they have to be taken into account when comparing measured distributions to, e.g.5925

model expectations. The dominant effect for the K−π−π+ final state is the limited momentum5926

range of the final-state particle identification.5927

In order to obtain a reconstructed pseudodata sample that incorporates acceptance and reso-5928

lutions effects, we processed the events of the produced pseudodata sample through a Monte5929

Carlo simulation of the full COMPASS setup. Then, we applied the same event reconstruction5930

algorithm [53] to the simulated detector responses, as applied to measured data. Finally, only5931

those events entered the reconstructed pseudodata sample that survived the same event-selection5932

criteria as applied to measured data. Following this approach, a reconstructed pseudodata sample5933

is distributed as if it had been measured by the experimental apparatus.5934

The Monte Carlo simulation of the COMPASS setup is described in section 10 of ref. [49]. In the5935

following, we describe aspects of the Monte Carlo simulation that were improved in this analysis5936

(appendix C.2.1) or that are particular to this analysis (appendices C.2.2 and C.2.3).5937

C.2.1 Simulation of the Beam and Vertex Distribution5938

In order to simulate the experimental setup, we transformed the event kinematics from the center-5939

of-momentum system of the reaction to the laboratory frame. This required the distribution of5940

beam particle momentum to be known. In addition, the interaction vertex had to be placed within5941

the target volume. The spatial distribution of the interaction vertices is given by the distribution5942

of the beam particles in the plane transverse to the beam direction and by the target material5943

(see figure 4.2). In total, the six-dimensional beam-particle distribution is required to generate5944

pseudodata, i.e. the vertex position (XVtx,YVtx,ZVtx) and the beam momentum. The latter one5945

is expressed in terms of the beam energy Ebeam and in terms of the inclinations px
|~p| and py

|~p| of5946

the beam track in horizontal and vertical direction, respectively. The orientation angle of the5947

production plane of the reaction (see section 5.1.1) around the direction of the beam particle is5948

uniformly distributed, due to ration symmetry.5949

The beam-particle distribution is high-dimensional, complicatedly correlated, and thus hard to5950

model. Therefore, we generated the beam-particle distribution of pseudodata events by using the5951

beam-particle kinematics from randomly chosen events of a measured beam sample.5952
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In total, we generated about 200 times more pseudodata events than measured events, which5953

required a large beam sample. In order to obtain a beam sample, we selected events with three5954

charged particles in the final state, because measuring three charged tracks allows for a precise5955

reconstruction of the interaction vertex, which reduces systematic effects from the beam sample.5956

Simulating resolution effects at the borders of the kinematic regions that were selected for the5957

measured K−π−π+ sample requires generating pseudodata events also outside these regions.5958

Therefore, the cuts to select the beam sample were chosen to be wider compared to the ones for5959

the measured K−π−π+ sample. Starting from the same preselection as for the K−π−π+ final state5960

(see section 4.1 for details), we applied the following additional cuts:5961

• Signal from the diffraction trigger DT05962

• Interaction vertex position along the beam direction:−70 ≤ ZVtx < −27 cm5963

• Interaction vertex position in the plane transverse to the beam direction:5964 √
X2

Vtx + Y2
Vtx < 1.9 cm5965

• Momentum conservation in ∆φrecoil using the measured recoil proton (see section 4.1)5966

• Reconstructed beam-particle energy |Ebeam − 191.35 GeV| < 17.95 GeV5967

• Uncertainty in the reconstructed beam energy[b] is less than 20 GeV5968

The kinematic distributions of this beam sample are distorted by acceptance and resolution5969

effects. However, the physical distributions are needed as input to the Monte Carlo simulation.5970

Therefore, we had to correct the beam sample for these effects.5971

The strongest acceptance effect is in the ZVtx distribution. Final-state particles produced in5972

reactions at the upstream end of the target have to fly a long path through the target and thereby5973

undergo multiple scattering.[c] Thus, the acceptance is lower for events with an interaction5974

vertex located at the upstream end of the target. In the other variables of the beam sample the5975

acceptance is approximately uniform in the range of interest. To correct for the acceptance in5976

ZVtx, we determined the acceptance in bins of ZVtx from a reconstructed phase-space pseudodata5977

sample of the reaction π− + p→ π−π−π+ + p, which is the dominant contribution to the beam5978

sample. Then, the acceptance was parameterized by a third-order polynomial in ZVtx:5979

η(ZVtx) = A
[
1 + a(ZVtx + 50 cm) + b(ZVtx + 50 cm)2 + c(ZVtx + 50 cm)3

]
, (C.1)

where A, a, b, and c are free parameters we fitted to the acceptance in bins of ZVtx. Using the5980

parameterization in equation (C.1),we corrected the beam sample for acceptance effects in the5981

[b] We calculated the uncertainty in Ebeam using linear error propagation of equation (B.9). We used the uncertainties
of the measured momenta of the final-state particles and of the measured beam-particle inclination. We also took
into account the correlations between these measured quantities from the event-reconstruction fit [53].

[c] The material thickness of the liquid-hydrogen target along the beam axis corresponds to 4.5 % of a radiation length
and 5.5 % of a nuclear interaction length [49].
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Figure C.2: (a) Interaction vertex position along the beam axis and (b) beam energy of a reconstructed
K−π−π+ phase-space pseudodata sample for the 2008 diffraction data taking (orange histograms). The
blue histograms show the corresponding measured distributions of the K−π−π+ sample from the 2008
diffraction data set. The green histograms show the distributions of the beam sample extracted from the
2008 diffraction data set corrected for the dominant acceptance and resolution effects (see text). The
corrected beam sample is used as input to the Monte Carlo simulation. The histograms are normalized to
the same integral as the measured K−π−π+ data histograms in the shown ranges.

ZVtx distribution by randomly accepting events with a probability proportional to the weight[d]
5982

w(ZVtx) =
1

1 + a(ZVtx + 50 cm) + b(ZVtx + 50 cm)2 + c(ZVtx + 50 cm)3 . (C.2)

Thereby, we accepted a large fraction of the beam sample of about 94 %.5983

Figure C.2a shows the ZVtx distribution of the beam sample after this acceptance correction5984

(green histogram). It disagrees with the measured ZVtx distribution of the K−π−π+ sample5985

(blue histogram) due to the acceptance effects. The orange histogram shows the reconstructed5986

ZVtx distribution of a reconstructed K−π−π+ phase-space pseudodata sample. This sample5987

was generated using the acceptance-corrected beam sample as input. Then, it was processed5988

through the detector Monte Carlo simulation. Thereby, acceptance effects were applied to this5989

reconstructed K−π−π+ phase-space pseudodata sample. It is in fair agreement wit the measured5990

K−π−π+ distribution, which demonstrates that our acceptance correction of the beam sample5991

works. Using the ZVtx distribution from the beam sample to generate events allows us to take5992

into account effects that are not modeled in the detector Monte Carlo simulation. For example,5993

the dip in the ZVtz distribution at about −48 cm, which is caused by inefficient areas of the RPD5994

scintillator slabs due to connectors for the calibration laser [183].5995

[d] As we were interested only in the deviation from a flat acceptance and not in an absolute normalization, we dropped
the A parameter here, which is the acceptance at ZVtx = −50 cm. As A ≈ 0.5, this drastically improved the efficiency
of the acceptance correction.
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The strongest resolution effect is in the measured beam-particle energy Ebeam. As for the5996

acceptance effects in ZVtx, we needed to correct the beam sample for this resolution effect in5997

order to use it as input to the Monte Carlo simulation. Using Bayes’ formula, the probability that5998

the beam particle was produced with energy Ẽbeam given that we measured Ebeam is5999

P(Ẽbeam|Ebeam) =
P(Ebeam|Ẽbeam) P(Ẽbeam)

P(Ebeam)
. (C.3)

Here, P(Ebeam) is the probability distribution of the measured energy, P(Ẽbeam) is the probability6000

distribution of the produced beam energy, i.e. without resolution effects, and P(Ebeam|Ẽbeam) is6001

the probability to measure an energy Ebeam if the event was produced with an energy Ẽbeam, i.e.6002

it encodes the smearing effect due to the resolution.6003

We modeled the resolution function, P(Ebeam|Ẽbeam), by a Gaussian function centered around6004

zero with standard deviation σR.[e] We approximated the distribution P(Ẽbeam) of the produced6005

energy of the beam particle also by a Gaussian function with mean µ̃ and standard deviation6006

σ̃. This is only a rough approximation, e.g. it neglects the weak correlation between the beam-6007

particle energy and other kinematic variables of the beam particle introduced by the beam-line6008

optics.6009

The energy resolution σR = 0.78 GeV[f] was taken from the detector Monte Carlo simulation.[g]
6010

The mean and standard deviation of the produced-energy distribution P(Ẽbeam) were calculated6011

from the measured energy distribution P(Ebeam) of the beam sample. Under the assumptions6012

made here, P(Ebeam) is a Gaussian distribution with standard deviation σ =

√
σ̃2 + σ2

R and mean6013

µ = µ̃. We determined σ = 1.82 GeV and µ = 191.35 GeV[f] by fitting a Gaussian function plus6014

a second-order background polynomial to the Ebeam distribution of the beam sample.6015

Using the assumptions made above and equation (C.3), P(Ẽbeam|Ebeam) becomes a Gaussian6016

shape with mean and standard deviation of6017

µ̂ =
σ̃2

σ2
R + σ̃2

Ebeam +
σ2

R

σ2
R + σ̃2

µ̃ and σ̂ =

√√
1

1
σ2

R
+ 1

σ̃2

. (C.4)

In order to correct for the Ebeam resolution when generating a pseudodata event from the6018

beam sample, we randomly drew the energy Ẽbeam of the pseudo beam particle according6019

to P(Ẽbeam|Ebeam) using the measured energy Ebeam of a randomly chosen event from the beam6020

sample.[h]
6021

[e] Thereby, we neglected a potential energy dependence of the energy resolution.
[f] Here, we give the values for the 2008 setup. The values for the 2009 setup are similar.
[g] We fit a Gaussian function with standard deviation σR to the distribution of the differences between the physical and

the reconstructed energy of beam particles from the reconstructed phase-space pseudodata sample of the reaction
π− + p→ π−π−π+ + p discussed above.

[h] Note that we used Ebeam from the beam sample, and we used P(Ẽbeam|Ebeam) only to correct for the energy resolution.
The reason for this is, that Ebeam form the beam sample is distributed according to the physical distribution, which
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The green histogram in figure C.2b shows the distribution of the resolution-corrected beam-6022

particle energy Ẽbeam of the beam sample. It is narrower than the measured Ebeam distribution of6023

the K−π−π+ sample shown by the blue histogram. The orange histogram shows the reconstructed6024

beam-particle energy from a reconstructed K−π−π+ phase-space pseudodata sample, which was6025

generated using the resolution-corrected beam sample as input. It is in good agreement with6026

the measured K−π−π+ data in the peak region. This shows, that the correction of the resolution6027

effects works well. Only in the tails of the distribution, where the Gaussian assumption is not a6028

good approximation anymore, the reconstructed K−π−π+ phase-space pseudodata sample slightly6029

deviates from the measured sample.6030

C.2.2 Modeling the CEDAR Acceptance6031

The likelihood approach discussed in section 3.1 is able to identify the beam particles in a wide6032

kinematic range. Figure C.3a shows that the acceptance, i.e. the efficiency to identify a beam6033

kaon, is above about 95 % for small beam-particle inclinations. However, it drops to about 60 %6034

for inclination angles above about 100 mrad.6035

A full simulation of the CEDAR response in the detector Monte Carlo simulation is not feasible6036

as it is computationally too expensive.[i] Therefore, we incorporated the CEDAR acceptance6037

effect in the detector Monte Carlo simulation in an approximate way by randomly accepting6038

a pseudodata event with beam-particle inclination (1ϑx,
1ϑy) with the probability given by the6039

acceptance as shown in figure C.3a.[j] When simulating events with beam pions, but still applying6040

an event selection for beam kaons as done in section 5.10, we randomly accepted pseudodata6041

events with beam-particle inclination (1ϑx,
1ϑy) with the misidentification probability as shown6042

in figure C.3b.[j]
6043

C.2.3 Modeling the RICH Acceptance6044

A full simulation of the RICH response in the detector Monte Carlo simulation is not feasible6045

for the same reasons as for the CEDAR response. Following ref. [49], we inferred the RICH6046

response from data. As shown in section 3.2.2, we determined for a given RICH likelihood-ratio6047

threshold TR the final-state particle identification probabilities P(X → S ) independently in6048

is only roughly approximated by a Gaussian function and which includes all correlations with other kinematic
variables. In our approach, the Gaussian approximation is used only for the resolution correction, while generating
events directly according to P(Ẽbeam) would imply a Gaussian approximation for the energy distribution.

[i] A full simulation of the CEDAR response would require to simulate each single Cherenkov photon including its
path through the CEDAR optics and its detection in the PMTs. This is difficult to implement and computationally
very expensive. As we do not expect large influence of the CEDAR acceptance on the kinematic distribution of the
final-state particles, which is studied in the partial-wave decomposition, a full simulation of the CEDAR response
would be inadequately time-consuming.

[j] Doing so, we linearly interpolated between the (1ϑx,
1ϑy) cells. In the green regions in figure C.3 without calibration

data, we never identified the beam kaon. However, only a negligible fraction of pseudodata events has beam-particle
inclinations in these regions.
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Figure C.3: (a) acceptance for the identification of beam kaons and (b) misidentification probability to
identify a beam pion as a kaon by the CEDAR detectors as a function of the inclination of the beam-particle
track with respect to the optical axis of CEDAR1. The acceptance was determined from the K → π−π−π+

validation sample of the 2008 diffraction data set and the misidentification probability was determined
from the pion-beam validation sample of the 2008 diffraction data set (see appendix A.1.2). Given the
small fraction of misidentified beam pions, we chose a more coarse binning in (b). We chose the reference
system of CEDAR1 for the beam-particle inclination. Regions without calibration data are drawn in light
green.

cells of the particle momentum |~pR | and the square-root of its track angle θR with respect to the6049

nominal beam axis, both defined at the RICH position, for the different particle species X and for6050

the different particle-species hypotheses S . Using these probabilities, we simulated the RICH6051

response to a particle of species X by randomly drawing a particle-species assignment S by the6052

RICH according to P(X → S ).[k] As muons and pions are very close in mass, we approximated6053

the probability to identify a muon as particle species S using the pion validation sample, i.e. we6054

assumed P(µ→ S ) ≈ P(π→ S ).[l]
6055

C.3 Predictions for Kinematic Distributions from the6056

Partial-Wave Decomposition6057

In order to study kinematic distributions as predicted by some model for |M|2, e.g. for the6058

comparison of the PWD result with measured data discussed in section 5.6, we generated phase-6059

space pseudodata samples and assigned a weight wi to each event that is proportional to |M|26060

[k] Doing so, we linearly interpolated between the (|~pR |,
√
θR) cells and normalized the sum over all probabilities to be

one.
[l] Muons can appear in the simulation, e.g. from decays of final-state kaons. However, these contributions are

negligible for the reactions simulated in this work.
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of the event (cf. appendix C.1).[m] When weights are assigned to a reconstructed phase-space6061

pseudodata sample, the obtained distribution resembles the distribution of measured events. When6062

weights are assigned to a produced phase-space pseudodata sample, the obtained distribution6063

resembles true physical distribution. We chose the normalization of the weights such that the6064

sum over all weights is the model prediction for the total number of events. This means that6065 ∑
i

wi ≡ N̂ev or
∑

i

wi ≡ N̂ev (C.5)

for the distribution of reconstructed or produced events, respectively. Thus, histograms filled6066

with these weights of reconstructed pseudodata events can be directly compared to histograms6067

from measured data.6068

When predicting distributions of a data sample that consists of different sub-samples,[n] we first6069

obtained the distributions for the individual sub-samples following the approach described in the6070

previous paragraph. As these distributions are normalized to the expected number of events in6071

each sub-sample according to equation (C.5), we simply added them to obtain the distributions6072

of the total sample.6073

When predicting distributions based on the result of a PWD fit, we used |M(τ,mKππ, t′)|2 ∝6074

I(τ,mKππ, t′), where I(τ,mKππ, t′) is the model intensity [see equation (5.16)] evaluated using6075

the maximum-likelihood estimates of the transition amplitudes and data-set fraction parameters6076

from the fit.6077

When predicting distributions based on the results of a Bootstrapping of the PWD, as done in6078

section 5.6, we used |M(τ,mKππ, t′)|2 ∝ I(τ,mKππ, t′), where we evaluated the model intensity6079

using the Bootstrapping estimates for the spin-density matrix elements and data-set fraction6080

parameters. To this end, we used the formulation of I(τ,mKππ, t′) in terms of spin-density matrix6081

elements as given in equation (5.19).[o]
6082

[m] For the same number of generated phase-space events, using weights leads to a slightly reduced variance from
the Monte Carlo sampling of the predicted quantities, compared to the accept-reject algorithm described in
appendix C.1.

[n] For example, the K−π−π+ sample consists of three sub-samples from the 2008, the 2009W2X, and the 2009W35
diffraction data taking campaigns with slightly different acceptances.

[o] In ROOTPWA, which is our PWD software framework, I(τ,mKππ, t′) is implemented in terms of transition
amplitudes as input parameters. Thus, in order to use the Bootstrapping estimates for the spin-density matrix
elements, the corresponding spin-density matrix has to be decomposed into a set of transition amplitudes. Although
we used a rank=3 spin-density matrix in the PWD model, the spin-density matrix obtained from Bootstrapping
has maximum rank. This is because its elements are calculated individually by calculating the mean values of the
corresponding estimates from the independent Bootstrapping fits. These mean values do not have the constraint of
a rank=3 matrix implemented. In principle, a Cholesky decomposition of the spin-density matrix obtained from
Bootstrapping could be used, which would yield a set of tranition amplitudes that is similar to the Chung and
Trueman parameterization [73]. However, the Cholesky decomposition yielded numerically unstable result. Thus,
we used an eigenvalue decomposition, which yielded a set of transition amplitudes that given the same I(τ,mKππ, t′)
as directly using the Bootstrapping estimates for the spin-density matrix elements in equation (5.19).
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Figure C.4: Acceptance of the 2008 experimental setup as determined from a reconstructed K−π−π+

phase-space pseudodata sample as a function of (a) the momenta of the two identified negative final-state
particles and (b) the invariant mass of the K−π−π+ system. The physical values (PV) of the kinematic
variables with which the event was produced are shown, which do not involve smearing due to the detector
resolution or misidentification of the final-stat particle species. Both figures show the acceptance for
events that were produced uniformly in the K−π−π+ phase space, which is different from the distribution
with which the measured events were produced.

C.4 Acceptance and Resolution for the K−π−π+ Sample6083

Using the approach discussed in appendices C.1 and C.2, we generated a reconstructed phase-6084

space pseudodata sample of the reaction K− + p → K−π−π+ + p. Based on this sample, we6085

performed first studies of acceptance and resolution effects on different kinematic variables. One6086

should keep in mind, that considering individual variables implies a marginalization over all6087

other kinematic variables. Here, we marginalized using a sample that was generated uniformly6088

in phase space. The events produced in the physical reaction follow a different distribution,6089

which can be taken into account only using the model from the partial-wave decomposition (see6090

section 5.6).6091

The strongest acceptance effects originate from the limited momentum range of the RICH final-6092

state particle identification (see section 3.2.2). The acceptance of the reconstructed phase-space6093

pseudodata shows the same bands in the momentum distribution of the two identified negative6094

final-state particles as the measured distribution (cf. figures 4.3 and C.4a). The acceptance is6095

vanishing in the inner triangular region where both momenta are above about 50 GeV/c. This6096

supports the statements about the experimental acceptance in section 4.1.6097

The above discussed acceptance effects lead to a non-uniform acceptance also in other kinematic6098

variables. For example, the acceptance as a function of mKππ drops towards lower masses as6099
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Figure C.5: Resolution of the 2008 experimental setup as determined from a reconstructed K−π−π+

phase-space pseudodata sample. (a) shows the resolution σm in the invariant mass of the K−π−π+ system
as a function of mKππ. (b) shows the resolution σt′ in t′ as a function of t′. We determined the resolution
from a fit of a Gaussian function plus a constant background to the distribution of the differences between
the reconstructed and the produced value. As the pseudodata falls exponentially with t′, we used a coarser
binning at high-t′ to compensate for the smaller amount of data.

shown in figure C.4b for the phase-space pseudodata sample. This demonstrates how crucial6100

an accurate treatment of the acceptance is. Fortunately, the acceptance exhibits no peaking6101

structures in mKππ. Therefore, the structures observed in the measured mKππ distribution shown6102

in figure 4.6a can still be interpreted on a qualitative level.6103

The reconstructed phase-space pseudodata sample also allows us to determine the experimental6104

resolution of the detector setup. The resolution in mKππ worsens continuously with increasing6105

mKππ from about 3 MeV/c2 at mKππ = 0.8 GeV/c2 to about 14 MeV/c2 as mKππ = 3 GeV/c2
6106

(see figure C.5a). However, as most of the strange-meson resonances have widths of above6107

100 MeV/c2, the resolution in mKππ will have a negligible influence on the width measurement6108

of resonances.6109

Also, the resolution in t′ worsens from about 6 × 10−3 (GeV/c)2 at t′ = 0.1 (GeV/c)2 to about6110

24 × 10−3 (GeV/c)2 at t′ = 2 (GeV/c)2 as shown in figure C.5b. The resolution in t′ is sufficiently6111

high to perform a partial-wave analysis in narrow t′ bins. In this analysis, the narrowest t′ bin6112

at t′ = 0.125 (GeV/c)2 has a width of 50 × 10−3 (GeV/c)2, which is much larger than the6113

resolution.6114
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D.1 Wave-Set Selection6116

D.1.1 Determination of Intensity Thresholds6117

In order to determine the intensity threshold above which waves were included in the wave set,6118

we studied the partial-waves intensities obtained from the wave-set selection fits in individual6119

(mKππ, t′) cells. Figure D.1a exemplarily shows the partial waves ordered by intensity, i.e.6120

the so-called ordered-intensity distributionordered-intensity distributionordered-intensity distributionordered-intensity distributionordered-intensity distributionordered-intensity distributionordered-intensity distributionordered-intensity distributionordered-intensity distributionordered-intensity distributionordered-intensity distributionordered-intensity distributionordered-intensity distributionordered-intensity distributionordered-intensity distributionordered-intensity distributionordered-intensity distribution. As discussed in section 5.2.5, ordered-intensity6121

distributions exhibit jumps. The intensities at which those jumps appear determine the thresholds6122

above which waves were selected for the wave set. In order to automatically determine the6123

threshold for each (mKππ, t′) cell, we searched for all jumps in the ordered-intensity distribution6124

of the (mKππ, t′) cell. We defined a jump as a discontinuity where the intensity changes by more6125

than a factor eight, i.e. where the intensity of a wave is smaller than 1/8 of the intensity of the6126

next lager wave.[a] If we found no discontinuity by at least a factor eight, the position where the6127

relative change of wave intensities in the ordered-intensity distribution is largest was used as6128

jump, exemplarily shown in figure D.1b where the change in intensity was smaller than a factor6129

eight everywhere. The threshold (black horizontal lines in figure D.1) was given by the intensity6130

at the position of the jump. If there were multiple jumps, we used the jump in the region of the6131

highest intensity to define the threshold, i.e. the leftmost jump found in the ordered-intensity6132

distribution. In order to avoid too small or too large wave sets, we did not consider jumps at the6133

position of the two waves with the largest intensity and the ten waves with the smallest intensity.6134

For example, jumps at waves with large intensity may be physical, as individual partial waves6135

may dominate the physical distribution of the data.6136

Figure D.2 shows the thresholds for all 300 (mKππ, t′) cells that were determined as explained6137

above. For 129 cells, the threshold determination yielded thresholds in the reasonable range6138

between about 1 and 20. In the remaining cells, the automatic threshold determination failed.6139

The obtained thresholds were either too low, i.e. below 1, leading to a too large wave set, or too6140

large, i.e. above 20, leading to a too small wave set. Additionally, we considered the threshold6141

determination to be failed if the number of waves selected by the automatically determined6142

threshold was larger than 150 or, for cells with mKππ > 2 GeV/c2,[b] smaller than 5. For these6143

[a] We chose the minimal required intensity change to be a factor eight in order to be much larger than the average
intensity fraction of subsequent waves in the ordered-intensity distribution.

[b] For mKππ ≤ 2 GeV/c2, we allowed wave sets with less than 5 waves, e.g. in the lowest mKππ bins.
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(a) (b)

(c) (d)

Figure D.1: Partial waves ordered by their intensity in the lowest t′ bin in four different mKππ bins. The
waves are ordered by intensity as obtained from the best result in each cell and numbered accordingly.
The orange points show the best result out of 700 fit attempts. The other colored points show the results
from the other fit attempts. Their color represents lnLbest

WSS − lnLWSS. Only results where this difference is
smaller than 500 units are plotted. Only the 100 waves with the largest intensity are shown. The black
horizontal line marks the threshold, above which waves were selected for the wave set (see text). (b) are
the same as figures 5.9a and 5.9b in the main text, respectively.
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Figure D.2: Distribution of the automatically determined thresholds for all 300 (mKππ, t′) cells. Only
thresholds within the vertical gray lines are used to define the wave set.

cells, we fixed the threshold to a value of 3, which corresponds to the peak in the distribution6144

of thresholds from cells where the automatic threshold determination worked (see figure D.2).6145

Figure D.1c shows the partial waves ordered by intensity in a (mKππ, t′) cell where the automatic6146

threshold determination failed, because the distribution exhibits a smooth transition from waves6147

with large to waves with low intensities instead of a sudden jump.[c] Still the manually defined6148

threshold of 3 agrees with the distribution. In the neighboring (mKππ, t′) cell shown in figure D.1d,6149

the intensity distribution showed again a clear jump and the threshold could be determined6150

automatically.6151

[c] We observed such a “smearing” of the jump in a few cells. This behavior seems to be caused by slightly different
jump positions in neighboring mKππ cells via the continuity term in equation (5.57).
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D.1.2 Manually Selected Waves6152

Table D.1: Waves that were included in the wave sets over the corresponding mKππ range given below
independent of the result of the wave-set selection fits (see section 5.2.6). Waves and mass ranges were
chosen that show interesting signals worth being studied in the resonance-model fit (see chapters 6 and 7).
These waves were already selected in most (mKππ, t′) cells in the given mKππ range by the wave-set
selection fits. We only ensured that these waves are included in the waves sets in all (mKππ, t′) cells in the
given mKππ range.

Wave
mKππ Range

Start End
[GeV/c2] [GeV/c2]

0− 0+ [Kπ]Kπ
S π S 1.6 2.4

0− 0+ ρ(770) K P 1.0 2.4
1+ 0+ K∗(892) π S 1.0 2.5
1+ 0+ ρ(770) K S 1.0 2.5
1+ 1+ ρ(770) K S 1.0 2.5
2+ 1+ K∗(892) πD 1.0 2.0
2+ 1+ ρ(770) K D 1.0 2.0
2− 0+ K∗(892) π F 1.5 3.0
2− 0+ K∗2(1430) π S 1.4 3.0
2− 0+ ρ(770) K F 1.5 3.0
2− 0+ f0(980) K D 1.5 3.0
2− 0+ f2(1270) K S 1.5 3.0
2− 1+ K∗2(1430) π S 1.5 2.5
3+ 0+ K∗3(1780) π S 2.0 2.5
3+ 1+ K∗2(1430) π P 2.0 2.5
3− 1+ K∗(892) π F 1.5 2.2
3− 1+ ρ(770) π F 1.6 2.5
4+ 1+ K∗(892) πG 1.6 3.0
4+ 1+ ρ(770) K D 1.6 3.0
4− 0+ K∗(892) π F 1.8 3.0
4− 0+ K∗2(1430) πD 2.0 3.0
4− 0+ ρ(770) K F 1.8 3.0
4− 1+ K∗(892) π F 1.5 3.0
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D.1.3 The 238-Wave Set6153
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0−0+K∗(892)πP

0−0+K∗(1680)πP

0−0+K∗3 (1780)πF

0−0+K∗2 (1430)πD

0−0+[Kπ]KηS πS

0−0+[Kπ]KπS πS

Figure D.3: Mass ranges of selected waves with J = 0 in the range 0.10 ≤ t′ < 0.15 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.4: Mass ranges of selected waves with J = 1 in the range 0.10 ≤ t′ < 0.15 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.

292 March 1, 2022 18:18



D
RA

FT

D.1 Wave-Set Selection

1.0 1.5 2.0 2.5 3.0

mKππ [GeV/c2]

2−2+K∗(892)πP

2−1+ρ(770)KF

2−1+ρ(770)KP

2−1+ρ3(1690)KP

2−1+[ππ]AMPK
S KD

2−1+f2(1270)KS

2−1+K∗(892)πF

2−1+K∗(892)πP

2−1+K∗(1680)πP

2−1+K∗2 (1430)πD

2−1+K∗2 (1430)πS

2−1+[Kπ]KηS πD

2−1+[Kπ]KπS πD

2−0+ρ(770)KF

2−0+ρ(770)KP

2−0+[ππ]AMPK
S KD

2−0+f2(1270)KG

2−0+f2(1270)KD

2−0+f2(1270)KS

2−0+f0(1500)KD

2−0+f0(980)KD

2−0+K∗(892)πF

2−0+K∗(892)πP

2−0+K∗(1680)πF

2−0+K∗(1680)πP

2−0+K∗3 (1780)πP

2−0+K∗2 (1430)πD

2−0+K∗2 (1430)πS

2−0+[Kπ]KηS πD

2−0+[Kπ]KπS πD

2+1+ρ(770)KD

2+1+f2(1270)KP

2+1+K∗(892)πD

2+1+K∗(1680)πD

2+1+K∗2 (1430)πP

Figure D.5: Mass ranges of selected waves with J = 2 in the range 0.10 ≤ t′ < 0.15 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.6: Mass ranges of selected waves with J = 3 in the range 0.10 ≤ t′ < 0.15 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.7: Mass ranges of selected waves with J = 4 in the range 0.10 ≤ t′ < 0.15 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.8: Mass ranges of selected waves with J = 5 in the range 0.10 ≤ t′ < 0.15 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.9: Mass ranges of selected waves with J = 6 in the range 0.10 ≤ t′ < 0.15 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.10: Mass ranges of selected waves with J = 7 in the range 0.10 ≤ t′ < 0.15 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.11: Mass ranges of selected waves with J = 0 in the range 0.15 ≤ t′ < 0.24 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.12: Mass ranges of selected waves with J = 1 in the range 0.15 ≤ t′ < 0.24 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.13: Mass ranges of selected waves with J = 2 in the range 0.15 ≤ t′ < 0.24 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.14: Mass ranges of selected waves with J = 3 in the range 0.15 ≤ t′ < 0.24 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.15: Mass ranges of selected waves with J = 4 in the range 0.15 ≤ t′ < 0.24 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.16: Mass ranges of selected waves with J = 5 in the range 0.15 ≤ t′ < 0.24 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.17: Mass ranges of selected waves with J = 6 in the range 0.15 ≤ t′ < 0.24 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.18: Mass ranges of selected waves with J = 7 in the range 0.15 ≤ t′ < 0.24 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.19: Mass ranges of selected waves with J = 0 in the range 0.24 ≤ t′ < 0.34 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.20: Mass ranges of selected waves with J = 1 in the range 0.24 ≤ t′ < 0.34 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.21: Mass ranges of selected waves with J = 2 in the range 0.24 ≤ t′ < 0.34 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.22: Mass ranges of selected waves with J = 3 in the range 0.24 ≤ t′ < 0.34 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.23: Mass ranges of selected waves with J = 4 in the range 0.24 ≤ t′ < 0.34 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.24: Mass ranges of selected waves with J = 5 in the range 0.24 ≤ t′ < 0.34 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.25: Mass ranges of selected waves with J = 6 in the range 0.24 ≤ t′ < 0.34 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.26: Mass ranges of selected waves with J = 7 in the range 0.24 ≤ t′ < 0.34 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.27: Mass ranges of selected waves with J = 0 in the range 0.34 ≤ t′ < 1.00 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.28: Mass ranges of selected waves with J = 1 in the range 0.34 ≤ t′ < 1.00 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.29: Mass ranges of selected waves with J = 2 in the range 0.34 ≤ t′ < 1.00 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.30: Mass ranges of selected waves with J = 3 in the range 0.34 ≤ t′ < 1.00 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.31: Mass ranges of selected waves with J = 4 in the range 0.34 ≤ t′ < 1.00 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.32: Mass ranges of selected waves with J = 5 in the range 0.34 ≤ t′ < 1.00 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.33: Mass ranges of selected waves with J = 6 in the range 0.34 ≤ t′ < 1.00 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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Figure D.34: Mass ranges of selected waves with J = 7 in the range 0.34 ≤ t′ < 1.00 (GeV/c)2. The gray
vertical line indicates the mass where the mKππ binning changes from 20 MeV/c2 to 40 MeV/c2 wide
bins.
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D.2 Experimental Acceptance and Agreement between6154

Partial-Wave Model and Data6155

In this section, we present plots to show the acceptance in the kinematic variables of the6156

reaction K− + p → K−π−π+ + p and the agreement between the results of the PWD fit, i.e.6157

PWD predictions for the kinematic distributions in the K−π−π+ phase-space variables, and the6158

measured data. Details on how we determined the PWD predictions can be found in section 5.66159

and appendix C.6160

The five-dimensional phase space of the K−π−π+ final state can be represented by four angles6161

and the invariant mass of one of the three two-body subsystems. Different representations are6162

possible (see sections 5.1.1 and 5.6 for details). In figures D.36 to D.41, we consider the π−π+
6163

isobar system. In figures D.42 to D.47, we consider the K−π+ isobar system. Table D.2 gives an6164

overview over these figures. We split the analyzed mKππ range into three sub-ranges: (i) the mass6165

range of the K1 double-peak, 1.0 ≤ mKππ < 1.5 GeV/c2; (ii) the mass range of the peak of the K26166

resonances, 1.5 ≤ mKππ < 2.0 GeV/c2; and (iii) the high-mass range, 2.0 ≤ mKππ < 3.0 GeV/c2.6167

The agreement between PWD model and data is discussed in section 5.6.6168

Table D.2: Figures showing the agreement between the results of the PWD and the measured data as
a function of individual phase-space variables and as a function of two two-body decay angles. In
addition, we show the acceptance as a function of the two-body decay angles using a common scale for
the acceptance.

mKππ range in GeV/c2 [1.0, 1.5] [1.5, 2.0] [2.0, 3.0]

π−π+ isobar system
individual phase-space variables D.36 D.38 D.40

correlation of decay angles D.37 D.39 D.41

K−π+ isobar system
individual phase-space variables D.42 D.44 D.46

correlation of decay angles D.43 D.45 D.47

In addition, we present estimates of the experimental acceptance as a function of different6169

kinematic variables. The acceptance is strongly modulated in particular in the Gottfried-Jackson6170

angles as, for example, shown in figure D.39e. Furthermore, the acceptance strongly depends6171

on mKππ ( compare, for example, figures D.39e and D.41e). This strong modulation of the6172

acceptance is caused by the limited momentum range of the final-state particle identification by6173

the RICH detector (see section 3.2.2).6174

The acceptance depends on all kinematic variables. Showing the acceptance as a function of6175

only a subset of the kinematic variables implies marginalization over the not shown kinematic6176

variables. For example, showing the acceptance as a function of mKππ in figure D.35a implies6177

marginalization over t′ and the five phase-space variables of the K−π−π+ system. As, the6178

acceptance depends in a correlated way on mKππ, t′, and on the K−π−π+ phase-space variables,6179

the marginalized acceptance at a given mKππ depends on the distributions in t′ and the K−π−π+
6180
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phase-space variables used for the marginalization. As we want to show the acceptance for the6181

reaction K− + p→ K−π−π+ + p, we used for the acceptance plots shown in figures D.35 to D.476182

and in figure 5.23b the physical kinematic distribution as predicted by the PWD model for the6183

reaction K− + p→ K−π−π+ + p for the marginalization. The acceptance is calculated as the ratio6184

of the number of reconstructed events and the number of produced events as predicted by the6185

PWD model.[d]
6186

Figure D.35a shows the average acceptance for the reaction K− + p→ K−π−π+ + p as a function6187

of mKππ. In the region mKππ < 1.6 GeV/c2, the acceptance is approximately constant and has a6188

low value of about 2 %. Compared to the acceptance for a sample that is distributed uniformly6189

in phase-space, the acceptance for the reaction K− + p → K−π−π+ + p as predicted using the6190

PWD model is lower in this mKππ region (cf. figures C.4b and D.35a). The mKππ region below6191

about 1.6 GeV/c2 is affected by the leakage effect discussed in section 5.9, which leads to an6192

overestimation of the number of produced events and thus to a strong bias for the estimate of6193

the average acceptance towards smaller values in this mKππ region. The PWD prediction for6194

the distributions of reconstructed events is not affected by the leakage effect. Above about6195

1.6 GeV/c2, the acceptance rises steeply to a value of about 10 % in the mass region of the K26196

ground states around 1.8 GeV/c2. After this region, the rise is less steep. Above 2.5 GeV/c2, the6197

acceptance starts to saturate at a value of about 22 %, which is slightly higher than the acceptance6198

of about 19 % for a sample that is distributed uniformly in phase-space. The distribution in6199

cos θKπ
GJ strongly peaks at 1 in this mKππ region (see figure 5.24a). For this kinematics, the6200

bachelor π− goes in backward direction with respect to the direction of the beam K− in the6201

Gottfried-Jackson frame. This translates to a slow π− in the laboratory frame which is more6202

likely identified by the RICH. Thus, the acceptance for the reaction K− + p→ K−π−π+ + p is6203

higher in this mass region compared to a sample that is distributed uniformly in phase-space, i.e.6204

whose cos θKπ
GJ distribution is flat.6205

The average acceptance as a function of mπ−π+ shown in figure D.35b is roughly constant, but6206

exhibits structures in the mass regions of some of the π−π+ resonances that we observe in this6207

distribution (see figure 4.7b). For example, the acceptance exhibits a dip in the mπ−π+ region6208

of the f0(980) isobar resonance at about 1 GeV/c2 and rises again in the mass region of the6209

f2(1270) isobar resonance at about 1.3 GeV/c2. As both isobar resonances have different spin,6210

the correspondingly different angular distributions of their decay and the strong modulation of6211

the acceptance in the decay angles can explain the different average acceptances.6212

The acceptance effects discussed above show, that the measured distributions can be interpreted6213

only at a qualitative level. An acceptance correction that takes into account the full high-6214

dimensional dependence of the acceptance on all kinematic variables is mandatory in order to6215

interpret the data on a quantitative level as done in the partial-wave analysis.6216

[d] The PWD prediction for the number of reconstructed events was obtained by weighting reconstructed phase-space
pseudodata. The number of produce events as predicted by the PWD model was obtained by weighting produced
phase-space pseudodata. The weights are proportional to the model intensity in equation (5.16) using the results of
the PWD fit to the K−π−π+ sample. See appendix C for details.
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Figure D.35: Marginalized acceptance for the reaction K−+ p→ K−π−π+ + p. (a) shows the acceptance as
a function of mKππ. (b) shows the acceptance as a function of mπ−π+ in the range 1.5 ≤ mKππ < 2.0 GeV/c2.
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Figure D.36: Distributions of the five phase-space
variables defined for the π−π+ isobar system in the
mass range 1.0 ≤ mKππ < 1.5 GeV/c2 integrated
over the analyzed t′ range. The blue points show
the measured distributions. The uncertainties are
calculated assuming a Poisson distribution in each
bin. The orange histograms show the correspond-
ing PWD prediction.
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Figure D.37: Distributions of the four two-body decay angles defined for the π−π+ isobar system in the
mass range 1.0 ≤ mKππ < 1.5 GeV/c2 integrated over the analyzed t′ range. The top row shows the
measured distributions, the middle row shows the difference between the measured number of events and
the corresponding PWD prediction divided by the square root of the PWD prediction, and the lower row
shows the acceptance.
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Figure D.38: Distributions of the five phase-space
variables defined for the π−π+ isobar system in the
mass range 1.5 ≤ mKππ < 2.0 GeV/c2 integrated
over the analyzed t′ range. The blue points show
the measured distributions. The uncertainties are
calculated assuming a Poisson distribution in each
bin. The orange histograms show the correspond-
ing PWD prediction. Same figure as figure 5.21.
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Figure D.39: Distributions of the four two-body decay angles defined for the π−π+ isobar system in the
mass range 1.5 ≤ mKππ < 2.0 GeV/c2 integrated over the analyzed t′ range. The top row shows the
measured distributions, the middle row shows the difference between the measured number of events and
the corresponding PWD prediction divided by the square root of the PWD prediction, and the lower row
shows the acceptance.
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Figure D.40: Distributions of the five phase-space
variables defined for the π−π+ isobar system in the
mass range 2.0 ≤ mKππ < 3.0 GeV/c2 integrated
over the analyzed t′ range. The blue points show
the measured distributions. The uncertainties are
calculated assuming a Poisson distribution in each
bin. The orange histograms show the correspond-
ing PWD prediction.
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Figure D.41: Distributions of the four two-body decay angles defined for the π−π+ isobar system in the
mass range 2.0 ≤ mKππ < 3.0 GeV/c2 integrated over the analyzed t′ range. The top row shows the
measured distributions, the middle row shows the difference between the measured number of events and
the corresponding PWD prediction divided by the square root of the PWD prediction, and the lower row
shows the acceptance.
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Figure D.42: Distributions of the five phase-space
variables defined for the K−π+ isobar system in
the mass range 1.0 ≤ mKππ < 1.5 GeV/c2 inte-
grated over the analyzed t′ range. The blue points
show the measured distributions. The uncertain-
ties are calculated assuming a Poisson distribution
in each bin. The orange histograms show the cor-
responding PWD prediction.
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Figure D.43: Distributions of the four two-body decay angles defined for the K−π+ isobar system in
the mass range 1.0 ≤ mKππ < 1.5 GeV/c2 integrated over the analyzed t′ range. The top row shows the
measured distributions, the middle row shows the difference between the measured number of events and
the corresponding PWD prediction divided by the square root of the PWD prediction, and the lower row
shows the acceptance.
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Figure D.44: Distributions of the five phase-space
variables defined for the K−π+ isobar system in
the mass range 1.5 ≤ mKππ < 2.0 GeV/c2 inte-
grated over the analyzed t′ range. The blue points
show the measured distributions. The uncertain-
ties are calculated assuming a Poisson distribution
in each bin. The orange histograms show the cor-
responding PWD prediction.
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Figure D.45: Distributions of the four two-body decay angles defined for the K−π+ isobar system in
the mass range 1.5 ≤ mKππ < 2.0 GeV/c2 integrated over the analyzed t′ range. The top row shows the
measured distributions, the middle row shows the difference between the measured number of events and
the corresponding PWD prediction divided by the square root of the PWD prediction, and the lower row
shows the acceptance.
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Figure D.46: Distributions of the five phase-space
variables defined for the K−π+ isobar system in
the mass range 2.0 ≤ mKππ < 3.0 GeV/c2 inte-
grated over the analyzed t′ range. The blue points
show the measured distributions. The uncertain-
ties are calculated assuming a Poisson distribution
in each bin. The orange histograms show the cor-
responding PWD prediction.
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Figure D.47: Distributions of the four two-body decay angles defined for the K−π+ isobar system in
the mass range 2.0 ≤ mKππ < 3.0 GeV/c2 integrated over the analyzed t′ range. The top row shows the
measured distributions, the middle row shows the difference between the measured number of events and
the corresponding PWD prediction divided by the square root of the PWD prediction, and the lower row
shows the acceptance.
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D.3 Phase-Space Integral Matrix and Overlaps6217

Figure D.48a shows the magnitude of the elements of the phase-space integral matrix as given in6218

equation (5.22) at mKππ = 1.31 GeV/c2 in the lowest t′ bin. As stated in section 5.9, for most6219

waves we observe only small overlaps (dark blue regions) due to the orthogonality of the Wigner6220

D-functions. However, there are some exceptions. For example, the 0− 0+ [Kπ]Kπ
S π S and 0− 0+

6221

[ππ]AMPK
S K S waves have an overlap close to one (see (i) in figure D.48a). As the spins as well6222

as the orbital angular momenta of both waves are the same, i.e. zero, they differ only by the6223

different isobar amplitudes that correspond to [Kπ]Kπ
S and [ππ]AMPK

S . In the low mK−π+ and mπ−π+6224

ranges kinematically accessible at mKππ = 1.31 GeV/c2, these isobar amplitudes are similar (see6225

figures 5.4 and 5.5). Thus, the decay amplitudes become similar and the corresponding overlap6226

becomes large. A similar case are the 1+ 0+ [Kπ]Kπ
S π P and 1+ 0+ [Kπ]Kη

S π P waves, where we6227

observe a large overlap marked by (ii).6228

Also, we find modest overlaps of about 0.5 between various waves marked by (iii) and (iv), e.g.6229

between the 1+ 0+ [Kπ]Kπ
S π P and 1+ 0+ ρ(770) K S waves. Both waves have the same JP Mε

6230

quantum numbers. For the 1+ 0+ [Kπ]Kπ
S π P wave, the K−π+ system is in an S wave and the6231

π−-isobar system is in a P wave. For the 1+ 0+ ρ(770) K S wave, the K−-isobar system is in an6232

S wave and the π−π+ system is in a P wave. Thus, the angular distribution of both waves are6233

similar. However, they are not identical and both waves clearly differ in the isobar amplitude.6234

Thus, the overlap is smaller than one, which means that the waves can be separated in principle6235

in the PWD. This holds for all waves with similar overlap values.6236
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Figure D.48: Magnitude of the elements of the phase-space integral matrix for the wave set in the kinematic
cell at (a) mKππ = 1.31 GeV/c2 and (b) mKππ = 1.91 GeV/c2 in the lowest t′ bin. For simplicity, the
incoherent flat wave is not shown and in (b) we show only waves with J ≤ 4.
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Figure D.48b shows the magnitude of the elements of the phase-space integral-matrix at a6237

higher mass of mKππ = 1.91 GeV/c2 in the lowest t′ bin. Overall, the overlaps are smaller in6238

the high-mKππ region than in the low-mKππ region and we do not observe overlaps as large as6239

those marked with (i) and (ii) in figure D.48a. The reason for this is, that at higher mKππ the6240

phase-space is larger, i.e. a larger range in mπ−π+ and mK−π+ is kinematically accessible. Thus,6241

we explore more of the isobar amplitude in the PWD, which improves the separation of, e.g.,6242

the 0− 0+ [Kπ]Kπ
S π S and 0− 0+ [ππ]AMPK

S K S waves. Similar to some 1+ waves in the low-mKππ6243

region, we find modest overlaps between some 2− waves in the high-mKππ region. The latter one6244

is dominated by 2− resonances and thus more 2− waves were selected for the wave set in the6245

shown (mKππ, t′) cell.6246

Partial waves with large overlaps can lead to artifacts, i.e. wrong estimates for the spin-density6247

matrix elements in the PWD. This is because the decay amplitudes, which are similar for6248

overlapping waves, may cancel each other via destructive interference in a large region of the6249

phase space in the coherent sum of the model intensity given by equation (5.16). Although the6250

intensities of the partial waves in such a destructive interference may become artificially large,6251

they change the model intensity only marginally. Thus, destructive interference may be misused6252

by the PWD fit to describe statistical fluctuations or small imperfections in the model.6253

Such destructive interference effects from overlapping waves are know, e.g. from the COMPASS6254

π−π−π+ analysis [43]. We do not observe large destructive interference effects from overlapping6255

waves in the partial waves shown in this work. A reason is that the wave set obtained from6256

the wave-set selection described in section 5.2 was designed to disfavor overlapping waves by6257

imposing mKππ thresholds for waves with heavy isobars (see section 5.2.4).6258

D.4 π−π−π+ Pseudodata Studies6259

D.4.1 The π−π−π+ Pseudodata Model6260

The PWD model used to generate the π−π−π+ pseudodata sample was obtained from the so-far6261

world’s largest sample of the reaction π− + p → π−π−π+ + p collected by COMPASS during6262

the 2008 diffraction data taking.[e] This π−π−π+ sample was first analyzed and published in6263

ref. [39]. Based on these results, an improved analysis was performed and will be presented6264

in ref. [43].[f] An improved event reconstruction of the raw data with a refined time-resolved6265

detector alignment. Also, the event selection was fine-tuned; i.e. some cut parameters were6266

optimized for the updated data sample, the cut to suppress central-production reactions was6267

[e] The 2009 diffraction data set was not used in the π−π−π+ analysis when obtaining the model for the π−π−π+

pseudodata, yet.
[f] As the analysis of ref. [43] was not finished when obtaining the model for the π−π−π+ pseudodata, the final results

that will be shown in ref. [43] may slightly differ from the model for the π−π−π+ pseudodata sample. However, the
description of the measured π−π−π+ sample by the PWD model, which is the property of the PWD model that is
important for generating pseudodata from, it should remain basically unchanged.

332 March 1, 2022 18:18



D
RA

FT

D.4 π−π−π+ Pseudodata Studies

1 2 3

mPV
3π [(GeV/c)2]

1

2

3

m
re

co
K
π
π

[(
G

eV
/
c)

2
]

100 102 104

(a)
0 1 2 3

t′PV [(GeV/c)2]

0

1

2

3

t′
re

co
[(

G
eV
/
c)

2
]

100 102 104

(b)

Figure D.49: Reconstructed versus true physical values (PV) for the π−π−π+ pseudodata sample recon-
structed as K−π−π+ events: (a) for mKππ and (b) for t′. The dashed horizontal black lines show the mKππ

and t′ ranges analyzed in this work. The dash-dotted blue lines represents mreco
Kππ = mPV

3π and t′reco = t′PV,
respectively. The reconstructed sample without the beam-particle identification cut is shown. Regions
without events are shown in light green.

not applied, and the particle identification cuts to suppress beam kaons and final-state particles6268

other than pions were improved using the methods developed in this work (see sections 3.1, 3.2,6269

and 4.1). This yielded a measured π−π−π+ sample of about 70.4 × 106 events in the kinematic6270

region 0.5 ≤ m3π < 3.5 GeV/c2 and 0.1 ≤ t′ < 3.0 (GeV/c)2. This sample is significantly larger6271

and covering a wider kinematic region as the one used ref. [39].6272

Based on this π−π−π+ sample, a PWD was performed using the same approach as presented in6273

section 5.1. The same wave set as in ref. [39] was used, which consists of 88 partial waves. The6274

corresponding PWD model was formulated in terms of a rank=1 spin-density matrix for the6275

positive-reflectivity waves, a rank=2 spin-density matrix for the negative-reflectivity waves, and6276

an incoherent flat wave. A fine binning in m3π and t′ was used, i.e. the sample was split in 3006277

m3π bins with a width of 10 MeV/c2 and 33 non-equidistant t′ bins, which were chosen such that6278

a similar number of events enters each t′ bin.6279

We used the results of this PWD as an input to generate a π−π−π+ pseudodata sample in the6280

kinematic ranges 0.5 ≤ m3π < 3.5 GeV/c2 and 0.1 ≤ t′ < 3.0 (GeV/c)2. Then, we reconstructed6281

this produced π−π−π+ pseudodata sample as K−π−π+ events in order to study the π−π−π+ contam-6282

ination of the measured K−π−π+ sample (see section 5.10). To test whether the π−π−π+ kinematic6283

range is sufficient to cover the analyzed K−π−π+ range of 1.0 ≤ mKππ < 3.0 GeV/c2 and 0.1 ≤ t′6284

< 1.0 (GeV/c)2, we show in figure D.49 the reconstructed values (reco) under the K−π−π+ event6285

hypothesis versus the true physical values (PV) with which the π−π−π+ pseudodata event was6286

produced.6287
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The reconstructed value for mKππ, i.e.6288

mreco
Kππ =

√(
preco

K− + preco
π−

+ preco
π+

)2
, (D.1)

is given by the reconstructed three-momenta of the final-state particles and their mass assumptions,6289

which yields the four-momenta preco
h± of the final-state particles. For the final-state π− that6290

was erroneously identified as K− in the reconstructed π−π−π+ pseudodata sample, this mass6291

assumption is wrong. Typically, mreco
Kππ is as large or larger than the value mPV

3π with which the event6292

was produced (see figure D.49a). Just above the π−π−π+ threshold at about mPV
3π = 0.5 GeV/c2,6293

the difference between mreco
Kππ and mPV

3π is given mainly by the mass difference between the final-6294

state K− and π−, because of the wrong mass assumption for one of the final-state π−. With6295

increasing mPV
3π , this relation is smeared out, because of the larger momenta of the final-state6296

particles, which have a larger influence on mreco
Kππ (see equation (D.1)). From the distribution in6297

figure D.49a we do not expect events with mPV
3π < 0.5 GeV/c2 or mPV

3π > 3.5 GeV/c2 to enter the6298

analyzed mreco
Kππ region (dashed horizontal lines). Thus, the mPV

3π range in which we generated6299

pseudodata events is sufficient to cover the analyzed mreco
Kππ range.6300

As expected, the reconstructed squared four-momentum transfer t′reco scatters around the true6301

physical value t′PV with which the event was produced (see figure D.49b), as expected. We do6302

not expect events with t′PV > 3.0 (GeV/c)2 to enter the analyzed t′reco region (dashed horizontal6303

lines). However, the lower limit of the analyzed t′ range of 0.1 (GeV/c)2 is the same for both6304

analysis. It is given by the minimum energy necessary for the recoil proton to produce a signal6305

in the recoil-proton detector (see section 2.2). Due to the finite resolution in t′reco of about6306

0.006 (GeV/c)2 (see figure C.5b), a small fraction of events with t′PV < 0.1 (GeV/c)2 may enter6307

the analyzed t′reco range. However, we do not have a PWD model for t′PV < 0.1 (GeV/c)2 and6308

thus we cannot generate pseudodata for this range. Hence, we neglect these events in the low6309

t′reco region of the reconstructed π−π−π+ pseudodata sample. Due to the exponential shape of6310

the t′PV distribution, this bin-migration effect may lead to a slight underestimation of the number6311

of π−π−π+ background events in the lowest t′ bin. However, given the good resolution in t′reco,6312

we expect this effect to be negligible.6313

In conclusion, the PWD model from the COMPASS π−π−π+ analysis is well suited to generate6314

a realistic pseudodata sample for the reaction π− + p→ π−π−π+ + p, which allows us to study6315

the π−π−π+ background in the K−π−π+ sample. The results of this study are discussed in6316

sections 5.10.1 and 5.10.2.6317

D.4.2 Acceptance of the K−π−π+ Event Selection for π−π−π+ Events6318

As discussed in section 5.10.1, we expect about 6.7 % π−π−π+ background in the K−π−π+
6319

sample. This amount of π−π−π+ background is given by the beam-particle miss-identification6320

probability; the acceptance of the final-state event selection, i.e. the K−π−π+ event selection6321

without the beam-particle identification; and potentially different cross-sections for the reactions6322
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K− + p→ K−π−π+ + p and π− + p→ π−π−π+ + p. The amount of π−π−π+ background is about6323

twice as large as the expected impurity from beam pions in a kaon-beam sample selected by the6324

CEDARs, which is about 3 % (see section 3.1.6). By comparing the acceptance of the K−π−π+
6325

final-state event selection for π−π−π+ pseudodata events and for K−π−π+ pseudodata events, we6326

found that the acceptance for π−π−π+ events is about twice as large as the acceptance for K−π−π+
6327

events. This explains the two-times larger amount of π−π−π+ background compared to the naïve6328

expectation from the impurity from beam pions in a kaon-beam sample.6329

The main reason for the comparably high acceptance of the final-state event selection for π−π−π+
6330

events is that in the K−π−π+ event selection we required only one of the two negative final-state6331

particles to be identified. The π− is identified for most of the events (see figure 4.3). Events of6332

the reaction K− + p→ K−π−π+ + p have one final-state π− to be identified, while events of the6333

reaction π− + p → π−π−π+ + p have two π− and thus a higher probability to be accepted. In6334

principle, the final-state particle identification veto should reject π−π−π+ events (see section 4.1).6335

However, only few π−π−π+ events are rejected, because the positive final-state particle is a π+
6336

in both reactions and because it is kinematically very improbable to simultaneously identify6337

both negative final-state particles (see section 4.1). Also, the other event selection cuts do not6338

suppress π−π−π+ events with respect to K−π−π+ events. Figure D.50 shows the distributions of6339

the π−π−π+ pseudodata sample reconstructed as K−π−π+ events (red histograms) in the kinematic6340

variables used to impose energy and momentum conservation in the event selection as discussed6341

in section 4.1. They exhibit peaks that are similar to those of the measured K−π−π+ sample6342

(blue histograms). Thus, also the cuts (gray vertical lines) on energy conservation, i.e. on Ebeam,6343

and on momentum conservation, i.e. on ∆φrecoil, do not suppress the π−π−π+ background in the6344

K−π−π+ sample.6345

In summary, the amount of π−π−π+ background is mainly caused by the limited kinematic range6346

of the final-state particle identification. Since the relative amount of π−π−π+ background in the6347

K−π−π+ sample is dominantly explained by acceptance effects, the cross-sections of the reactions6348

K− + p→ K−π−π+ + p and π− + p→ π−π−π+ + p have a similar scale. This is consistent with6349

measurements of the total K p and πp cross-sections [9].6350
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Figure D.50: Distribution of the kinematic variables used to select exclusive events. The red histograms
show the π−π−π+ pseudodata sample reconstructed as K−π−π+ events (see section 5.10) and scaled such
that the number of reconstructed π−π−π+ pseudodata events corresponds to the predicted amount of
π−π−π+ background in the K−π−π+ sample. The blue histograms show the measured K−π−π+ sample
(same as figure 4.4). (a) shows the distribution of the reconstructed beam energy after all cuts except for
the cut on Ebeam. (b) shows the distribution of ∆φrecoil, which is a measure of momentum conversation
(see section 4.1), after all cuts except for the cut on ∆φrecoil. The gray lines represent the applied cuts.
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E.1 The 10-Wave RMF6352

E.1.1 The 10-Wave RMF Model6353

An overview over the 10-wave RMF model is given in section 6.2.1 and it is also summarized in6354

table 6.1. Here, we provide additional, mainly technical details of the 10-wave RMF model.6355

Table E.1 lists the eight resonance components included in the 10-wave RMF. For all resonance6356

components, we used the relativistic Breit-Wigner amplitude given in equation (5.39) with a6357

dynamic width that takes into account a single decay channel given in the last column in table E.1.6358

The same decay channel is used for all resonances that belong to the same JP sector, i.e. the6359

dominant decay channel of the dominant resonance. We chose the parameter limits for the m0 and6360

Γ0 parameters (second column in table E.1) to be as little restrictive as possible in order to prevent6361

the results ending up on these limits, which would bias our results. Resonance components6362

representing ground or excited states of the same JP sector have non-overlapping m0 limits. For6363

example, this prevents interchange of resonance components, which would lead to ambiguities in6364

the RMF. The upper limit for Γ0 of 600 MeV/c2 is the same for all resonance components. It is6365

much larger than the width of the broadest of the included resonances as measured by previous6366

experiments, which is the K2(1820) with a width of about 276 MeV/c2 [91]. The lower limits for6367

the Γ0 parameters were optimized for each resonance to suppress solutions with unrealistically6368

small widths. We chose these limits to be smaller than any previous Γ0 measurement of the6369

corresponding state. Furthermore, we selected the start-parameter ranges for m0 and Γ0 such6370

that their cover a reasonable range including previous measurements [91] plus a safety margin.6371

Hence, we do not expect bias from the choice of the start-parameter ranges. As the K1(1400) is6372

only a small signal in the two included 1+ waves, we could not determine its mass and width6373

reliably (see section 6.3.3). Thus, we fixed the m0 and Γ0 parameters of the K1(1400) component6374

to the corresponding PDG average values [91] as listed in table E.1.6375

For the non-resonant and effective background components, we used in most of the waves the6376

simplified shape given in equations (6.11) and (6.17) as listed in table 6.1. The parameter limits6377

of −0.1 ≤ bk < 130.0 (GeV/c)−2 were chosen to be much larger than the expected range of bk,6378

e.g. larger than the typical values for bk obtained in the COMPASS π−π−π+ analysis [41]. The6379

start parameter range was chosen to be 1.0 ≤ bk < 10.0 (GeV/c)−2. For those components that6380

are parameterized by extended non-resonant and effective background shapes in equations (6.8)6381
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Table E.1: Resonance components included in the set Sa in equation (6.6) for the 10 partial waves listed
in table 6.1. In addition, we list the fit-parameter limits and the start-parameter ranges (see text) for the
mass parameters m0 and width parameters Γ0. The resonance parameters of the K1(1400) component
were fixed in the RMF to the PDG average values [91]. The last column shows the decay mode that we
assumed when calculating the dynamic width of the resonance in equation (5.40).

Resonance Parameter
Limits Start Ranges Fixed Values Decay Mode

[MeV/c2] [MeV/c2] [MeV/c2] for Γ(m)

K1(1270)
m0 1200 1500 1270 1290 —

K∗(892) π S
Γ0 50 600 80 130 —

K1(1400)
m0 — — — — 1403

K∗(892) π S
Γ0 — — — — 174

K1(1630)
m0 1550 2300 1600 1900 —

K∗(892) π S
Γ0 50 600 120 350 —

K∗2(1430)
m0 1300 1500 1425 1435 —

K π S
Γ0 80 600 105 115 —

K2(1770)
m0 1700 1790 1700 1790 —

K∗(892) π P
Γ0 100 600 150 250 —

K2(1820)
m0 1800 2000 1820 1850 —

K∗(892) π P
Γ0 100 600 150 250 —

K2(2250)
m0 2100 2450 2200 2280 —

K∗(892) π P
Γ0 50 600 150 250 —

K∗4(2045)
m0 2000 2400 2050 2080 —

K∗(892) πG
Γ0 100 600 150 250 —

and (6.18), respectively, we chose the parameter limits −5.0 ≤ ak < 30.0 and −500.0 ≤ ck6382

< 500.0, and the start-parameter ranges 0.1 ≤ ak < 1.0 and −3.0 ≤ ck < 3.0.6383

There are a few exceptions from these parameter limits and start-parameter ranges that we had to6384

introduce to improve the fit stability and convergence rate:6385

• The non-resonant components in the 2+ waves turned out to be small (see section 7.2). In6386

combination with the rather narrow mKππ fit ranges, in which we considered data from6387

these 2+ waves, we were not able to reliably determine the shape parameter bk of the non-6388

resonant components in these waves. In most of the cases, our estimates for the bk ended6389

up at the lower parameter limit of −0.1 (GeV/c)−2. Hence, we fixed the bk parameters of6390

the non-resonant components in the 2+ waves to bk = −0.1 (GeV/c)−2.6391

• Similarly, the bk parameter of the non-resonant component in the 2− 0+ K∗(892) π F wave6392

could not be determined from the limited mKππ fit range of this wave. In order to obtain6393
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an estimate for bk, we performed an RMF with an extended upper mKππ fit range for this6394

wave. This fit yielded a value of bk = 1.616 (GeV/c)−2. Then, we fixed bk to this value in6395

all others RMFs.[a]
6396

• We fine-tuned some start-parameter ranges and parameter limits based on the results of6397

first RMFs in order to improve the speed of convergence of the fit and thereby reduce the6398

computational costs:6399

– We changed the start-parameter ranges of the non-resonant component of the 2− 0+
6400

K∗2(1430) π S wave to 3.0 ≤ ak < 5.0 and 2.0 ≤ ck < 3.0.6401

– We changed the start-parameter ranges of the effective background component of the6402

2− 0+ K∗2(1430) π S wave to 7.0 ≤ ak < 8.0 and 3.3 ≤ ck < 3.4.6403

– We changed the start-parameter ranges of the effective background component of the6404

4+ 1+ K∗(892) πG wave to 4.0 ≤ ak < 6.0 and 1.5 ≤ ck < 1.6.6405

– We changed the parameter limits of the effective background component of the 2− 0+
6406

K∗2(1430) π S wave to −0.5 ≤ ak < 30.0.6407

– We changed the parameter limits of the effective background component of the 2− 0+
6408

f2(1270) π S wave to −0.1 ≤ bk < 200 (GeV/c)−2.6409

• The intensity spectrum of the 4+ 1+ K∗(892) πG wave exhibits an enhanced low-mass tail6410

below mKππ ≈ 2 GeV/c2 as shown in figure 5.20b. As the pre-factor in equation (6.6),6411

which encodes the mKππ dependence of the production and the phase space, suppresses the6412

transition amplitude at low mKππ, the RMF yielded very large values for ak in equation (6.8)6413

to compensate for the suppression when trying to reproduce this enhanced low-mass tail. To6414

take this into account we dropped this pre-factor in the model of the effective background6415

in the 4+ 1+ K∗(892) π S wave in equation (6.16), i.e. we used the following modified6416

version of equation (6.18):6417

DeBKG
k (mKππ; ak, ck) =

DNR
k (mKππ; ak, ck)√

Na(mKππ)mKππPP(mKππ, t′)
. (E.1)

As ak has a different meaning in this parameterization, we applied different parameter6418

limits of −5.0 ≤ ak < 60.0.6419

[a] As the RMF does not describe well the region mKππ > 2 GeV/c2 in the 2− 0+ K∗(892) π F wave, we did not use the
extended mKππ fit range in the main analysis.
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E.1.2 Results from the 10-Wave RMF6420

In this section, we summarize additional results from the 10-wave RMF that are not shown in the6421

main text in section 6.2. The parameter estimates for the shape parameters of the non-resonant6422

and effective background terms are listed in tables E.2 and E.3, respectively. The spin-density6423

matrices of the 10-wave RMF from the four analyzed t′ bins are shown in figures E.1 to E.4.6424

Table E.2: Estimates for the shape parameters of the non-resonant components as obtained from the
10-wave RMF described in section 6.2. The statistical and systematic uncertainties are not given. Values
of shape parameters that were fixed in the RMF (see appendix E.1.1) are marked by (*).

Partial wave Parameter Value

2−0+K̄∗2(1430)πS
c 3.00
a 11.0

1+0+ρ0(770)KS b [(GeV/c)−2] 4.03
1+1+ρ0(770)KS b [(GeV/c)−2] 3.39
2+1+K̄∗(892)πD b [(GeV/c)−2] (*)−0.1
2+1+ρ0(770)KD b [(GeV/c)−2] (*)−0.1
2−0+K̄∗(892)πS b [(GeV/c)−2] (*) 1.616
2−0+ρ0(770)KF b [(GeV/c)−2] 8.6
2−0+ f2(1270)KS b [(GeV/c)−2] 7.4
4+1+K̄∗(892)πG b [(GeV/c)−2] 19
4+1+ρ0(770)KG b [(GeV/c)−2] 3.1

Table E.3: Estimates for the shape parameters of the effective background components as obtained from
the 10-wave RMF described in section 6.2. The statistical and systematic uncertainties are not given.

Partial wave Parameter Value

2−0+K̄∗2(1430)πS
c 3.88
a 12.91

4+1+K̄∗(892)πG
c 2.05
a 7

1+0+ρ0(770)KS b [(GeV/c)−2] 5.7
1+1+ρ0(770)KS b [(GeV/c)−2] 13.01
2−0+K̄∗(892)πF b [(GeV/c)−2] 7
2−0+ f2(1270)KS b [(GeV/c)−2] 0.1
2−0+ρ0(770)KF b [(GeV/c)−2] 3.5
2+1+K̄∗(892)πD b [(GeV/c)−2] 8.4
2+1+ρ0(770)KD b [(GeV/c)−2] 10.7
4+1+ρ0(770)KG b [(GeV/c)−2] 0.1
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Figure E.1: Same figure as figure 6.2: Real and imaginary parts of the spin-density matrix elements, i.e.
Λab(mKππ, t′) in equation (6.19), as a function of mKππ in the lowest of the four t′ bins for the 10 partial
waves that were included in the 10-wave RMF. The figures on the diagonal show the intensity spectra.
The upper-right and lower-left off-diagonal figures show the real and imaginary parts of the off-diagonal
elements of the spin-density matrix, respectively. The blue data points represent the measured spin-density
matrix elements. The curves represent the result of the 10-wave RMF to these data points. The red curves
represent the total RMF model. The blue curves represent the individual resonance components, the green
curves the non-resonant components, the orange curves the π−π−π+ background components, and the
brown curves the effective background components. The extrapolations beyond the mKππ fit ranges are
shown in lighter colors. The corresponding data points are shown in gray. The ranges of the vertical axes
are different for each subplot. They are adjusted to the data shown in each subplot. Hence, we do not show
tick marks for the vertical axes.
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Figure E.2: Same as figure E.1 but for the second t′ bin.
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Figure E.3: Same as figure E.1 but for the third t′ bin.
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Figure E.4: Same as figure E.1 but for the fourth t′ bin.
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E.2 Extended Resonance-Model Fits of Waves with J P = 0−, 3+,6425

3−, and 4−6426

In order to also study the resonance content of waves with JP = 0−, 3+, 3−, and 4−; which were6427

not included in the 10-wave RMF; we performed four extended RMFs, one per JP sector. In6428

these extended RMFs, we added waves of further interest to the 10-wave RMF model, which is6429

described in section 6.2.1. The modeling of these additional waves and the fitting procedure is6430

the same as used for the 10-wave RMF and described in section 6.1. Table E.4 lists the additional6431

partial waves that were used in the extended RMFs and their model components. Table E.5 lists6432

the additional resonance components in these waves. The results of the extended RMFs for the6433

0−, 3+, 3−, and 4− waves are discussed in sections 7.5, 7.6, 7.7, and 7.8, respectively.6434

Table E.4: List of partial waves and model components included in the extended RMFs in addition to
the waves and components of the 10-wave RMF, which are listed in table 6.1. The first column gives
the JP sectors, for which the extended RMF was performed. The second column lists the corresponding
wave names. The third column lists the resonance components included in Sa in equation (6.6). They are
specified in table E.5. The forth column lists the parameterization used for the dynamic amplitudes of the
non-resonant components (NR). The fifth column lists the model for the π−π−π+ background components.
The sixth column lists the parameterizations used for the dynamic amplitudes of the effective background
components (eBKG) in equation (6.16). The last two columns list the mKππ range, in which data from this
partial wave is considered in the RMF.

RMF Partial Wave Resonances NR π−π−π+ eBKG
mKππ Range

[GeV/c2]

0− 0− 0+ ρ(770) π P


K(1460),
K(1630),
K(1830)

 (6.11) (6.15) (6.17) 1.1 2.3

3+
3+ 0+ K∗3(1780) π S

{
K3(2320)

}
(6.11) (6.15) — 2.0 2.3

3+ 1+ K∗2(1430) π P (6.11) (6.15) (6.17) 2.0 2.5

3−
3− 1+ K∗(892) π F

{
K∗3(1780)

}
(6.11) (6.15) (6.18) 1.6 2.0

3− 1+ ρ(770) K F (6.8) (6.15) (6.17) 1.6 2.2

4− 4− 1+ K∗2(1430) πD
{
K4(2500)

}
(6.11) (6.15) (6.17) 2.1 2.8
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Table E.5: Resonance components included in Sa in equation (6.6) for the extended RMFs (labeled by
the first column) in addition to the resonances listed in table E.1. The columns 4 and 5 list the parameter
limits and start-parameter ranges (see text in section 6.1.6) for the mass and width parameters, m0 and
Γ0, respectively. The last column lists the decay mode that we assumed for the dynamic width of the
resonance in equation (5.40).

RMF Resonance Parameter
Limits Start Ranges

Decay
[MeV/c2] [MeV/c2]

0−

K(1460)
m0 1300 1500 1400 1450

K∗(892) π P
Γ0 10 500 50 200

K(1630)
m0 1500 1700 1600 1650

K∗(892) π P
Γ0 10 350 150 200

K(1830)
m0 1800 1930 1820 1860

K∗(892) π P
Γ0 10 400 130 200

3+ K3(2320)
m0 2100 2500 2200 2450

K∗2(1430) π P
Γ0 100 600 100 300

3− K∗3(1780)
m0 1600 2000 1750 1820

K∗2(1430) π P
Γ0 100 600 100 300

4− K4(2500)
m0 2100 2650 2200 2450

K∗(892) π F
Γ0 100 600 100 300

346 March 1, 2022 18:18



D
RA

FT

F The Freed-Isobar Analysis6435

F.1 Method6436

In this section, we summarize the most important formulas for the freed-isobar PWD (see6437

appendix F.1.1) and for the corresponding RMF (see appendix F.1.2). More detailed explanations6438

of the freed-isobar analysis can be found in refs. [39, 42, 125].6439

F.1.1 Freed-Isobar Partial-Wave Decomposition6440

As already discussed in chapter 8, the goal of the freed-isobar PWD is to determine the dynamic6441

amplitudes of selected isobars from data by parameterizing them using piecewise constant6442

functions, i.e.6443

Dfree
ξ (mh−h+) =

∑
i

D
free
ξ (mi

h−h+)Θ(mh−h+ ; mi
h−h+). (F.1)

Here, mh−h+ is the invariant mass of the isobar system, i.e. mK−π+ or mπ−π+ , the window functions6444

Θ(mh−h+ ; mi
h−h+) are one within the bin i around mi

h−h+ and zero everywhere else, andDfree
ξ (mi

h−h+)6445

are the values of the dynamic amplitudeDfree
ξ (mh−h+) within the bin i around mi

h−h+ , which are6446

free parameters.6447

Using equation (F.1) as parameterization for the dynamic amplitudes of the isobar yields for6448

decay amplitudes defined in equation (5.9)6449

Ψ̃a(τ,mKππ) =
∑
λξ

αX→ξbL

√
2L + 1

4π

[
εDJ

Mλξ
(φGJ, θGJ, 0)

]∗
FL(mKππ)

(
L, 0; Jξ, λξ |J, λξ

)
×

∑
i

D
free
ξ (mi

h−h+)Θ(mh−h+ ; mi
h−h+)

× αξ

√
2Jξ + 1

4π

[
DJξ
λξ0

(φHF, θHF, 0)
]∗

FJξ (mh−h+).

(F.2)
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One should note that mh−h+ is included in τ. Exchanging the sums
∑
λξ and

∑
i, F.2 can be6450

interpreted as a sum,6451

Ψ̃a(τ,mKππ) =
∑

i

Ψ̃a,i(τ,mKππ), (F.3)

over individual decay amplitudes for each mh−h+ bin6452

Ψ̃a(τ,mKππ; mi
h−h+) ≡ Ψ̃a,i(τ,mKππ)

≡
∑
λξ

αX→ξbL

√
2L + 1

4π

[
εDJ

Mλξ
(φGJ, θGJ, 0)

]∗
FL(mKππ)

(
L, 0; Jξ, λξ |J, λξ

)
× D

free
ξ (mi

h−h+)Θ(mh−h+ ; mi
h−h+)

× αξ

√
2Jξ + 1

4π

[
DJξ
λξ0

(φHF, θHF, 0)
]∗

FJξ (mh−h+).

(F.4)

The Ψ̃a(τ,mKππ; mi
h−h+) encode the dependence of the decay amplitude on the angles of the6453

X− → ξ0b− and the ξ0 → h−h+ decays, where h−h+ is either K−π+ or π−π+. In addition,6454

Ψ̃a(τ,mKππ; mi
h−h+) includes the centrifugal barrier factors FL(mKππ) and FJξ

(mh−h+). The mh−h+6455

dependence given by the dynamic amplitudeDξ(mh−h+) of the isobar resonance, which is model6456

dependent, is removed from Ψ̃a(τ,mKππ; mi
h−h+).6457

The same normalization scheme given in equation (5.10) as for the conventional decay amplitudes6458

is applied, which yields the so-called freed decay amplitudesfreed decay amplitudesfreed decay amplitudesfreed decay amplitudesfreed decay amplitudesfreed decay amplitudesfreed decay amplitudesfreed decay amplitudesfreed decay amplitudesfreed decay amplitudesfreed decay amplitudesfreed decay amplitudesfreed decay amplitudesfreed decay amplitudesfreed decay amplitudesfreed decay amplitudesfreed decay amplitudes6459

Ψa(τ,mKππ; mi
h−h+) ≡

Ψ̃a(τ,mKππ; mi
h−h+)

Dfree
ξ (mi

h−h+)αX→ξbL αξ

√
Na(mKππ; mi

h−h+)
. (F.5)

Here, also the unknown value of the dynamic amplitude Dfree
ξ (mi

h−h+) within the mh−h+ bin i is6460

removed, in addition to the unknown couplings αX→ξbL and αξ. The freed wave-normalization6461

integral reads6462

Na(mKππ; mi
h−h+) =

∫
(mKππ,t′)

dm̃Kππd t̃′
∫

dΦ3(τ)

∣∣∣∣∣∣∣∣ Ψ̃a(τ, m̃Kππ; mi
h−h+)

Dfree
ξ (mi

h−h+)αX→ξbL αξ

∣∣∣∣∣∣∣∣
2

. (F.6)

One should note that due to the window function in Ψ̃a(τ,mKππ; mi
h−h+), the integral

∫
dΦ3(τ),6463

which also includes integration over mh−h+ as mh−h+ is included in τ, does not run over the full6464

K−π−π+ phase space, but only over the range of the mh−h+ bin i.6465
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Analogously to the definition of the transition amplitudes in the conventional PWD, we combine6466

all terms that appear in the model intensity [cf. equation (5.14)], except for the known freed6467

decay amplitudes, to the so-called freed-isobar amplitudesfreed-isobar amplitudesfreed-isobar amplitudesfreed-isobar amplitudesfreed-isobar amplitudesfreed-isobar amplitudesfreed-isobar amplitudesfreed-isobar amplitudesfreed-isobar amplitudesfreed-isobar amplitudesfreed-isobar amplitudesfreed-isobar amplitudesfreed-isobar amplitudesfreed-isobar amplitudesfreed-isobar amplitudesfreed-isobar amplitudesfreed-isobar amplitudes6468

T
z
a(mKππ, t′; mi

h−h+) ≡ T z
a,i(mKππ, t′)

≡

= T z
a (mKππ, t′)/

√
Na(mKππ)︷                                                                        ︸︸                                                                        ︷√

L

(2πF)2

√
mKππ

∑
k∈Sa

Pz
k,a(mKππ, t′)Dk(mKππ)αk→ξbL

αξ
×

√
Na(mKππ; mi

h−h+)

× D
free
ξ (mi

h−h+).

(F.7)

One should note that in contrast to the transition amplitudeT z
a (mKππ, t′) defined in equation (5.15),6469

Tz
a(mKππ, t′; mi

h−h+) also includes the dynamic amplitude Dfree
ξ (mi

h−h+) of the isobar resonance6470

and hence also depends on mh−h+ . This means that at fixed (mKππ, t′), Tz
a(mKππ, t′; mi

h−h+)6471

mainly[a]encodes the mh−h+ dependence of the dynamic amplitude of the isobar resonance6472

times an (mKππ, t′) dependent scale and phase.6473

In order to determine the freed-isobar amplitudes {Tz
a(mKππ, t′; mi

h−h+)} from data, they are param-6474

eterized by complex-valued piecewise functions, which are constant within each (mKππ, t′,mh−h+)6475

cell. We used the same binning in mKππ and t′ as used in the conventional PWD (see chap-6476

ter 5). The bin widths in mh−h+ are given by the window functions Θ(mh−h+ ; mi
h−h+) and listed in6477

appendix F.2.6478

In the conventional PWD, formulating T z
a (mKππ, t′) as piecewise constant functions in (mKππ, t′)6479

allowed us to analyze our data independently in (mKππ, t′) cells, because amplitudes from6480

different (mKππ, t′) cells do not interfere. Here, the amplitudes of partial waves with isobars in6481

different subsystems interfere at fixed mh−h+ . For example, amplitudes of partial waves with6482

K−π+ isobar interfere at fixed mK−π+ with the amplitudes of partial waves with π−π+ isobar at6483

all mπ−π+ , because fixing mK−π+ does not fix mπ−π+ . Hence, the freed PWD cannot be performed6484

independently in mh−h+ bins, but the full mh−h+ range of a given (mKππ, t′) cell has to be fit6485

simultaneously in one PWD fit.6486

The sum over the mh−h+ bins i and the sum over the partial waves a in the model intensity can be6487

merged to one sum that runs over (a, i), such that the model intensity of the freed isobar PWD6488

reads[b]
6489

Ifree(τ,mKππ, t′) =
∑

z

∣∣∣∣∣∣∣∑a,i T z
a,i(mKππ, t′)Ψa,i(τ,mKππ)

∣∣∣∣∣∣∣
2

. (F.8)

[a] The wave-normalization integral Na(mKππ; mi
h−h+ ) introduces only a smooth mh−h+ dependence in the freed-isobar

amplitudes, e.g. the centrifugal-barrier factor FJξ
(mi

h−h+ ) is included in Na(mKππ; mi
h−h+ ), because FJξ

(mi
h−h+ ) is

appearing in the corresponding freed decay amplitude.
[b] As discussed below, we freed only a single wave per freed-isobar PWD fit. Hence there is only one wave a where

we additionally sum over i.
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Ifree(τ,mKππ, t′) has the same structure as I(τ,mKππ, t′) in the conventional PWD [see equa-6490

tion (5.16)]. Therefore, the same likelihood formalism is used for the freed-isobar PWD as used6491

for the conventional PWD and described section 5.1. However, because there is one freed-isobar6492

amplitude per mh−h+ bin of each freed partial wave, the number of free parameters is drastically6493

increased in the freed-isobar PWD.6494

Given the limited size of our K−π−π+ sample, compared to e.g. the COMPASS π−π−π+ sample,6495

we could not free the dynamic amplitudes of isobars in multiple partial waves in a single fit.6496

Still, in order to perform proof-of-principle tests of the freed-isobar approach, we performed6497

four independent freed-isobar PWDs, in which we studied the [ππ]P (see section 8.1), [Kπ]P (see6498

section 8.2), [Kπ]D (see section 8.3), and [Kπ]S (see section 8.4) amplitudes.6499

In order to keep the number of free parameters at a manageable size, which still can be determined6500

with our K−π−π+ sample of limited size, we used a spin-density matrix with rank=1 for this6501

proof-of-principle tests of the freed-isobar PWD. Also, we did not perform Bootstrapping of the6502

freed-isobar PWDs to keep the computational costs low, i.e. we used the maximum-likelihood6503

estimates for the freed-isobar amplitudes and the corresponding covariance matrix in the RMFs6504

discussed in appendix F.1.2.6505

F.1.2 Resonance-Model Fit of Freed-Isobar Amplitudes6506

In order to study the resonances appearing in the isobar subsystems and to measure their masses6507

and widths, we performed RMFs of the extracted freed-isobar amplitudes. To this end, the mh−h+6508

dependence of the freed-isobar amplitudes is modeled.6509

The freed-isobar amplitudes are modeled using only resonance components. Analogously to6510

equation (6.6), the corresponding modeled amplitudes read6511

T̂
z
a(mKππ, t′; mi

h−h+) =

√
Na(mKππ; mi

h−h+)mKππPP(mKππ, t′)
∑
k∈Sa

kCz
a(mKππ, t′)Dk(mi

h−h+ ; ζk).

(F.9)
We used relativistic Breit-Wigner amplitudes according to equation (5.39) for the dynamic6512

amplitudes Dk(mi
h−h+ ; ζk) (see tables F.3 and F.4). Analogously to the t′ dependence in the6513

conventional RMF, the mKππ and t′ dependence is not explicitly modeled here, but the coupling6514

amplitudes kCz
a(mKππ, t′) are modeled by piecewise constant functions in mKππ and t′, i.e. there is6515

an independent complex-valued parameter for each (mKππ, t′) cell for each coupling amplitude.6516
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In the χ2 optimization, the modeled amplitude T̂z
a(mKππ, t′; mi

h−h+) is directly compared to the6517

measured amplitude Tz
a(mKππ, t′; mi

h−h+). To this end, the real-valued vector ~µ of the freed-isobar6518

amplitudes is constructed. Its elements,6519

µi(mKππ, t′) =


<

(
Tz

a(mKππ, t′; mi
h−h+)

)
, if i is even

=

(
Tz

a(mKππ, t′; mi
h−h+)

)
, if i is odd,

(F.10)

represent different mh−h+ bins.[c] Analogously, the corresponding RMF model quantities read6520

µ̂i(mKππ, t′) =


<

(
T̂z

a(mKππ, t′; mi
h−h+)

)
, if i is even

=

(
T̂z

a(mKππ, t′; mi
h−h+)

)
, if i is odd

. (F.11)

We fit the freed-isobar amplitudes from all four t′ bins and from a chosen range in mKππ (see6521

table F.3) simultaneously in one RMF. With the above definitions, the corresponding χ2 function6522

reads6523

χ2
freed =

∑
t′,mKππ

∑
i, j

∆µi(mKππ, t′) Prec
[
µi(mKππ, t′), µ j(mKππ, t′)

]
∆µ j(mKππ, t′). (F.12)

Here,6524

∆µi(mKππ, t′) = µi(mKππ, t′) − µ̂i(mKππ, t′) (F.13)

is the residual between the measured freed-isobar amplitude and the corresponding RMF model6525

quantity, and Prec[µi, µ j] is the precision matrix, i.e. the inverse of the covariance matrix of the6526

freed-isobar amplitudes as obtained from the freed-isobar PWD.[d]
6527

F.2 Bin Widths used in the Freed-Isobar Partial-Wave6528

Decomposition6529

Table F.1 lists the bin widths in two-body mass mh−h+ of the piecewise constant freed-isobar6530

amplitudes in the various two-body mass ranges as used in the freed-isobar analysis discussed6531

in chapter 8. The lowest and highest mh−h+ bins are chosen wider than the bin width given in6532

table F.1, so that the analyzed range corresponds to the full mh−h+ range. The lower border of the6533

lowest mh−h+ bin is given by the sum of the masses of the two final-state particles in the isobar6534

[c] We dropped the partial wave label a and the coherent sector label z for µi, because we freed only one partial wave
per freed-isobar fit, and because we used a rank=1 model in the freed PWDs.

[d] We used the maximum-likelihood estimates for the freed-isobar amplitudes and the corresponding covariance
matrix. As the real and imaginary parts of the freed-isobar amplitudes are the free parameters in the PWD fits, error
propagation is not necessary to obtain the corresponding covariance matrix, in contrast to the covariance matrix of
the spin-density matrix elements. Hence, Bootstrapping is not essential for the freed-isobar PWDs.
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system, i.e. mmin
K−π+/π−π+ = mK−/π− + mπ+ , rounded down to a precision of three decimal digits.6535

The upper border of the highest mh−h+ bin is given by the upper border of the analyzed mKππ6536

range minus the mass of the bachelor particle, i.e. mmax
K−π+/π−π+ = 3 GeV/c2 − mπ−/K− , rounded up6537

to a precision of three decimal digits. This rounding ensures that the bins cover the full analyzed6538

two-body mass range including numerical effects. For example, the first bin for the [ππ]P isobar6539

amplitude (see table F.2a) ranges from 0.279 to 0.320 GeV/c2 and the last bin ranges from 2.4406540

to 2.506 GeV/c2.6541

F.3 Isobar Resonances included in the Resonance-Model Fits6542

In order to study the resonance content of the measured freed-isobar amplitudes we performed6543

independent RMFs of the [ππ]P, [Kπ]P, and [Kπ]D isobar amplitudes. Table F.3 lists the6544

resonance components and fit ranges used in these RMFs. The lower limits for the mπ−π+ and6545

mK−π+ fit ranges are given by the corresponding phase-space border. The upper limits are chosen6546

to include only the mπ−π+ or mK−π+ range of the corresponding ground state isobar resonance.6547

Table F.4 lists the mass and width parameter limits and start parameter ranges of the resonance6548

components included in these RMFs.6549
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Table F.1: Bin widths of the piecewise constant freed-isobar amplitudes in the various two-body mass
ranges for (a) the [ππ]P, (b) the [Kπ]P, (c) the [Kπ]D, and (d) the [Kπ]S isobar amplitudes as used in the
freed-isobar analyses discussed in chapter 8. Note that the lowest and highest mh−h+ bins are wider than
the given bin width (see text).

(a) [ππ]P

mπ−π+ Range mπ−π+ Bin Width

0.279 to 0.640 GeV/c2 40 MeV/c2

0.640 to 0.920 GeV/c2 20 MeV/c2

0.920 to 2.506 GeV/c2 40 MeV/c2

(b) [Kπ]P

mK−π+ Range mK−π+ Bin Width

0.633 to 0.800 GeV/c2 20 MeV/c2

0.800 to 1.000 GeV/c2 10 MeV/c2

1.000 to 1.720 GeV/c2 20 MeV/c2

1.720 to 2.861 GeV/c2 40 MeV/c2

(c) [Kπ]D

mK−π+ Range mK−π+ Bin Width

0.633 to 1.120 GeV/c2 40 MeV/c2

1.120 to 1.720 GeV/c2 20 MeV/c2

1.720 to 2.861 GeV/c2 40 MeV/c2

(d) [Kπ]S

mK−π+ Range mK−π+ Bin Width

0.633 to 2.861 GeV/c2 40 MeV/c2
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Table F.3: Model components and fit ranges of the RMFs to the freed-isobar amplitudes. The first column
lists the freed-isobar amplitude. The second column lists the isobar resonance components included in the
RMF model. They are specified in table F.4. The next double-column lists the mπ−π+ or mK−π+ range in
which the data from this partial wave are considered in the RMF. The last double-column lists the mKππ

range in which the data from this partial wave is considered in the RMF.

Isobar Amplitude Resonance
mπ−π+/K−π+ Range mKππ Range

[GeV/c2] [GeV/c2]

[ππ]P ρ(770) 0.279 1.000 1.1 2.5
[Kπ]P K∗(892) 0.633 1.100 1.1 2.5
[Kπ]D K∗2(1430) 0.633 1.600 1.4 3.0

Table F.4: Resonance components included in the RMFs of the freed-isobar amplitudes (given in the first
column). Furthermore, we list the fit-parameter limits and start-parameter ranges (see text) for the mass
and width parameters. The last column gives the decay mode that we assumed for the dynamic width of
the resonance in equation (5.40), where the first two letter give the daughter particles and last letter gives
the angular orbital momentum between the daughter particles.

Isobar Amplitude Resonance Parameter
Limits Start Ranges

Decay
[MeV/c2] [MeV/c2]

[ππ]P ρ(770)
m0 600 900 765 780

π π P
Γ0 80 600 140 150

[Kπ]P K∗(892)
m0 700 1100 850 950

K π P
Γ0 10 600 40 60

[Kπ]D K∗2(1430)
m0 1300 1500 1425 1435

K πD
Γ0 80 600 105 115
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G.1 Partial-Wave Decomposition6551

G.1.1 The Information-Field-Theory Model6552

In section 5.7.2, we describe a study in which we selected a wave set for the PWD using a6553

method based on information field theory (IFT) in order to suppress insignificant waves and to6554

impose continuity of the wave set in mKππ. This IFT wave-set selection is an alternative to the6555

regularization methods presented in sections 5.2.2 and 5.2.3. In the IFT wave-set selection, the6556

four t′ bins were treated independently, as in the main analysis. IFT is a Bayesian probability6557

theory. Therefore, the quantity we determined in each t′ bin is the probability distribution of6558

the transition amplitudes {T z
a (mKππ)} in all mKππ bins given the measured K−π−π+ sample {υ}.6559

Using Bayes formula this posterior probability reads[a]
6560

P
(
{T z

a (mKππ)}
∣∣∣ {υ} ) =

P
(
{υ}

∣∣∣ {T z
a (mKππ)}

)
P

(
{υ}

) P0
(
{T z

a (mKππ)}
)
. (G.1)

Here, P
(
{υ}

)
is the evidence. The probability P

(
{υ}

∣∣∣ {T z
a (mKππ)}

)
of the measured K−π−π+

6561

sample given the transition amplitudes incorporates the information from the data. It is given6562

by the product over the likelihoods LPWD
(
{T z

a (mKππ)}; {υ}mKππ

)
defined in equation (5.33) of all6563

mKππ bins:6564

P
(
{υ}

∣∣∣ {T z
a (mKππ)}

)
=

∏
mKππ

LPWD
(
{T z

a (mKππ)}; {υ}mKππ

)
. (G.2)

We considered only the K−π−π+ sample from the 2008 diffraction data set, because handling of6565

multiple data sets was not easily implementable in the IFT framework and thus not feasible in6566

the IFT systematic study.6567

The prior probability P0
(
{T z

a (mKππ)}
)

encodes the prior knowledge about the transition ampli-6568

tudes. Here, we implemented our knowledge about the continuity of the transition amplitudes as6569

a function of mKππ and the condition to suppress insignificant waves. We formulated independent6570

prior terms for the transition amplitudes of each wave a, i.e.6571

P0
(
{T z

a (mKππ)}
)

=
∏

a

Pa
(

#»

T z
a

)
. (G.3)

[a] We drop the t′ dependence here for simplicity since we treated the four t′ bins independently.
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Here,
#»

T z
a is the vector of the 100 transition amplitudes in the 100 mKππ bins of wave a in the6572

coherent sector z,[b] i.e. the kth component of this vector is[c]
6573 [

#»

T z
a

]
k

= T z
a (mKππ,k), (G.4)

where mKππ,k is the mass at the position of the kth mKππ bin. As in the main analysis, we used a6574

rank=1 PWD model for the wave-set selection fits in the IFT study. We drop the sector label z6575

from now on, because each transition amplitude is uniquely labeled by the wave label a.6576

In the prior, the correlation between transition amplitudes of wave a at different mKππ locations6577

is represented by the covariance matrix:6578

[Ca]kl = Ca
(
mKππ,k,mKππ,l

)
. (G.5)

Here, Ca
(
mKππ,k,mKππ,l

)
is the two-point correlation function.6579

In order to formulate the prior probability, we perform the Fourier transformation,6580

#»

T ′a = F
{

#»

Ta
}
,with

[
#»

T ′a

]
i
= T ′a (ωi) , (G.6)

of the transition amplitudes from the mKππ space of mass bins to the corresponding Fourier space6581

~ω. The corresponding probability P′a
(

#»

T ′a

)
of the Fourier-transformed transition amplitudes has6582

the covariance matrix C′a. Assuming statistical homogeneity for the transition amplitudes, i.e.6583

Ca
(
mKππ,i,mKππ, j

)
= Ca

(
mKππ,i − mKππ, j

)
, (G.7)

the covariance matrix in the Fourier space,6584

Ca
(
ωi, ω j

)
=

[
C′a

]
i j

= δi j

([
~σa

]
i

)2
, (G.8)

is diagonal [184]. This means that the Fourier-transformed transition amplitudes are independent.6585

Hence, they can be expressed in terms of uncorrelated random variables ~ξa, which have a standard6586

deviation of one, i.e.6587 [
#»

T ′a

]
i
=

[
~σa

]
i

[
~ξa

]
i

(G.9)

The form of the prior probability in terms of ~ξa still has to be chosen. The ~ξa represent the6588

Fourier-transformed transition amplitudes. Asymptotically, their probability distribution becomes6589

a Gaussian distribution under certain conditions (see Theorem 4.4.2 in ref. [185]). Thus, we used6590

a Gaussian standard distribution,6591

P0
(
~ξa

)
= N

(
~ξa; 0,1

)
, (G.10)

[b] In this study, we used an equidistant binning in the full mKππ range with a bin width of 20 MeV/c2, because using
different mKππ bin widths as done in the main analysis could not easily be implemented in the IFT framework.

[c] In this section, we use the notation of a vector or matrix in rectangular bracket with the index in the subscript to
indicate a single element of the vector or matrix that corresponds to the given index.
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as prior probability for ~ξa.[d] This prior probability has a standard deviation of one, as required6592

by the construction of ~ξa, and a mean of zero in order to suppress insignificant waves.6593

However, the standard deviations
[
~σa

]
i

that correspond to the frequency ωi in Fourier space6594

need to be constrained. Since we assume continuity of the transition amplitudes in mKππ, high6595

frequencies, which correspond to fluctuations of the transition amplitudes from bin to bin, are6596

less probable in the prior compared to low frequencies. Thus,
[
~σa

]
i

should be smaller for larger6597

ωi. Based on previous experiences from ref. [127], we used a power-law spectrum in order to6598

suppress high frequencies, which reads6599 [
~σa

]
i
= αa · |ωi|

−βa for i , 0. (G.11)

As equation (G.11) diverges for ω0 = 0, we used a constant γa for the zeroth component of the6600

standard deviation, i.e.6601 [
~σa

]
0

= αa · γa. (G.12)

Here, αa, βa, and γa are three additional free hyperparameters per partial wave a, which we6602

introduced in our formulation of the prior probability. In contrast to the Cauchy regularization in6603

equation (5.55) and the continuity term in equation (5.57), which each have only one parameter6604

common to all partial waves; in the IFT study the usage of independent parameters for each wave6605

introduces additional adaptability in the wave-set selection. However, a much larger number of6606

hyperparameters needs to be determined. Instead of choosing the hyperparameters, we inferred6607

them from data using hyperpriors to constrain them. For βa, we used a Gaussian hyperprior,6608

i.e.6609

P0
(
βa

)
= N

(
βa; µβ, σβ

)
, (G.13)

with µβ = 0.9 and σβ = 0.01 common to all waves. These parameters where chosen based on6610

recommendations from ref. [127]. The parameters αa set the scales of the standard deviations6611

of the Fourier-transformed transition amplitudes and thus relate to the scales of the transition6612

amplitudes. As discussed in section 5.2.2, the overall scale of the transition amplitudes spans up6613

to five orders of magnitude. To take this into account, we assumed a log-Gaussian hyperprior for6614

αa, i.e.6615

P0
(
lnαa

)
= N

(
lnαa; µlnα, σlnα

)
, (G.14)

with µlnα = −1. and σlnα = 0.1 common to all waves. We fixed the parameter γa to a value of6616

1.0 for all waves. These parameters where chosen based on recommendations from ref. [127].6617

Tests using a free γa with a log-Gaussian hyperprior did not yield improved fit results, but the fits6618

were much more unstable.6619

[d] Note that ~ξa is actually a vector of complex-valued components. We used independent Gaussian priors for the real
part and the imaginary part of these components. This can be done, because in the Fourier space the individual
components are independent assuming statistical homogeneity, because the Fourier transformation is a linear
operation and hence acts individually on the real part and the imaginary part of the transition amplitudes, and
because we do not assume any correlation between the real part and the imaginary part of the transition amplitudes
in the prior probability.
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In summary, we formulated the prior probability in terms of the Fourier-transformed transition6620

amplitudes as a standard Gaussian distribution in ~ξa centered around zero. As the prior is centered6621

around zero, it suppresses insignificant waves. The standard deviation of the Fourier-transformed6622

transition amplitudes and thereby the strength of the suppression of the corresponding waves is6623

individually adjusted for each wave to the data, because we modeled the standard deviations by a6624

power-law spectrum with individual hyperparameters for each wave. Therefore, the bias from6625

regularization and imposing continuity in the prior probability is potentially reduced compared6626

to the Cauchy and continuity terms used in the main analysis.6627

The final posterior probability of the IFT wave-set selection in a given t′ bin reads:6628

P
(
{Ta(mKππ)}, {lnαa}, {βa}

∣∣∣ {υ} ) =
P

(
{υ}

∣∣∣ {T z
a (mKππ)}

)
P

(
{υ}

) ∏
a

P0
(
~ξa

)
P0

(
lnαa

)
P0

(
βa

)
Ja.

(G.15)
Using equations (G.6), (G.9), (G.11), and (G.12), the transition amplitudes,[e]

6629

#»

Ta = F −1
{
~σa

(
lnαa, βa

)
· ~ξa

}
, (G.16)

of the Nwaves partial waves can be expressed in terms of the free parameters of the IFT model,6630

i.e. the number of waves times the number of mKππ bins parameters
[
~ξa

]
i
, which represent the6631

Fourier coefficients; the Nwaves parameters lnαa, which give a scale to the standard deviations of6632

the transition amplitudes in the Fourier space; and the Nwaves parameters βa, which represent the6633

slope of the power-law spectrum. The Jacobian term Ja appears in equation (G.15) arises from6634

this variable transformation.6635

We used the Python software NIFTy [129] to implement the posterior probability in equa-6636

tion (G.15). NIFTy allows us to formulate the posterior probability as a generative model, i.e. to6637

construct the transition amplitudes according to equation (G.16) from the free parameters {~ξa},6638

{lnαa}, and {βa} in a bottom-up approach. The Jacobian Ja from the variable transformation and6639

the prior probabilities are calculated automatically.6640

Given the complexity of the model and the computational expensive evaluation of the likelihood6641

function in equation (G.2), a full study of the posterior probability distribution in equation (G.15)6642

was not feasible. Thus, we performed a maximum-a-posteriori fit to determine the IFT estimates6643

for the transition amplitudes, i.e. we optimized the free parameters of the IFT model such that6644

they minimize equation (G.15).[f] In addition, it was sufficient to perform only a maximum-a-6645

posteriori fit, because we used the result of the IFT wave-set selection only to determine whether6646

a wave significantly contributes to the data and should be included in the wave set.6647

[e] Here, we use the short-hand notation
[
~σa

(
lnαa, βa

)
· ~ξa

]
i

=
[
~σa

(
lnαa, βa

)]
i
·
[
~ξa

]
i

for the vector that is Fourier
back-transformed.

[f] As the evidence P
(
{υ}

)
does not depend on the fit parameters, it was neglected in the maximum a posteriori fits.
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G.1.2 Summary of Systematic Studies of the Partial-Wave Decomposition6648

In this section, we show a comparison of the results from systematic studies and from the6649

main analysis for all partial waves that are discussed in this work. Figure G.1 shows the t′-6650

summed intensity spectra of the partial waves that are included in the 10-wave RMF discussed in6651

section 6.2. Figure G.2 shows further waves that are not affected by the leakage effect. Figure G.36652

shows the t′-summed intensity spectra of partial waves that are affected by the leakage effect.6653
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Figure G.1: Comparison of the results from various systematic studies and from the main analysis for
partial waves that are included in the 10-wave RMF discussed in section 6.2. The large blue data points
show the Bootstrapping estimates from the main analysis. The small differently-colored data points show
the maximum-likelihood estimates from the various systematic studies. The violet data points show the
study using the wave set constructed from the IFT wave-set selection fits (see section 5.7.2). The light
red data points show the study without the 3+ 1+ K∗(892) πD wave in the range mKππ < 1.7 GeV/c2 (see
section 5.9). The green, red, and orange data points show the studies with a weaker RICH threshold of
TR = 1.05, with a more restrictive RICH threshold of TR = 1.30, and with a more restrictive momentum
limit of 40 GeV/c for final-state particle identification; respectively (see section 5.7.1). We do not show
uncertainties for the maximum-likelihood estimates from the systematic studies (see section 5.7).
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Figure G.1: Continued
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Figure G.2: Same as figure G.1 but for the partial waves that are not included in the 10-wave RMF and not
affected by the leakage effect.
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Figure G.2: Continued
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Figure G.3: Same as figure G.1 but for the partial waves that are affected by the leakage effect.
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G Systematic Studies
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Figure G.3: Continued
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H Software Stack6654

Table H.1: List of the most important software frameworks used in this analysis. The first column gives the
name, the second column a short description of the framework. The third column lists the most important
sections for which this framework was used. The last column gives the reference to the framework.

Name Description See Ref.

CORAL COMPASS software for event reconstruction
from raw detector data

2.2 [53]

PHAST Software for event selection used for the preselec-
tion

4.1 [186]

Antok Software for event selection and to create plots of
kinematic distributions used for the final K−π−π+

event selection

4.1 [187]

CEDAR Helper Library for the CEDAR likelihood approach and
the corresponding calibration tools

3.1 [188]

RPD Helper Library to use the information from the recoil-
proton detector

4.1 [189]

COMGEANT COMPASS detector simulation software based on
Geant3

C.2 [190]

ROOTPWA Toolkit for partial-wave analysis of multi-particle
final states used for all PWDs, which uses the
NLopt package [85] to perform the negative log-
likelihood minimization

5, 8 [191]

ROOTPWAtools Collection of additional tools for PWDs using
ROOTPWA

5, 8 [192]

sfitter Toolkit for resonance-model fits used for all
RMFs, which uses iminuit [143] to perform the
χ2 minimization

6, 8 [193]

batchelor Toolkit for job submission on computing clusters 4.1, 5, 6, 8 [194]
modernplotting Software to create plots for high-energy physics;

based on matplotlib [195]
all [196]

RPWAplotting Software to create plots of partial-wave analysis
results; based on modernplotting

5, 6, 8 [197]
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Glossary6655

Numbers | A | B | C | D | E | F | G | H | I | K | L | M | N | O | P | R | S | T | W6656

Numbers6657

10-wave pseudodata sample 1766658

10-wave pseudodata sample with admixed π−π−π+ background 1776659

10-wave RMF 1586660

10-wave RMF model 1586661

238-wave pseudodata model 1206662

238-wave PWD 966663

238-wave set 846664

A6665

acceptance 376666

acceptance models 636667

acceptance-integral matrix 636668

B6669

bachelor particle 526670

π−π−π+ background 1416671

Bootstrapping mean value 906672

Bootstrapping samples 906673

branching amplitude 1546674

C6675

Cauchy regularization 766676

centrifugal-barrier factor 576677

coherent sectors 596678

COMPASS π−π−π+ analysis 56679

conventional PWD 2316680

coupling amplitudes 1516681

cuts 376682

D6683

data-set fraction 626684

decay amplitudes 586685
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Glossary

Deck-like 86686

destructive interference 736687

detuned acceptance model 1246688

diffraction data-taking campaigns 96689

DT0 trigger 396690

dynamic amplitude 576691

E6692

effective background component (eBKG) 1506693

enhanced low-mass tails 1066694

extended RMFs 1836695

F6696

final-sate particle ID veto 416697

flat wave 596698

Flatté parameterization 696699

freed decay amplitudes 3486700

freed-isobar amplitudes 3496701

freed-isobar PWD fits 2316702

G6703

Gottfried-Jackson (GJ) frame 526704

H6705

helicity frame (HF) 536706

hit probability 186707

I6708

information field theory 1176709

intensity of a partial wave 626710

intensity spectra 996711

interaction vertex 386712

isobar 526713

isobar model 526714

K6715

K−K−K+ background 476716

K−π−π+ spin-density matrix 1496717

L6718

leakage artifacts 1296719

leakage waves 1296720
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low-mass structures 1016721

M6722

majority method 146723

maximum-likelihood estimates 886724

measured data 2756725

measured distributions 2756726

measured intensities 1616727

measured spin-density matrix elements 1616728

measured values 2756729

model intensity 596730

N6731

naturality 26732

neutral clusters 2506733

non-leakage waves 1296734

non-resonant component 1506735

non-resonant processes 86736

O6737

ordered-intensity distribution 2876738

overfitting 736739

overlaps 1296740

P6741

parity 26742

partial wave 556743

partial-wave analysis (PWA) 516744

partial-wave decomposition (PWD) 516745

phase motion 1036746

phase of a wave 1036747

phase-space integral matrix 626748

phase-space pseudodata 2766749

π−π−π+ background PWD 1446750

π−π−π+ pseudodata sample 1416751

produced distributions 2756752

produced events 546753

produced pseudodata 2756754

produced values 2756755

production factor 1506756

production plane 526757

pseudodata studies 1206758

PWD predictions 1076759
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R6760

rank of the spin-density matrix 616761

real-valued spin-density matrix 1556762

reconstructed distributions 2756763

reconstructed pseudodata 2756764

reconstructed values 2756765

reduced squared four-momentum transfer 86766

reflectivity 566767

regularization term 766768

relative intensity 1046769

relative phase 1036770

resonance components 1506771

resonance-model fit (RMF) 1496772

RICH threshold 316773

runs 116774

S6775

shape parameters 1506776

spin-density matrix 606777

sub-threshold waves 796778

T6779

t′ spectrum 1676780

t′-summed total intensity spectrum 996781

total model intensity 626782

total spin J 26783

transition amplitudes 606784

W6785

wave pool 746786

wave set 736787

wave-normalization integral 586788

wave-set selection fit 746789
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Own Contributions7633

My analysis of the reaction K− + p → K−π−π+ + p at COMPASS is based on a previous7634

unpublished COMPASS analysis by P. Jasinski [44], where a first event selection and a PWD7635

were performed using only a subset of the COMPASS data. My analysis also relies on the7636

experience gained in the COMPASS π−π−π+ analysis [11, 38–41, 80].7637

I extended, improved, and fine-tuned the existing event selection for the K−π−π+ sample in many7638

regards. For example, I performed a preselection for events with three charged final-state particles,7639

which is used in many other COMPASS analyses [43, 62, 65, 66]. Especially noteworthy, I7640

developed, implemented, and verified a novel approach for beam-particle identification using7641

the full information from both CEDAR detectors, based on first ideas from C. Bicker. To this7642

end, I formulated a coordinate transformation, which is the heart of this approach and which7643

allowed me to calibrate the employed likelihood function without relying on pure beam-kaon7644

and beam-pion calibration samples. Compared to the previously used approach, I doubled the7645

efficiency for beam-kaon identification and thereby doubled the size of the K−π−π+ sample. In7646

addition, I increased the K−π−π+ sample size by almost another factor of two, compared to the7647

existing COMPASS K−π−π+ sample [44], by using the full COMPASS data set, which consists7648

of data from two data taking campaigns (2008 and 2009) with slightly different experimental7649

acceptances, which I had to take into account.7650

Based on this K−π−π+ sample, I performed a partial-wave decomposition (PWD). I made7651

significant contributions to the PWD software framework ROOTPWA [191]. For the first time7652

for the K−π−π+ sample, I applied model-selection techniques to determine an optimal wave7653

set. In close collaboration with F. Kaspar, who worked on the wave-set selection for π−π−π+, I7654

extended the wave-set selection approach developed in previous COMPASS analyses [67, 108]7655

by taking into account acceptance effects and by imposing continuity in mKππ. Furthermore, I7656

applied, for the first time at COMPASS, Bootstrapping techniques starting at the event-sample7657

level to propagate uncertainties up to the PWD level. In addition, I developed and implemented in7658

ROOTPWA an approach to simultaneously fit multiple data samples with different experimental7659

acceptances. To this end, I generated large data samples using the COMPASS detector Monte7660

Carlo simulation.7661

During the analysis, I observed analysis artifacts in some partial waves. I could trace back the7662

origin of these artifacts to the leakage effect, which is caused by the limited kinematic range of7663

the final-state particle identification. I established three independent approaches to identify the7664

leakage artifacts and I showed that the non-leakage waves are free of these artifacts so that they7665

can be interpreted reliably in terms of physics signals.7666
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A first resonance-model fit (RMF) to the results of the PWD, which was based on an approach7667

similar to the one used in the COMPASS π−π−π+ analysis [40, 41], failed. I identified the7668

incoherent background contributions to be the main reason for this failure. Then, I developed an7669

ansatz that effectively handles these incoherent background processes at the stage of the PWD7670

and explicitly models them at the stage of the RMF. Using this ansatz, I developed a RMF model7671

with 10 partial waves. Based on this model, I performed fits in which I studied 7 strange mesons7672

in detail. To this end, I developed a new software for RMFs [193]. Furthermore, I performed7673

a first set of systematic studies, and I performed extensive pseudodata studies to validate my7674

analysis ansatz. In addition, I extended this model to study 7 further strange mesons. Finally,7675

I performed first tests of studying resonances appearing the K−π+ and π−π+ subsystems of the7676

K−π−π+ final state, which required further extensions of my RMF software [193]. The physics7677

results presented in this thesis are summarized in figure 9.1.7678

In addition to the work described in this thesis, I was involved in other COMPASS analyses of7679

bachelor and master students [61, 65, 198, 199]. I also contributed to the COMPASS data taking7680

campaigns in the years 2016, 2017, 2018, and 2021.7681

I presented various aspects of my analysis in regular meetings within the COMPASS collaboration.7682

Furthermore, I presented my analysis and other COMPASS results at various national and7683

international workshops and conferences. I published some of these results in the corresponding7684

proceedings [200–202]. Finally, I had the honor to be invited to give a plenary talk on news from7685

the light and strange meson sector at the 19th HADRON conference [203].7686
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