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CHAPTER 1

Introduction

Stable matter is composed of protons, neutrons and electrons. Accordingly, the proton has a large
importance for various researches. The magnetic moment of orthohydrogen was measured in 1933 by
Frisch to have a value of 2 to 3 nuclear magnetic moments [1]. This was the first hint that a proton is
not a point-like particle, but has a substructure instead. Therefore, it has to have a finite size. The
proton charge radius was measured with electron-proton scattering by several experiments, which led
to a CODATA value of (0.8751 ± 0.0061) fm in 2016 [2]. Measurements with hydrogen spectroscopy
yield a CODATA value of (0.8759 ± 0.0077) fm [2]. The CREMA collaboration has measured the
proton charge radius with muonic hydrogen spectroscopy in 2010 to be (0.84184 ± 0.00067) fm and
2013 to be (0.84087 ± 0.00039) fm [3, 4]. The results of the measurement with muonic hydrogen are
more precise than results from hydrogen spectroscopy, as the distance between the muon and the
proton is smaller than the Bohr radius, leading to a larger sensitivity to the substructure of the proton.
This has led to a 5.6 σ-discrepancy to the 2014-CODATA value [2]. As electrons and muons behave
equally according to the standard model, this large discrepancy between the measurements is very
surprising and became known as the "proton radius puzzle", which is illustrated in figure 1.1. There are
two spectroscopy measurements on ordinary hydrogen that were published after the 2016-CODATA
value, one of which is in agreement with the result of muonic hydrogen spectroscopy [5] [6]. There
are several explanations for the discrepancy within the standard model, namely a wrong determination
of the Rydberg constant, radiative corrections and the two-photon exchange [7]. The proton charge
radius in an elastic scattering experiment is determined with the slope of the electric form factor at a
momentum transfer of 0. As the form factor can be measured only to a certain momentum transfer
larger than 0, the extraction of the radius depends on the fit model. This is emphasized by several
working groups fitting the same data extracted by the Mainz A1 collaboration and extracting different
results [8]. This model dependency can be reduced by measuring down to the smallest possible
momentum transfer. One explanation beyond the standardmodel is a violation of the lepton universality.

There is a wide experimental effort in order to study different effects, which is shortly summa-
rized in the following.
The PRad experiment at the Jefferson Lab wants to measure the form factor with electron-proton

scattering down to a momentum transfer of 2 × 10−4GeV2. The scattering angle has to be determined
with a precision of 10 µrad, which should be achieved with a windowless target [9].

An experiment with muons and electrons up to momenta of 210MeV is planned by the Paul
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Chapter 1 Introduction

Scherrer Institute [10]. This experiment should yield a good systematic comparison between muon-
and electron-proton elastic-scattering. The momentum transfer should be measured between 0.0016
to 0.0820GeV2 for electrons and between 0.0016 to 0.0799GeV2 for muons.

The OLYMPUS experiment at DESY has aimed to study the impact of the hard two-photon exchange
on the elastic electron-proton cross section. The ratio of elastic positron-proton and electron-proton
scattering was measured with a precision of 1% up to momentum transfers of 2.2GeV2, recommending
to measure the elastic electron-proton cross section to even higher momentum transfers [11].

The A1 collaboration at the Mainz university accelerator MAMI aims to measure the form factors
between 0.001 to 0.040GeV2 with a low-intensity electron beam. The recoil proton is detected with an
active hydrogen target. The direct measurement of the recoil proton constraints radiative corrections.
The differential cross section is measured absolutely [12].

The COMPASS++/AMBER-collaboration plans to measure the proton charge radius with a 60 or
100GeV muon beam in 2022/2023 [13][14]. Similar to the experiment at MAMI, an active hydrogen
target is used in order to overconstrain the reaction. The spectrometer is used to select scattering
events in the target region and the active target gives precise information about the recoil proton
kinematics, which limits the uncertainty on the momentum transfer. Using this information, the
elastic muon-proton cross section can be measured in the momentum-transfer range between 0.001 to
0.020GeV2 with discussions to extend this range to 0.040GeV2. The experiment should run with a
trigger-less readout, as triggering on the recoil proton could lead to a efficiency, which depends on the
momentum transfer. Then one could use a veto trigger, if the scattering angle of the muon is below
5 µrad. To verify the working principle of this experiment, a test measurement was conducted in 2018.

The setup of this test measurement was positioned at the end of the COMPASS spectrometer located
at the M2 beam line at CERN. The setup is made up of eight double-sided silicon tracking detectors
and a Time Projection Chamber (TPC) filled with hydrogen gas, functioning as an active target. The
setup and especially the duration of the measurement is not designed to yield a value for the proton
charge radius. Challenges of the experiment are the extremely small scattering angles of the muon,
requiring a high precision of the silicon tracking stations. The detection of low-energy recoil protons
is a challenge for the TPC together with background due to a wide muon beam, as the used TPC was
built for a thin electron beam at MAMI.

As part of this thesis, the following analyses are performed. The data of the silicon tracking
station is used to select events in the active readout area of the TPC. Therefore, the resolution of the
silicon tracking stations has to be measured and improved. The energy and direction of the recoil
proton in the TPC should be measured. To achieve this, a tracking algorithm for the TPC data is
written.

Since both detector systems have their own data acquisition, one has to combine the data sets in
order to have full information about the scattering process. This can be done using the time stamps
of the events. As the combination of independent data acquisitions should be verified, correlations
between parameters, that can be measured by both systems, have to be checked. These parameters are
the energy and the direction of the recoil proton. The drift velocity can be checked as well through the
time difference between both systems and the interaction vertex.

Monte-Carlo simulations are performed to have a comparison for the expected performance of the
detectors. These simulations are mainly focussing on the resolution of the silicon tracking stations
which is determined from multiple scattering and the intrinsic detector resolution. A simple TPC
response is introduced in order to study the expected correlation parameters for the proton direction
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and energy.
The results are discussed and possible improvements for the experiment in 2022/2023 are presented.

Figure 1.1: The picture shows the status of the proton radius puzzle in 2018 [15]. Results from hydrogen
spectroscopy that were published after the 2016-CODATA value are marked in green. The blue line shows the
CODATA-2016 recommended value for the proton charge radius, excluding the measurements with muonic
hydrogen, which are marked in red.

3





CHAPTER 2

Theoretical background

In this chapter, a short overview over the Mott and Rosenbluth parametrization of the elastic scattering
cross section is given. The formula to extract the proton charge radius from the form factor is presented.
A detailed discussion can be found in [16]. The Feynman diagram of the process is pictured in figure
2.1.

γ∗

p p′

µ+ µ+′

1

Figure 2.1: This is the Feynman diagram of the elastic scattering process.

2.1 Rosenbluth cross section

The Mott cross section describes the elastic scattering of a point-like particle with spin on a spinless
target with finite mass: (

dσ
dΩ

)
Mott
= 4 · α2

· (~c)2 · E ′2µ · (cos(θ/2))2 ·
E ′µ
Eµ

1
Q4 (2.1)

with the negative squared four-momentum transfer Q2:

Q2
= −

(
pµ − p′µ

)2
= 2

(
EµE ′µ − | ®pµ | |

®p′µ | cos(θ) − m2
µ

)
. (2.2)

Here, α is the fine-structure constant; ~ the reduced Planck constant; c the speed of light; Eµ and
E ′µ the energy of the incoming and scattered muon, respectively; θ the scattering angle of the muon in
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Chapter 2 Theoretical background

the lab frame; pµ, ®pµ, p′µ, ®p
′
µ the four-momentum and three-momentum of the incoming and scattered

muon, respectively; and mµ the mass of the muon.
One has to include the electric and magnetic form factors GE and GM of the target, which depends

on the target spin and substructure. This is done in the Rosenbluth formula:

(
dσ
dΩ

)
Rosenbluth

=

(
dσ
dΩ

)
Mott
·

(
G2

E (Q
2
) + τ · G2

M (Q
2
)

1 + τ
+ 2τ · G2

M (Q
2
) · tan2

(θ/2)

)
(2.3)

with τ = Q2

4·m2
p

. For protons, which are the targets in our case, the form factor can be approximated by
the dipole form factor:

Gp
M (Q

2
)

Qp
M (Q

2
= 0)

=
Gp

E (Q
2
)

Qp
E (Q

2
= 0)

=

(
1 +

Q2

0.71 GeV2

)−2

(2.4)

with Gp
M (Q

2
= 0) = 2.793 and Gp

E (Q
2
= 0) = 1 and the parameter 0.71GeV2 is extracted from

electron scattering.

2.2 Extracting the proton charge radius from a scattering experiment

The charge radius can be extracted from the slope of the electric form factor at Q2
= 0:

〈r2
〉 = −6~2

dGE (Q
2
)

dQ2

����
Q2
=0

. (2.5)

Using the dipole form factor, this results in 〈r2
〉 ≈ (0.81 fm)2.

By measuring the cross section over a wide Q2-range, parametrizations with higher orders of Q2

can be made. This reduces the systematic error on the slope due to a better determination of the
magnetic form factor. The up to now most elaborate parametrization is used at MAMI [17].
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CHAPTER 3

Setup of the 2018 test measurement

In this chapter the setup of the test experiment is described. The working principle of the used detector
systems is explained and the beam parameters like the energy, the position and the beam slope are
shown. In addition, the effect of multiple scattering and the expected number of events is estimated.

3.1 COMPASS at CERN

The COmmonMuon Proton Apparatus for Structure and Spectroscopy (COMPASS) located at the
European Organization for Nuclear Research (CERN) in Geneva is a fixed target experiment aiming to
study the structure of hadrons. A proton beam is extracted from the Super Proton Synchrotron (SPS)
and focused on a primary target creating a high intensity pion or muon beam. This beam is directed
onto the COMPASS target. After this the 60 m long spectrometer will reconstruct energy, momentum
and initial vertices of the reaction products.

The test experiment is located at the end of COMPASS and does not use any part of the spectrometer,
as can be seen in figure 3.1.

3.2 Setup of the experiment at COMPASS

The setup to measure the scattering of muons on protons is given in figure 3.2. The tracks of the muon
before and after the scattering process are measured by two silicon tracking stations each (SI01, SI02
and SI03, SI04, respectively). The scattering process itself takes place in a time projection chamber.
The TPC contains hydrogen with a pressure of mostly 8 bar and for a small period 4 bar. The TPC is
an active target which means that it is not only a target but also a detector, which measures the energy
and the projection to the xy-plane of hits created by ionising particles.

The coordinate system of the setup is given with x being the horizontal coordinate, going to larger
values from Jura to Salève1, y as the vertical coordinate, going up and z following the beam direction.

1 Jura and Salève are the mountains on the left and right, respectively, when looking in the direction of the beam axis in the
COMPASS experiment.
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Chapter 3 Setup of the 2018 test measurement

Test setup

Figure 3.1: An overview of the COMPASS experiment. The beam is coming from the bottom left. The test
setup is located at the end of the spectrometer ([18], modified).

SI TPC SI

Beam

Figure 3.2: A picture of the setup of the proton radius test measurement. From left to right are the following
detectors: SI01, SI02, TPC, SI03, SI04. The photograph was taken by Christian Dreisbach.
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3.3 Silicon tracking stations

3.3 Silicon tracking stations

The incoming and outgoing muon beam is measured with four silicon tracking stations. Each station
consists of two double-sided silicon-strip detectors (UV and XY). In this experiment, two orthogonal
layers of strip detectors are mounted behind each other, functioning as the first readout plane (XY).
Roughly 1 cm apart, another readout plane (UV) is placed. Both readout planes have a relative rotation
of ±2.5° with respect to the xy-coordinate system. Therefore, the strips in U and X mainly provide
information about the x-position, likewise the strips in V and Y mainly provide information about the
y-position.
The expected spatial detector resolution σSI can be approximated by the pitch p, which is the

distance of two neighbouring stripes:

σSI =
p
√

12
. (3.1)

The resulting resolution is 15.8 µm for the U- and X-planes and 14.9 µm for the V- and Y-planes.
The silicon tracking stations are not cooled in this experiment.

3.3.1 Working principle

The silicon-strip detectors are semiconductors. A detailed description of their working principle can
be found in [19].

By doting the material and applying a high voltage, a depletion zone is created. When an ionising
particle traverses the depletion zone, electron-hole pairs will be freed and induce a measured voltage
on the readout pad. For silicon-strip detectors, the voltage is read out at both sides of the strip. From
the relative signal strength, the position along the axis can be determined.

3.3.2 Trigger

The information of this section is based on [20]. The trigger setup consists of three BC408 plastic
scintillator modules [21]. In front of the first silicon tracking station is onemonolithic (70mm × 50mm,
BT1A) and one segmented (68mm × 48mm, BT1B) scintillator. Behind the last silicon tracking
station is one monolithic scintillator (BT2A). The schematic view of the scintillators is pictured in
figure 3.3. The active area of the trigger system has roughly the same size as the silicon-tracker
stations. A schematic of the trigger logic is depicted in figure 3.4. A discriminator sets a threshold for
the scintillator signals. Then a coincidence between BT1A and BT2A and any of the seven channels
of the segmented scintillator BT1B is required. The trigger signal of the TPC works as a veto for
a time of 1 µs and is added directly to the trigger sum after a delay of 500 ns. The resulting trigger
rate is larger than the maximal processable rate of the data acquisition (25 kHz). In order to reduce
the trigger rate, a prescaler is used, which means that only a percentage of the triggers are used. For
example a prescaler of 2 means that only one of two trigger signals are used as a trigger. Additionally
to these trigger signals, a random trigger is included.

The time of the readout is saved for the combination with the TPC data.
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Figure 3.3: A sketch of the monolithic (left) and segmented (right) scintillator that is used to trigger the readout
of the silicon-tracker stations [20].
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Figure 3.4: The trigger scheme for the silicon tracker readout [20]. The energy signals of all three scintillators
are discriminated and a coincidence between both monolithic and any channel of the segmented scintillator is
required. In order to reduce the trigger rate, a prescaler is used. A prescaler of 2 means that only one of two
trigger signals is used as a trigger. A trigger of the TPC vetoes the normal trigger signal and is added after a
delay of 500 ns.
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3.4 Time projection chamber

3.4 Time projection chamber

The TPC is a gaseous detector, where an electrical field is applied between an anode and a cathode. If
a particle crosses the volume of the TPC, it ionises the gas, hydrogen in this case. The electrons then
drift to the anode and the ions to the cathode. The signal induced by the electrons is read out at the
anode which is segmented into 66 pads, giving additional information about the xy-position of the
signal. The anode signal is read out using SIS3316 14bit FADCs with an input voltage of −2.5 to
2.5V [22]. The TPC is operated without amplification and low-noise read out. In order to suppress
the signal coming from slow ions, a Frisch grid is built 3mm in front of the anode. The working
principle of a TPC is illustrated in figure 3.5 and technical sketch of this TPC is given in figure 3.6.
The energy resolution of the pads of the TPC is measured by generating a certain input voltage on the
amplifier channels (pad). The resulting standard deviation of the energy for roughly 10k events is
between 22 to 36 keV depending on the beam intensity [22]. 241Am is placed at the cathode opposite
to pad 7 of the anode for calibration purposes, which is an α-source with an energy of 5.486MeV.
This energy is much larger than the expected signal from recoil protons and is used for the energy
calibration, which is described in section 4.2.3.
A high voltage of 18 kV is applied on the cathode and 1 kV on the grid for the 8 bar setting [22].

For the 4 bar setting, both voltages are scaled down to 9 kV and 0.5 kV respectively. The drift velocity
and transversal diffusion are simulated by Jonathan Ottnad [23] using GARFIELD++ [24][25] and
Magboltz [26] and given in table 3.1. Due to the larger pad size (along ϕ: 8.64 to 39.27mm, along r:
11 to 22mm), effects from diffusion, which are below 0.7mm, are neglected.

p / bar Region | ®E |/
(
kV cm−1

)
vDrift/

(
mm µs−1

)
Dtrans/(µm cm−1/2) σtrans/µm

8 Anode-Grid 3.333 7.948 93.1 51
8 Grid-Cathode 0.773 3.702 112.3 527
4 Anode-Grid 1.667 7.856 130.7 613
4 Grid-Cathode 0.386 3.715 160.0 88

Table 3.1: The electric field | ®E | and corresponding drift velocity vDrift for the region between anode and grid as
well as between grid and cathode for both settings of the pressure p. The transversal diffusion coefficient Dtrans
and the resulting standard deviation on the transversal coordinate σtrans is given.

When one pad has an energy larger than a threshold energy, all pads are read out. Two thresholds are
used at different times in the experiment: 200 and 300 keV. The threshold is enlarged by a factor of 150
for the pads around pad 7 where the α-source is located, so that the readout during the measurement is
not triggered by this source. The time of the readout is saved for the combination with the silicon data.

3.5 Time stamp

The detector systems are triggered independently, which leads to two different data sets. In order to
combine these data sets, both detectors store a time signal. The TPC stores a TRigger LOgic (TRLO)
time stamp, generated with a frequency of 100MHz, leading to a time resolution of 10 ns [20]. The
silicon-tracking detectors store an event time given by the COMPASS DAQ. These time signals need
to be synchronized, which is done with a 1.5Hz signal. This signal is saved in both data sets. With
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Figure 3.5: The figure on the left shows the working principle of a TPC. Charged particles ionise the gas.
Electrons drift to the anode and ions to the cathode due to the applied electrical field. The electrons between the
anode and the Frisch grid induce a signal on the readout pads. The pad structure used in the experiment is
shown on the right, based on [22]. On the cathode opposite to pad 7, a 241Am α-source is placed for calibration
purposes. The anode readout is located in the xy-plane with an arbitrary rotation.

Figure 3.6: A technical sketch of the TPC. The beam comes from the right hand side [22]. The anode is built up
of 20 µm copper inside a radius of 22mm. Outside of this area is 1.5mm G-10. The cathode is built up of 20 µm
aluminium inside a circle of equal size and 1mm steel. The beam windows consist of 0.5mm beryllium [27].
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3.6 Beam parameters

one spill taking 4.8 s, this results in 7-8 signals per spill. The TRLO time stamp for the silicon data is
determined for every spill with a linear regression of both time signals given by the synchronization
signals [20].

3.6 Beam parameters

At the primary target of the COMPASS experiment, a muon or pion beam with a momentum of
190GeV is produced. The pions can decay into muons. As the setup of COMPASS includes a hadron
absorber after the COMPASS target, the beam reaching the end of the spectrometer, which is the
beginning of the test setup, should consist only of muons. The beam momentum distribution of the
muons at the position of the test experiment could not be measured but is simulated to follow a Gaussian
distribution with a mean of (186.8 ± 0.1) GeV and a standard deviation of (6.262 ± 0.044)GeV [28].
The xy-distribution was simulated to have the standard deviations σx = 81 mm and σy = 84 mm.
The muons originating from a pion beam have a momentum distribution with a long tail to smaller
momenta with a mean value of 172.7GeV and a standard deviation of 20.14GeV. The xy-distribution
has the standard deviations of σx = 92.83 mm and σy = 89.59 mm [29]. The beam profile can be
reconstructed from the measurement of SI01 and SI02 and is shown in figure 3.7 for a muon run with
4 bar. The beam profile in x shows a rising edge, which means that the beam is not centred on the
silicon stations. The larger amount of events at an x-position between −3 to −2 cm probably comes
from scattering on the entrance pipe, which leads to a higher acceptance of the scattered events at the
downstream silicon stations. The beam profile in y shows a slight decrease.
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Figure 3.7: The beam position at the upstream entrance pipe is measured with SI01 and SI02. The beam profile
in x (left) shows a slope and the beam profile in y (right) is roughly constant. There are much less at x-positions
between 2 to 3 cm, which are caused by a disabled APV chip [30]. The beam profiles shown here are taken
from run 282500.

The transversal component of the beam direction can be measured with the first silicon stations
as well, see figure 3.8. The beam direction in x shows an x-dependence, which will come from
the divergence due to a beam-energy spread at the position of the horizontal dipole magnets of the
COMPASS spectrometer. The beam direction in y shows a dependence on the y-position as well,
which will originate from the SPS beam-energy spread at the position of the bending magnet, which
bends the beam from the underground M2 beam line to the overground experimental hall.
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Figure 3.8: The transversal beam direction is measured by SI01 and SI02. The slope dx/dz (top) and dy/dz
(bottom) is drawn versus the x- (left) and y-position (right). The number of events is shown with the colour
scheme. It is visible that the beam direction in x has a dependence on the x-position and the beam direction in y

has a dependence on the y-position. The transversal beam directions shown here are taken from run 282500
with a muon beam at a pressure of 4 bar.

3.7 Expected multiple scattering

The uncertainty of the measurement greatly depends on multiple scattering. This effect can be
calculated with the following equation [19]:

∆θMS =
13.6 MeV

pβ
z
√

x
X0

(
1 + 0.0038 ln

(
x

X0

))
(3.2)

with the length x, the radiation length X0 and the charge z = 1, normalized velocity β = 1 and
momentum p =186.8MeV of the incident particle. For several materials in the setup, the factor of the
length over the radiation length is summed up and the standard deviation of the angle is calculated. The
results can be seen in table 3.2. In order to calculate the expected standard deviation on the scattering
angle in in two dimension, one has to multiply the result by

√
2. This results in an expectation of

18.189 µrad for a pressure of 8 bar and a momentum of 186.8GeV. For a pressure of 8 bar and a
momentum of 172.7GeV this results in 19.674 µrad.
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3.8 Expected number of events

Structure Material x / cm X0 / cm x/X0 ∆θMS/ µrad
SI station (1 of 4) Silicon 0.06 9.370 0.006403 5.7140

Beam window (1 of 2) Beryllium 0.05 35.28 0.001417 2.6723
Anode Copper 0.002 1.436 0.001393 2.6494
Cathode Aluminium 0.002 8.897 0.000225 1.0572

Conical cryostat window Mylar 0.02 28.54 0.000701 1.8744
Gas 8 bar Hydrogen 120 94,100 0.001275 2.5338
Gas 4 bar Hydrogen 120 188,200 0.000638 1.7876
Sum (8 bar) - - - 0.032040 12.8615
Sum (4 bar) - - - 0.031403 12.732

Table 3.2: The table shows the expected influence of all structures on the multiple scattering. The radiation
lengths of all materials are listed in [31]. The materials of the TPC are given in [27]. The factor of length
over radiation length is summed up and then the 1-dimensional standard deviation of the scattering angle is
calculated for a momentum of 186.8GeV.

3.8 Expected number of events

It is important to know the number of elastic scattering events that we expect. The number of reactions
is given by the integrated luminosity times the cross section σ:

Nreactions = σ ·

∫
L dt . (3.3)

The integrated luminosity is given by the number of beam particles and the number of protons in
the target per area. Using the ideal gas equation, one can calculate the proton density in the target with
the pressure p, the Boltzmann constant kB and the temperature T :∫

L dt =
(
Nbeam, scaled

)
·

Ntarget

A
=

(
Nbeam · fCut

)
·

2p
kBT
· lTPC (3.4)

with the factor of two originating from two protons per hydrogen molecule and Ntarget is the number
of protons in the active volume. The average temperature was 23 ◦C. The active length of the TPC
lTPC is 22.3 cm. The number of beam particles Nbeam is given by the beam trigger used for the silicon
readout. Nbeam, scaled is the total number and fCut is the percentage of incoming beam particles that are
accepted by the radial cuts, which are applied on the data, see section 4.1.2. As the beam position was
varied over the measurement, especially at the beginning, this factor is calculated for every run using
the first chunk and varies between 30 to 47%. This leads to a integrated luminosity per accepted beam
particle of 8.72630 × 10−6mb−1 at a pressure of 8 bar and 4.36315 × 10−6mb−1 at a pressure of 4 bar.
For example, run 282500 lasted 72 minutes with a pressure of 4 bar and collected 311,718 events with
a scaling factor of 0.459, this leads to an integrated luminosity of 0.625mb−1.
The cross section is given by the Rosenbluth cross-section, see section 2.1, integrated over the

measured Q2-range. The lower integration border of the squared momentum transfer is given by
the beam momentum and the minimal scattering angle θ of 0.2mrad, see section 4.1.2. The upper
integration border is given by the trigger of the TPC, which requires that a certain threshold energy
has to be deposited on a single pad. By looking at a stopping power table [32], one can determine the
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Chapter 3 Setup of the 2018 test measurement

maximal energy of a recoil proton which still creates a TPC signal. For simplification, the interaction
process is expected to occur in the centre of the readout. This leads to the cross-sections given in table
3.3.

Pressure / bar threshold / keV Q2
min/GeV2 Q2

max/GeV2 σ / mb Lint/mb−1 Nexp
8 200 0.001396 0.014638 0.166636 5120 850
8 300 0.001396 0.008445 0.154102 1150 180
4 200 0.001396 0.006005 0.141889 820 120
8 200 0.001193 0.014638 0.198214 10750 2130

Table 3.3: The cross section, integrated luminosity and expected number of events are given for the settings
of the measurement. For a beam momentum of 186.8GeV, corresponding to a muon beam, and a scattering
angle of 0.2mrad, the minimal Q2 is 1.396 × 10−3 GeV2. For a beam momentum of 172.7GeV, corresponding
to muons from a hadron beam, the minimal Q2 is 1.193 × 10−3 GeV2.

With 1.95 × 109 measured events in the silicon trigger that pass the radial cuts with 8 bar hydrogen
and 1.88 × 108 events in 4 bar hydrogen, there are 3160 events expected with 8 bar and 120 with 4 bar
pressure.
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CHAPTER 4

Analysis of the 2018 test measurement

This chapter deals with the analysis of the 2018 test measurement. First, the data from the silicon
trackers and the TPC are looked at separately. The focus of the silicon data is to obtain and improve
the z-vertex resolution of the detector, from which one can calculate the angular and energy resolution.
The data is also used for the data selection, e.g. the position of the active readout part of the TPC and
the radius of the pipes attached to the TPC vessel. The data of the TPC is used to reconstruct the
energy and the direction of the recoil proton.

The TPC has a different data acquisition, as it was built for an experiment at MAMI. Due to time
constraints, it was decided to combine the data sets by using time stamps. After the combination
different cuts are applied to reduce noise. Correlations between parameters measured in the TPC and
in the tracking systems, like the energy and the direction of the recoil proton, are analysed.

SI01 SI02 TPC SI03 SI04

µ

µ′

p′

p
θ

z

x,y

Figure 4.1: This is a sketch of the experimental setup. The direction of the incoming muon is measured with
SI01 and SI02 while the direction of the scattered muon is measured in SI03 and SI04. The intersection of both
tracks defines the scattering vertex point. The energy and the direction in the xy-plane of the recoil proton is
measured in the TPC. The sketch is not to scale.
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Chapter 4 Analysis of the 2018 test measurement

4.1 Silicon data

4.1.1 Analysis procedure

The reconstruction of tracks from the hits in the silicon trackers is illustrated in figure 4.1. Starting
from the hits on all 8 planes of SI01 and SI02 the direction of the incoming muon is reconstructed, as
well as the direction of the scattered muon by using the information of SI03 and SI04. The intersection
of the incoming and scattered muon track defines the scattering vertex point. From this, the scattering
angle θ and the polar angle ϕ are extracted. The incoming beam does not move parallel with respect to
the z-axis. This is corrected by a rotation of the beam particle into the z-axis. All other particles are
rotated equally. Using the scattering angle θ and the assumption of a recoil proton, one can calculate
the kinetic energy of the recoil proton, see equation (B.3) in the appendix B.2.

4.1.2 Applied cuts

The z-resolution of the reconstructed vertex depends on the scattering angle θ. For small θ, the
direction of the incoming and scattered muon track are very similar. Due to multiple scattering and the
intrinsic resolution of the silicon trackers, an uncertainty on the scattering angle is added, which has a
higher influence on the z-vertex for smaller scattering angles. The z-vertex resolution is investigated
in section 4.1.5. In order to achieve a reasonable z-resolution, only events with θ ≥ 0.2 mrad are used.
To avoid multiple scattering on massive material inside the TPC, in this case the downstream end

cap and the holding structure of the cathode, a radial cut is applied at these positions. The end cap
can be seen in figure 3.6. The downstream end cap can be estimated as a circle around the position
(x0 = 0.23 cm, y0 = −0.01 cm) at z = 60 cm, see figure 4.2. The radius for the cut is chosen to be
1.99 cm, as figure 4.2 shows. The cathode has a holding structure which is shifted with respect to the
beam windows. This is estimated with a circle around the position (x0 = 0.31 cm, y0 = −0.66 cm) at
z = 46.2 cm. A radius of 1.9 cm is chosen in order to reject all events originating from scattering on
this holding structure. The distributions of the incoming muon beam are given in figures C.1, C.2 in
section C.1. Events where the extrapolation of the initial muon or the scattered muon was outside of
the circle of the end cap or the circle of the cathode are rejected. The upstream entrance pipe has a
diameter of 7 cm and should not be visible in our data. Nevertheless, the central position of the beam
at the upstream entrance window is estimated to be around (x0 = −0.46 cm, y0 = 0.00 cm) which is
used later for the transformation of the silicon coordinate system into the TPC system.

4.1.3 Z-positions of the setup

By looking at the distribution of the z-vertices with θ ≥ 3mrad, the structures in the experimental
setup are clearly visible, see figure 4.3. The stricter cut on the scattering angle is used to have the best
possible resolution of the z-vertex with a reasonable amount of events. The z-vertex distribution is
fitted with different Gaussian functions to account for all structures. The gas volume is parametrised as
a rectangular distribution convoluted with a Gaussian function. The silicon stations are parametrised
with three Gaussian functions of different widths. The resulting positions are given in table 4.1.

As the peak between 10 to 20 cm has no corresponding analogue in the technical sketch of the
TPC, see figure 3.6, this has to be investigated. By looking at the xy-positions of the incoming beam
track extrapolated to the anode position, one can see cable-like structures, see figure 4.4. Here one
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4.1 Silicon data
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Figure 4.2: The figures show the xy-positions of the scattered (left) beam extrapolated to the position of the
downstream exit window (top) and to the cathode (bottom). The extrapolations to the cathode have an additional
cut that the z-vertex position is between 42 to 50 cm, so that the holding structure is better visible. The number
of events is shown with the colour scheme and the red circle shows the applied cut. On the right hand side, the
number of events are plotted against the radius. A radius of 1.99 cm is chosen for the cut on the end cap and
1.9 cm for the cut at the cathode position.
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Figure 4.3: The figure shows the distribution of the z-vertex with θ ≥ 3mrad for the run-by-run alignment (left,
χ2/dof= 900.16/395), and the preliminary alignment (right, χ2/dof= 748.31/395). The fits are used in order to
fix the positions of the peaks. The alignment is described in section 4.1.4.

can search for all bins which have at least 25 entries and assign them to cables. By looking at the
distribution of the z-vertex without the cables, the peak between 10 to 20 cm disappears, see figure 4.5.

Detector z-position / cm
Run-by-run alignment Preliminary alignment

SI02 −104.5 ± 0.1 −105.2 ± 0.1
SI02 −104.4 ± 0.1 −104.3 ± 0.2
SI02 −104.3 ± 0.1 −104.2 ± 0.1

Entrance window −53.3 ± 0.2 −53.7 ± 0.2
Cables 12.2 ± 0.8 13.0 ± 0.3
Cables 20.1 ± 0.9 21.0 ± 1.3
Anode 24.3 ± 0.2 24.6 ± 0.3

Gas (smeared box) 24.8 ± 0.6 24.9 ± 0.9
Cathode 46.8 ± 0.3 47.3 ± 0.2

Exit window 53.0 ± 1.1 53.0 ± 0.1
SI03 107.7 ± 0.2 107.4 ± 0.1
SI03 108.3 ± 0.1 108.4 ± 0.1
SI03 109.2 ± 0.1 109.3 ± 0.1

Tail of SI04 (used for θ < 1.31 mrad) 125.5 ± 0.5 not used

Table 4.1: The z-positions of important parts of the experiment with the corresponding fit error for the preliminary
and run-by-run alignment. The alignment procedure is explained in section 4.1.4.

4.1.4 Alignment and residuals

Due to changes in the temperature, the positions of the silicon stations shift slightly over time, resulting
in a deterioration of the resolution. Therefore, the positions of the stations have to be aligned for each
run ("run-by-run alignment"). Alignment means that the position and orientation of the detectors is
implemented correctly in the reconstruction program. A preliminary alignment was done using tracks
from run 281835 during the measurement [33].
The preliminary alignment is taken as a starting point. For the preliminary alignment, the spatial

resolution of the silicon trackers was enlarged up to a factor of 100 to allow for larger shifts to take
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4.1 Silicon data
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Figure 4.4: The xy-distribution of the beam track extrapolated to the anode position with θ > 0.2 mrad. The
number of events is shown with the colour scheme. One can see cable-like structures. The events on bins, which
have at least 25 entries in this histogram, are treated as events which scattered on the cables.
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Figure 4.5: The distribution of the z-vertex with θ ≥ 3mrad, run-by-run alignment (see section 4.1.4), and with
only (left, χ2

/dof= 725.361/401) or without the cables (right, χ2
/dof=788.67/401) seen in the xy-vertex plot.

The corresponding cable peak is taken out of the fit model on both figures and is not seen on the right. Still, the
reduced χ2 is better with the cables than without, as this is dominated mainly by the large number of events at
the silicon tracking stations. Therefore, this peak corresponds to cables upstream of the anode.
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Chapter 4 Analysis of the 2018 test measurement

place. This was not done in this case, as the preliminary alignment should be close enough to the real
value.

The alignment is done with the Millepede procedure [34], which is described in the next passage
and implemented as part of CORAL1. In this case 100k events are reconstructed using the hypothesis
of straight tracks with all detector planes. With the reconstructed events, the distance between the
reconstructed track position at each plane to the real hit position on this plane is stored, the so called
residuals. The residuals should be centred around 0 and for this reason, their absolute values are
minimised by shifting the xy-centre of the detector planes and the rotation angle perpendicular to
the beam axis. In order to have no overall shift of all detector planes, the pitch and z-positions of
all planes are fixed as well as the xy-positions of SI01XY, SI02XY and the angle of SI01XY. This
procedure was iterated two times because at this point the positions only change by less than 1 µm.

An ionizing particle induces not only a signal on one strip, but as well on neighbouring strips. This
behaviour is described with charge sharing functions. Up to this point only default charge sharing
functions are used which is changed now [36]. With these functions, a third iteration of the alignment
is done.
In figure 4.6 one can see that there is an overall shift of the x-position of SI04V with time2. It

is visible that there are daily fluctuations which seemingly correspond to the daily fluctuations of
the temperature of the silicon station and the ambient temperature 3. The origin of the overall shift
is not known. The mean value of both the silicon and the ambient temperature is rising slowly
over the measurement. From the daily fluctuations, one would expect that the x-shift should go to
positive values. The silicon setup is mounted on concrete. Therefore, one possibility might be that the
temperature has an effect on the silicon planes as well as on the concrete but with different strength
and opposite sign.
For the change of the y-position, one can only see daily fluctuations due to temperature changes

with opposite sign but no overall trend. An example is given in the appendix, see figure C.3.
As a quality check of the alignment, one can look at the residual distribution. Therefore, a straight

track fit with the updated alignment is performed and the residuals for one detector plane are calculated.
They should be centred around 0. The residuals are calculated using the second 100k events of the
first chunk, in order to avoid any bias with the data used for the alignment, and the first 100k events of
the last chunk. A chunk is a subset of one run, containing up to 1 million events. One can see that the
residuals are constant over time, see figure 4.7. It is visible that the residuals taken at the end of the
run (blue) vary much more than the ones from the first chunk (red). This originates from a detector
movement in the course of each run. One run lasts about 1-2 hours. Nonetheless, this is much better
than with the preliminary alignment where jumps of up to 10 µm were measured between different not
consecutive runs. In the XY-planes the residuals are not centred at 0, which can be seen in figure C.4
in section C. It is expected that this originates from a wrong determination of the pitch or the angle
between the planes as it only affects the XY-plane and not the UV-plane.

1 COMPASS Reconstruction ALgorithm. This software reconstructs events from the COMPASS experiment. One has to
provide information about the detectors, e.g. the position, and the experimental setup, i.e. material for multiple scattering.
In our experiment, either one track is reconstructed for SI01, SI02 and another track through SI03, SI04 or one straight
track through all stations [35].

2 One should notice that the coordinate system in the CORAL "detectors.dat" output file is rotated with respect to the lab
frame ("detectors.dat"→ lab: x → z, y → x, z → y). In the thesis, the coordinate system of the lab frame is used.

3 The temperature of the silicon stations are measured with PT-100 sensors, which are attached to the U and the X side of
the detectors [37].
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Figure 4.6: The shift in x-position of the SI04V-plane (black) and the temperature measured at the silicon station
(red) for the whole measurement (left) and the same for the last week of data taking (right) versus the time. One
can see a shift of roughly 100 µm over the whole data taking period. The picture on the right shows that the
fluctuations of the shift follow the temperature measured by the silicon stations.
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χ2 of less than 10 are plotted.
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Chapter 4 Analysis of the 2018 test measurement

4.1.5 Resolution of the z-position of the vertex point

The resolution can be measured by determining the width in z of the vertex distribution from a very
thin structure inside our active volume. Inside a circle with a radius of 2.2 cm the anode has a thickness
of 0.02mm (Cu). There is the Frisch grid 3mm apart, and the cathode has a thickness of 0.02mm
(Al) inside the same circle, see figure 3.6. Both could be used for the determination of the resolution,
but due to the larger number of events in the anode, the width of this peak is more meaningful and
thus used here. The resolution should depend on the z-position of the vertex as one can see in the
MC studies in section 5.3. This could not be studied in the real data analysis. The results with a
preliminary alignment are compared to the values with the run-by-run alignment.
The same fitting procedure is used to avoid a bias between different fits. The function used in

section 4.1.3 is fitted for different θ−bins in order to extract the dependence on the scattering angle.
Therefore, the data set is split into several bins with 20k and 60k events for the preliminary and
run-by-run alignment, respectively. For smaller θ-values, there are no visible peaks in the spectrum of
the preliminary alignment. In case of the run-by-run alignment, the cable and the anode peaks overlap,
so that the width cannot be distinguished. The fit results are given in table 4.2. All fits can be found in
the appendix, see chapter E.

θmin/mrad θmax/mrad σ/cm
Preliminary alignment

2.580 4.150 3.50 ± 0.34
4.150 7.480 1.39 ± 0.51
7.480 − 1.12 ± 0.22

Run-by-run alignment
0.500 0.590 8.70 ± 0.12
0.590 0.790 4.66 ± 0.41
0.790 1.310 3.95 ± 0.43
1.310 3.010 1.60 ± 0.07
3.010 − 1.01 ± 0.11

Table 4.2: This table shows the extracted σ-widths of the anode peak in different θ-bins (θmin ≤ θ < θmax) for
the preliminary and run-by-run alignment. θmax = ” − ” means that all events with θmin ≤ θ are used.

In figure 4.8, the standard deviation of the anode peak is plotted against the scattering angle. This
is used as the uncertainty for the z-position of the vertex point. The plotted θ-value of each bin is
given by the average of all θ-values in this bin. The plotted error on the θ-angle corresponds to
1 σ-quantiles, so 68% of all scattering angles are in this interval. One can see, that the run-by-run
alignment improves the resolution a lot. The resulting fit is improved by a factor of roughly 2.3. Also
it is possible to extract the σ-width at much smaller θ-angles, where no structures are visible for the
preliminary aligned data.
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Figure 4.8: The z-vertex resolution with the preliminary (black points, green, dashed line) and the run-by-run
alignment (black crosses, red line) is plotted against the scattering angle θ. The positions of the structures are
fixed from a fit to all data points with θ ≥ 3mrad, see figure 4.3 and table 4.1. Then the data points are divided
into several bins with 60k events for the run-by-run alignment and 20k events for the preliminary alignment. In
these bins, the z-vertex distribution is fitted to the data, the results are given in table 4.2. The θ-angle with error
plotted here corresponds to the average value and 1σ-quantiles of each bin. For both alignments, a 1/θ curve
is fitted, as the resolution should depend on the relative uncertainty on the scattering angle due to multiple
scattering.
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Chapter 4 Analysis of the 2018 test measurement

4.1.6 ϕ-distribution

The momentum change of the beam in the x- and y-direction due to the scattering process is indicated
by the azimuthal ϕ-angle. The ϕ-distribution measured by the silicon trackers can be seen in figure 4.9.
There are four peaks4 visible at ±π,± π2 , 0. Most of these events have a z-vertex in the silicon stations.
This distribution might come from the geometry of readout strips of the silicon tracking detectors. If
there are two hits on one readout plane, it might be indistinguishable which hit corresponds to the
track. This leads to a wrong reconstruction. Additionally, the strips are oriented along the x- and
y-direction and therefore particles flying in a small angle with respect to these axes will always be
reconstructed exactly at the ϕ-angles seen above. This effect should be limited by the relative rotation
of 5° between the UV- and XY-planes.

It is shown in figure C.5 in section C.3 that the ϕ-distribution is flat for events that are matched with
the TPC.
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Figure 4.9: The momentum change of the beam in the x- and y-direction due to the scattering process is indicated
by the azimuthal ϕ-angle. The ϕ-distribution measured by the silicon trackers is plotted here. If the muon has
scattered on a proton, this would be the ϕ-angle of the recoil proton. The number of events is shown with the
colour scheme. There are peaks visible at ϕ = 0,±π/2, ±π. Most of these events have a z-vertex near the silicon
trackers.

4.2 TPC data

In this section the analysis procedure for the TPC data set is explained. Then the procedure to
distinguish a signal from electrical noise and the calibration is presented before coming to the
track-fitting algorithm which gives the total energy and the direction of the particle measured in the
TPC.
4 The peaks at +π and −π are the same due to the periodicity of ϕ.
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4.2 TPC data

4.2.1 Analysis procedure

The first step of the analysis of the data set is done by our colleagues [38][22]. The signal shape
is measured over 108 µs, with 2692 channels of 40 ns. This signal is smoothed to improve the
signal-to-noise ratio. Then the start and end time of the signal is extracted using the rising and trailing
edge. Integrating over the total signal gives the total energy. Signals with a duration outside of 1.8 to
8.0 µs on a single pad are not taken into account for the further analysis.

4.2.2 Background noise

Measuring the background noise is important in order to distinguish a signal from noise. By looking
at the pad energies of a run without beam, in this case run 282433, one can get an estimate of the
electronic noise. A mean value and standard deviation of electrical noise without any signal is
extracted by fitting a Gaussian distribution to the energy spectrum on each pad. If the energy on one
pad is larger than the mean pedestal plus three times the standard deviation of the pedestal value, the
pad is considered as hit. Otherwise, the pad is considered as not hit and will not be taken into account
for the further analysis.

The maximal noise coming from the beam can be estimated. The energy loss of a minimal ionizing
particles in 8 bar hydrogen is roughly 3 keV cm−1 and the distance between the anode and the cathode
is 22.3 cm, resulting in an energy loss of 67 keV per muon. With the average unprescaled beam trigger
rate of 420k events per second and a maximal time window of 8 µs, 3.36 muons are expected to create
a signal in the TPC which corresponds to a total energy deposition of 225 keV in 8 bar hydrogen. This
energy is distributed over the xy-plane, depending on the beam profile. This noise should be already
subtracted in the first analysis.

The combined noise per pad is between 22 to 36 keV depending on the beam intensity [22].

4.2.3 Calibration

An α-source is placed at the cathode opposite to pad 7. Its energy of 5.486MeV is larger than the
expected energy deposited by a proton and is used to calibrate the energy signals. Due to absorption
inside the α-source, the width of this peak is much larger than the energy resolution of the TPC [22].
In figure 4.10 the energy of pad 7 is drawn against the starting time of the corresponding run. It is
visible that the energy decays with time and sometimes jumps. Those jumps can be correlated to
re-fillings of the hydrogen gas. Hence, the energy decay probably comes from increasing impurities in
the gas which leads to electron attachment to the gas.
Consequently, an energy calibration is necessary for each run. For this calibration only events are

taken where pad 7 was above threshold but not the neighbours to reduce the influence of escaping
α-events and a recoil proton flying in this direction. A minimum of 25 α-events with an energy
between 4 to 6MeV is needed for a successful calibration. So if the run has not enough measured
events, then other runs from the period are taken. A period contains all runs with no longer intervention.
This is checked by the difference between the end time of a run and the start time of the consecutive
run which should be smaller than one hour. If there are not enough events in a period, the periods
before and after are taken into account until enough events are collected. The result of the calibration
can be seen in figure 4.11.
For the calibration of events, which do not start at the cathode, the energy loss due to attachment

decreases exponentially with the drift length, which is z in our case [39]. As the α-source is positioned
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Figure 4.10: The energy of pad 7 is drawn versus the starting time of the corresponding run. Only events are
taken into account, where no neighbouring pad of pad 7 was hit. The number of events is shown with the colour
scheme. The α-signal decreases due to impurities in the hydrogen gas and jumps back after re-fillings of the
gas, which are marked with the vertical lines 1 and 2. Events with an energy between 4 to 6MeV, indicated by
the horizontal lines (black), are considered for the energy calibration. The last horizontal line (red, dashed)
shows the energy of the α-source.

at the cathode, the energy loss over the complete drift length is known and one can assume that an
electron produced near the anode has no energy loss due to attachment. After combining both data
sets, the following calibration Ecalibrated = c(z) · Euncalibrated is used:

c(z) = cRun

(
cRefill
cRun

)−(z−zCathode)/(zCathode−zAnode)
(4.1)

with cRun being the calibration factor at this run and cRefill the calibration factor at the first run after
a re-filling of the TPC, which is indicated in figure 4.10. The calibration is set to cRun for z ≥ zCathode
and cRefill for z ≤ zAnode. The uncertainty of the calibration due to the z-vertex resolution of the silicon
tracking stations, given by equation (4.2), is added on top of the TPC resolution:

∆c(z) = − ln
(

cRefill
cRun

)
∆z

zCathode − zAnode
· c(z) . (4.2)

4.2.4 Track reconstruction

Up to this point only information about single pads is described. In order to get the combined
information of the TPC, one needs the full track of the particle. The following tracking algorithm is
used under the assumption that all tracks start at one of the inner pads (65 or 66) or the inner ring
and go outside from there. This is not true for all TPC tracks as there is a broad muon beam. For the
events combined with silicon events this is a valid assumption because of the applied radial cuts at the
position of the cathode and downstream end cap.
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Figure 4.11: The energy of pad 7 before (blue) and after (red) the calibration. Before the calibration there are
several small peaks and after the calibration one can see a normal energy spectrum. The energy of the α-source
(5.486MeV) is marked with a dashed vertical line (black).

The tracking algorithm will be explained with the example of the track shown in figure 4.12.
The pad with the highest energy (pad 31, r = 77 mm, E = 1.065 MeV, ϕ = −1.767 rad) is the
starting point of the algorithm. Due to the higher energy loss of a particle with low energy, as
described in the Bethe-Bloch formula, this will be the end point of the track. For each ring up to
two neighbours in each direction of the ring are taken into the track if the pads are hit. In this case,
no neighbour is hit. Up to two rings above pad 31 are taken into account because many tracks do
not stop at the pad with the highest energy but shortly after. In this case, no pad above pad 31 is
hit. Then the corresponding pad one ring below pad 31 is checked, which is pad 30 (r = 55 mm,
E = 0.978 MeV, ϕ = −1.767 rad). This pad also has no neighbour. The same is done another time.
Here pad 29 (r = 33 mm, E = 0.286 MeV, ϕ = −1.767 rad) and pad 33 (r = 33 mm, E = 0.441 MeV,
ϕ = −1.374 rad) are hit. The radius of the ring is 33mm and the centre of gravity ϕ is calculated by
using the pad energies as weight:

ϕ =
ϕ29 · E29 + ϕ33 · E33

E29 + E33
= −1.529 rad .

At last, pad 66 is included in the track. Pad 65 would be included as well if it is hit.
With these pads and their energies, the radius of each ring and the ϕ-coordinate of the centre of the

hit ring is calculated. This procedure results in an array of hit pads for the track and centres of gravity
for each ring. The energy of all pads is summed up to the track energy.
After all hit pads of the track are collected, one can get the direction of the track if at least three

rings are hit. First, a linear fit in the (x,y)-coordinate-system is made (m = 2.4± 0.7, b = −35± 8 mm,
χ2
/dof= 67.6/1). If the fit crosses one of the central pads, which is also hit, then this pad with the

ϕ-coordinate extracted from the fit is used for the second fit.
In the second fit, all central coordinates of each hit ring are used to make a linear fit. This is done in
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Figure 4.12: One example track to demonstrate the track fitting algorithm. The mean position on each ring is
averaged using the energy and then a fit in (r, ϕ)-plane is performed. The track is drawn in black according to
the fit results (d = (16.50 ± 0.05) mm, α = (−0.47 ± 0.06) rad, χ2

/dof= 1.44/2), starting from the shortest
distance to the centre until the outermost hit ring. The information of the corresponding silicon event is drawn
in red. This track contains the information of the scattering vertex point as well as the direction and the kinetic
energy, drawn as range, of the recoil proton, which is described in section 4.4.5.

a (r, ϕ)-coordinate-system in order to have a smaller correlation in the error of the ring position. The
linear fit in (r , ϕ)-coordinates looks like the following:

r(ϕ) =
d

cos (α − ϕ)
; and the inverted function ϕ(r) = α ± arccos

(
d
r

)
. (4.3)

The sketch in figure 4.13 shows the variables. The "+" solution works for values where ϕ is larger
than α and the "−" solution for ϕ < α. The parameter d is the minimal distance to the centre and α
describes the angle to the normal vector. It is decided for every data point if the positive or negative
solution should be used.

Tracks which are going radially out of the TPC readout cannot be fitted with this function, so they
are collected beforehand.
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Figure 4.13: This sketch displays the variables used for the parametrisation of a linear curve in the (r,ϕ)-
coordinate-system. It is visible as well that for the same radius, two solutions for ϕ exist which lead to point P
and P’. The "+"-solution is valid for ϕ > α, the "-"-solution for ϕ < α.

4.2.5 ϕ-distribution

The ϕ-distribution of the recoil proton measured by the TPC can be seen in figure 4.14. One can see
16 spikes which come from events that only hit one pad per ring while going radially from the centre
to the outer rings. Additionally, one can see less events between ϕ = 2to3 rad. This might originate
from the increased threshold around pad 7 which leads to less measured events.
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Figure 4.14: The figure shows the ϕ-distribution measured by the TPC. One can see 16 spikes. Additionally,
one can see less events between ϕ = 2 to 3 rad.
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4.3 Combining silicon and TPC data

The combination of silicon and TPC data is done with the timestamp. Looking at the difference
between both timestamps in a window of ±500 µs one notices a small peak between 18 µs and 82 µs,
see figure 4.15. This peak has 2447 events. By counting the events outside of this time window and
scaling these to the time window, one can estimate 1555 noise events in the peak which leads to 892
correctly matched events. The TPC measures only events where the scattering has taken place inside
the readout area, which is between anode and cathode: 24.3 ≤ z/cm ≤ 46.8. The cut on the z-vertex
to be between those positions is enlarged by the corresponding resolution which is described in section
4.1.5. As the radial cut on the silicon data implies that the muon beam has to hit the TPC in the
centre, one can cut on TPC tracks that hit at least one of the central pads 65 or 66. This improves the
signal-to-noise ratio of the beam to 700/16. In table 4.3 it is visible that the cuts throw away 21.5%
of the data while cutting away 99.0% of the noise.

Cut Signal Noise Uncertainty
θ >0.2mrad and radial cut 892 1555 11

θ >0.2mrad, radial cut and z-vertex cut 762 153 4
θ >0.2mrad, radial cut and centre cut 749 147 4

θ >0.2mrad, radial cut, z-vertex cut and centre cut 700 16 1

Table 4.3: Signal and noise of the time difference peak for different cuts. The noise is calculated with all events
between −500 µs and 500 µs outside of 18 µs and 82 µs, scaled with the factor 64/936. The signal is calculated
as the number of events between 18 µs and 82 µs minus the noise calculated before. The uncertainty is given by
the square root of the number of events between −500 µs and 500 µs outside of 18 µs and 82 µs, scaled with the
factor 64/936.

4.4 Combined data

After improving the signal-to-noise ratio of the peak and then cutting on the time difference between
18 and 82 µs the resulting events are mainly matching silicon and TPC events. Without additional
cuts, 892 events excluding an average of 1555 mismatched events are measured, which does not fit our
predictions of 3280 combined elastic scattering events, given in section 3.8. In the following, possible
reasons for this discrepancy are discussed.
The area covered by the scintillators and the silicon tracking stations is roughly equal. Therefore,

any misalignment causes a loss of events. By extrapolating events of run 282500 measured by the
silicon trackers to the trigger positions, one can see the full trigger area. Thus, no big misalignment
is expected. Nonetheless, it is possible that not all events at the edges of the area are measured.
This is emphasized by looking at the beam profile shown in figure 3.7. The area of the beam at the
upstream entrance pipe is given by 5 cm × 4 cm and therefore covering only 57.1% of the trigger area
(7 cm × 5 cm). The beam is not centred in the x-position, increasing this effect, which is not estimated
here.

The reconstruction of a track requires to have at least 7 hits in the detectors and is therefore coupled
with the silicon tracking acceptance and efficiency. Looking at the first chunk of run 282500, 97.8%
of the incoming tracks and 84.7% of the scattered tracks pass this requirement. The combined effect
is 82.8%.

32



4.4 Combined data

500− 400− 300− 200− 100− 0 100 200 300 400 500
sµ in  TPC-tSIt

0

10

20

30

40

50

60

70

N
um

be
r 

of
 e

ve
nt

s

Time differenceTime difference

500− 400− 300− 200− 100− 0 100 200 300 400 500
sµ in  TPC-tSIt

0

5

10

15

20

25

30

35

N
um

be
r 

of
 e

ve
nt

s

Time differenceTime difference

500− 400− 300− 200− 100− 0 100 200 300 400 500
sµ in  TPC-tSIt

0

5

10

15

20

25

30

N
um

be
r 

of
 e

ve
nt

s

Time differenceTime difference

500− 400− 300− 200− 100− 0 100 200 300 400 500
sµ in  TPC-tSIt

0

5

10

15

20

25

N
um

be
r 

of
 e

ve
nt

s

Time differenceTime difference

Figure 4.15: The difference between the timestamps of the silicon detector and the TPC with different cuts (top
left: θ and radial, top right: θ, radial and z-vertex, bottom left: θ, radial and centre, bottom right: θ, radial,
z-vertex and centre). A peak is visible between 18 and 82 µs. The cut on the time difference is plotted with the
two vertical lines (red), the average noise level is indicated with the horizontal line (black).

Additionally, the effect of the radial cut was only estimated for the incoming beam. For the lowest
scattering angle of 0.2mrad, which is the most probable value, the maximal effect of this can be
estimated. An event scattering near the anode with this angle, changes its transversal component
by 71.4 µm over the distance of 0.357m to the downstream end cap. By reducing the radius from
1.99 cm to 1.98286 cm, the number of events is only reduced by 0.716%. This effect is larger for
larger scattering angles, which are less probable. Therefore, this effect is negligible.

Furthermore, the efficiency of the TPC was not estimated during the measurement. An upper limit
can be given with the dead time of τ = 108 µs. With a maximum measured TPC trigger rate of
rTPC,meas = 230 s−1, this leads to a loss of 2.5% [40]:

rTPC,real =
rTPC,meas

1 − rTPC,meas · τ
= 235.9 . (4.4)

Implying these three correction factors, approximately 1500 events are expected, which is still much
more than the measured 892 ± 11 events.

For the further analysis, 700 events with an average of 16mismatched events are used. To cross-check
the combination, one can look for different effects like the drift velocity of the electrons in the TPC.
Additionally, the change in the angle which is measured by the silicon-trackers should correspond to a
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scattering process. The calculated energy should be measured within the TPC.

4.4.1 Drift velocity

As the electrons need to drift the anode, an event which occurred near the anode (z = 24.3 cm) is
measured earlier in the TPC than an event near the cathode (z = 46.8 cm). Both events should be
measured equally fast in the silicon detectors. Therefore, the time difference (tSI-tTPC) should be larger
at the position of the anode than near the cathode. A negative slope is visible in figure 4.16 and the
extracted drift velocity (3.99 ± 0.18)mm µs−1 is larger than the estimated value of 3.702mm µs−1.
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Figure 4.16: The figure shows the z-vertex versus the time difference for events that were measured with a
pressure of 8 bar. Events near the anode (z = 24.3 cm) should have less drift time and are therefore measured
earlier in the TPC. This leads to a higher time difference. Subsequently events near the cathode (z = 46.8 cm)
have a higher drift time and a smaller time difference.

4.4.2 Verify the assumption of a recoil proton

The energy deposited on the first two rings of the TPC can be simulated for a recoil proton with
different kinetic energies starting at the centre [22]. A proton with a kinetic energy of roughly 1.5MeV
starts depositing energy on the second ring. For a lighter particle this is shifted to smaller energies.
In picture 4.17 the simulation, all TPC events and the matched events are drawn. It is visible that
the matched events are in good agreement with the simulated curve, implying that these events are
protons.
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Figure 4.17: The simulation of the energy loss of a proton starting at the centre of the TPC readout on ring 1
and 2 is shown in red. All data points measured in the TPC are marked in black. The data points matched with
the silicon tracking stations are shown in blue. There are less events on the right flank. A reason could be the
smaller kinetic energy range of a proton to be stopped between the first and second ring with respect to a proton
that reaches the third ring and further.

4.4.3 Energy comparison

The kinetic energy of the recoil proton can be either calculated by the scattering angle θ determined by
the silicon detectors5 or measured directly by the energy deposited in the TPC. Protons with a kinetic
energy of at least 3.5 MeV in 8 bar hydrogen and 2.25 MeV in 4 bar hydrogen have a range of roughly
10 cm and can therefore escape the readout plane of the TPC. In figure 4.18 these events are cut out.
As there is a hard cut at 744 keV (θ = 0.2 mrad) for the silicon data, the corresponding fit is done
only for TPC energies larger than this value. The resulting is slope is 0.89 ± 0.04, meaning that the
energies measured in the TPC are larger than the calculated energy of the silicon stations. This effect
is probably originating from the cut on the scattering angle. This leads to a larger y-intercept of the fit
which is highly correlated to the slope with a correlation coefficient is −0.9318.

4.4.4 ϕ-difference

The rotation of the TPC reference system was not marked beforehand but it can be measured by taking
the difference of the ϕ-angle measured by the silicon trackers and the TPC. This rotation is of no
further interest, since it is an arbitrary value. In figure 4.19 the rotation value of ∆ϕ = −2.075 rad is
5 The kinetic energy is calculated in equation (B.3) in section B.2. The corresponding uncertainty due to the uncertainty of
θ and of the beam momentum is given in equation (B.4) in section B.3.
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Figure 4.18: The energy calculated from the scattering angle θ measured by the silicon trackers versus the
energy deposit measured in the TPC. The TPC events are cut so that events which can escape the active readout
due to a range larger than 10 cm are taken out. The fit is limited to energies larger than 0.744MeV in order to
account for the θ-cut on the silicon data.

already subtracted and after this, the mean value is around 0. The TPC reference system is rotated
around this angle with respect to the silicon coordinate system. The peak is broad due to the finite
pad-size of the TPC detector, with each pad covering a ϕ-range of 0.3927 rad.

4.4.5 Tracks of the TPC and silicon measurement

Using the translation of the silicon and TPC coordinate system by having the central position of
the beam windows of the TPC in the silicon system and ∆ϕ between both systems, one can plot
the information of the silicon tracking system into the TPC measurement. Therefore, the xy-vertex
measured by the silicon tracking system is translated to the origin of the TPC system and then rotated
according to ∆ϕ. The direction of the proton is given by the silicon ϕ-angle minus ∆ϕ. The kinetic
energy of the proton given by the scattering angle in the silicon system can be transformed into a range
of the recoil proton in the hydrogen volume [32]. Then all information about the proton we have from
the silicon tracking stations are given in the TPC system and can be plotted. In figure 4.12, we can see
that both are in good agreement. The range of the proton measured by the TPC is slightly smaller,
which might originate from the fact that the range is a statistical process.
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Figure 4.19: The ϕ-difference between the calculation from the silicon positions and the result of the tracks in
the TPC. The planes of the silicon stations and the TPC readout plane are rotated by an angle of ∆ϕ =−2.075 rad
which is already subtracted in this plot.
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CHAPTER 5

Monte Carlo simulation with Geant4

Monte Carlo (MC) simulations are performed in order to extract the expected resolution of the silicon
tracking detectors. Additionally, correlations of kinetic energy and direction, given in ϕ, of the recoil
proton are compared between the reconstruction in both detector systems and the generated "Monte
Carlo truth" value. The working principle of the simulation program Geant4 is described in the
following section and simplifications of the simulation are mentioned.

5.1 Geant4

Geometry and tracking is a program, which simulates particles in matter [41][42]. In the following,
the required input from the user and the working principle of the program is described.

The user has to provide a physical model, where all processes of the particles are defined. There are
many predefined models that are designed for high-energy or low-energy processes or even optimized
for a low processing time. In the further analysis, the model "QGSP_BERT_HP" is used. It stands
for "quark gluon string model", which uses the Bertini cascade for protons and other particles below
10GeV.

In the next step, one has to provide the material that is going to be simulated. The material
implementation of the silicon stations is taken from the TGEANT documentation [43]. The model of
the TPC is based on [27] and then modified to fit the right geometry at the time of the experiment. A
pressure of 8 bar hydrogen is used. The bending of the beam windows is neglected. Also the grid, the
holding structure of the cathode and the cables are not simulated. The z-positions of the detectors are
taken from the results of the test measurement. As a simplification, the rotation away from the z-axis
is not considered here, so all x and y positions are set to zero. The setup is shown in figure 5.1.
Then, one can define primary particles. The momentum of the incoming beam muon is set to

190GeV. For the elastic scattering simulation, a vertex is simulated following a flat distribution
with the xy-coordinates between −2 to 2 cm and the z-coordinate between the anode and the cathode.
Corresponding to the Rosenbluth cross-section, see section 2.1, the scattering angle θ is simulated
between 0.18 to 5mrad for studies of the energy correlation. For investigations of the ϕ-distributions,
θ is simulated following the Rosenbluth cross-section between 0.5 to 5mrad, as protons with larger
energies are required in order to reconstruct the direction in the TPC, because at least three rings have
to be hit. With this, the kinematics of all three particles can be set. The incoming muon starts at the
vertex and flies in the upstream direction. This should have no effect on the simulation results. The
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SI

TPC

SI

Beam

Figure 5.1: The test setup as it is implemented in the Geant4 model. The silicon stations are marked in red
with the supportive structures in grey. The beam windows and the windows of the conical cryostat around the
downstream silicon stations are pictured in green. Structures outside the beam area like the cone of the conical
cryostat and larger supportive structures of the silicon stations are implemented but not drawn here.

incoming muon is assumed to have no beam spread into the transversal plane. For the simulation
of the resolution of the silicon tracking detectors, the xy-coordinates of the vertices are created like
described above. The z-coordinate is set to the position of the anode or cathode and distributed with
their corresponding thickness of 20 µm. The θ-values are fixed and not randomly drawn.
Geant4 has the following procedure. A run is started with a given number of events. Each event

starts with the simulation of the first primary particle. Depending on the energy of the particle and the
radiation length of the material, a step size is calculated. The step size inside the active volume of
the TPC is limited to be maximal 1mm. The energy loss for each step inside the active volume of
the TPC and inside the silicon tracking detectors is stored. When the primary particle creates a new
particle, in essence electrons, these secondary particles are stored and their behaviour is simulated
after the simulation of the primary particle has ended. A simulation of a particle ends, when it has
no kinetic energy or when it leaves the given geometry boundaries. After all primary particles and
their corresponding secondary particles are simulated, the event ends. At this point, the output data is
saved. In order to process the output data of the silicon tracking detectors with CORAL, the existing
output format of TGEANT is used. The run ends when the given number of events is simulated.
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5.2 Processing of the simulated data

5.2 Processing of the simulated data

The hits of the silicon tracking detectors are reconstructed in CORAL. Therefore, one has to provide
the positions of the detectors, which is known perfectly for the Monte Carlo data. The material of the
experiment should be provided as well. This is exported from the Geant4 model using the Virtual
Geometry Model [44]. The reconstruction inside CORAL smears all hits by the estimated spatial
detector resolution of 15.8 µm for the U- and X-planes and 14.9 µm for the V- and Y-planes. The
spatial resolution estimated by the pitch overestimates the uncertainty on most planes and does not
simulate the faulty planes SI02U and SI03X. Spatial resolutions between 9.8 to 16.6 µm are extracted
in real data for most planes, 43.8 µm for SI03X and SI02U was not working [45].

The TPC response is simplified by neglecting effects from diffusion and the drift velocity. Every hit
has xy-coordinates, which correspond to one pad. Using this information, the deposited energies for
every pad can be summed up. The beam noise is taken into account by smearing the pad energies with
a Gaussian distribution and a standard deviation of 30 keV.

Some cuts are applied on the data to match the expected behaviour of the real data. For the resolution
studies, see the following section 5.3, the incoming and scattered beam have to pass a radial cut on
the downstream endcap pipe with a radius of 1.99 cm. The cut at the position of the cathode is not
applied, as this holding structure is not simulated.

For the studies of the ϕ and energy of the recoil proton, see section 5.4, additional cuts are applied.
At least one pad has to have an energy larger than 200 keV, which corresponds to the TPC trigger.
The z-vertex has to be reconstructed within an 1 σ-uncertainty inside the active TPC volume. It is
required that one of the two central pads is hit, which is like in the real data analysis defined by an
energy larger than 3 times the energy resolution. The cut on the scattering angle θ ≥ 0.2 mrad is
applied for the ϕ correlations but not for all energy correlations.

5.3 Resolution studies

The z-resolution of the scattering vertex is extracted in a similar way compared to real data. Events
with different scattering angles θ are simulated at the z-position of the anode and the cathode smeared
over the corresponding thickness of 20 µm. Fitting a single Gaussian distribution to both peaks for
each simulated θ-value, gives the resolution of the z-vertex for this θ-value. The results are given in
the table F.1 in the appendix F. This resolution follows a 1/θ curve like it was extracted from real data,
see figure 5.2. The resolution at the position of the cathode is slightly worse than at the position of the
anode.

The θ-resolution can be measured directly with Monte-Carlo simulations. An event with a specific
scattering angle is generated, and after the propagation of the particles using Geant4, reconstructed
in the silicon tracking stations. The resulting θ-spectrum is fitted with a Gaussian distribution. The
results are given in table F.2 in the appendix F and the σ-widths are depicted in figure 5.3. Additionally,
the uncertainty on the scattering angle is estimated using the previously extracted z-vertex resolution
with equation (B.1) given in section B.1. It is visible that this estimation overestimates the uncertainty.

As the measured θ-uncertainty is larger than the estimated multiple scattering of 17.9 µrad for a
beam momentum of 190GeV, see section 3.7, the setup can be improved by increasing the distance
between the silicon tracking stations. When this distance is enlarged by 2m, the resulting combined
uncertainty on θ is roughly 16 µrad, see figure 5.4, which is below the effect from only multiple
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Figure 5.2: The z-vertex resolution of MC simulated events at the position of the anode and the cathode. It is
visible that the z-resolution has a slight dependence on the z-vertex. For both structures, an 1/θ curve is fitted.
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Figure 5.3: The θ-resolution can be extracted from the simulation. The estimation from the z-resolution is
drawn in red. It is visible that gives an upper limit on the uncertainty.

42
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scattering. The reason for this resolution, which is better than the expectation from multiple scattering,
is that the material of the first and last silicon tracking station will not contribute completely to the
uncertainty of the scattering angle1. Thus, any larger distance would only decrease the acceptance of
the setup.
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Figure 5.4: After shifting the first silicon station SI01 1m upstream and the last station SI04 1m downstream,
resulting in a total distance of 5.28m, the resulting z-resolution can be seen on the left and the θ-uncertainty on
the right.

5.4 ϕ and kinetic energy of the recoil proton

The primary interaction is simulated in the active volume of the TPC with θ following the Rosenbluth
cross-section between 0.5 to 5mrad and 0.18 to 5mrad for studies of the ϕ-angle and the kinetic
energy of the recoil proton, respectively.
The direction of the recoil proton and therefore the ϕ-angle can be reconstructed like in real data.

The ϕ-distribution was simulated with equal probabilities. The reconstructed distributions can be seen
in figure 5.5. The distribution measured in the silicon stations is nearly flat with some spikes and dips
at 0, ±π/2. and −π rad. The reconstruction inside the TPC shows 16 spikes, which are coming from
the wide pads. These events only hit one pad per ring and have therefore only one possible ϕ-value in
the tracking algorithm. The difference of the ϕ-angle reconstructed from the silicon tracking stations to
the TPC is depicted in figure 5.6. The difference of the reconstructed to the simulated ϕ-angle is given
in figure G.1. It is visible that the resolution of the silicon tracking stations, (0.03588 ± 0.00014) rad,
is better than the resolution of the TPC, (0.1889 ± 0.0006) rad, which is limited by the pad size of
0.3927 rad. One can see as well that the distribution is not a pure Gaussian function but has a plateau
instead. This plateau is probably coming from events which do not hit more than one pad per ring.
The uncertainty on the difference between both detector systems of (0.1971 ± 0.0006) rad is thus
dominated by the TPC pad width.

1 When the effect of multiple scattering is calculated for only three silicon tracking stations and a beam momentum of
190GeV, the result is 15.98 µrad.
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Figure 5.5: The ϕ-distribution of the recoil proton reconstructed from the silicon tracking stations (left) and the
TPC (right). The ϕ-distribution was created with equal probabilities. The reconstruction of the silicon tracking
stations is nearly flat with some spikes and dips at 0, ±π/2. and −π rad. The ϕ-distribution measured by the
TPC has 16 clearly visible peaks, which originate from events that only hit one pad per ring.
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Figure 5.6: The difference of the reconstructed ϕ-angle between the silicon tracking stations and the TPC.

With the simulation, it is possible to compare the influence of different cuts on the energy correlation.
This is done for the reconstructed data from the silicon tracking stations and the TPC in comparison to
the MC truth value as well as for the comparison of both detector systems. For all pictures, a cut was
applied that the range of the recoil proton inside the hydrogen volume is smaller than the distance to
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the end of the active readout volume. This should exclude events, where the recoil proton leaves the
TPC and therefore does not deposit the total kinetic energy inside.

The comparison of the silicon data reconstruction with respect to the MC truth values is shown
in figure G.2. The slope with no additional cuts is compatible with 1. By applying the cut on
the scattering angle θ ≥ 0.2 mrad, this is not valid any longer. This behaviour originates from the
uncertainty of the reconstruction. Near the threshold for the cut, only events that are reconstructed
with larger scattering angles, pass this cut. This breaks the symmetry of the reconstruction uncertainty.
For the reconstruction of the kinetic energy of the recoil proton in the TPC, such a behaviour is not
seen in figure G.3.
Comparing the energy correlation of the TPC and silicon measurement in figure 5.7, the slope is

close to 1. After applying the cut on the scattering angle, the slope is decreased to 0.613 ± 0.011, as it
was seen in the correlation between the silicon and Monte Carlo truth data. Accounting for this hard
cut by starting the fit at Tp,TPC = 0.744MeV, improves the slope to 0.715 ± 0.012. Starting the fit at
much larger energies is not reasonable, as the measurement range of the TPC is limited by the range of
the proton to roughly 3.5MeV at 8 bar hydrogen.
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Figure 5.7: The energy correlation between the reconstruction of the silicon tracking stations and in the TPC is
plotted (top) and with the additional cut on θ ≥ 0.2 mrad (bottom). For the bottom plot, two linear functions are
fitted, one covering the whole range (red) and the other one starting at Tp,TPC = 0.744 MeV (green, dashed).
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CHAPTER 6

Discussion

In this chapter, the results from the real data analysis and the Monte Carlo simulation are discussed.
The run-by-run alignment improves the precision of the reconstructed z-vertex position roughly by

a factor of 2.3, see section 4.1.5. This is a large improvement, which originates from a detector shift
larger than the spatial resolution over the duration of the experiment. After the run-by-run alignment,
the z-vertex resolution measured in real data is comparable with simulation results, given in section
5.3, even with several simplifications of the simulation. Firstly, events are simulated at certain θ-values
and not distributed continuously like in real data. Secondly, the incoming beam is simulated to follow
the z-axis with no transversal momentum component. Thirdly, the material of the grid and the cables
is missing in the simulation, which leads to less multiple scattering. The spatial resolution is given by
the pitch/

√
12. The propagation of the z-vertex resolution to the uncertainty of the scattering angle

was studied in the simulation and it was observed that this propagation overestimates the uncertainty,
see section 5.3. Therefore, a better model to propagate the resolution has to be created by extending
the model from one to two transversal dimensions. Additionally, the direction of the incoming muon
should be included.

The expected correlation of the kinetic energy of the recoil proton from the TPC and silicon tracking
measurement was studied in the simulation, see section 5.4. It was found that the cut on the muon
scattering angle leads to a slope, which is smaller than 1. This can be compensated to some extent by
limiting the fit to TPC energies, that are also larger than the kinetic energy calculated at this scattering
angle. In the real data analysis, a similar effect can be seen, see figure 4.18. The slopes of both
analyses are not comparable, which might come from some simplifications of the simulation. Still,
one can expect that the correlation of energies in real data is given, even if the slope is different from
1. The main uncertainty of the measurement for low energetic protons originates from the silicon
tracking reconstruction. This shows that the combination of these data sets with the reconstruction of
the TPC will greatly improve uncertainties on the momentum transfer.

Distributions of the azimuthal ϕ-angle are measured with both detector systems. The reconstruction
with silicon tracking stations has prominent peaks at 0,± π/2,± π, which are expected to come
from a bias in the silicon readout if the muon scatters mainly on the silicon planes, see figure 4.9.
This distribution is flat for the combined events, see figure C.5. In the Monte Carlo simulation, this
distribution is flat as well because a primary vertex was simulated inside the TPC volume, see figure
5.5. Therefore, events that mainly scatter on the silicon planes are not simulated. There are several
structures in the reconstruction of ϕ from the TPC, see figure 4.14. Events that hit only one pad per
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ring lead to one specific ϕ-value, thus yielding 16 peaks. Those are visible in distribution of real and
Monte Carlo data. The smaller number of events between 2 to 3 rad in real data can be explained
by the larger threshold for pads around the α-source. This threshold could be implemented in the
simulations to cross-check this effect but is currently not included.

There is a discrepancy between the expected and measured number of 892±11 events. By estimating
the effect from the efficiency of the silicon tracking stations and the dead time of the TPC as well as a
possible misalignment between the silicon tracking stations and the trigger, the expected number of
events is reduced from 3280 to approximately 1500, which is discussed in section 4.4. The efficiency
of the TPC was not studied during the measurement, which could reduce the number of expected
events further.
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Conclusion and Outlook

In this thesis, data of the 2018 test experiment was analysed. The data of the silicon tracking station
stations was used to select for scattering events inside the TPC. After combining both data sets,
correlations of the recoil proton kinematics were studied. In order to compare the results, Monte Carlo
simulations were carried out. In this chapter a short summary of the analysis is given. At the end, the
current status of the main experiment in 2022/2023 is presented.
It is clear that the run-by-run alignment reduced the uncertainty on the muon scattering angle.

However, there is a slight misalignment according to the residuals at the beginning and the end of
each run. In order to reduce this, the silicon trackers should have a stabilised temperature in the main
experiment in 2022/2023. This can be achieved by cooling the silicon tracking stations, which would
also improve their spatial resolution. Alternatively, the alignment could be done for shorter time
periods. The quality of the vertex finding can be improved by having a larger distance between the
stations, reducing the uncertainty on the scattering angle and the vertex point. For the test experiment,
it was shown that enlarging the distance by 2m, which is planned for the final experiment, is sufficient
in order to be only limited by multiple scattering. In order to achieve an even better resolution, the
amount of multiple scattering has to be reduced.
The α-source of the TPC had no large effect on the combined data of the test experiment.

Nevertheless, it is planned to shield the α-source during the measurement of the main experiment.
The calibration of the TPC energies depended on the time as well as on the z-vertex position due to
attachment. Therefore, a constant refilling of the hydrogen gas to minimise the effects of gas impurities
would be preferable. Additionally, the energy of the α-source should be monitored frequently like
in the test experiment to make sure that the calibration is constant with time. The drift velocity can
be estimated by the gas parameters and was measured in advance with the drift time. These values
differ from the drift velocity extracted from the z-vertex versus time difference plot. Thus, it would
be good to have a separate measurement of the drift velocity, for example by a low-intensity laser
system. Even when the TPC was originally built for a thin electron beam, it was shown that the TPC
can produce good results within a broad muon beam. There are possible improvements of the TPC
readout structure, which can be simulated. With more rings of smaller radii, the direction information
of recoil proton can be extracted at smaller kinetic energies, thus giving an additional parameter to
reject background events. This has the disadvantage that it may lead to more noise, deteriorating the
energy resolution. Different geometric shapes may be suitable for a broader beam. Shifting pads on
neighbouring rings should improve the spatial resolution without introducing additional noise.
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The matching of different DAQ systems with the timestamp is working. This can be seen in the
correlation of the energy and the direction of the recoil proton. By looking at the energy uncertainty,
it is clear, that the TPC massively improves the resolution in the low Q2 region, while the silicon
trackers can select possible candidates for elastic scattering. For this reason, such a setup is well suited
to measure the cross section and form factors over a large Q2 region between 0.001 to 0.040GeV2,
which is planned for the main experiment 2022/2023.

Several simplifications were done in the simulation. These are the missing transversal momentum
component and energy spread of the incoming muon beam. The material of the grid and the cables
is currently missing in the simulation. The spatial resolution and efficiency of the silicon tracking
stations is not given by the real data values. For the simulation of the TPC, beam noise was only
introduced by smearing energies with a Gaussian distribution. Nevertheless, many effects can be
reproduced with the simulation. The z-vertex resolution does also compare quantitatively to the real
data value. The values of the energy correlation do not converge quantitatively to the values of real
data, which will originate from these approximations. Furthermore, the systematic uncertainty on the
simulation results due to the given physical model should be estimated.

The current planning of the experiment in 2022/2023 is shortly described in the following. Further
details can be found in [13][14]. The data taking should run with a 60GeV or 100GeV muon beam.
Silicon-pixel detectors with low material budget should be used to achieve a high resolution on the
scattering angle and to reduce multiple scattering. The distance between the silicon detectors on both
sides should be enlarged to 3.5m or 3.1m for a TPC with two or four interaction regions, respectively.
Multiple scattering should additionally be limited with a helium filled pipe between the silicon trackers.

It is discussed if scintillating fibres or gas electron multipliers can be used as a kink trigger in order
to reduce the trigger rate.

The TPC will have either two or four interaction regions with a drift length of 40 cm. The readout
will be segmented into eight rings. The TPC will run at a pressure of 4 and 20 bar. A gas purity of
hydrogen below 1 ppm will be assured.
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APPENDIX A

Own contributions

• Participation in the data taking of the test experiment.

• Setting the high-voltages of the silicon tracking stations, which are required in order to reduce
noise.

• GEM expert-on-call for the COMPASS experiment

• Analysis of the data, as presented in this thesis:

– Run-by-run alignment

– Extracted z-vertex resolution

– Calculated kinetic energy of the recoil proton using the scattering angle

– Time-dependent TPC calibration

– TPC tracking algorithm

– Improved signal-to-noise ratio of the time difference peak

– Extracted drift velocity

– Correlation of energy and direction of the recoil proton

• Monte Carlo simulation of the setup, as presented in this thesis:

– Improved the implementation of the experimental setup in Geant4

– Implemented a generator for scattering angles following the Rosenbluth formula

– Full analysis of the generated events
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APPENDIX B

Calculation of the kinetic energy and the
corresponding error

In this chapter, the resolution of the scattering is estimated. Furthermore, the kinetic energy Tp of the
recoil proton is calculated with the scattering angle θ. The uncertainty of the kinetic energy due to the
uncertainty of the scattering angle and the beam momentum is given.

B.1 Resolution of θ

Using the resolution of the z-position of the vertex one can calculate an upper limit for the resolution of
θ and the kinetic energy using a simple model, see figure B.1. The effect of the incoming beam slope on
the uncertainty is neglected, which overestimates the uncertainty, and the small-angle approximation
is used. Additionally, this model parametrises the scattering process only in one transversal dimension
instead of two. The resulting resolution is given in equation (B.1).

θ = arctan
(

l
z4 − z

)
, ∆θ = θ

∆z
z4 − z

(B.1)

B.2 Calculation of the kinetic energy

For a fixed target experiment with a muon beam and a proton target, the invariant mass s is given by:

s = m2
µ + m2

p + 2mpEµ

with mµ the muon mass; mp the proton mass and Eµ the energy of the incoming muon beam.
The energy E ′µ and momentum p′µ of the scattered muon can be calculated in the centre of mass

frame:

E ′µ,CM =
s + m2

µ − m2
p

2
√

s
.

The momentum of the scattered muon parallel to the z-axis in the centre of mass frame p′µ,CM, | | can
be calculated with the scattering angle in this frame θCM:
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Appendix B Calculation of the kinetic energy and the corresponding error

SI01 SI02 TPC SI03 SI04

µ

µ′

p′

p θ

z

x,y

z1 z4z

l

Figure B.1: This sketch shows the model to estimate the uncertainty of θ with the z-vertex resolution.

p′µ,CM, | | = p′µ,CM · cos(θCM) =
√

E ′2µ,CM − m2
µ · cos(θCM) .

From the centre of mass energy one can boost into the lab frame with the lorentz factors:

γ =
Eµ + mp
√

s
,

which gives the energy and momentum of the scattered muon in the lab frame:

E ′µ,lab = γ · E
′
µ,CM +

√
γ2
− 1 · p′µ,CM, | |

p′µ,lab, | | =
√
γ2
− 1 · E ′µ,CM + γ · p

′
µ,CM, | |

The energy of the recoil proton E ′p is given by the energy conservation:

E ′p = mp + T ′p = Eµ + Ep − E ′µ .

With the initial proton being at rest, the kinetic energy T ′p is:

T ′p = Eµ − E ′µ = Eµ −
(
γ · E ′µ,CM +

√
γ2
− 1 · p′µ,CM, | |

)
.

The scattering angle in the lab frame θlab depends on the scattering angle in the centre of mass
frame:

θlab = arctan

(
p′µ,lab,⊥
p′µ,lab, | |

)
= arctan

(
p′µ,CM sin(θCM)

p′µ,lab, | |

)
.

With the following substitutions and θ = θlab:
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B.3 Uncertainty of the recoil proton kinetic energy

a = Eµ + mp , b = m2
µ , c = m2

p + p2
µ , d = 2pµ cos(θ)

the momentum of the scattered muon can be calculated:

p′µ =
a2d + 2

√
a6
− 2a4

(b + c) + a2b2
− 2a2bc + a2bd2

+ a2c2
+ bd − cd

4a2
− d2 =

f
g
. (B.2)

Using this formula, the kinetic energy of the recoil proton can be calculated:

T ′p = Eµ − E ′µ = Eµ −
√

p′2µ + m2
µ . (B.3)

B.3 Uncertainty of the recoil proton kinetic energy

The uncertainty of the recoil proton momentum originates from the uncertainty on the muon beam
momentum, which was not measured, and the scattering angle.
First, the dependence on the scattering angle is given. As the kinetic energy of the beam does

not depend on the scattering angle, only the kinetic energy of the scattered muon contributes to this
uncertainty:

T ′µ = E ′µ − mµ =

√(
m2
µ + p′2µ

)
− mµ

dT ′µ
dθ
=

p′µ
E ′µ

dp′µ
dθ

In equation (B.2), only the variable d depends on the scattering angle:

δp′µ
δθ
=
∂p′µ
∂d

∂d
∂θ
= g−2

(
∂ f
∂d

g −
∂g

∂d
f
)
· (−2pµ sin(θ))

with

∂ f
∂d
= a2

+
2a2bd√

a6
− 2a4

(b + c) + a2b2
− 2a2bc + a2bd2

+ a2c2
+ b − c

and

∂g

∂d
= −2 · d .

This gives the uncertainty on the kinetic energy of the recoil proton due to the uncertainty of the
scattering angle:

∆Tp,θ = ∆T ′µ =
p′µ
E ′µ

∂p′µ
∂d

(
−2pµ sin(θ)

)
∆θ .
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Appendix B Calculation of the kinetic energy and the corresponding error

Then the dependence on the muon momentum is derived. In equation (B.2), the variables a, c and
d depend on the beam momentum or energy. Therefore, the variables are inserted and the equation is
simplified as much as possible. This gives the following result:

p′µ =
cos(θ) ·

(
4Eµmppµ + 4m2

µpµ + 2h
)

4E2
µ + 8Eµmp + 4m2

p − 4p2
µ cos2

(θ)
=

f
g

with

h =
[
−2E5

µmp + 3E4
µm2

p + 8E3
µm3

p − 4E3
µmpm2

µ − 6E2
µm2

pm2
µ + 4E2

µm4
p

−4E2
µm2

µp2
µ + E2

µm2
µp2

µ cos2
(θ) − 8Eµm3

pm2
µ + 6Eµmpm4

µ + 2Eµmpp4
µ

+8Eµmpm2
µp2

µ cos2
(θ) + 3m2

pm4
µ − 4m4

pm2
µ + m2

pp4
µ + 4m2

pm2
µp2

µ cos2
(θ)

]0.5
.

Deriving the momentum of the scattered muon after the beam momentum yields:

∂p′µ
∂pµ
=

∂ f
∂pµ

g + f ∂g
∂pµ

g2

with

∂g

∂pµ
= 8pµ + 8mp

pµ
Eµ
− 8pµ cos2

(θ) ,

∂ f
∂pµ
= cos(θ)

(
4mpp2

µ

Eµ
+ 4Eµmp + 4m2

µ

)
+ 2

∂h
∂pµ

and

∂h
∂pµ
=

1
2h

[
−10E3

µpµmp + 12E2
µpµm2

p + 24Eµpµm3
p − 12Eµpµmpm2

µ − 12pµm2
pm2

µ + 8pµm4
p

−8p3
µm2

µ − 8E2
µm2

µpµ + 8p3
µm2

µ cos2
(θ) + 8E2

µm2
µpµ cos2

(θ) − 8
pµ
Eµ

m3
pm2

µ

+6
pµ
Eµ

mpm4
µ + 2

p5
µ

Eµ
mp + 8Eµmppµ3

+ 8
p3
µ

Eµ
mpm2

µ cos2
(θ) + 16Eµmpm2

µpµ cos2
(θ)

+4m2
pp3

µ + 8m2
pm2

µpµ cos2
(θ)

]
.

The uncertainty on the kinetic energy of the proton due to the uncertainty of the beam momentum
can be calculated with:

∆Tp,pµ =
∂Tp

∂pµ
∆pµ =

(
pµ
Eµ
−

p′µ
E ′µ

∂p′µ
∂pµ

)
∆pµ
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B.3 Uncertainty of the recoil proton kinetic energy

The combined uncertainty is then given with Gaussian error propagation assuming no correlation
on the errors:

∆Tp =

√(
∆Tp,pµ

)2
+

(
∆Tp,θ

)2
. (B.4)
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APPENDIX C

Additional figures for the analysis

C.1 Radial cuts

Figure C.1 shows the xy-distribution of the incoming beam at the downstream endcap and the
distribution at the cathode position is depicted in figure C.2.

C.2 Alignment and residuals

The changes in the y-position of SI04V are plotted in figure C.3.
The residuals of SI04X are drawn in figure C.4. The residuals are not centred around 0, which

might be caused by a wrong determination of the pitch or the angle between the planes.

C.3 Matched events

The ϕ-distribution of all recoil protons that are matched with the TPC is drawn in figure C.5. The
distribution is flat.
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Figure C.1: The xy-vertices of the incoming beam at the position of the downstream end cap. The number of
events is shown with the colour scheme. The red circle indicates the applied radial cut.
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C.3 Matched events
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Figure C.2: The xy-vertices of the incoming beam at the position of the cathode. The number of events is shown
with the colour scheme. The red circle indicates the applied radial cut.
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Figure C.3: The shift in the y-position of the SI04V-plane (black) and the temperature measured by the silicon
station (red) is drawn for the whole measurement. There is no large overall shift but daily fluctuations, which
follow the measured temperatures.
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C.3 Matched events
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Figure C.4: The residuals measured from the second 100k events of the first chunk (red) and the first 100k
events of the last chunk (blue) of each run. The residuals are constant with time but not centred at 0. This might
originate from a wrong determination of the pitch or the rotation angle between the XY- and UV-planes. The
blue points have larger variations due to a detector movement over time. Only chunks with more than 1,000
events and a reduced χ2 of less than 10 are plotted.
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Figure C.5: The ϕ-distribution measured by the silicon tracking stations for all events that are matched with the
TPC. The distribution is nearly flat.
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APPENDIX D

High-voltage scan of the silicon trackers

The rate of the silicon trackers is measured with increasing high voltage. The high voltage is set to the
minimal value, at which the noise level saturates.
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Figure D.1: The high voltage scan of silicon station SI01. The noise level is given in arbitrary units. The voltage
has been set to 100V.
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Scan of Silicon HV
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Figure D.2: The high voltage scan of silicon stations SI02 (top), SI03 (middle) and SI04 (bottom). The noise
level is given in arbitrary units. The voltage of SI02 has been set to 170 V, the voltage of SI03 has been set to
120 V and the voltage of SI04 has been set to 120 V.70



APPENDIX E

Fits of the z-resolution

The fits of the z-vertex distribution for all θ-bins are shown in this section.
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Figure E.1: The figure shows the distribution of the z-vertex with θ ≥ 3.010 mrad for the run-by-run alignment
(χ2/dof=847.754/395).
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Figure E.2: The figure shows the distribution of the z-vertex with 1.310 ≤ θ/mrad < 3.010 for the run-by-run
alignment (χ2/dof=721.085/395).
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Figure E.3: The figure shows the distribution of the z-vertex with 0.790 ≤ θ/mrad < 1.310 for the run-by-run
alignment (χ2/dof=877.684/392).
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Figure E.4: The figure shows the distribution of the z-vertex with 0.590 ≤ θ/mrad < 0.790 for the run-by-run
alignment (χ2/dof=1043.25/392).
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Figure E.5: The figure shows the distribution of the z-vertex with 0.500 ≤ θ/mrad < 0.590 for the run-by-run
alignment (χ2/dof=1688.35/392).
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Figure E.6: The figure shows the distribution of the z-vertex with θ ≥ 7.480 mrad for the preliminary alignment
(χ2/dof=1105.46/394).
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Figure E.7: The figure shows the distribution of the z-vertex with 4.150 ≤ θ/mrad < 7.480 for the preliminary
alignment (χ2/dof=600.259/395).
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Figure E.8: The figure shows the distribution of the z-vertex with 2.580 ≤ θ/mrad < 4.150 for the preliminary
alignment (χ2/dof=577.88/395).
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APPENDIX F

Fit Parameters for the MC resolution studies

Events were simulated with fixed scattering angles at the position of the anode and the cathode. The
results of fits with two Gaussian distributions to the z-vertex distribution are given in table F.1. The
θ-distribution can be fitted as well. Here, the reconstruction of events in the anode and the cathode is
separated. The results are given in table F.2.
The same procedure is done for the studies with a 2m longer distance between the first and last

silicon tracking station. The results are given in tables F.3 and F.4.

θMC/mrad aAnode z0,Anode/cm σAnode/cm aCathode z0,Cathode/cm σCathode/cm χ2
/dof

0.5 25.4 ± 0.6 24.8 ± 0.4 8.55 ± 0.23 17.7 ± 0.5 47.2 ± 0.6 8.7 ± 0.4 1550/713
0.75 37.5 ± 0.7 24.3 ± 0.1 5.39 ± 0.08 29.8 ± 0.7 46.11 ± 0.12 5.94 ± 0.11 1388/571
1.0 53 ± 1 24.36 ± 0.06 3.98 ± 0.05 40.4 ± 0.8 46.87 ± 0.07 4.27 ± 0.06 1297/488
1.5 76.8 ± 1.4 24.27 ± 0.04 2.72 ± 0.03 67.4 ± 1.3 46.91 ± 0.05 2.80 ± 0.04 867/368
2.0 106.2 ± 1.9 24.31 ± 0.028 2.005 ± 0.022 87.8 ± 1.6 46.76 ± 0.04 2.177 ± 0.024 627/286
2.5 132.4 ± 2.3 24.332 ± 0.023 1.613 ± 0.017 115.7 ± 2.1 46.796 ± 0.025 1.685 ± 0.019 467/231
3.0 152.1 ± 2.6 24.280 ± 0.019 1.363 ± 0.014 134.5 ± 2.4 46.768 ± 0.021 1.446 ± 0.016 535/201
3.5 181 ± 4 24.297 ± 0.016 1.149 ± 0.012 150.6 ± 2.7 46.804 ± 0.019 1.290 ± 0.014 393/177
5.0 245 ± 5 24.298 ± 0.012 0.810 ± 0.009 219 ± 4 46.808 ± 0.013 0.86 ± 0.01 255/133
10.0 353 ± 8 24.295 ± 0.007 0.420 ± 0.006 320 ± 7 46.798 ± 0.008 0.441 ± 0.006 77/61
15.0 256 ± 8 24.293 ± 0.007 0.274 ± 0.005 228 ± 7 46.793 ± 0.008 0.294 ± 0.005 58/39
20.0 74 ± 5 24.292 ± 0.011 0.206 ± 0.008 70 ± 5 46.814 ± 0.012 0.22 ± 0.01 14.1/20

Table F.1: The amplitude a, position z0 and width σ of a fit with a Gaussian distribution to the z-vertex
distribution of Monte Carlo simulated data with a generated scattering angle of θMC.
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Appendix F Fit Parameters for the MC resolution studies

θMC/mrad Anode/Cathode a θ0/mrad σθ /mrad χ2
/dof

0.5 Anode 908 ± 16 0.5058 ± 0.0004 0.02396 ± 0.00028 595/24
0.5 Cathode 770 ± 15 0.4954 ± 0.0004 0.02228 ± 0.00028 282/23
0.75 Anode 850 ± 16 0.7517 ± 0.0004 0.0259 ± 0.0003 280/23
0.75 Cathode 778 ± 15 0.7497 ± 0.0004 0.0243 ± 0.0004 313/23
1.0 Anode 920 ± 17 1.0001 ± 0.0004 0.0239 ± 0.0003 254/25
1.0 Cathode 803 ± 16 1.0003 ± 0.0004 0.0245 ± 0.0004 208/26
1.5 Anode 867 ± 16 1.5007 ± 0.0004 0.0246 ± 0.0003 190/30
1.5 Cathode 814 ± 16 1.5000 ± 0.0004 0.0247 ± 0.0004 217/26
2.0 Anode 860 ± 16 2.0006 ± 0.0004 0.0249 ± 0.0003 220/31
2.0 Cathode 787 ± 16 1.9997 ± 0.0004 0.0249 ± 0.0004 221/28
2.5 Anode 909 ± 17 2.5000 ± 0.0004 0.02313 ± 0.00029 278/30
2.5 Cathode 811 ± 16 2.5002 ± 0.0004 0.0241 ± 0.0004 248/28
3.0 Anode 825 ± 16 3.0000 ± 0.0004 0.0252 ± 0.0004 232/26
3.0 Cathode 796 ± 15 3.0003 ± 0.0004 0.0249 ± 0.0004 180/26
3.5 Anode 833 ± 16 3.5001 ± 0.0004 0.0249 ± 0.0003 194/29
3.5 Cathode 752 ± 15 3.5002 ± 0.0004 0.0260 ± 0.0004 169/30
5.0 Anode 795 ± 16 5.0012 ± 0.0004 0.0245 ± 0.0004 200/33
5.0 Cathode 744 ± 15 5.0004 ± 0.0004 0.0250 ± 0.0004 214/33
10.0 Anode 554 ± 13 10.0003 ± 0.0005 0.0260 ± 0.0005 130/25
10.0 Cathode 538 ± 13 10.0001 ± 0.0005 0.0255 ± 0.0004 143/27
15.0 Anode 274 ± 9 14.9999 ± 0.0006 0.0251 ± 0.0005 63/26
15.0 Cathode 252 ± 9 15.0000 ± 0.0007 0.0258 ± 0.0007 76/24
20.0 Anode 64 ± 5 20.0014 ± 0.0013 0.0227 ± 0.0009 19/14
20.0 Cathode 63 ± 5 19.9989 ± 0.0013 0.0240 ± 0.0012 18/19

Table F.2: The amplitude a, position θ0 and width σθ of a fit with a Gaussian distribution to the θ-distribution
of Monte Carlo simulated data with a generated scattering angle of θMC. The data of scattering processes at the
anode and at the cathode are separated.
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θMC/mrad Anode/Cathode a z0/cm σ/cm χ2
/dof

0.5 Anode 30.9 ± 0.7 24.50 ± 0.11 5.6 ± 0.1
Cathode 28.6 ± 0.7 46.62 ± 0.11 5.6 ± 0.1 1420/554

1.0 Anode 65.4 ± 1.3 24.30 ± 0.05 2.73 ± 0.04
Cathode 62.5 ± 1.2 46.78 ± 0.05 2.85 ± 0.04 706/355

1.5 Anode 99.4 ± 1.8 24.29 ± 0.03 1.867 ± 0.021
Cathode 98.5 ± 1.8 46.7987 ± 0.017 1.907 ± 0.022 407/242

2.0 Anode 133 ± 3 24.305 ± 0.021 1.379 ± 0.016
Cathode 128.6 ± 2.4 46.782 ± 0.022 1.449 ± 0.017 313/182

2.5 Anode 168 ± 3 24.312 ± 0.017 1.114 ± 0.012
Cathode 161.6 ± 2.9 46.781 ± 0.017 1.148 ± 0.012 208/155

3.0 Anode 194 ± 4 24.292 ± 0.014 0.93 ± 0.01
Cathode 193 ± 4 46.817 ± 0.014 0.95 ± 0.01 188/129

Table F.3: The amplitude a, position z0 and width σ of a fit with a Gaussian distribution to the z-vertex
distribution of Monte Carlo simulated data with a generated scattering angle of θMC and a 2m larger distance
between the first and the last silicon tracking station.

θMC/mrad Anode/Cathode a θ0/mrad σθ /mrad χ2
/dof

0.5 Anode 1247 ± 24 0.50089 ± 0.00023 0.0158 ± 0.0002 119.3/17
0.5 Cathode 1208 ± 25 0.49961 ± 0.00023 0.01519 ± 0.00021 109.8/15
1.0 Anode 1186 ± 23 0.99990 ± 0.00024 0.0160 ± 0.0002 60.4/13
1.0 Cathode 1189 ± 23 0.99992 ± 0.00024 0.01598 ± 0.00021 59.9/13
1.5 Anode 1201 ± 24 1.49993 ± 0.00023 0.01580 ± 0.00021 64.8/14
1.5 Cathode 1233 ± 25 1.49986 ± 0.00023 0.01559 ± 0.00021 102.7/17
2.0 Anode 1189 ± 24 1.99994 ± 0.00023 0.0156 ± 0.0002 57.9/15
2.0 Cathode 1209 ± 24 2.00068 ± 0.00023 0.01563 ± 0.00021 86.7/15
2.5 Anode 1190 ± 24 2.49960 ± 0.00024 0.01581 ± 0.00021 83.4/16
2.5 Cathode 1161 ± 23 2.49977 ± 0.00024 0.01618 ± 0.00021 51.4/15
3.0 Anode 1126 ± 22 3.00026 ± 0.00024 0.01604 ± 0.00021 55.9/15
3.0 Cathode 1166 ± 24 3.00026 ± 0.00024 0.01565 ± 0.00021 77.2/17

Table F.4: The amplitude a, position θ0 and width σθ of a fit with a Gaussian distribution to the θ-distribution
of Monte Carlo simulated data with a generated scattering angle of θMC and a 2m larger distance between the
first and the last silicon tracking station. The data of scattering processes at the anode and at the cathode are
separated.
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APPENDIX G

Additional figures for the Monte Carlo studies

In figure G.1, the ϕ-difference between the reconstruction in both detector systems to the initially
simulated value is given.
In figure G.2, the kinetic energy reconstructed in the silicon tracking stations is drawn versus the

initially generated energy. It is visible that the cut on the scattering angle reconstructed in the silicon
tracking stations leads to a larger y-intercept and a smaller slope.
In figure G.3, the kinetic energy reconstructed in the TPC is drawn versus the initially generated

energy. The cut on the scattering angle reconstructed in the silicon tracking stations has no impact on
the results.
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Appendix G Additional figures for the Monte Carlo studies
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Figure G.1: The difference of the reconstructed ϕ-angle from the silicon tracking stations (left) and the TPC
(right) to the MC truth ϕ.
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Figure G.2: The kinetic energy of the recoil proton reconstructed by the silicon tracking stations is plotted
against the Monte Carlo truth energy. A linear regression is fitted to the data. The top plot has a slope which is
comparable with 1, while the bottom plot has a cut on θ ≥ 0.2 mrad and the slope is much smaller than 1.
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Appendix G Additional figures for the Monte Carlo studies

Figure G.3: The kinetic energy of the recoil proton is reconstructed by the TPC and given plotted against the
Monte Carlo truth value. The top plot has no additional cut, while the bottom plot has an cut on the scattering
angle θ ≥ 0.2 mrad.
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