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Introduction

The field theory of the strong interaction is called quantum chromodynamics (QCD).
It describes the interaction of quarks, which are the basic constituents of hadrons,
via gluon exchange. In higher-energy reactions with a large momentum transfer,
i.e. at distance scales much smaller than the typical size of a nucleon, the coupling
constant αs of the strong interaction becomes small and quarks behave as quasi-free
particles. In this regime, one can use perturbation theory, i.e. a series expansion in
powers of αs, to obtain highly precise and verified predictions.
In contrast, at lower energies in the range of hadron masses, the coupling constant
becomes large, rendering the standard perturbation-theory approach inapplicable.
Therefore, understanding strong-force processes at low energy is one of the main
open questions of the standard model. One way of obtaining more information
about the interaction of quarks and gluons at low energies is to study the excitation
spectrum of hadrons. Mesons are particularly interesting, because in the constituent
quark model they are bound states of quark and antiquark and hence the simplest
kind of hadrons. One example is the ρ(770), the lightest meson decaying via the
strong force nearly exclusively into two pions [1]. Typically, Breit-Wigner paramet-
erizations are used to describe the amplitude of short-lived hadron resonances, which
is a good approximation for a single isolated narrow resonance, but cannot be used
to describe multiple resonances such as excited ρ states.
In this thesis we analyze data from the Compass experiment at CERN on π−π−π+

events produced in inelastic scattering of a high-energy π− beam of a proton target.
Our goal is to extract for the first time ground-state as well as excited ρ resonances
from the measured amplitude of the π−π+ P -wave subsystem in a π−π−π+ system
with JP = 1+ using a model amplitude that is an analytic function in the complex
s-plane, where s is the π−π+ mass squared.
This thesis is organized as follows. In ch. 2, we introduce the partial-wave analysis
method and outline an extension of this method called the freed-isobar method. In
ch. 3 we introduce the theoretical model to describe the π−π+ P -wave amplitude,
which was derived in ref. [2] and allows multiple resonances. This leads to the defin-
ition of pole parameters, which are process-independent properties corresponding to
masses and widths of these resonances. The fit method used to optimize the model
parameters is explained in ch. 4. It takes into account and resolves so-called zero-
mode ambiguities. The results of the fits are presented in ch. 5. A summary and an
outlook are given in ch. 6.
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Chapter 1

The COMPASS Experiment

The analyzed data were taken by Compass (COmmon Muon Proton Apparatus for
Structure and Spectroscopy), a fixed target experiment at CERN.

1.1 Experimental Setup

The Compass experiment has four main sections (fig. 1.1). First of all, the beam
line for Compass is the M2 beam line of the CERN SPS accelerator, which for the
data used here was tuned to deliver a secondary π−-beam with an energy of 190GeV.
This beam hits the liquid-hydrogen target. The produced and scattered hadrons are
detected in two detector sections. Firstly, the large-angle spectrometer, around the
SM1 dipole magnet, detects particles with up to 180mrad polar angle with respect to
the beam axis. Secondly, the small-angle spectrometer, from the SM2 dipole magnet
on, detects particles with smaller angles. For the analyzed process (see sec. 1.2) it

Figure 1.1: 3D view of the Compass experimental setup [3].
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Chapter 1 The COMPASS Experiment

is important to precisely measure the momenta of the produced particles. For this
task, the Compass spectrometer is equipped with several detectors that track the
trajectories.
The direction of the beam particle is measured with high precision by a set of double-
sided silicon microstrip detectors, which are located upstream of the target. Directly
after the target a second set of silicon detectors measures the outgoing particles. The
high spatial resolution of these detectors leads to high precision in the reconstruction
of the position of the interaction point. In the two spectrometer stages, micro-pattern
gaseous detectors, multi-wire proportional chambers and drift chambers are used to
measure the trajectories of the forward-going particles. Both spectrometer stages
are equipped with electromagnetic and hadronic calorimeters (ECAL and HCAL)
for the identification of photons, electrons, and hadrons respectively.
For more detailed information see refs. [3, 4].

1.2 Analyzed Process

We analyze events of the inelastic scattering reaction

π−p→ π−π+π−p, (1.1)

which were selected from the Compass data [5, 6]. In this reaction, a negatively
charged pion π− scatters with a target proton p via the strong interaction (exchange
of a pomeron P). The pion is excited in a state with the mass m3π, which decays via
the strong interaction into three pions (fig. 1.2).
The kinematics of this process are characterized by m3π and the Mandelstam vari-

p

π−

p

π−

π+

π−ts

m3π

P

Figure 1.2: Diagram for the process π−p→ π−π+π−p.
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1.2 Analyzed Process

ables s and t, where s is the squared center-of-mass energy of the initially incoming
pπ−(beam) system and t is the squared four-momentum transfer between p and π−beam.
In addition, we have to take into account that a minimal squared four-momentum
transfer |t|min is needed to excite the beam to an invariant mass of m3π, i.e. to
describe the process we use the reduced four-momentum transfer squared:

t′ = |t| − |t|min > 0. (1.2)

Due to analyzed kinematic region of 0.1 (GeV/c)2 < t′ < 1.0 (GeV/c)2, |t|min is in-
significant, so that t′ ≈ |t|min. Since at Compass the beam energy is fixed,

√
s is

fixed to about 19GeV.
The exclusive sample for the process π−p → π−π+π−p, in the kinematic range
0.5 GeV/c2 < m3π < 2.5 GeV/c2 and 0.1 (GeV/c)2 < t′ < 1.0 (GeV/c)2, containing
about 46 · 106 events, was selected by ref. [5]. For these events kinematic distribu-
tions are shown in fig. 1.3. The m3π spectrum features intermediate states of the
three-pions system indicated by arrows, while the t′ spectrum behaves approximate
exponentially and the m3π spectrum features intermediate states of the three-pions
system indicated by arrows.
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Figure 1.3: Kinematic distributions of the process π−p→ π−π+π−p. Left: the m3π

spectrum. Right: the t′ spectrum (taken from ref. [6]).
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Chapter 2

Partial-Wave Analysis Model

Hadron resonances, which are composed of u, d or s quarks, decay via the strong
interaction and have typical lifetimes of the order of 10−24s. This means these reson-
ances cannot be detected directly but be reconstructed from the daughter particles,
that they decay into. Therefore, a partial-wave analysis is performed.

2.1 Particle Decays and the Isobar Model

Our analyzed process (see sec. 1.2) is a three-body decay of the form

X → a+ b+ c. (2.1)

Due to four-momentum conservation, the four-momenta of the particles in this pro-
cess have to satisfy

PµX =

n∑
i=1

pµi , (2.2)

with PµX being the four-momentum of X and pµi the four-momentum of the final-
state particle i. Three-body decays can often be well approximated as a sequence
of two-body decays, i.e. X decays first into an intermediate two-body state ξ, the
so-called isobar, and one of the finale-state particles:

X → ξ + c. (2.3)

Then the isobar decays further into the two remaining finale-state particles

ξ → a+ b. (2.4)

E.g. the decay X− → π−π+π− considered here can be decomposed into

X− → ξ0 + π−Bachelor and ξ0 → π− + π+. (2.5)

We consider only the π−π+ and not π−π− state, due to the fact that the isobar is a
meson, consisting of quark and anti-quark, and therefor cannot be twice negatively
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Chapter 2 Partial-Wave Analysis Model

charged. These two decays are part of the process π−p → π−π+π−p, which was
observed by Compass and can be decomposed into

π−p→ X−p, X− → ξ0 + π−Bachelor and ξ0 → π− + π+. (2.6)

The kinematic distribution of the π−π+ state is shown in fig. 2.1, where we can see
that the peaks of resonances are dominating the distribution, especially the peak of
the ρ(770) resonance.
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Figure 2.1: Kinematic distribution of the π−π+ state, in which four resonances are
labeled. The picture is taken from ref. [6].

The diagram of the whole process is shown in fig. 2.2. X− and ξ0 have well-
defined quantum numbers JPC , where J is the spin, P and C are the eigenvalues
of parity transformation and charge conjugation, respectively, M ε characterizes the
spin projection of X− in a chosen basis, and L is the orbital angular momentum
between ξ and the bachelor pion. These quantum numbers define the wave i, with
i = JPCX M εJPCξ L.

2.2 Conventional Partial-Wave Analysis Method

The data contain contributions from various intermediate 3π states with different
JPCM ε quantum numbers and various decay modes ξ0π−. In order to disentangle
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2.2 Conventional Partial-Wave Analysis Method
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Figure 2.2: Diagram of the process π−p → π−π+π−p with intermediate state X−

and isobar ξ.

these contributions the PWA was performed.
For given values of m3π and t, the measured intensity distribution I, i.e. the number
of measured counts as a function of the kinematic variables, is defined as

I(τ ) =

∣∣∣∣∣∑
i

Ui(τ )

∣∣∣∣∣
2

. (2.7)

I is a function of five phase-space variables that define the three-body kinematics
and that are represented by τ , where Ui(τ ) is the complex-valued amplitude for the
process shown in fig. 2.2 of the wave i of a given wave set. We can define I like this,
due to the model assumption that these amplitudes are fully coherent, which was
confirmed as good in ref. [6]. With the assumption that X− is a resonance and due
to the independence of the propagation and decay of the resonance, we can factorize
the amplitude so that every wave can be written as

Ui = TiAi(τ ), (2.8)

with Ai(τ ) being the decay amplitude that describes the distribution of the final-state
particles in the decay X− → π−π+π− for i and Ti being the transition amplitude
that describes with which strength and phase the X− is produced. Using the model
for I(τ ), we can write the joint probability density function for the measured data
set E with N events, i.e. the extended likelihood function as function of the fit
parameters T = {Ti} and E:

L(T ;E) =
eN̄ N̄N

N !

∏
event∈E

I(τ event)

N̄
, (2.9)
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Chapter 2 Partial-Wave Analysis Model

where the first term in eq. (2.9) is a Poissonian factor describing the probability
to measure N events, while expecting N̄ events, and the second term defines the
probability to measure E, which is due to the independence of its events the product
of the probabilities of each event in E. The expected number of events N̄ , i.e. the
normalization factor, is defined as:

N̄ =

∫
dτρ3(τ )ε(τ )I(τ ), (2.10)

with ρ3(τ ) being the phase-space density and ε(τ ) being the total reconstruction
efficiency of the detector, which can be determined with a Monte Carlo simulation.
We use eq. (2.8) and can write eq. (2.10) after some calculation as:

N̄ =
∑
i,j

TiT
∗
j

∫
dτρ3(τ )ε(τ )Ai(τ )A∗j (τ )︸ ︷︷ ︸

Ii,j

, (2.11)

where the decay amplitudes {Ai} are not allowed to contain any free parameters,
because otherwise the calculation of N̄ would become prohibitively expensive, and
can be calculated using the isobar model. Consequentially Ii,j is independent of T
and precalculable.
To fit the fit-parameters T to our data, i.e. to get the best possible description of
the intensity, we maximize eq. (2.9) adjusting the production amplitudes. In order
to calculate the decay amplitudes, we use again the factorization of propagation and
decay as in sec. 2.1 and can write:

Ai(τ ) = NiΨi(τ )∆i(mab), (2.12)

where Ni is the real-valued constant that normalizes the amplitude and Ψi(τ ) is the
spin amplitude, which describes the angular distribution and is completely defined
by the JPC quantum numbers of X− and ξ, M ε of X− and L. ∆i(mab) is the
dynamic isobar amplitude describing the dependence of the decay amplitude on
the mass mab = mξ of the isobar, formed by the system (ab). With Ai being
independent of T , also ∆i(mξ) has to be independent of T . For this we use typical
parameterizations of ∆i(mξ), e.g. Breit-Wigner amplitudes or Flatté formulas [7],
for which the parameters, i.e. mass and width of the isobar ξ, have to be taken from
other measurements.

2.3 Freed-Isobar Partial-Wave Analysis Method

One of the main problems of the conventional PWA is the large systematic depend-
ence on Ai, in particular on the chosen parameterizations and parameter values of
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2.3 Freed-Isobar Partial-Wave Analysis Method

∆i(m). To solve these issues, a less model-dependent analysis technique, the so-
called freed-isobar PWA [8, 9], was used. The basic idea of this approach is to
replace the predefined fixed parameterizations of the dynamic isobar amplitudes by
sets of indicator functions ∆ubin(mξ) such that

∆i(mξ) =

Nbins∑
bin

αbin
i ∆ubin,i(mξ), where ∆ubin(mξ) =

{
1 if mξ ∈ bin,

0 otherwise.
(2.13)

The sum runs over Nbins continuous mξ bins, which cover the whole kinematically
allowed region. The dynamic amplitude is given by the complex-valued parameters
αbin
i , which are assumed to be constant within each mξ bin for the ith partial wave.

Hence, using eqs. (2.8), (2.12) and (2.13), the total amplitude is

U(τ ) =
∑
i

NiTiΨi(τ )

Nbins∑
bin

αbin
i ∆ubin,i(mξ).

=
∑
i

Nbins∑
bin

Ni T bini︸︷︷︸
Tiα

bin
i

∆ubin,i(mξ)Ψi(τ ). (2.14)

This amplitude has the same structure as eq. (2.7), because of the replacements∑
i →

∑
bin and T bini → Ti, with T bini being the new fit parameters. For a given

m3π and t, T bini leads to a binned approximation of the m3π dependence of ∆i(mξ),
which gives us information about the π−π+ subsystem with well-defined quantum
numbers.
With the introduction of freed-isobar amplitudes in eq. (2.13) the PWA model has
many more parameters. This causes continuous mathematical ambiguities for some
combinations of partial waves, which we refer to as zero modes. These appear due
to the fact that the two π− in the analyzed final state are identical bosons. Hence,
the decay amplitude obeys Bose symmetry, i.e. it is symmetric with respect to the
exchange of the bachelor π− and the π− coming from the isobar. For some subsets S
of partial waves, there is a freed-isobar amplitude ∆0

i (mξ), for which the two terms
from the Bose symmetrization in the decay amplitudes cancel each other for every
point τ in the phase space, i.e.∑

i∈S
Ψi(τ )∆0

i (mξ) + Bose symm. = 0. (2.15)

9



Chapter 2 Partial-Wave Analysis Model

Due to eq. (2.15) the corresponding decay amplitudes are invariant under shifts of
the freed-isobar amplitudes of the form ∆i → ∆i + C ∆0

i , i.e.∑
i∈S

Ai =
∑
i∈S

Ψi(τ )∆i(mξ) + Bose symm.

=
∑
i∈S

Ψi(τ )[∆i(mξ) + C ∆0
i (mξ)] + Bose symm., (2.16)

where C is the complex-valued zero-mode coefficient. Therefore, also the total amp-
litude in eq. (2.14) and the intensity distribution in eq. (2.7) are invariant under
these shifts of the freed-isobar amplitudes. This means that C cannot be determined
from data so that

∆meas
i = ∆phys

i + C ∆0
i . (2.17)

To determine C additional constraints are needed, e.g. a model for ∆phys
i . Ref.

[8] performed this required zero-mode correction i.a. for the JPCX M εJPCξ L =

1++0+1−−S wave. Its results in fig. 2.3 show that due to the zero-modes the un-
corrected result from the freed-isobar PWA (red) is shifted away from the dynamic
amplitude used in the fixed-isobar PWA (grey), which can be assumed as a good ap-
proximation for the physically correct dynamic amplitude. For the further analysis
the zero-modes are taken into account and are corrected with our model.
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Chapter 3

Theoretical Model for the π−π+

P -Wave Amplitude

3.1 The ρ(770) and the Pion Vector Form Factor

Our goal is a description of the isobar amplitude with JPCX M εJPCξ L = 1++0+1−−S
in terms of resonances, where the ground state is the ρ(770). Therefore, we use the
parametrization from [2, 10], whose derivation we outline. Hence, we start with the
pion form factor:

〈π+(p)π−(p′)|Jµ|0〉 = e(p− p′)µF (s), (3.1)

where π+(p) and π−(p′) are charged pion states with four-momentum p and p′ re-
spectively, s = (p − p′)2 is the center-of-mass energy of the π+π− system squared,
e is the elementary charge, J is the electromagnetic current, and F (s) ≡ Fv(s) is
the vector form factor. This form factor describes the production of two pions and
can be expressed in terms of a source term M and a term describing the pion-pion
interaction, i.e.

F (s) = M(s) + T (s)Σ(s)M(s), (3.2)

with Σ being the self-energy and T being the T -matrix of a resonance, which can be
written using the Lippmann-Schwinger equation:

T (s) = V (s) + V (s)Σ(s)T (s)→ T (s) =
V (s)

1− V (s)Σ(s)
, (3.3)

with V being the resonance potential. Inserting eq.(3.3) into eq.(3.2) we get:

F (s) =
M(s)

1− V (s)Σ(s)
. (3.4)

When considering a single resonance, the potential reads

V (s) = −
m2
ρg

2

s−m2
ρ

, (3.5)
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Chapter 3 Theoretical Model for the π−π+ P -Wave Amplitude

with mρ being the mass of the ρ(770)-resonance and g ≡ gππ its coupling to the
two-pion final state. The source term can be parametrized as

M(s) = c− a · V (s), (3.6)

where c is a constant determined by the normalization of F (see eq. (3.20)) below,
and a is the source-resonance coupling.
After inserting eqs.(3.5) and (3.6) into eq.(3.2), the form factor reads

F (s) =
c
(
m2
ρ − s

)
− am2

ρg
2

m2
ρ − s−m2

ρg
2Σ(s)

, (3.7)

with m being the mass of the resonance.

3.2 Generalization of the Gounaris-Sakurai
Parametrization

The next step is the generalization of the parametrization of the pion vector form
factor developed by Gounaris and Sakurai [11]. Their ansatz was that the pion-pion
scattering phase shift δ1 in the P -wave satisfies the relation:

k3(s)√
s

cot δ1 = k2(s)h(s) + α+ βk2(s), (3.8)

with

k(s) =

√
s

4
−m2

π, (3.9)

h(s) =
2

π

k(s)√
s

ln

[√
s+ 2k(s)

2mπ

]
. (3.10)

This effective-range Chew-Mandelstam equation is valid for a wide energy range.
The form factor including the singularities and the correct phase reads

F (s) =
f(0)

f(s)
, (3.11)

where

f(s) =
k3(s)√
s

cot δ1 − i
k3(s)√
s
. (3.12)

The ρ(770) parameters, i.e. mass mρ and width Γρ, are defined via:

cot δ1|s=m2
ρ

= 0, (3.13)

dδ1

ds

∣∣∣∣
s=m2

ρ

=
1

mρΓρ
. (3.14)
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3.3 Addition of Higher Excited ρ-Resonances

This leads to the form factor F (s):

F (s) =

(
m2
ρ + dmρΓρ

)/((
m2
ρ − s

)
+ Γρ

m2
ρ

k3(m2
ρ)

{
k2(s)

[
h(s)− h(m2

ρ)
]

+k2(m2
ρ)h
′(m2

ρ)
(
m2
ρ − s

)}
− imρΓρ

[
k3(s)

k3(m2
ρ)

]
mρ√
s

)
(3.15)

with h′ being the derivative of h(s) and d being a constant defined via:

d =
3

π

m2
ρ

k2(m2
ρ)

ln

[
mρ + 2k(mρ)

2mρ

]
+

mρ

2πk(mρ)
− m2

πmρ

πk3(m2
ρ)
. (3.16)

Comparing eqs.(3.7) and (3.15) yields the self energy

Σ(s) =
1

2π

{
k2(s) [h(m2

ρ)− h(s)]− k2(m2
ρ)h

′(m2
ρ) (m2

ρ − s) + i
k3(s)√
s

}
. (3.17)

3.3 Addition of Higher Excited ρ-Resonances

To construct an amplitude for multiple resonances, we have to extend the potential
in eq.(3.5) to

V (s) = − m2
1g

2
1

s−m2
1

−
∑
i=2

sg2
i

s−m2
i

, (3.18)

with mi being the mass and gi being the coupling of the ith resonance, i.e. m1 ≡ mρ

and g1 ≡ g. We define m1 as real valued and other mi as complex-valued. To reduce
the influence of the higher resonances on the ρ(770) ground state, which is already
well described, m2

i was replaced by s in the numerators.
Also the source term in eq.(3.6) has to be adapted accordingly:

M(s) = c− a1
m2

1g
2
1

s−m2
1

−
∑
i=2

ai
sg2
i

s−m2
i

. (3.19)

The constant c is determined by the normalization of the form factor:

F (0)
!

= 1 =
c− a1g

2
1

1− V (0)Σ(0)
→ c = 1− g2

1 [a1 + Σ(0)] . (3.20)
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Chapter 3 Theoretical Model for the π−π+ P -Wave Amplitude

Inserting eqs.(3.17), (3.18) and (3.19) in eq.(3.4), the final pion vector form factor
for n ρ-resonances is:

F (s) =
M(s)

1− V (s)Σ(s)
=

{
1− g2

1 [a1 + Σ(0)]− a1
m2

1g
2
1

s−m2
1

−
n∑
i=2

ai
sg2
i

s−m2
i

}/
{

1 +

(
m2

1g
2
1

s−m2
1

+
n∑
i=2

sg2
i

s−m2
i

)
1

2π

[
k2(s)

{
h(m2

1)− h(s)
}

−k2(m2
1)h′(m2

1) (m2
1 − s) + i

k3(s)√
s

]}
.

(3.21)

3.4 Addition of Phase-Space and Centrifugal-Barriers
Factors

Since we assumed in eq.(3.1) Jµ as source for the ρ, we have to imbed the form factor
into the 3π decay. Therefore, we include the available phase space factors and the
centrifugal barrier factors:

A(s) = N F (s)

phase-space factors︷ ︸︸ ︷√
λ1/2(s,m2

π,m
2
π)λ1/2(s,m2

3π,m
2
π)

√
sm3π

×
[
λ1/2(s,m2

π,m
2
π)√

s

]S [
λ1/2(m3π,m

2
π, s)

m3π

]L
︸ ︷︷ ︸

centrifugal-barrier factors

, (3.22)

with S being the orbital angular momentum in the 2π subsystem and L the or-
bital angular momentum between the 2π subsystem and the bachelor pion. N is a
complex-valued normalization constant and λ is the Källén function:

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx (3.23)

In this work, we only consider the case where L = 0 and S = 1, therefore the final
amplitude reads:

A(s) = N F (s)
λ3/4(s,m2

π,m
2
π)λ1/4(s,m2

3π,m
2
π)

sm3π
, (3.24)

where we used eqs.(3.21), (3.17), (3.9), (3.10) and (3.23).
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3.5 Pole Parameters

3.5 Pole Parameters

In the complex s-plane this amplitude has one branch point starting at the 2π
threshold, where s = 4m2

π, because of the term k(s) in eq. (3.17), which leads
to a representation on two Riemann sheets. A resonance appears as a pole, which
is defined with a flip of sign in contrast to a maximum, at spole in the so-called
unphysical Riemann sheet. Due to analyticity, every pole requires an additional pole
at s∗pole. The pole with a negative imaginary part is closer to the physical Riemann
sheet and thereby has more influence on the observables and is taken for the further
analysis. This issue is shown in fig. 3.1. Taking the position spole of the pole, we
can write a relation for the mass of the resonance mpole and its width Γpole like in
ref. [1]: √

spole = mpole − i Γpole/2 (3.25)

The definition of the pole parameters in eq. 3.25 is not used consistently in the
literature. Another definition for the pole parameters based on the Breit-Wigner
amplitude reads

mBW
pole =

√
Re(spole) and ΓBW

pole = − Im(spole)√
Re(spole)

. (3.26)
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Figure 3.1: Sketch of the imaginary part of a typical amplitude in the complex s-
plane. The dots mark possible resonance pole positions, the cross marks a bound
state position. The picture is taken from [1].
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Chapter 4

Fit Method

4.1 χ2 Function for the Amplitude

To fit the theoretical model T̂ bin
i in eq. (2.14), which includes the amplitude in eq.

(3.24), to the measured data T bin
i , a χ2 function is minimized. Because model and

data are complex-valued the χ2 function is formulated in terms of their real and
imaginary parts.

χ2(θ,C ) =

N2π
bins∑

j=1

{
Re[T bin

i (m2π,j)]− C ∆0
i − Re[T̂ bin

i (m2π,j ,θ)]
}2

σ2
Re,j

+

{
Im[T bin

i (m2π,j)]− C ∆0
i − Im[T̂ bin

i (m2π,j ,θ)]
}2

σ2
Im,j

. (4.1)

Here, θ represents the vector of fit parameters, C is the zero-mode coefficient, N2π
bins is

the number of m2π bins, the higher index is the m3π bin, ˆT bin
i is defined analogously

to eq. 2.14:
T̂ bin
i = TiA

bin
i︸︷︷︸

αbin

. (4.2)

The value for t and m3π are constant, and every term is weighted by the inverse
variances of the corresponding σ2

Re,j and σ
2
Im,j , respectively, so that data-points with

high precision have more weight.
In order to take into account the statistical correlations between the data points we
extend eq. 4.1 to

χ2(θ,C ) =
∑
j

∑
k

[
T bin
i (m2π,j)− C ∆0

i − T̂ bin
i (x2π,j ,θ)

]
V −1
jk[

T bin
i (m2π,k)− C ∆0

i − T̂ bin
i (x2π,k,θ)

]
, (4.3)

where Vjk is the covariance matrix of the measured data in the m2π bins j and k as
obtained from PWA.
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Chapter 4 Fit Method

The sum over allm3π bins of the χ2 functions is then fitted with the Minuit algorithm
[12], which gives us 8 fit parameters:

m1, g1,Re(m2), Im(m2), g2,Re(m3), Im(m3), g3,

used in every 3π bin, and for each m3π bin 5 additional parameters:

Re(N), Im(N), a1, a2, a3,

used only in this particular m3π bin. The zero-mode corrections are handled numer-
ical as in [8].

4.2 Pole Parameter Fitting

The model amplitude is infinity at the pole parameters. The pole parameters are
estimated by minimizing the inverse of the modulus squared (eq. (4.4)) of the amp-
litude with the Minuit algorithm. This works, since the inverse value of the pole
corresponds to a null.

1/|A(s)|2. (4.4)

The result has to fulfill
1

A(s− ε) = − 1

A(s+ ε)
, (4.5)

where ε � 1 is a constant, because the sign of the pole has to change, as described
in sec. 3.5.
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Chapter 5

Results

From the waveset used in the PWA, that is described in chapter 2, we choose to ana-
lyze the π+π− P -wave amplitude in JPCX M εJPCξ L = 1++0+1−−S, because this wave
has the highest intensity. Therefore, the uncertainties are dominated by systematical
uncertainties, which are not studied in this work, and are hence not specified. We
only use the data of the lowest t′ bin with 0.100 (GeV/c)2 < t′ < 0.141 (GeV/c)2, due
to the main focus on the m2π and m3π dependence of the amplitude. The analyzed
m3π range is subdivided into 50 equidistant bins in the range from 0.5 GeV/c2 to
2.5 GeV/c2. In the plots that will be shown below, the red points are the data from
the PWA, while the blue data points are zero mode corrected. The fit results are
plotted in orange.

5.1 Fit of the ρ(770)

In a first study, we only fit the ρ(770), which dominates the π+π− P -wave amplitude,
in the limited m2π range below 1.2 GeV/c2. These data should contain only the
ground state ρ(770), since the nominal masses of the excited ρ states are well above
1.2 GeV/c2. Therefore, we fix all global parameters gi and ai in eq. 3.21, except m1

and g1, to zero. We get a large value of the fit quality χ2/d.o.f. = 10854/919 = 11.8.
This does not mean that the model is inapplicable, but that it describes not all the
details of the high-precision data sufficiently. Since we have a large data set, the
statistical uncertainty of the fit parameters is extremely small. For example, m1 has
a statistical uncertainty of 0.02%. In the future, systematical uncertainties have to
be taken into account in order to obtain a final result for the quality of the fit.
For the m3π region, in which we obtained a peak in the m3π distribution (see fig.
1.3), the result is shown in fig. 5.1. We see that the real part of the amplitude
is well described, but that the imaginary part of the model deviates from the data
below m2π ≈ 0.7 GeV/c2, which results mostly in a shift along the Argand diagram.
Nevertheless, the general shape of the Argand diagram matches the data, which
implies a passable fit of the model. Possible explanation of the deviation of the
imaginary part of the amplitude could be that our model does not contain any
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Chapter 5 Results

background terms, so that potential non-resonant components in the data cannot be
described.
Fig. 5.2 shows a lower m3π mass bin. The Argand diagram matches not as good

as in fig. 5.1. Again, the model deviates mostly in the low-mass region, this time
particular in the real part.
For higher m3π bins, as e.g. shown in fig. 5.3, the description of the ρ(770)

is somewhat improved. The extrapolation of the model beyond the fit range of
m2π = 1.2 GeV/c2 shows that a single resonance is not enough to describe the data.
The fitted parameters of m1 = 780.1 MeV/c2 and g1 = 4.524 lead to a pole of

the amplitude at s = (0.5788− 0.1158i) (GeV)2 (fig. 5.4), which corresponds to the
ρ(770) pole parameters of mpole = 764.5 MeV/c2 and Γpole = 151.5.MeV/c2.
Considering the definition based on the Breit-Wigner amplitude in eq. (3.26), we
get the ρ(770) pole parameters of mBW

pole = 760.7 MeV/c2 and ΓBW
pole = 152.2.MeV/c2.

Since the pole parameters should not be process dependent, we can compare to the
values mBW

pole = (758.0 ± 1.0) MeV/c2 and ΓBW
pole = (145.2 ± 1.2) MeV/c2 extracted

from the process e+e− → π+π− [13]. While our mass value is in agreement, we find
a significantly larger width.
Now we study, whether the result changes, when we fit the full m2π range. The
χ2/d.o.f. = 25921/1351 = 19.2 increases, which can be explained by the fact that the
model with only the ρ(770) does not describe the highm2π region. For this fit we find
ρ(770) parameters of m1 = 780.2 MeV/c2 and g1 = 4.562. Consequently, the ρ(770)
pole position is at s = (0.5784 − 0.1168i) (GeV)2, i.e. the pole parameters mpole =
760.5 MeV/c2 and Γpole = 170.9 MeV/c2. Since the fit parameters change only little,
the quality of the description of the ρ(770) in the data remains approximately the
same.
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Figure 5.1: Intensity (top-left), Argand diagram (top-right), real (bottom-left) and
imaginary (bottom-right) part of the JPCX M εJPCξ L = 1++0+1−−S amplitude in the
m3π bin 0.100 (GeV/c)2 < m3π < 0.141 (GeV/c)2. The red points are the data
from the PWA and the blue points are the zero-mode corrected data. The model
amplitude, which only contains the ρ(770), is shown in orange.

21



Chapter 5 Results

0.4 0.6 0.8

m2π [GeV/c2]

0

2

4

In
te

ns
ity

[e
ve

nt
s/

40
M

eV
]

×106 1++0+[ππ]1−−πS1.02 < m3π < 1.06 GeV/c2

0.100 < t′ < 0.141 (GeV/c)2

0 1 2

< [
√

events/40 MeV]
×103

0

1

2

=
[√

ev
en

ts
/4

0
M

eV
]

×103 1++0+[ππ]1−−πS1.02 < m3π < 1.06 GeV/c2

0.100 < t′ < 0.141 (GeV/c)2

0.4 0.6 0.8

m2π [GeV/c2]

0

1

2

<
[√

ev
en

ts
/4

0
M

eV
]

×103 1++0+[ππ]1−−πS1.02 < m3π < 1.06 GeV/c2

0.100 < t′ < 0.141 (GeV/c)2

0.4 0.6 0.8

m2π [GeV/c2]

0.0

0.5

1.0

1.5

=
[√

ev
en

ts
/4

0
M

eV
]

×103 1++0+[ππ]1−−πS1.02 < m3π < 1.06 GeV/c2

0.100 < t′ < 0.141 (GeV/c)2

Figure 5.2: Similar to fig. 5.1, but showing a lower m3π bin.
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Figure 5.3: Similar to fig. 5.1, but showing a bin at large m3π. Note that the m2π

data above 1.2GeV/c2 were excluded from the fit.
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Figure 5.4: Plot of the imaginary part of the fitted amplitude in the complex s-
plane. In the white areas Im[A(s)] is higher or lower than the scale, respectively.
The position of the pole is indicated with the plus marker.
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5.2 Fit of the ρ(770) and the ρ′

Since our model in eq. 3.24 allows multiple resonances, we add an excited ρ res-
onance and fit the model in the whole m2π range. The fit quality of χ2/d.o.f. =
20568/1298 = 15.8, is better than for the fit with the model which contains only the
ρ(770). As expected, the fit describes the high-m2π better than the model without
the ρ′. Also, the description of the ρ(770) improves slightly (cf. e.g. figs. 5.1 and
5.5). The addition of higher ρ resonances influences the ground state and reduces
the shift of the Argand diagram.
For higher m3π bins, e.g. fig. 5.6, the ρ′ results in an additional loop in the Argand
diagram, which matches better with the data. In this fit we see no separation of the
ρ′ and the ρ′′ peak. Since we force the model to describe the higher m2π region with
only one excited resonance, we get only an effective description, which shows up as
a broad peak centered between the nominal masses of the ρ(1450) and the ρ(1700)
at around m2π = 1.6GeV/c2.
The fit parameters are m1 = 777.7 MeV/c2, g1 = 4.546, m2 = (1.808 +

0.165i) MeV/c2 and g2 = 3.227. The amplitude has two resonance poles at s1 =
(0.5763−0.1168i) (GeV)2, shown in fig. 5.7, and s2 = (2.445−0.5859i) (GeV)2 shown
in fig. 5.8. The poles correspond to the ρ(770) parameters ofm1,pole = 763.0 MeV/c2

and Γ1,pole = 153.1 MeV/c2, and the ρ′ parameters of m2,pole = 1574.7 MeV/c2 and
Γ2,pole = 372.1 MeV/c2. The value of mBW

1,pole = 759.1 MeV/c2 is closer to the value
found in ref. [13], which supports our observation that the ρ(770) is better described.
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Figure 5.5: Similar to fig. 5.1, but showing the fit of a model containing ρ(770) and
ρ′.
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Figure 5.6: Similar to fig. 5.5, but showing a higher m3π bin.
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Figure 5.7: Similar to fig. 5.4, but showing the result for the fit of the ρ(770) and
the ρ′.
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Figure 5.8: Similar to fig. 5.7, but showing the ρ′ pole.
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5.3 Fit of the ρ(770), the ρ′ and the ρ′′

Since we know of three ρ-resonance in the available m2π range, we extend the model
to three resonances. Attempts to fit all resonances simultaneously failed because the
fit did not converge. So we fix the fit parameters of the ρ(770) to the values found
in sec. 5.2, where they were very likely already well determined, and fit only the ρ′

and the ρ′′. For this approach we get a fit quality of χ2/d.o.f. = 14477/1245 = 11.6,
which is nearly half the value we got for the fit with only the ρ(770) in the full m2π

range. This means that our description of the high m2π region is good, since already
the fit with ρ(770) in the region m2π < 1.2GeV/c2 has a similar fit quality.
Fig. 5.10 shows the same m3π bin as fig. 5.6 for the fit of three resonances. We see
that the description of the data in the high-m2π region and that of the shape of the
Argand diagram is further improved. Since the zero-mode correction is also fitted
and model dependent, the positions of the blue data points change. This leads to a
peak centered around 1450 MeV/c2, which is the nominal mass of the ρ(1450). So it
seems that we describe a clear excited ρ resonance.
In fig. 5.10, which shows an even higherm3π bin we see clearly two separated excited
ρ resonances. The first peak is in the mass region of the ρ(1450) and the second a bit
above the ρ(1700). In this m3π bin, the real and the imaginary part are fairly well
described, which results in a matching shape of the Argand diagram. Since we fix
the fit parameters of the ρ(770), we only give the values of the other fit parameters.
We obtain m2 = (1736 + 45.8i) MeV/c2, g2 = 2.427, m3 = (2560 + 589i) MeV/c2,
and g3 = 0.8006. The pole positions are s2 = (2.539 − 0.5904i) (GeV)2 shown in
fig. 5.11 and s3 = (6.116 + 2.576i) (GeV)2 shown in fig. 5.12. This corresponds
to ρ′ parameters of m2,pole = 1604 MeV/c2 and Γ2,pole = 368.1 MeV/c2, and to
ρ′′ parameters of m3,pole = 2525 MeV/c2 and Γ3,pole = 1020 MeV/c2. We obtain
that the parameters of the ρ′ have not change significantly compared to sec. 5.2.
In ref. [14] the parameters of the Gounaris-Sakurai-amplitude are mρ′ = (1493 ±
15) MeV/c2 and Γρ′ = (427±31) MeV/c2 This supports rather our observation in sec.
5.2, that we have an effective description of the high-m2π region, than a description of
the ρ(1450). Comparing to mρ′′ = (1861±17) MeV/c2 and Γρ′′ = (316±26) MeV/c2

found also in ref. [14], our result is extremely larger. Therefore, we remain only with
a effective description of the high-m2π region.
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Figure 5.9: Similar to fig. 5.1, but showing the fit of a model containing the ρ(770),
ρ′, and ρ′′ in a high m3π bin.

30



5.3 Fit of the ρ(770), the ρ′ and the ρ′′
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Figure 5.10: Similar to fig. 5.10, but showing a higher m3π bin.
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Figure 5.11: Similar to fig. 5.7, but showing the result for the fit of the ρ(770), the
ρ′ and the ρ′′.
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Figure 5.12: Similar to fig. 5.11, but showing the ρ′′ pole.
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Chapter 6

Summary and Outlook

6.1 Summary

In this work, we studied the π−π+ P -wave subsystem in π−π−π+ events produced in
inelastic π−p scattering reaction, which were measured by the Compass experiment
at CERN. Based on a decomposition of the data into interfering quantum amplitudes
with defined spin J and parity P quantum numbers of the 3π and the 2π system, we
analyzed the π−π+ P -wave amplitude for a 3π system with JP = 1+. Our goal was
the description of the π−π+ P -wave amplitude, in which the ρ(770) is the ground
state, in terms of resonances in the wave JPCX M εJPCξ L = 1++0+1−−S, based on
the pion vector form factor derived in ref. [2]. Since this form factor describes the
coupling to virtual photons, also ref. [2] added phase-space factors and barrier factors
in order to account for the 3π environment. Because this amplitude is an analytic
function in the complex s-plane, s being the square of the 2π mass, resonances
appear as poles. The position of these poles in the s-plane are related to masses
and widths of the resonance. For the fit itself we used a χ2 function, taking into
account the statistical correlation of the data points. In this method so-called zero
modes ambiguities appear, which we resolved in our fit. We did four different fits.
First, we fitted a model containing only the ρ(770) while limiting m2π to be below
1.2 GeV/c2. We got a large value of the fit quality, while having small statistical
uncertainties. We explained that the model is not inapplicable, but describes the
data not in every detail, especially the low mass tail of the ρ(770). We extracted
the pole parameters and resulted with mpole = 760.8 MeV/c2, which is in good
agreement with the literature value, and Γpole = 152.2 MeV/c2, which is at least
near the literature value. Then a second fit of the model in the whole available m2π

range resulted in practically unchanged fit parameters, but a worsening of the fit
quality due to the deviation of model and data at higher m2π.
For our third fit we added an excited ρ resonance to the model. As expected, the
fit quality at high m2π improved and also the description of the ρ(770) got slightly
better. The parameters of the excited ρ in the fit lie between the nominal masses
of the ρ(1450) and the ρ(1700), so that we only got an effective description of the
high-m2π region.

33



Chapter 6 Summary and Outlook

In the last fit, the model contained three resonances, while fixing the parameters of
the ρ(770), because otherwise the fit did not converge. In the result two separated
peaks of the ρ′ and the ρ′′ were seen. This relatively good description of the higher
m2π bins is also reflected in a fit quality value as good as for the first fit. But since
the ρ′ parameter of m2,pole = 1604 MeV/c2 lies between the masses of the ρ(1450)
and the ρ(1700) and the ρ′′ parameter of m3,pole = 2525 MeV/c2 is way above the
nominal mass of the ρ(1700), we get only an effective description of the high-m2π

region.

6.2 Outlook

In this theses, we performed a proof-of-principal analysis in order to determine,
whether the model from ref. [2] describes the Compass data in principle. Although
we find that the model describes most of the data fairly well, there is still room for
improvements in several aspects of the analysis. We could e.g. allow the parameters
ai to be complex-valued and check, whether this improves the fit quality. Maybe
the most promising change could be the addition of non-resonant background terms,
which seemed to be necessary in particular in the low-m2π regions. To reduce the
statistical uncertainty in the high-m2π region, where we see signals of excited ρ
resonances, we have the possibility to include the other three t′ bins. At the same
time we could study the dependence of the model parameters on t′. Since for the
model with three ρ resonances the fit did not converge, when we let all parameters
free, we could try to constrain the parameters into certain ranges. Another possibility
to obtain a converged fit, could be a staged approach, in which we would try to fix
different model parameter combinations in order to study the stability of the fit. To
estimate the statistical uncertainties of the pole parameters, a resampling method
could be used. Also, an estimation of systematic uncertainties is needed. There are
also waves with other JPCX M εL quantum numbers that contain ρ resonances. For
these waves a similar study would be interesting.
Finally, there are also resonances in other ππ-waves. E.g. an analysis of the π+π− D-
wave in the 2−+0+[ππ]2++πS wave could study the dominant ground state f2(1270)
and f2 excited states.
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