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Synopsis

Just as the electromagnetic force binds electrons and nuclei into atoms, the strong force
binds quarks into hadrons. In the Standard Model of particle physics, both forces are
described by quantum field theories, i.e., quantum electrodynamics (QED) and quantum
chromodynamics (QCD), with photons and gluons as mediators. A remarkable feature
of QCD, which sets it apart from QED, is the fact that not only the quarks but also the
gluons carry the charges of the strong interaction. Therefore, the gluons can self-interact.
At low energies, this leads to the phenomenon of confinement, i.e., the entrapment of quarks
and gluons into composite hadrons. Unfortunately, the QCD equations cannot be directly
solved in the confinement regime because of the strong coupling of quarks and gluons. The
quantitative understanding of how confinement arises from QCD is one of the last open
questions of the Standard Model.

In an analog way as studying the excitation spectrum of atoms has lead to an un-
derstanding of the electromagnetic force and eventually to QED, studying the excitation
spectrum of hadrons deepens our understanding of how quarks and gluons behave at low
energies. According to the constituent quark model, the simplest hadrons are the mesons,
which are made of a quark and an antiquark, i.e., qq. However, in addition to ordinary
qq states, QCD in principle allows meson-like states that are made, for example, out of
four quarks, out of a qq pair plus an excited gluon field, or even states that are made
entirely out of gluons. These “exotic” states should appear as supernumerary states in
the hadron spectrum or mix with nearby conventional qq states with the same quantum
numbers. Unambiguous proof for the existence of exotic states would be the experimental
observation of mesons with quantum numbers that are forbidden for qq. A particular class
of manifestly exotic mesons are those with so-called spin-exotic quantum numbers, i.e.,
with quantum-number combinations JPC = 0+−, 1−+, 2+−, 3−+, . . . of spin J , parity P ,
and charge conjugation C that are forbidden for qq states in the non-relativistic limit.

The search for exotic mesons is a global effort with various experiments exploring
different parts of the meson spectrum. The excitation spectrum of light-quark mesons,
which consist of up, down, or strange quarks, is particularly interesting. Over the last
decades, the light-meson spectrum has been studied extensively by many experiments.
Many states are already identified and for most of them masses, widths, and decay modes
are well-known. However, experimental information is often scarce or even non-existent
especially for higher excited meson states. Most of these states lie in the mass region
around and above 2 GeV/c2. Furthermore, experiments reported evidence for light-meson
states with spin-exotic JPC = 1−+ quantum numbers, the so-called π1 states. Interestingly,
numerical ab-initio calculations of QCD (lattice QCD) have recently predicted a set of exotic
states with excited gluon fields in the mass region around 2 GeV/c2, with the lightest one
having spin-exotic quantum numbers of JPC = 1−+. However, the resonance interpretation
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of the experimentally observed π1 signals is debated controversially in the community.
Hence these states require further confirmation.

The COMPASS experiment is a multi-purpose fixed-target experiment at the CERN
Super Proton Synchrotron (SPS). One of its goals is to measure the light-meson spectrum
with high precision, in particular to explore the 2 GeV/c2 mass region and to search for
supernumerary states and exotic mesons. At COMPASS, excited light mesons are produced
in inelastic scattering reactions of high-energy pion or kaon beams on proton or nuclear
targets. The produced excited mesons decay via the strong interaction into final states
of two or more lighter mesons, e.g., π, η, η′, or K. The excited mesons hence appear
in the reaction as intermediate states with very short lifetimes of the order of 10−23 sec.
Such particles are called resonances and are characterized e.g., by their mass, width, JPC

quantum numbers, and decay modes. Due to the short life times of the resonances, their
identification and the measurement of their parameters has to be based solely on the
measured kinematic distribution of the final-state particles that reach the detector. This
requires an elaborate method called partial-wave analysis (PWA), which decomposes the
data into partial-wave amplitudes that correspond to well-defined JPC quantum numbers
and decay modes. Resonances appear typically as peak structures in the squared magnitudes,
i.e., the intensities, of these amplitudes, which are accompanied by changes of the phase of
the amplitude by approximately 180°.

The COMPASS experiment has recorded world-leading datasets for several final states.
The largest dataset was acquired for the reaction π− + p→ π−π−π+ + p and consists of
46× 106 events. This dataset is at least an order of magnitude larger than any dataset from
previous experiments and allows to study the spectrum of isovector mesons in unprecedented
detail. This cumulative habilitation thesis reports on results from the analysis of this dataset
based on the following three articles, which have been co-authored by the author of this
thesis.

[H1] C. Adolph et al., [COMPASS Collaboration], “Observation of a New Narrow Axial-
Vector Meson a1(1420),” Phys. Rev. Lett. 115 (2015) 082001 , arXiv:1501.05732
[hep-ex]  .

[H2] C. Adolph et al., [COMPASS Collaboration], “Resonance production and ππ
S-wave in π−+ p→ π−π−π+ + precoil at 190GeV/c,” Phys. Rev. D 95 (2017) 032004 ,
arXiv:1509.00992 [hep-ex] , supplemental material at http://journals.aps.org/
prd/supplemental/10.1103/PhysRevD.95.032004 .

[H3] M. Aghasyan et al., [COMPASS Collaboration], “Light isovector resonances in
π− p→ π−π−π+ p at 190GeV/c,” Phys. Rev. D 98 (2018) 092003 , arXiv:1802.05913
[hep-ex]  , supplemental material at https://journals.aps.org/prd/supplemental/
10.1103/PhysRevD.98.092003 .

The three articles report on results from the so far most comprehensive and detailed
partial-wave analysis of the 3π final state. Employing the isobar model, which describes
the decay of the intermediate states to π−π−π+ as a chain of two successive two-body
decays, we decompose the data into partial-wave amplitudes with well-defined quantum
numbers and decay chains. For this we use the so far largest PWA model consisting of
88 partial waves. We perform the partial-wave decomposition in 100 bins of the three-pion
mass, 0.5 < m3π < 2.5 GeV/c2, and simultaneously in 11 bins of the reduced squared
four-momentum, 0.1 < t′ < 1.0 (GeV/c)2, that is transferred from the beam to the target
particle.
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We present detailed studies of selected 3π partial waves with JPC = 0−+, 1++, 2++,
2−+, 4++, and spin-exotic 1−+ quantum numbers. In addition, we present the results of a
novel method to extract from the data the dynamical amplitude of the π−π+ subsystem
with JPC = 0++ quantum numbers in various 3π partial waves as a function of mπ−π+ ,
m3π, and t′. This method not only significantly reduces the model dependence of the PWA
results but it in addition allows us to study π−π+ resonances that appear in the π−π−π+

decays and their possible distortion due to interactions among the final-state pions. Using
this method, we observe for the first time the decay modes π(1800) → f0(1500)π → 3π,
π2(1880)→ f0(980)π → 3π, and π2(1880)→ f0(1500)π → 3π.

In order to identify resonances in the extracted partial-wave amplitudes and to measure
their parameters, we performed the so far most comprehensive resonance-model fit using
Breit-Wigner amplitudes. The resonance model simultaneously describes a subset of
14 selected waves using 11 isovector light-meson resonances. We measure the masses
and widths of these resonances. The model contains the well-known resonances π(1800),
a1(1260), a2(1320), π2(1670), π2(1880), and a4(2040). It also includes the excited states
a1(1640), a2(1700), and π2(2005). In addition, the model includes the disputed spin-exotic
π1(1600). We confirm its existence and its decay mode into ρ(770)π. With the results
from our analysis, we can also reconcile the seemingly contradictory observations from
previous experiments that puzzled the community for a long time. We trace back the
observed contradictions to artificial structures that are induced by too limited PWA models,
which were employed in some previous analyses, and to the fact that the π1(1600) signal is
accompanied by non-resonant background with a strongly t′-dependent intensity so that
the π1(1600) dominates only in the region t′ & 0.5 (GeV/c)2 that was not considered in
some previous analyses.

In our analysis we also have discovered a new and unexpected resonance-like signal
with JPC = 1++ quantum numbers, the a1(1420). We observe it as a narrow peak in the
f0(980)π decay mode. The data are well described by a Breit-Wigner amplitude with
a mass of 1411 +4

−5 MeV/c2 and a width of 161 +11
−14 MeV/c2. If interpreted as a genuine

resonance, the a1(1420) would be a supernumerary state and a candidate for a four-quark
state. However, the peculiar properties of the a1(1420) indicate that it might not be a
resonance but could be an effect in the rescattering of daughter particles from the decay of
the a1(1260) ground state. Such effects may also explain some of the exotic-meson signals
observed in the heavy-quark sector.

In a novel approach, we extract the dependence of the resonance amplitudes on t′

from the data. The t′ dependences contain information about the production mechanism,
which can be used to verify and improve models. We find that for most resonances the
t′ dependences of the intensities differs distinctly from those of the non-resonant background
components. In our approach, this improves the separation of the resonances from the
non-resonant background components.

In this thesis, we attempt to supplement the articles [H1–H3] by a broader introduction
into the subject of meson spectroscopy in Chapter 1 . In Secs. 1.1 to 1.3 , we discuss the
relation of QCD and meson spectroscopy. We introduce in Sec. 1.4 the quark model as the
basis for the understanding of the meson spectrum. Section 1.6 contains a discussion of the
specifics of the light-meson spectrum. We introduce the concept of a particle resonance,
present theoretical predictions for the light-meson spectrum with a particular focus on
results from numerical ab-initio calculations of QCD (lattice QCD), and discuss exotic
mesons. The measured reaction and the COMPASS experiment are briefly introduced in
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Secs. 2.1 and 2.2 , respectively. In Sec. 2.3 , we describe the event selection and discuss basic
kinematic distributions. Since the discussion of the analysis method in the articles [H1–H3]
is necessarily somewhat compressed and fragmented, we attempt in Chapter 3 a more
coherent and detailed derivation of the formulae and methods starting from first principles.
The concrete models that were used to analyze the data are presented in Sec. 4.1 . Selected
results are discussed in Sec. 4.2 . We conclude in Chapter 5 and also give an outlook on
possible future research.
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Chapter 1

Introduction

1.1 The theory of strong interaction

Our current understanding of nature is that all interactions between matter particles can be
reduced to four fundamental interactions: gravitational, electromagnetic, weak, and strong.
The latter three interactions are described by the Standard Model of particle physics using
relativistic quantum gauge field theories.

In the Standard Model, quantum chromodynamics (QCD) describes the strong in-
teraction of quarks and gluons. The quarks are massive point-like spin-1/2 elementary
constituents of matter (fermions), whereas the gluons are massless spin-1 exchange particles
that mediate the strong interaction (gauge bosons). Both, quarks and gluons, carry charges
of the strong interaction. In QCD, there are Nc = 3 kinds of these so-called “color” charges:
“red”, “green”, and “blue”, which are conserved in all physical processes. The theory of
strong interaction is perfectly symmetric with respect to the three colors, i.e., it is invariant
under local gauge transformations of the Lie symmetry group SU(3) in color space.[a]  Using
the principle of minimal coupling, one can construct the QCD Lagrangian density that is
invariant under SU(3)color gauge transformations (see, e.g., Ref. [1 ]),[b]  

LQCD =
∑

f={u,d,c,
s,t,b}

Nc∑
k,l=1

qf,k
[
i γµ (Dµ)kl −mf δkl

]
qf,l −

1

4

N2
c−1∑
a=1

Gµνa Gaµν , (1.1)

where qf,k(x) are the spinors of the quark fields, which have one of the six known flavors
f = “up” (u), “down” (d), “charm” (c), “strange” (s), “top” (t), or “bottom” (b). Each
quark flavor comes in three colors, which means that the quark spinors are grouped into
fundamental SU(3)color triplet representations with color index k. The γµ are the Dirac
matrices, the mf the quark masses, and (Dµ)kl is the gauge covariant derivative, which is
given by

(Dµ)kl = ∂µ δkl + i gs

N2
c−1∑
a=1

λakl
2
Aaµ(x). (1.2)

[a]The special unitary group SU(N) is the non-abelian Lie group that is represented by N ×N unitary
matrices with unit determinant.

[b]In this chapter, we use natural units, where ~ = c = 1.
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g g
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g g
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Figure 1.1: The fundamental Feynman vertices of QCD.

Here, gs is the coupling constant of the strong interaction and the Aaµ(x) are the gluon
gauge fields. There are N2

c − 1 = 8 kinds of gluons.[c]  The λakl are the eight 3 × 3 Gell-
Mann matrices, which are the generators of the SU(3) group. The gauge invariant gluon
field-strength tensor Gaµν in Eq. (1.1 ) is given by

Gaµν = ∂µA
a
ν(x)− ∂ν Aaµ(x)− gs

N2
c−1∑

b,c=1

fabcA
b
µ(x)Acν(x). (1.3)

The real-valued factors fabc are the so-called structure constants of the SU(3) group, which
close the SU(3) Lie algebra via the commutator relation[

λakl
2
,
λbkl
2

]
= i

N2
c−1∑
c=1

fabc
λckl
2
. (1.4)

As it is evident from Eqs. (1.1 ) to (1.4 ), QCD has only seven fundamental parameters
that need to be determined by experiment: the coupling constant gs and the six quark
masses mf .

Due to the non-abelian structure of the SU(3)color gauge group, the Lagrangian in
Eq. (1.1 ) contains not only terms that describe the coupling of quarks and gluons, i.e.,
terms of the form

gs qf,k γ
µ λakl qf,lA

a
µ,

but in addition terms of the form

gs fabc (∂µAν,a)AbµA
c
ν and g2s fabc fadeA

µ,bAν,cAdµA
e
ν

that describe the couplings of three and four gluons, respectively. Hence the Feynman rules
for QCD include three fundamental types of interaction: (i) a quark may absorb or emit a
gluon (see Fig. 1.1(a) ), (ii) a gluon may absorb or emit a gluon (see Fig. 1.1(b) ), and (iii)
four gluons may interact directly (see Fig. 1.1(c) ).

The self-interaction of the gluons has important consequences for the behavior of the
strong interaction. In quantum field theories, the coupling “constant” actually depends

[c]The gluons carry color and anticolor charges. In SU(3)color, there are eight such combinations that
belong to the adjoint octet representation and are given by the Gell-Mann matrices. The ninth combination,
(rr + gg + bb)/

√
3, is a color-singlet, which is unphysical (see Sec. 1.2 ).
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QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  

0.1

0.2

0.3
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1 10 100
Q [GeV]
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e+e–   jets & shapes (res. NNLO)
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τ decays (N3LO)

1000

 (NLO

pp –> tt (NNLO)

)
(–)

Figure 1.2: World data on αs as a function of the energy scale Q overlaid by the theory
prediction for αs(Q2). From Ref. [1 ].

on the energy scale µ of the physical process under consideration. This is called running
coupling. In QCD, the self-interaction of the gluons determines the running of the strong
coupling constant gs, which is given by [2 , 3 ]

αs(µ
2) ≡ g2s(µ

2)

4π
≈ 1

β0 ln(µ2/Λ2
QCD)

. (1.5)

Here, αs is the QCD equivalent to the fine-structure constant of the electromagnetic
interaction, β0 = (33 − nf )/(12π) depends on the number nf of quark flavors that are
considered light, i.e., for which mf � µ, and ΛQCD ≈ 200 MeV is the QCD scale parameter.
The coupling gs(µ2) can be thought of as the dimensionless version of the effective strong
charge that a quark carries.

For processes that are characterized by a transferred four-momentum Q, the effective
strength of the strong interaction in that process is given by αs(Q2). Figure 1.2 shows
that QCD is in excellent agreement with the world data on αs(Q2). It also shows that αs
becomes much smaller than one in “hard processes”, i.e., in reactions with Q� ΛQCD. This
is the regime of so-called weak coupling or asymptotic freedom. In this regime, the QCD field
equations can be solved approximately by applying perturbation theory, i.e., by expanding
them in a truncated power series in αs. Perturbative QCD has been rigorously tested at
high-energy accelerators and was confirmed to describe strong-interaction phenomena up to
the highest energies available today at the Large Hadron Collider (LHC) at CERN [1 ]. The
LHC measurements of the Higgs boson and the search for physics beyond the Standard
Model critically depend on our understanding of production mechanisms and backgrounds,
which are calculated using perturbative QCD.

1.2 Confinement

The second crucial consequence of the gluon self-interaction is the phenomenon called
confinement. The confinement hypothesis states that no free colored states exist in nature.
Hence all asymptotic states of QCD have to be color-neutral, i.e., singlet states that are
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invariant under SU(3)color transformations. Consequently, it is impossible to observe free
quarks or gluons. They are always confined into hadrons, i.e., into color-neutral composite
particles that are bound states of quarks and gluons.[d]  

Qualitatively, the phenomenon of confinement can be understood by considering two
static elementary color charges, i.e., a heavy quark and a heavy antiquark, separated in
space by a distance r. According to the Heisenberg uncertainty principle, the separation r
of the quark-antiquark pair is inversely proportional to the transferred four-momentum Q.
Hence the coupling strength of the strong interaction depends on r via Eq. (1.5 ). The
coupling is weak at small distances (corresponding to large energies) and strong at large
distances (corresponding to small energies). Neglecting the effect of light quarks, the
interaction of the quark-antiquark pair can be described by an effective static potential. A
popular ansatz is the so-called Cornell potential [5 ],

V (r) = −a
r

+ kr, (1.6)

which consists of two parts. The first term is proportional to 1/r and represents a
Coulomb-like potential, which corresponds to one-gluon exchange between the quark and
the antiquark.[e]  This term dominates at small separations r � 1/ΛQCD ≈ 1 fm.[f]  In this
region, the coupling is weak and the color field is a dipole field with field lines spreading out
in space, analogous to an electric dipole field. Hence the force between the quark-antiquark
pair decreases with 1/r2. For large separations r � 1/ΛQCD,[g]  the coupling and therefore
the gluon self-interaction becomes strong. This leads to a rearrangement of the color-field
lines between the quarks into so-called color strings or flux tubes (see Fig. 1.3(a) ). The
potential of such a string with tension k ≈ 1 GeV/fm is described by the second term in
Eq. (1.6 ), which is proportional to r. This corresponds to a constant force between the
quark-antiquark pair. This term prevents a complete separation of the quark-antiquark pair
because this would require an infinite amount of energy. It is hence this term that makes
the potential confining. In the real world, increasing r increases the energy stored in the
gluon string until this energy becomes large enough to produce another quark-antiquark
pair from the vacuum leading to a breaking of the gluon string. So instead of producing
two isolated color charges, two color-neutral quark-antiquark pairs each bound by gluons
are produced. As shown in Fig. 1.3(b) , numerical simulations of the QCD Lagrangian
that ignore light-quark contributions (so-called quenched approximation; see Sec. 1.6.2.2 )
confirm the Cornell potential.

Confinement leads to the curious situation that the actual fundamental degrees of
freedom of QCD, the quarks and gluons, are not directly observable. The experimentally
observable asymptotic states of any QCD scattering process will always be color-singlet
hadrons. While the confinement hypothesis is experimentally well established, it is not
fully understood on a theoretical level [8 ]. The reason for this is again the running of the
QCD coupling in Eq. (1.5 ). At low energies of the order of ΛQCD, which correspond to
large distances of the order of 1 fm, αs(Q2) becomes close to or larger than one, so that

[d]The term “hadron” to designate strongly interacting composite particles was coined 1962 by L. B.
Okun [4 ]. It was derived from the Greek ἁδρός (hadrós) meaning “stout, thick” and was chosen to contrast
the term “lepton” that is used to designate elementary particles that do not participate in strong interactions
and that was derived from the Greek λεπτός (leptós) meaning “fine, small, thin”.

[e]This is analogous to the Coulomb potential of the electromagnetic interaction between two point
charges, which corresponds to one-photon exchange in quantum electrodynamics.

[f]This corresponds to Q� ΛQCD.
[g]This corresponds to Q� ΛQCD.
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Figure 1.3: Results of numerical simulations of the QCD Lagrangian for a pair of a heavy
quark and a heavy antiquark ignoring contributions from light quarks (see Sec. 1.6.2.2 ).
(a) shows a visualization of the gluon string that forms between the quark and the antiquark,
which are represented by the spheres. From Ref. [6 ]. (b) shows the effective potential
between the quark-antiquark pair as a function of their separation r from numerical
simulations (points) overlaid with the Cornell potential from Eq. (1.6 ) (red curve). From
Ref. [7 ].

the strong interaction becomes highly non-linear. Therefore, the perturbative expansion
in αs breaks down and cannot be used anymore to solve the field equations. This realm
of the strong interaction is called non-perturbative QCD. Because of the non-perturbative
nature of QCD, we are unable to perform analytic ab-initio calculations even for simple
static properties of hadrons such as their masses. Up to now, all attempts to construct an
analytic proof of color confinement in any non-abelian gauge theory were unsuccessful. The
confinement problem remains one of the last open questions of the Standard Model and
one of the biggest challenges in theoretical particle physics.[h]  

A solution of the confinement problem would not only greatly enhance our understanding
of the Standard Model and of hadron physics in particular, but might also be a key
for constructing an extension to the Standard Model. Some proposed extensions, like
Technicolor [10 ] or composite Higgs models [11 ], introduce new non-abelian and hence
confining gauge interactions and face challenges similar to non-perturbative QCD.

1.3 Non-perturbative QCD and hadron spectroscopy

Hadrons are a direct consequence of confinement and reflect the workings of QCD at low
energies. Hence their properties are tightly related to the confinement mechanism. The most
fundamental static property of a hadron is its mass. Usually, bound states of particles have
a mass that is smaller than the sum of their constituent’s masses. This is due to the binding
energy and is known as the “mass defect”, which can be observed, for example, in nuclei
and—on a much smaller scale—also in atoms. Hadrons, however, behave fundamentally
different.

[h]Finding a proof for confinement is actually one of the seven Millennium Prize Problems posed by the
Clay Mathematics Institute and is endowed with a prize money of 106 USD [9 ].
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The most important hadrons are the proton and the neutron. They are made of up
and down quarks with only small contributions from the heavier quarks. The up and down
quarks have masses of mu = 2.2 +0.6

−0.4 MeV and md = 4.7 +0.5
−0.4 MeV[i]

 that are, however, much
smaller than the nucleon mass of about mN = 938.9 MeV [13 ].[j]  In order to quantify the
contribution of the up and down quark masses to the nucleon mass, we express the nucleon
mass in terms of the nucleon matrix element [14 ]:

mN =
1

2mN
〈N(p)|θµµ|N(p)〉 . (1.7)

Here, |N(p)〉 represents a nucleon state with four-momentum p and θµµ is the trace of the
QCD energy-momentum tensor, which in leading order in αs is given by

θµµ =
∑

f={u,d,s}

mf ψf ψf −
9αs
4π

tr
(
Gµν Gµν

)
, (1.8)

where we have considered only the three lightest quark flavors. The ψf are color triplets of
quark spinors, Gµν ≡∑N2

c−1
a=1 Gµνa λa/2, and the trace is taken over the 3× 3 color matrices.

The second term containing the square of the gluon field tensor is called the QCD trace
anomaly. It represents the contribution of the gluon fields to the nucleon mass.

The contribution of the up and down quarks is represented by the so-called pion-nucleon
sigma term,

σN =
1

2mN
〈N(p)|mu ψu ψu +md ψd ψd|N(p)〉 . (1.9)

It has a value of σN = 45± 8 MeV [15 , 16 ], which corresponds to the value by which the
nucleon mass would be lowered, if up and down quarks were massless. This means that
although the nucleon is made of up and down quarks, the mass of these constituents
contributes only a small fraction to the nucleon mass. It turns out that also the contribution
from the strange quarks is small. Therefore, QCD generates massive hadrons from nearly
massless constituents. According to Eqs. (1.7 ) and (1.8 ), the bulk part of the nucleon
mass must hence come from the trace anomaly. This means that the nucleon mass is of
dynamical origin, i.e., it is generated by the strong confining forces. Therefore, mass and
size of the nucleon are determined by the interaction of the gluons with each other and by
the relativistic kinetic energy of the light quarks.[k]  

This means that although the discovery of the Higgs particle at the LHC [18 , 19 ] has
proven that we understand the mechanism that generates the masses of the Standard Model
particles including the quarks, we do not yet understand quantitatively the origin of the
hadron masses. This is in particular true for the masses of protons and neutrons, which
make up all visible matter in the universe.

[i]Since quarks cannot be free, the definition of quark masses is actually highly non-trivial (see, e.g.,
Ref. [12 ] for details). The masses given here are the so-called current quark masses that enter the QCD
Lagrangian in Eq. (1.1 ) and are calculated in a particular renormalization scheme (MS) at a renormalization
scale of 2GeV [13 ].

[j]The nucleon mass is defined as the arithmetic average of the masses of proton and neutron.
[k]An additional key ingredient is the spontaneous breaking of the chiral symmetry of the QCD Lagrangian.

Chiral symmetry is describes the fact that in the limit of massless light quarks, left- and right-handed
quark fields decouple from each other in the QCD Lagrangian in Eq. (1.1 ). In addition to the spontaneous
breaking, chiral symmetry is slightly broken explicitly by the small masses of up, down, and strange quarks.
For more details see, e.g., Ref. [17 ].
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(a) (b) (c)

Figure 1.4: SU(3)flavor multiplets for hadrons made of up, down, and strange quarks:
(a) octet of ground-state mesons with spin zero and negative parity, (b) octet of ground-
state baryons with spin 1/2 and positive parity, and (c) decuplet of ground-state baryons
with spin 3/2 and positive parity. Q is the charge, S the strangeness, and I3 the z-component
of the isospin. From Refs. [25 –27 ].

In an analog way as studying the excitation spectrum of atoms has lead to an under-
standing of the electromagnetic force and eventually to QED, a precise measurement of the
rich excitation spectrum of hadrons and of hadron decays provides valuable input to theory
and phenomenology and helps to improve our understanding of how quarks and gluons
behave at low energies. Today, the study of the hadron spectrum is a global effort with
experiments at all major particle-physics facilities exploring different parts of these spectra.
The ultimate goal is to prove that QCD is the correct theory also at low-energies and that
it is able to describe all the complex properties of hadrons.

1.4 The constituent quark model

Hadrons can be subdivided into two classes: mesons, which have integer spin and are
hence bosons, and baryons, which have half-integer spin and are hence fermions. In the
1950s and 1960s, many new hadrons were found in experiments. At that time, it was not
yet clear that hadrons are composite objects and they were hence colloquially referred
to as the “particle zoo”. It was therefore a big leap forward when M. Gell-Mann [20 ]
and Y. Ne’eman [21 ] independently found that the hadrons known at that time could be
organized into representations of an SU(3) symmetry group: the mesons form an octet
(see Fig. 1.4(a) ); the baryons an octet and a decuplet (see Figs. 1.4(b) and 1.4(c) ).[l]  This
finding led M. Gell-Mann [22 ] and G. Zweig [23 , 24 ] independently to propose the existence
of fundamental spin-1/2 particles that Gell-Mann named “quarks” and Zweig named “aces”
and that come in three flavors: up, down, and strange. In this model, a meson is a bound
state of a quark q and an antiquark q, i.e., |qq〉; baryons are bound states of three quarks,
i.e., |qqq〉.[m]

 The quark model therefore reduces the large number of observed hadrons to
three fundamental building blocks.

[l]Gell-Mann called this classification scheme the “Eightfold Way” inspired by the Noble Eightfold Path
of Buddhism.
[m]Here, q stands for u, d, or s and, unless specified otherwise, the various q or q in a state may represent

different flavors.
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In the simplest form of the quark model, the constituent quark model, the quarks are
interpreted as effective particles, which determine the quantum numbers of the hadron.
The quarks are “dressed” by a surrounding cloud of gluons and virtual quark-antiquark
pairs, which is taken into account in the form of an effective constituent quark mass that is
much larger than the current quark mass in the QCD Lagrangian in Eq. (1.1 ). This means
constituent quarks are not point-like, but are extended objects with internal structure. The
mass of a hadron is given by the sum of the constituent quark masses, if we assume that the
constituent quarks are at rest and non-interacting, except for a color-magnetic spin-spin
interaction. This interaction gives a contribution to the hadron mass that can be calculated
analogously to the electromagnetic hyperfine interaction of the electron and proton spins in
a hydrogen atom. The up and down quarks have a constituent mass of about one third of
the proton mass. Strange quarks are about 150 MeV heavier. Due to the similar masses of
the constituents quarks, the masses of the hadrons in the same SU(3)flavor multiplet are also
similar and their differences are in most cases well explained by the heavier strange quark(s).
Given its simplicity, the constituent quark model reproduces the masses of ground-state
baryons and mesons already astonishingly well (see, e.g., Refs. [28 , 29 ]).

Today, we know that there are six quark flavors: u, d, c, s, t, and b. With the exception
of the top quark, which decays too quickly via the weak interaction, quarks of all flavors
form hadrons. By including the charm quark one can extend the flavor symmetry to
SU(4)flavor. However, this symmetry is strongly broken due to the much heavier charm
quark. This breaking becomes even stronger when one extends the symmetry to SU(5)flavor
by also including the bottom quark. Nevertheless, these symmetries are useful to classify
hadrons.

1.5 Light mesons

In this work, we study light mesons, i.e., |qq ′〉 states,[n]  that are made of u, d, and s quarks
and are hence organized in SU(3)flavor multiplets. Light mesons are characterized by their
spin J , the parity eigenvalue P of their wave function, their isospin I, the z-component Iz
of the isospin, and their strangeness [30 ].

For |qq〉 states, i.e., states of a quark and its own antiquark, in addition the charge
conjugation quantum number C is defined. For mesons with Iz = 0, i.e., neutral mesons,
and for charged mesons without strangeness, the charge conjugation operator Ĉ can be
generalized to the G-parity operator Ĝ via

Ĝ ≡ Ĉ eiπ Iy . (1.10)

Hence G-parity is the combination of charge conjugation and a rotation by 180° about
the y-axis in isospin space. The latter is equivalent to a sign flip of Iz, which corresponds
to a sign flip of the electrical charge. This undoes the sign flip of the charge caused by
the charge conjugation operator. Therefore, the members of an isospin triplet, such as
(π−, π0, π+), are eigenstates of Ĝ with eigenvalue

G = C (−1)I . (1.11)

That all members of the isospin triplet have the same G-parity reflects the fact that the
strong interaction does not care about the electrical charge and hence cannot distinguish

[n]In this section, we explicitly distinguish |qq〉 mesons that consist of a quark and its own antiquark and
|qq ′〉 mesons that consist of a quark and an antiquark of different flavors.
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between the differently charged states. For charged states, it is often customary in the
literature to quote the C-parity of the neutral partner in the isospin triplet instead of the
G-parity. We follow this convention here as well.

In the constituent quark model, the quantum numbers of a meson are given by the
quantum numbers of the qq ′ pair. The spins of the quark and the antiquark can couple
to a total intrinsic spin of S = 0 (quark spins anti-parallel) or 1 (quark spins parallel).
The total intrinsic spin couples with the relative orbital angular momentum L between the
quark and the antiquark to the total spin J of the meson, so that

|L− S| ≤ J ≤ L+ S. (1.12)

The parity of a |qq ′〉 state is

P = (−1)L+1, (1.13)

where the factor (−1)L represents the parity of the spatial wave function of an orbital-
angular-momentum eigenstate. The additional factor of −1 comes from the intrinsic parity
of a fermion-antifermion pair.[o]  Applying the charge conjugation operator to a |qq〉 state,
one can show that the C-parity of this state is

C = (−1)L+S . (1.14)

Therefore, S, L, and J define the JPC quantum numbers of a meson via Eqs. (1.13 )
and (1.14 ). Using Eq. (1.11 ), it follows that

G = (−1)L+S+I . (1.15)

In addition to L, which characterizes orbital excitations of the qq ′ pair, the principal
quantum number

n ≡ nr + 1. (1.16)

characterizes the radial excitation of the two-particle system. Here, nr is the radial quantum
number, which is equal to the number of nodes in the radial wave function.[p]  To define a
|qq ′〉 state one commonly uses the term symbol n 2S+1LJ , where L is represented by capital
letters, i.e., L = S, P,D, F, . . ..

The light mesons are grouped into SU(3)flavor multiplets. For each term symbol, i.e.,
each combination of n and JPC , there exist a flavor singlet and a flavor octet. Together,
they are referred to as an SU(3)flavor nonet. For example, the octet for the 1 1S0 states
with JP = 0− and—where defined—C = +1 and G = −1 is shown in Fig. 1.4(a) . The
corresponding singlet state is the η′(958). According to the Particle Data Group (PDG), the
SU(3)flavor nonets for the first radial and orbital excitations are fairly well established [30 ].
They are listed in Table 1.1 with the exception of the scalar mesons with JPC = 0++

because their assignment is unclear. In fact, the light scalar nonet with a0(980), K∗0 (800),
f0(980), and f0(500) might even belong to a completely different class of meson states,
which goes beyond the simple |qq ′〉 picture of the quark model. This will be discussed
further in Sec. 1.6.3 .

[o]One can show from the Dirac equation that fermions and antifermions must have opposite intrinsic
parity.

[p]Note that the definition of the principal quantum number in Eq. (1.16 ) differs from the one used in
atomic physics, where

n ≡ nr + L+ 1. (1.17)
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Table 1.1: Assignment of light-meson states to quark-model qq ′ SU(3)flavor nonets according
to the PDG [30 ]. The two last columns list the physical I = 0 states. The SU(3)flavor
singlet and octet states with I = 0 have the same quantum numbers and therefore mix.
The mixing leads to two physical states, of which in most cases one is dominated by ss
and the other by uu and dd. The latter is therefore lighter. Since the kaons are neither
C- nor G-parity eigenstates, kaon states of different nonets may mix. This is known to be
the case for the kaon states in the JPC = 1+− and 1++ nonets: K1A and K1B are nearly
equal mixtures of K1(1270) and K1(1400). Also, the kaon states in the JPC = 2−+ and
2−− nonets mix. The 1 3D1, 1 3D2, and 1 3F 4 nonets are still incomplete.

n L S JPC Term I = 1 I = 1/2 I = 0 I = 0

symbol

1 0 0 0−+ 1 1S0 π K η η′(958)

1 1−− 1 3S1 ρ(770) K∗(892) φ(1020) ω(782)

1 0 1+− 1 1P 1 b1(1235) K1B h1(1380) h1(1170)

1 1++ 1 3P 1 a1(1260) K1A f1(1420) f1(1285)

1 2++ 1 3P 2 a2(1320) K∗2 (1430) f ′2(1525) f2(1270)

2 0 2−+ 1 1D2 π2(1670) K2(1770) η2(1870) η2(1645)

1 1−− 1 3D1 ρ(1700) K∗(1680) ω(1650)

1 2−− 1 3D2 K2(1820)

1 3−− 1 3D3 ρ3(1690) K∗3 (1780) φ3(1850) ω3(1670)

3 1 4++ 1 3F 4 a4(2040) K∗4 (2045) f4(2050)

2 0 0 0−+ 2 1S0 π(1300) K(1460) η(1475) η(1295)

1 1−− 2 3S1 ρ(1450) K∗(1410) φ(1680) ω(1420)
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(a) (b)

Figure 1.5: (a) World data on the spectrum of non-strange light mesons as collected by the
PDG [31 ]. The meson states are sorted by their JPC quantum numbers. Horizontal lines
represent the masses of the states, shaded boxes their widths. The black lines and gray
boxes indicate states that are considered established by the PDG; red lines and red shaded
boxes indicate states that need confirmation. (b) Comparison of the measured light-meson
masses (black lines) with the masses of |qq ′〉 states as calculated in a relativistic quark
model [32 ] (magenta boxes). Both figures from Ref. [33 ].

1.6 The spectrum of non-strange light mesons

In this work, we study the spectrum of light mesons with zero strangeness. The spectrum
of these mesons has been studied for many decades by many experiments. Therefore,
many states are already known and for many of them also their masses, widths and decay
modes are known rather well as is illustrated in Fig. 1.5(a) . Most light mesons decay via
the strong interaction and hence have substantial widths of the order of 100 MeV. For
higher-excited mesons, with masses of about 2 GeV or larger, many states are disputed
or need confirmation (see Fig. 1.5(a) ). This mass region is referred to as the “light-meson
frontier”. The identification of resonances in this mass region is challenging because states
usually become broader with increasing mass. Together with the increasing density of
states, this leads to overlapping and mixing of states with the same quantum numbers,
which makes the identification of states more difficult.

1.6.1 Resonances

As mentioned above, most light mesons decay via the strong interaction into lighter hadrons
and have therefore very short life times of the order of 10−23 sec. Such particles are
called resonances [34 ]. Resonances are not directly detectable in an experiment. Only
those daughter particles from their decays that are stable with respect to the strong and
electromagnetic interactions will reach the detector. These so-called quasi-stable particles
are often pions and kaons. Resonances—from here on represented by X—may appear in
three kinds of processes: (i) formation experiments of the form a+ b→ X → h1 + . . .+ hn
(see Fig. 1.6(a) ), where a and b are the colliding particles and the hi are the measured
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Figure 1.6: Three kinds of processes, in which a resonance X can be produced: (a) formation
experiment, (b) production experiment, and (c) particle decay.

final-state hadrons that X decays into, (ii) production experiments of the form a+b→ X+c
with X → h1 + . . .+ hn (see Fig. 1.6(b) ), where c represent one or more spectator particles,
and (iii) decays of the form a→ X + c with X → h1 + . . .+ hn (see Fig. 1.6(c) ).

In formation experiments, the resonance is formed by the two colliding particles as an
intermediate state. The invariant mass mX of X is given by the center-of-mass energy

√
s

of the collision, where s is the Mandelstam variable defined as

s ≡ (pa + pb)
2 , (1.18)

with pi being the four-momentum of particle i. This process is also called s-channel
scattering. The initial state fixes not only the mass of X but also the quantum numbers
of X. Hence formation experiments provide a well-controlled environment, but one can
often study only a limited set of states. The study of resonances in particle decays has
similar limitations,[q]  although one has in principle a larger choice of initial states.

Production experiments impose the least constraints on the produced resonances. The
quantum numbers of X are only limited by the conversation laws of the interaction.
Although s is often fixed, the center-of-mass energy is shared between X and the recoil
particle c. Hence an mX range from the kinematic threshold at

∑n
i=1mhi up to

√
s−mc

can be probed. At high center-of-mass energies, production processes are dominated by
the exchange of virtual (quasi)particles, so-called t-channel exchange. In addition to the
variable s, the inelastic scattering process is characterized by the squared four-momentum t
that is transferred by the exchange particle. This Mandelstam variable is defined as

t ≡ (pa − pX)2 = (pc − pb)2 . (1.19)

In t-channel exchange processes, t has always negative values. It is convenient to introduce
the positive definite reduced squared four-momentum transfer t′, which is defined as

t′ ≡ |t| − |t|min. (1.20)

Here, |t|min is the minimum absolute value of t required to produce the (X, c) system.[r]  

[q]Here, m2
X = (pa − pc)2.

[r]In the laboratory frame,

|t|min ≈

(
m2
X −m2

a

2|~pa|

)2

. (1.21)
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In the simplest case, resonances appear as enhancements of the scattering cross section
or the decay rate as a function of mX . This is analogous to a driven harmonic oscillator,
for which the energy transfer becomes maximal at the resonance frequency. The analogy
can be taken even further: the phase difference between the oscillator and the driving force
grows with increasing frequency from zero at low frequencies, over 90° at the resonance
frequency up to 180° at very high frequencies. In particle physics, the quantum mechanical
probability amplitude of a resonance exhibits a similar behavior as a function of mX . This
mX dependence of the resonance phase is called phase motion.

In addition to their mass m0, resonances are characterized by their total width Γ0,
which is related via the Heisenberg uncertainty principle to the mean lifetime τ of the
resonance, i.e.,

τ =
1

Γ0
. (1.22)

1.6.1.1 Resonance amplitudes

The simplest approximation for the amplitude of an isolated narrow resonance far above
kinematic thresholds is the relativistic Breit-Wigner amplitude [35 ]. It has the form[s]

 

∆BW(mX ;m0, Γ0) =
m0 Γ0

m2
0 −m2

X − im0 Γ0
(1.23)

and can be thought of as the propagator of an unstable particle with nominal mass m0

and total width Γ0. Figure 1.7(a) shows the intensity, i.e.,
∣∣∆BW(mX)

∣∣2, of a Breit-Wigner
amplitude for a fictitious resonance. The intensity distribution exhibits the typical resonance
peak at m0 with a width given by Γ0. Figure 1.7(b) shows the corresponding rising phase
motion arg

[
∆BW(mX)

]
which crosses 90° at m0. The Breit-Wigner amplitude in Eq. (1.23 )

can also be visualized in the complex plane as shown in Fig. 1.7(c) . In such Argand diagrams,
a resonance appears as counter-clockwise circular structure.

For resonances with larger widths, a better approximation to the physical amplitude is

∆BW(mX ;m0, Γ0) =
m0 Γ0

m2
0 −m2

X − im0 Γtot(mX)
(1.24)

with the mass-dependent total width

Γtot(mX) =

decay
modes∑
i

Γi
qi
mX

m0

qi,0

F 2
Li

(qi)

F 2
Li

(qi,0)
, (1.25)

which takes into account the opening of the phase space for the decay into the daughter
particles across the resonance width. The total width is given by the sum of the phase-space
volumes of all decay modes i of the resonance X, weighted by their partial widths Γi.
In Eq. (1.25 ), it is assumed that all decay modes of X are two-body decays that are
characterized by a relative orbital angular momentum Li between the two daughter particles.

[s]The numerator in Eq. (1.23 ) depends on the normalization, which we have chosen such that
∆BW(m0) = +i.
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Figure 1.7: Example of a relativistic Breit-Wigner amplitude with constant width as in
Eq. (1.23 ) for a fictitious resonance with a mass of m0 = 1200 MeV and a total width of
Γ0 = 200 MeV. The amplitude is normalized such that it is +i at the resonance mass.
(a) shows the intensity, i.e., the absolute value squared of the amplitude, (b) the phase
of the amplitude, and (c) the Argand diagram of the amplitude. The points in (c) are
spaced equidistantly in mX by 20 MeV and mX increases in counter-clockwise direction
from 0 to 2.5 GeV.

The two-body phase-space volume is given by qi/mX , where qi is the magnitude of the
two-body breakup momentum in the X rest frame as given by

|~qi|2 ≡ q2i (mX ;mi,1,mi,2)

=

[
m2
X − (mi,1 +mi,2)

2
][
m2
X − (mi,1 −mi,2)

2
]

4m2
X

. (1.26)

Here, mi,1 and mi,2 are the masses of the daughter particles for decay mode i.
Since in Eq. (1.25 ) qi,0 ≡ qi(m0), the mass-dependent width is normalized such that

Γtot(m0) =

decay
modes∑
i

Γi. (1.27)

The Blatt-Weisskopf centrifugal-barrier factors FLi(qi) that appear in Eq. (1.25 ) take
into account the barrier effect caused by the orbital angular momentum Li in the two-body
decay. The maximum Li in a decay is limited by the magnitude of the linear breakup
momentum qi and the impact parameter between the daughters that is typically assumed to
be given by the range of the strong interaction, which is about 1 fm. This corresponds via
the Heisenberg uncertainty relation to a range parameter of qR ≈ 200 MeV. At small mX ,
i.e., small qi, it is difficult to generate the orbital angular momentum in the decay. Close
to threshold, the decay rate is therefore proportional to the product of the two-body
phase-space factor qi/mX and the centrifugal-barrier factor q2Lii . However, for larger mX ,
i.e., larger qi, the q2Lii factor would lead to unphysical growth of the decay rate and hence
needs to be damped. A phenomenological parametrization of the barrier factors in terms
of spherical Hankel functions of the first kind was derived by Blatt and Weisskopf [36 ].
The barrier factors are usually written as functions of zi(mX) ≡

[
qi(mX)/qR

]2 and often
the parametrization of von Hippel and Quigg [37 ] is used. It is customary to normalize
the barrier factor such that FLi(zi) = 1 at zi = 1. For the lowest values of Li, the barrier
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factors read[t]  

F 2
0 (zi) = 1, F 2

1 (zi) =
2zi
zi + 1

, and F 2
2 (zi) =

13z2i
z2i + 3zi + 9

. (1.28)

Although we assume in Eq. (1.25 ) that the daughter particles of the two-body decays
are stable, this parametrization is often also applied to cases where at least one of the
daughter particles is unstable. Such two-body approximations neglect the effect of the finite
width(s) of the unstable daughter particle(s).[u]  

The simple Breit-Wigner parametrizations in Eqs. (1.23 ) and (1.24 ) have further
limitations [34 ]. Using a sum of Breit-Wigner amplitudes to describe the total amplitude of
a set of resonances with the same quantum numbers is a good approximation only if the
resonances are well-separated so that they have little overlap. Otherwise unitarity, i.e., the
conservation of probability, may be violated (see also the paragraph below). For resonances
with multiple decay modes, Breit-Wigner parametrizations do also not take into account
coupled-channel effects caused by unitarity constraints. These effects may become large
when the kinematic thresholds of one or more of these decay modes are in the mass range of
the resonance. In practice, the limitations discussed above render Breit-Wigner parameters
model- and process-dependent.

In principle, strong-interaction scattering and decay processes are described by the
S-matrix, which is a unitary operator that connects the sets of asymptotically free particle
states of the initial and the final state of a reaction [34 , 38 ]. The elements of the S-matrix
are related to the scattering amplitudes. The S-matrix is constrained by unitarity, crossing
symmetry, and analyticity, where the latter is a consequence of causality. This means that
scattering amplitudes must be analytic functions in the complex plane of the Mandelstam
variable s. These functions may have branch cuts that are caused by the opening of
scattering channels with increasing s and poles that are caused either by bound states or
by resonances. The location of a resonance pole in the complex s plane and the residue of
that pole represent the actual universal resonance properties, which one wants to extract
from data. However, the construction of amplitudes that describe multi-body decays of
hadrons and that fulfill all S-matrix constraints is a formidable task and has so far only
been achieved in a few cases.

If the threshold of a decay channel is close to the resonance, the next best approximation
beyond the Breit-Wigner amplitude is usually the Flatté parametrization [39 ]. More general
approaches for the parametrization of resonance amplitudes that respect at least analyticity
and two-body unitarity, such as K-matrix approaches [40 , 41 ] are usually more difficult
to employ. One of the difficulties is that the data from a single decay channel are often
insufficient to estimate all parameter values reliably from the data.

Unfortunately, it turns out that a resonance pole is not uniquely defined by an intensity
peak with an associated phase motion of about 180°. Under special circumstances, scattering
amplitudes may have singularities that exhibit the same experimental signature without
being related to resonances. A possible example is the a1(1420) signal, which could be
the logarithmic singularity of a triangle diagram in a rescattering process of the daughter
particles [42 , 43 ]. This is discussed further in Sec. 4.2.4 .

[t]A list of barrier factors for orbital angular momenta up to L = 6 can be found, for example, in eqs. (33)
through (39) in Ref. [H2].

[u]Note that Eqs. (1.25 ) and (1.26 ) are not a good approximation anymore if subthreshold contributions
are important, i.e., if the decay of X proceeds via the low-mass tail(s) of the unstable daughter particle(s).
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1.6.2 Theoretical predictions

As discussed in Sec. 1.2 , most properties of hadrons cannot be directly calculated from
the QCD Lagrangian in Eq. (1.1 ) due to the non-perturbative nature of QCD. In the past,
various QCD-inspired models have been developed to predict the spectrum and the decays
of light mesons (see, e.g., Refs. [44 , 45 ] and references therein). In Sec. 1.6.2.1 , we discuss,
as an example, a recent quark-model calculation.

In recent years, numerical ab-initio methods based on the simulation of the QCD
Lagrangian on a discretized space-time lattice have made tremendous progress. These
so-called lattice QCD calculations are now able to make predictions for light-meson spectra
and for two-body scattering processes. The status of these calculations is discussed in
Sec. 1.6.2.2 .

1.6.2.1 Quark-model calculations

Due to the small masses of the up, down, and strange quarks, they move at highly relativistic
velocities within hadrons. Therefore, simple static potential models, such as the Cornell
potential in Eq. (1.6 ), are not good approximations anymore. There are several quark
models that incorporate relativistic effects. A recent example from Ref. [32 ] is shown in
Fig. 1.5(b) . For most of the lower-lying states, the calculation is in fair agreement with
the data. In the 2 GeV region, many states are predicted by the model that have not yet
been found by experiments. Interestingly, the model fails to reproduce the low-lying scalar
states with JPC = 0++. They will be discussed in Sec. 1.6.3 below.

1.6.2.2 Lattice QCD results

Lattice QCD is presently the only available rigorous ab-initio method that can consistently
describe the physics of binding and decay of hadrons [46 –48 ]. It is a form of lattice gauge
theory as proposed by K. G. Wilson in Ref. [49 ], where calculations are performed in a
discretized Euclidean space-time using a hypercubic lattice with lattice spacing a. The
lattice spacing leads to a momentum cut-off ∝ 1/a (ultraviolet regularization). In lattice
QCD, the quark fields are placed at the lattice sites, while the gluon gauge fields are defined
on the links that connect neighboring sites.

The calculations are performed using Monte Carlo techniques, i.e., by sampling possible
configurations of the quark and gluon fields according to the probability given by the QCD
Lagrangian. This requires large computational resources provided only by supercomputers.
Because of the employed Monte Carlo approach, only a finite number of configurations can
be considered. This leads to statistical uncertainties of the lattice QCD results. To limit
the computational cost, the calculations are often performed using heavier up and down
quarks than in nature. This drastically reduces the number of virtual quark-antiquark
loops that have to be taken into account. The up and down quark masses are commonly
expressed in terms of the resulting pion mass.

In lattice QCD calculations, the extend of the space-time lattice is necessarily finite.
Many calculations use asymmetric lattices with Ns lattice points in the three spatial
directions and Nt points in the temporal direction.[v]  The sizes of the space-time box
are hence Ls = aNs and Lt = aNt, where often Lt ≥ 2Ls is chosen to give excited-state

[v]In some cases, also different lattice spacings are chosen for the spatial and temporal directions.

20



'

Figure 1.8: Spectrum of meson and baryon states that correspond to orbital and radial
ground states. The black horizontal lines represent the experimentally measured masses,
the gray boxes the measured widths. The masses of the bottom-flavored mesons have
been shifted down by 4000 MeV. The points represent lattice QCD results from various
groups. Open symbols indicate those hadron masses that were used to fix parameters in
the calculation. Figure by A. S. Kronfeld; from Ref. [30 ]; earlier version in Ref. [54 ].

contributions time to decay. Hence the dominant systematic effects introduced by the
lattice are due to its finite spatial volume and its discrete nature.

In order to obtain physical results, several limits have to be taken: (i) the continuum
limit, i.e., the extrapolation to a→ 0, (ii) the infinite-volume limit, i.e., the extrapolation
to Ls →∞, and (iii) the physical quark-mass limit, i.e., the extrapolation to physical quark
masses. Many present lattice calculations are already performed directly at or very close to
the physical values of the quark masses (see, e.g., Ref. [50 ]), so that the latter extrapolation
becomes less of an issue. Unfortunately, this is not yet the case for lattice QCD calculations
of excited hadron resonances as will be discussed further below.

Lattice QCD calculations have shown that QCD confines color [51 –53 ] (see Fig. 1.3 ).
The method was also used successfully to calculate various hadron properties. As an
example, Fig. 1.8 shows the current lattice QCD results on the masses of ground-state
hadrons. The results match the experimental values with impressive precision. This is a
highly non-trivial result and shows that QCD indeed seems to be the correct theory also at
low energies.

Compared to the ground-state hadrons, lattice QCD studies of the excitation spectrum
of hadronic states are still performed further away from the physical point. However,
tremendous progress has been made in the development of methods in order to extract
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Figure 1.9: Spectrum of light non-strange isoscalar (blue boxes) and isovector mesons
(green/black boxes) from a lattice QCD calculation performed on a 243 × 128 lattice with a
spatial lattice spacing of 0.12 fm and a temporal lattice spacing of 0.034 fm using unphysical
up and down quark masses that correspond to a pion mass of 391 MeV. The height of the
boxes corresponds to the statistical uncertainty of the estimated masses. For the isoscalar
states, the mixing contribution from up and down quarks is indicated by the black areas, the
contribution from strange quarks by the green areas. Boxes outlined with orange represent
the lightest states that have a large chromomagnetic component in their wave function.
They can be interpreted as the lightest hybrid-meson supermultiplet. From Ref. [55 ].

towers of highly excited states and to determine their inner structure (see, e.g., Ref. [48 ]
and references therein). The cubic lattice breaks the rotational invariance of space and
hence makes the identification of the spin of states more difficult. It was found that with a
sufficiently fine lattice spacing the effects of the reduced rotational symmetry of a cubic
lattice can be overcome. By correlating meson operators with definite continuum spin with
the irreducible representations of cubic rotations, it is possible to make spin assignments
from lattice QCD simulations with a single lattice spacing. Another key improvement was
the development of variational methods so that a large base of operators can be used in
order to reliably extract many excited states and to probe their internal structure.

Figure 1.9 shows the spectrum of light non-strange mesons from the lattice QCD
calculation in Ref. [55 ]. The spectrum is qualitatively similar to the one predicted by quark
models (see, e.g., Fig. 1.5(b) ), but lattice QCD predicts also the existence of exotic non-qq
states that are discussed in Sec. 1.6.3 . The extracted masses of the states depend on the
pion mass used in the calculation. The lowest pion mass used in Ref. [55 ] was 391 MeV,
which is still quite far away from the physical point. Since the simulation did not include
multi-hadron operators, the extracted states are quasi-stable and their masses are in general
not identical to the resonance masses. For the same reason, the calculation cannot predict
widths and decay modes of the states. For this, one still has to rely on models for most of
the states.

Lattice QCD calculations are performed by applying periodic spatial boundary conditions
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(a) (b)

Figure 1.10: Intensity and phase shift of the elastic ππ P -wave amplitude with isospin
I = 1 as a function of the ππ center-of-mass energy. The points represent lattice QCD
results; the curves fits of Breit-Wigner amplitudes. (a) shows the results for a pion mass of
236 MeV. In (b) , the blue points and curve are for a pion mass of 391 MeV; the red points
and curve for a pion mass of 236 MeV. (a) from Ref. [59 ], (b) from Ref. [58 ].

to the quark and gluon fields. This means that within the cube of finite volume L3
s, free

particles can only have discrete three-momenta ~p = (2π/Ls) (nx, ny, nz) with integer ni.
Hence in scattering processes, multi-hadron states are limited to a discrete spectrum of
states, which are the energies of the eigenstates of the QCD Hamiltonian in a finite box.
The simplest case is the decay of a state into two (quasi-)stable particles, e.g., two pions.
The energies of the two-particle state depend on the interactions between these particles.
By inverting this relation, one can extract information about scattering amplitudes, e.g.,
scattering phase shifts, from the volume dependence of the discrete spectrum in a finite
volume. This idea goes back to M. Lüscher [56 , 57 ] and it was developed into a general
method to calculate scattering amplitudes for all possible 2 → 2 scattering processes of
mesons by including hadron-hadron operators that, for example, represent ππ or KK
systems with defined momenta of the particles (see Ref. [48 ] and references therein). The
resonances, which may appear in these scattering processes, are extracted by analytic
continuation of the scattering amplitude into the complex s plane, where the resonances
appear as poles (see discussion in Sec. 1.6.1.1 ). Figure 1.10 shows, as an example, intensity
and phase shift of the ππ P -wave with isospin I = 1 from lattice QCD simulations performed
at two values of the pion mass [58 ]. The data clearly exhibit an intensity peak and a
180° phase motion that is characteristic for a resonance, which is in this case the ρ. With
decreasing pion mass, the ρ mass decreases toward its physical mass and the widths increases
because of the increasing phase-space volume.

The lattice calculations of scattering amplitudes performed so far were mostly of
exploratory nature and were hence performed at rather large pion masses. Unfortunately,
performing these kind of calculations closer to the physical point is not only a question
of computational cost. With decreasing pion mass also the thresholds for three- and
four-hadron channels decrease. In particular highly excited states couple strongly to multi-
hadron final states. However, the current method is not applicable to these channels. A
complete finite-volume formalism for three or even more particles would therefore be a
major breakthrough for the calculation of masses and decay modes of hadron resonances.
Such a formalism is already in the developmental stage (see Ref. [48 ] and references therein).

23



1.6.3 Exotic mesons

As discussed in Sec. 1.4 , the quark model describes mesons as |qq〉 states grouped into
SU(N)flavor multiplets.[w]  However, a quark-antiquark pair is not the only mesonic color-
singlet configuration that one can construct. Hence non-qq meson states could exist, which
for historic reasons are generally referred to as exotic states. One such exotic configuration
would be multi-quark states.[x]  Mesons could be constructed, for example, from |qqqq〉
configurations, where the quarks could be arranged as compact diquark-antidiquark states,
|(qq)(qq)〉, which are called tetraquarks, or as bound states of two ordinary mesons, |(qq)(qq)〉,
which are called molecules. In a similar way, one could imagine |qqqqqq〉 configurations,
e.g., in the form of bound states of a baryon and an antibaryon, so-called baryonium states.
Since the quarks in hadrons are bound by gluon fields, QCD suggests that excited gluonic
field configurations could contribute to the quantum numbers of meson states. Such states
would be called hybrids. An important feature of QCD is the self-interaction of gluons.
Consequently, states that are made of bound gluons and that do not contain constituent
quarks could exist. Such states would be called glueballs.

Although the above classification scheme seems rather clear and simple, in nature
the different forms of hadronic matter are not necessarily realized as separate states.
The different configurations actually represent states in a Fock-space expansion and a
physical meson is in general a complicated object that can be represented as a linear
combination of different configurations all having the same set of quantum numbers. The
contributions of these different configurations are in principle determined by QCD, but are
difficult to calculate due to the non-perturbative nature of QCD. Also experimentally, the
disentanglement of such configuration mixings is a daunting task. Therefore, current efforts
focus on identifying the leading configuration in the observed states.

The additional exotic configurations should—if they exist—lead to an overpopulation
of states in certain mass regions, i.e., to supernumerary states that exist in addition to
the ordinary |qq〉 nonet states. From an experimental point of view, such supernumerary
meson states can be divided into three categories: (i) flavor-exotic states that have flavor
quantum numbers, such as isospin I > 1 or strangeness |S| > 1, that are forbidden for
ordinary |qq〉 states, (ii) spin-exotic states that have combinations of quantum numbers
JPC = 0−−, (even)+−, or (odd)−+ that do not fulfill Eqs. (1.12 ) to (1.14 ) and are hence
forbidden for |qq〉 states,[y]  and (iii) crypto-exotic states that have quantum numbers of
ordinary |qq〉 states. Finding a flavor-exotic or spin-exotic meson would be a clear proof for
a non-qq configuration. Crypto-exotic states are, however, much harder to identify, because
they will in general mix with nearby ordinary |qq〉 states. They can only be identified by
studying their production and decay modes in detail.

For several decades, various experiments have searched for evidence for exotic forms
of hadronic matter. The so far clearest evidence has been found in the heavy-quark
sector. Currently, there are two established charmonium-like states, the Zc(3900) and the
Zc(4430) [60 ], that carry electric charge and are therefore flavor exotic. The minimal quark

[w]In this section, we switch back to the simplified notation introduced in Sec. 1.4 , where |qq〉 represents
any quark flavor combination allowed by the SU(N)flavor symmetry.

[x]This idea is actually as old as the quark model itself and was already pointed out by Gell-Mann in
Ref. [22 ] where he states: “Baryons can now be constructed from quarks by using the combinations (qqq),
(qqqqq), etc., while mesons are made out of (qq), (qqqq), etc.”

[y]We use here the convention introduced in Sec. 1.5 to quote the C-parity of the neutral partner in the
isospin triplet instead of the G-parity.
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content of these states consists of a cc pair and a qq pair of u and d quarks with isospin
I = 1. The Zc states are hence candidates for tetraquark or molecular states. Analogous
exotic charged states containing a bb pair, the Zb(10610) and the Zb(10650), have been
found in the bottomonium spectrum [60 ].

In the light-meson sector, the experimental situation is more complicated. This has been
the subject of several recent review articles [44 ,45 ,59 –66 ]. Although a number of candidates
for multi-quark states, hybrids, and glueballs has been found, their interpretation as exotic
states or as resonances is discussed controversially and alternative explanations could not
yet be ruled out. One of the reasons for this is that in contrast to heavy mesons, excited
light mesons have in general large widths and may overlap (see discussion above), which
makes them experimentally more difficult to identify.

Interestingly, already the JP = 0+ ground-state mesons a0(980), f0(980), f0(500) (or
σ), and K∗(800) (or κ) exhibit some unusual properties that contradict their interpretation
as |qq〉 states. In the constituent quark model, these states would correspond to states
with n = 1 and S = L = 1. The f0(500) would be an isoscalar (uu+ dd)/

√
2 state, the

a0(980) an isovector (uu− dd)/
√

2 state, and the isoscalar f0(980) would consist mainly
of ss. However, such an assignment is in conflict with the observed mass degeneracy of
a0(980) and f0(980). Due to its dominant ss content, the f0(980) should be heavier than
the a0(980), as is the case for the vector mesons, where the φ(1020) is significantly heavier
than the ρ(770). The f0(500) is extremely light and broad and until recently its existence
as a resonant state was even questioned. Also here the mass is in contradiction with the
quark-model expectation, where the masses of the a0(980) and the f0(500) should be more
similar, like in the case of ρ(770) and ω(782). The observed mass pattern can actually be
explained, if the light scalar mesons are tetraquarks or molecules or a mixture of both [61 ],
which would make them crypto-exotic. An interpretation as KK molecules, could, for
example, explain the mass degeneracy of a0(980) and f0(980), the closeness of their masses
to the KK threshold, and therefore their relatively small widths. However, not all data
seem to agree with this model [60 ].

Although there are no known flavor-exotic light mesons, there are candidates for spin-
exotic light mesons [44 , 45 , 60 , 63 ]. As discussed above, finding a spin-exotic state would be
unambiguous proof for the existence of non-qq states.[z]  The currently known spin-exotic
candidates are all isovectors with JPC = 1−+ quantum numbers. Hence these states cannot
be glueballs, but they could be hybrids or multi-quark states. The candidates are pion-like
objects with spin 1 and are hence denoted π1 according to the PDG convention. There are
three spin-exotic candidates: π1(1400), π1(1600), and π1(2015). However, the resonance
interpretation of the observed signals is discussed controversially. Out of these states, the
π1(1600) is currently the best established one.

Various model calculations predict that spin-exotic states exist, but do not agree
on the mass of the lightest spin-exotic state [45 , 63 ]. The predicted masses range from
1.0 to 2.3 GeV. Nevertheless most models predict that the lightest spin-exotic state has
JPC = 1−+ quantum numbers. This is confirmed by lattice QCD calculations (see
Sec. 1.6.2.2 and Fig. 1.9 ). The mass estimates from these calculations are still limited by a
number of systematic effects. Currently, the main limitations result from the fact that the
calculations are performed at unphysically large pion masses and that the states are treated
as quasi-stable. The predicted masses for the lightest JPC = 1−+ state vary between

[z]However, once found, the determination of their inner structure will be a much more difficult task.
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Figure 1.11: Mass of the lightest isovector state with JPC = 1−+ from various lattice QCD
calculations as a function of the pion mass used in the calculation. The open symbols
indicate quenched calculations, where internal qq loops are neglected, filled symbols indicate
dynamical calculations, where these loops are included. From Ref. [63 ].

about 1.8 and 2.1 GeV. However, these masses depend on the value of the pion mass that
was chosen to perform the lattice QCD calculation. This is illustrated in Fig. 1.11 , which
shows the mass of the lightest isovector state with JPC = 1−+ from various lattice QCD
calculations, which were performed at different pion masses. Unfortunately, the current
lattice QCD results are too far away from the physical point in order to perform a controlled
extrapolation.

Lattice QCD predicts a whole supermultiplet of hybrid states with 0−+, 1−−, 2−+, and
1−+ quantum numbers [55 ] (boxes outlined with orange in Fig. 1.9 ), where the first three
are quantum numbers of ordinary |qq〉 states. Each JPC combination corresponds to a
nonet of meson states. The states contain excited gluon fields with JPC = 1+− and have
masses in the range between 2.1 and 2.4 GeV, about 1.3 GeV heavier than the lightest 1−−

state. A similar pattern is found for charmed hybrid mesons. This leads the authors of
Ref. [59 ] to propose this as a new rule to construct hybrid mesons.

Although lattice QCD predicts the existence of spin-exotic and hybrid states, it cannot
yet predict the widths and decay modes of these objects. Currently, this can only be done
using models. Detailed calculations have been performed, for example, by Page, Swanson,
and Szczepaniak [67 ]. For an isovector hybrid state with 1−+ quantum numbers and a mass
of 1.6 GeV, such as the π1(1600), they predict the following partial widths:

Channel ρ(770)π b1(1235)π f1(1285)π η(1295)π K K∗(892)

Γchannel [MeV] 9 24 5 2 0.8

The decays into η(548)π, η′(958)π, f2(1270)π, and ρ(770)ω(782) are predicted to have
negligible partial widths.

In this work, we focus on the ρ(770)π decay mode. According to the above prediction,
this channel has the second largest branching fraction. Since the ρ(770) decays practically
exclusively into 2π, the π1(1600) should appear in 3π final states. Experimentally, the
easiest 3π final state to measure is π−π−π+. For this final state, the COMPASS experiment
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has acquired a world-leading data sample that is about an order of magnitude larger than
any other existing data set (see Sec. 2.3 ) and therefore allows to study the resonance content
of the π−π−π+ system in unprecedented detail (see Chapter 4 ). The ρ(770)π decay mode is
also interesting because previous analyses of this channel arrived at seemingly contradictory
conclusions concerning the existence of the π1(1600) resonance. The resolution of this
controversy by the results of the analysis of the COMPASS data that is presented in
Sec. 4.2.5.1 .
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Chapter 2

Diffractive π−π−π+ production at
the COMPASS experiment

2.1 Light-meson production in pion diffraction

As discussed in Sec. 1.6.1 , excited light mesons can be produced in various processes. In
this work, we study pion-induced t-channel exchange processes of the form

π + p→ X + p with X → h1 + . . .+ hn, (2.1)

which are mediated by the strong interaction. In these processes, the beam pion is excited
to an intermediate state X via the strong interaction with the target proton. The squared
four-momentum t that is transferred from the beam to the target particle has typically
small absolute values below 1 (GeV/c)2 (see Sec. 2.3.2 ).[a]  Therefore, the exchange particle
is not able to resolve the inner structure of the proton and the scattering at the target
vertex is elastic and coherent.[b]  Such reactions are also referred to as soft or peripheral
scattering. The intermediate states X are very short-lived and dissociate via the strong
interaction into n-body final states of lighter hadrons hi, which consist in most cases of π,
K, η, or η′(958). The whole reaction is pictured in Fig. 2.1 .

The inelastic strong-interaction scattering subprocess π + p→ X + p can be described
using Regge theory [38 , 68 –70 ]. Regge theory exploits the crossing symmetry of scattering
amplitudes and relates physical resonances that appear in s-channel scattering to exchange
particles that mediate the residual strong interaction between color-neutral hadrons. If
one plots the spins of meson resonances against their squared masses, which correspond to
positive values of t, the resonances fall approximately on straight lines

α(t) = α0 + α′ t, (2.2)

which are called Regge trajectories. This means that α(m2
meson) = Jmeson. Figure 2.2 shows

such a Chew-Frautschi plot for light mesons.
In Regge theory, the scattering amplitudes are considered as functions of the spin, where

the spin is not restricted to integer values but is a complex-valued variable. In this approach,
[a]From here on, we switch to SI units.
[b]That the target proton remains intact is ensured by the applied event selection criteria (see Secs. 2.2.2 

and 2.3.1 ), which suppress events where also the target proton is excited, e.g., into an N∗ resonance.
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Figure 2.1: Production of an intermediate state X by excitation of a beam pion via exchange
of a Reggeon R with a target proton. The intermediate state decays into an n-body final
state of hadrons, h1, . . . , hn.

Figure 2.2: Chew-Frautschi plot: the spins J of light mesons are plotted against the squared
meson masses, which correspond to positive values of t. Meson states enclosed in square
brackets are states that are not yet considered as established by the PDG [13 ]. The meson
states lie on four degenerate Regge trajectories, the ρ, ω, f , and a trajectories, that are
approximately given by α(t) = 0.5 + 0.9 (GeV/c)−2 t (dashed line). From Ref. [70 ].
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physical meson states correspond to poles of the scattering amplitude in the complex spin
plane. The t-channel reactions are described as exchanges of quasi-particles with variable
spin α(t), where the Regge trajectories α(t) are extrapolated to negative values of t. These
quasi-particles are called Reggeons (R). Hence the Regge trajectories connect the s-channel
scattering at low energies, where t = m2 > 0, with the t-channel exchange reactions at high
energies, where t < 0.

In the Regge approach, the scattering amplitude A(s, t) for a given Regge trajectory
is proportional to sα(t). The total cross section is given via the optical theorem by the
imaginary part of the forward scattering amplitude, i.e.,

σtot ∝
1

s
Im
[
A(s, t = 0)

]
∝ sα0−1. (2.3)

This means, that if α0 < 1 the cross section decreases with increasing s. This is true for all
known Regge trajectories that correspond to physical meson states. However, experimentally
the hadron-hadron cross sections is found to rise slowly with s. In order to explain this
rise of the cross section, V. N. Gribov proposed the so-called Pomeron trajectory, which
has α0 > 1 [69 ]. Hence the Pomeron trajectory dominates the cross section at large
center-of-mass energies. The first Regge pole of the Pomeron trajectory would correspond
to a flavorless hadron with JPC = 2++ and a mass of about 1.9 GeV/c2. However, up to
now no physical meson resonance could be associated with the Pomeron trajectory beyond
doubt. It is also speculated that the Pomeron trajectory could be related to glueballs.

The Reggeon that corresponds to the Pomeron trajectory is called Pomeron (P) and
has the same quantum numbers as the vacuum state.[c]  High-energy hadron scattering
processes that are mediated by Pomeron exchange are also called diffractive scattering.[d]  

From previous experiments, diffractive reactions are known to produce a rich spectrum of
resonances in the intermediate state X. Since the Pomeron has vacuum quantum numbers,
the flavor quantum numbers of the beam particle remain unchanged in diffractive scattering
processes. This means that the produced intermediate state X has the same isospin and
strangeness quantum numbers and, where applicable, the same C- and G-parity as the beam
particle. For a pion beam, this means that in diffractive reactions only isovector states with
IG = 1− quantum numbers, which correspond to positive C-parity of the neutral member
in the isospin triplet, can be produced. This limits the meson states that may appear as X
to the families of aJ mesons with IG JPC = 1− J++ quantum numbers and πJ mesons with
1− J−+ quantum numbers. Table 2.1 lists all currently known mesons with IG = 1−.

2.2 The COMPASS experiment

The COmmon Muon and Proton Apparatus for Structure and Spectroscopy (COMPASS)
is a multi-purpose fixed-target experiment at the CERN Super Proton Synchrotron (SPS).
One of the goals of the COMPASS experiment is the high-precision measurement of the
light-meson spectrum. In this section, we briefly describe the experimental setup, which is
shown schematically in Fig. 2.3 . More details can be found in Refs. [71 , 72 ].

[c]The Pomeron was named after I. Pomeranchuk.
[d]The name originates from the resemblance of hadronic scattering processes with diffraction of light

waves by a black disk, where t is basically equivalent to the scattering angle. For both phenomena, the
measured intensity is characterized by a dominant forward peak, the diffraction peak, that is accompanied
by a series of symmetric minima and maxima at values of t and the scattering angle, respectively, that
depend on the size of the object that the beam scatters off.
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Table 2.1: Known isovector resonances with IG = 1− quantum numbers in the mass region
below 2.1 GeV/c2 and their parameters as given by the PDG [31 ]. The PDG distinguishes
between well-known “established states”, “states omitted from summary table” that are less
well-known, and “further states” that still require confirmation. From Ref. [H2].

Particle JPC Mass [MeV/c2] Width [MeV/c2]

Established states

a0(980) 0++ 980± 20 50 to 100

a1(1260) 1++ 1230± 40 250 to 600

a2(1320) 2++ 1318.3+0.5
−0.6 107± 5

a0(1450) 0++ 1474± 19 265± 13

a4(2040) 4++ 1996+10
−9 255+28

−24

π(1300) 0−+ 1300± 100 200 to 600

π1(1400) 1−+ 1354± 25 330± 35

π1(1600) 1−+ 1662+8
−9 241± 40

π2(1670) 2−+ 1672.2± 3.0 260± 9

π(1800) 0−+ 1812± 12 208± 12

π2(1880) 2−+ 1895± 16 235± 34

States omitted from summary table

a1(1640) 1++ 1647± 22 254± 27

a2(1700) 2++ 1732± 16 194± 40

π2(2100) 2−+ 2090± 29 625± 50

Further states

a3(1875) 3++ 1874± 43± 96 385± 121± 114

a1(1930) 1++ 1930+30
−70 155± 45

a2(1950) 2++ 1950+30
−70 180+30

−70

a2(1990) 2++ 2050± 10± 40 190± 22± 100
2003± 10± 19 249± 23± 32

a0(2020) 0++ 2025± 30 330± 75

a2(2030) 2++ 2030± 20 205± 30

a3(2030) 3++ 2031± 12 150± 18

a1(2095) 1++ 2096± 17± 121 451± 41± 81

π2(2005) 2−+ 1974± 14± 83 341± 61± 139
2005± 15 200± 40

π1(2015) 1−+ 2014± 20± 16 230± 32± 73
2001± 30± 92 333± 52± 49

π(2070) 0−+ 2070± 35 310+100
−50

X(1775) ?−+ 1763± 20 192± 60
1787± 18 118± 60

X(2000) ??+ 1964± 35 225± 50
∼ 2100 ∼ 500
2214± 15 355± 21
2080± 40 340± 80
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2.2.1 Beam and target

At COMPASS, excited light mesons are produced using positively or negatively charged
secondary hadron beams with a momentum of 190 GeV/c and an intensity of up to 107 par-
ticles per second. The secondary hadron beams are produced by shooting the high-intensity
400 GeV/c proton beam delivered by the SPS onto a 50 cm long production target made of
beryllium. The produced secondary hadrons are momentum-selected by magnetic filters and
transported via the M2 beam line to the COMPASS target, which is located approximately
1.1 km downstream of the production target.

The positively charged hadron beam consists of 74.6 % p, 24.0 % π+, and 1.4 % K+ at
the COMPASS target; the negatively charged one of 96.8 % π−, 2.4 % K−, and 0.8 % p.
The beam particles are identified by a pair of differential Cherenkov counters (CEDAR)
that are placed in the beam line upstream of the COMPASS target. In this work, we
study diffractive reactions that are induced by the π− component of the negatively charged
hadron beam. The direction of the beam particles is precisely measured by several planes
of silicon micro-strip detectors mounted upstream of the COMPASS target.

We use as target either a 40 cm long cylindrical Mylar cell filled with liquid hydrogen
or disks and foils made of nickel, tungsten, or lead. In this work, we only consider data
taken with the liquid-hydrogen target. The target is surrounded by two concentric barrels
of scintillator slats. This recoil-proton detector (RPD) measures the slow protons that are
emitted from the target under large angles between about 50° and 90° with respect to the
beam direction. The RPD can only detect recoil protons with a momentum of at least
270 MeV/c because of the energy loss that the recoil protons suffer in the target walls and
the inner scintillator barrel. This translates into a minimum detectable reduced squared
four-momentum transfer t′ of approximately 0.07 GeV/c2.

2.2.2 Trigger

Diffractive-dissociation events of the reaction (2.1 ) are selected by a minimum-bias trigger.
In order to make sure that a beam particle has entered the target, the trigger requires signals
in a scintillating-fiber detector and a small scintillator disk, both placed upstream of the
target. The trigger requires in addition a signal from a recoil proton in the RPD to ensure
that a scattering has occurred. A scintillator/iron sampling detector, the so-called Sandwich
Veto, is placed downstream of the target and detects produced particles that are emitted
outside of the wide angular acceptance of the spectrometer of ±180 mrad. The trigger uses
the Sandwich Veto to discard events that contain such particles. In addition, events with
non-interacting beam particles are discarded by the trigger based on conicident signals in
two scintillator disks that are placed along the nominal beam trajectory 25 m and 33 m
downstream of the target.

2.2.3 Forward magnetic spectrometer

In contrast to the recoil proton, the daughter particles of the intermediate state X in
reaction (2.1 ) are strongly Lorentz-boosted and are hence emitted under small angles with
respect to the beam axis. These forward-going final-state particles are measured by a
high-resolution two-stage magnetic spectrometer.

The position of the primary interaction vertex is precisely determined by several planes
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Figure 2.4: Diffractive production of an
intermediate state X− on a proton target
and dissociation of X− into the π−π−π+

final state.
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structed beam energy after all selection cuts.
The vertical red lines indicate the accepted
range. From Ref. [H2].

of silicon micro-strip detectors mounted downstream of the COMPASS target. The first
spectrometer stage uses the SM1 dipole magnet that has a field integral of 1.0 Tm and
measures charged particles with lower momenta starting from about 1 GeV/c. The second
spectrometer stage uses the SM2 dipole magnet that has a larger field integral of 4.4 Tm
and covers the high-momentum range. Both spectrometer stages are equipped with tracking
detectors and with electromagnetic and hadronic calorimeters. This setup provides a high
momentum resolution of σp/p < 0.5 % for momenta p > 5 GeV/c and a large and uniform
acceptance for charged as well as neutral particles over a wide kinematic range. The first
spectrometer stage is in addition equipped with a ring-imaging Cherenkov detector (RICH)
that can separate pions and kaons in the momentum range from about 10 to 50 GeV/c.

2.3 The COMPASS π−π−π+ data

In this work, we study the diffractive production of the π−π−π+ final state on a liquid-
hydrogen target in great detail. This means we study the inelastic scattering reaction

π− + p→ X− + p with X− → π−π−π+, (2.4)

which is pictured in Fig. 2.4 . In this section, we briefly summarize the selection criteria
that are applied to the triggered events (see Sec. 2.2.2 ) and characterize the selected data.
Further details can be found in Refs. [73 ,H2].

2.3.1 Event selection

We perform an exclusive measurement of reaction (2.4 ), i.e., we reconstruct all incoming
and outgoing particles. To this end, we select events that have exactly one incoming beam
pion, exactly one reconstructed recoil proton in the RPD, and exactly three forward-going
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charged particles that emerge from a primary interaction vertex and that have charges
that add up to −1. The position of the primary vertex is confined to the volume of the
liquid-hydrogen in the target. The three forward-going particles are assumed to be pions.
We ensure momentum conservation by requiring that the momentum of the recoil proton is
back-to-back with the total momentum of the three forward-going particles in the plane
transverse to the beam. This reduces contaminations from processes, where also the target
proton is excited to short-lived N∗ states. Another measure for the exclusivity is the
reconstructed beam energy Ebeam, which is the energy sum of the three forward-going
particles corrected for the target recoil. Figure 2.5 shows the Ebeam distribution after
all selection cuts. The dominant peak around the nominal beam energy corresponds to
exclusive events that are selected by requiring Ebeam to be within ±3.78 GeV around
the peak position, which corresponds to two standard deviations. Contaminations from
non-exclusive background events are at the percent level.

Small contributions from other background processes are suppressed by further cuts.
Using the information from the CEDAR detectors, it is ensured that the beam particle
is a pion. This removes background from diffractive dissociation of beam kaons, such as
K− + p → K−π−π+ + p. Background from final-state kaon pairs, i.e., from π− + p →
π−K−K+ + p, is suppressed by using the RICH information. Contaminations from central-
production reactions π−+p→ π−fast+π

−π++p, which do not have a well-defined intermediate
three-body state (see also discussion in Sec. 3.3.7 ), are reduced by removing events that
have an outgoing π− with a momentum close to the beam momentum.

After all cuts, the data sample contains 46× 106 events in the analyzed kinematic
range of the three-pion invariant mass 0.5 < m3π < 2.5 GeV/c2 and of the reduced squared
four-momentum transfer 0.1 < t′ < 1.0 (GeV/c)2. The lower bound of the t′ range is given
by the acceptance of the RPD (see Sec. 2.2.1 ) and the upper bound by the decrease of the
number of events with increasing t′.

2.3.2 Kinematic distributions

The distributions of selected kinematic variables are shown in Fig. 2.6 . The invariant mass
distribution of the produced π−π−π+ system exhibits structures that correspond to the
well-known resonances a1(1260), a2(1320), and π2(1670) (see Table 2.1 ). Also the invariant
mass distribution of the π−π+ subsystem shows enhancements that correspond to the
well-known resonances ρ(770), f0(980), f2(1270), and ρ3(1690). Figure 2.6(c) shows that
the structures in the three-pion mass spectrum are correlated with those in the π−π+ mass
spectrum. This is an important input for the construction of the physical model that we
use to analyze the data (see Secs. 3.2 and 4.1.1 ). The t′ distribution is steeply falling with
increasing t′ and exhibits an approximately exponential behavior.

An important property of the data is that the m3π and t′ distributions are correlated.
This is illustrated in Fig. 2.7 . Figures 2.7(a) and 2.7(b) show how the m3π spectrum
changes with t′. Whereas at low t′, the a1(1260) peak is dominant and only a small a2(1320)
peak is visible, the relative intensities of the peaks are inverted at high t′. Conversely, the
t′ distribution depends strongly on m3π as is illustrated in Figs. 2.7(c) and 2.7(d) . The
observation, that resonance signals may have different dependences on t′ has motivated us
to explicitly take into account this t′ dependence in the construction of the analysis model.
This will be explained in detail in Chapter 3 .
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Figure 2.6: Kinematic distributions of the event sample after all selection cuts: (a) π−π−π+

invariant mass spectrum in the analyzed range, (b) invariant mass distribution of the π−π+

subsystem (two entries per event), (c) correlation of the π−π−π+ and π−π+ mass (two
entries per event), and (d) t′ distribution with vertical lines indicating the analyzed range.
The labels indicate the position of major 3π and 2π resonances, the gray shaded areas in (a) 

indicate the mass regions used to generate the Dalitz plots in Fig. 3.3 . From Ref. [H2].
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Chapter 3

The method of partial-wave analysis

The 3π invariant mass distribution shown in Fig. 2.6(a) already shows structures from
known 3π resonances that are produced as intermediate states in the diffractive scattering
reaction (2.4 ). However, the information in the invariant mass spectrum alone is not
sufficient to identify resonances, to determine their quantum numbers, and to measure their
parameters. In order to extract this information from the data, we employ a method called
partial-wave analysis (PWA) that exploits the full information contained in the measured
multi-dimensional kinematic distribution of the final-state particles.

The technique of partial-wave analysis (PWA) of three-body mesonic final states goes
back to the early works from the 1960s in Refs. [74 –82 ]. The application of this method to
the 3π system was pioneered by G. Ascoli et al. in Refs. [83 , 84 ]. In this chapter, we give
a brief summary of the main aspects of the PWA method and of the extensions that we
developed. More detailed derivations and discussions can be found in Refs. [85 –94 ,H2,H3]
and the references therein.

3.1 Parametrization of the scattering cross section

In this work, we consider inelastic scattering reactions of the form

a+ b→ (1 + 2 + 3) + c. (3.1)

The cross section for such a reaction is [95 ]

dσa+b→(1+2+3)+c =
1

4
√

(pa · pb)2 −m2
am

2
b

∣∣Mfi

∣∣2 dϕ4(pa + pb; p1, p2, p3, pc). (3.2)

Here, the pi are the four-momenta and the mi the masses of the particles. The Lorentz-
invariant transition matrix element from the initial to the final state is represented by
Mfi.[a]  The differential Lorentz-invariant four-body phase-space element of the final-state
particles is represented by dϕ4.

At high center-of-mass energies, the three-body final state (1 + 2 + 3) in reaction (3.1 )
is produced via t-channel exchange. Assuming that the three-body intermediate states

[a]In order to simplify notation, the term |Mfi|2 is assumed to include the incoherent averaging and
summation over the spin states of the initial- and the final-state particles, respectively.
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Figure 3.1: Production of an intermediate state X in a t-channel exchange reaction and
dissociation of X into a three-body final state.

are dominated by resonances, we can subdivide reaction (3.1 ) into two subprocesses: (i)
an inelastic two-body scattering reaction a + b → X + c and (ii) the subsequent decay
of particle X into the three-body final state, X → 1 + 2 + 3. This is shown in Fig. 3.1 .
Subprocess (i) is described in terms of the three-body invariant mass mX ,[b]  the squared
center-of-mass energy s (see Eq. (1.18 )), and the reduced squared four-momentum transfer t′

(see Eq. (1.20 )).
Analogous to the subdivision of the scattering process, we split the phase space of

the four outgoing particles into a two-body phase space for the particles X and c and a
three-body phase space for the decay X → 1 + 2 + 3. The latter one is given by[c]  

dϕ3(pX ; p1, p2, p3) = (2π)4 δ(4)
(
pX −

3∑
i=1

pi

) 3∏
i=1

d3pi
(2π)3 2Ei

. (3.3)

Splitting the phase space and using Eq. (1.20 ) brings Eq. (3.2 ) in the form

dσa+b→(1+2+3)+c =
1

16π

1[
s− (ma +mb)2

][
s− (ma −mb)2

]
×
∣∣Mfi

∣∣2 dt′
2mX

2π
dmX dϕ3(pX ; p1, p2, p3). (3.4)

Here, we have expressed the flux factor in terms of s and the two-body phase space of the
(X, c) system in terms of t′. We also have used the fact that for an unpolarized reaction,
Mfi is independent of the azimuthal angle of X about the beam axis in the center-of-mass
frame of the reaction a+ b→ X + c.

In the following, we assume that the center-of-mass energy
√
s of the scattering reaction

is fixed[d]  and we omit the s dependence from all formulas. The kinematic distribution of
the final-state particles depends on mX , t′, and a set of five additional phase-space variables
represented by τ .[e]  These phase-space variables fully describe the three-body decay and
will be defined in Sec. 3.2.1 .

[b]For the π−π−π+ final state, mX = m3π.
[c]We slightly deviate from the convention used in Ref. [95 ] by including the factor (2π)4 into the

phase-space element.
[d]This is, for example, the case in a fixed-target experiment, where pa and pb are constant.
[e]The three four-momenta of the final-state particles have 12 components. The components are constrained

by the three known masses of the final-state particles and by four equations, which are given by four-
momentum conservation and the known four-momentum of X.
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The intensity distribution of the events that are produced in reaction (3.1 ) is

I(mX , t
′, τ) ≡ dN

dmX dt′ dϕ3(mX , τ)
∝

dσa+b→(1+2+3)+c

dmX dt′ dϕ3(mX , τ)

∝ mX

∣∣Mfi(mX , t
′, τ)

∣∣2 , (3.5)

where N is the number of produced events. On the right-hand side of Eq. (3.5 ), all
constant factors have been dropped. It is worth noting that, since I is differential in the
Lorentz-invariant three-body phase-space element, it is independent of the particular choice
of the phase-space variables τ .[f]  The intensity I essentially represents the deviation of
the kinematic distribution of the produced final-state particles from a pure phase-space
distribution. It is therefore a direct measure for

∣∣Mfi(mX , t
′, τ)

∣∣2.
3.2 Model for the intensity distribution

In order to derive a model for the intensity distribution in Eq. (3.5 ), we assume that the
diffractive-dissociation process is dominated by intermediate resonances X. Since resonance
production and decay are independent, we factorize the amplitude for a particular X
into two parts: (i) the transition amplitude T̃i(mX , t

′) that describes the production and
propagation of a state X with a set of quantum numbers given by

i ≡
{
IG, JPC ,M

}
, (3.7)

where M is the projection of the spin J on the chosen quantization axis, and (ii) the decay
amplitude Ψ̃i,j(mX , τ) that describes the decay of X into a particular three-body final state
that is indexed by j.

In contrast to the transition amplitude, which is a priori unknown, the decay amplitude
is calculable using the isobar model [87 , 88 ]. In this model, the X decay is described as a
chain of successive two-body decays via additional intermediate resonances, the so-called
isobars ξ, which appear in the two-body subsystems of the three-body final state.[g]  Without
loss of generality, the isobar decay chain of X is given by X → ξ + 3 and ξ → 1 + 2 (see
Fig. 3.2 ). Particle 3 is called bachelor particle. The isobar model also assumes that the
daughter particles of the two-body decays do not interact with each other, i.e., final-state
interactions are neglected.

Our π−π−π+ data support the assumption that the two-body subsystems are dominated
by resonances as is shown in Fig. 3.3 in the form of Dalitz plots.[h]  If the pions in the π−π+

subsystems would be uncorrelated, the events would be distributed uniformly in the Dalitz
plot. However, the data exhibit clear structures that correspond to decays that proceed via
ξ = ρ(770), f0(980), or f2(1270) as intermediate π−π+ resonances.

[f]The Lorentz-invariant phase-space element can be written as

dϕ3(mX , τ) = ρ3(mX , τ) dτ, (3.6)

where ρ3(mX , τ) represents the density of points in the phase space expressed in the variables mX and τ .
Hence ρ3(mX , τ) is the Jacobian corresponding to the particular choice of the phase-space variables τ .

[g]The usage of the term “isobar” for the intermediate states has historical reasons. The isobar model
was first introduced by Lindenbaum and Sternheimer in Ref. [96 ] to describe excited intermediate nucleon
resonances, which were termed “isobars” in analogy to nuclear physics.

[h]Also Fig. 2.6(b) indicates the presence of π−π+ isobar resonances in the π−π−π+ final state.
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Figure 3.2: Production of an intermediate state X in a t-channel exchange reaction and
decay of X into a three-body final state via a two-body isobar resonance ξ.
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Figure 3.3: Dalitz plots for two 100 MeV/c2 wide 3π mass regions: (a) around the a2(1320),
(b) around the π2(1670). The used 3π mass regions are indicated by gray shaded areas in
Fig. 2.6(a) . In (a) , the a1(1260) and a2(1320) are the dominant 3π resonances and their
decay into ρ(770)π is clearly visible. The π2(1670) region exhibits ρ(770)π, f0(980)π, and
f2(1270)π decay modes.
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From here on, we assume that the final-state particles of the X decay are spinless
particles, e.g., π, K, η, or η′(958). In this case, the isobar decay chain is completely defined
by the isobar resonance ξ and the relative orbital angular momentum L between ξ and the
third daughter particle. Therefore, the index j that defines the X decay is given by

j ≡ {ξ, L} . (3.8)

For convenience, we introduce the index a that summarizes all information required to
calculate the decay amplitude:

a ≡ {i, j} =
{
IG, JPC ,M ; ξ, L

}
. (3.9)

A particular index a represents a partial wave and |Ψ̃a(mX , τ)|2 represents the five-
dimensional kinematic τ distribution of the final-state particles for this partial wave
for a given value of mX .[i]  

In diffractive-dissociation reactions, the possible quantum numbers for X are limited
only by the conservation laws of the strong interaction (see Sec. 2.1 ) and hence a rich
spectrum of states X with various JP quantum numbers is produced. In addition, the
states X may decay via various ξ and L. As a result, usually many partial-wave amplitudes
contribute to the intensity. The X and the isobars appear as intermediate states and are
thus not directly measurable, while the initial- and final-state particles are the same for
all partial waves. Therefore, the partial-wave amplitudes interfere with each other and
hence have to be added coherently. Consequently, the model for the intensity distribution
in Eq. (3.5 ) can be written as

I(mX , t
′, τ) =

∣∣∣∣ Nwaves∑
a≡{i,j}

T̃i(mX , t
′) Ψ̃a(mX , τ)

∣∣∣∣2. (3.10)

Here, Nwaves is the number of partial waves included in the model.
The transition amplitudes T̃i(mX , t

′) in our model are a priori unknown. Therefore,
a two-stage approach is commonly used to analyze the data. In the first analysis stage,
which is often called partial-wave decomposition or mass-independent fit, we make as little
assumptions as possible about the intermediate states X. The goal of this first analysis stage
is to extract the set

{
T̃i(mX , t

′)
}
from the data. This is possible because we can calculate

the decay amplitudes Ψ̃a(mX , τ) for a given value of mX using the isobar model.[j]  Since
the dependence of the transition amplitudes on mX and t′ is unknown, the partial-wave
decomposition is performed independently in narrow (mX , t

′) cells. This yields binned
approximations to the T̃i(mX , t

′) and is explained in detail in Sec. 3.3 . Because of the
binning approach, the first analysis stage makes no assumptions about the three-body
resonance content of the partial waves. Based on the isobar model for the three-body decay
of X, the data are decomposed into partial-wave amplitudes with well-defined quantum
numbers that are given by the partial-wave index a as defined in Eq. (3.9 ). One may think of
the partial-wave decomposition as merely a transformation of the data from four-momentum
space of the final-state particles into the space of transition amplitudes. This yields a

[i]Depending on the context, the partial-wave index a has two meanings. It either represents directly the
set of quantum numbers that define a partial-wave amplitude as in Eq. (3.9 ) or it enumerates all waves
consecutively, i.e., a is an integer that uniquely identifies a specific partial wave as in Eq. (3.10 ).

[j]As will be discussed in Sec. 3.3 , this is true only up to unknown complex factors.
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representation of the data in terms of intensities and relative phases of the transition
amplitudes that allows for a direct interpretation in terms of resonances.

In the second analysis stage, which is often called resonance-model fit or mass-dependent
fit, we construct a model that describes the mX and t′ dependence of a selected subset of
transition amplitudes in terms of resonant and non-resonant components. This is explained
in Sec. 3.4 . It is important to note that the resonance-model fit does not have to describe
all transition amplitudes that are extracted from the data, but may focus on selected partial
waves. This is in particular important for the analysis of high-energy scattering reactions,
where often sizable non-resonant components contribute to the analyzed reaction. These
non-resonant contributions project into all partial-wave amplitudes and often dominate the
intensity of high-spin waves. Such waves are only important to describe the data but are
uninteresting when it comes to extracting resonances. They are therefore not included in
the resonance-model fit.

3.2.1 Parametrization of the decay amplitudes

In the isobar model, the three-body decay of X is described as a chain of two consecutive
two-body decays. Consequently, the fundamental building block for the construction of the
decay amplitude Ψ̃a in Eq. (3.10 ) is the two-body decay amplitude AJrMr

r , which describes
the propagation of a resonance r with spin Jr and spin projection Mr with respect to a
chosen quantization axis and the decay of r into particles 1 and 2. The two-body decay
amplitude can be calculated in the r rest frame using the helicity formalism [85 , 91 , 97 , 98 ].
The two daughter particles have spins J1,2 and are described in the helicity basis, where the
quantization axes are the directions of the momenta of particles 1 and 2, respectively. In
the r rest frame, the momenta of particles 1 and 2 are by definition back to back and have
a fixed magnitude given by Eq. (1.26 ). Therefore, the kinematics of the decay of particle r
is completely defined by the polar angle ϑr and the azimuthal angle φr of the momentum
of one of the daughter particles.

The two-body decay amplitude factorizes into an angular and a dynamical part.[k]  The
angular part is given by first principles and is completely defined by the angular-momentum
quantum numbers of the particles. The dynamical part describes the dependence of the
amplitude on the invariant mass mr of the (1, 2) system and needs to be modeled. It can be
factorized further into three parts: (i) an amplitude ∆r(mr) that describes the propagation
of the decaying r, e.g., a Breit-Wigner amplitude as in Eqs. (1.24 ) and (1.25 ), (ii) a barrier
factor FLr(mr) that describes the effect of the centrifugal barrier due to the orbital angular
momentum Lr between the two daughter particles (see Eq. (1.28 )), and (iii) an unknown
complex-valued coupling αr→1+2 that describes strength and phase of the decay mode. We
assume αr→1+2 to be independent of any kinematic variables. The parametrization for the

[k]This is analogous to the case of a two-particle system in a central potential, where the two-body wave
function can be factorized into an angular part that is completely determined by the angular-momentum
quantum numbers and a radial part that depends on the shape of the potential.
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two-body decay amplitudes hence reads

AJrMr Lr Sr
r (mr, ϑr, φr) =

√
2Lr + 1

4π︸ ︷︷ ︸
normalization

dynamical part︷ ︸︸ ︷
∆r(mr)︸ ︷︷ ︸

propagator
term

FLr(mr)︸ ︷︷ ︸
barrier
factor

αr→1+2︸ ︷︷ ︸
coupling

×
∑
λ1,λ2

angular part︷ ︸︸ ︷
(J1 λ1 J2−λ2 |Sr λ) (Lr 0 Sr λ | Jr λr)DJr*

Mr λr
(φr, ϑr, 0)

× AJ1 λ1 L1 S1
1 (m1, ϑ1, φ1)︸ ︷︷ ︸
two-body decay

amplitude of particle 1

AJ2 λ2 L2 S2
2 (m2, ϑ2, φ2)︸ ︷︷ ︸
two-body decay

amplitude of particle 2

. (3.11)

The angular part contains two Clebsch-Gordan coefficients: one for the coupling of the
spins of the two daughter particles to the total intrinsic spin Sr and one for the coupling
of Lr and Sr to Jr. The two Clebsch-Gordan coefficients define the spin projection λ of
the (1, 2) system and the spin projection λr of r using the direction of particle 1 as the
quantization axis:

λr = λ = λ1 − λ2. (3.12)

Since the orbital angular momentum Lr in the decay is by construction perpendicular to
the momenta of particles 1 and 2, it has no projection onto the helicity quantization axis.
The coherent summation over all allowed daughter helicities in Eq. (3.11 ) is performed only
in the case, where particle 1 or 2 or both appear as intermediate states in the decay chain
of X.

The Wigner D-function [99 –101 ] that appears in Eq. (3.11 ) represents the transformation
property of a spin state |J,M〉 under an arbitrary active rotation R̂, which is defined by
the three Euler angles α, β, and γ. Since the |J,M〉 basis is complete, the rotated state
can be expressed as a linear combination of the basis states:

R̂(α, β, γ) |J,M〉 =

= 1︷ ︸︸ ︷
+J∑

M ′=−J
|J,M ′〉 〈J,M ′| R̂(α, β, γ) |J,M〉

︸ ︷︷ ︸
≡ DJ

M ′ M (α, β, γ)

=

+J∑
M ′=−J

DJ
M ′ M (α, β, γ) |J,M ′〉 .

(3.13)

The amplitude AJi λi Li Sii that appears in Eq. (3.11 ) represents the decay amplitude of
the daughter particle i if it is unstable as well. In this case, the daughter particle appears
as an isobar in the decay chain and its decay amplitude has the same form as Eq. (3.11 ).
In case the daughter particle is a stable final-state particle, the corresponding amplitude is
unity.
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ŷHF ≡ ẑGJ × ẑHF

x̂HF

X production plane

Figure 3.4: Definition of the Gottfried-Jackson (GJ) and helicity (HF) reference frames for
the reaction a+ b→ X + c with X → ξ + 3. Here, a is the beam, b the target, and c the
recoil particle. Unit vectors are indicated by a circumflex. Adapted from Ref. [H2].

3.2.1.1 Coordinate systems

The angles that describe the two-body decays in the X decay chain and that enter the
Wigner D-function in Eq. (3.11 ) are defined in the respective rest frames of the parent
particles using right-handed coordinate systems. For high-energy scattering reactions with
target particle b at rest in the laboratory frame, beam particle a, and target recoil c, the
decay of X is usually described in the Gottfried-Jackson (GJ) frame. In this reference
frame, the direction of the beam particle defines the zGJ axis and the yGJ axis is given
by the normal of the production plane, i.e., ŷGJ ∝ p̂ laba × p̂ labX ∝ p̂ GJ

c × p̂ GJ
a , where unit

vectors are indicated by a circumflex. Since in the GJ frame X is at rest, the momenta of
the isobar ξ and the bachelor particle 3 are back to back. Thus the angular distribution
is described by the polar angle ϑGJ and the azimuthal angle φGJ of one of the daughter
particles. The choice of the analyzer is a question of convention. Here, we use the isobar as
the analyzer for the X decay.

The decay of an isobar resonance is described in the helicity reference frame (HF),
which is constructed by boosting from the X rest frame into the isobar rest frame. The
HF coordinate system is defined by taking the zHF axis along the original direction of
motion of the isobar, i.e., opposite to the direction of motion of X in the isobar rest frame,
and ŷHF ∝ ẑGJ × ẑHF. In the helicity frame, the two daughter particles of the isobar are
emitted back to back, so that the angular distribution is described by the polar angle ϑHF
and the azimuthal angle φHF of one of the daughters. Again, the choice of the analyzer is a
question of convention. Here, we use the positive particle as the analyzer for the ξ decay.

Figure 3.4 illustrates the definition of the Gottfried-Jackson and helicity reference frames
for the decay X → ξ + 3.
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3.2.1.2 Examples for decay amplitudes

Decay into two spinless final-state particles The simplest example is the decay of X
into a two-body final state of spinless particles, X → 1 + 2.[l]  In this case, the amplitude
Ψ̃a(mX , ϑGJ, φGJ) for the X decay is given by Eq. (3.11 ) with r = X and A1 = A2 = 1.
In addition, we have to take into account that the (unknown) propagator term ∆X(mX)
for X is already contained in the transition amplitudes T̃i(mX , t

′) in Eq. (3.10 ). With
J1 = J2 = 0 and hence λ1 = λ2 = 0, the decay amplitude reads

Ψ̃a(mX , ϑGJ, φGJ) =

√
2LX + 1

4π
FLX (mX)αX→1+2

× (0 0 0 0 |SX λ) (LX 0 SX λ | J λX)DJ*
M λX

(φGJ, ϑGJ, 0). (3.14)

The only non-vanishing Clebsch-Gordan coefficients are the ones for which the total spin SX
of the (1, 2) system and its spin projection λ are both zero and as a consequence, λX = λ = 0
and J = LX . Since λX = 0, the Wigner D-function reduces to the spherical harmonics YM

J

according to

DJ
M 0(φGJ, ϑGJ, 0) =

√
4π

2J + 1
YM*
J (ϑGJ, φGJ). (3.15)

Therefore, Eq. (3.14 ) simplifies to

Ψ̃a(mX , ϑGJ, φGJ) = FJ(mX)αX→1+2 Y
M
J (ϑGJ, φGJ). (3.16)

Decay into three spinless final-state particles For decays of X into three final-state
particles, i.e., X → ξ + 3 with ξ → 1 + 2, the decay amplitude Ψ̃a(mX , τ) is calculated by
recursive application of Eq. (3.11 ):

Ψ̃a(mX ,

≡ τ︷ ︸︸ ︷
ϑGJ, φGJ,mξ, ϑHF, φHF) =

√
2L+ 1

4π
FL(mX)αX→ξ+3

×
∑
λξ

= δJξS δλξλX︷ ︸︸ ︷
(Jξ λξ 0 0 |S λX) (L 0 S λX | J λX)DJ*

M λX
(φGJ, ϑGJ, 0)

×∆ξ(mξ)FJξ(mξ)αξ→1+2 Y
λξ
Jξ

(ϑHF, φHF)︸ ︷︷ ︸
= AJξ λξ Lξ Sξξ (mξ, ϑHF, φHF) as given by Eq. (3.11 )

. (3.17)

The first part of the decay amplitude describes the decay X → ξ + 3 and corresponds to
the amplitude AJ M LS

X (mX , ϑGJ, φGJ) as given by Eq. (3.11 ), with the only difference that
the (unknown) propagator term ∆X(mX) for X does not appear here since it is already
contained in the transition amplitudes T̃i(mX , t

′) in Eq. (3.10 ). In Eq. (3.17 ), λξ is the
helicity of ξ in the Gottfried-Jackson rest frame of X. Since J3 = 0 and hence λ3 = 0, the
total spin S of the (ξ, 3) system is given by Jξ and the sum λX of the helicities of particles ξ
and 3 is equal to λξ. The second part of Eq. (3.17 ) describes the decay ξ → 1 + 2. Since

[l]This could be, for example, X− → π−η or π−η′, where η and η′ are considered as quasi-stable particles.
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both final-state particles are spinless, the same arguments apply as for the decay X → 1 + 2
discussed in the paragraph above. Equation (3.17 ) can thus be simplified to

Ψ̃a(mX , ϑGJ, φGJ,mξ, ϑHF, φHF)

=

√
2L+ 1

4π
FL(mX)αX→ξ+3∆ξ(mξ)FJξ(mξ)αξ→1+2

×
∑
λξ

(L 0 Jξ λξ | J λξ)DJ*
M λξ

(φGJ, ϑGJ, 0)Y
λξ
Jξ

(ϑHF, φHF). (3.18)

3.2.1.3 Symmetrization of the decay amplitude

If the three-body final state contains indistinguishable particles, the decay amplitude has
to be symmetrized accordingly. For mesonic final states, the decay amplitude has to be
totally symmetric under exchange of any of the indistinguishable final-state particles (Bose
symmetry). The symmetrized decay amplitude is constructed by summing the amplitudes
for all permutations of the indistinguishable final-state particles.

The π−π−π+ final state considered here contains two indistinguishable π−. Hence the
Bose symmetrized decay amplitude is

Ψ̃ sym
a =

1√
2

[
Ψ̃a(mX , τ13) + Ψ̃a(mX , τ23)

]
(3.19)

with Ψ̃a(mX , τ) given by Eq. (3.18 ). Here, τ13 and τ23 are the two sets of phase-space
variables that correspond to the two possible π−π+ combinations in the π−1 π

−
2 π

+
3 system.

To simplify notation, we redefine Ψ̃a(mX , τ) to always represent the Bose-symmetrized
decay amplitude in the remaining text.

3.3 Stage I: partial-wave decomposition

The decomposition of the data into partial-waves with well-defined quantum numbers and
isobar decay chains constitutes the first stage of the analysis. In this stage, the mX and
t′ dependence of the unknown transition amplitudes T̃i in Eq. (3.10 ) is extracted from the
data by subdividing the data sample into narrow bins in these two kinematic variables.
We assume that the bins in mX and t′ are narrow enough, such that we can in good
approximation neglect the mX and t′ dependence in a given (mX , t

′) cell. Hence in this cell,
the intensity distribution in Eq. (3.10 ) is a function only of the five phase-space variables
represented by τ . The other two kinematic variables, mX and t′, appear as constant
parameters:

I(τ ;mX , t
′) =

∣∣∣∣ Nwaves∑
a≡{i,j}

T̃i(mX , t
′) Ψ̃a(τ ;mX)

∣∣∣∣2. (3.20)

This binned approach does not make any assumptions about the three-body resonance
content of the transition amplitudes. In addition, the kinematic cells are statistically
independent so that the partial-wave decomposition can be performed in parallel. A caveat
of the binning approach is that the method introduces a large number of free parameters—
the values of the transition amplitudes in each (mX , t

′) cell—that need to be determined
from data. For that reason, it is only applicable to sufficiently large data sets.
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The decay amplitudes Ψ̃a as given by Eqs. (3.18 ) and (3.19 ) contain unknown complex-
valued couplings αX→ξ+3 and αξ→1+2. Assuming that these couplings do not depend on
any of the phase-space variables, they can be pulled out of each two-body decay amplitude
so that

Ψ̃a(τ ;mX) ≡ αX→ξ+3 αξ→1+2︸ ︷︷ ︸
≡ αa

Ψa(τ ;mX). (3.21)

Assuming that we know the propagator terms for all isobars precisely, the decay amplitudes
Ψa(τ ;mX) defined in Eq. (3.21 ) are calculable and do not contain any free parameters. The
unknown αa are absorbed into the transition amplitudes via the redefinition

Ta(mX , t
′) ≡ αa T̃i(mX , t

′). (3.22)

Note that the Ta now depend not only on the set i of the X quantum numbers as defined
in Eq. (3.7 ), but also on the decay mode j defined in Eq. (3.8 ). The model for the intensity
distribution in an (mX , t

′) cell therefore reads

I(τ ;mX , t
′) =

∣∣∣∣Nwaves∑
a

Ta(mX , t
′)Ψa(τ ;mX)

∣∣∣∣2. (3.23)

In the following, we consider the intensity always in a given (mX , t
′) cell and hence leave

off the mX and t′ parameters from the formulas in order to simplify notation.
The PWA model in Equation (3.23 ) still needs to be modified and extended in order to

take into account (i) possible background contributions, (ii) the spin states of the target and
recoil particles, and (iii) parity conservation in the strong-interaction scattering process.

3.3.1 Background contributions

The analyzed data are usually contaminated by misreconstructed or partially reconstructed
events that are similar to the signal process and hence fulfill the event selection criteria.
We model this background by a distribution that is isotropic in phase space. Therefore,
these events have a constant probability density over all phase-space elements. In order to
account for such events, we incoherently add a component to Eq. (3.23 ), the so-called flat
wave. The corresponding decay amplitude Ψflat is constant and without loss of generality
we set Ψflat ≡ 1 so that

I(τ) =

∣∣∣∣Nwaves∑
a

Ta Ψa(τ)

∣∣∣∣2 +
∣∣Tflat∣∣2. (3.24)

Since only the intensity of the flat wave enters in Eq. (3.24 ), the phase of this wave is
immeasurable. Thus Tflat is chosen to be real-valued.

Background contributions from other processes, e.g., from non-resonant components,
for which the final-state particles are correlated and are hence distributed anisotropically
in phases space, do not contribute strongly to the flat wave and usually contaminate the
other waves in the PWA model. These contributions have to be taken into account in the
resonance-model fit, which constitutes the second stage of the analysis (see Sec. 3.4 ).
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3.3.2 Spin-density matrix and rank

The data analyzed here were taken using a proton target. Since the target protons are
unpolarized and the beam pions are spinless, |Mfi|2 in Eq. (3.4 ) includes averaging over the
two spin states of the target proton and summation over the two spin states of the recoiling
proton. Due to parity conservation and rotational invariance, the scattering amplitude
depends only on the relative orientation of the spin states of the target and the recoil
proton. Thus the cross section consists of two incoherent parts: one for spin-flip at the
target vertex, one for spin-non-flip. Additional incoherent terms may arise if the target
proton is excited in the scattering process. Also performing the partial-wave decomposition
over wide t′ ranges may lead to effective incoherence, if the transition amplitudes have
different dependences on t′. Furthermore, multiple exchange processes might contribute to
the scattering process, which may lead to additional incoherence.

A way to include these incoherences in the PWA model in Eq. (3.24 ) is the introduction
of an additional index r for the transition amplitudes that is summed over incoherently:

I(τ) =

Nr∑
r=1

∣∣∣∣Nwaves∑
a

T ra Ψa(τ)

∣∣∣∣2 +
∣∣Tflat∣∣2 (3.25)

=

Nwaves∑
a,b

Ψa(τ)

[ Nr∑
r=1

T ra T r*b︸ ︷︷ ︸
≡ %ab

]
Ψ*
b (τ) +

∣∣Tflat∣∣2. (3.26)

In Eq. (3.26 ), we introduce the Hermitian and positive-semidefinite spin-density matrix
%ab that completely describes the intermediate state X in terms of combinations of pure
quantum states. The elements of the spin-density matrix represent the actually measurable
observables. The number Nr of transition amplitudes per partial wave corresponds to the
rank of the spin-density matrix. For most reactions, Nr is significantly smaller than the
mathematically allowed maximum, which is given by the dimension of the spin-density
matrix, i.e., Nwaves.[m]

 We employ the parametrization of Chung and Trueman [102 ] for
the spin-density matrix, which reduces the number of free real-valued parameters that need
to be determined from the data to the minimum, which is Nr (2Nwaves −Nr).

Assuming a single production mechanism and neglecting other sources of incoherence,
the maximum rank of the spin-density matrix for X in the scattering process π+p→ X+p
is Nr = 2. This corresponds to spin-flip and spin-non-flip processes at the target vertex as
discussed above. It is worth noting that the spins of the target and recoil particles define
only the maximum rank of the spin-density matrix. Depending on the scattering process
and the data sample, a lower rank might be sufficient to describe the data. Diffractive
scattering of spinless beam particles off nucleons is known to be dominated by spin-non-flip
processes [103 ]. Hence for these processe, a rank-1 spin-density matrix yields a satisfactory
description of the data, if other sources for incoherence like target excitations or integration
over large t′ intervals are avoided.

[m]Since the spin-density matrix is Hermitian and positive-semidefinite, it is diagonalizable and has
real-valued eigenvalues. Of these eigenvalues, Nr are positive and Nwaves −Nr are zero.

50



3.3.3 Parity conservation and reflectivity

For all we know, the strong interaction conserves parity. A convenient way of including
parity conservation into the PWA model in Eq. (3.26 ) is to consider the scattering subprocess
a+ b→ X+ c in the so-called reflectivity basis [102 ]. If this process is parity conserving, the
scattering amplitude should be invariant under space inversion. Such a parity transformation
flips the directions of the particle momenta. Since the four particles lie in the production
plane, this can be undone by performing, in addition to the space inversion, a rotation by
180° about the production plane normal. The combined transformation is represented by
the reflectivity operator Πy and corresponds to a reflection through the production plane,
which leaves the momenta of those particles that lie in that plane unchanged.

In the Gottfried-Jackson frame defined in Sec. 3.2.1.1 , the state X with spin J , intrinsic
parity P , and spin projection M transforms under the reflectivity operator Πy as follows

Πy |JP ,M〉 = P (−1)J−M |JP ,−M〉 . (3.27)

We can therefore construct eigenstates to Πy by linear combination of canonical states with
spin projections of opposite sign:

|JP ,M ε〉 ≡ NM
[
|JP ,M〉 − ε P (−1)J−M |JP ,−M〉︸ ︷︷ ︸

= Πy |JP ,M〉

]
, (3.28)

where we choose the normalization factor to be

NM =


1/
√

2 for M > 0,

1/2 for M = 0,

0 for M < 0.

(3.29)

This choice ensures that in the reflectivity basis the multiplicity 2J + 1 of the spin state
remains unchanged. The reflectivity eigenstate defined in Eq. (3.28 ) is characterized by the
spin-projection quantum number M and the eigenvalue ε∗ of the reflectivity operator, i.e.,

Πy |JP ,M ε〉 = ε∗ |JP ,M ε〉 (3.30)

The reflectivity ε is ±1 for bosons.[n]  According to Eq. (3.29 ), there are no states with
M < 0 in the reflectivity basis. States with spin projection M = 0 vanish, if ε = P (−1)J .
Hence for a given JP , there exists only one state with ε = P (−1)J+1 and M = 0. For each
M > 0, two states with ε = ±1 exist, so that in total the multiplicity of the spin state is
2J + 1, as in the canonical basis.

Using Eq. (3.28 ), we can define the rotation function for the reflectivity eigenstates:

εDJ
M ′ M (α, β, γ)

≡ 〈JP ,M ′ε| R̂(α, β, γ) |JP ,M〉
= NM

[
〈JP ,M | R̂ |JP ,M〉 − ε∗ P (−1)J−M 〈JP ,−M | R̂ |JP ,M〉

]
= NM

[
DJ
M ′ M (α, β, γ)− ε∗ P (−1)J−M DJ

−M ′ M (α, β, γ)
]
.

(3.31)

[n]The reflectivity is ±i for fermions.
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Although these functions are not a representation of the rotation group, they still have
properties similar to those of the fundamental D-functions. In particular, they form an
orthogonal function system. In order to calculate the X decay amplitude in the reflectivity
basis, the Wigner D-function DJ

M λX
(φGJ, ϑGJ, 0) in Eq. (3.18 ) is replaced by Eq. (3.31 ).

Describing the spin state of X in the reflectivity basis also changes the structure of the
spin-density matrix. In order to fully define a wave in the reflectivity basis, we have to
specify in addition to the wave index a, which contains the spin-projection quantum number
0 ≤M ≤ J (see Eq. (3.9 )), also the reflectivity quantum number ε = ±1. Analogous to the
definition of the spin-density matrix in Eq. (3.26 ), where −J ≤M ≤ +J , we can write the
spin-density matrix in the reflectivity basis:

%εε
′

ab =

Nr∑
r=1

T rεa T rε
′*

b . (3.32)

It is important to note that %εε′ab has the same number of elements as %ab in Eq. (3.26 ).
It is shown in Ref. [102 ] that due to parity conservation and rotational invariance, the

spin-density matrix assumes a block-diagonal form with respect to ε in the reflectivity basis,
i.e.,

%εε
′

ab =

(
%++
ab 0
0 %−−ab

)
. (3.33)

This means that all interference terms of transition amplitudes with opposite reflectivity
quantum numbers are zero. In the reflectivity basis, the PWA model in Eq. (3.26 ) can
therefore be written as

I(τ) =
∑
ε=±1

Nr∑
r=1

∣∣∣∣Nwaves∑
a

T rεa Ψ εa(τ)

∣∣∣∣2 +
∣∣Tflat∣∣2

=
∑
ε=±1

Nwaves∑
a,b

Ψ εa(τ) %εab Ψ
ε*
b (τ) +

∣∣Tflat∣∣2
(3.34)

with

%εab ≡ %εεab =

Nr∑
r=1

T rεa T rε*b . (3.35)

In Eq. (3.34 ), Ψ εa is the decay amplitude in the reflectivity basis, where the Wigner D-
function for the X decay is replaced by Eq. (3.31 ).

Up to this point, we just transformed from one complete set of states to another. The
formulation in the reflectivity basis in Eqs. (3.33 ) and (3.35 ) is completely equivalent to the
formulation in the canonical basis in Eq. (3.26 ). An important advantage of the formulation
in the reflectivity basis is that in the high-energy limit the reflectivity quantum number of X
corresponds to the naturality of the exchange particle in the scattering process [104 , 105 ].[o]  

The naturality η of a quantum state is defined as

η ≡ P (−1)J . (3.36)
[o]The relative sign between the two terms in Eq. (3.28 ) was chosen accordingly.
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For historical reasons, a state is said to have natural parity if η = +1, i.e., P = (−1)J , and
unnatural parity if η = −1, i.e., P = (−1)J+1.

Scattering processes of hadrons at high energies, such as the ones studied here, are
dominated by Pomeron exchange. Since the Pomeron has positive naturality, partial-wave
amplitudes with ε = −1 that correspond to unnatural-parity exchange are suppressed. As
a consequence, PWA models for these reactions require much less waves with negative than
with positive reflectivity in order to describe the data. Therefore, the dimension of %ε=−1ab

in the PWA model is much smaller than that of %ε=+1
ab . This corresponds to a reduced

number of free parameters of the PWA model. The different number of waves in the two
reflectivity sectors are taken into account by the replacement

Nwaves → N ε
waves. (3.37)

Due to the correspondence of the reflectivity to different exchange particles and hence
different production mechanisms, also the effective rank Nr of the spin-density matrix may
be different for the two values of ε. We include this in the PWA model of Eq. (3.34 ) by the
replacement

Nr → N ε
r . (3.38)

3.3.4 Normalization

An important technical issue is the normalization of the transition and decay amplitudes.
A consistent normalization allows us to extract yields of resonances and to compare the
transition amplitudes of different waves in a PWA model as well as across different analyses
and experiments.

In order to derive a normalization scheme, we go back to the definition of the intensity I
in Eq. (3.5 ) as the number of produced events per unit inmX , t′, and three-body phase-space
volume. By integrating I over the volume of the three-body phase space of the final-state
particles, we get the density of produced events as a function of mX and t′:

dN

dmX dt′
=

∫
dϕ3(τ ;mX) I(τ ;mX , t

′). (3.39)

Integrating Eq. (3.39 ) over the (mX , t
′) cell, in which the partial-wave decomposition is

performed, yields the number of events in that (mX , t
′) cell as predicted by the model:

Npred(mX , t
′) =

mX,2∫
mX,1

dm̃X

t′2∫
t′1

dt̃′
dN

dm̃X dt̃′
. (3.40)

Here, (mX,1, t
′
1) and (mX,2, t

′
2) define the borders of the (mX , t

′) cell. In our binned analysis
approach, we neglect the mX and t′ dependence of dN/(dmX dt′) within the (mX , t

′) cell,
so that the integration in Eq. (3.40 ) is trivial.
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We define the normalization of the intensity by demanding

Npred(mX , t
′) =

∫
dϕ3(τ ;mX) I(τ ;mX , t

′)

=
∑
ε=±1

{
Nε
waves∑
a

Nε
r∑

r=1

∣∣T rεa (mX , t
′)
∣∣2 ∫ dϕ3(τ ;mX)

∣∣Ψ εa(τ ;mX)
∣∣2

+

Nε
waves∑

a,b;a<b

2 Re

[ Nε
r∑

r=1

T rεa (mX , t
′) T rε*b (mX , t

′)

×
∫

dϕ3(τ ;mX)Ψ εa(τ ;mX)Ψ ε*b (τ ;mX)

]}
+ |Tflat(mX , t

′)|2
∫

dϕ3(τ ;mX).

(3.41)

Here, we have absorbed the mX and t′ bin widths into the normalization factor. We also
have used Eqs. (3.34 ) and (3.37 ) to (3.39 ).

Equation (3.41 ) fixes the unit of I to number of events predicted by the model. However,
it still leaves room for an arbitrary factor that can be shifted between the transition and
decay amplitudes. In order to also fix the unit of the transition amplitudes, we normalize
the decay amplitudes to the diagonal elements of the so-called integral matrix

Iεab(mX) ≡
∫

dϕ3(τ ;mX)Ψ εa(τ ;mX)Ψ ε*b (τ ;mX). (3.42)

The normalized decay amplitudes are hence defined by

Ψ εa(τ ;mX) ≡ Ψ εa(τ ;mX)√
Iεaa(mX)

. (3.43)

In order to leave Npred in Eq. (3.41 ) unchanged, the transition amplitudes are normalized
according to

T rεa (mX , t
′) ≡

√
Iεaa(mX) T rεa (mX , t

′). (3.44)

Expressing Eq. (3.41 ) in terms of the normalized spin-density matrix elements

%εab(mX , t
′) =

Nε
r∑

r=1

T rεa (mX , t
′) T rε*b (mX , t

′) (3.45)

yields

Npred(mX , t
′) =

∑
ε=±1

{
Nε
waves∑
a

%εaa(mX , t
′)︸ ︷︷ ︸

intensities

+

Nε
waves∑

a,b;a<b

2 Re

[
%εab(mX , t

′)
Iεab(mX)√

Iεaa(mX) Iεbb(mX)

]
︸ ︷︷ ︸

overlaps

}
+
∣∣Tflat(mX , t

′)
∣∣2. (3.46)
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This equation provides an interpretation for the normalized spin-density matrix elements.
The diagonal elements %εaa are the partial-wave intensities, i.e., the expected number
of events in wave a with reflectivity ε.[p]  The off-diagonal elements %εab, which contain
information about the relative phase between waves a and b, contribute to the so-called
overlaps, which are the number of events originating from the interference between waves a
and b with reflectivity ε (see also Sec. 3.3.6 ).

Using the normalized transition and decay amplitudes, the final formula for the intensity
reads

I(τ ;mX , t
′) =

∑
ε=±1

Nε
r∑

r=1

∣∣∣∣N
ε
waves∑
a

T rεa (mX , t
′)Ψ εa(τ ;mX)

∣∣∣∣2 + |Tflat(mX , t
′)|2

=
∑
ε=±1

Nε
waves∑
a,b

Ψ εa(τ ;mX) %εab(mX , t
′)Ψ ε*b (τ ;mX) + |Tflat(mX , t

′)|2.
(3.47)

3.3.5 Unbinned extended maximum likelihood fit

The maximum likelihood method is used to estimate unknown parameter values of a
statistical model by maximizing the likelihood function L, which is the joint probability
density of the data set given the parameter values [106 ]. For a given data set ~x ≡
(x1, . . . , xN )T of N independent random variables[q]  that follow the same probability density
function f(x; ~θ) with m parameters ~θ ≡ (θ1, . . . , θm)T with unknown values, the likelihood
function is

L(~θ; ~x) =

N∏
k=1

f(xk; ~θ). (3.48)

The maximum likelihood estimate ~̂θ for the parameters is given by those parameter values
that maximize the likelihood function, i.e.,

~̂θ = arg max
~θ

L(~θ; ~x). (3.49)

In the above equation, L is a function of ~θ for a given, i.e., fixed, ~x. It is important to note
that although for given ~θ, L is the probability density function of ~x, L is in general not the
probability density function of ~θ for given ~x. In other words, maximizing the probability
to observe the data with respect to ~θ as expressed in Eq. (3.49 ) does not necessarily yield
the most probable parameter values. Also, L does not need to be normalized with respect
to ~θ. An advantage of the maximum likelihood method is that Eq. (3.49 ) does not require
any binning of the data. Therefore, the method is applicable also to high-dimensional data,
where binned approaches quickly become prohibitively expensive in terms of computational
resources. This is already the case for the analysis of three-body final states, since the
kinematic phase-space distribution in a (mX , t

′) cell is five-dimensional.

[p]For an experiment with acceptance different from unity, this corresponds to the acceptance-corrected
number of events (see Sec. 3.3.5 ).

[q]Depending in the measurement, these variables may in turn be vectors in a higher-dimensional data
space. In our case, the xk would correspond to the measured phase-space variables τk of an event k.
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If the number N of data points is not predetermined but is a result of the measurement
and hence a random variable, the maximum likelihood principle can be extended. In the
case of counting experiments, events are produced randomly in time with constant average
rates and hence the number of events follows the Poisson distribution with the expected
number of events λ. For this case, the extended likelihood function is

Lext(~θ, λ; ~x,N) =
λN e−λ

N !︸ ︷︷ ︸
Poisson

distribution

N∏
k=1

f(xk; ~θ)︸ ︷︷ ︸
= L(~θ; ~x)

. (3.50)

This approach was first proposed by Fermi and is discussed in more detail in Refs. [107 –109 ].
In Ref. [109 ], it is shown that the extended maximum likelihood estimator inherits the
desired asymptotic properties of consistency, unbiasedness, and efficiency from the maximum
likelihood estimator in Eq. (3.49 ).

We apply the extended maximum likelihood method to partial-wave analysis in order to
estimate the values of the transition amplitudes {T rεa } in our PWA model for the intensity
distribution in Eq. (3.47 ). This approach has been pioneered by Ascoli et al. [83 , 84 ]. The
partial-wave decomposition is performed independently in (mX , t

′) cells and we neglect the
dependence of the intensity on mX and t′ in each cell. In order to simplify notation, we
from here on consider a specific (mX , t

′) cell and leave off the mX and t′ dependence in the
formulas below.

Within a given (mX , t
′) cell, our model in Eq. (3.47 ) describes the five-dimensional

τ distribution of the produced events, i.e., the events a hypothetical perfect detector with
unit acceptance would measure. In practice, the acceptance ε of the detector setup[r]  is
smaller than unity and depends on the kinematic variables mX , t′, and τ .[s]  To obtain a
model for the actual intensity distribution measured by the detector, we have to weight
Eq. (3.47 ) by the detector acceptance. By normalizing this model and using Eq. (3.6 ), we
get the probability density function of the measured events in τ space, i.e.,

f(τ ; {T rεa }) =
ρ3(τ) ε(τ) I(τ ; {T rεa })∫

dτ ′ ρ3(τ ′) ε(τ ′) I(τ ′; {T rεa })
such that

∫
dτ f(τ ; {T rεa }) = 1. (3.51)

The intensity distribution I is normalized via Eqs. (3.41 ) and (3.46 ) such that it is
given in units of number of produced events. Therefore, the normalization integral in the
denominator of Eq. (3.51 ) corresponds to the number N of events that are expected to be
measured by the detector:

N({T rεa }) =

∫
dτ ρ3(τ) ε(τ) I(τ ; {T rεa }). (3.52)

Using Eqs. (3.51 ) and (3.52 ), we can construct the extended likelihood function for our
PWA model analogous to Eq. (3.50 ):

Lext({T rεa }; {τk}, N) =
N
N
e−N

N !

N∏
k=1

ρ3(τk) ε(τk) I(τk; {T rεa })∫
dτ ρ3(τ) ε(τ) I(τ ; {T rεa })

. (3.53)

[r]The term acceptance is used here in a broad sense and includes all effects that affect the detection
efficiency such as the geometry of the detector setup and the efficiencies of the detectors, of the reconstruction,
and of the event selection.

[s]Depending on the detector setup, the acceptance might depend on additional kinematic variables. Here,
ε represents the acceptance integrated over all these additional variables.
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In order to find the maximum likelihood estimate for the set {T rεa } of the transition
amplitudes, we have to maximize Eq. (3.53 ) with respect to these parameters. Since the
value of the likelihood function at the maximum is irrelevant for the parameter estimation,
we can simplify the expression for Lext by dropping all constant factors that do not depend
on the transition amplitudes. It is also convenient to consider the logarithm of Lext. Since
the logarithm is a strictly monotonous function, it leaves the position of the maximum
of Lext in the space of the transition amplitudes unchanged. However, the logarithm
converts the product over the measured events into a sum and makes the expression hence
numerically easier to treat. Using Eqs. (3.47 ) and (3.52 ), we arrive at the final expression
of the likelihood function that is maximized in order to estimate the transition amplitudes

lnLext({T rεa }; {τk}, N)

=
N∑
k=1

ln I(τk; {T rεa })−N({T rεa })

=

N∑
k=1

ln

[ ∑
ε=±1

Nε
r∑

r=1

∣∣∣∣N
ε
waves∑
a

T rεa Ψ εa(τk)

∣∣∣∣2 + |Tflat|2
]

−
∑
ε=±1

Nε
r∑

r=1

Nε
waves∑
a,b

T rεa T rε*b

∫
dτ ρ3(τ) ε(τ)Ψ εa(τ)Ψ ε*a (τ)︸ ︷︷ ︸

≡ accIεab

− |Tflat|2
∫

dτ ρ3(τ) ε(τ)︸ ︷︷ ︸
≡ accIflat

.

(3.54)

Since the transition amplitudes are not a function of τ , they can be pulled out of the
normalization integral. In Eq. (3.54 ), this leads to an integral matrix accIεab that is similar
to the integral matrix Iεab in Eq. (3.42 ). The difference between the two is that in accIεab
the integration is performed over the accepted phase space. If the decay amplitudes do
not contain any free fit parameters, we can calculate the decay amplitudes as well as the
integral matrices Iεab and

accIεab using Monte Carlo integration techniques before maximizing
the likelihood function. Since in particular the integral matrices are computationally very
expensive, this reduces the time to compute the likelihood function by several orders of
magnitude. It is only due to this fact that the maximization procedure becomes actually
feasible in terms of computational resources. However, allowing no free parameters in the
decay amplitudes is a severe limitation and source of important systematic uncertainties.
This is discussed further in Sec. 3.3.7 . This also means that in particular the dynamical
amplitudes of all isobars in the model have to be known. In Sec. 3.3.8 we discuss a novel
method that circumvents most of these issues.

3.3.6 Observables

The spin-density matrices %εab, which are extracted from the data by maximizing the
likelihood function in Eq. (3.54 ) in the (mX , t

′) cells, contain all information obtainable about
the intermediate states X. Based on %εab(mX , t

′), we can define a number of observables
that are useful to characterize the result of a partial-wave decomposition and to search for
resonance signals.

In Eq. (3.46 ), we defined the number of produced events Npred(mX , t
′) that the model

predicts for the given (mX , t
′) cell. This number can be expressed in terms of the partial-wave
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intensities,

intεa(mX , t
′) ≡ %εaa(mX , t

′) =

Nε
r∑

r=1

∣∣T rεa (mX , t
′)
∣∣2, (3.55)

and the overlaps,

ovlεab(mX , t
′) ≡ 2 Re

[
%εab(mX , t

′)
Iεab(mX)√

Iεaa(mX) Iεbb(mX)

]
, (3.56)

of all pairs of waves, i.e.,

Npred(mX , t
′) =

∑
ε=±1

{
Nε
waves∑
a

intεa(mX , t
′) +

Nε
waves∑

a,b;a<b

ovlεab(mX , t
′)

}
+ intflat(mX , t

′). (3.57)

It is often useful to limit the sums in Eq. (3.57 ) to a selected subset S of partial waves. In
this case, Eq. (3.57 ) yields the number of produced events NS

pred in these waves in the given
(mX , t

′) cell. This number takes into account all mutual interference terms of the waves in S.
For example, it is often interesting to calculate the number of events in subsets of waves
that have the same JPCM ε quantum numbers but different decay chains. Studying these
so-called spin totals as a function of mX and/or t′ often better reveals possible resonance
signals because statistical fluctuations are reduced.

The partial-wave intensities in Eq. (3.55 ) correspond to the diagonal elements of the
spin-density matrix. Due to the chosen normalization (see Secs. 3.3.4 and 3.3.5 ), the
intensities are given in terms of number of produced events in wave a with reflectivity ε. If
a resonance is present in a partial wave, the mX dependence of the intensity of this waves
often exhibits a Breit-Wigner-shaped peak similar to the one shown in Fig. 1.7(a) .

The contribution of an individual partial wave to the data sample is often quantified by
the relative intensity, which is defined as the ratio of the partial-wave intensity intεa(mX , t

′)
in Eq. (3.55 ) and the total number of produced events Npred(mX , t

′) in Eq. (3.57 ).[t]  Often,
the relative intensity is calculated by summing both quantities over the same mX and/or
t′ range:

relintεa ≡

mX bins∑ t′ bins∑
intεa(mX , t

′)

mX bins∑ t′ bins∑
Npred(mX , t

′)

. (3.58)

Although the relative intensity of a given wave includes—where applicable—the effect of
self-interference due to Bose symmetrization (see Sec. 3.2.1.3 ), it does not include the
interference effects of this wave with any of the other waves, i.e., the overlaps. Consequently,
the relative intensities of all waves in the PWA model will in general not sum to unity. The
difference of this sum from unity is a measure for the overall strength of the interference in
the model.

[t]The relative intensities are equivalent to the fit fractions often quoted for Dalitz-plot analyses.
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Another important observable is the relative phase ∆φεab(mX , t
′) between two waves a

and b with reflectivity ε. It is given by the corresponding off-diagonal element of the
spin-density matrix:

∆φεab(mX , t
′) ≡ arg

[
%εab(mX , t

′)
]
, (3.59)

i.e.,

%εab(mX , t
′) =

∣∣%εab(mX , t
′)
∣∣ ei∆φεab(mX ,t′).

Note that for N ε
r = 1, i.e., full coherence of all partial waves,

∆φεab(mX , t
′) = arg

[
T εa (mX , t

′)
]
− arg

[
T εb (mX , t

′)
]
. (3.60)

If a resonance is present in a partial wave, the phase relative to a second wave that has
no resonance grows with rising mX by about 180◦ across the resonance, i.e., the partial
wave exhibits a phase motion.[u]  Figure 1.7(b) shows, as an example, the phase motion of a
Breit-Wigner resonance.

It is important to note that although the overlap ovlεab between two waves may be zero
because of the orthogonality of the decay amplitudes, the corresponding off-diagonal element
%εab of the spin-density matrix in general does not vanish. Therefore, the two waves still have
a well-defined phase, which characterizes their interference. Since the spin-density matrix
has a block-diagonal structure with respect to the reflectivity, partial-wave amplitudes with
opposite ε do not interfere. Thus relative phases between such waves are undefined.

3.3.7 Discussion of the partial-wave analysis model

The PWA model presented in Secs. 3.2 and 3.3 makes a number of assumptions that
have practical consequences. Here, we focus on those aspects that are most relevant for
the interpretation of the results that will be presented in Chapter 4 . Further details are
discussed, e.g., in Ref. [87 ].

An important practical issue is the truncation of the partial-wave expansion in Eq. (3.47 ),
i.e., the decision which waves to include in the PWA model and which ones to leave out.
Although the quantum numbers of the most dominantly produced intermediate states X
may be known from previous experiments, in situations where the analyzed data set is
about an order of magnitude larger than any of the existing ones—like it is the case for the
COMPASS π−π−π+ data—this knowledge is not sufficient to construct a realistic PWA
model.

In contrast to s-channel processes, where the maximum spin of the intermediate state
is limited by the breakup momentum and therefore by the center-of-mass energy, in high-
energy t-channel exchange processes in principle arbitrarily high spins can be produced.
Even though the production of intermediate states is expected to be suppressed with
increasing spin, there is no clear cut-off. This problem is aggravated by contributions from
non-resonant processes. Irreducible and interfering contributions from these processes are
often contained in the data. For t-channel exchange processes, the largest non-resonant
contributions come from so-called double-Regge exchange processes. Figure 3.5 shows

[u]If the second wave also contains a resonance, the phase motion might be reduced or even completely
compensated if the two resonances have similar masses and widths.
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Figure 3.5: Examples for irreducible non-resonant contributions to diffractive production of
3π on a proton target. (a) Process proposed by R. T. Deck [110 ], where the beam pion
dissociates into a π−π+ isobar ξ and a bachelor π−, followed by diffractive scattering of
the π− off the target proton. (b) Central production, where the beam and target particles
scatter elastically via exchange of Reggeons, which fuse to produce a π−π+ system.

two examples for such processes, the Deck process and the central production process, for
π−π−π+ production. Since in these processes, no 3π intermediate states with well-defined
quantum numbers appear, the non-resonant contributions project into all partial waves.
Some high-spin partial waves are even dominated by non-resonant contributions. Such
waves are important in order to describe the data but are uninteresting when it comes
to extracting resonances. So, in addition to estimating the transition amplitudes from
the data as described in Sec. 3.3.5 , one also needs to determine the set {a} of partial
waves that enters in Eq. (3.47 ) from the data. The analysis problem hence turns into a
more difficult model-selection problem, which is complicated by the correlations of the
partial-wave amplitudes due to their mutual interference.

Another important ingredient of the PWA model that is part of the model-selection
problem is the set of isobar resonances. Although signals in the invariant mass distributions
of the respective subsystems of the final-state particles help to identify the contributing
isobars (see, e.g., Fig. 2.6(b) ), this information is in some cases not enough to unambiguously
identify all isobars.[v]  As explained in Sec. 3.3.5 , the decay amplitudes must not have any
free parameters because otherwise the computation of the likelihood function becomes very
expensive. Thus we do not only have to decide which isobar resonances to include in the PWA
model but also which parametrizations and resonance parameters describe them best. The
model building hence requires input from other measurements. In most cases, the dynamical
amplitudes of the isobar resonances are approximated by Breit-Wigner amplitudes as in
Eqs. (1.24 ) and (1.25 ) and the PDG world averages are used for the resonance parameters.
However, for some isobar resonances, the parameters are not precisely known and/or it
is unclear which parametrization to use for the dynamical amplitude. For example, the
isoscalar resonances with JPC = 0++ quantum numbers, i.e., the f0 states, that appear in
the π−π+ subsystems of the π−π−π+ final state are notoriously difficult to describe. When
analyzing high-precision data, the issue is exacerbated by possible effects from final-state
interactions, which may distort the effective dynamical amplitudes of the isobar resonances.

[v]For example, some isobar resonances have different quantum numbers but similar resonance parameters
and therefore may appear as indistinguishable peaks in the invariant mass distribution. In addition, broad
isobars and/or isobars that contribute only weakly to the data are difficult to find in the invariant mass
distribution.
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The limitation of the conventional PWA approach to parameter-free decay amplitudes
makes it very difficult to implement and test models that take into account such effects.
A crude way of checking, whether the used parameters of the isobar resonances deviate
from the data, are so-called likelihood scans. In this method, one performs several PWA
fits with different values of selected isobar parameters and compares the maximum values
of the likelihood function for each parameter set. Using the asymptotic normality of the
maximum of the likelihood function in terms of the resonance parameters, one can estimate
isobar parameters that better fit the data. However, this method is practical only for a
few free parameters [111 ]. A more model-independent approach that is able to extract the
amplitudes of subsystems with well-defined quantum numbers from the data is presented
in Sec. 3.3.8 .

Another issue that complicates the wave-set selection is the non-orthogonality of some
partial-wave amplitudes. Since the Wigner D-functions that are contained in the decay
amplitudes in Eqs. (3.18 ) and (3.19 ) are orthogonal, the off-diagonal elements of the phase-
space integral matrix Iεab in Eq. (3.42 ) vanish, i.e., the amplitudes are orthogonal, unless
the waves a and b have the same JPCM ε quantum numbers. In the latter case, amplitudes
may not be orthogonal. A simple example would be two waves that have isobars with the
same JPCM ε quantum numbers and the same orbital angular momentum between the
isobar and the bachelor pion, such as 1++ 0+ f0(980)π and f0(1500)π P -waves. A measure
for the non-orthogonality are the normalized off-diagonal elements of the integral matrix in
Eq. (3.42 ):

normIεab(mX) ≡ Iεab(mX)√
Iεaa(mX)

√
Iεbb(mX)

. (3.61)

This matrix is actually a Gram matrix for the scalar product between two partial-wave
amplitudes that is represented by the phase-space integral in Eq. (3.42 ). If the magnitude of
an off-diagonal element of normIεab would be unity, this would mean that the corresponding
partial-wave amplitudes are mathematically indistinguishable, i.e., linearly dependent.
A PWA model containing such a pair of waves would be ill-defined and would lead to
unphysical fit results for the corresponding waves. In practice, due to the finiteness of the
measured data set, such distinguishability issues may already arise for waves that have∣∣normIεab∣∣ close to unity. This is usually the case for wave sets that include excited states
of isobars. At low mX , i.e., well below the nominal masses of a ground-state isobar and
its radial excitation, the dynamical amplitudes of the two isobar resonances are nearly
constant and hence very similar. In this case, waves with the same quantum numbers have
large

∣∣normIεab∣∣. This is a general problem that always appears when an isobar and its radial
excitation are included in the PWA model. In order to resolve the arising ambiguities, one
usually makes the PWA model discontinuous in mX , i.e., one introduces mX thresholds,
below which certain waves are excluded from the PWA model. This means, in practice one
would exclude waves with radially excited isobars at low masses. Thus we have to determine
the wave set in principle for each mX bin individually. This also takes into account the
different sizes of the data samples in the various mX bins.[w]  

Up to now, the wave-set selection was performed “by hand”, i.e., by starting with a
larger wave set that is constructed based on previous experiments and educated guess and
then removing step-by-step waves with small intensities. Although for many waves the
[w]In principle the wave set also depends on t′ because waves with spin projections M > 0 are suppressed

toward low t′ (see Sec. 3.4.2 ).
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results are satisfactory (as will be shown in Chapter 4 ), this approach has a number of
caveats and limitations. For large data sets that usually require large wave sets, it is not a
well-defined procedure and is hence prone to observer bias and difficult to document and
reproduce. It is also often very time consuming. In addition, systematic uncertainties due
to the choice of the wave set are difficult to estimate reliably.

A more systematic approach that is currently under study is the regularization of the log-
likelihood function in Eq. (3.54 ). This means that one adds an additional regularization term
to the log-likelihood function that introduces additional constraints on the fit parameters,
i.e.,

ln L̃({T rεa }) = lnLext({T rεa }) + lnLreg({T rεa }). (3.62)

The idea is to perform the maximization of the regularized log-likelihood function ln L̃({T rεa })
using a large, systematically constructed set of all possible partial waves up to a cut-off
criterion and to choose the regularization term lnLreg({T rεa }) such that partial-wave
amplitudes that are statistically consistent with zero are suppressed, while partial-wave
amplitudes far away from zero are influenced only negligibly. This way, one could determine
from the data the smallest wave set that describes the data well.

Up to now several such approaches were studied using Monte Carlo pseudodata with
known partial-wave content. The authors of Ref. [112 ] applied the so-called LASSO
method,[x]  where Lreg has Laplacian form in

∣∣T rεa ∣∣, so that

lnLreg({T rεa }) = −λ
∑
ε=±1

Nε
r∑

r=1

Nε
waves∑
a

∣∣T rεa ∣∣. (3.63)

This effectively suppresses partial waves with small intensities but also biases partial waves
with large intensities. We studied independently the regularization using a Cauchy form in∣∣T rεa ∣∣ for Lreg [114 –116 ], i.e.,

lnLreg({T rεa }) = −
∑
ε=±1

Nε
r∑

r=1

Nε
waves∑
a

ln

1 +

∣∣T rεa ∣∣2
Γ 2

 . (3.64)

This term pulls the amplitudes of partial waves with small intensities toward zero, but
leaves the waves with large intensities nearly unaffected.

Both regularization approaches give promising results when applied to Monte Carlo
pseudodata. The application to real data is currently under study. A general problem is
that the regularization terms have parameters, i.e., λ in Eq. (3.63 ) and Γ in Eq. (3.64 ) that
need to be defined. Reference [112 ] proposes to apply information criteria in order to find
the optimum values for these parameters, but more studies are needed to verify that these
criteria are applicable. Currently, the regularization of the likelihood function seems to be
a promising approach. The method makes the wave-set selection reproducible and the bias
that is introduced by the regularization term explicit. By applying different regularization
terms and parameter values, one can study the wave-set dependence of the PWA result.
The method makes it also possible to study, for example, the dependence of the PWA result
on the set of isobars, on the parametrizations of the dynamical amplitudes of the isobar
resonances, and on the inclusion of partial waves with higher spin. Such studies are usually
not practical when selecting the wave set “by hand”.

[x]LASSO stands for “least absolute shrinkage and selection operator” and is a regularization method that
was first proposed by R. Tibshirani in Ref. [113 ].

62



3.3.8 Freed-isobar partial-wave analysis

As discussed in Sec. 3.3.5 , in the conventional PWA method the decay amplitudes must not
have any free parameters, otherwise the computation of the likelihood function would become
too expensive. Consequently, the choice of the parametrizations and parameters of the
dynamical amplitudes of the isobar resonances induces significant systematic uncertainties
that are difficult to estimate (see also Sec. 3.3.7 ). In order to circumvent these limitations
and render the analysis less model-dependent, we developed the novel so-called freed-isobar
PWA method, which was inspired by the so-called model-independent partial-wave analysis
method developed by the authors of Ref. [117 ] in order to study three-body decays of heavy
mesons. Here, we briefly sketch the method for a rank-1 spin-density matrix based on the
π−π−π+ final state. More details can be found in Refs. [94 , 118 ,H2].

The conventional PWA model uses fixed parametrizations for the dynamical amplitude
∆ξ(mξ) of the π−π+ isobar resonances ξ in order to calculate the decay amplitude in
Eq. (3.18 ). To simplify notation, we assume that mX is constant and omit all constant and
mX -dependent factors that are irrelevant because of the normalization in Eq. (3.43 ). Hence
we rewrite Eq. (3.18 ) as

Ψ εa(ϑGJ, φGJ,mξ, ϑHF, φHF) = ∆ξ(mξ)FJξ(mξ)Kεa(ΩGJ, ΩHF). (3.65)

Here, the ∆ξ(mξ) is the dynamical amplitude of ξ and FJξ(mξ) is the centrifugal-barrier
factor for the ξ decay. The amplitude Kεa(ΩGJ, ΩHF) collects all terms that depend on
the angles ΩGJ ≡ (cosϑGJ, φGJ) in the Gottfried-Jackson frame and the angles ΩHF ≡
(cosϑHF, φHF) in the helicity frame. Taking into account the Bose symmetrization of the
two π− in the final state according to Eq. (3.19 ), the decay amplitude in a particular
mX bin is

Ψ εa(τ13, τ23) =
1√
2

[
∆ξ(m13)FJξ(m13)Kεa(ΩGJ

13 , Ω
HF
13 )

+ ∆ξ(m23)FJξ(m23)Kεa(ΩGJ
23 , Ω

HF
23 )
]
. (3.66)

The two terms in this equation represent the two possible π−π+ combinations of the π−1 π
−
2 π

+
3

system. The index a defined in Eq. (3.9 ) represents the full set of quantum numbers of the
3π partial wave, which includes the quantum numbers of the π−π+ subsystem ξ.

In our novel freed-isobar method, we replace the fixed parametrizations for ∆ξ(mξ) by a
set of piecewise constant amplitudes that fully cover the allowed mass range for mξ, i.e.,

∆ε
a(mξ) =

mξ bins∑
k

T ε
a,kΠk,ξ(mξ), (3.67)

where the index k runs over the π−π+ mass bins. The mξ bins are defined by sets of
window functions

{
Πk,ξ(mξ)

}
that are non-zero only in a narrow mξ interval given by the

bin borders
{
mξ,k

}
:

Πk,ξ(mξ) =

{
1 if mξ,k ≤ mξ < mξ,k+1,

0 otherwise.
(3.68)

Here, the bin width δmξ = mξ,k+1 −mξ,k may depend on the mass region of the π−π+

system. The
{
T ε
a,k

}
are a set of unknown complex numbers that together determine
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the freed-isobar amplitude ∆ε
a(mξ). This approach is conceptually similar to the binning

already performed in mX and t′. Note that ∆ε
a(mξ) depends on the 3π partial-wave index a

and the reflectivity ε, i.e., the model permits different freed-isobar amplitudes for different
intermediate states X−. This is in contrast to the conventional PWA approach, where
the same isobar parametrization is used in all partial-wave amplitudes, where this isobar
appears. Since the analysis is performed independently in (mX , t

′) cells, the freed-isobar
amplitude is also allowed to change as a function of mX and t′.

For a given (mX , t
′) cell, the model for the intensity in Eq. (3.47 ) contains terms of the

form[y]
 

T εa Ψ εa(τ13, τ23) = T εa
{[mξ bins∑

k

Ta,kΠk,ξ(m13)
]
FJξ(m13)Kεa(ΩGJ

13 , Ω
HF
13 )

+
[mξ bins∑

k

Ta,kΠk,ξ(m23)
]
FJξ(m23)Kεa(ΩGJ

23 , Ω
HF
23 )

}
, (3.69)

where we have used Eqs. (3.66 ) and (3.67 ). We absorb the unknown amplitudes T ε
a,k into

the transition amplitude T εa via the redefinition

T εa,k ≡ T εa T ε
a,k. (3.70)

Note that now the transition amplitudes also depend on the mξ bin index k. Using this
equation, we can write the intensity as

I(τ) =
∑
ε=±1

∣∣∣∣N
ε
waves∑
a

mξ bins∑
k

T εa,k Ψ εa,k(τ13, τ23)
∣∣∣∣2 + |Tflat|2, (3.71)

where

Ψ εa,k(τ13, τ23) ≡ FJξ(m13)Kεa(ΩGJ
13 , Ω

HF
13 )Πk,ξ(m13)

+ FJξ(m23)Kεa(ΩGJ
23 , Ω

HF
23 )Πk,ξ(m23). (3.72)

The additional coherent sum over the mξ bin index k in Eq. (3.71 ) appears in the same
way as the sum over the partial-wave index a. This means that each mξ mass bin k can be
treated like an independent partial wave. Thus by defining a new freed-isobar partial-wave
index ã ≡ {a, k}, Eq. (3.71 ) becomes mathematically equivalent to Eq. (3.47 ). This means
that exactly the same maximum likelihood fit procedure as described in Sec. 3.3.5 can be
employed to determine the

{
T εa,k

}
. This also includes the pre-calculation of the integral

matrices of the decay amplitudes. It is actually this fact that makes the freed-isobar
approach practically applicable, while allowing free parameters in the dynamical isobar
amplitudes is usually prohibitively expensive. Depending on how many decay amplitudes
are parametrized using the freed-isobar amplitude in Eq. (3.67 ) and how many mξ bins are
used for the freed-isobar amplitudes, the computation cost for a freed-isobar PWA grows
only moderately by less than an order of magnitude.

Performing such a freed-isobar PWA in (mX , t
′) cells, yields transition amplitudes

T εa (mX , t
′,mξ) that now depend not only on mX and t′ but also on mξ. According to

[y]Since we are considering a rank-1 spin-density matrix, we leave off the rank index r.
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Eq. (3.70 ), a freed-isobar transition amplitude contains information on the 3π system as well
as on the π−π+ subsystem. For each freed-isobar wave and each (mX , t

′) cell, the method
yields an Argand diagram ranging in mξ from 2mπ to mX −mπ. It is important to note
that by parametrizing the mξ dependence of the decay amplitude for a wave a by Eq. (3.67 ),
we do not make any assumptions about the resonance content of the π−π+ subsystem. The
freed-isobar PWA allows us to determine from the data the overall amplitude of all π−π+

intermediate states with given JPC quantum numbers in the 3π partial wave defined by a.
This amplitude hence includes all π−π+ resonances, potential non-resonant contributions,
as well as distortions due to final-state interactions. The reduced model dependence of the
freed-isobar method and the additional information about the π−π+ subsystem come at the
price of a considerably larger number of fit parameters compared to the conventional PWA.
Thus even for large data sets, the freed-isobar approach can only be applied to a subset of
the partial waves in the PWA model. For the other partial waves, the conventional fixed
isobar parametrizations are used.

An additional complication arises if a freed-isobar PWA model contains more than
one freed-isobar partial wave with the same JPCM ε quantum numbers. In this case,
mathematical ambiguities, so-called zero modes, may arise at the amplitude level. How to
identify and resolve these ambiguities is described in Refs. [94 , 118 ].

3.4 Stage II: resonance-model fit

The first analysis stage, i.e., the partial-wave decomposition of the data as described in
Sec. 3.3 , yields as a result the spin-density matrices %εab in the (mX , t

′) cells. This set of
spin-density matrices is the input for the second analysis stage, where we want to identify
3π resonances that contribute to certain partial-wave amplitudes and determine their
parameters. To this end, we formulate a model %̂εab(mX , t

′)[z]  that describes the dependence
of the spin-density matrix elements on mX and t′ in terms of resonant and non-resonant
components. The parameters and yields of the resonances included in the model are
determined by a fit to the measured spin-density matrices. In this resonance-model fit,
which is also sometimes referred to as mass-dependent fit, we exploit that resonances have
a characteristic signature. In the simplest case, they appear as Breit-Wigner-shaped peaks
in the partial-wave intensities that are accompanied by 180◦ phase motions relative to
non-resonating waves (see Sec. 1.6.1 and Fig. 1.7 ). In reality, this simple picture often does
not hold. The behavior of the spin-density matrix elements is usually more complicated
because multiple resonances, e.g., ground state plus radially excited states, may appear in
a given partial wave. In general, the resonances overlap and interfere so that resonance
peaks might shift, disappear, or—in the case of destructive interference—might even turn
into dips in the intensity distribution. In diffractive dissociation reactions, this interference
pattern is further complicated by additional coherent contributions from non-resonant
processes like the Deck effect or central production (see Sec. 3.3.7 and Fig. 3.5 ). The
different t′ dependences of these contributions lead to t′-dependent interference patterns.
Hence in many cases, the information from partial-wave intensities alone is insufficient
to extract resonances and their parameters reliably from the data. It is therefore a great
advantage that the partial-wave decomposition is performed at the amplitude level because
the parameters of the resonances are constrained not only by the measured intensities of

[z]In the following text, modeled quantities are distinguished from their measured counterparts by a hat
(“ ̂ ”).

65



the partial waves but also by their mutual interference terms. This greatly improves the
sensitivity for potential resonance signals.

When searching for resonance signals in the partial-wave amplitudes, one has to take
into account that similar to the resonance peaks in the intensity distributions also the
phase motions are distorted by the presence of other resonances. If, for example, waves a
and b with reflectivity ε each contain a resonance, the rising motion of their relative phase
∆φεab(mX) (see Eq. (3.59 ) and Fig. 1.7(b) ) due to the resonance in a may be compensated
partly by the falling motion due to the resonance in b. In the extreme case when the two
resonances have similar parameters, this cancellation may become nearly complete. It is
therefore often difficult to observe undisturbed phase motions of resonances. This effect
is particularly pronounced in the high-mass regions, where broad excited states appear in
most or even all waves in the resonance-model fit.

An advantage of the two-stage analysis approach is that the resonance model does not
need to describe all partial-wave amplitudes that are included in the PWA model. The
representation of the data in terms of the spin-density matrix allows us to model only
selected matrix elements. Usually, one selects a subset of waves and models all elements
of the corresponding spin-density submatrix. This is an important point for the π−π−π+

final state analyzed here. As is discussed in Sec. 4.1 , the wave set used for the partial-wave
decomposition is so large that a simultaneous description off all partial waves by a resonance
model would be practically impossible.

3.4.1 Resonance model

The spin-density matrix elements are given via by the transition amplitudes
{
T rεa (mX , t

′)
}

(see Eq. (3.45 )), which are the actual fit parameters in the PWA fit described in Sec. 3.3.5 .
The transition amplitudes describe the production and propagation of the intermediate
states X with quantum numbers defined by the wave index a and the reflectivity ε. A tran-
sition amplitude may contain contributions from several resonances and from non-resonant
processes. All these wave components may interfere. Consequently, their amplitudes have
to be summed coherently. If we assume that resonances dominate the transition amplitudes,
we can exploit the fact that for a resonance production and propagation are independent.
We can hence factorize the amplitude that describes a resonance that is represented by an
index k in a partial wave defined by a and ε into two parts: (i) an amplitude C̃rεki (mX , t

′)
that describes the production of resonance k with quantum numbers defined by i (see
Eq. (3.7 )) and ε and (ii) a dynamical amplitude ∆k(mX) that describes the propagation of
resonance k. Using this ansatz, we can formulate the model for the transition amplitudes:

T̂ rεa (mX , t
′) =
√
mX

√
Iεaa(mX)αka

∑
k∈ Sa

C̃rεki (mX , t
′)∆k(mX ; ζk). (3.73)

Here, the factor
√
mX is due to the splitting of the four-body phase space of the final-state

particles (see Eq. (3.5 )). The diagonal element Iεaa of the integral matrix of the decay
amplitudes (see Eq. (3.42 )) appears because of the chosen normalization of the transition
amplitudes in Eq. (3.44 ). The factor αka is the product of the unknown couplings at the
two-body decay vertices as defined in Eq. (3.21 ) and appears due to Eq. (3.22 ). Note
that this product of couplings now also depends on the wave component index k. The
amplitudes of the wave components are summed coherently. The same wave component k,
e.g., a resonance, may appear in several waves. Hence the sum in Eq. (3.73 ) runs over
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the set Sa of those wave components that we assume to appear in wave a. The dynamical
amplitudes each depend on a set of shape parameters that we denote by ζk. For example,
in the case of a Breit-Wigner resonance, ζk represents mass and width of that resonance.
It is important to note that the dynamical amplitudes and their shape parameters do not
depend on the partial-wave index a. Hence if a wave component ∆k appears in several
partial waves, which, e.g., represent different decay modes of a resonance, the same shape
parameters ζk, e.g., mass and width of this resonance, are used in these waves.

Usually, the amplitudes C̃rεki (mX , t
′) that describe the production of wave component k

in Eq. (3.73 ) are only partly known. Using Regge theory (see Sec. 2.1 ), one can calculate an
approximate amplitude Pε(mX , t

′) that at least models the average production probability
of an intermediate state with mass mX as a function of t′. Hence this amplitude does not
depend on the wave index a, but it depends in the most general case on the reflectivity ε.
This is because different values of ε correspond to different exchange particles. In a simple
approach based on Ref. [119 ], the production probability is given by

|Pε(mX , t
′)|2 ≈

[
s

m2
X

]2αP(t′)−1
, (3.74)

where the Pomeron trajectory αP(t′) is based on the values from Refs. [120 , 121 ]:

αP(t′) = 1.2− 0.26 (GeV/c)−2 t′. (3.75)

More details can be found in Sec. IV A 3 in Ref. [H3].
The unknown details of the beam-Reggeon vertex, i.e., the t′ dependence of the produc-

tion strength and phase of wave component k in wave a with reflectivity ε, are factorized
into so-called coupling amplitudes Crεka(t′), which also absorbs the unknown αka in Eq. (3.73 ).
The coupling amplitudes therefore depend not only on r, ε, and the X quantum numbers i
but also on the isobar decay chain. Together with Pε(mX , t

′), they describe the production
of the wave components.

The dynamical amplitudes of the non-resonant wave components depend in the most
general case also on r and ε and may have an explicit t′ dependence. The reason for this
will become clear in the discussion of the parametrization of the non-resonant components
below. With these definitions, the resonance model for the transition amplitudes reads

T̂ rεa (mX , t
′) =
√
mX

√
Iεaa(mX)Pε(mX , t

′)
∑
k∈ Sa

Crεka(t′)∆rε
k (mX , t

′; ζrεk ). (3.76)

Currently, theoretical models are not detailed enough in order to parametrize the
t′ dependence of the coupling amplitudes Crεka(t′) in Eq. (3.76 ). Therefore, binned approx-
imations of these t′ dependences are extracted from the data by fitting the resonance
model to all t′ bins simultaneously and leaving the values of each Crεka in each t′ bin as free
parameters to be determined by the fit. The resonance model hence parametrizes mostly
the mX dependence of the spin-density matrix, but is model-independent with respect
to the t′ dependence in the sense that the amplitude of each component in each wave is
allowed to have a different t′ dependence. In this approach, the resonant and non-resonant
wave components can be better disentangled because their amplitudes have usually different
dependences on t′. The caveat of such a t′-resolved resonance-model fit is the large number
of free parameters.
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Assuming factorization of production, propagation, and decay of the intermediate 3π
resonances, the dynamical amplitudes ∆R

k (mX ; ζRk ) of the resonances should be independent
of r, ε, and t′. The latter constraint is built into the model by using the same resonance
shape parameters ζRk , i.e., masses and widths of resonances, across all t′ bins. Only strength
and phase of each resonance component can be chosen freely by the fit in each t′ bin in
the form of the coupling amplitudes Crεka(t′). Since the t′ dependence of the amplitude
of a resonant component is determined by the production mechanism, factorization of
production and decay means that for a given spin projection M ε the t′ dependence of
the amplitude should be the same in different decay modes of that resonance. This can
be exploited to reduce the number of free parameters by fixing the t′ dependence of the
amplitude of resonance k in wave b, which is represented by Crεkb(t′), to the t′ dependence of
that resonance in wave a:[aa]  

Crεkb(t′) = bBεka Crεka(t′). (3.77)

The t′-independent complex-valued proportionality factors bBεka, which are determined by
the fit, are called branching amplitudes and encode the relative strength and phase of the
two decay modes a and b of resonance k.

The dynamical amplitudes of the resonance components are often parametrized using
Breit-Wigner amplitudes as in Eq. (1.24 ). The parametrization used for the mass-dependent
total width Γk,tot(mX) depends on how well the decay modes of the resonance are known.
If the branching fractions are known sufficiently well, often the two-body approximation in
Eq. (1.25 ) is employed. In special cases, also more elaborate parametrizations are used (see,
e.g., Sec. IV A 1 in Ref. [H3]). If the branching fractions of a resonance are not well-known
or even unknown, usually the fixed-width approximation in Eq. (1.23 ) is used.

The dynamical amplitudes of the non-resonant components are in general not well
known so that empirical parametrizations are employed, which are often developed in a
data-driven approach. In general, we cannot assume factorization of production and decay
and Eq. (3.77 ) does not hold for the non-resonant components. Hence one usually includes
for each wave a separate non-resonant component. Consequently, the dynamical amplitude
of a non-resonant component may depend on the reflectivity ε. In the most general case, the
non-resonant terms may also have incoherent components so that the dynamical amplitude
also depends on the rank index r. A common property of the employed parametrizations
for these dynamical amplitudes is that their phase does not depend on mX . Inspired
by Ref. [122 ], in many analyses a Gaussian in the two-body breakup momentum qa (see
Eq. (1.26 )) of the X decay in wave a is used, i.e.,[ab]  

NR∆rε
k (mX ; b, c0︸︷︷︸

≡ NRζrεk

) =
[mX −mthr

mnorm

]b
e−c0 q

2
a(mX). (3.78)

Here, we have added a term in square brackets, which approximates the phase-space opening
with mthr set to a value around the kinematic threshold at 3mπ and mnorm usually set
to 1 GeV/c2. If we would use Eq. (1.26 ) to calculate qa, we would neglect the width of
the isobar that appears in wave a. Since the non-resonant components usually extend
[aa]The waves a and b must have the same JPCMε quantum numbers. If more than two waves in the

resonance-model fit fulfill this criterion, always the same reference wave a is used in Eq. (3.77 ). Usually, the
wave that corresponds to the most dominant decay chain of resonance k is chosen as the reference wave a.
[ab]To simplify notation, we omit the indices k, r, and ε from the shape parameters.
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below the nominal threshold of the X → ξ + 3 decay, Eq. (1.26 ) is not applicable and more
advanced parametrizations have to be used (see, e.g., Sec. IV A 2 in Ref. [H3]). In general,
the shape of the mX distribution of a non-resonant component may change with t′ so that
the dynamical amplitude may have an explicit t′ dependence. In such cases, it was found
that an extension of Eq. (3.78 ) of the form

NR∆rε
k (mX , t

′; b, c0, c1, c2︸ ︷︷ ︸
≡ NRζrεk

) =
[mX −mthr

mnorm

]b
e−
(
c0+c1 t′+c2 t′2

)
q2a(mX) (3.79)

yields a better description of the data.

3.4.2 t′-dependent observables

Since the resonance-model fit is performed simultaneously in several t′ bins, we can extract
the t′ dependence of production strength and phase for each wave component in the model.
This information is contained in the coupling amplitudes Crεka(t′).

From the intensity of partial wave a with reflectivity ε as defined in Eq. (3.55 ), we can
derive an expression for the intensity intεka of wave component k predicted by the model in
Eq. (3.76 ) for a given (mX , t

′) cell:[ac]  

intεka(mX , t
′) ≡ mX I

ε
aa(mX)

∣∣Pε(mX , t
′)
∣∣2 Nε

r∑
r=1

∣∣Crεka(t′)∣∣2 ∣∣∆rε
k (mX , t

′; ζrεk )
∣∣2, (3.80)

By integrating this intensity over the full mX range under consideration, we get the t′

spectrum of wave component k:

Iεka(t′) =
dN ε

ka

dt′

=
1

∆t′

Nε
r∑

r=1

∣∣Crεka(t′)∣∣2 mmax∫
mmin

dmX I
ε
aa(mX)mX

∣∣Pε(mX , t
′)
∣∣2 ∣∣∆rε

k (mX , t
′; ζrεk )

∣∣2.
(3.81)

Here, we divide by the t′ bin width ∆t′ in order to take into account the non-equidistant
t′ binning. The mX integration range [mmin,mmax] is usually given by the fit range that is
used for the given partial wave.

In diffractive reactions, the t′ spectra of most wave components exhibit an approximately
exponential decrease with increasing t′ in the range t′ . 1 (GeV/c)2. This behavior can
be explained in the framework of Regge theory [38 , 123 ]. The t′ spectra of partial-wave
amplitudes with a spin projection of M 6= 0 along the beam direction are modified by
an additional factor (t′)|M |. This factor is given by the forward limit of the Wigner D-
functions [124 ] and suppresses the intensity toward small t′. We therefore parametrize the
t′ spectra by the model

Îεka(t′;Aεka, bεka) = Aεka ·
(
t′
)|M | · e−bεka t′ . (3.82)

[ac]Note that as discussed in Sec. 3.3.4 , intεka(mX , t
′) represents the number of events integrated over the

given (mX , t
′) cell.
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This parametrization has two free real-valued parameters: the magnitude parameter Aεka
and the slope parameter bεka. The parameters are estimated by performing a χ2 fit, where
the model function Îεka(t′) is integrated over each t′ bin and compared to the measured
value Iεka(t′) in Eq. (3.81 ).

In addition to the t′ spectrum, we can also extract the relative phase between the
coupling amplitudes of wave component k in wave a and wave component l in wave b,

∆φεka,lb(t
′) ≡ arg

[ Nε
r∑

r=1

Crεka(t′) Crε*lb (t′)

]
. (3.83)

This is similar to Eq. (3.59 ). The quantity ∆φεka,lb is called coupling phase. Note that for a
rank-1 spin-density matrix, i.e., full coherence of all partial waves,

∆φεka,lb(t
′) = arg

[
Cεka(t′)

]
− arg

[
Cεlb(t′)

]
. (3.84)

If the coupling amplitudes of a resonance in different decay modes are constrained via
Eq. (3.77 ), the corresponding coupling phases are by definition independent of t′ and are
given by arg[bBεka]. The interpretation of the value of a coupling phase is complicated by the
fact that the coupling amplitude is the product of the actual production amplitude of the
wave component and of αka, which is in turn the product of the complex-valued couplings
that appear at the two-body decay vertices in the three-body isobar decay chain of wave a
(see Eq. (3.21 )). The coupling phases of resonances are expected to be approximately
independent of t′, if a single production mechanism dominates. This is in general not true
for non-resonant components, which are produced by different mechanisms. Relative to
resonances, the coupling phases of the non-resonant components usually change with t′. This
leads in general to a t′-dependent interference pattern, which often causes a t′-dependent
shift of resonance peaks especially for waves with large non-resonant components. Hence
changes of the shape of the measured mX distribution of the intensity of a partial-wave
amplitude with t′ are a sign of contributions from non-resonant components.

3.4.3 Fit method

We construct the model for the spin-density submatrix of the selected waves using Eqs. (3.45 )
and (3.76 ):

%̂εab(mX , t
′) =

Nε
r∑

r=1

T̂ rεa (mX , t
′) T̂ rε*b (mX , t

′)

= mX

√
Iεaa(mX) Iεbb(mX)

∣∣Pε(mX , t
′)
∣∣2

×
Nε
r∑

r=1

[ ∑
k∈ Sa

Crεka(t′)∆rε
k (mX , t

′; ζrεk )

] [ ∑
l∈ Sb

Crεlb (t′)∆rε
l (mX , t

′; ζrεl )

]*
.

(3.85)

The parameters of the resonance model, i.e., the set of coupling amplitudes {Crεka(t′)} and
the set of shape parameters {ζrεk }, are estimated by fitting the model %̂εab(mX , t

′) to the
spin-density matrices that are measured in the (mX , t

′) cells (see Sec. 3.3 ). In order to do
this, we represent the Hermitian spin-density matrix by a real-valued matrix Λεab(mX , t

′) of
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the same dimension. The elements of Λεab are defined by the upper triangular part of the
spin-density matrix:

Λεab(mX , t
′) ≡


Re
[
%εab(mX , t

′)
]

for a < b,

Im
[
%εba(mX , t

′)
]

for a > b,

%εaa(mX , t
′) for a = b.

(3.86)

This means that the upper off-diagonal elements of Λεab are the real parts of the interference
terms, the lower off-diagonal elements are the imaginary parts of the interference terms,
and the diagonal elements are the partial-wave intensities. In an analogous way, we define
Λ̂εab(mX , t

′) for our resonance model in Eq. (3.85 ).

In order to quantify the deviation of the resonance model Λ̂εab(mX , t
′) from the measured

data Λεab(mX , t
′), we sum the squared Pearson’s residuals [125 ] of all matrix elements for

all (mX , t
′) cells:

χ2 =
∑
ε=±1

Nε
waves∑
a,b

t′ bins∑ (mX bins)ab∑ [
Λεab(mX , t

′)− Λ̂εab(mX , t
′)

σεab(mX , t′)

]2
. (3.87)

Here, N ε
waves is the number of partial waves with reflectivity ε that are included in the

fit model and σεab(mX , t
′) is the statistical uncertainty of the matrix element Λεab(mX , t

′)
as determined by the partial-wave decomposition performed in the first analysis step (see
Sec. 3.3 ). The sum in Eq. (3.87 ) runs over all t′ bins and those mX bins that lie within the
chosen fit ranges. For the off-diagonal interference terms Λεab, the mX ranges are given by
the intersections of the fit ranges for the intensities of waves a and b. The best estimate for
the model parameters is determined by minimizing the χ2 function using the MIGRAD
algorithm of the MINUIT program [126 , 127 ].[ad]  

It is important to note that although we use the notation χ2 for the minimized quantity
in Eq. (3.87 ), the minimum of Eq. (3.87 ) does in general not follow a χ2 distribution. This
means that the expectation value of the minimum is not the number of degrees of freedom
(n.d.f.). Also the deviation of the minimum from the n.d.f. is not directly interpretable as an
absolute measure for the goodness of fit. This is because we assume in Eq. (3.87 ) that the
elements of Λεab(mX , t

′) are all statistically independent. Although this assumption is true
for matrix elements from different mX or t′ bins, it is in general not true for matrix elements
within a given (mX , t

′) cell. They could be correlated due to statistical correlations of the
transition amplitudes in the PWA fit. In principle, these correlations are known because in
the partial-wave decomposition also the covariance matrix of the transition amplitudes is
estimated. However, the propagation of this information to the covariance matrix of the
elements of Λεab is not well defined. This is because the spin-density matrix has more free
real-valued parameters than the set of transition amplitudes. In a (mX , t

′) cell, the resonance-
model fit minimizes the distance of the model to

(
[N ε=+1

waves ]2 + [N ε=−1
waves ]2

)
data points, which

are the elements of Λεab. In contrast, the set of transition amplitudes from the partial-wave
decomposition represents only

(
N ε=+1
r [2N ε=+1

waves −N ε=+1
r ]+N ε=−1

r [2N ε=−1
waves −N ε=−1

r ]
)
data

[ad]For high-precision data, the resonance model usually is not able to reproduce all details of the data.
The residual deviations of the model from the data often induce a multi-modal behavior of the minimization
procedure. Reference [H3] discusses strategies on how to resolve the multi-modality in order to obtain the
best physical solution.
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points (see Sec. 3.3.2 ).[ae]  For a rank-1 spin-density matrix, this actually leads to analytical
relations among the spin-density matrix elements of waves a, b, c, and d of the form

%ab %cd = %ad %cb, (3.88)

which are not taken into account by Eq. (3.87 ).[af]  

3.4.4 Discussion of the resonance model

In Sec. 1.6.1 , we have already discussed the limitations and caveats of parametrizing
amplitudes using sum of Breit-Wigner amplitudes. Another potential issue of our model,
which introduces additional model and process dependence, is the decomposition of the
partial-wave amplitudes into a sum of resonant and non-resonant components, which
is not unique [34 ]. In principle, this decomposition would be constrained by unitarity,
which is, however, not taken into account here. Due to the absence of realistic theoretical
models, the parametrizations employed for the non-resonant wave components are only
phenomenological (see Eqs. (3.78 ) and (3.79 )). Also, the model assumption that the phase
of a non-resonant amplitude is independent of mX may not be well justified especially
for cases where these amplitudes exhibit pronounced peaks in their intensity distribution.
Although the parameters of the non-resonant components are nuisance parameters of the
analysis, the choice of the parametrizations for the non-resonant components turns out to
be one of the dominant sources of systematic uncertainty.

A striking advantage of the resonance model employed here is its simplicity, both from
a conceptual and computational point of view. The results can also be compared directly
to previous analyses of diffractive meson production that employed similar models. Some
of the potential issues mentioned above are expected to be mitigated by our approach of
simultaneously fitting multiple t′ bins while forcing the resonance parameters to be the
same across all t′ bins. This puts strong constraints on the resonant and non-resonant
wave components. Additional constraints that help to reduce systematic effects come from
including as many decay modes of a resonance as possible into the resonance-model fit.
Fitting a large spin-density submatrix with many waves with well-defined resonance signals
has a similar effect. This is mainly because the resonance-model fit takes into account the
whole spin-density submatrix with all interference terms. The number of these interference
terms grows with the size of the spin-density submatrix squared. Hence the statistic in
Eq. (3.87 ) that is employed to estimate the fit parameters effectively gives more weight to
the interference terms than to the intensities. In practice, this often helps to stabilize the
fit as the model tends to reproduce the phase motions usually more accurately than the
intensities.

[ae]Only in the case of maximum rank, i.e., for Nε
r = Nε

waves, the set of transition amplitudes has the same
number of real-valued parameters as Λεab.
[af]For the case of a rank-1 spin-density matrix, Appendix C in Ref. [H3] provides formulations of χ2 that

correctly take into account all correlations. However, it turns out that for the analysis of the π−π−π+

data these χ2 formulations do not yield sensible fit results, because the resonance model has difficulties
describing all details of the intensity distribution of the dominant wave, which has extremely small statistical
uncertainties. See also discussion in Sec. 3.4.4 and Ref. [H3].
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Chapter 4

Analysis results for the π−π−π+

final state

In this chapter, we present selected results of the analysis of the COMPASS data on the
diffractive dissociation reaction π− + p→ π−π−π+ + p (see Sec. 2.3 ). We first introduce in
Sec. 4.1 the analysis models that are employed for the partial-wave decomposition (first
analysis stage; see Sec. 3.3 ) and for the resonance-model fit (second analysis stage; see
Sec. 3.4 ). In Sec. 4.2 , we present selected results from both analysis stages. The focus lies
primarily on resonances that are candidates for exotic states, in particular hybrid states. A
more comprehensive discussions of the results can be found in Refs. [H2,H3].

Due to the large data sample of 46× 106 exclusive events, statistical uncertainties
are negligible compared to systematic uncertainties. For this reason, we will not quote
statistical uncertainties on the parameters obtained from the resonance-model fit. In order
to identify partial waves, we use the shorthand notation JPCM ε ξ π L, where L is given in
spectroscopic notation, i.e., L = S, P,D, F, . . ., in the text below.

4.1 Analysis models

4.1.1 Stage I: partial-wave decomposition

The goal of the first analysis stage is to find a PWA model that describes the data well.
As discussed in Sec. 3.3.7 , the development of an optimal PWA model is a non-trivial
and challenging task. Since the COMPASS π−π−π+ data sample is about an order of
magnitude larger than any data sample from previous experiments, the PWA model has to
be significantly more detailed in order to achieve a good description of the data.

The main basis for constructing a wave set is to determine the set of isobars that appear
in the data and to choose their parametrizations. Since there are no known resonances in
the flavor-exotic π−π− channel, which has I = 2, we choose to include only π−π+ isobar
resonances in the PWA model. From the π−π+ mass spectrum in Fig. 2.6(b) and the
Dalitz plots in Fig. 3.3 , we can already infer that we have to include ρ(770), f0(980), and
f2(1270). The slight enhancement at about mπ−π+ = 1.7 GeV/c2 could be due to ρ3(1690),
ρ(1700), or f0(1710). From previous experiments (see, e.g., Ref. [128 ]) it is known that the
ρ3(1690) appears in the π−π+ subsystem of diffractively produced 3π final states. Due to
ambiguities of the partial-wave amplitudes that may arise when the PWA model contains
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Figure 4.1: Freed-isobar amplitude for JPC = 0++ isobars, denoted [ππ]0++ , in the 0−+

0+ [ππ]0++ π S wave in a (m3π, t
′) cell. (a) shows the intensity as a function of mπ−π+ ,

(b) the Argand diagram of the amplitude. The crosses with error bars are the result of the
PWA fit. The numbers in the Argand diagram are the corresponding mπ−π+ values. The
data points are connected by lines to indicate the order. The line segments highlighted in
blue correspond to the mπ−π+ ranges around the f0(980) from 960 to 1000 MeV/c2 and
around the f0(1500) from 1400 to 1560 MeV/c2. The 2π mass is binned in 10 MeV/c2 wide
intervals around the f0(980) and in 40 MeV/c2 wide intervals elsewhere. The phase of the
Argand diagram is fixed by the 1++ 0+ ρ(770)π S wave. From Ref. [H2].

radially excited isobar resonances (see Sec. 3.3.7 ), we include neither the ρ(1700) nor the
f0(1710).

We confirm that the f0(1710) does not contribute significantly to the data by performing
a freed-isobar analysis as described in Sec. 3.3.8 [H2]. In this analysis, we extract the
dynamical isobar amplitude for JPC = 0++ isobars in selected 3π partial waves. Figure 4.1 

shows, as an example, the dynamical isobar amplitude in the 3π partial wave with 0−+

quantum numbers. In the f0(1710) region, the amplitude vanishes. The Argand diagram
in Fig. 4.1(b) shows that, in addition to the large circular structure that corresponds to
the f0(980), there is a second circular structure that corresponds to the f0(1500). The
intensity distribution in Fig. 4.1(a) exhibits a shoulder below the narrow f0(980) peak. This
low-mass shoulder is mostly due to the f0(500), which is also known as σ. This state is
extremely broad and is hence not well described by a Breit-Wigner amplitude. We describe
the f0(500) effectively by modifying a parametrization that was developed to describe the
amplitude of the ππ S-wave in ππ scattering [129 ] (see Sec. IV A in Ref. [H2] for details).
In the text below, we denote this isobar amplitude by [ππ]S . Interestingly, we do not
observe any signal of the f0(1370) in any of the extracted dynamical amplitudes for 0++

isobars. This is surprising since the PDG lists the f0(1370) as decaying into ππ. Thus our
finding adds to the controversy that surrounds the f0(1370). Preliminary studies with an
extended PWA model that frees in addition to the dynamical amplitudes of 0++ isobars
also those of isobars with 1−− and 2++ quantum numbers suggest that the data might
contain small contributions from excited ρ and f2 states [130 ]. In the PWA model used
here, these contributions are ignored. We therefore arrive at a set of six isobars that we
include in the PWA model. They are listed together with their IG JPC quantum numbers
and the employed parametrizations in Table 4.1 .

Based on this set of six isobars, the number of possible partial waves is largely deter-
mined by the maximum allowed spin J of X− and the maximum allowed orbital angular
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Table 4.1: List of isobars that are used to construct the wave set for the PWA model. For
more details see Ref. [H2].

Isobar resonance [ππ]S ρ(770) f0(980) f2(1270) f0(1500) ρ3(1690)

IG JPC 0+ 0++ 1+ 1−− 0+ 0++ 0+ 2++ 0+ 0++ 1+ 3−−

Parametrization ππ S-wave Breit-
Wigner Flatté Breit-

Wigner
Breit-
Wigner

Breit-
Wigner

momentum L in the decay of the X− to the isobar and the bachelor π−. We have con-
structed a set of 128 waves, which—in accordance with Pomeron dominance—includes
mainly positive-reflectivity waves with spin J ≤ 6, orbital angular momentum L ≤ 6, and
spin projection M = 0, 1, and 2. Based on a PWA with this wave set, we have derived
a smaller wave set by eliminating structureless waves with relative intensities below ap-
proximately 10−3 in an iterative process [73 ]. This yields a set of 88 partial waves that are
used for the partial-wave decomposition. The 88-wave set is listed in Table 4.2 and consists
of 80 waves with reflectivity ε = +1, seven waves with ε = −1, and one non-interfering
flat wave representing three uncorrelated pions. This is the by far largest wave set used
up to now in an analysis of the 3π final state. In order to avoid ambiguities between
partial-wave amplitudes (see Sec. 3.3.7 ), we have to exclude 27 waves in the low-m3π region.
The corresponding m3π thresholds were carefully tuned and are listed in Table 4.2 .

Although the result of the freed-isobar PWA indicates an f0(1500) isobar in the 0−+

and 2−+ partial waves, the 88-wave set of the conventional PWA contains only a single wave
with the f0(1500) isobar, i.e., the 0−+ 0+ f0(1500)π S wave. The reason for this is that the
inclusion of several waves with f0(1500)π decay modes tends to destabilize the PWA fit.
As discussed in Sec. 3.3.7 , this is because for m3π . 1.7 GeV/c2, the decay amplitudes of
waves with f0(1500) isobar become similar to those with [ππ]S or f0(980) isobars. This is
much less of an issue for the waves with [ππ]S and f0(980) isobars. Due to the narrowness
of the f0(980), the corresponding partial-wave amplitudes are sufficiently different from
those with the [ππ]S isobar.

Using the 88-wave PWA model, the partial-wave decomposition is performed indepen-
dently in 100 equidistant m3π bins in the range 0.5 < m3π < 2.5 GeV/c2. Each m3π bin
is subdivided further into 11 non-equidistant t′ bins, which are listed in Table 4.3 . For
each of the resulting 1100 (m3π, t

′) cells, an independent PWA fit is performed. Due to
the fine binning in t′, a rank-1 spin-density submatrix for the positive-reflectivity waves,
i.e., N ε=+1

waves = 1 is sufficient to describe the data. This corresponds to full coherence of
all partial waves with ε = +1. For the negative-reflectivity waves, a rank-2 spin-density
submatrix, i.e., N ε=−1

waves = 2, describes the data best.
As already mentioned above, we also performed a freed-isobar PWA where we replace

seven 3π partial waves with JPCM ε = 0−+ 0+, 1++ 0+, and 2−+ 0+ quantum numbers and
fixed parametrizations of the [ππ]S , f0(980), and f0(1500) isobars by three partial waves:
0−+ 0+ [ππ]0++ π S, 1++ 0+ [ππ]0++ π P , and 2−+ 0+ [ππ]0++ πD. These three waves use
a free parametrization of the dynamical isobar amplitudes for the JPC = 0++ isobars
according to Eq. (3.67 ). We denote these freed-isobar amplitudes by [ππ]0++ . Due to the
much larger number of fit parameters, the freed-isobar PWA is performed using only 50 bins
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Table 4.2: Set of 88 waves used for the partial-wave decomposition in the first analysis
stage. The thresholds define the m3π values, below which the respective waves are excluded
from the PWA model. The relative intensities are calculated according to Eq. (3.58 ) using
the full analyzed m3π and t′ range. Waves highlighted in red are included in the resonance
model fit (see Sec. 4.1.2 ). From Ref. [H2].

JPC Mε Isobar L Threshold Rel.
[MeV/c2] int.

0−+ 0+ [ππ]S S — 8.0%

0−+ 0+ ρ(770) P — 3.5%

0−+ 0+ f0(980) S 1200 2.4%

0−+ 0+ f2(1270) D — 0.2%

0−+ 0+ f0(1500) S 1700 0.1%

1++ 0+ [ππ]S P — 4.1%

1++ 1+ [ππ]S P 1100 0.2%

1++ 0+ ρ(770) S — 32.7%

1++ 1+ ρ(770) S — 4.1%

1++ 0+ ρ(770) D — 0.9%

1++ 1+ ρ(770) D — 0.6%

1++ 0+ f0(980) P 1180 0.3%

1++ 1+ f0(980) P 1140 0.1%

1++ 0+ f2(1270) P 1220 0.4%

1++ 1+ f2(1270) P — 0.5%

1++ 0+ f2(1270) F — 0.1%

1++ 0+ ρ3(1690) D — 0.1%

1++ 0+ ρ3(1690) G — < 0.1%

1−+ 1+ ρ(770) P — 0.8%

2++ 1+ ρ(770) D — 7.7%

2++ 2+ ρ(770) D — 0.3%

2++ 1+ f2(1270) P 1000 0.5%

2++ 2+ f2(1270) P 1400 < 0.1%

2++ 1+ ρ3(1690) D 800 < 0.1%

2−+ 0+ [ππ]S D — 3.0%

2−+ 1+ [ππ]S D — 0.4%

2−+ 0+ ρ(770) P — 3.8%

2−+ 1+ ρ(770) P — 3.3%

2−+ 2+ ρ(770) P — 0.2%

2−+ 0+ ρ(770) F — 2.2%

2−+ 1+ ρ(770) F — 0.3%

2−+ 0+ f0(980) D 1160 0.6%

2−+ 0+ f2(1270) S — 6.7%

2−+ 1+ f2(1270) S 1100 0.9%

2−+ 2+ f2(1270) S — 0.1%

2−+ 0+ f2(1270) D — 0.9%

2−+ 1+ f2(1270) D — 0.2%

2−+ 2+ f2(1270) D — 0.1%

2−+ 0+ f2(1270) G — 0.1%

2−+ 0+ ρ3(1690) P 1000 0.2%

2−+ 1+ ρ3(1690) P 1300 0.1%

3++ 0+ [ππ]S F 1380 0.2%

3++ 1+ [ππ]S F 1380 0.3%

3++ 0+ ρ(770) D — 0.9%

3++ 1+ ρ(770) D — 1.0%

JPC Mε Isobar L Threshold Rel.
[MeV/c2] int.

3++ 0+ ρ(770) G — 0.4%

3++ 1+ ρ(770) G — 0.1%

3++ 0+ f2(1270) P 960 0.4%

3++ 1+ f2(1270) P 1140 0.4%

3++ 0+ ρ3(1690) S 1380 0.4%

3++ 1+ ρ3(1690) S 1380 0.1%

3++ 0+ ρ3(1690) I — < 0.1%

3−+ 1+ ρ(770) F — 0.1%

3−+ 1+ f2(1270) D 1340 < 0.1%

4++ 1+ ρ(770) G — 0.8%

4++ 2+ ρ(770) G — < 0.1%

4++ 1+ f2(1270) F — 0.2%

4++ 2+ f2(1270) F — < 0.1%

4++ 1+ ρ3(1690) D 1700 < 0.1%

4−+ 0+ [ππ]S G 1400 0.3%

4−+ 0+ ρ(770) F — 1.0%

4−+ 1+ ρ(770) F — 0.4%

4−+ 0+ f2(1270) D — 0.3%

4−+ 1+ f2(1270) D — 0.1%

4−+ 0+ f2(1270) G 1600 < 0.1%

5++ 0+ [ππ]S H — 0.1%

5++ 1+ [ππ]S H — 0.1%

5++ 0+ ρ(770) G — 0.3%

5++ 0+ f2(1270) F 980 0.1%

5++ 1+ f2(1270) F — 0.1%

5++ 0+ f2(1270) H — < 0.1%

5++ 0+ ρ3(1690) D 1360 < 0.1%

6++ 1+ ρ(770) I — < 0.1%

6++ 1+ f2(1270) H — < 0.1%

6−+ 0+ [ππ]S I — 0.1%

6−+ 1+ [ππ]S I — 0.1%

6−+ 0+ ρ(770) H — 0.7%

6−+ 1+ ρ(770) H — 0.1%

6−+ 0+ f2(1270) G — 0.1%

6−+ 0+ ρ3(1690) F — < 0.1%

1++ 1− ρ(770) S — 0.3%

1−+ 0− ρ(770) P — 0.3%

1−+ 1− ρ(770) P — 0.7%

2++ 0− ρ(770) D — 0.3%

2++ 0− f2(1270) P 1180 0.2%

2++ 1− f2(1270) P 1300 0.3%

2−+ 1− f2(1270) S — 0.2%

Flat — 3.1%
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Table 4.3: Borders of the 11 non-equidistant t′ bins, in which the partial-wave analysis is
performed using the 88-wave PWA model. The intervals are chosen such that each bin
contains approximately 4.6× 106 events. Only the last range from 0.449 to 1.000 (GeV/c)2

is subdivided further into two bins. From Ref. [H2].

Bin 1 2 3 4 5 6 7 8 9 10 11

t′ [(GeV/c)2] 0.100 0.113 0.127 0.144 0.164 0.189 0.220 0.262 0.326 0.449 0.724 1.000

in m3π and 4 bins in t′ for the same analyzed range (see Ref. [H2] for details). The results
of the conventional and the freed-isobar PWA are qualitatively in agreement. This validates
the parametrizations of the 0++ isobars that are employed in the conventional PWA.

The goodness-of-fit of the conventional PWA fit with the 88-wave model is estimated
for each (m3π, t

′) cell by generating pseudodata that follow the intensity distribution of
the PWA model. This is done by generating events that are uniformly distributed in the
three-body phase space using Monte Carlo techniques. The phase-space events are then
weighted according to the fit model in Eq. (3.47 ). Projections of the five-dimensional Monte
Carlo distribution are then compared to those of the real data. As is demonstrated in
Ref. [H2], the PWA model agrees well with the data over a wide range of the phase space.
This is consistent with preliminary results from studies where the regularization approach
introduced in Sec. 3.3.7 is used in order to determine the wave set. These studies show that
the 88-wave set captures most of the waves contained in the data [115 , 116 ].

The relative intensities of the 88 waves in the conventional PWA fit are listed in
Table 4.2 . They are calculated by applying Eq. (3.58 ) to the full analyzed range in m3π

and t′. The relative intensities of all 88 waves in the PWA model sum up to 105.3 % instead
of 100 %. Thus the net effect of the interference of the all amplitudes is slightly destructive.
Waves with negative reflectivity, which correspond to unnatural-parity exchange processes,
contribute together only 2.2 % to the total intensity. This is consistent with the expected
Pomeron dominance. Also the flat wave is small with a relative intensity of only 3.1 %. The
by far most dominant wave is the 1++ 0+ ρ(770)π S wave, which contributes 32.7 % to the
total intensity. This wave therefore plays a special role in particular in the resonance-model
fit performed in the second analysis stage. The 88-wave set includes waves with spin-exotic
JPC = 1−+ and 3−+ quantum numbers. These waves have small relative intensities, which
are, however, significantly different from zero. They contribute 1.8 % and 0.1 %, respectively,
to the total intensity. The 1−+ 1+ ρ(770)π P wave and its resonance content are discussed
in detail in Sec. 4.2.5 .

4.1.2 Stage II: resonance-model fit

The input for the resonance-model fit are the spin-density matrices %εab as defined in
Eq. (3.45 ). They have been extracted from the data in the first analysis stage by performing
the partial-wave decomposition independently in 1100 (m3π, t

′) cells, i.e., 100 bins in m3π

and 11 bins in t′, using the 88-wave PWA model discussed in Sec. 4.1.1 .
The goal of the resonance-model fit is to study isovector resonances of the aJ and πJ

families with masses up to about 2 GeV/c2. Unfortunately, with the currently available
theoretical models and computing resources, a complete description of the m3π and t′ de-
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pendence of the full 88 × 88 spin-density matrix is not possible. We therefore have to
select a subset of waves that is included in the resonance-model fit. Out of the 88 waves in
the PWA model, we select waves that exhibit clear signals of well-known resonances, i.e.,
resonance peaks that are associated with phase motions. If possible, we include waves that
represent different decay modes and different M states of these resonances. These waves
are intended to act as reference amplitudes, against which the resonant amplitudes in more
interesting waves can interfere. The latter waves exhibit signals of less well-known excited
states or have controversial resonance content such as the spin-exotic 1−+ 1+ ρ(770)π P
wave.

Table 4.4 lists the 14 waves selected for the resonance-model fit. Compared to previous
analyses of the 3π final state, this is the by far largest wave set that is consistently described
in a single resonance-model fit. The selected waves contain signals of the well-known
resonances a1(1260), a2(1320), π2(1670), π(1800), π2(1880), and a4(2040), which appear as
peaks in the respective partial-wave intensities and as phase motions in the relative phases
of these waves. In addition, the selected wave set includes a clear resonance-like signal
of the novel a1(1420), which was discovered in an earlier analysis of the same COMPASS
data in Ref. [H1]. In this analysis, the same 88-wave PWA fit was used but the resonance
model included only three partial waves. The set of 14 waves also contains signals of the
less well-known or even disputed states π1(1600), a1(1640), and a2(1700). The π1(1600) is
particularly interesting, because it has spin-exotic JPC = 1−+ quantum numbers. It turns
out that the data require a third π2 resonance, the π2(2005), which according to the PDG
requires confirmation [13 ]. In total, the resonance model contains 11 resonances, which are
all described using Breit-Wigner amplitudes. With the exception of the a1(1260) and the
a2(1320), for which we use mass-dependent widths (see Sec. IV A 1 in Ref. [H3] for details),
the Breit-Wigner amplitudes of the other resonances have constant widths as in Eq. (1.23 ).
In addition to the 11 resonant components, we include for each wave a separate coherent
non-resonant component (see Sec. 3.4.1 ).

Figure 4.2 shows the intensity distributions of the resonant and non-resonant wave
components (colored curves) together with the intensity of the coherent sum of the 14 selected
partial-wave amplitudes (gray squares) and the total intensity of the PWA model (black
points). The coherent sum of the 14 selected partial-wave amplitudes contributes 57.9 % to
the total intensity. This is similar to the intensity sum of the 14 waves, which corresponds to
56.8 % of the total intensity. Thus the net effect of the interference between the 14 partial-
wave amplitudes is slightly constructive. It is worth noting that the intensities of the wave
components cover a large dynamic range of more than three orders of magnitude. The
largest contributions to the intensity come from the a1(1260) and the non-resonant term
in the 1++ 0+ ρ(770)π S wave (red curves in Figs. 4.2(a) and 4.2(c) ). Since the resonance
model contains only waves with positive reflectivity, all wave components, in particular the
resonant and non-resonant components, do interfere. For waves with larger intensities, this
interference is mostly constructive.

In total, the 14-wave resonance-model fit has 722 real-valued free paramters that are
constrained by 76 505 data points within the chosen fit ranges (see Sec. 3.4.1 ) that enter
the sum in Eq. (3.87 ). The 22 resonance parameters determined by the fit are summarized
and compared to the PDG values in Table 4.5 . A graphical representation of the fit result
is shown in Fig. 4.3 .

Due to the highly precise data, the uncertainties of the resonance parameters are
completely dominated by systematic effects. We performed extensive systematic studies to
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Table 4.4: Resonance model to describe the elements of the spin-density matrix of 14 selected
partial waves from six JPC sectors using Eq. (3.85 ). The relative intensities listed in the
second column are the same as in Table 4.2 . The third column lists the resonances used to
describe the waves. In total, 11 resonances are used. Details about their parametrization
can be found in Sec. IV A 1 in Ref. [H3]. The fourth column lists the parametrizations
used for the non-resonant components, the last column the fit ranges (see Sec. 3.4.3 for
details). From Ref. [H3].

Partial wave Relative Resonances Non-resonant m3π fit range
intensity component Eq. [GeV/c2]

0−+ 0+ f0(980)π S 2.4 % π(1800) (3.78 ) 1.20 to 2.30

1++ 0+ ρ(770)π S 32.7 % a1(1260), a1(1640) (3.79 ) 0.90 to 2.30

1++ 0+ f0(980)π P 0.3 % a1(1420) (3.78 ) 1.30 to 1.60

1++ 0+ f2(1270)π P 0.4 % a1(1260), a1(1640) (3.78 ) 1.40 to 2.10

1−+ 1+ ρ(770)π P 0.8 % π1(1600) (3.79 ) 0.90 to 2.00

2++ 1+ ρ(770)πD 7.7 %
 a2(1320), a2(1700)

(3.79 ) 0.90 to 2.00

2++ 2+ ρ(770)πD 0.3 % (3.78 ) 1.00 to 2.00

2++ 1+ f2(1270)π P 0.5 % (3.78 ) 1.00 to 2.00

2−+ 0+ ρ(770)π F 2.2 %

π2(1670), π2(1880),
π2(2005)

(3.79 ) 1.20 to 2.10

2−+ 0+ f2(1270)π S 6.7 % (3.79 ) 1.40 to 2.30

2−+ 1+ f2(1270)π S 0.9 % (3.78 ) 1.40 to 2.30

2−+ 0+ f2(1270)πD 0.9 % (3.78 ) 1.60 to 2.30

4++ 1+ ρ(770)πG 0.8 %
}
a4(2040)

(3.78 ) 1.25 to 2.30

4++ 1+ f2(1270)π F 0.2 % (3.78 ) 1.40 to 2.30

Intensity sum 56.8%
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Figure 4.2: Intensity distributions of the wave components in the resonance model (colored
curves) compared to the total intensity of the coherent sum of all 88 partial-wave amplitudes
in the PWA model (black points) and the intensity of the coherent sum of the 14 partial-
wave amplitudes selected for the resonance-model fit (gray squares). (Top row) intensity
distributions of the 11 resonances that are included in the resonance model. Different colors
encode different resonances. The same resonance may appear in up to four partial waves
that correspond to different decay modes. These different decay modes are encoded by
different line styles, which are assigned according to the height of the resonance peak. The
line shapes of the resonances differ in the various decay modes because of the different phase
space. (Bottom row) intensity distributions of the 14 non-resonant components included in
the resonance model, one in each wave. Color and line style are defined by the dominant
resonance in the respective wave as shown in the top row. From Ref. [131 ].
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Figure 4.3: Masses and widths of (a) aJ -like and (b) πJ -like resonances extracted in this
analysis (points). The systematic uncertainties are represented by the boxes. The statistical
uncertainties are at least an order of magnitude smaller than the systematic ones and are
hence omitted. Different colors encode different resonances. From Ref. [H3].

estimate the systematic uncertainties. Large effects are observed if we remove the event
selection cuts that ensure exclusivity and suppress backgrounds from other physics processes
(see Sec. 2.3.1 ). Also the selection of the waves that enter the resonance-model fit has large
effects on some resonance parameters. In addition, the choice of the parametrization of
the non-resonant contributions contributes significantly to the systematic uncertainties.
The Deck process (see Sec. 3.3.7 ) is believed to be a dominant source for the non-resonant
contributions. In order to study the dependence of our fit result on the parametrization
of the non-resonant component, we performed a study, where the shapes of the non-
resonant components are determined from a model for the Deck process (see Appendix B in
Ref. [H3]). This is done by generating Monte Carlo pseudodata based on the model for the
Deck process and by performing the same 88-wave PWA fit as for the real data. Instead of
the phenomenological parametrizations for the non-resonant components, we use the square
root of the intensity distributions as obtained from the partial-wave decomposition of the
Deck Monte Carlo data. We will discuss the results from this study in the sections below.
More details of the performed systematic studies are discussed in Sec. V and Appendix D
in Ref. [H3].

As is evident from Fig. 4.3 , the parameters of the various resonances have vastly
different systematic uncertainties. This mainly reflects two aspects of our data: (i) the large
dynamic range of the intensities of the resonances in the selected waves as is illustrated in
Figs. 4.2(a) and 4.2(b) and (ii) the vastly different strength of the non-resonant components
relative to the resonances. As a consequence, we can determine the parameters of the
a2(1320), a1(1420), π2(1670), π(1800), and a4(2040) with high accuracy. In contrast,
the parameters of the a1(1260), π1(1600), a1(1640), and π2(2005) have particularly large
systematic uncertainties. In the in the following Sec. 4.2 , we will discuss selected results
from the partial-wave decomposition and the 14-wave resonance-model fit with a focus on
candidates for exotic states.
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Table 4.5: Resonance parameters with systematic uncertainties as extracted in this analysis.
The statistical uncertainties are at least an order of magnitude smaller than the systematic
ones and are hence omitted. For comparison, the PDG averages from Ref. [13 ] are listed.
For the a2(1320), we quote the PDG average for the 3π decay mode. For the two entries
marked with a “ * ” no PDG average exists. The a1(1420) is listed as “omitted from summary
table” and the quoted mass and width values were estimated in an earlier COMPASS
analysis based on the same data set that is used here but with only three waves in the
resonance-model fit [H2]. The π2(2005) is listed as a “further state” and we quote for
comparison the parameters measured by the BNL E852 experiment [132 ] with the statistical
and systematic uncertainties added in quadrature. From Ref. [H3].

(a) aJ -like resonances

a1(1260) a1(1420) a1(1640) a2(1320) a2(1700) a4(2040)

C
O
M
P
A
S
S Mass

1299 +12
−28 1411 +4

−5 1700 +35
−130 1314.5 +4.0

−3.3 1681 +22
−35 1935 +11

−13[MeV/c2]

Width
380± 80 161 +11

−14 510 +170
−90 106.6 +3.4

−7.0 436 +20
−16 333 +16

−21[MeV/c2]

P
D
G

Mass
1230± 40 1414 +15

−13 1647± 22 1319.0 +1.0
−1.3 1732± 16 1995 +10

−8[MeV/c2]

Width
250 to 600 153 +8

−23 254± 27 105.0 +1.6
−1.9 194± 40 257 +25

−23[MeV/c2]
*

(b) πJ -like resonances

π(1800) π1(1600) π2(1670) π2(1880) π2(2005)

C
O
M
P
A
S
S Mass

1804 +6
−9 1600 +110

−60 1642 +12
−1 1847 +20

−3 1962 +17
−29[MeV/c2]

Width
220 +8

−11 580 +100
−230 311 +12

−23 246 +33
−28 371 +16

−120[MeV/c2]

P
D
G

Mass
1812± 12 1662 +8

−9 1672.2± 3.0 1895± 16 1974± 84[MeV/c2]

Width
208± 12 241± 40 260 ± 9 235± 34 341± 152[MeV/c2]

*
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4.2 Selected results

4.2.1 The π(1800)

The π(1800) has a mass consistent with the second radial excitation of the pion, i.e., the
3 3S1 |qq〉 state. However, the π(1800) exhibits a peculiar decay pattern. It decays mostly
into 3π and experiments have reported decays via f0(500)π, f0(980)π, and f0(1370)π.
This means that for the 3π final state, only decays via JPC = 0++ isobars are observed [13 ].
Surprisingly, the decay into ρ(770)π is not seen [133 ]. Also the decay into f0(1500)π is
not observed in the 3π final state [128 ], whereas it is seen in the ηηπ final state [134 –136 ].
However, in the latter final state the f0(1370)π decay is not observed [136 ].

In the COMPASS data, we observe the cleanest π(1800) signal in the f0(980)π wave,
which contributes about 2.4 % to the total intensity. Figure 4.4(a) shows the intensity
distribution of the 0−+ 0+ f0(980)π S wave in the lowest t′ bin, which exhibits a pronounced
peak at 1.8 GeV/c2 that is accompanied by a rapid phase motion (see Fig. 4.4(b) ). Al-
though in the 0−+ 0+ f0(980)π S wave all final-state particles are in relative S-waves, the
amplitude of this wave is reliably extracted from the data and is robust against changes
of the PWA model. The t′ spectrum of the π(1800), which is shown as blue lines in
Fig. 4.4(c) , has an approximately exponential behavior with a slope parameter value of
8.8 +0.7
−0.3 (GeV/c)−2, which is consistent with a resonance. We obtain resonance parameters

of mπ(1800) = 1804 +6
−9 MeV/c2 and Γπ(1800) = 220 +8

−11 MeV/c2. Our measurement of the
π(1800) parameters is the so far most accurate and in good agreement with the PDG world
average [13 ].

The resonant nature of the f0(980) isobar in the π(1800) decay is confirmed by the
results of the freed-isobar PWA (see Sec. 3.3.8 ). Figure 4.5(a) shows the correlation of
the mπ−π+ intensity distribution of the freed-isobar amplitude with JPC = 0++ quantum
numbers in the 0−+ 0+ [ππ]0++ π S wave with the m3π intensity distribution of this wave.
The distribution exhibits a clear peak at m3π ≈ 1.8 GeV/c2 and mπ−π+ ≈ 1.0 GeV/c2. In
addition, a circular resonance structure appears in the highlighted f0(980) region in the
Argand diagram shown in Fig. 4.5(b) . However, there is a second circular resonance structure
in the highlighted f0(1500) region. The m3π intensity distribution in the f0(1500) region
shown in Fig. 4.5(c) exhibits a clear π(1800) peak (cf. Fig. 4.4(a) ). This result is consistent
with the π(1800) peak observed in the 0−+ 0+ f0(1500)π S wave in the conventional PWA
using the 88-wave PWA model (see Fig. 4.6(a) ). Hence our results show that the π(1800)
decays into f0(1500)π also in the 3π final state as it is expected based on the observation
in the ηηπ final state.

It is worth noting, that the Argand diagram in Fig. 4.5(b) shows no sign of the f0(1370),
which was claimed as a 3π decay mode of the π(1800) by previous experiments [13 ]. This
discrepancy could be due to the fact that branching fractions for f0(500) and f0(1370)
isobars depend strongly on the PWA model, in particular on the parametrizations employed
for the 0++ isobars. Our result from the freed-isobar PWA, which is model-independent
with respect to the parametrization of the 0++ isobars, puts doubts on the existence of the
f0(1370) as a ππ resonance and hence as a possible decay mode for the π(1800).

Our results confirm the strong dominance of 0++ isobars in the π(1800) decays to 3π
and also the small branching fraction for ρ(770)π. The latter can be seen in Fig. 4.6(b) ,
which shows the intensity of the 0−+ 0+ ρ(770)π P wave. The intensity distribution exhibits
a small structure in the 1.8 GeV/c2 region, which could be due to the π(1800), but the
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Figure 4.4: (a) intensity distribution of the 0−+ 0+ f0(980)π S wave; (b) phase of this
wave with respect to the 1++ 0+ ρ(770)π S wave, both in the lowest t′ bin. The data
points represent the result of the partial-wave decomposition in the first analysis stage (see
Secs. 3.3 and 4.1.1 ). The red curve represents the result of the resonance-model fit (see
Secs. 3.4 and 4.1.2 ). The model is the coherent sum of two wave components: π(1800)
resonance (blue curve) and non-resonant contribution (green curve). The extrapolations
of the model and the wave components beyond the fit range are shown in lighter colors.
(c) t′ spectra of the two components in the 0−+ 0+ f0(980)π S wave as given by Eq. (3.81 ).
In each t′ bin, the horizontal line indicates the central value and the horizontal extent of
the line the width of the t′ bin. The statistical uncertainty is represented by the height
of the shaded box around the central value (invisibly small for most bins). The π(1800)
component is shown as blue lines and light blue boxes, and the non-resonant component
as black lines and gray boxes. The red and green curves represent fits using Eq. (3.82 ).
The red and green horizontal lines represent the integrals of the model function over the
t′ bins and can be directly compared to the data. Extrapolations of the model beyond the
fit range are shown in lighter colors. From Ref. [H3].
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Figure 4.5: Amplitude of the 0−+ 0+ [ππ]0++ π S wave with the freed-isobar amplitude
[ππ]0++ in an intermediate t′ bin. (a) two-dimensional representation of the intensity of this
wave as a function of mπ−π+ and m3π. (c) same as Fig. 4.1(b) , but showing the Argand
diagram of the freed-isobar amplitude for the m3π bin at the π(1800) mass that is indicated
by the vertical dashed line in (a) . (c) intensity as a function of m3π summed over a selected
mπ−π+ interval around the f0(1500) that is indicated by the pair of horizontal dashed lines
in (a) . From Ref. [H2].
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Figure 4.6: Intensity distribution, summed over the 11 t′ bins, of (a) the 0−+ 0+ f0(1500)
π S wave and (b) the 0−+ 0+ ρ(770)π P wave. From Ref. [H2].

spectrum is dominated by a broad peak around 1.4 GeV/c2. First attempts to describe this
wave in a resonance-model fit failed, because the model is not able to reproduce the observed
intensity distribution. Improving the resonance model is the topic of future research.

In order to explain the peculiar decay pattern of the π(1800) it was proposed that the
π(1800) is a hybrid state [67 , 137 ] or that the peak at 1.8 GeV/c2 contains actually two
states: a conventional |qq〉 state and a hybrid state [138 ]. A hybrid state in the 1.8 GeV/c2

region would also be consistent with lattice QCD calculations (see Fig. 1.9 ). A measurement
of the ρ(770)π and f2(1270)π branching fractions of the π(1800) in the 3π COMPASS data
could help to distinguish between the models. As mentioned above, this requires further
development of the resonance model.

4.2.2 The π2(1880)

Although the π2(1880) is an established state, the PDG currently does not list any 3π decay
modes of the π2(1880) [13 ]. The 14-wave resonance-model fit contains four 2−+ waves. We
observe a strong π2(1880) signal only in the 2−+ 0+ f2(1270)πD wave. In the ρ(770)π
F -wave and the two f2(1270)π S-waves withM = 0 and 1, the π2(1880) component is small.
The intensity distribution of the f2(1270)π D-wave is shown in Fig. 4.7(a) and exhibits
a peak at about 1.8 GeV/c2 that is described mostly by the π2(1880) component. The
non-resonant contribution is small. There is, however, considerable destructive interference
of the π2(1880) with the π2(1670) and the π2(2005). As is shown in Fig. 4.7(b) , the peak is
associated with a rapid phase motion. In our resonance model, the coupling amplitudes of
the π2(1880) in the three 2−+ waves with M = 0 are constrained by Eq. (3.77 ). Therefore,
the t′ spectra of the π2(1880) are very similar in these three waves. As an example, Fig. 4.7(c) 

shows the t′ spectrum of the π2(1880) in the 2−+ 0+ f2(1270)π S wave. The spectrum is
approximately exponential and has a slope parameter value of 7.8 +0.5

−0.9 (GeV/c)−2, which is
typical for resonances.

In our resonance-model fit, we find the resonance parametersmπ2(1880) = 1847 +20
−3 MeV/c2

and Γπ2(1880) = 246 +33
−28 MeV/c2. While our width value is compatible with the PDG world

average of Γπ2(1880) = 235± 34 MeV/c2, we find a mass value that is 48 MeV/c2 smaller
than the PDG value of mπ2(1880) = 1895± 16 MeV/c2 [13 ]. The four measurements listed
by the PDG for the π2(1880) fall into two subsets: (i) two measurements with lower masses
mπ2(1880) ≤ 1880 MeV/c2 and smaller widths Γπ2(1880) ≤ 255 MeV/c2 [132 , 135 ] that are
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Figure 4.7: (a) intensity distribution of the 2−+ 0+ f2(1270)πD wave; (b) phase of this wave
with respect to the 1++ 0+ ρ(770)π S wave, both in the lowest t′ bin. The curves represent
the result of the resonance-model fit. The model and the wave components are represented
as in Fig. 4.4 . The dominant resonant component is the π2(1880); the contributions from
π2(1670) and π2(2005) are smaller. (c) similar to Fig. 4.4(c) , but showing the t′ spectrum
of the π2(1880) in the 2−+ 0+ f2(1270)π S wave. From Ref. [H3].

compatible with our estimate of the π2(1880) parameters, and (ii) two measurements with
larger masses mπ2(1880) ≥ 1929 MeV/c2 and larger widths Γπ2(1880) ≥ 306 MeV/c2 [136 ,139 ]
that are better compatible with our estimates for the π2(2005) parameters (see Table 4.5 ).

In the freed-isobar PWA (see Sec. 3.3.8 ), we also studied the 2−+ wave with a freed
dynamical amplitude for the 0++ isobars. Figure 4.8(a) shows the correlation of the
mπ−π+ intensity distribution of the freed-isobar amplitude with JPC = 0++ quantum
numbers in the 2−+ 0+ [ππ]0++ πD wave with the m3π intensity distribution of this wave.
In this distribution, we observe a clear peak slightly below m3π = 1.9 GeV/c2 and at
mπ−π+ ≈ 1.0 GeV/c2. The π2(1880) peak is also clearly visible in the m3π intensity
distribution in the f0(980) region that is shown in Fig. 4.8(b) . The mπ−π+ intensity
distribution at the π2(1880) peak position is shown in Fig. 4.9(a) and exhibits a narrow
peak of the f0(980). The resonant nature of this peak is confirmed by the corresponding
highlighted circular structure in the Argand diagram in Fig. 4.9(b) . However, the Argand
diagram exhibits an additional smaller circular structure in the highlighted f0(1500) region,
which corresponds to a small peak in the mπ−π+ intensity distribution. Our freed-isobar
PWA result hence establishes two additional 3π decay modes of the π2(1880), namely
f0(980)π and f0(1500)π. The latter one is consistent with the f0(1500)π decay mode seen
in the ηηπ final state [135 ].

The π2(1880) is an interesting state, because its mass is too close to that of the π2(1670)
ground state in order to be the radial excitation of the latter, i.e., the 2 1D2 state. The
π2(2005) is a much more plausible candidate for the 2 1D2 state. Hence the π2(1880) could
be a supernumerary state. The authors of Refs. [137 , 138 ] propose it as a hybrid candidate.
This is also consistent with the predictions from lattice QCD calculations (see Fig. 1.9 ). The
authors of Ref. [67 ] predict for a hybrid meson that the f2(1270)π D-wave decay mode is
strongly suppressed with respect to the f2(1270)π S-wave decay. It is therefore interesting
to compare the π2(1880) signals in the 2−+ 0+ f2(1270)π S and 2−+ 0+ f2(1270)πD waves.
Although the interference pattern of the model components in the f2(1270)π D-wave is
strongly model-dependent and hence the π2(1880) yield not well determined, we can still
conclude that the π2(1880) signal in the f2(1270)π S-wave is suppressed with respect to
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Figure 4.8: Amplitude of the 2−+ 0+ [ππ]0++ πD wave with the freed-isobar amplitude
[ππ]0++ in an intermediate t′ bin. (a) two-dimensional representation of the intensity of
this wave as a function of mπ−π+ and m3π. (b) and (c) intensity as a function of m3π

summed over selected mπ−π+ intervals around (b) the f0(980) and (c) the f0(1500) that
are indicated by the pairs of horizontal dashed lines in (a) . From Ref. [H2].
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Figure 4.9: (a) and (b) amplitude of the 2−+ 0+ [ππ]0++ πD wave with the freed-isobar
amplitude [ππ]0++ in an intermediate t′ bin. (a) intensity as a function of mπ−π+ . (b) same
as Fig. 4.1(b) , but showing the Argand diagram of the freed-isobar amplitude for the
m3π bin at the π2(1880) mass that is indicated by the vertical dashed line in Fig. 4.8(a) .
(c) intensity distribution of the 2−+ 0+ f2(1270)π S wave in the lowest t′ bin. The curves
represent the result of the resonance-model fit. The model and the wave components are
represented as in Fig. 4.4 . From Ref. [H2].
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the one in the D-wave by about an order of magnitude (see Fig. 4.9(c) ). This means that
the observed decay pattern is exactly opposite to the one predicted in Ref. [67 ] for a hybrid
state. Our results therefore challenge the hybrid interpretation of the π2(1880).

4.2.3 The a1(1260)

The a1(1260) is the isovector JPC = 1++ ground state and its existence is well established.
The PDG lists 23 measurements of the a1(1260) mass and 26 of the a1(1260) width,[a]  the
earliest one being more than 40 years old [13 ]. Still, the parameters of the a1(1260) are not
well known. Depending on the analyzed process and the employed parametrizations, the
values of the a1(1260) parameters differ substantially [140 ]. The reported values for the
a1(1260) parameters cover wide ranges. The mass values range from 1041± 13 MeV/c2 [141 ]
to 1331±10 (stat.)±3 (sys.)MeV/c2 [142 ] and the width values from 230± 50 MeV/c2 [141 ]
to 814 ± 36 (stat.) ± 13 (sys.)MeV/c2 [142 ]. Due to these large spreads, the PDG does not
perform an average but provides only an estimate of ma1(1260) = 1230± 40 MeV/c2 and
Γa1(1260) = 250 to 600 MeV/c2 [13 ].

The a1(1260) decays mainly to 3π. The ρ(770)π S-wave decay mode is the most
dominant one with a branching fraction of 60.19 % [142 ]. The branching fractions into
σ π and f0(1370)π are also large, whereas those into ρ(770)π D-wave and f2(1270)π
are small. This is consistent with our data, where the a1(1260) in the 1++ 0+ ρ(770)π S
wave is the by far largest resonance signal (see Fig. 4.10(a) ). Hence the 1++ 0+ ρ(770)
π S wave plays a special role in the 14-wave resonance-model fit. Due to the extremely
small statistical uncertainties of the 1++ 0+ ρ(770)π S amplitude, the resonance model has
difficulties to describe all details of the data. This applies in particular to the peak region
in the intensity distribution as shown in Fig. 4.10(b) . The intensity distributions of the
ρ(770)π S-wave in the 11 t′ bins and the real and imaginary parts of the interference terms
of this wave contribute together already about 25 % to the total χ2 value of the model (see
Eq. (3.87 )). These deviations of the model from the data induce a multi-modal behavior of
the minimization procedure and large systematic uncertainties on the resonance parameters
of the a1(1260) and other resonances.

One of the challenges in describing the 1++ 0+ ρ(770)π S intensity distribution is that
the peak in the a1(1260) region changes its position and shape as a function of t′. This
behavior is illustrated in Figs. 4.11(a) and 4.11(b) . At low t′, the peak sits at about
1.15 GeV/c2 and shifts to higher masses with increasing t′ up to about 1.30 GeV/c2 in the
highest t′ bin. In addition, the peak narrows significantly. This demonstrates the necessity
to perform a t′-resolved analysis. It is also a sign that the contribution from non-resonant
processes to this partial-wave amplitude is large. Indeed, the fit finds a non-resonant
component that is comparable in strength to the a1(1260) in the low and intermediate
t′ range and even dominant at high t′. The t′ spectrum of the a1(1260) in the 1++ 0+

ρ(770)π S wave exhibits an approximately exponential dependence on t′ (see Fig. 4.11(c) ).
However, the slope parameter has a value of 11.8 +0.9

−4.2 GeV/c2, which is larger than what
one would expect for a resonance. The value is similar to the slope parameter value of the
non-resonant component in the ρ(770)π S-wave. This might be a hint that the model is
not able to completely separate the a1(1260) from the non-resonant component.

Since the 1++ 0+ ρ(770)π S wave has a large contribution from non-resonant processes,
the fit result depends strongly on the parametrization employed for the non-resonant

[a]Values from reviews of previous data were excluded from this counting.
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Figure 4.10: Intensity distribution of the 1++ 0+ ρ(770)π S wave summed over the 11 t′ bins.
The curves represent the result of the resonance-model fit. The model and the wave
components are represented as in Fig. 4.4 . The dominant resonant component is the
a1(1260); the a1(1640) is barely visible. (b) shows a zoomed view of (a) . From Ref. [H3].
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Figure 4.11: Intensity distribution of the 1++ 0+ ρ(770)π S wave (a) in the lowest and
(b) in the highest t′ bin. The curves represent the result of the resonance-model fit. The
model and the wave components are represented as in Fig. 4.4 . The dominant resonant
component is the a1(1260); the a1(1640) is barely visible. (c) similar to Fig. 4.4(c) , but
showing the t′ spectrum of the a1(1260) in the 1++ 0+ ρ(770)π S wave. From Ref. [H3].
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Figure 4.12: Similar to Figs. 4.11(a) and 4.11(b) . The dashed curves represent the result
of a resonance-model fit where the parametrization of the non-resonant components is
replaced by the square root of the intensity distribution as obtained from the partial-wave
decomposition of Deck Monte Carlo data. From Ref. [H3].

component. We study this model dependence by performing a resonance-model fit, where
the parametrization of the non-resonant components is replaced by the square root of the
intensity distribution as obtained from the partial-wave decomposition of Deck Monte Carlo
data (see Sec. 4.1.2 ). The result of this fit is shown as dashed curves in Fig. 4.12 . The
model describes the 1++ 0+ ρ(770)π S intensity distributions well. At high t′, the peak
is described even better than in the main fit with the empirical parametrization of the
non-resonant component (see Fig. 4.12(b) ). The shapes of the non-resonant component in
the various t′ bins are similar to those in the main fit, but the yields are much smaller. In
turn, the a1(1260) yields are significantly larger, in particular at high t′.

From the fit, we extract the resonance parameters ma1(1260) = 1299 +12
−28 MeV/c2 and

Γa1(1260) = 380± 80 MeV/c2. The large systematic uncertainties are mostly due to the
issues discussed above. Our mass value is compatible with the PDG estimate and our width
value lies close to the center of the range estimated by the PDG.

4.2.4 The a1(1420)

The a1(1420) is a surprising resonance-like signal that we discovered in the 1++ 0+ f0(980)
π P wave [H1]. This is a peculiar decay mode. Only few light mesons are known to decay
into f0(980), among them only two isovector mesons, the π(1800) and the π2(1880) [13 ]
(see Secs. 4.2.1 and 4.2.2 ). Hence the 88-wave PWA model includes only four waves with
an f0(980) isobar (see Table 4.2 ), two of which, the 0−+ 0+ and the 1++ 0+ wave, are
included in the resonance-model fit. The coherent sum of the four f0(980) waves, which
have all positive reflectivity, contributes only 3.3 % to the total intensity. Most of this
intensity is due to the 0−+ 0+ f0(980)π S wave (see Sec. 4.2.1 ). The 1++ 0+ f0(980)π P
wave contributes only 0.3 % to the total intensity. This wave exhibits a narrow peak at
about 1.4 GeV/c2 (see Fig. 4.13(b) ) that is associated by a rapid phase motion of about
180° with respect to other waves (see, e.g., Fig. 4.13(c) ). Both features are robust against
changes of the PWA model and other systematic effects (see Sec. IV F and Appendix B in
Ref. [H2]).

The a1(1420) signal also appears in the freed-isobar PWA (see Sec. 3.3.8 ). Figure 4.14(a) 

shows the correlation of the mπ−π+ intensity distribution of the freed-isobar amplitude
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Figure 4.13: (a) and (b) intensity distribution of the 1++ 0+ f0(980)π P wave summed over
the 11 t′ bins; (c) phase of this wave with respect to the 1++ 0+ ρ(770)π S wave in the
lowest t′ bin. The curves represent the result of three resonance-model fits. The model and
the wave components are represented as in Fig. 4.4 except that the blue curves represent
the a1(1420). (a) shows the result of the 3-wave fit from Ref. [H1], (b) and (c) the result
of the 14-wave fit from Ref. [H3] (continuous curves). The dashed curves in (b) and (c) 

represent the result of a fit, where the a1(1420) component is removed from the resonance
model. The dashed red curves correspond therefore to the non-resonant component. From
Ref. [H3].

with JPC = 0++ quantum numbers in the 1++ 0+ [ππ]0++ π P wave with the m3π intensity
distribution of this wave. A clear peak is found at m3π ≈ 1.4 GeV/c2 and mπ−π+ ≈
1.0 GeV/c2. The m3π intensity distribution in the f0(980) region, as shown in Fig. 4.14(b) ,
exhibits a clear a1(1420) peak (cf. Fig. 4.13(b) ). The resonant nature of the π−π+ subsystem
at the a1(1420) mass is proven by the Argand diagram in Fig. 4.14(c) , which exhibits a
clear circular resonance structure in the highlighted f0(980) region. The results from the
freed-isobar PWA confirm the a1(1420) signal and prove in particular that it is not an
artificial structure caused by the parametrizations that are used for the JPC = 0++ isobars
in the conventional 88-wave PWA fit.

The resonance features of the a1(1420) signal were first established in a much simpler
resonance-model fit that included only three waves [H1]. The estimated Breit-Wigner
parameters ma1(1420) = 1414 +15

−13 MeV/c2 and Γa1(1420) = 153 +8
−23 MeV/c2 from the 3-

wave fit are consistent with the parameters ma1(1420) = 1411 +4
−5 MeV/c2 and Γa1(1420) =

161 +11
−14 MeV/c2 that are obtained in the 14-wave fit. This is illustrated in Figs. 4.13(a) 

and 4.13(b) , which show the intensity distribution of the 1++ 0+ f0(980)π P wave summed
over the 11 t′ bins together with the two fit results. In both cases, the Breit-Wigner amplitude
describes the a1(1420) peak well. This is also true for the observed phase motions of the 1++

0+ f0(980)π P wave (see, e.g., Fig. 4.13(c) ). Another feature of the data that supports the
resonance interpretation of the a1(1420) signal is the approximately exponential behavior
of its t′ spectrum (see Fig. 4.15 ) with a slope parameter of 9.5 +0.6

−1.0 (GeV/c)−2, which is a
value in the range that is expected for resonances.

The interpretation of the a1(1420) signal is still unclear. It is too close in mass and
too narrow in order to be the radial excitation of the ground-state a1(1260), i.e., the 2 3P 1

state. Also the fact that the a1(1420) signal is about 20 times smaller than that of the
a1(1260) in the 1++ 0+ ρ(770)π S wave speaks against a |qq〉 interpretation. It is peculiar
that we find the a1(1420) signal only in the f0(980)π decay mode. The f0(980) is known
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Figure 4.14: Amplitude of the 1++ 0+ [ππ]0++ π P wave with the freed-isobar amplitude
[ππ]0++ in an intermediate t′ bin. (a) two-dimensional representation of the intensity of
this wave as a function of mπ−π+ and m3π. (b) intensity as a function of m3π summed over
a selected mπ−π+ interval around the f0(980) that is indicated by the pair of horizontal
dashed lines in (a) . (c) same as Fig. 4.1(b) , but showing the Argand diagram of the
freed-isobar amplitude for the m3π bin at the a1(1420) mass that is indicated by the vertical
dashed line in (a) . From Ref. [H2].
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to have a large ss component and, as discussed in Sec. 1.6.3 , is interpreted by some models
as a tetraquark, a molecular state, or a mixture of both [61 ]. Another interesting aspect of
the a1(1420) is that its mass is suspiciously close to the KK∗ threshold.

Several interpretations have been proposed for the a1(1420). It could be the isospin
partner of the f1(1420). This is supported by the mass of the a1(1420) and by its strong
coupling to f0(980). The much smaller width of the f1(1420) of only 54.9± 2.6 MeV/c2 can
be explained by its strong coupling to KK∗, which has a much smaller phase space than the
decay a1(1420)→ f0(980)π. The molecular model for the f1(1420) proposed in Ref. [143 ]
could possibly be extended to the isovector case. Isovector [nn] [nn] and [n s] [n s] states
with n = u or d were predicted in the 1.4 GeV/c2 mass range in quark-model calculations
that include tetraquark states [144 ]. The a1(1420) signal has also been described as a
mixed state of a qq and a tetraquark component [145 ] and as a tetraquark with mixed
flavor symmetry [146 ]. In addition, calculations based on the AdS/QCD approach find
isovector tetraquarks with masses similar to that of the a1(1420) [147 , 148 ]. The authors
of Ref. [149 ] studied the two-body decay rates for the modes a1(1420) → f0(980)π and
a1(1420) → KK∗(892) for four-quark configurations using the covariant confined quark
model. They found that a molecular configuration is preferred over a compact diquark-
antidiquark state.

In addition to the resonance interpretations discussed above, other explanations do not
require an additional a1 resonance. Basdevant and Berger proposed resonant rescattering
corrections in the Deck process as an explanation [150 , 151 ], whereas the authors of
Ref. [42 ] suggested an anomalous triangle singularity in the rescattering diagram for
a1(1260) → KK∗(892) → KKπ → f0(980)π, which is shown in Fig. 4.16 . The results
of the latter calculation were confirmed in Ref. [43 ]. Preliminary studies show that the
amplitude for the triangle diagram describes the data equally well as the Breit-Wigner
model. In the case of a triangle singularity, the production rate of the a1(1420) would
be completely determined by the production rate of the a1(1260). Therefore, the slope
parameters of the two wave components should be equal. Unfortunately, in our analysis
the systematic uncertainties of the slope parameters are too large in order to draw any
conclusion.[b]  Hence more detailed studies are still needed in order to distinguish between
different models for the a1(1420).

4.2.5 The π1(1600)

As mentioned in Sec. 1.6.3 , the spin-exotic π1(1600) is a controversial state. The 88-wave
set includes one partial wave with JPC = 1−+ and positive reflectivity. This 1−+ 1+ ρ(770)
π P wave contributes 0.8 % to the total intensity. As shown in Figs. 4.17(a) and 4.17(b) ,
the shape of the intensity distribution of this wave has a surprisingly strong dependence
on t′. At low t′, the intensity distribution exhibits a broad structure with a maximum at
about 1.2 GeV/c2 (see Fig. 4.17(a) ). This structure becomes narrower with increasing t′

and the maximum moves to higher masses, such that a peak emerges at about 1.6 GeV/c2

in the two highest t′ bins (see Fig. 4.17(b) ). This t′ dependence of the intensity distribution
illustrates the necessity for performing the analysis in narrow t′ bins. It also indicates that,
in addition to potential resonant components, this wave contains large contributions from
non-resonant processes. This is consistent with the fact that we do not observe large phase
motions with respect to other waves in the 1.6 GeV/c2 region (see, e.g., Fig. 4.17(c) ).

[b]The a1(1260) in the dominant 1++ 0+ ρ(770)π S wave has a slope parameter of 11.8 +0.9
−4.2 (GeV/c)−2.
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Figure 4.17: (a) and (b) intensity distribution of the 1−+ 1+ ρ(770)π P wave in the lowest
and highest t′ bins, respectively. (c) phase of the this wave relative to the 1++ 0+ ρ(770)π S
wave in the highest t′ bin. The curves represent the result of two resonance-model fits. The
model and the wave components are represented as in Fig. 4.4 except that the blue curves
represent the π1(1600). The result of the 14-wave resonance-model fit is represented by
the continuous curves. The dashed curves represent the result of a fit, where the π1(1600)
component is removed from the resonance model. The dashed red curves correspond
therefore to the non-resonant component. From Ref. [H3].

The strong modulation of the shape of the 1−+ intensity distribution with t′ is successfully
reproduced by the resonance model as a t′-dependent interference of a π1(1600) Breit-Wigner
amplitude as in Eq. (1.23 ) and a non-resonant component parametrized using Eq. (3.79 ).
The dashed curves in Fig. 4.17 represent the result of a fit, where the π1(1600) resonance
component is omitted from the model so that only the non-resonant component remains
in this wave. Although the intensity distribution is still roughly reproduced by the model
at low t′ (see Fig. 4.17(a) ), it fails to reproduce the phases (see, e.g., Fig. 4.17(c) ) and
the intensity distributions at higher t′ (see Fig. 4.17(b) ). This demonstrates that the data
require a resonant component in the 1−+ wave.

The shape of the non-resonant component and its intensity and phase relative to the
π1(1600) component change strongly with t′. The latter is illustrated by Fig. 4.18(a) , which
shows that the coupling phase of the non-resonant component with respect to the π1(1600)
(see Eq. (3.83 )) changes by more than 180° over the analyzed t′ range. In contrast, the
coupling phase of the π1(1600) component behaves similar to that of other resonances in
the model (see Fig. 4.18(b) ).

Due to the large contribution of the non-resonant component to the 1−+ intensity,
especially at low t′, the fit result depends strongly on the parametrization used for the non-
resonant component. This model dependence is studied by replacing the parametrizations
of the non-resonant components by the square root of the intensity distribution as obtained
from the partial-wave decomposition of Deck Monte Carlo data (see Sec. 4.1.2 ). The result
of this study is represented by the dashed curves in Fig. 4.19 . Compared to the main fit
with the empirical parametrizations of the non-resonant components, the description of
the 1−+ amplitude is only slightly worse. The non-resonant component has a qualitatively
similar dependence on t′ and has shapes similar to those in the main fit. Only in the
highest t′ bin, the non-resonant component has a different, actually more plausible shape
than found in the main fit. In the Deck study, the yield of the non-resonant component
is significantly lower whereas the yield of the π1(1600) is significantly higher than in the
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Figure 4.18: (a) t′ dependence of the coupling phase of the non-resonant component (black
lines) in the 1−+ 1+ ρ(770)π P wave relative to the π1(1600) (see Eq. (3.83 )). The magnitude
of systematic effects is illustrated qualitatively by two sets of dashed lines with shaded
area in between (see Sec. VII A in Ref. [H3]). (b) t′ dependence of the coupling phases of
the 11 resonance components in the fit model with respect to the π2(1670). The coupling
phases are shown for the resonance components in the dominant wave of the respective
JPC sector: 0−+ 0+ f0(980)π S, 1++ 0+ ρ(770)π S, 1−+ 1+ ρ(770)π P , 2++ 1+ ρ(770)πD,
2−+ 0+ f2(1270)π S, and 4++ 1+ ρ(770)πG. The only exception is the a1(1420), which
appears only in the 1++ 0+ f0(980)π P wave. The width of the horizontal lines represents
the statistical uncertainty. The systematic uncertainty is not shown. From Ref. [H3].

main fit. This shows that in the employed resonance model, the π1(1600) yield has a large
systematic uncertainty.

The t′ spectrum of the non-resonant component falls steeply with t′ and has an ex-
ceptionally large slope parameter value of 19.1 +1.4

−4.7 (GeV/c)−2 (black lines in Fig. 4.20(a) ).
Hence the non-resonant component dominates the 1−+ intensity at low t′. Only for
t′ & 0.3 (GeV/c)2, the intensity of the π1(1600) component (black lines in Fig. 4.20(a) )
becomes larger than that of the non-resonant component. The simple model in Eq. (3.82 )
is not able to reproduce the downturn of the π1(1600) t′ spectrum toward low t′. However,
this might be an artificial effect caused by an inappropriate description of the non-resonant
component by our parametrizations. It seems that the fit is not be able to completely
separate the π1(1600) from the non-resonant component, which dominates at low t′. This
hypothesis is supported by the study discussed above, where the shape of the non-resonant
component is determined from a model of the Deck process (see Fig. 4.20(b) ). In this study,
the π1(1600) has a larger yield at low t′ so that the resulting t′ spectrum of the π1(1600)
is well described by the exponential model in Eq. (3.82 ) and has a slope parameter of
7.3 (GeV/c)−2, which lies in the range expected for resonances.

Not only the yield of the π1(1600) is susceptible to systematic effects but also its Breit-
Wigner parameters. The resonance-model fit results in π1(1600) Breit-Wigner parameters of
mπ1(1600) = 1600 +110

−60 MeV/c2 and Γπ1(1600) = 580 +100
−230 MeV/c2 that have large systematic

uncertainties. This mainly reflects the limitations of our current analysis model. While our
mass value is compatible with the PDG world average [13 ]. Our measured width is larger
than the PDG value of 241± 40 MeV/c2.
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Figure 4.19: Similar to Fig. 4.17 , except that the phase is shown for the lowest t′ bin. Here,
the dashed curves represent the result of a resonance-model fit, where the parametrization
of the non-resonant components is replaced by the square root of the intensity distribution
as obtained from the partial-wave decomposition of Deck Monte Carlo data. From Ref. [H3].
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Figure 4.20: Similar to Fig. 4.4(c) , but showing the t′ spectra of the two components in
the 1−+ 1+ ρ(770)π P wave. The π1(1600) component is shown as blue lines and light blue
boxes, and the non-resonant component as black lines and gray boxes. (a) result of the
main fit. (b) result of a fit, in which the parametrization of the non-resonant amplitude is
replaced by the square root of the intensity distribution as obtained from the partial-wave
decomposition of Deck Monte Carlo data. From Ref. [H3].
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4.2.5.1 Comparison with previous analyses

As already mentioned in Sec. 1.6.3 , the π1(1600) is the best established of the three known
spin-exotic light-meson candidates. It has been observed by several experiments in various
decay modes. The COMPASS, E852, and VES experiments have studied high-energy
inelastic scattering reactions of pion beams on nuclear targets and have reported signals in
the ρ(770)π [128 ,152 ,153 ], η′(958)π [154 ,155 ], b1(1235)π [132 ,155 ], and f1(1285)π [139 ,155 ]
decay modes. In an analysis of Crystal Barrel data on the reaction pp → ωπ+π−π0, the
authors of Ref. [156 ] also reported evidence for the π1(1600) in the b1(1235)π decay mode.
The CLEO-c experiment has studied the decays of the charmonium state χc1 to ηπ+π− and
η′π+π− [157 ]. They found evidence for an exotic signal in the η′ π subsystem consistent
with the π1(1600) signal seen in other production mechanisms. A recent summary of all
measurements can be found in Ref. [45 ].

Although π1(1600) signals were claimed in various final states measured by several
experiments, in most of these analyses the resonance interpretation of the π1(1600) re-
lies on model assumptions and alternative explanations could not be ruled out com-
pletely. Hence the experimental situation is actually rather unclear. Particularly con-
troversial is the π1(1600) signal in the ρ(770)π channel. The BNL E852 experiment
used an 18 GeV/c pion beam incident on a proton target and was the first to claim a
signal for π1(1600) → ρ(770)π with mπ1(1600) = 1593 ± 8 (stat.) +29

−47 (sys.)MeV/c2 and
Γπ1(1600) = 168 ±20 (stat.) +150

−12 (sys.)MeV/c2 based on a PWA performed in the kinematic
range 0.1 < t′ < 1.0 (GeV/c)2 [128 , 152 ]. The VES experiment used a 37 GeV/c pion
beam on a solid-beryllium target and performed the PWA in the kinematic range 0.03 < t′

< 1.0 (GeV/c)2 [158 ]. They also observed significant intensity in the 1−+ 1+ ρ(770)π P wave
(see Fig. 4.21(a) ). However, they found that the intensity distribution in this wave depends
significantly on the PWA model and hence concluded that the wave is contaminated by
intensity that leaks from the dominant 1++ waves into the 1−+ wave. They neither excluded
nor claimed the existence of the π1(1600). However, a later analysis of a BNL E852 data
sample that was about an order or magnitude larger than the one used in Refs. [128 , 152 ]
came to the conclusion that there is no π1(1600) signal in the ρ(770)π channel [159 ]. The
authors of Ref. [159 ] performed systematic studies to find the optimal wave set and found
that in the original BNL E852 analysis in Refs. [128 , 152 ] a number of important waves
were missing in the PWA model. When they included these waves in the PWA model, the
peak at about 1.6 GeV/c2 in the 1−+ 1+ ρ(770)π P wave disappeared. However, the slow
phase motions with respect to other waves remained. This is shown in Fig. 4.21(c) for the
kinematic range 0.18 < t′ < 0.23 (GeV/c)2, where the “low wave” points are the result of a
PWA fit performed with the smaller wave set from Refs. [128 ,152 ] and the “high wave” points
are the result of a PWA fit performed with the larger wave set from Ref. [159 ]. Based on
this observation, the authors of Ref. [159 ] concluded that there is no evidence for a π1(1600)
in this wave. For the discussion below it is important to note that this conclusion was based
on a PWA performed in the range t′ < 0.53 (GeV/c)2. In contrast, the first analysis of data
from the COMPASS experiment using a 190 GeV/c pion beam on a solid-lead target showed
again evidence for a π1(1600) signal with mπ1(1600) = 1660 ± 10 (stat.) +0

−64 (sys.)MeV/c2

and Γπ1(1600) = 269 ±21 (stat.) +42
−64 (sys.)MeV/c2 [153 ] although the PWA model contained

even more partial waves than the one used in Ref. [159 ] (see Fig. 4.21(e) ).
The results from our analysis as presented in Sec. 4.2.5 explain the seemingly contradic-

tory experimental findings of the BNL E852, VES, and COMPASS experiments concerning
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Figure 4.21: Comparison of intensity distributions of the 1−+ 1+ ρ(770)π P wave obtained
by different experiments measuring the diffractive dissociation of a pion beam into 3π.
(a) result from an analysis of VES data. From Ref. [158 ]. (b) result from an analysis
of COMPASS data using a proton target; intensity summed over the 11 t′ bins. From
Ref. [H3]. (c) results from an analysis of BNL E852 data using two different PWA models.
From Ref. [159 ]. (d) results from an analysis of COMPASS proton-target data using the
same two PWA models as in (c) . The 21-wave set corresponds to “low wave”, the 36-wave
set to “high wave”. From Ref. [73 ]. (e) and (f)  results from analyses of COMPASS data
(e) using a solid-lead target and integrating over 0.1 < t′ < 1.0 (GeV/c)2 (from Ref. [153 ])
and (f) using a proton target, second highest t′ bin (from Ref. [H3]).
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the existence of a π1(1600) resonance in the ρ(770)π P -wave. Figure 4.21(b) shows that
our intensity distribution of the 1−+ 1+ ρ(770)π P wave summed over the 11 t′ bins is very
similar to the one found in the VES analysis [158 ] (cf. Fig. 4.21(a) ). In Fig. 4.21(d) , we
show the intensity of the 1−+ 1+ ρ(770)π P wave in the range 0.18 < t′ < 0.23 (GeV/c)2

that is obtained if we perform the PWA using the same two wave sets as in Ref. [159 ].
The similarity of the results with Fig. 4.21(c) confirms that the π1(1600) signal in the
original BNL E852 analysis in Refs. [128 , 152 ] was mostly an artificial structure caused
by leakage of intensity from 2−+ waves that were missing from the PWA model. We also
confirm the finding of Refs. [128 , 152 ] that in the region t′ . 0.5 (GeV/c)2 there is only
weak evidence for the π1(1600). However, our data show that a resonance-like signal is
required to describe the data in the region t′ & 0.5 (GeV/c)2 (see Figs. 4.17(b) and 4.17(c) ).
This t′ region was excluded from the analysis in Ref. [159 ]. In the COMPASS data taken
with a solid-lead target, the contribution of the non-resonant component is much smaller
than in the proton-target data. The t′-integrated lead-target data actually resemble the
high-t′ region of the proton data (compare Figs. 4.21(e) and 4.21(f) ). So far, no explanation
has been found for this effect.

Another mystery is that the π1(1600) does not seem to be produced in photon-induced
reactions. The CLAS experiment did not observe a π1(1600) signal in the charge-exchange
reaction γ+p→ π+π+π−+(n)miss [160 ,161 ] (see Fig. 4.22(a) ). This finding is supported by
an analysis of COMPASS data of the reaction π−+Pb→ π−π−π+ +Pb at reduced squared
four-momentum transfer t′ < 10−3 GeV2, where photon exchange is dominant [162 ] (see
Fig. 4.22(b) ). In both processes, the dominant underlying reaction is γ + π− → π−π−π+.
Since we observe the π1(1600) to decay into ρ(770)π, it should couple to γ π via vector-
meson dominance. In addition, the π1(1600) is a hybrid candidate and is compatible with
the lightest 1−+ hybrid state predicted by lattice QCD (see Sec. 1.6.3 and Fig. 1.9 ). However,
the production of hybrids is believed to be enhanced in photo-induced reactions [163 , 164 ].
This is mainly because the photon fluctuates into a quark-antiquark pair with JPCqq = 1−−

quantum numbers. Lattice QCD (see Sec. 1.6.3 ) and also many models predict that the
lowest excitation of the gluon field in a hybrid meson has JPCg = 1+− quantum numbers.
Hence the qq pair and the gluonic excitation can directly couple to spin-exotic JPC = 1−+

quantum numbers, which is not the case for pion-induced reactions. An interesting feature of
the photo-production data is that the intensity vanishes nearly completely in the 1.6 GeV/c2

region. This could be a sign of destructive interference of a π1(1600) with non-resonant
components. This hypothesis could be verified by performing a resonance-model fit on the
existing data. In the future, much more precise photo-production data from the GlueX
experiment at JLab will help to clarify the situation.
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(a) (b)

Figure 4.22: Intensities of the 1−+ 1+ ρ(770)π P wave produced in γ + π− → π−π−π+

reactions. (a) result from the CLAS experiment, where the process is embedded into
γ + p→ π+π+π− + (n)miss. From Ref. [160 ]. (b) result from the COMPASS experiment,
where the process is embedded into π− + Pb→ π−π−π+ + Pb. From Ref. [162 ].
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Chapter 5

Conclusions and outlook

In this work, we have performed the so far most comprehensive and most detailed partial-
wave analysis of the 3π final state. The analysis is based on the currently largest π−π−π+

data sample of 46× 106 exclusive events of the diffractive dissociation reaction π− + p→
π−π−π+ + p that was acquired by the COMPASS experiment.

The analysis was performed in two stages. In the first stage, the data are decomposed
into partial-wave amplitudes with well-defined quantum numbers. This decomposition
is based on a PWA model with 88 partial waves: 80 waves with positive reflectivity, 7
with negative reflectivity, and one incoherent wave that is isotropic in the phase space and
represents uncorrelated three pions (see Table 4.2 ). This is the largest wave set used so far
in a PWA of 3π final states. The partial-wave decomposition is performed independently in
100 bins of the π−π−π+ invariant mass m3π in the range 0.5 < m3π < 2.5 GeV/c2. Each
m3π bin is subdivided further into 11 bins of the reduced squared four-momentum transfer t′

in the range 0.1 < t′ < 1.0 (GeV/c)2.
In the second stage of the analysis a Breit-Wigner resonance-model fit was performed for

a subset of 14 selected partial waves with JPC = 0−+, 1++, 2++, 2−+, 4++, and spin-exotic
1−+ quantum numbers. The 14 waves are described simultaneously using 11 resonances
taking into account all mutual interference terms. Compared to previous analyses of the
3π final state, this is the by far largest wave set that is consistently described in a single
resonance-model fit. We have measured the masses and widths of the aJ -like resonances:
a1(1260), a1(1640), a2(1320), a2(1700), a4(2040), and of the resonance-like a1(1420) (see
Fig. 4.3(a) and Table 4.5 ); and those of the πJ -like resonances: π(1800), π2(1670), π2(1880),
π2(2005), and the spin-exotic π1(1600) (see Fig. 4.3(b) and Table 4.5 ). Extensive studies
were performed in order to estimate the systematic uncertainties.

The parameters of a1(1420), a2(1320), a4(2040), π(1800), and π2(1670) are reliably ex-
tracted with comparatively small uncertainties. The consistency of the a1(1420) signal with
a Breit-Wigner amplitude is confirmed. The a1(1420) parameter values are consistent with
those from a simpler analysis of the same data in Ref. [H1], but have smaller uncertainties.
The a2(1320) and π(1800) parameter values are consistent with previous measurements.
The measured values of the a4(2040) mass and width are the most accurate so far. We
find a lower a4(2040) mass and a larger width than some of the previous experiments. The
decay of the π2(1880) into 3π is demonstrated for the first time. The π2(1880) is found
to decay into f2(1270)π D-wave, f0(980)π D-wave, and f0(1500)π D-wave. Its coupling
to the ρ(770)π P -wave and f2(1270)π S-wave decay modes is found to be small. The
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measured π2(1880) width is consistent with the world average, the mass is found to be
smaller.

The data require a spin-exotic resonance, the π1(1600), in the 1−+ 1+ ρ(770)π P wave.
The t′-resolved analysis allows us to establish for the first time that a significant π1(1600)
signal appears only for t′ & 0.5 (GeV/c)2, whereas at low t′ the intensity of the spin-exotic
wave is saturated by Deck-like non-resonant contributions. The π1(1600) parameters have
large uncertainties. The measured width is significantly larger than that observed in
previous experiments including our own result from the data taken with a solid-lead target,
but it has a large systematic uncertainty toward smaller values. In the future, it would
be interesting to study potential π1(1600) signals in COMPASS data in the π−π0π0, π− η,
π− η′(958), π−π0ω(782), and π−f1(1285) final states.

The resonance-model fit is based on a novel approach, which, for the first time, takes
into account the different t′ dependences of the amplitudes of the resonant and non-resonant
wave components in a model-independent way. This is achieved by performing the resonance-
model fit simultaneously in the 11 t′ bins, so that the t′ dependence of the amplitude of
each wave component is extracted from the data. This t′-resolved analysis approach allows
us to study the production mechanism of resonances in unprecedented detail in terms of
the t′ spectra of the wave components and the t′ dependences of relative phases between
the wave components. The latter ones are measured for the first time. Most resonances,
including the a1(1420), are produced with a phase that is approximately independent of t′,
which is expected if the production mechanism is the same over the analyzed t′ range. With
the t′-resolved approach, we also take into account the change of the shape of the m3π

intensity distributions of the partial waves with t′, which for some waves is very pronounced.
Hence our approach avoids the potential broadening of resonance peaks and the artificial
incoherences between the waves and the wave components that may have lead to dilutions
and distortions of resonance signals in previous analyses. Our approach not only avoids
these issues but also exploits the generally different t′ dependences of the resonant and
non-resonant wave components in order to better disentangle the two.

Due to the highly precise COMPASS data, the analysis results are dominated by
systematic uncertainties. We pursue two strategies in order to reduce these uncertainties:
(i) by reducing the model dependence and (ii) by employing more advanced models that
incorporate more physical constraints.

In case of the resonance-model fit, one would actually like to extract resonance poles
on the second Riemann sheet of the scattering amplitude in the complex s plane instead
of model- and process-dependent Breit-Wigner parameters. This requires amplitudes that
adhere to the principles of the relativistic S-matrix, in particular analyticity and unitarity.
Such amplitudes are currently developed, for example, by the members of the Joint Physics
Analysis Center (JPAC) [165 –167 ]. A first successful application of such a model to the ηπ
D-wave intensity distribution extracted from COMPASS data yielded pole positions for
the a2(1320) and a2(1700) [168 ]. Another significant source of systematic uncertainty in
the resonance-model fit is the parametrization of the non-resonant components. Hence the
development of improved models for double-Regge processes, such as the Deck effect, is
also a topic of current research.

In order to reduce the model dependence of the partial-wave decomposition in the first
analysis stage, we developed the novel freed-isobar PWA method. With this method, we
are able to extract the dynamical amplitudes of two-body subsystems with well-defined
JPC quantum numbers in a given three-body partial wave also with well-defined quantum
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numbers. We applied this method to the COMPASS data in order to study the isoscalar
JPC = 0++ π−π+ isobars, i.e., f0 states, in the π−π−π+ system. Comparing the result
of the freed-isobar PWA with the one of the conventional PWA, where the 0++ isobars
are described by fixed parametrizations, we found good qualitative agreement. This
shows that the parametrizations employed in the conventional analysis do not strongly
deviate from the data and do not cause artificial resonance-like structures in the extracted
partial-wave amplitudes. This is in particular true for the novel a1(1420) signal, which
is confirmed by the freed-isobar PWA. With this method, we also establish for the first
time the decay modes π(1800) → f0(1500)π → 3π, π2(1880) → f0(980)π → 3π, and
π2(1880)→ f0(1500)π → 3π.

The freed-isobar approach actually marks a paradigm shift in how multi-body PWAs
are performed. Instead of constructing a PWA model, where one has to decide which
isobar resonances to include and which parametrizations and resonance parameters to
use, one can now extract these information from the data. This reduces not only the
model dependence drastically but also the dependence on external information from other
experiments. This allows, for example, to study decay modes that proceed via radially
excited isobar states, such as the f0(1500) in our analysis. One can also measure isobar
parameters and branching fractions. In addition, one can study the effect of final-state
interactions. The interaction of the isobar with the bachelor pion may lead to measurable
distortions of the π−π+ amplitudes. With the freed-isobar PWA, these effects can be
studied as a function of m3π and t′ and models of final-state interactions can be tested
more directly. In first studies using simple Breit-Wigner amplitudes to describe isobar
resonances, a dependence of the Breit-Wigner parameters on m3π was found [118 ]. These
studies included not only f0-like 0++ isobars, but also ρ(770)-like 1−− and f2-like 2++

isobars.
In freed-isobar fits with many freed waves, the PWA model may exhibit mathematical

ambiguities at the amplitude level. However, these ambiguities can be identified and
resolved [94 ]. The freed-isobar method is hence a universal tool that is directly applicable
to any three-body decay. The only limitation is that large data samples are required.
The method is in particular applicable to three-body decays of heavy mesons. Due to
the ambiguity issue, it has been used up to now only for single isobars and mostly as
a verification tool to prove the resonant nature of interesting signals. Examples of such
analyses are the discovery of two pentaquark-like states Pc(4380) and Pc(4450) [169 ] (see
Fig. 5.1 ) and the observation of the flavor-exotic four-quark-like state Zc(4430)− [170 ], both
by the LHCb experiment. Since the ambiguities can now be identified and resolved, the
freed-isobar approach can now be used to extract quantitative information while at the
same time making the analysis more model-independent. This could improve in particular
analyses that search for CP violation in three-body decays of heavy mesons. Concerning
our freed-isobar PWA of the COMPASS π−π−π+ data, it would be highly interesting to
compare our results to a corresponding analysis of, for example, D → 3π or τ → 3π ντ .
Such a comparison would allow to better separate the effects from final-state interaction of
the three final-state pions from the effects that are caused by the non-resonant contributions
because the latter ones are basically absent in the D and τ decays. A comparison of these
processes would also help to better understand the a1(1260) resonance, which is one of the
largest sources of systematic uncertainty in our analysis.
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Figure 5.1: Argand diagram of the freed-isobar amplitude for the J/ψ p subsystem (a) with
JP = 5/2+ and (b) with 3/2− in Λ0

b → J/ψK−p decays (similar to Fig. 4.1(b) ). The
red curves are predictions from Breit-Wigner amplitudes with mass and width values as
obtained in the conventional Dalitz-plot analysis. From Ref. [169 ].
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Own contributions

All the work presented in this thesis originated in the COMPASS collaboration, of which I
am a member since 1999. For the three articles [H1–H3] that this thesis is based on, I was
one of the principal contributors, the main editor, and the head of the drafting committee.

Reference [H2] is based on the results from the PhD theses by Florian Haas [73 ] and
by Fabian Michael Krinner [118 ], whom I both supervised. I worked with Florian Haas
in particular on the development of the 88-wave PWA model, the extension of the PWA
method to a two-dimensional binning in m3π and t′, and on the interpretation of the
results. The analysis of Fabian Michael Krinner is based on the ROOTPWA software
framework [171 ], of which I am a co-author. I also contributed to the development of the
freed-isobar method and to the interpretation of the results.

Reference [H1] is based on the results from the Master’s thesis by Stephan Schmeing [172 ],
who was supervised by me. The 3-wave mass-dependent fit uses the results of the partial-
wave decomposition from Ref. [H2]. Together with Stephan Schmeing, I developed a method
to reliably find the best physical solution for the multi-modal resonance-model fit in an
automatized way and without introducing parameter limits. I co-developed the novel
t′-resolved analysis approach, co-developed the fit model in order to extract the novel
a1(1420), and devised a strategy to estimate the systematic uncertainties.

Reference [H3] is based on the results from the Master’s theses by Stephan Schmeing [172 ]
and by Stefan Wallner [173 ]. Using the result of the partial-wave decomposition from
Ref. [H2], the resonance model was extended significantly from the 3-waves in Ref. [H1] to
14-waves making it the most comprehensive analysis of its kind. Together with Stephan
Schmeing and Stefan Wallner, I developed the fit model, improved and refined the method
to find the best physical solution, and devised the systematic studies to estimate the
systematic uncertainties.

I also contributed to the development of model-selection techniques for the partial-wave
decomposition in the PhD thesis by Karl Alexander Bicker [114 ] and in the Master’s theses
by Oliver Johann Drotleff [115 ] and by Florian Markus Kaspar [116 ]. All three theses were
supervised by me. Although the results are not included in the articles [H1–H3] they were
an important confirmation of the 88-wave PWA model used in Ref. [H2].
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