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Chapter 1

Introduction

Hadron spectroscopy is an important part of particle physics. It studies the masses
and decays of hadrons. Quantum chromodynamics (QCD) is the theory of strong in-
teraction that predicts these properties of hadron. QCD has been already confirmed
by many experimental evidences. However, it cannot calculate the low energy scale,
as the running coupling constant αs impedes the convergence of its expansion, so
that in principle an infinite number of Feynman diagrams have to be taken into
account. In order to know more about the strong interaction in this special energy
range, more experimental hints is required.

Light mesons are of particular interest because they belong to hadrons with low
energy. They are quark-antiquark bound states of up, down or strange quarks. In
2008, an experiment was conducted at the COMPASS experiment at CERN, where a
π− beam with fixed energy of 190 GeV interacted with a stationary liquid-hydrogen
target [1]. The proton recoiled and the π− produced excited meson that decayed
after the interaction. Among all the decay modes, the π− π− π+ mode has the
largest data set. The giant amount of data minimizes the statistical fluctuation so
that we are more likely to extract convincing outcomes.

This thesis shows a study of the π−π−π+ data based on a previous analysis model [2].
The goal of the thesis is to test the robustness of the model using the Monte Carlo
data and to extract the isobar parameters from the experimental data by fitting them
to the model. The second chapter explains the analysis method. The third chapter
presents the analysis result for the Monte Carlo data to research the model. The
forth chapter applies the model to the real experimental data to extract parameters.
The fifth chapter gives the conclusion and the sixth chapter a brief outlook.
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Chapter 2

Fundamentals

2.1 The Process

The thesis studies the process

π− + p → π− + π− + π+ + precoil (2.1)

The data taken from the experiment contains the kinematic distribution of the final-
state particles. For fixed target experiment with a monoenergetic incoming beam,
the center-of-mass energy

√
s of the whole reaction is constant. The data consists

of the 3π invariant mass m3π, the four-momentum transfer squared t′, and a set of
five additional phase-space variables denoted as τ that describes the 3π final state [2].

The goal of the analysis is to extract the 3π resonances and their quantum numbers
from the data. To achieve this, a model was built for the analysis. The basic idea of
the model construction is the partial-wave formalism.

2.2 Partial-Wave Formalism

In a narrow sense, partial-wave analysis (PWA) describes the expansion of the amp-
litude for elastic two-body scattering into spherical waves described by Legendre
polynomials.1 The spherical waves, well-defined by orbital angular momentum
quantum numbers, are orthogonal to each other and build a complete basis, so that
the amplitude can be fully decomposed and described. The concept can be exten-
ded to inelastic reactions such as the one shown in Eq. (2.1). Here, the daughter
particles from the scattering can further decay into various particles. Hence the
components of their partial waves can also be decomposed into more rudimentary
component waves. The partial amplitude now represents the 3π system with well-
defined quantum numbers.

1See, for example, Eq.(6.4.29) in Ref. [3].
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Chapter 2 Fundamentals

2.2.1 Analysis Model

Since resonance production and decay are independent, we can decompose the pro-
cess in Eq. (2.1) into two independent parts: (i) the inelastic two-body scattering
between the pion beam and the proton π−+p→ X−+precoil and (ii) the subsequent
decay of the resultant 3π resonance X− → π−+π−+π+, as illustrated in figure 2.1.

π−

p

X−

precoil

P

π−

π−

π+

s

t

Figure 2.1: Diffractive dissociation of a beam pion into the three-pion final state on
a target proton [2]

Mathematically, the matrix element for the process described in Fig. 2.1 can be
factorized into two parts: a transition amplitude T (m3π, t

′) for process (i) and a decay
amplitude Ψ(m3π, τ) for process (ii). The total intensity distribution is proportional
to the squared matrix element, which is given by

I(m3π, t
′, τ) ∝

∣∣M(m3π, t
′, τ)

∣∣2 =

∣∣∣∣∣
Nwaves∑

i

Ti(m3π, t
′)Ψi(m3π, τ)

∣∣∣∣∣
2

(2.2)

Here, the index i enumerates all the possible X− and their decay modes. Each i can
be defined via a specific set of quantum numbers:2

i ≡
{
IGJPCM ; ξ, L

}
(2.3)

with I the isospin, J the total spin, M the spin projection, G the G-parity, P the
parity and C the C-parity of resonance X. ξ and L contain the information of the
further decays that will be explained in section 2.2.2.

According to our previous definition, the decay amplitude Ψi(m3π, τ) labeled by
index i corresponds to the partial wave, whose dependence on the kinematic vari-
able can be calculated using isobar model that will be discussed in section 2.2.2.

2Here, the number of free parameters can be reduced using conservation laws. Details will be
discussed in section 3.1.2
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2.2 Partial-Wave Formalism

The transition amplitudes Ti and their dependence on m3π and t′ are unknown
to us. However, the assumption that Ti(m3π, t

′) is constant in narrow (m3π, t′)
cells enables us to group the experimental data in these cells, and get the values
of T = (T1, ..., TNwaves) in each cell independently. We attain this goal by fitting
Eq. (2.2) to the data. In this first stage of analysis, the τ -dependence of data is
exploited and we simplify our 7-dimensional data analysis into a 2-dimensional. In
the next stage, model will be constructed to study T dependent on m3π and t′ for
our final goal. This thesis focus on the first stage.

2.2.2 Isobar Model

The decay amplitudes Ψi(m3π, τ) are calculated using the isobar model. In this
model, the decay X → 3π is described as a chain of successive two-body decays via
intermediate resonances called isobars [4, 5]. This process is shown in figure 2.2.

π−

p

JPCMε

X−

precoil

P

π−

ξ

1
αX

π−

π+
2
αξ

L

Figure 2.2: The decay of X− via an intermediate resonance ξ as described in the
isobar model [2]

The isobar model neglects the final-state interactions of the outgoing particles.
Hence, each three-body decay amplitude Ψ(m3π, τ) can be factorized into two-body
decay amplitudes: (i) AXM (θX , ϕX ,m3π) for X− → ξ0 + π− and (ii) Aξλ(θξ, ϕξ,mππ)
for ξ0 → π− + π+. θ and ϕ represent the polar and azimuthal angles of one of the
daughter particles in the respective two-body decay. M is the spin projection of X
and λ is the helicity of the isobar ξ. Because the helicity is the intrinsic variable
inside the decay chain and thus independent of the extrinsic three-body decay, all
possible values of λ have to be summed over:

Ψ(θX , ϕX ,mππ, θξ, ϕξ︸ ︷︷ ︸
τ

;m3π) = AXM (θX , ϕX ,m3π)
∑
λ

Aξλ(θξ, ϕξ,mππ) (2.4)

Lets now focus on the two-body decay amplitude. The decay happens in a central
potential, which allows the amplitude to be factorized into a dynamic part that only
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Chapter 2 Fundamentals

depends on the masses of the parent and daughter particles, and an angular part that
only depends on the polar and azimuthal angles. The two-body decay amplitude of
ξ is given by

AξJξMξ Lξ Sξ
(θξ, ϕξ,mππ) ∝ αξ→π++π−FLξ(mππ)∆ξ(mππ)︸ ︷︷ ︸

dynamic part

·
∑
λ1,λ2

(J1, λ1; J2,−λ2|Sξ, λ1 − λ2)(Lξ, 0;Sξ, λ1 − λ2|Jξ, λξ)DJ∗
Mξ λξ

(θξ, ϕξ, 0)︸ ︷︷ ︸
angular part

(2.5)

Here, the dynamic part comprises a coupling term αξ→π++π− , a angular-momentum
barrier factor FLξ(mππ) and a propagator term ∆ξ(mππ). The propagator term is
parameterized using relativistic Breit-Wigner amplitudes of the form3

∆BW
ξ (mππ;m0,Γ0) =

m0Γ0

m2
0 −m2

ππ − im0Γ(mππ)
(2.6)

where m0 and Γ0 are the nominal mass and width of the resonance. Under the
assumption of a single two-body decay channel, the mass-dependent width Γ(mππ)
is given by:

Γ(mππ) = Γ0
m0

mππ

q

q0

F 2
Lξ

(q)

F 2
Lξ

(q0)
(2.7)

with q(mππ) the momentum of the π± in the rest frame of the isobar. At the
nominal resonance mass, the breakup momentum is given by q0 = q(m0).

An issue of the analysis model is that the resonance parameters of the isobars, for
example m0 and Γ0, have to be taken from other experiments [6]. Depending on
how well the resonance parameters are known, this may introduce uncontrollable
model dependence in the analysis. The goal of this thesis is to study this model
dependence in detail.

Furthermore, We assume that the coupling term αξ→π++π− is independent of mππ.
The barrier factor FL(mππ), also appears in Eq.(2.7), takes into account the barrier
effect caused by the orbital angular momentum L in the two-body decay.4

According to the helicity formalism [8], the angular part, representing the angular
distribution of a given resonance ξ, can be described using orthogonal Wigner D-
functions [9] with Clebsch-Gordan coefficients. The Wigner D-functions are labeled

3For some resonances, like f0(980) and f0(500), other parametrizations have to be applied. Details
can be found in Ref. [2].

4The parametrization of von Hippel and Quigg was applied [7]. Detailed example of the expression
for low L can be found in Ref. [2].
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2.3 Maximum Likelihood Method

by the specific spin state |J,M〉 of the resonance. Since the |J,M〉 basis is complete,
the angular part can thus be expressed as a linear combination of these basis states.

Till here, we found the decay amplitudes as known functions defined by isobar para-
meters, so that our model can be fitted to the data.

2.3 Maximum Likelihood Method

To determine the best parameter set for a given model from a data set, fit methods are
adopted. Among them, the least-squares method and maximum likelihood method
are generally used. The least-squares method is impractical for in high-dimensional
fits (in our case five-dimensional), since the data must be subdivided into bins and
the number of bins will increase exponentially with the growth of dimension. So
here, we use the maximum likelihood method, where a likelihood function dependent
on parameter set and data set will be maximized.

2.3.1 Likelihood Function

A likelihood function is defined as the joint probability density of the data set given
the parameter values [10]. Given a data set x = (x1, ..., xN ) of N independent
identical distributed random variables with the same probability density function
f(x;θ) that depends on m parameters θ = (θ1, ..., θm), the likelihood function is

L(θ;x) =
N∏
n=1

f(xn;θ) (2.8)

The maximum likelihood estimate θ̂ for the parameters is given by

θ̂ = arg max
θ
L(θ;x) (2.9)

Here, L is the probability density of the data instead of the parameters. Thus,
L is usually not normalized with respect to the parameters. Moreover, in a strictly
mathematical sense, the maximization of the likelihood function under observed data
does not necessarily yield the most probable parameter values.

2.3.2 Application

In the intensity distribution in Eq.(2.2), we regard the transition amplitudes
T = {Ti} as the free fit parameter set and the 5-dimensional phase-space variables τ
as the random variables. The likelihood function for our model is then defined as [2]

7



Chapter 2 Fundamentals

L(T ; {τn|n ∈ {1, 2, ..., N}}) =
N̄N

N !
exp(−N̄)︸ ︷︷ ︸

Poisson probability

N∏
n=1

I(τn)∫
dϕ3(τ)η(τ)I(τ)︸ ︷︷ ︸

Probability for event i
(2.10)

Here, N is the number of events we measured with phase space coordinates τn
respectively. η(τ) is the detector efficiency, dφ3(τ) the differential three-body phase-
space element, and N̄ =

∫
dφ3(τ)η(τ)I(τ) the expected number of events in the

detector.5 In addition, a Poisson probability density is multiplied as the model for
counting experiments with events produced randomly with constant timely-averaged
rates. The model parameter N̄ represents the expected number of events.

Exploiting the monotonicity of the logarithmic function, one often adopts the log-
arithm of the likelihood function to convert the product to a sum and to make the
function numerically more stable. By maximizing the logL function, one obtains a
fit result, which consists of the most possible set of the transition amplitudes T and
its the logL value.

2.4 Monte Carlo Method

Monte Carlo methods are a broad class of computational algorithms that rely on
repeated random sampling to obtain numerical results. They are useful when it is
difficult or impossible to use other approaches.

Specific for our process, we perform an analysis of pseudo data (also called Monte
Carlo data) generated from a fitted model to the real data with this method. Using
the Monte Carlo data, the properties of the model can be rightly studied. This is
because in case we use the real data for study the model, the mismatching between
the data and the model can influence the fit results, so that we cannot ascribe the
deviations to the model itself.

Technically, we first generate uniformly distributed data in the 5-dimensional phase
space. The generated data are then deweighted using a so-called acceptance-rejection
method [11]. That is, the intensities are calculated using Eq. (2.2) for all uniform
distributed data points. To make the intensity distributed uniformly, we generate a
random number between zero and the maximal intensity and compare the calculated
intensity value with this random number. If the calculated intensity is smaller than
the this number, we keep the data point. If it is larger, we discard it. In this way,
the remained data points distribute under our given model.

5The detector efficiency will be set to 1 for all phase space components for the Monte Carlo data.
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Chapter 3

Analysis for the Monte Carlo data

In this chapter, I study the influence of the isobar parameters variation on the fit
results using the Monte Carlo data. The data was generated according to the PWA
result from Ref. [2] with two different 3π mass bins, m3π = 1.8 GeV and m3π =
1.0 GeV. I test the stability of the fit results by fitting this data to the model
where the isobar parameters are systematically shifted. Considering the discussion
in section 2.3, a fit result is represented by the set of the transition amplitudes that
gives the largest logL value. Accordingly, the following analysis will focus on these
two factor: the shift of transition amplitudes and the logL values under variation of
isobar parameters.

3.1 Preparation

3.1.1 Model Parameters

Empirically, the analysis model takes six different isobars into account: [ππ]S , ρ(770),
f0(980), f2(1270), f0(1500) and ρ3(1690).1 Among them, the parameter dependence
of ρ(770), f2(1270), f0(1500) and ρ3(1690) will be studied. All these 4 isobars use
Breit-Wigner parameterizations with slight modifications concerning their individual
properties. Their parameters are shown in table 3.1 . The exact formulas of the
parameterization can be found in Appendix A.

isobar mass m0 (MeV) width Γ0 (MeV)
ρ(770) 769.0 150.9
f2(1270) 1275.1 185.1
f0(1500) 1505.0 109.0
ρ3(1690) 1688.8 161.0

Table 3.1: Overview of the PDG parameters of the resonances studied in this thesis [6]

1Here, [ππ]S represents a special paraterization that is not Breit-Wigner like and includes the
broad f0(500) resonance. A comprehensive description of all these isobars can be found in
Ref. [2].
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Chapter 3 Analysis for the Monte Carlo data

3.1.2 The partial waves

According to section 2.2.1, each transition amplitude is labeled by the index i,
which, according to Eq. (2.3), is determined by the intermediate state X− and its
quantum numbers. The model takes into account the isobars mentioned in section
3.1.1 with the spin J ≤ 6 and Lξπ ≤ 6 for the subsequent π-isobar system. The
PWA model consists of 88 partial waves in total. The complete list of waves is found
in Appendix B.

There, for each partial wave, the characteristic quantum numbers can be concluded
via

[
IG, JP ,M ε

]
→ {Isobar ξ → {π−[L2π, S2π]π+} [Lξπ, Sξπ]π−} with the quantum

numbers described in Eq. (2.3). The L and S are the orbital angular momentum
and the spin in each subsystem. Some of these quantum numbers are redundant
due to the resonance properties and the conservation laws. Firstly, the isospin I
is determined by the constituents of the system. For the 3π resonance I = 1. In
this way, the isospin I and the G-Parity G can be concluded into C-Parity C with
G = C (−1)I . In addition, pion is a spin-0 particle, which means that the spin
S2π = 0 for all partial waves. For the same reason, the orbital angular momentum
L2π and the total spin Sξπ are equal to the spin of ξ for all the partial waves. Taken
thees constraints into consideration, the description of the partial wave is reduced
to the form JPCM ε ξ Lξπ.

For each 3π invariant mass, we fit the model with the 88 partial waves to the data.
However, for a low m3π, the fit result can be instable. This is because the range
for mππ for a low m3π is limited by phase space, so that some partial waves become
indistinguishable and the logL becomes in effect multimodal. The problem can be
solved adding threshold values for specific partial waves (See App. B). Form3π below
the threshold value, the partial wave will not be taken into account and its intensity
will be set to zero.

3.1.3 Fit for the right parameters

The generic minimization algorithms make it easier to minimize a given function
than to maximize. Therefore, to study the modalities of the − logL function, I
performed the PWA fit for about a thousand random start values and plotted the
resultant transition amplitudes distribution. The outcomes are shown as follows.

m3π = 1.8 GeV

For the Monte Carlo data from the best fit result of the real experimental data
with m3π = 1.8 GeV, Fig. 3.1a shows the results of a single partial wave as an ex-
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3.1 Preparation

ample. Here, I was not sure whether the cloud of points represents a single minimum
with numerical deviation from the computational algorithm, or a fluctuation of the
function itself. I solved the problem by adding a relative scale to the figure: For
data sets with a large number of events, the L function is approximately normal dis-
tributed in terms of the parameters. The − logL function should then be parabolic
and the parameter resolution can be estimated. Under the Gaussian assumption, a
0.5 unit elevation of − logL corresponds to 1σ range of the parameter. Marking this
range of the best fit result with the lowest − logL value, I got an uncertainty ellipse
presented in Fig. 3.1b. Adding this gauge to the figure, it is now more convincing
that the − logL function has a single global minimum.
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Figure 3.1: Panel (a) shows the fit results distributed in the transition amplitude of
a partial wave for the Monte Carlo data with m3π = 1.8 GeV. Panel (b) shows the
results and the uncertainty ellipse of the best result.

I also gave some evidence for the Gaussian assumption. Provided that the assump-
tion be true, the − logL would be parabolic distributed. So − logL dependent on
real or imaginary part of each transition amplitude can be fitted parabolic. To
confirm that, I calculated the − logL functions along the transition ampliudes,
plotted the distribution and fitted them parabolic. Fig. 3.2a shows the the outcome
for the same partial wave as Fig. 3.1a. Here, up to a raise of about 0.5 unit of
− logL, the transition amplitude distributed perfectly parabolic. The assumption is
positively supported.

In addition, the disagreement of the parable and the data point can by quantified
by the sum of the squared differences between them,

∑
i δ

2
i . A small

∑
i δ

2
i value
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Chapter 3 Analysis for the Monte Carlo data

means a good fit. Consequently, a parabolic fit with a larger
∑

i δ
2
i indicate that the

data is not thoroughly parabolic. In this case, the Gaussian assumption is no more
justified. For example, Fig. 3.2b shows the fit with the largest

∑
i δ

2
i . Here, the two

curves overlap no more.
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Figure 3.2: Panel (a) and (b) show the − logL function along the real part or the
imaginary part of one transition amplitude and its parabolic fit.

The Gaussian assumption is important to the uncertainty estimation. I calculated
for each partial wave equidistant 100 points along its transition amplitude with the
− logL between its lowest value and 0.5 unit above to get comparable

∑
i δ

2
i for each

wave. Table 3.2 gives a list of the parameters with
∑

i δ
2
i greater than 0.01.

Partial wave Part
∑

i δ
2
i

1−+ 1− ρ(770) P real 0.0173
2++ 0− ρ(770) D imaginary 0.0149

2−+ 1− f2(1270) S real 0.0148
2++ 0− ρ(770) D real 0.0110

Table 3.2: Transition amplitudes with a relative large deviation from the gaussian
assumption

m3π = 1.0 GeV

I generated Monte Carlo data from the best fit result with threshold for
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3.1 Preparation

m3π = 1.0 GeV. As the Monte Carlo data can be perfectly described by the
model, the fit result should be more stable. Here, it would be particularly interest-
ing to study the impact of the thresholds. Thus, I fitted the model without threshold
to the data at first and examined its stability.

I used the same analysis method. Fig. 3.3a shows the fit results distribution. Here
unfortunately, the − logL function is still multimodal. Yet, These local minimums
have different − logL values. As discussed in the former section, domain up to
0.5-unit elevation in the − logL represents an area of uncertainty. The statement
can be extended: one only needs to focus on the local minimums in this range.
Adding this constraint, I plotted the distribution of the fit results without the
irrelevant points. It is shown in Fig. 3.3b with a single global minimum. There are
no other comparable results to the best fit result. This is extremely favorable to us
as it simplifies the analysis drastically. Moreover, there are 722 from the total 1004
fit results plotted in Fig. 3.3b. This means that 1000 fit attempts are sufficient to
find the global minimum.

Considering the above analysis, I will only take the fit results with − logL lower than
the 0.5 elevation upon the best fit result into consideration for the further analysis.
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Figure 3.3: Panel (a) shows all fit results distributed in the transition amplitude of
a partial wave for the Monte Carlo data with m3π = 1.0 GeV and the uncertainty
ellipse of the best fit result. Panel (b) shows the fit results with their − logL value
within 0.5-unit elevation of the best fit result.
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Chapter 3 Analysis for the Monte Carlo data

The Effect of Thresholds

The thresholds ensure the fit stability for the data with low m3π. It would be
interesting to compare the fitted transition amplitudes for model with and without
threshold. As demonstrated in section 2.2.2, the angular part of the decay amp-
litudes depends uniquely on the sort of the isobar and its quantum numbers. Hence,
among the partial waves with different decay mode, those with the same set of
quantum numbers may interfere to a higher degree. For example, the partial waves
0−+ 0+ [ππ]S S, 0−+ 0+ f0(980) S and 0−+ 0+ f0(1500) S have the same quantum
numbers. The latter two are thresholded at m3π = 1.0 GeV. Thus, I compared the
fit results of these three waves with and without thresholds.

As shown in Fig. 3.4a, 3.4c and 3.4e, the fit results for Monte Carlo data with
m3π = 1.0 GeV are compatible with and without threshold. That is, for threshoded
waves, the fit without threshold gives small transition amplitudes and the ‘zero’s are
contained in the uncertainty ellipses; for the non-threholded wave, the uncertainty
ellipses of the both best fit results overlap. However, concerning the real data at the
same 3π invariant mass shown in Fig. 3.4b, 3.4d and 3.4f, the fit results are no more
in consistence.

In conclusion, if the data is distributed strictly according to a given model, the fit
algorithm has no problem distinguishing the similar waves. On the contrary, in case
of the real data, one is not sure about the exact constituents of the partial wave.
This slight ambiguity leads to the systematic uncertainty of fit results and in effect
a high sensibility of the model.

3.2 Results and Discussion

In this section, I study the shift of the transition amplitudes and the − logLbest,
− logL of the best fit results dependent of the isobar parameters. The study uses
the same Monte Carlo data as the section 3.1.3 and bases on the PWA model used for
real data. I changed the isobar parameters individually for up to ±10 MeV relative
to the values in table 3.1, corresponding approximately to the mass resolution, and
kept the other isobar parameter unchanged. For each set of the isobar parameters
inputted to the model, I performed the PWA fit for about a thousand time using
random start values for the transition amplitudes. These fit results will be studied
as follows.
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Figure 3.4: Panel (a), (c) and (e) show the fit results distributed in the transition
amplitude for the Monte Carlo data withm3π = 1.0 GeV and the uncertainty ellipses.
Panel (b), (d) and (f) show the fit results for the real data with m3π = 1.0 GeV.
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Chapter 3 Analysis for the Monte Carlo data

3.2.1 Shift of Transition Amplitudes

To visualize the fit results, I plotted the distribution of the transition amplitudes
from the 1000 fit attempts. As discussed in section 3.1.3, only the fit results with
− logL < − logLbest + 0.5 were taken into account. To distinguish the isobar
parameter values, different colors are used. Fig. 3.5 shows some examples of the
resultant plots. Here, all fit attempts converged to the same solution. Actually, all
plots have this property. This means that the − logL functions have a well-defined
minimum for all the isobar parameters. Consequently, the fit is stable and the PWA
model is robust w.r.t. changes of these isobar parameters.

According to Fig. 3.5, the fit has different susceptibility to the changes of isobar
parameters. To analyze the differences, one needs to compare the plots. Yet, the
analysis task is multidimensional. That is, the plots are defined by (i) data from two
different 3π invariant masses, (ii) variation in terms of each isobar parameter and
(iii) the results of all transition amplitudes. I will discuss the points respectively as
follows.

A. m3π dependence

According to Fig. 3.5a and 3.5b concerning the isobar parameters m0,ρ(770) and
m0,f0(1500) for m3π = 1.8 GeV, evident shifts of the fit results can be observed for
both cases. In comparison, for the data with m3π = 1.0 GeV, the fit results is still
susceptible to changes of m0,ρ(770) (Fig. 3.5c), while the transition amplitude is
independent of m0,f0(1500) (Fig. 3.5d). In fact, the data with m3π = 1.0 GeV is only
susceptible to the changes of ρ(770) parameters. For the data with m3π = 1.8 GeV,
recognizable shifts can be observed at changes of all the isobar parameters.2 The
possible reason for that is presented as follows.

According to section 2.2.2, the isobar parameters affect merely the propagator term
in the dynamic part of the decay amplitudes. Among all the isobars, the f0(1500)
has a relative simple parameterization, as its width can be regarded as a con-
stant (Eq. (A.2)). I use this parameterization as an example to get a rough per-
ception. Fig. 3.6a shows the parameterization.

Due to the energy conservation, the mππ range for a fixed 3π invariant mass is
limited. The maximum mππ value cannot exceed (m3π−mπ). Explicitly for the two
m3π values of our data, themππ ranges are marked in Fig. 3.6a. For the f0(1500), the

2For ρ3(1690), the fit results shifts weaker even for m3π = 1.8GeV. That can be refer to the fact
that only part of the peak of the propagator term is kinematically accessible for this 3π mass
(Fig. 3.6b). See the discussion as follows.
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Figure 3.5: The figures show the transition amplitudes from PWA fit to the Monte
Carlo data for different values of isobar parameters represented by the color bars.
The best fit result of the isobar parameters in table 3.1 is marked by the red cross
and its uncertainty ellipse is shown.

17



Chapter 3 Analysis for the Monte Carlo data

0 500 1000 1500 2000
m  (MeV)

0.0

0.2

0.4

0.6

0.8

1.0

|
BW f 0

(1
50

0)
|2

range for m3 = 1.0 GeV
range for m3 = 1.8 GeV

(a)

0 500 1000 1500 2000
m  (MeV)

0.0

0.2

0.4

0.6

0.8

1.0

|
BW 3(

16
90

)|2

range for m3 = 1.0 GeV
range for m3 = 1.8 GeV

(b)

Figure 3.6: Breit-Wigner parameterization for the propagator term of (a) the f0(1500)
and (b) the ρ3(1690)

kinematically accessible area for data with m3π = 1.0 GeV is limited to the low-mass
tail of the f0(1500). The f0(1500) peak is apparently outside this range so that a
shift or deformation of this peak can hardly influence the shape in the accessible mππ

range. As a result, the fit result should be insensitive to changes of isobar parameters
with m0,ξ > m3π of the data. This has been positively proved by the outcomes, for
example, Fig. 3.5.

B. Comparison between changes of mass and width

Another interesting aspect is the comparison between the influence of mass and
width changes of each isobar on transition amplitudes. Simple examples are in
Fig. 3.7, where the transition amplitudes from PWA fit w.r.t. changes of f0(1500)
parameters for data with m3π = 1.8 GeV, and changes of ρ(770) parameters for data
with m3π = 1.0 GeV are shown. Here, the fits are more susceptible to the masses
changes than the widths changes concerning one changed isobar. The possible reason
is given as follows.

Again, I take the parameterizations of f0(1500) as an example. According to Fig. 3.8,
a change in m0,f0(1500) will shift the position of the peak and a change in Γ0,f0(1500)

will alter the width of the peak. Focusing on the function values of each points, one
finds that a change of the peak position steer the intensity distribution greater than
the width, as it affects all the points near both the previous peak and the shifted.
As a result, we found the shift of the transition amplitudes are more susceptible to
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Figure 3.7: The figures show the transition amplitudes from PWA fit to the Monte
Carlo data for different values of isobar parameters represented by the color bars.
The best fit result of the isobar parameters in table 3.1 is marked by the red cross
and its uncertainty ellipse is shown.
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the isobar masses changes than its widths for data with the same m3π.
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Figure 3.8: Breit-Wigner parameterizations for the propagator term of f0(1500). The
reference curve (blue) uses the parameters in table 3.1, while the other two curves (red
and green) are with the change of one parameter from them.

A slight exception can be predicted for the parameter changes of ρ3(1690). According
to Fig. 3.6b, even for the fit to the data with m3π = 1.8 GeV, the peak is only
partly kinematically accessible. In this case, changes of the both parameters should
affect the fits to a similar degree. Fig. 3.9 proved the prediction. The same effect
appears concerning the changes of parameters of ρ(770) to the Monte Carlo data with
m3π = 1.0 GeV: the disparity between Fig. 3.7c and 3.7d is smaller than between
Fig. 3.7a and 3.7b.

The above analysis brings me to a summary: how far the fit results shift is
closely interrelated with the scale of the deviation in the parameterization func-
tion from the origin values. Quantitatively, the changes of the isobar masses are
(m0 ± 3), (m0 ± 6) and (m0 ± 10) MeV/c2; the changes of its widths are (Γ0 ± 2),
(Γ0 ± 6) and (Γ0 ± 10) MeV/c2. From, for example, Fig. 3.7c, 3.7d, 3.9a and 3.9b, I
summarize the properties:

1) The fit results under changes of each single parameter build up roughly a line on
the complex plain of each transition amplitude.
2) The shift degree of the transition amplitudes is roughly linear to the shift degree
of the isobar parameter.

These properties reduce the information from the plots greatly. As we only focus on
the how much the transition amplitudes shift compared to the range of the statistical
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Figure 3.9: The figures show the transition amplitudes from PWA fit to the Monte
Carlo data for different values of ρ3(1690) parameters represented by the color bars.
The best fit result of the isobar parameters in table 3.1 is marked by the red cross
and its uncertainty ellipse is shown.

uncertainty, it is sufficient to compare the extension of the largest shifts w.r.t. isobar
parameter’s changes with the scope of the uncertainty ellipse in the same direction.
Mathematically, we define a measure ∆ for how strongly a transition amplitude
depends on the isobar parameter with

∆ =
1

2
·
(
d1

R1
+
d2

R2

)
(3.1)

with R1, R2, d1 and d2 shown in Fig. 3.10.

C. Comparison among the partial waves

Table 3.3 shows the ∆ calculated from Eq. 3.1 for m3π = 1.8 GeV. To facilit-
ate the analysis, I grouped the values by columns concerning different change of
isobar parameter. The row blocks gather the entries with the same quantum num-
bers JPC . Moreover, the entries larger than 1, corresponding to a shift outside the
uncertainty ellipse, are marked bold. If the changed isobar and the isobar in the
partial wave are the same, the entry is underlined.
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Chapter 3 Analysis for the Monte Carlo data

Figure 3.10: The figure shows the fit results with the definition of the length R1, R2,
d1 and d2.

Table 3.3: The maximal relative deviation ∆ (see Eq. 3.1) for the fit results under
isobar parameter changes of Monte Carlo data for m3π = 1.8 GeV

JPCMε Isobar Lξπ
ρ(770) f2(1270) f0(1500) ρ3(1690)

∆m0 ∆Γ0 ∆m0 ∆Γ0 ∆m0 ∆Γ0 ∆m0 ∆Γ0

0−+ 0+ [ππ]S S 0.341 0.128 0.062 0.176 4.687 0.290 0.046 0.028
0−+ 0+ ρ(770) P 0.877 0.108 0.061 0.078 1.786 0.015 0.027 0.011
0−+ 0+ f0(980) S 0.493 0.121 0.049 0.171 4.923 0.059 0.040 0.023
0−+ 0+ f2(1270) D 0.463 0.170 0.336 0.145 0.571 0.040 0.029 0.017
0−+ 0+ f0(1500) S 0.331 0.031 0.097 0.086 0.034 0.318 0.035 0.006
1++ 0+ [ππ]S P 0.427 0.269 0.254 0.106 1.129 0.046 0.045 0.020
1++ 1+ [ππ]S P 0.275 0.195 0.216 0.015 0.325 0.022 0.024 0.009
1++ 0+ ρ(770) S 0.982 0.247 0.103 0.143 1.946 0.032 0.016 0.015
1++ 1+ ρ(770) S 0.870 0.092 0.135 0.118 1.508 0.043 0.020 0.008
1++ 0+ ρ(770) D 0.691 0.082 0.154 0.129 1.638 0.017 0.010 0.003
1++ 1+ ρ(770) D 1.036 0.112 0.117 0.138 1.841 0.044 0.008 0.007
1++ 0+ f0(980) P 0.203 0.055 0.083 0.010 0.575 0.015 0.018 0.002
1++ 1+ f0(980) P 0.056 0.075 0.119 0.049 0.284 0.018 0.012 0.003
1++ 0+ f2(1270) P 0.210 0.122 0.424 0.055 1.107 0.048 0.034 0.033
1++ 1+ f2(1270) P 0.136 0.081 0.592 0.038 1.684 0.048 0.019 0.012
1++ 0+ f2(1270) F 0.147 0.091 0.107 0.174 0.102 0.006 0.050 0.019
1++ 0+ ρ3(1690) D 0.296 0.204 0.028 0.114 0.802 0.021 0.062 0.038

Continued on next page
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Table 3.3 – continued from previous page

JPCMε Isobar Lξπ
ρ(770) f2(1270) f0(1500) ρ3(1690)

∆m0 ∆Γ0 ∆m0 ∆Γ0 ∆m0 ∆Γ0 ∆m0 ∆Γ0

1++ 0+ ρ3(1690) G 0.115 0.230 0.176 0.048 0.393 0.016 0.024 0.015
1−+ 1+ ρ(770) P 0.572 0.042 0.103 0.090 0.920 0.003 0.017 0.012
2++ 1+ ρ(770) D 0.399 0.060 0.130 0.052 0.154 0.025 0.019 0.006
2++ 2+ ρ(770) D 0.035 0.027 0.144 0.073 0.372 0.014 0.004 0.009
2++ 1+ f2(1270) P 0.193 0.039 0.327 0.067 0.657 0.032 0.019 0.015
2++ 2+ f2(1270) P 0.063 0.063 0.188 0.084 0.181 0.007 0.002 0.007
2++ 1+ ρ3(1690) D 0.113 0.083 0.222 0.046 0.157 0.032 0.035 0.041
2−+ 0+ [ππ]S D 0.092 0.123 0.676 0.507 1.427 0.062 0.024 0.009
2−+ 1+ [ππ]S D 0.268 0.186 0.235 0.190 0.612 0.030 0.013 0.013
2−+ 0+ ρ(770) P 0.754 0.235 0.517 0.154 2.108 0.048 0.018 0.006
2−+ 1+ ρ(770) P 1.053 0.156 0.056 0.152 2.325 0.033 0.017 0.011
2−+ 2+ ρ(770) P 0.041 0.069 0.038 0.037 0.177 0.017 0.009 0.001
2−+ 0+ ρ(770) F 1.254 0.099 0.244 0.129 1.754 0.053 0.026 0.033
2−+ 1+ ρ(770) F 0.588 0.035 0.082 0.025 1.147 0.026 0.017 0.027
2−+ 0+ f0(980) D 0.228 0.108 0.087 0.141 0.666 0.026 0.014 0.009
2−+ 0+ f2(1270) S 0.213 0.183 0.815 0.311 1.892 0.029 0.021 0.020
2−+ 1+ f2(1270) S 0.106 0.124 0.564 0.076 1.347 0.004 0.020 0.016
2−+ 2+ f2(1270) S 0.077 0.030 0.333 0.030 0.709 0.016 0.008 0.010
2−+ 0+ f2(1270) D 0.443 0.162 0.692 0.159 3.046 0.075 0.016 0.035
2−+ 1+ f2(1270) D 0.083 0.027 0.279 0.042 0.875 0.019 0.014 0.010
2−+ 2+ f2(1270) D 0.120 0.045 0.131 0.074 0.616 0.011 0.002 0.003
2−+ 0+ f2(1270) G 0.300 0.173 0.374 0.120 0.810 0.019 0.019 0.015
2−+ 0+ ρ3(1690) P 0.837 0.016 0.663 0.087 0.843 0.028 0.072 0.104
2−+ 1+ ρ3(1690) P 0.205 0.045 0.146 0.055 0.230 0.025 0.068 0.046
3++ 0+ [ππ]S F 0.194 0.258 0.445 0.070 0.558 0.029 0.213 0.109
3++ 1+ [ππ]S F 0.081 0.059 0.260 0.027 0.775 0.025 0.025 0.044
3++ 0+ ρ(770) D 1.794 0.158 0.076 0.065 2.779 0.056 0.059 0.057
3++ 1+ ρ(770) D 0.851 0.145 0.065 0.050 1.366 0.027 0.036 0.032
3++ 0+ ρ(770) G 0.765 0.097 0.250 0.053 1.647 0.048 0.041 0.017
3++ 1+ ρ(770) G 0.500 0.041 0.020 0.055 0.894 0.015 0.014 0.008
3++ 0+ f2(1270) P 0.084 0.278 0.985 0.074 2.287 0.055 0.097 0.076
3++ 1+ f2(1270) P 0.137 0.080 0.556 0.100 1.322 0.029 0.013 0.016
3++ 0+ ρ3(1690) S 0.391 0.214 0.273 0.121 1.425 0.066 0.441 0.235
3++ 1+ ρ3(1690) S 0.504 0.082 0.143 0.044 0.645 0.011 0.158 0.151
3++ 0+ ρ3(1690) I 0.447 0.092 0.095 0.068 0.173 0.017 0.053 0.032
3−+ 1+ ρ(770) F 0.293 0.020 0.105 0.019 0.553 0.017 0.016 0.016

Continued on next page
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Table 3.3 – continued from previous page

JPCMε Isobar Lξπ
ρ(770) f2(1270) f0(1500) ρ3(1690)

∆m0 ∆Γ0 ∆m0 ∆Γ0 ∆m0 ∆Γ0 ∆m0 ∆Γ0

3−+ 1+ f2(1270) D 0.210 0.042 0.457 0.064 0.810 0.018 0.003 0.011
4++ 1+ ρ(770) G 0.953 0.038 0.028 0.071 1.722 0.025 0.028 0.015
4++ 2+ ρ(770) G 0.093 0.046 0.099 0.018 0.124 0.008 0.008 0.008
4++ 1+ f2(1270) F 0.106 0.044 0.304 0.029 1.190 0.015 0.028 0.013
4++ 2+ f2(1270) F 0.082 0.024 0.056 0.030 0.091 0.005 0.013 0.003
4++ 1+ ρ3(1690) D 0.191 0.179 0.089 0.075 0.396 0.011 0.050 0.069
4−+ 0+ [ππ]S G 0.185 0.165 0.292 0.042 1.122 0.010 0.042 0.009
4−+ 0+ ρ(770) F 1.310 0.016 0.303 0.103 2.001 0.049 0.040 0.010
4−+ 1+ ρ(770) F 0.438 0.104 0.091 0.062 1.050 0.040 0.013 0.013
4−+ 0+ f2(1270) D 0.273 0.050 0.350 0.116 0.745 0.014 0.032 0.006
4−+ 1+ f2(1270) D 0.045 0.081 0.310 0.040 0.800 0.019 0.014 0.013
4−+ 0+ f2(1270) G 0.197 0.038 0.123 0.106 0.035 0.029 0.014 0.005
5++ 0+ [ππ]S H 0.168 0.079 0.127 0.029 0.359 0.019 0.037 0.024
5++ 1+ [ππ]S H 0.066 0.054 0.115 0.075 0.616 0.026 0.011 0.017
5++ 0+ ρ(770) G 0.287 0.108 0.275 0.130 0.512 0.024 0.033 0.013
5++ 0+ f2(1270) F 0.062 0.087 0.378 0.090 0.764 0.015 0.039 0.023
5++ 1+ f2(1270) F 0.106 0.021 0.429 0.009 1.028 0.023 0.013 0.017
5++ 0+ f2(1270) H 0.167 0.039 0.160 0.018 0.496 0.011 0.013 0.005
5++ 0+ ρ3(1690) D 0.127 0.058 0.071 0.024 0.187 0.018 0.022 0.030
6++ 1+ ρ(770) I 0.173 0.016 0.013 0.018 0.146 0.006 0.009 0.001
6++ 1+ f2(1270) H 0.151 0.068 0.071 0.033 0.123 0.005 0.015 0.007
6−+ 0+ [ππ]S I 0.226 0.071 0.146 0.047 0.157 0.017 0.013 0.016
6−+ 1+ [ππ]S I 0.128 0.077 0.153 0.064 0.887 0.016 0.002 0.005
6−+ 0+ ρ(770) H 1.189 0.027 0.193 0.037 2.017 0.036 0.037 0.025
6−+ 1+ ρ(770) H 0.532 0.081 0.059 0.037 0.992 0.005 0.012 0.004
6−+ 0+ f2(1270) G 0.235 0.077 0.234 0.107 0.300 0.005 0.016 0.016
6−+ 0+ ρ3(1690) F 0.335 0.082 0.133 0.013 0.661 0.043 0.016 0.051
1++ 1− ρ(770) S 0.022 0.064 0.075 0.056 0.017 0.015 0.005 0.008
1−+ 0− ρ(770) P 0.267 0.133 0.085 0.051 0.064 0.023 0.021 0.003
1−+ 1− ρ(770) P 0.215 0.134 0.098 0.111 0.072 0.019 0.025 0.007
2++ 0− ρ(770) D 0.105 0.042 0.081 0.038 0.042 0.019 0.003 0.006
2++ 0− f2(1270) P 0.220 0.068 0.224 0.076 0.035 0.050 0.010 0.021
2++ 1− f2(1270) P 0.202 0.061 0.367 0.085 0.056 0.009 0.011 0.004
2−+ 1− f2(1270) S 0.210 0.040 0.150 0.076 0.030 0.031 0.019 0.027
Flat 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Maximum 1.794 0.278 0.985 0.507 4.923 0.318 0.441 0.235
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3.2 Results and Discussion

Here, I devide the analysis to the following aspects:

1. Comparing the maxima of ∆, one finds changes of isobar masses affect more
than their widths. For example, the change of m0,ρ(770) gives several partial
waves with ∆ > 1, while the change of Γ0,ρ(770) gives only maximal 0.3. The
previous analysis is positively supported. On the other hand, no clear pattern
is found between the isobars. This may result from the scale of changes we
chose: up to ±10 MeV (an absolute scale) for all isobar parameters. We kept
it fixed as a scale of the measurable mass resolution.

2. In ideal case, the partial waves are independent of each other. Isobars, partly
defined the partial wave, should also give independent subspaces. Based on this
hypothesis, larger ∆ values are expected for the partial waves when their isobar
is the same as the changed isobar. In table 3.3, these ∆ are underlined. Com-
pared these underlined entries to the non-underlined inside each block. I found:

i) For width shifts, the underlined values are not necessarily larger. So no
clear pattern is found. This may be because of the small shift of width in
general—There is even no single entry larger than one. In this case, statistical
uncertainty plays an important role.
ii) For mass shifts, The underlined values are roughly dominant, however, with
the exception f0(1500). The special role of f0(1500) will be discussed as follows.

3. Similarly, I expected for the quantum numbers a joint pattern. In table 3.3, the
quantum numbers are classified by different blocks. However, the value inside
each blocks fluctuate a lot, which is in disagreement of the expectation. Here,
maybe the whole set of quantum numbers should be categorized, inclusive the
orbital angular momentum Lξπ. Yet, in this case, there are too many groups
with too less entries for the 88 waves, which is not sufficient to find a common
pattern. Therefore, a systematic analysis for the angular parts is impossible.

4. The f0(1500) mass changes yield irregular and often large shifts on transition
amplitudes. The maximal value reaches ∆ ≈ 5. The reason is that f0(1500)
has the same JP = 0+ as f0(500) ([ππ]S) and f0(980). So correlation between
these isobars is expected. In fact, the largest shifts of the fit results are
indeed observed for the partial waves 0−+ 0+ [ππ]S S (∆ = 4.687) and 0−+ 0+

f0(980) S (∆ = 4.923). However, for the partial wave 0−+ 0+ f0(1500) S
only ∆ = 0.034 is found. This is the only partial wave with f0(1500), yet not
susceptible to the changing parameter of f0(1500) at all. In addition, leakage
effect is found at changes of f0(1500), while not observed by shift of the other
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Chapter 3 Analysis for the Monte Carlo data

isobar parameters. For instance, on changing the mass of f0(1500), one finds
the susceptibility ‘leaks’ to other isobars such as ρ(770). (See, for example,
the block of JPC = 1++.). It is important for us to be aware of this weirdness
for the further analysis.

For m3π = 1.0 GeV, the analysis task is less sophisticated. As discussed before, the
susceptibility of the transition amplitudes reduces drastically for all isobars with
m0,ξ > m3π. According to table B.2, the small ∆ for the isobar parameters’ changes
except for ρ(770) agree with the small susceptibility. In addition, the similar leakage
effect is observed concerning ρ(770) parameters’ changes. This is reasonable as it
lost the independent components. The rest intensity has to be somehow distributed.

3.2.2 Shift of − logL for the Best Fit Result

In this part, I evaluate the dependence of the − logL value of the best result, defined
as − logLbest, on the isobar parameters. As mentioned in section 3.1.3, for large
number of events, − logL is expected to be a parabola in the isobar parameters as
model parameters. The reason why I performed the analysis for the Monte Carlo
data first is to ensure the feasibility of this method.

To fit the − logLbest dependence of the isobar parameters by 2nd-order polynomial
is the clear goal. The trivial attempt would be fit it to a parabola considering all
the isobar parameters. Empirically, to stabilize this fit, one need hundreds of ‘data
points’. Here, each ‘data point’ means one fit result, where a elaborate fit algorithm
stands behind. In this case, producing an amount of them would be very expensive.
Besides, it is hard to judge the fit quality. One may get numeric outputs from the
fit algorithm concerning the fit quality. Yet, since there is only one fit to be done,
one lacks comparison for these numbers. Therefore, I should pursue a more simple
way to attain our goal.

Empirically, the parameters of different isobars have small correlation among each
other. Making use of this small correlation, I fitted the − logLbest parabolic with
changed parameters of each isobar, while keeping the other isobar parameters the
reference values in table 3.1. This yields a 2nd-order polynomial surface in m0,ξ and
Γ0,ξ for each isobar ξ. Compared to the single isobar parameters’ changes studied by
the last section, I added 4 extra points on both mass and width shifts of each isobar
to stabilize the parabola. The outcome of the fit is the apex of the parabola given
by the minimum in case the coefficient of the quadratic term is positive. Before the
results presented, the following two aspects still deserve our attention:
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3.2 Results and Discussion

The Analysis Validity

Ideally, − logLbest should be a 2D 2nd order polynomial in the (m0,ξ,Γ0,ξ) plane,
however, only in case that the isobar does affect the fit. Similar to the transition
amplitudes discussed in section 3.2.1 and table B.2, − logLbest does not depend on
parameters of isobars above the kinematic thresholds. For m3π = 1.0 GeV, these
are all isobars except for the ρ(770). The outcomes were in accordance with this
expectation. For example, Fig. 3.11 shows plots of the parabolic fits for ρ(770)
parameters and f2(1270) parameters. To make the plots easier to read, the vertical
axis was redefined as ∆ logLbest = − logLbest(m0,Γ0) + logLbest(mi,Γi).
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Figure 3.11: The figures show the ∆ logLbest as a function of m0 and Γ0 (red points)
and fitted 2nd-order polynomial (blue surface). They are generated from the Monte
Carlo data with m3π = 1.0 GeV concerning the change of ρ(770) parameters (a) and
f2(1270) parameters (b).

Here, for ρ(770), one observes a typical parabolic shape, though the mass dependence
is more drastic than the width. This is consistent with the outcomes in section 3.2.1:
The transition amplitudes are affect more by shifts of isobar masses than their widths.
For f2(1270), the surface is more like a plane. Focusing on the vertical axis, one sees
the largest ∆ logLbest only ranges up to 0.04, which is far too small compared to
the analysis resolution represented by an elevation of 0.5 unit. In this case, it is not
justified to read a result from that. So those isobars with their plot like this are
excluded in the final results.

The Effect of Covariance between Mass and Width
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Chapter 3 Analysis for the Monte Carlo data

I plotted the cross section of the 2D plots in each axis—mass and width. In
this way, I got a 1D points set and a curve of the function value of our fitted
parabola. Here, as reduced to 1-dimension, the data points can also be fitted to
a 1-dimensional parabola. This new parabola may have different apex from the
previous curve. Fig. 3.12 shows some examples.

The difference between the two fit curves is due to the covariance between the isobar
mass and width. According to Fig. 3.12b and Fig. 3.12d, the difference between
two fit curves indicates that the covariance does exist. Yet, although the covariance
exists mutually between the isobar mass and width, the mass is much robuster on
withstanding the effect of the correlation according to Fig. 3.12a and Fig. 3.12c.
In analogous, the isobar masses may also withstand more covariance, for example,
between parameters of different isobars. Therefore, the outcome mass parameters
are more reliable.

Moreover, according to the plots of width dependence (Fig. 3.12b and Fig. 3.12d),
the fit without considering the covariance evidently describes the data better, while
the fits with this consideration give better results concerning the reference val-
ues (table 3.1). As these are the values using for generation of the data set, they are
supposed to be the true values, so that the minimization of the parabola surface with
consideration of the correlation between the isobar mass and width should give more
reliable outcomes. In table 3.4, the results from both parabolic fits are presented.
As for the uncertainties, I used the Gaussian assumption—the range with up to 0.5
unit elevation of − logLbest is given.

For m3π = 1.8 GeV:
Isobar Parameter reference value [MeV] 3D fit [MeV] 2D fit [MeV]

ρ(770)
m0 769.0 769.4± 1.9 769.5± 1.9
Γ0 150.9 149.4± 4.0 148.5± 4.0

f2(1270)
m0 1275.1 1274.3± 2.6 1274.5± 2.6
Γ0 185.1 178.5± 5.5 177.9± 5.5

f0(1500)
m0 1505.0 1515.2± 9.1 1515.0± 9.1
Γ0 109.0 100.5± 15.0 101.0± 14.9

ρ3(1690)
m0 1688.8 1706.0± 18.6 1706.0± 18.6
Γ0 161.0 181.8± 29.0 185.0± 29.1

For m3π = 1.0 GeV:

ρ(770)
m0 769.0 769.2± 1.8 769.1± 1.8
Γ0 150.9 153.7± 3.6 152.6± 3.55

Table 3.4: Outcomes of parabolic fits of Monte Carlo data
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Figure 3.12: The figures shows the ∆ logLbest on isobar changes as data points and
two different parabolic fits. They are generated from the Monte Carlo data with
m3π = 1.8 GeV concerning the change of m0,ρ(770) (a), Γ0,ρ(770) (b), m0,f2(1270) (c)
and Γ0,f2(1270) (d). 2D parabolic fits represent the cross section of the 2D parabola
surface. 1D parabolic fits show the parabola directly fitted to the data points.
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Chapter 3 Analysis for the Monte Carlo data

As summarized in table 3.4, these results and the reference parameters from table 3.1
are generally in good agreement. The larger uncertainties in widths than in masses
agree with Fig. 3.11a. Besides, as the isobar mass increases, the deviation and the
uncertainty both become larger. It is fair to say a larger uncertainty brings a larger
deviation, and the uncertainty suggests the susceptibility—a larger uncertainty area
indicates a flatter parabola. A flat likelihood w.r.t. one parameter, as a reference
to the probability density, refers to how this parameter affects the fit. Here, at
last, it is fair to compare between the isobars: According to the uncertainties of the
outcomes, ρ(770) and f2(1270) should be the dominant isobars.

This statement is true, according to previous analysis results of the COMPASS exper-
iment. Looking to the m2π mass spectrum of the real experimental data (Fig. 3.13),
we see clearer peaks for this two isobars in comparison to the other. In addition,
the relative intensity variation between different partial waves can also be a good
hint (Table 5 in Ref. [2]). There is a single partial wave, 1++ 0+ ρ(770)S, holding
over 30% of the whole intensity while all other waves less than 10%. This gives the
dominant weight of ρ(770).
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Figure 3.13: The figure shows the mππ mass spectrum [2].

Till here, I confirmed that the method of parabolic fitting − logLbest concerning the
isobar parameter changes works. In the next chapter, I will apply this method to
the real data.
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Chapter 4

Analysis for the Real Data

In this chapter, I analyze two real experimental data sets with m3π between 1.80
and 1.82 GeV, and between 1.00 and 1.02 GeV. Both data sets are with t′ between
0.1 and 0.113 GeV2. As discussed in section 2.2.1, for narrow bins of these two
parameters, I regard them as constants with m3π = 1.8 GeV and m3π = 1.0 GeV
and apply our model in Eq. (2.2) that describes the intensity as a function of the
phase space variables τ .

For the real data, I focus primarily on estimating the optimal isobar parameters via
the change of − logLbest. The chapter is divided into two parts. The first part will
focus on the prerequisites of the analysis. In the second part, I will present and
discuss the estimated isobar parameters.

4.1 Preparation

As the methodology is analog to the previous analysis of the Monte Carlo data (see
chapter 3), only noticeable differences are shown as follows:

Modalities of the fit

The fit results of the data set with m3π = 1.8 GeV is similar to the Monte Carlo
data with m3π = 1.8 GeV. For the data with m3π = 1.0 GeV, difference appears. As
discussed before, thresholds are necessary to stabilize the fit. However, thresholds
do not exist in nature, and we want to use the same wave list for the both data
sets to make better comparison. Hence, I analyzed the data with the PWA model
without thresholds.

Thresholds benefit the fit stability. For comparing the − logLbest value, the fit
stability and the modality of each − logL are not so important. So using the model
with thresholds is primarily justified. Yet, for the algorithm, what does matter is
that the − logL does has a well-defined global minimum and I should be able to
find it. This can be studied by performing the fit multiple time using random initial
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Chapter 4 Analysis for the Real Data

values. For example, Fig 4.1a shows the histogram of ∆ logL = − logL + logLbest
in the range of statistical uncertainty, ∆ logL < 0.5, from totally about a thousand
fit results.
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Figure 4.1: The figures show the ∆ logL distribution for the real experimental data
with m3π between 1.00 and 1.02 GeV. The fit model took the isobar parameters in
table 3.1 and the partial-wave list without thresholds.

Here, the ∆ logL ranges only over about 10−5. The minimum is thus well-defined.
However, there are only 32 fit results from a thousand that fall into the ∆ logL < 0.5
region. This proportion is too low for us to figure out whether it only represents
a local minimum or the global one. Yet, as the initial value of the minimization
distributed randomly, one can regard it as a random variable with a probability
distribution. So in limit of infinity fit attempts, the probability that the logarithm
can find the global minimum should go into constant. In this case, if the fit does
find the global minimum, this proportion should represent this probability and go
stable as the total amount of fit attempt increases. To prove that, I performed the
algorithm for more times and plotted the outcome histogram in Fig 4.1b.

According to the two figures in Fig. 4.1, the two outcomes are in consistence. On one
hand, the proportions are already in consistent: 32/1001 ≈ 86/2404 ≈ 0.3. On the
other hand, the lowest − logL values that they captured are the same. Consequently,
the minimization of about a thousand times does find the best fit result and will be
applied for the further analysis.
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4.2 Results and Discussion

Fit with changed isobar parameters: Shift of transition amplitudes

Strictly speaking, this part is not related to the final goal, as the − logLbest
distribution is independent of the distribution of each − logL function itself. So,
only superficial disparities between the results of the real data and the Monte Carlo
data are shown.

In general, nothing noticeable is found concerning m3π = 1.8 GeV (for example,
Fig. 4.2a). For m3π = 1.0 GeV, there are some differences. Fig. 4.2b shows an ex-
ample of the fit results. Firstly, the linearity of the shifts of the transition amplitudes
does not survive. Besides, for the lowest m0,ρ(770), two solutions are found by the
fit. As only the results within 0.5 unit elevation of − logL were taken into account
to the plots, we obtained here two good fit results indistinguishable in terms of the
statistical uncertainty.
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Figure 4.2: The figure shows the transition amplitude of a partial wave for PWA fits
to real data with different values of the isobar parameters. Panel (a) is with higher
m3π: between 1.80 and 1.82 GeV and panel (b) with lower m3π: between 1.00 and
1.02 GeV.

4.2 Results and Discussion

Up to now, I assured the feasibility of the analysis method. After performing the
same scan process as in section 3.2.2, I got the results for the real data as presented
in table 4.1. Here, the deviations to the PDG parameters larger than for the Monte
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Carlo data. In particular, I marked the values with large deviations. For some of
them, I extended the ranges of the input parameters to make sure the minimums are
indeed in this position. I will discuss the outcomes as follows

For m3π = 1.8 GeV:
Isobar Parameter PDG value [MeV] 2D fit [MeV] 1D fit [MeV]

ρ(770)
m0 769.0± 0.9 764.4± 1.0 765.6± 1.0
Γ0 150.9± 1.7 134.0± 2.3 134.5± 2.3

f2(1270)
m0 1275.1± 1.2 1277.6± 1.5 1277.6± 1.5
Γ0 185.1+2.9

−2.4 189.0± 2.9 188.4± 2.9

f0(1500)
m0 1505.0± 6.0 - -
Γ0 109.0± 7.0 - -

ρ3(1690)
m0 1688.8± 2.1 1658.7± 8.3 1657.2± 8.4
Γ0 161.0± 10.0 133.9± 16.9 123.9± 18.7

For m3π = 1.0 GeV:

ρ(770)
m0 769.0± 0.9 760.8± 1.1 761.7± 1.1
Γ0 150.9± 1.7 144.0± 1.8 147.0± 1.8

Table 4.1: Outcomes of parabolic fits of the real data

For m3π = 1.0 GeV

Despite of the instability of the fit result due to removed thresholds, the outcomes for
ρ(770) parameters are pretty reliable. The other three isobars are subthresholded,
so that their parameters cannot be extracted. Even though, the successful meas-
urement of ρ(770) parameters consoles us, that the fit algorithm without thresholds
does work. The resultant plots can be found in Fig. 4.4 (a) and (b).

For m3π = 1.8 GeV: ρ(770) and f2(1270)

Here, the parabolic fits work well (Fig. 4.4). The parabolic shape of − logLbest
distribution lends credence to the outcomes, however, with a relative large deviation
on Γ0,ρ(770) (marked in table 4.1). This deviation may come from our model assump-
tion that the isobar and the bachelor pion do not interact with each other (Fig. 2.2).
A possible final state interaction between the ρ(770) and bachelor pion may cause
this deviation.

Another possible reason could be correlations with the parameters of other isobars.
As the ρ(770) and f2(1270) parameters were well-defined in this analysis and these
are two isobars that affect most (Fig. 3.13), I checked the influence of their correlation
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by fitting the − logLbest dependent of m0,ρ(770), Γ0,ρ(770), m0,f2(1270) and Γ0,f2(1270)

to a 4-dimensional parabola. The outcomes for the real data with m3π = 1.8 GeV
are:

m0,ρ(770) [MeV] Γ0,ρ(770) [MeV] m0,f2(1270) [MeV] Γ0,f2(1270) [MeV]
764.3± 1.0 134.3± 2.3 1277.8± 1.5 189.23± 2.9

The results are similar to the measured parameters in table 4.1. Hence the correlation
among these four parameters is not the reason for the deviation.

For m3π = 1.8 GeV: f0(1500)

Fig. 4.3a and 4.3b show the − logLbest as a function of the parameters of f0(1500).
I think it is meaningless to extract f0(1500) parameters from these plots. On
one hand, 1D fits yielded parameters far away from PDG, so that we can hardly
lend credence to them. On the other hand, 2D fit did not work. As discussed
in section 3.2.1, f0(1500) already showed a exotic property due to its ‘cross talk’
to parameters of other isobars. This may prevent reliable extraction of f0(1500)
parameters.

For m3π = 1.8 GeV: ρ3(1690)

For the ρ3(1690) parameters, I obtained relative good fitted parabolas (Fig. 4.3c
and 4.3d), so that the outcomes should be meaningful, although with large deviations
similar to the large uncertainty range. The reason for them could be the correlations
among the isobars, as the deviations between the input isobar parameters from PDG
and our parameters, in particular for Γ0,ρ(770), may cause the application of improper
subspace of isobar parameters in the fits. If this reason be true, the deviations should
be alleviated on performing a higher-dimensional fit. However, as I brought the
ρ(770) and f2(1270) parameters together as a test, no clear differences were found.
Besides, the deviation can also exactly result from the large uncertainty. In the 2π
mass spectrum (Fig. 3.13), almost no visible peak can be found for ρ3(1690), so that
the amount of captured events may not be sufficient to fix its parameters.
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Figure 4.3: The figures show the ∆ logLbest scans dependent of isobar parameters
for real experimental data with m3π between 1.80 and 1.82 GeV.
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Figure 4.4: The figures show the ∆ logLbest scans dependent of isobar parameters.
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Chapter 5

Conclusions

In this thesis, I studied the partial-wave analysis results under changes of the isobar
parameters for the reaction π− + p → π− + π− + π+ + precoil. The analysis model
was based on a previous analysis [2] and was fitted to the data using maximum
likelihood method. Isobars, defined by mass and width parameters, describe the 2π
subsystem in the successive 3π decay. I extracted the isobar parameters for two
example m3π bins using − logL scan. These isobar parameters are helpful for the
ongoing analysis of data from the COMPASS experiment, as in this way we give our
own measurements of the isobar parameters considering the individual interactions
in our experiment.

Firstly, I analyzed Monte Carlo data generated by the best fit result of the real
experimental data to evaluate the fit model. I discussed the fit performance under
isobar parameter changes up to 10 MeV. The fit remained stable. Our model is
robust under isobar parameter changes. In detail, I regarded the following two
aspects: On one hand, the transition amplitudes shifted approximately linear with
the isobar parameter changes. I evaluated and compared the shift in different
aspects of data: For different m3π, the fits are only susceptible to the isobar ξ with
mξ < m3π. The fit results shift in general more on masses changes than widths. For
different partial waves, the isobar changes affect more those waves with the same
isobar. The only exception is the f0(1500). No evident pattern was found in terms
of the quantum numbers of the waves. On the other hand, I scanned the − logL of
the best fit results under isobar parameter changes to make sure this method works.
Here, I confirmed that − logLbest is in good approximation a parabola in the isobar
parameters. The apex of the parabola were successfully located near the inputted
parameters so that the method does work.

Subsequently, I scanned the − logL of the best fit results of the real experimental
data. To make sure I can find the best fit results, i.e. the global minimum of − logL,
I analyzed the − logL histogram and argued the feasibility. The shifts of transition
amplitude were shortly discussed as I found multimodality of the − logL of real data
with m3π = 1.0 GeV with a lighter ρ(770) mass. Then, I performed the scan and
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Chapter 5 Conclusions

extracted the parameters of ρ(770), f2(1270) and ρ3(1690) (table 4.1). In general,
the f2(1270) parameters agree with the PDG averages. The parameters for ρ(770)
and ρ3(1690) deviate from the PDG averages, which could be a sign for effects from
final-state interactions of ρ and ρ3 with the bachelor pion.
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Chapter 6

Outlook

Here, I follow some aspects that what can still be done in terms of the frame of the
previous analysis:

Firstly, concerning the most useful part of the analysis, I extracted the isobar
parameters from the experimental data that are in some case different from the
PDG parameters. This is a bit strange, but still in our expectation, as the PDG
parameters came from the averaging results of various of experiments. In our ex-
periment, the results may be affected by the interaction of the outgoing particles or
non-resonance contributions, which other experiments did not have. In this case, we
may lend more credence to our own isobar parameters. Meanwhile, as we studied,
the deviation of the input isobar parameters does influence the fit results in terms of
the real experimental data (Fig. 4.2b). Thus, it would be interesting, for example,
to substitute our input isobar parameters to our predicted values and to see whether
the outcome − logL function would be better (e.g. more stable, less modal values).
However, this tool has its constraint for the two example experimental data set I
used. That is, we are not able to find all the isobar parameters for a lower m3π

due to their indistinguishable performance by the fit, and for a higher m3π the
− logL already has a single minimum due to the robustness of the model (shown in
Chapter 3), so that the fit quality can be hard to compare between different isobar
parameter sets. Still, the method may work for the data set with m3π between
them. Besides, there are other ways to get our own isobar parameters (For example,
Ref. [12]), so that this idea can be tested.

Secondly, I took the data of two different m3π as examples. I found, for instance for
Γ0,ρ(770), that the measured isobar parameters can be different. This is interesting
because it may reveal that final-state interactions affect the reaction differently in
different 3π invariant mass. What can still be done is to extract the measured isobar
parameters as a function of m3π. The tendency can be interesting and this process
is not so expensive as the algorithm is the same.

Finally, concerning the analysis detail, there are still parameters of two isobars that
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Chapter 6 Outlook

remained unchanged and were not studied. On one hand, due to their exotic prop-
erties, the Breit-Wigner parameterization introduced large deviations of their mππ

spectrum of the propagator term. On the other hand, other decay modes of the f0

isobar may lead to other peaks of its spectrum, so that other parameters may still
have to be added concerning these isobars. The study may go more complicated,
but still feasible. Hence, if we would like to study the model more comprehensively,
we can still take them into account.
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Appendix A

Isobar Parameterizations

ρ(770):

mass: Eq.(2.6)
width:

Γ(m) = Γ0
q

q0

F 2
Lr

(q)

F 2
Lr

(q0)
(A.1)

where q and q0 are defined as in Eq.(2.7).

f2(1270):

mass: Eq.(2.6)
width: Eq.(2.7)

f0(1500):

mass: Eq.(2.6)
width:

Γ = Γ0 (A.2)

ρ3(1690):

mass:
∆(m;m0,Γ0) =

√
mm0 Γ0

m2
0 −m2 − im0Γ(m)

(A.3)

width:
Γ = Γ0 (A.4)
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Appendix B

Large Tables

Table B.1: Wave list for the fits. 80 waves with positive reflectivity, 7 with negative,
plus an incoherent isotropic wave [2].

JPCMε Isobar Lξπ Threshold [MeV]
0−+ 0+ [ππ]S S —
0−+ 0+ ρ(770) P —
0−+ 0+ f0(980) S 1200
0−+ 0+ f2(1270) D —
0−+ 0+ f0(1500) S 1700
1++ 0+ [ππ]S P —
1++ 1+ [ππ]S P 1100
1++ 0+ ρ(770) S —
1++ 1+ ρ(770) S —
1++ 0+ ρ(770) D —
1++ 1+ ρ(770) D —
1++ 0+ f0(980) P 1180
1++ 1+ f0(980) P 1140
1++ 0+ f2(1270) P 1220
1++ 1+ f2(1270) P —
1++ 0+ f2(1270) F —
1++ 0+ ρ3(1690) D —
1++ 0+ ρ3(1690) G —
1−+ 1+ ρ(770) P —
2++ 1+ ρ(770) D —
2++ 2+ ρ(770) D —
2++ 1+ f2(1270) P 1000
2++ 2+ f2(1270) P 1400
2++ 1+ ρ3(1690) D 800
2−+ 0+ [ππ]S D —

Continued on next page
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Appendix B Large Tables

Table B.1 – continued from previous page
JPCMε Isobar Lξπ Threshold [MeV]
2−+ 1+ [ππ]S D —
2−+ 0+ ρ(770) P —
2−+ 1+ ρ(770) P —
2−+ 2+ ρ(770) P —
2−+ 0+ ρ(770) F —
2−+ 1+ ρ(770) F —
2−+ 0+ f0(980) D 1160
2−+ 0+ f2(1270) S —
2−+ 1+ f2(1270) S 1100
2−+ 2+ f2(1270) S —
2−+ 0+ f2(1270) D —
2−+ 1+ f2(1270) D —
2−+ 2+ f2(1270) D —
2−+ 0+ f2(1270) G —
2−+ 0+ ρ3(1690) P 1000
2−+ 1+ ρ3(1690) P 1300
3++ 0+ [ππ]S F 1380
3++ 1+ [ππ]S F 1380
3++ 0+ ρ(770) D —
3++ 1+ ρ(770) D —
3++ 0+ ρ(770) G —
3++ 1+ ρ(770) G —
3++ 0+ f2(1270) P 960
3++ 1+ f2(1270) P 1140
3++ 0+ ρ3(1690) S 1380
3++ 1+ ρ3(1690) S 1380
3++ 0+ ρ3(1690) I —
3−+ 1+ ρ(770) F —
3−+ 1+ f2(1270) D 1340
4++ 1+ ρ(770) G —
4++ 2+ ρ(770) G —
4++ 1+ f2(1270) F —
4++ 2+ f2(1270) F —
4++ 1+ ρ3(1690) D 1700
4−+ 0+ [ππ]S G 1400
4−+ 0+ ρ(770) F —
4−+ 1+ ρ(770) F —

Continued on next page
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Table B.1 – continued from previous page
JPCMε Isobar Lξπ Threshold [MeV]
4−+ 0+ f2(1270) D —
4−+ 1+ f2(1270) D —
4−+ 0+ f2(1270) G 1600
5++ 0+ [ππ]S H —
5++ 1+ [ππ]S H —
5++ 0+ ρ(770) G —
5++ 0+ f2(1270) F 980
5++ 1+ f2(1270) F —
5++ 0+ f2(1270) H —
5++ 0+ ρ3(1690) D 1360
6++ 1+ ρ(770) I —
6++ 1+ f2(1270) H —
6−+ 0+ [ππ]S I —
6−+ 1+ [ππ]S I —
6−+ 0+ ρ(770) H —
6−+ 1+ ρ(770) H —
6−+ 0+ f2(1270) G —
6−+ 0+ ρ3(1690) F —
1++ 1− ρ(770) S —
1−+ 0− ρ(770) P —
1−+ 1− ρ(770) P —
2++ 0− ρ(770) D —
2++ 0− f2(1270) P 1180
2++ 1− f2(1270) P 1300
2−+ 1− f2(1270) S —
Flat —
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Table B.2: The maximal relative deviation for the best fit results under each single
isobar parameter change of Monte Carlo data for m3π = 1.0 GeV

JPCMε Isobar Lξπ
ρ(770) f2(1270) f0(1500) ρ3(1690)

∆m0 ∆Γ0 ∆m0 ∆Γ0 ∆m0 ∆Γ0 ∆m0 ∆Γ0

0−+ 0+ [ππ]S S 1.106 0.316 0.002 0.007 0.004 0.003 0.001 0.001
0−+ 0+ ρ(770) P 1.468 0.141 0.015 0.008 0.002 0.000 0.001 0.001
0−+ 0+ f0(980) S 1.237 0.868 0.008 0.007 0.004 0.003 0.000 0.000
0−+ 0+ f2(1270) D 0.701 0.840 0.004 0.010 0.002 0.000 0.001 0.001
0−+ 0+ f0(1500) S 0.457 0.681 0.005 0.007 0.006 0.002 0.001 0.001
1++ 0+ [ππ]S P 5.432 0.897 0.009 0.007 0.001 0.000 0.003 0.001
1++ 1+ [ππ]S P 1.466 0.464 0.014 0.006 0.001 0.000 0.001 0.001
1++ 0+ ρ(770) S 0.390 0.476 0.012 0.002 0.001 0.000 0.001 0.001
1++ 1+ ρ(770) S 0.577 0.402 0.013 0.011 0.001 0.000 0.001 0.000
1++ 0+ ρ(770) D 2.360 0.418 0.020 0.009 0.001 0.000 0.002 0.001
1++ 1+ ρ(770) D 0.598 0.324 0.006 0.006 0.000 0.000 0.001 0.000
1++ 0+ f0(980) P 2.970 0.186 0.015 0.008 0.001 0.000 0.005 0.001
1++ 1+ f0(980) P 1.762 0.267 0.021 0.005 0.001 0.000 0.000 0.001
1++ 0+ f2(1270) P 1.918 0.916 0.018 0.009 0.001 0.000 0.002 0.001
1++ 1+ f2(1270) P 0.423 0.385 0.013 0.024 0.000 0.000 0.001 0.001
1++ 0+ f2(1270) F 2.798 1.004 0.024 0.005 0.001 0.000 0.002 0.000
1++ 0+ ρ3(1690) D 2.818 0.354 0.012 0.012 0.000 0.000 0.003 0.001
1++ 0+ ρ3(1690) G 0.922 0.581 0.015 0.009 0.001 0.001 0.003 0.001
1−+ 1+ ρ(770) P 1.165 0.421 0.011 0.004 0.000 0.000 0.002 0.000
2++ 1+ ρ(770) D 0.409 0.106 0.024 0.021 0.000 0.000 0.001 0.001
2++ 2+ ρ(770) D 0.254 0.106 0.010 0.003 0.000 0.000 0.001 0.000
2++ 1+ f2(1270) P 1.091 0.217 0.025 0.040 0.000 0.000 0.001 0.000
2++ 2+ f2(1270) P 0.294 0.151 0.009 0.002 0.000 0.000 0.001 0.000
2++ 1+ ρ3(1690) D 0.966 0.090 0.005 0.003 0.000 0.000 0.002 0.001
2−+ 0+ [ππ]S D 0.831 0.335 0.011 0.003 0.001 0.000 0.003 0.001
2−+ 1+ [ππ]S D 0.689 0.538 0.000 0.007 0.000 0.000 0.002 0.001
2−+ 0+ ρ(770) P 0.525 0.149 0.014 0.004 0.001 0.000 0.000 0.001
2−+ 1+ ρ(770) P 0.983 0.298 0.004 0.007 0.000 0.000 0.002 0.001
2−+ 2+ ρ(770) P 0.274 0.039 0.004 0.004 0.000 0.000 0.000 0.000
2−+ 0+ ρ(770) F 0.532 0.069 0.013 0.006 0.001 0.000 0.000 0.000
2−+ 1+ ρ(770) F 0.975 0.184 0.008 0.010 0.000 0.000 0.002 0.001
2−+ 0+ f0(980) D 0.688 0.279 0.015 0.004 0.001 0.000 0.003 0.001
2−+ 0+ f2(1270) S 0.750 0.298 0.018 0.015 0.001 0.000 0.001 0.001
2−+ 1+ f2(1270) S 0.698 0.552 0.012 0.019 0.000 0.000 0.002 0.001

Continued on next page
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JPCMε Isobar Lξπ
ρ(770) f2(1270) f0(1500) ρ3(1690)

∆m0 ∆Γ0 ∆m0 ∆Γ0 ∆m0 ∆Γ0 ∆m0 ∆Γ0

2−+ 2+ f2(1270) S 0.678 0.105 0.012 0.034 0.000 0.000 0.000 0.000
2−+ 0+ f2(1270) D 0.487 0.165 0.032 0.009 0.000 0.000 0.001 0.001
2−+ 1+ f2(1270) D 0.366 0.154 0.013 0.009 0.000 0.000 0.003 0.001
2−+ 2+ f2(1270) D 0.481 0.315 0.002 0.010 0.000 0.000 0.000 0.000
2−+ 0+ f2(1270) G 0.678 0.113 0.006 0.004 0.001 0.000 0.002 0.002
2−+ 0+ ρ3(1690) P 0.637 0.088 0.003 0.004 0.001 0.000 0.001 0.003
2−+ 1+ ρ3(1690) P 0.800 0.299 0.005 0.008 0.001 0.000 0.003 0.002
3++ 0+ [ππ]S F 0.176 0.105 0.009 0.007 0.000 0.000 0.001 0.001
3++ 1+ [ππ]S F 0.411 0.238 0.007 0.001 0.000 0.000 0.002 0.001
3++ 0+ ρ(770) D 0.246 0.135 0.016 0.010 0.000 0.000 0.001 0.000
3++ 1+ ρ(770) D 0.355 0.316 0.006 0.004 0.001 0.001 0.002 0.001
3++ 0+ ρ(770) G 1.064 0.163 0.011 0.010 0.000 0.000 0.001 0.001
3++ 1+ ρ(770) G 0.376 0.347 0.004 0.006 0.000 0.000 0.002 0.001
3++ 0+ f2(1270) P 0.589 0.029 0.016 0.016 0.000 0.000 0.001 0.001
3++ 1+ f2(1270) P 0.279 0.190 0.010 0.012 0.000 0.000 0.001 0.001
3++ 0+ ρ3(1690) S 0.177 0.212 0.016 0.011 0.000 0.000 0.001 0.001
3++ 1+ ρ3(1690) S 0.151 0.263 0.005 0.001 0.000 0.001 0.002 0.003
3++ 0+ ρ3(1690) I 0.515 0.030 0.003 0.003 0.000 0.000 0.001 0.001
3−+ 1+ ρ(770) F 0.131 0.037 0.012 0.003 0.000 0.000 0.001 0.000
3−+ 1+ f2(1270) D 0.205 0.042 0.009 0.003 0.000 0.000 0.001 0.000
4++ 1+ ρ(770) G 0.246 0.082 0.002 0.004 0.000 0.000 0.005 0.002
4++ 2+ ρ(770) G 0.252 0.179 0.002 0.005 0.000 0.000 0.000 0.000
4++ 1+ f2(1270) F 0.109 0.079 0.003 0.017 0.000 0.000 0.002 0.001
4++ 2+ f2(1270) F 0.185 0.203 0.001 0.002 0.000 0.000 0.000 0.001
4++ 1+ ρ3(1690) D 0.176 0.083 0.005 0.005 0.000 0.000 0.006 0.002
4−+ 0+ [ππ]S G 0.391 0.086 0.008 0.001 0.000 0.000 0.001 0.001
4−+ 0+ ρ(770) F 0.939 0.309 0.010 0.009 0.000 0.000 0.001 0.001
4−+ 1+ ρ(770) F 0.442 0.294 0.004 0.007 0.001 0.000 0.000 0.001
4−+ 0+ f2(1270) D 0.881 0.166 0.011 0.009 0.001 0.000 0.001 0.002
4−+ 1+ f2(1270) D 0.791 0.240 0.002 0.014 0.000 0.000 0.001 0.000
4−+ 0+ f2(1270) G 0.899 0.442 0.023 0.024 0.000 0.000 0.001 0.002
5++ 0+ [ππ]S H 0.303 0.059 0.011 0.008 0.000 0.000 0.000 0.000
5++ 1+ [ππ]S H 0.473 0.142 0.006 0.004 0.000 0.000 0.001 0.000
5++ 0+ ρ(770) G 0.600 0.191 0.012 0.005 0.000 0.000 0.001 0.000
5++ 0+ f2(1270) F 0.564 0.214 0.012 0.019 0.000 0.000 0.001 0.001
5++ 1+ f2(1270) F 0.452 0.161 0.004 0.004 0.000 0.000 0.001 0.000

Continued on next page
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Table B.2 – continued from previous page

JPCMε Isobar Lξπ
ρ(770) f2(1270) f0(1500) ρ3(1690)

∆m0 ∆Γ0 ∆m0 ∆Γ0 ∆m0 ∆Γ0 ∆m0 ∆Γ0

5++ 0+ f2(1270) H 0.645 0.489 0.003 0.007 0.001 0.000 0.001 0.000
5++ 0+ ρ3(1690) D 0.271 0.278 0.010 0.003 0.000 0.000 0.002 0.001
6++ 1+ ρ(770) I 0.286 0.091 0.002 0.001 0.000 0.000 0.000 0.000
6++ 1+ f2(1270) H 0.061 0.062 0.002 0.005 0.000 0.000 0.001 0.000
6−+ 0+ [ππ]S I 0.236 0.139 0.008 0.004 0.000 0.000 0.001 0.000
6−+ 1+ [ππ]S I 0.135 0.178 0.005 0.001 0.000 0.000 0.000 0.000
6−+ 0+ ρ(770) H 0.606 0.046 0.014 0.005 0.000 0.000 0.002 0.001
6−+ 1+ ρ(770) H 0.719 0.136 0.006 0.005 0.000 0.000 0.000 0.000
6−+ 0+ f2(1270) G 0.477 0.074 0.011 0.010 0.000 0.000 0.001 0.001
6−+ 0+ ρ3(1690) F 0.343 0.054 0.013 0.005 0.000 0.000 0.002 0.001
1++ 1− ρ(770) S 0.125 0.220 0.004 0.004 0.000 0.000 0.000 0.000
1−+ 0− ρ(770) P 0.270 0.128 0.007 0.003 0.000 0.000 0.001 0.000
1−+ 1− ρ(770) P 0.146 0.343 0.004 0.007 0.000 0.000 0.001 0.000
2++ 0− ρ(770) D 0.171 0.292 0.005 0.003 0.000 0.000 0.000 0.000
2++ 0− f2(1270) P 0.210 0.349 0.011 0.006 0.000 0.000 0.000 0.000
2++ 1− f2(1270) P 0.165 0.169 0.006 0.004 0.000 0.000 0.001 0.000
2−+ 1− f2(1270) S 0.246 0.311 0.018 0.009 0.000 0.000 0.001 0.001
Flat 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Maximum 5.432 1.004 0.032 0.040 0.006 0.003 0.006 0.003
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