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Abstract

Quantum chromodynamics (QCD) successfully describes the strong interaction in
the high-energy limit by means of perturbation theory. Unfortunately, these cal-
culations break down in the low-energy regime. To study QCD at low energies
one has to rely on numerical lattice QCD simulations, e�ective theories, or models
to explain the experimental �ndings. The light-meson spectrum is an important
probe for low-energy QCD. Light-meson resonances can for example be produced as
intermediate states in di�ractive dissociation reactions.

The COMPASS experiment at CERN acquired a large dataset for the di�ract-
ive scattering reaction π− + p→ π−π−π+ + precoil.
To extract information about the produced intermediate three-pion resonances,
a technique called partial-wave decomposition is applied, which decomposes the
measured intensity distribution into the contributions from intermediate resonances
with di�erent quantum numbers. The method relies on a model with partial waves
as model components that need to be selected carefully to ensure sensible inference.
Up to now the relevant partial waves have been selected by hand. The selection
procedure is complicated due to strong interplay of the model components and
therefore hand-selected models may not be optimal.
With the large dataset available from COMPASS, one would like to improve the
analysis to study smaller e�ects in detail. These advances in data analysis require a
more systematic way of selecting the relevant partial waves. Recently, two model-
selection methods based on regularized maximum likelihood estimation have been
developed. In this thesis the di�erent model-selection procedures are applied and
veri�ed on simulated and measured data. The results lead to the development of a
new method that combines the advantages of the previously introduced approaches.
This new model-selection procedure has then successfully been applied to meas-
ured data, solving issues of the other selection procedures. The method is able to
systematically select sets of waves for the partial-wave decomposition in a fast and
practical manner.
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Kurzfassung

Die starke Wechselwirkung im Bereich hoher Energien lässt sich erfolgreich durch
die Quantenchromodynamik (QCD) beschreiben. Für niedrige Energien brechen die-
se Berechnungen leider zusammen. Um QCD bei niedrigen Energien zu untersuchen,
muss man auf numerische Berechnungen mittels Gitter-QCD und e�ektive Feldtheo-
rien zurückgreifen, welche die experimentellen Ergebnisse modellieren. Das Spek-
trum leichter Mesonen stellt einen Zugang für Niederenergie-QCD-Tests dar. Leichte
Mesonresonanzen können beispielsweise als Zwischenzustände in di�raktiven Streu-
prozessen erzeugt werden. Das COMPASS Experiment am CERN hat einen groÿen
Datensatz zum di�raktiven Streuprozess π− + p→ π−π−π+ + precoil aufgezeichnet.
Um Informationen über die im Zwischenzustand erzeugten Drei-Pion-Resonanzen
zu extrahieren, wird die sogenannte Partialwellenzerlegung angewandt, welche die
gemessene Intensitätsverteilung in Beiträge von Zwischenresonanzen, verschiedener
Quantenzahlen, zerlegt. Die Methode basiert auf einem Modell, dessen Modellkompo-
nenten, sogenannte Partialwellen, sorgfältig ausgewählt werden müssen, um sinnvolle
Inferenz zu garantieren.
Bisher wurden die relevanten Partialwellen von Hand ausgewählt. Die Selektion der
Komponenten ist aufgrund starker wechselseitiger Beein�ussung kompliziert, weswe-
gen die von Hand selektierten Modelle suboptimal sein können.
Mit der Verfügbarkeit der groÿen Datensätze von COMPASS möchte man die Ana-
lyse verbessern, um kleinere E�ekte im Detail zu untersuchen. Diese Verbesserun-
gen der Datenanalyse benötigen eine systematische Methode die relevanten Parti-
alwellen zu selektieren. Vor Kurzem wurden zwei Methoden entwickelt, welche auf
regularisierter Maximum-Likelihood-Schätzungen basieren. In dieser Arbeit werden
die verschiedenen Modellselektionsmethoden auf simulierten und gemessenen Daten
angewandt und veri�ziert. Die Ergebnisse führten zu der Entwicklung einer neuen
Methode, welche die Vorteile der vorher vorgestellten Ansätze vereint.
Diese neue Modellselektionsmethode wurde erfolgreich auf gemessenen Daten ange-
wandt und war in der Lage Probleme der anderen Prozeduren zu lösen. Die Methode
ermöglicht auf schnelle und praktikable Weise die systematische Selektion von Wel-
lensets für die Partialwellenzerlegung.
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Chapter 1

Introduction

The theory of quantum chromodynamics successfully describes the strong interac-
tion in the high-energy limit, by the means of perturbative expansion in the strong
coupling constant αS . In the low-energy regime, however, these calculations break
down due to the running of αS . In order to study the properties of the strong inter-
action one has to rely on numerical lattice QCD calculations and e�ective theories
to model experimental �ndings. One interesting probe for low-energy QCD, that is
accessible via experiments, is the spectrum of mesons built from the light up, down
and strange quarks. The light-meson spectrum consists of many heavily-overlapping
resonances of the strong interaction. With e�ective theories it is possible to extract
the properties of these resonances from measured data. This sector is of special
interest, because it is expected that, with increasing computational power, lattice
QCD will be able to make predictions that can be compared to the experimental
results in the near future.

The Common Muon and Proton Apparatus for Structure and Spectroscopy
(COMPASS) is a �xed-target experiment at the CERN Super Proton Synchrotron
(SPS), that measures the light-meson spectrum.
At COMPASS, resonances are produced via di�ractive dissociation reactions. For
this a negatively charged π beam with a momentum of 190 GeV/c was shot on
a liquid hydrogen target during the 2008 data-taking campaign. The scattering
process excites the beam particle to short-lived resonances that decay via the strong
interaction into hadronic �nal states. The decay products are measured in the
COMPASS spectrometer.
In this thesis the focus will be on the analysis of the reaction π− + p →
π−π−π+ + precoil. By measuring the momenta of the �nal-state particles, it is
possible to separate the contribution from di�erent intermediate three-pion reson-
ances to the measured kinematic distributions. The analysis technique for extraction
of individual contributions of resonances with di�erent quantum numbers is called
partial-wave analysis. Intermediate resonances with di�erent quantum numbers and
their decay channels are associated with so-called partial waves.
The analysis is separated in two steps. In the �rst step, the so-called partial-wave
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Chapter 1 Introduction

decomposition, complex transition amplitudes of the partial waves are extracted
from the data. The second step is called resonance extraction. In it, the results of
the partial-wave decomposition are �tted to extract the resonance parameters. The
partial-wave analysis makes it possible to look for resonances with speci�c quantum
numbers.

This thesis is concerned with the �rst of the two steps. It is a priori unknown
which partial waves contribute signi�cantly to the observed data. To arrive at
sensible results for the transition amplitudes it is therefore crucial to make an
appropriate selection of partial waves that are taken into account. This collection of
partial waves is known as the wave set. The selection procedure is complicated due
to interplay of the partial waves and will be the main topic of this work.

The three-pion �nal-state data measured by COMPASS has been analyzed in
detail in Ref. [Haa13]. In the work the selection of relevant partial waves was
performed manually and a wave set of 88 partial waves has been used.
For the analysis of the �ve-pion �nal state the construction of a wave set is more
challenging and therefore a systematic way of selecting the relevant waves is required.
In Ref. [Bic16] an approach for automatic selection of a wave set was presented. This
method, called Biggest Conceivable Model (BCM) method, has then been applied
to the three-pion �nal state in Ref. [Dro15], to introduce a more formal way of
deducing a wave set. The results looked promising, but further manual intervention
was required to �x issues with the model stability.
Recently another model-selection method has been introduced in Ref. [Gue+15],
which is based on a well-known statistical method, called the LASSO [Tib96].

These previous analyses are the starting point for this thesis. The goal of this
work is to develop a method that is applicable in practice for the selection of a
model for partial-wave decomposition. The three-pion �nal-state data is used to
test the selection method, but the method itself can be applied to other �nal states
as well.
In chapter 2 a short introduction to the COMPASS experiment and the underlying
physical processes will be given. Furthermore the event selection, used to produce the
dataset for this analysis, will be summarized. Afterwards, in chapter 3 the theoretical
background of the partial-wave decomposition analysis method will be presented.
Chapter 4 continues with the introduction of the model selection methods. These
methods are �rst applied and tested in chapter 5 on simulated datasets, restricted
to certain mass-regions. A new model selection technique is introduced. The same
mass-regions are then analyzed for measured data in chapter 6. Chapter 7 extends
the analysis on the complete available mass-region, while still being restricted to a
subset of the available data, and serves as a case-study of the di�erent methods. A
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modi�cation of the newly introduced model selection procedure is presented. This
modi�cation takes the available phase space of the decay channels into account to
improve the inference. In chapter 8 this new approach is applied to the full available
dataset of the three-pion �nal state. The �ndings are then discussed and compared
to the previous model.
The conclusions of this analysis are presented in chapter 9 and an outlook on future
applications and developments is given.
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Chapter 2

Meson Production in Di�ractive

Reactions at COMPASS

The data for the analysis, presented in this thesis, were measured by the COMPASS
experiment in 2008. In this chapter, a brief introduction to the experimental setup,
the underlying physical processes and the selection of the dataset is given. This
introduction is based on the following material [Ado+17; Bic16; Haa13; Dro15]

2.1 Experimental Setup

In �g. 2.1, a rendering of the experimental setup, as used during the 2008 data-taking
campaign, is shown. The following section summarizes the most important aspects
of the particle beam and the detector hardware. A detailed description of the setup
and its individual components can be found in Ref. [Abb+15].

Beam and Target COMPASS can be supplied with a variety of particle beams to
study di�erent physics. For this analysis, the dataset consists of reactions induced
by a 190 GeV/c secondary hadron beam that is composed predominantly out of
negatively charged pions. In �g. 2.1 it is marked by an arrow on the left. The
secondary beam is produced by a 400 GeV/c primary proton beam from the Super
Proton Synchrotron (SPS) that is converted in a Beryllium production target. After
the conversion, the beam is directed to the COMPASS experiment via the 1.1 km
long M2 beam line [Abb+15]. At the liquid hydrogen target, the hadronic component
consists of 96.8% π−, 2.4%K− and 0.8% p̄ with a momentum of 190 GeV/c [Ado+17].
The 400 mm long liquid hydrogen target is placed within a barrel-shaped recoil-
proton detector (RPD), which consists of two layers of scintillator material [Abb+15].
During the reaction with the target, protons are kicked out of the target. These slow
recoil protons are then detected by the RPD.

Detector Setup The �nal-state particles produced in the reaction are measured
by a variety of detectors used for the spectrometer and as triggers. High-resolution
silicon-microstrip detectors, placed directly behind the target, detect the interaction
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Chapter 2 Meson Production in Di�ractive Reactions at COMPASS

Figure 2.1: Rendering of the COMPASS setup as used during the 2008 data-taking
campaign. The 190 GeV/c π− beam is hitting the target from the left. It interacts
with the liquid hydrogen target inside the RPD. The produced �nal-state particles are
detected in the forward spectrometer behind the target, which consists of detectors
and two dipole magnets. [Abb+15]

vertices. The forward spectrometer consists of two stages that are optimized for high
and low momenta of the outgoing particles. Each stage has a bending magnet to
enable the measurement of charged-particle momenta. The tracking of the �nal-state
particles is performed by gas detectors. Di�erent types of these tracking detectors
are used, for example GEM or Micromega detectors. The �rst stage is addition-
ally equipped with a Ring Imaging Cherenkov Counter (RICH) that allows particle
identi�cation.

2.2 Meson Production in Di�ractive Reactions

To study the light-meson spectrum, excited meson resonances have to be pro-
duced. This is, for example, possible by a process known as di�ractive disso-
ciation. As already mentioned before, this thesis focuses on the special case of
π− + p → π−π−π+ + precoil. The Feynman diagram of the reaction is shown in
�g. 2.2. The negatively charged beam pion scatters o� a target proton. At the
target vertex, the scattering is elastic, so that the proton stays intact, while the
beam pion is excited to an intermediate resonance X, which then decays into three
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2.2 Meson Production in Di�ractive Reactions

charged pions. Regge theory forms the theoretical basis for the description of such
processes [Haa13; Ado+17]. In this framework, the scattering process is described by
exchange of a so-called Reggeon, which is the e�ective mediator of the strong force.
For the 190 GeV/c beam the process is expected to be dominated by the exchange
of a Reggeon called the Pomeron (P).

π−

p

X−

precoil

P

π−

π−

π+

s

t

Figure 2.2: Di�ractive dissociation reaction: π− + p→ π−π−π+ + precoil. The beam
π− gets excited to an intermediate resonance X− via soft scattering o� a proton.
The X− then decays into three charged pions. [Ado+17]

The intermediate resonances X are characterized by their quantum numbers
IGJPCM ε. Where I is the isospin, G is the G-parity, C the C-parity, J the spin
and P the parity. The quantum numbers are given in the re�ectivity basis in which
M ≥ 0 is the spin projection and ε = ±1 the re�ectivity. The quantum numbers of
the Reggeon �x the re�ectivity in this process. Because the Pomeron is the dominant
Regge trajectory at these energies, the re�ectivity is expected to be mostly positive
[Ado+17]. It is possible that other trajectories contribute, for which resonances of
negative re�ectivity may be produced. The G-parity is an extension of the C-parity
to charged light mesons, as the C-parity is only de�ned for neutral particles. It is
obtained from the charged conjugated state by a 180◦ rotation around the second
component in isospin-space.

G = CeiπI2 = C(−1)I (2.1)

For charged states, the C-parity of the neutral partner state is typically assigned.

The reaction in �g. 2.2 imposes certain restrictions on the possible quantum
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Chapter 2 Meson Production in Di�ractive Reactions at COMPASS

numbers of X [Ado+17]. Due to conservation of charge, the intermediate resonance
must be negatively charged. This implies for the isospin I > 0. Since no mesons with
I ≥ 2 are known, I = 1 is assumed. Furthermore the strong interaction is known
to preserve G-parity. The pseudoscalar π− have G = −1. Because the Pomeron
has vacuum quantum numbers [Ado+17], the G-parity of X is �xed to G = −1 by
the G-parity of the beam pion. By the de�nition of the G-Parity, C = +1 can be
assigned to X−. This restricts the resonances, that can be observed, to mesons of the
aJ type 1, with JPC = J++ , and the πJ type, with JPC = J−+, where J is the spin.

In the simple constituent quark model, mesons are described as quark-antiquark
states (qq̄). Under this assumption, certain combinations of JPC are forbidden. A
short summary of the rules implied by the constituent quark model is given in Ref.
[Haa13]. The following states are forbidden by these rules:

JPC = 0−−, (odd)−+, (even)+− (2.2)

In QCD, in principle more complicated objects can be formed than in the constituent
quark model. For example, hybrid states, in which gluon �elds contribute to the
quantum numbers. Such states can bear quantum numbers that are forbidden in
the constituent quark model. These states are referred to as exotic states. Because
C = +1, it is evident from eq. (2.2) that only exotic states with odd spin are
accessible in this reaction.

Apart from their quantum numbers, resonances are also characterized by mX .
The invariant mass mX of the resonance X− is equivalent to the invariant mass m3π

of the three-pion �nal state. It is calculated from the four-momenta pi of the �nal
state particles, which themselves are given by the three-momenta and the charged
pion mass.

m2
X = m2

3π =

(
3∑
i=1

pi

)2

/c2 (2.3)

The production of resonances also depends on the squared four-momentum transfer
t = (pbeam − pX)2. The excitation of the beam pion to a resonance with mass m3π

requires a minimal squared four-momentum transfer |t|min
2. Therefore, for practical

reasons, the reduced squared four-momentum transfer is de�ned:

t′ ≡ |t| − |t|min (2.4)

1JPC = 0++ or a0 resonances cannot be produced during the di�ractive scattering reaction.
2more details can be found in [Ado+17]
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2.3 Background Processes

2.3 Background Processes

Di�erent processes contribute to the scattering reaction. Of all these reactions, only
di�ractive dissociation with π−π−π+ in the �nal state is of interest in this analysis.
An overview of the event selection that separates the di�erent �nal states is given
in section 2.4. For the analysis, one would like to have a sample of di�ractively
produced π−π−π+, that is as clean as possible. Unfortunately di�erent processes
that lead to the same three-pion �nal state, but do not have an intermediate three-
pion resonance, contribute as background to the analysis. Two of these nonresonant
processes are presented here.

2.3.1 Central Production

One possible nonresonant process is known as central production, for which the
Feynman diagram is shown in �g. 2.3. Instead of the exchange of a single Pomeron,
a double exchange appears. The beam pion scatters elastically via one exchange
and the proton via the second one. The Pomerons form an intermediate resonance
that decays into a neutral system of two charged pions. As remarked in [Haa13], the
kinematics of the �nal state pions is in general di�erent for central production and
di�ractive dissociation. The centrally produced subsystem is typically slow, while
the scattered beam pion remains fast. In the event selection, cuts on the rapidity of
the subsystems are therefore applied in order to suppress the contribution of central
production to the background. This will be discussed in section 2.4.

2.3.2 The Deck E�ect

A second process known to be part of the nonresonant background is the so-called
Deck e�ect [Dec64]. In this process, the beam is excited to an intermediate π+π−

resonance and the third pion is scattered o� the proton via Pomeron exchange. One
possible Feynman diagram for this process is shown in �g. 2.4. A suppression of this
background contribution during the event selection is not possible because the �nal
state kinematics are practically indistinguishable. It is therefore the main source of
background for this analysis.
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π−

p

π−
fast

precoil

P

P

X0 π−

π+

Figure 2.3: Example for a central production reaction. Both beam pion and target
proton scatter elastically. The double pomeron exchange produces an intermediate
state that decays into a π−π+ subsystem. [Haa13]

π−

p precoil

ξ π−

π+

π−

π−

P

1

2

Figure 2.4: Example of a possible Feynman diagram for the Deck e�ect for the three-
pion �nal state. [Ado+17]

10



2.4 Event Selection

2.4 Event Selection

As already mentioned before, many di�erent reactions and �nal states may occur in
the high-energy scattering. The raw dataset, that is used for the event selection, has
been recorded by using the so-called di�ractive trigger (DT0) of COMPASS. This
minimum-bias hardware trigger [Ado+17] is intended for preselection of relevant
events. It requires the interaction of the beam with the target and the detection of a
recoil proton in the RPD. A more detailed summary can be found in Ref. [Ado+17;
Abb+15]. This preselected dataset consists of 6.4 · 109 events [Ado+17].
In order to obtain a clean sample of di�ractively produced π−π−π+, the recorded
events have to be �ltered �rst. The event selection has already been performed by
[Haa13] and the resulting datasets are the basis for this analysis. The complete
description of the selection can be found in Ref. [Haa13]. In the following, the most
important cuts for the event selection are summarized:

1. A vertex in the target region with three outgoing particles is required. The
total charge of the �nal state particles must equal −1.

2. To suppress processes, in which the target does not stay intact, transverse
momentum conservation is required.

3. The beam energy is not directly measured at COMPASS, but calculated from
the four-momenta of the outgoing particles. The calculated energy was required
to deviate less than two standard deviations from the nominal beam energy.

4. Additional cuts were applied that were intended to suppress other background
processes. More detail can be found in Refs. [Ado+17; Haa13].

The event selection reduces the number of measured events from 6.4 · 109 to 46 ·
106. The selected dataset consists of mostly three-pion di�ractive dissociation events
in a kinematic region of 0.5 ≤ mX ≤ 2.5 GeV/c2 and 0.1 ≤ t′ ≤ 1.0 (GeV/c)2.
The two-dimensional histogram of the selected events is shown in �g. 2.5a and the
respective projection on the mass axis in �g. 2.5b. Enhancements, originating from
resonances, are visible in both representations of the data. The analysis method,
used to disentangle the contributions of individual resonances, will be introduced in
the next chapter.
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Figure 2.5: Histograms of the data after event selection for the π−π−π+ �nal state.
(a) m3π and t′ resolved histogram of the event selected data. The dominant reson-
ances are visible as band-like structures. The dashed-lines mark the non-equidistant
bins in t′. (b) Invariant mass spectrum of the π−π−π+ �nal state. Only the dominant
resonances are visible as peak-like enhancements in the spectrum. [Ado+17]
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Chapter 3

Partial-Wave Analysis Method

The overall goal of the analysis of di�ractive-dissociation data is the extraction of
short-lived resonances of the strong interaction. Because in this type of reaction res-
onances are typically overlapping, only the dominant ones can be directly discovered
as enhancements of the total cross section as demonstrated in �g. 2.5. More inform-
ation can be extracted by taking into account the four-momenta of the �nal state
particles and measuring the di�erential cross section. With this additional informa-
tion contributions from resonances of di�erent quantum numbers can be disentangled
by the means of so-called partial-wave decomposition.
Due to the nature of the reaction, neither the mass m3π of the 3π �nal-state nor the
squared four-momentum transfer t′ are �xed. On one hand, this allows the extrac-
tion of the resonance spectrum with a �xed beam energy. On the other hand, the
dependency of the di�erential cross section, in the kinematic variables, on m3π and
t′ is unknown prior to the experiment.
With large datasets, like the ones available from the COMPASS experiment, this
problem can be circumvented by subdividing the data into bins of �nal-state mass
m3π and reduced squared four-momentum transfer t′. For su�ciently small widths
of the bins, the dependency on these variables is negligible and any derived quantity
can be assumed to be constant in the binning variables. This motivates a partial-
wave analysis method consisting of two steps. In the �rst step the amplitudes of
the partial waves are extracted for each bin in m3π and t′. This step is referred to
as partial-wave decomposition or sometimes as mass-independent �t. In the second
step the mX and t′ dependence is parametrized for the extraction of the resonance
parameters. It is therefore called the resonance extraction or mass-dependent �t.
This thesis is concerned with the �rst analysis step and the construction of a phys-
ical model for the partial-wave decomposition. For the extraction of the partial-wave
amplitudes a statistical model is required. The following sections, on the derivation
of this statistical model, summarize previous works and introduce simpli�cations
that can be used for this speci�c �nal-state. More details on the method can be
found in the original works [Ado+17; Bic16; Haa13].
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Chapter 3 Partial-Wave Analysis Method

3.1 Statistical Model for Partial-Wave Decomposition

The quantities measured by the experiment are the three-momenta of the �nal-
state particles. For known �nal-state particle mass and �xed beam energy, the
four-momenta can be constructed. The kinematics of the three-body �nal state
is fully de�ned by mX and �ve phase-space variables 1 combined in τ . This allows
COMPASS to measures the di�erential intensity distribution, which is proportional
to the di�erential cross-section.

I(τ,mX , t
′, s) =

dN

dmXdt′dτ
∝ dσ

dmXdt′dτ
= σ0

(
mX , t

′, s
)
· |Mfi

(
τ ;mX , t

′, s
)
|2

(3.1)
Where dτ is the �ve-dimensional di�erential phase-space element andMfi the trans-
ition matrix element. The beam energy is �xed in the experiment, therefore s is
dropped from now on to simplify the notation. By subdividing the data in narrow
bins of mX and t′ these variables can be assumed constant within one bin. Writ-
ing down eq. (3.1) for one of these two-dimensional bins, with �xed mX and t′, the
notation simpli�es further.

I (τ) =
dN

dτ
∝ dσ

dτ
(τ) = σ0 · |M (τ)|2 (3.2)

By assuming that the observed intensity is dominated by the decay of intermedi-
ate 3π resonances, the contributing amplitudes factorize and can be written as a
product of the production amplitudes rT̃ εi of the resonances and the sum over the
decay amplitudes rΨ̃ε

i,j . The index i labels the quantum numbers of the resonance

IGJPCM and the index j its decay modes. The rT̃ εi describe the strength and phase
with which resonances are produced, while the rΨ̃ε

i,j describe the decay. The intens-
ity as a function of the kinematic variable τ can now be expressed by taking into
account coherent and incoherent processes. The coherent processes interfere and are
therefore written according the superposition principle as a sum over the probability
amplitudes. The incoherent processes are non-interfering and correspond to sums
over the probabilities.

I (τ) =
∑
ε=±1

∑
r

∣∣∣∑
i

rT̃ εi
∑
j

Ψ̃ε
i,j (τ)

∣∣∣2 (3.3)

The decay amplitudes Ψ̃ε
i,j (τ) can be calculated by assuming successive two-body

decays. The Feynman diagram for the decay, in this so-called isobar model, is shown

1The three four-momenta of the outgoing particles have in principle 12 degrees of freedom (DOF).
Because the particle type and therefore the masses are known, three DOF are �xed. Additionally,
four-momentum conservation constraints another four DOF, leaving �ve remaining DOF that
are required to describe the �nal state.
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3.1 Statistical Model for Partial-Wave Decomposition

in �g. 3.1. First the decay X− → π− + ξ appears, where the neutral isobar ξ is
assumed to be an intermediate two-pion resonance. This assumption can be justi�ed
by looking at resonant behavior of the two-pion subsystem. So-called Dalitz plots
make the resonance content of the subsystem visible for �xed m3π mass range. In
�g. 3.2 three of the isobars, used in this analysis are visible as enhancements. In this
analysis six possible two-pion resonances are taken into account as isobars. They
are described in section 3.2. Between the isobar ξ and the bachelor pion a relative
angular momentum L appears. The ξ then further decays into two pions.

Each decay is parametrized in a suitable coordinate system, which are both de-
scribed in detail in Ref. [Ado+17]. For this part of the analysis the exact choice of
parametrization is unimportant and the reference frames are merely introduced to
explain the formalism.
The decay of the X− into the isobar ξ and the bachelor pion is parametrized in the
Gottfried-Jackson (GJ) reference frame, the decay of the isobar ξ into the two-pion
subsystem in the helicity reference frame (HF). In the GF the decay is characterized
by two angles, ϑGF and φTY. The decay in the HF is also characterized by a pair
of angles, ϑHF and φHF. Together with the mass of the isobar mξ and the mass of
the intermediate resonance mX = m3π the kinematics of the �nal state is described.
The four angles and the mass of the isobar are grouped into the �ve-dimensional
variable τ :

τ ≡ (ϑHF, φHF,mξ, ϑGJ, φTY) (3.4)

τ and mξ can be calculated from the three momenta of the three outgoing pions.
For this analysis it is only important, that these values are calculable. The exact
description of these calculations can be found in Ref. [Ado+17].

To obtain the decay amplitudes Ψ̃ε
i,j (τ), one has to calculate the amplitudes of

the two-body processes �rst. The two-body amplitudes factorize into an angular
and a dynamic part [Ado+17]. The decay of the isobar ξ is described by the

amplitude Aξλ.

Aξλ(ϑHF, φHF,mξ) = D
Jξ∗
λ0 (ϑHF, φHF, 0)︸ ︷︷ ︸

angular part

f
Jξ
00 (mξ;mπ,mπ)︸ ︷︷ ︸
dynamic part

(3.5)

The angular part is expressed by the Wigner D-function D
Jξ∗
λ0 (ϑHF, φHF, 0). The

dynamic part describes the mass dependence and is a product of a normalization
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2
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Figure 3.1: Di�ractive dissociation in the isobar model. The intermediate resonance
X− �rst decays in a negatively charged bachelor π− and a neutral isobar ξ. The
isobar then decays into two charged pions. [Ado+17]

factor, the coupling constant αξ, the barrier factor FJξ and the isobar line shape ∆ξ,
explained in section 3.2.

f
Jξ
00 (mξ;mπ,mπ) =

√
2Jξ + 1︸ ︷︷ ︸

normalization

αξFJξ(mξ;mπ,mπ)∆ξ(mξ;mπ,mπ)︸ ︷︷ ︸
dynamics

(3.6)

The decay of the resonance X into the isobar and the bachelor pion is described
by the two-body amplitude AXM . It is expressed as a sum over the helicity λ of the
isobar.

AXM (ϑGF, φTY,m3π) =
∑
λ

DJ∗
Mλ(φGF, ϑTY, 0)fJλ0(m3π;mξ,mπ) (3.7)

The dynamic part for the decay into the isobar and the bachelor pion looks similar
to the one of the isobar decay eq. (3.6). It consists of a normalization term and a dy-
namic term, consisting of a barrier factor and the coupling constant αX . Additonally,
a Clebsch-Gordan coe�cients from the coupling of the spins is required.

fJλ0(m3π;mξ,mπ) =
√

2Jξ + 1︸ ︷︷ ︸
normalization

(L0Jξ|Jλ)︸ ︷︷ ︸
L-S coupling

Clebsch-Gordon

αXFL(m3π;mξ,mπ)︸ ︷︷ ︸
dynamics

(3.8)
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Figure 3.2: Dalitz plots for 3π masses around the a2(1320) and π2(1670) resonances.
In (a) the a2(1320) and a1(1260) resonances are visible in their decay to ρ(770) π.
In (b) decays of the π2(1670) resonance to ρ(770) π, f2(1270) π and f0(980) π are
visible. [Ado+17]

The decay amplitudes can now be written as the product of the two two-body decay
amplitdes.

ψi,j(ϑHF, φHF,mξ, ϑGJ, φTY︸ ︷︷ ︸
τ

;m3π) =
∑
λ

DJ∗
Mλ(φTY, ϑGJ, 0)fJλ0(m3π;mξ,mπ)

×Aξλ(ϑHF, φHF,mξ)

(3.9)

One additional step is necessary to arrive at the expression of the decay amplitudes
in the case of the three-pion �nal state. Because the two negatively charged pions
are indistinguishable, there are two possibilities that can make up the neutral sub-
system in which the isobar decays. The decay amplitudes must therefore be bose
symmetrized.

Ψ̃ε
i,j (τ1,3, τ3,1) =

1√
2

[ψi,j(τ1,3) + ψi,j(τ2,3)] (3.10)

The couplings αξ and αX are unknown. They are assumed to be independent of
the kinematics. By combining the couplings with the production amplitudes, one
obtains the transition amplitudes.

rT̄ εi,j ≡ αξαXrT̃ εi,j (3.11)
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Chapter 3 Partial-Wave Analysis Method

Ψ̄ε
i,j ≡

Ψ̃ε
i,j (τ)

αξαX
(3.12)

The index a is now a combination of the resonance quantum numbers i ≡ IGJPCM ,
ε and the decay channel j ≡ ξL, which is described by the isobar and the relative
angular momentum. Each partial wave is then labeled by a.

a ≡ (i, j, ε) ≡ IGJPCM εξπL (3.13)

Because IG = 1− holds for resonances produced for this type of reaction, it is often
omitted for the sake of shorter notation.

One last transformation of the transition and decay amplitudes is performed.

Ψε
a(τ) ≡ Ψ̄ε

a(τ)√∫
dϕ3(τ ′)|Ψ̄ε

a(τ
′)|2

(3.14)

rT εa ≡ rT̄ εa

√∫
dϕ3(τ ′)|Ψ̄ε

a(τ
′)|2 (3.15)

This phase-space normalization of the decay amplitudes leads to transition amp-
litudes rT εa for which the intensity of a single wave |rT εa |2 is given in number of events.

The intensity of a single event then simpli�es to the from given in eq. (3.3):

I (τ) =
∑
ε=±1

∑
r

∣∣∣∑
a

rT εa
rΨε

a (τ)
∣∣∣2 (3.16)

Because no non-interfering processes except for the di�erent re�ectivities and an
additional background term described in �g. 5.17b are used in this analysis, the
incoherent sum over r is dropped from now on. These �ts are then called rank 1 �ts
in contrast to rank n �ts for n non-interfering processes. A discussion on rank 2 �ts
can be found in Ref. [Haa13].
To further simplify notation the coherent sum over the amplitudes is replaced by the
scalar product of the two complex vectors T ε (mX , t

′, s) ,Ψε (τ ;mX , t
′, s) ∈ Cn. This

results in the simple expression eq. (3.17) for the intensity of a single event.

I (τ) =
∑
ε=±1

∣∣∣T ε (mX) ·Ψε (τ ;mX)
∣∣∣2 (3.17)

However the data is most-certainly not free from contributions of background pro-
cesses. To account for this e�ect an additional isotropic amplitude is added to the
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3.1 Statistical Model for Partial-Wave Decomposition

intensity, the so-called �at wave. This leads to a modi�ed formula eq. (3.18) with an
additional third incoherent term.

I (τ) =
∑
ε=±1

|T ε ·Ψε (τ)|2 + |Tflat|2 (3.18)

The probability of a single measured event τk, given in eq. (3.20), is just the ratio of
the intensity of the single event and the total expected intensity given by eq. (3.19),
where 0 ≤ η(τ) ≤ 1 describes e�ects due to the detector-acceptance and dϕ3(τ) is
the three-body phase-space volume element.

N̄ =

∫
dϕ3(τ ′)I(τ ′)η(τ ′) (3.19)

P (τ) =
I (τ)∫

dϕ3(τ ′)I(τ ′)
(3.20)

The number of measured events N follows a Poisson distribution with the rate being
the total expected intensity N̄ . The extended likelihood for a dataset D = {τk}
eq. (3.21) can now be written as the product of the Poisson probability for the
measured number of events and the product of the probabilities for every individual
event.

L (T ;D) =
e−N̄ N̄N

N !

N∏
k

P (τk) (3.21)

This can be further simpli�ed as the denominator of the probability for a single event
is the total expected intensity. The product over all the events results in a term of
N̄N in the total denominator. This term cancels with the same part in the Poisson
probability and the new formula is given by eq. (3.22).

L (T ;D) =
e−N̄

N !

N∏
k

I (τk) (3.22)

In the usual Frequentist approach one would like to �nd the parameters, in this case
the complex transition amplitudes, that maximize the likelihood. This corresponds
to the idea that because the data has been observed the observation should be very
probable. The parameters are then chosen in such a way that the probability of the
data given the set transition amplitudes becomes maximal.
The maximization is performed with numerical methods that require stable calcu-
lations. Because products are usually numerically problematic the logarithm of the
likelihood can be used to transform any products into sums. Taking the logarithm
does not change the position of the maximum as it is a monotonically increasing
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Chapter 3 Partial-Wave Analysis Method

function so the optimization can be conducted on the log-likelihood instead of the
likelihood.

logL (T ;D) = −N̄ − logN ! +
N∑
k

log I (τk) (3.23)

Any constant terms in the log-likelihood correspond to a constant scaling of the
likelihood and can thus be dropped because they are irrelevant for the position of
the maximum.

logL (T ;D) = −N̄ +

N∑
k

log I (τk) (3.24)

3.2 Isobar Parametrization

In the previous section the statistical model, under the assumption of the isobar
model, was introduced. For the calculation of the decay amplitudes the isobar
amplitudes ∆ξ are required, the parametrization of which are introduced in this
section.

Six isobars have been used in this analysis. The four isobars, ρ(770), f2(1270), f0(1500)
and ρ3(1690), are described by a Breit-Wigner amplitude, given in eq. (3.25), with
di�erent parametrization of the width Γ(m). More details on the exact paramet-
rization of the widths can be found in Refs. [Ado+17; Dro15]. As an example the
parametrization of the f0(1500) isobar with a constant-width Breit-Wigner is shown
in �g. 3.3.

For the two isobars [ππ]S and f0(980) di�erent parameterizations are required.
As closely described in Ref. [Ado+17], the so-called M solution separates the
JPC = 0++ isobar sector. As mentioned above, the f0(1500) isobar is described by
a Breit-Wigner amplitude. The other components are described by the broad [ππ]S
isobar with a slowly rising phase, shown in �g. 3.5, and the narrow f0(980) isobar,
parametrized by a Flatté amplitude [Ado+17], shown in �g. 3.4.

∆BW(m;m0,Γ0) =
m0Γ0

m2
0 −m2 − im0Γ(m)

(3.25)
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Figure 3.3: Fixed-width Breit-Wigner amplitudes of the f0(1500) isobar. (a) intensity
and (b) phase of the Breit-Wigner.
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Figure 3.4: Flatté amplitude [Ado+17] of the f0(980) isobar. (a) intensity and (b)
phase.
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Figure 3.5: Parametrization of the [ππ]S isobar [Ado+17]. (a) intensity and (b)
phase.
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3.3 Partial-Wave Decomposition

3.3 Partial-Wave Decomposition

In the previous section the statistical model has been introduced. The analysis is
performed independently in two-dimensional bins in mass mX and squared four-
momentum transfer t′. The mass range between 0.5 GeV/c2 and 2.5 GeV/c2 is split
into 100 equidistant bins of 20 MeV/c2 width and the t′ range between 0.1 GeV/c
and 1.0 GeV/c is split in 11 non-equidistant bins. The binning in t′ has been chosen
such that each bin contains a similar number of events 2. The details of the t′

binning can be found in table 3.1.

For each of these 1100 bins a set of complex transition amplitudes is obtained
from maximizing the likelihood. The result can be compactly written as the com-
plex vector of transition amplitudes T . The components of the vector can then
be represented in the complex plane as shown in �g. 3.6a as an example, where
each point represents the transition amplitude Ti of one wave. Neglecting the phase
information the result can also be represented by plotting the magnitudes square of
the transition amplitudes |Ti|2. The intensities are then plotted in descending order
on logarithmic scale as shown in �g. 3.6b.
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Figure 3.6: Example of a �t result obtained in a single (mX , t
′) bin. (a) Every

transition amplitude Ti is a point in the complex plane. (b) The intensity of the each
wave is the magnitude squared of the transition amplitudes |Ti|2 sorted according to
the intensity.

By inferring the amplitudes in each bin independently, the mX and t′ dependence

2For the last two bins the number of events is smaller
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can be recovered. As an example, the a2(1320) resonance is shown in �g. 3.7.
The intensity in �g. 3.7a shows a peak around the resonance mass. The phase
information, shown in �g. 3.7b, shows a rising phase motion with respect to the
1++0+ρ(770)πS reference wave. Resonant behavior occurs also in the reference
wave, therefore usually no ideal 180◦ phase motion is visible.

The example shows the strength of the analysis method. Without any assump-
tions about the resonance shape, the �t is able to recover the mass dependence of
the transition amplitudes. To extract the resonance parameters these results are
supplied to a second �t.
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Figure 3.7: The result of the partial-wave decomposition for the 2++1+ρ(770)πD
wave. The �ts have been performed in the lowest t′ bin over all mX bins. In (a) the
intensity spectrum is shown. A pronounced peak is visible that originates from the
a2(1320) resonance. In (b) the phase relative to the 1++0+ρ(770)πS wave is shown.
The rising phase motion coincides with the peak, indicating true resonant behavior.

24



3.3 Partial-Wave Decomposition

t' bin [(GeV/c)2] Number of Events

0.100000-0.112853 5018351

0.112853-0.127471 4951799

0.127471-0.144385 4864385

0.144385-0.164401 4774514

0.164401-0.188816 4681303

0.188816-0.219907 4586075

0.219907-0.262177 4482491

0.262177-0.326380 4359759

0.326380-0.448588 4217365

0.448588-0.724294 3115895

0.724294-1.000000 873990

Table 3.1: List of the non-equidistant t' bins from lowest to highest. The two highest
bins contain less events than the rest.
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Chapter 4

Selection of Model Components

In the previous chapter, the partial-wave analysis formalism was introduced, which
is based on modeling the observed intensity distribution. However the model in
principle allows for an in�nite number of partial waves. In practice, only a �nite
subset of partial waves can be used for the inference. Because of computational
limitations and �nite datasets, the relevant partial waves have to be included in this
�nite wave set, while irrelevant ones should be excluded from the model.

Selecting the signi�cant components of a model is a challenging problem. The
inclusion of too many waves leads to cross-talk between the waves that starts to
describe statistical �uctuations and deviations from the model. This overadaption
or over�tting of the model breaks the interpretability of the individual waves. On
the contrary, models that leave out waves, that are relevant for the description of the
data, su�er from so-called model leakage. The waves in the model try to describe
structure in the data, that otherwise would have been described by additional waves.
This e�ect also breaks the interpretability. To obtain sensible results, the wave set
needs to minimize both of these undesired e�ects, consisting only of waves that are
required to describe the data.

The wave set, used for all the analyses of the 3π �nal state [Ado+17; Haa13;
Uhl16; Wal15; Sch14], has been selected by hand. It consists of 87 partial waves and
the isotropic �at wave. For simplicity it is often referred to as the 88-wave set. Its
waves are listed in appendix A. A detailed description can be found in Ref. [Haa13].
Selecting the model by hand may be problematic due to the large number of waves
that need to be considered. This model relies of course on the experimentalist's
intuition. The selection procedure is very time consuming and hard to reproduce.
It may therefore su�er from an unknown selection bias.

The problem of selecting an appropriate wave set becomes signi�cantly harder
in less well-studied decay-channels like the π−π−π−π+π+ �nal state. Analyses of
this channel initiated the search for a systematic approach for the selection proced-
ure. In Refs. [Bic16; Neu12] a genetic algorithm, mimicking evolution by combining
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Chapter 4 Selection of Model Components

waves from more successful models to e�ectively 'breed' a suitable wave set, has
been developed. Because the algorithm experienced slow convergence and lacked a
clear convergence criterion, this approach has been discarded.

An alternative method, called the Biggest Conceivable Model (BCM) method,
was developed in Ref. [Bic16]. It is based on regularizing a Maximum Likelihood
Estimation (MLE) �t of a large and systematically constructed set of waves via
a penalty term and has produced promising results. The BCM method has been
applied to π−π−π+ data in the three-pion �nal state in Ref. [Dro15] and has been
tested against the hand-selected 88-wave model.

Yet another method has been developed by the authors of Ref. [Gue+15]. This
approach is based on a statistical method called the Least Absolute Shrinkage and
Selection Operator (LASSO), developed by the author of Ref. [Tib96]. The LASSO
has been successfully applied in the context of variable selection in many di�erent
contexts.

This chapter is concerned with introducing the di�erent methods that have been
tested on simulated and measured data. The properties of the methods will be
discussed and possible advantages and disadvantages will be stressed.
First the selection by hand will be summarized in section 4.1. Then the notion of
regularized maximum likelihood will be introduced in section 4.2. This forms the
basis for the BCM and LASSO methods, which will be introduced in section 4.2.3.1
and section 4.2.3.2. Finally a new approach, called the MBCM method, that is
aiming to combine the advantages of both methods while getting rid of undesired
properties, is introduced in section 4.2.3.3.

4.1 Selection by Hand

The traditional approach for building a wave set is the selection of waves, that are
considered relevant, by hand. Certain waves obviously need to be included because
the corresponding resonances are directly visible in the measured intensity spectra
of the π−π−π+ �nal state and its π−π+ subsystem. However, this works only for
dominant waves that usually have low spin. Smaller signals are much harder to
detect as interference e�ects distort the intensities.
Combinatorially, this problem is impossible to resolve, because the number of pos-
sible wave sets quickly becomes large. One has to fall back to trial and error and
one's physical intuition when constructing the wave set.
Additionally, some waves become very large, especially for lower 3π masses. These
large intensities are the result of destructive interference between the waves. This
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4.2 Systematic Selection via Induction of Sparsity

behavior is usually resolved by excluding problematic waves below a certain 3π mass
threshold.

In Ref. [Haa13] a set of 88 waves, which consists of 80 waves with positive re-
�ectivity, 7 with negative re�ectivity and the isotropic background wave, was
derived by removing waves with relative intensities below 10−3 from a larger set of
128 waves [Ado+17]. The building procedure of the model includes prior knowledge
and therefore does not include waves that are not considered sensible to be included
in the �rst place. The inclusion of this knowledge is, however, not performed in a
systematic way. The resulting model may lack relevant waves because they were not
considered or may miss combinations of waves that need to be included simultan-
eously to produce sensible results.

Overall, the procedure is very time consuming and hard to reproduce. The largest
source of uncertainties for the partial-wave analysis in this �nal state is of a system-
atic nature. It is therefore important to use a systematic and reproducible way to
obtain a wave set, which forms the very basis of this analysis. In the next section a
type of methods will be introduced that try to tackle this problem.

4.2 Systematic Selection via Induction of Sparsity

As already mentioned in the introduction of this chapter, it would be advantageous
to have a systematic approach for building a wave set. This section discusses di�erent
approaches that can be reduced to a common origin. All of these methods rely on
the idea of a regularized maximum likelihood �t of a systematically constructed large
wave pool of possible waves. The regularization is applied in form of an additional
term that is added to the log-likelihood function. The methods di�er in the type of
regularization used and in the way the result of the �t is interpreted. These methods
can be interpreted in a Frequentist or in a Bayesian framework.

4.2.1 Construction of the Wave Pool

Before any model-selection �t can be conducted, the in�nite number of possible
partial waves has to be reduced to a �nite number, in a systematic way. Luckily
the quantum numbers, that de�ne the partial waves, impose a natural ordering
according to which one would expect them to contribute: That is, waves with higher
spin quantum number J and higher orbital angular momenta L require more energy
to be produced and should therefore be suppressed compared to waves with smaller J
and L. For the analysis presented here, the total spin has been limited to J ≤ 6 and
the maximum orbital angular momentum was also limited to L ≤ 6. Additionally,
higher spin projections are expected to be suppressed for the analyzed t′ range and
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Chapter 4 Selection of Model Components

should therefore contribute less. Here, the maximum spin projection is limited to
M ≤ 2.
Together with the restriction to the six possible isobars, presented in section 3.2, this
reduces the in�nite number of partial waves to a �nite wave pool of 432 waves.
The construction of the wave pool can of course be changed if one would like to
investigate di�erent isobars or higher spins, angular momenta or spin projections.
Because this wave pool has been used in the previous analysis of Ref. [Dro15] it is
reused here in order to provide easier comparison.

4.2.2 Regularization

As already mentioned before, the analysis relies on regularization of the MLE �t.
The idea is to add an additional term, a so-called penalty or regularization term,
to the log-likelihood, that disfavours solutions that are considered problematic for
some reason. These terms become necessary in di�erent situations. For example to
circumvent over�tting when the number of data points is very small compared to
the number of parameters to estimate or when the correlation between parameters
becomes too strong for the data to resolve them.

There are special kinds of penalties that are capable of selecting parameters,
meaning that they strongly push parameters, that are only weakly supported by the
data, towards zero and thereby 'deselecting' them. These are of course the type of
penalties interesting for this analysis and several will be introduced in the following
subsection.

While the idea of adding penalty terms may sound like an arbitrary idea at
�rst it can be very well motivated in a Bayesian picture of the analysis. The usual
MLE �ts used in many previous analyses like Ref. [Haa13] can be regarded in
the context of Bayes' theorem eq. (4.1). In Bayesian statistics the only sensible
probability density (PDF) function for parameter inference is the posterior PDF.
For a model Mi, that consists of a speci�c set of partial waves, and a dataset D,
this is the probability of the model given the data P (Mi | D). It is expressed as the
product of the likelihood P (D |Mi), which is the PDF of the data given the model,
and the prior PDF P (Mi) of the model, divided by the probability of the data
P (D) =

∑m
i P (D |M) · P (Mi) or evidence. The prior PDF contains knowledge of

the model, that is independent of the data.

P (Mi | D) =
P (D |Mi) · P (Mi)∑m
i P (D |M) · P (Mi)

(4.1)

For a �xed dataset D, the evidence is a constant with respect to the model Mi.
The posterior PDF is therefore proportional to the product of the likelihood and the
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4.2 Systematic Selection via Induction of Sparsity

prior. For this analysis, the model Mi is equivalent to a set of partial waves, that is
labeled by the vector of complex transition amplitudes T . Writing the likelihood as
a function of T 1, this leads to the relation:

P (T | D) ∝ L (T ;D) · P (T ) (4.2)

For inference of the transition amplitudes the posterior can be used. In Bayesian
statistics, samples can be drawn from the posterior and transition amplitudes can
be estimated by the mean. Sampling is however not feasible in high-dimensional
settings, like this analysis, where hundreds of parameters need to be considered.
Instead, similar to the maximization of the likelihood, the posterior PDF can be
maximized. To obtain this maximum a posteriori (MAP) estimate, the transition to
the log-posterior is made:

logP (T | D) = logL (T ;D) + logP (T ) + C (4.3)

Where C is an unimportant constant, that does not change the estimate of the
maximum. It corresponds to a scaling factor of the posterior. In the log-picture,
the prior transforms to a penalty or regularization term that is added to the log-
likelihood. In the next subsection, the details of the penalty choice will be elaborated.

4.2.3 Sparsity Inducing Regularization

In this section three di�erent regularization terms or priors will be introduced. They
all have in common the idea of treating the di�erent waves as exchangeable and
thereby equal. This means that the prior on the complex parameter vector T fac-
torizes in a product of individual and identical priors on the intensity |Ti|2 of the
waves.

P (T ) =
∏
i

P (|Ti|2) (4.4)

In the log-likelihood picture this transforms to a sum of penalty terms.

logP (T ) =
∑
i

logP (|Ti|2) (4.5)

In the case P (T ) = 1 the posterior PDF is equal to the likelihood, the penalty term
vanishes and the MAP estimate is equal to a simple MLE �t. This would then be
considered a non-informative ansatz, as any value of T has the same penalty, namely
none.

1P (D | T ) ≡ L (T ;D)

31



Chapter 4 Selection of Model Components

The special type of penalties used for model selection have the common prop-
erty of concentrating the probability around zero. This forces the MAP estimate to
favor waves with small intensities. The di�erent terms, introduced in the following,
di�er in the details of the high-intensity limit and the region around zero.

More information on sparsity can be found in Refs. [OS09; PC08; Tib96].

4.2.3.1 BCM Regularization

In Ref. [Bic16] the so-called biggest conceivable model method (BCM) has been
developed and used for inference of the transition amplitudes for �ve-pion data. In
Ref. [Dro15] it has been applied to measured three-pion data. The motivation for
this type of regularization was to favor small intensities while not introducing a very
strong bias on big intensities. This resulted in a prior of the from eq. (4.6).

PBCM

(
|Ti|2; Γ

)
=

1

1 + |Ti|2
Γ2

(4.6)

Before, this has been considered a half-cauchy prior PDF on the magnitude of the
transition amplitude |Ti|. Because the physically meaningful quantities are intensities
and relative phases between the waves, in this thesis the term will be interpreted as an
improper prior on the intensity |Ti|2 rather than on the magnitude. Where improper
denotes a non-normalizable function, which can by de�nition not be a PDF. Improper
priors are no problem for meaningful inference as long as the posterior remains a
proper or normalizable PDF. This is the case, as the exponential of the poisson
term in the likelihood is dominating the posterior in the large parameter limit and
guarantees a �nite normalization integral. For simplicity, the improper prior will still
be referred to as prior in the following. Regardless of a proper or improper prior the
motivation of the regularization remains the same.
The BCM prior has one adjustable parameter or hyper parameter Γ that controls the
scale of the prior. It is interesting to point out the limiting behavior. In the limit of a
small scale parameter or large intensity, the 1 in the denominator is negligible. This
results in the limit eq. (4.7). Because the scale parameter is constant with respect
to the model parameters it is unimportant for the optimization procedure.

PBCM

(
|Ti|2; Γ

)
≈ Γ2

|Ti|2
∝ 1

|Ti|2
(4.7)

From eq. (4.7) the BCM penalty follows:

logPBCM

(
|Ti|2; Γ

)
= − log

(
1 +
|Ti|2
Γ2

)
(4.8)
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It is plotted in the complex plane in �g. 4.1 and a cut along the real axis is
shown in �g. 4.2. The logarithm causes this type of penalty to not be signi�c-
antly stronger for a wave that has an already large intensity and a wave that has
a larger intensity. In this case one can speak of a weakly-informative prior or penalty.

The penalty has been applied to all waves but the isotropic �at wave, which is
untented to absorb background events.
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Figure 4.1: Two-dimensional plot of the BCM penalty in the complex plane. For
easier visualization of the shape the function has been sliced at the zero axis. A clear
spike with a smooth top around zero is visible. The slice is also plotted separately
in �g. 4.2

4.2.3.2 LASSO regularization

This regularization technique has been introduced to amplitude analysis in the work
of Ref. [Gue+15]. The authors apply the so-called Least Absolute Shrinkage and
Selection Operator (LASSO) regularization, that was originally introduced in the
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Figure 4.2: Slice of the two-dimensional and symmetric BCM penalty.

context of ordinary least square �ts by R. Tibshirani in Ref. [Tib96], to an exten-
ded likelihood �t. The idea is originating from a frequentist's perspective and was
originally formulated as a penalty term of the following form:

logP (β) = −λ
∑
i

|βi| (4.9)

Where β is the vector of parameters, λ is a free hyper-parameter that adjusts the
strength of the penalty and |βi| is the absolute value or l1 norm of the individual
parameter. This type of penalty is also sometimes called the l1 penalty or regulariz-
ation. For λ = 0 no regularization is applied and the �t is equal to a MLE �t. The
LASSO can also be interpreted as individual double exponential or laplace priors on
the parameters, as has already been remarked by the original author in Ref. [Tib96].
For comparison with the BCM prior it is advantageous to also make the transition
λ = 1

Γ and write the prior corresponding to the LASSO with a width parameter Γ
as:

P (β) =
∏
i

exp

(−|βi|
Γ

)
(4.10)

Starting from this, a similar penalty as proposed by the authors of Ref. [Gue+15] is
used for the LASSO method. As a prior it can be written as:

PLASSO

(
|Ti|2; Γ

)
= exp (−|Ti|/Γ) (4.11)
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4.2 Systematic Selection via Induction of Sparsity

Instead of the absolute values of the parameters the magnitude of the transition
amplitudes is used. This ensures that no information about the relative phase of a
wave is used. The authors of Ref. [Gue+15] apply this penalty also to the isotropic
�at wave. The same procedure has been applied in this analysis at �rst, but was then
replace by a variant without penalized �at wave for measured data. The di�erences
between the variants were small. The penalty, which is the logarithm of the prior,
is plotted in the complex plane in �g. 4.3 and the corresponding slice along the real
axis in �g. 4.4.
The absolute value of the complex transition amplitudes can be written as:

|Ti| =
√

(ReTi)2 + (ImTi)2 (4.12)

It is worth noting that the absolute value is not smooth at 0 and therefore is problem-
atic for gradient descent algorithms used to �nd the mode. For the LASSO problem
several specialized solvers exist. Tests with some of this �tters however did seem
to have problems with the complex likelihood landscape of this problem and had
trouble to converge. Therefore, similar to the authors of Ref. [Gue+15], ignoring the
non-di�erentiability at 0 still seems to produce reasonable results. The time for the
algorithm to converge, on the other hand su�ers massively by this, so a smoothed
version of the absolute value is used.

|Ti| ≈
√
TiT ∗i + ε for ε→ 0 (4.13)

Where ε = 10−5 has been chosen as a reasonable small value. This improved the
convergence time and made the approach applicable in practice while keeping the
convexity of the penalty. The di�erence between the smoothed and non-smoothed
version is shown in �g. 5.21.
The strong concentration around 0 and the non-di�erentiability of this penalty are
capable of producing actually sparse solutions. This is the reason why the LASSO
is so popular for model selection.
In contrast to the BCM penalty the exponential tails of the LASSO are not heavy.
This results in the property that the penalty grows strongly also for already large
intensity waves and therefore signi�cant bias is introduced to the bigger intensity
waves as well.

The LASSO is strongly dependent on the choice of its tuning parameter. In
Ref. [Gue+15] the usage of two, so-called information criteria, is suggested by the
authors. These criteria are a measure for the trade-o� between better likelihood and
the number of parameters in the model. The Akaike Information Criterion (AIC)
was introduced in Ref. [Aka74]. It is de�ned as follows:

AIC = −2 logL+ 2r (4.14)
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Where r are the degrees of freedom of the model. In Ref. [Gue+15] the number of
waves over a certain intensity threshold has been used to estimate r. Here the number
of parameters is used, which is twice the number of waves minus one parameter in
each incoherent sector, because within one sector the global phase in unde�ned.
The second suggested information criterion is the Bayesian Information Criterion
(BIC), which was �rst introduced in Ref. [Sch78]. It is given by the following
formula:

BIC = −2 logL+ r log n (4.15)

Where n is the size of the sample under study.
Both criteria of the −2 logL term, which decreased for better values of the likelihood,
and a term that penalizes more parameters of the model. The criteria can be used
to �nd an appropriate parameter of the LASSO, by 'scanning' di�erent values of Γ
and calculating the information criteria. The parameter value that minimizes the
information criterion is then selected.
The criteria have a di�erent origin and are derived under di�erent assumptions, so
one should decide on one of the two. The authors of [Gue+15] suggest the usage of
both and including the di�erent results in the systematics of the �t.
It is not clear, whether the assumptions used to derive the criteria hold for this
analysis. Therefore, they are applied to serve as a guide for the parameter choice.

4.2.3.3 MBCM Regularization

Finally a method based on a modi�cation of the BCM penalty is introduced in this
section, which will be called modi�ed BCM or MCBM for short in the following.
In the course of this thesis it will become evident that the LASSO penalty has some
desirable regularization properties due to its stronger bias on larger intensities while
the BCM method shows good properties required for selection of the model. These
observations will be explained in detail in chapters 5 to 7.

A modi�cation of the BCM method can be made that combines the two prop-
erties into one prior term with two free parameters Γ and λ. The LASSO can be
expressed as a so-called scale-mixture of Gaussians, as has for example been re-
marked in Ref. [PC08]. Where a scale-mixture denotes an integral over the variance
of the Gaussian of a product of the Gaussian and a PDF of the variance. So in a
mathematical sense the scale-mixture is just a convolution.
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Figure 4.3: Two-dimensional plot of the LASSO penalty in the complex plane. For
easier visualization of the shape the function has been sliced at the zero axis. The
penalty is a symmetric cone around zero, where it is non-di�erentiable.

The LASSO prior is therefore expressed as:

PLASSO

(
|Ti|2; Γ

)
= N0

∞∫
0

1

σ
exp

(
−|Ti|

2

σ2

)
︸ ︷︷ ︸

Gaussian in |Ti|

exp
(
−σ2/(4Γ2)

)︸ ︷︷ ︸
mixture PDF of σ2

dσ2 = N̄0 exp (−|x|/Γ)

(4.16)
Where N0 and N̄0 are unimportant normalization constants.
The BCM prior can be expressed in a similar fashion:

PBCM

(
|Ti|2; Γ

)
= N0

∞∫
0

1

σ
exp

(
−|Ti|

2

σ2

)
︸ ︷︷ ︸

Gaussian in |Ti|

1

σ3
exp

(
−Γ2

σ2

)
︸ ︷︷ ︸
mixture PDF of σ2

dσ2 =
N0

Γ2 + |Ti|2
=

N̄0

1 + |Ti|2
Γ2

(4.17)
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Figure 4.4: Slice of the two-dimensional and symmetric LASSO penalty.

Both priors concentrate their probability at zero, but di�er in their tail behavior and
around zero. From eq. (4.16) and eq. (4.17) this can be understood by their di�erent
mixing PDFs. During the study of suitable penalties for this analysis, the following
modi�cation of the BCM mixing PDF was motivated empirically:

PMBCM

(
|Ti|2; Γ, λ

)
= N0

∞∫
0

1

σ
exp

(
−|Ti|

2

σ2

)
︸ ︷︷ ︸

Gaussian in |Ti|

1

σ3
exp

(
−Γ2

σ2

)
exp

(
−σ

2

λ

)
︸ ︷︷ ︸

mixture PDF of σ2

dσ2

= N0

2K1

(
2
√
|Ti|2+Γ2
√
λ

)
√
λ
√
|Ti|2 + Γ2

(4.18)

Where Ki(·) is the modi�ed Bessel function of the second kind. The additional

exponential term exp
(
−σ2

λ

)
in the mixing PDF modi�es the tails of the BCM prior

for large intensities |Ti|2. This can be understood by looking at eq. (4.18). In the limit
of large λ the BCM prior is recovered, because the additional exponential becomes
unity:

PMBCM

(
|Ti|2; Γ, λ

)
≈ N0

Γ2 + |Ti|2
=̂ PBCM

(
|Ti|2; Γ

)
for λ→∞ (4.19)
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So the scale parameters of BCM and MBCM priors correspond to each other
ΓBMC =̂ ΓMBCM. For �nite λ the MBCM prior is dominated by an exponential
in the high intensity limit:

PMBCM

(
|Ti|2; Γ, λ

)
≈ N0

√
π

4
√
λ

(
1

|Ti|2
)3/4

exp

−2
√
|Ti|2 + Γ2

√
λ

 for |Ti|2 →∞

(4.20)

This limiting behavior should introduce a bias on large intensities that is similar to
the LASSO. The scale of the LASSO ΓLASSO can loosely be related to the decay
parameter λ of the MBCM prior by comparing the mixing PDF of the LASSO with
the exponential modi�cation term of MBCM prior. The following relation can be
made:

ΓLASSO =̂

√
λ

2
(4.21)

The MBCM prior is able to combine the properties of the BCM and LASSO priors
and should therefore provide a more �exible approach. It was discovered that this
type of prior was introduced, in a di�erent context, before by the authors of Ref.
[CD08].

In �g. 4.5 the MBCM penalty, which is the logarithm of the MBCM prior, is
plotted for λ = 5. The corresponding slice along the real axis is shown in �g. 4.6.
The penalty looks similar to the BCM penalty shown in �g. 4.1, but falls o� steeper.
This behavior is better visible in �g. 4.7, where it is compared with the BCM penalty
for the same scale parameter Γ = 0.2, but di�erent λ. The BCM penalty corres-
ponds to the case λ =∞. The plot is a slice through the symmetric two-dimensional
penalties. For smaller values of λ, the penalty decreases faster away from zero and
introduces more bias on waves with large intensity. For larger values the MBCM
approaches the BCM penalty, shown in red.

Like for the BCM penalty, the �at waves has not been penalized by the MBCM
method.
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Figure 4.5: Two-dimensional plot of the MBCM penalty in the complex plane. For
easier visualization of the shape the function has been sliced at the zero axis. The
penalty is similar to the BCM penalty (compare �g. 4.1), but steeper for values that
are further away from zero.
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Figure 4.6: Slice of the two-dimensional and symmetric MBCM penalty.
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Figure 4.7: Comparison of the MBCM penalty for di�erent parameters λ with the
BCM penalty. The MBCM is plotted for three di�erent values of λ (blue: λ = 5,
green: λ = 15, yellow: λ = 100). For larger values the penalty approaches the BCM
penalty, plotted in red.
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Chapter 5

Model-Component Selection on

Simulated Data

A method for selecting the relevant model components is expected to perform best in
the case when the true model is among all possible models considered. On measured
data, it is in general highly unlikely that the statistical model used for inference is
the true model that is describing the data. In fact, it has been remarked that true
models do not exists and statistical models can merely be a useful approximation
[Gel08; Box76]. Still, if a model selection procedure fails in the idealized case of
simulated data generated according to the model later used for inference, then it is
expected to fail also in the case of measured data.

In this chapter such an idealized test, that can be conducted on simulated data,
is discussed. Monte Carlo methods are used to generate datasets according to the
model used for inference. On these datasets the di�erent model selection procedures
have been tested. In section 5.1 their important properties are presented and a
connection to the problems observed on measured data will be made.
For comparison, �ts without any of the model selection penalties have been per-
formed in section 5.2. The �rst model-selection technique that is discussed in
section 5.3 is the BCM method. For the three-pion �nal state, this method has so
far only been applied to measured data and a veri�cation on simulated data has
only been conducted for the �ve-pion �nal state, where it showed deviations in the
behavior compared to the application on measured data. This issue will be discussed
and a resolution is presented. It has also been observed in previous studies that the
�t with the BCM method does not always produce unique solutions and therefore
the reasons for this instability of the inference will be discussed in section 5.4.
In section 5.5 the LASSO method will be tested and the results will also be discussed
in the context of inference stability.
Finally the new MBCM method is applied and its advantages over the two other
methods are discussed in section 5.6.
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5.1 Details of the Simulated Data

The analysis method relies on independent inference in bins of mX and t′. Past
analyses revealed that optimization of the likelihood may not always result in unique
solutions for the inferred amplitudes, depending on the mass-region of the bin. For
this study, data in two mass-bins has been generated that should represent regions
for which the inference works �ne and for which it is more problematic.

One bin has been generated at a mass of 1.81 GeV/c2. This high-mass region
is known to be quite unproblematic for inference on measured data [Dro15; Haa13].
It is expected to lead to the most well-behaved results.

A second bin has been generated at 0.99 GeV/c2. The low-mass region is more
problematic. There �t attempts with random start values may lead to results that
strongly di�er. The reason for this are many local maxima of the likelihood and no
global maximum can be easily identi�ed. Additionally the largest maximum, which
was found, did not necessarily produce physically reasonable results. This required
thresholding of certain waves on measured data in the low-mass region.
This low-mass bin should serve exemplary for this problematic behavior.

The simulated data serves as a test in order to understand to which extend problems
of the model selection are intrinsic to the analysis method and appear even in the
case when the true model is contained as a subset of the wave pool.
To account for local minima several hundred �t attempts with random starting
positions have been performed. In some studies the number of attempts has been
increased to thousand, but this was also not enough to reliably �nd a global optimum.

The data has been generated according to the results obtained by �ts with the
hand-selected model on measured data. The contribution of the isotropic back-
ground wave has not been generated.
In �g. 5.1a and �g. 5.1b the results of a MLE �t with the exact input model, used
for generation of the set, are shown. The complex transition amplitudes are plotted
in the complex plane. These �ts will from now on be called reference �ts.
The phase of the amplitudes will be unimportant for the model selection methods
as the prior or penalty term does not depend on it. A simpler representation of the
�t result can be achieved by looking at the intensity of the waves. This is simply
the magnitude squared of the transition amplitude. In �g. 5.1c and �g. 5.1d the
intensities of the reference �ts are plotted in descending order on a logarithmic scale.
The waves span an intensity range over several orders of magnitude.
These types of plots will also be used for the �ts with di�erent model selection
techniques, with the reference �ts, shown in this section, superimposed in red.
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name mass [GeV/c2] number of events number of waves

Set A1 1.81 38675 87

Set A2 1.81 10000 87

Set B1 0.99 115700 65

Set B2 0.99 30000 65

Table 5.1: Details of the simulated datasets used to test the model selection methods.
Most of the studies have been performed on set A1 and B2. Set A2 was used to test
properties of the model selection for smaller sample sizes in the high-mass bin. Set
B1 was used to test properties of the model selection for larger sample sizes in the
low-mass bin. To cope with long convergence times in the low-mass region, set B2
was created as a subset of B1 and the detailed studies have been performed on this
subset.

The number of generated events is of the order of several thousand events, which
is similar to the typical number of events measured in the experiment. For the
low-mass region a dataset size of 30000 events has been used for most of the studies.
This sample is a subset of a larger dataset of 115700 events. The subset has been
used to cope with the computational e�ort required for the analysis. The large
sample was used to verify certain properties of the model selection. This will be
discussed in more detail in the respective sections.
For the high-mass bin the studies have been conducted on a dataset with 38675
events. Similar to the low-mass sample, some e�ects needed to be veri�ed for a
di�erent number of events. Here a smaller dataset has been generated, containing
10000 events.
A summary of the datasets can be found in table 5.1. In the right column the
number of waves is given. This number is smaller in the 0.99 GeV/c2 bin because
of the thresholds used in the hand-selected model according to which the data has
been generated.
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Figure 5.1: Re�t of the high- and low-mass bin of simulated data with the respective
input model.

5.2 Fit without regularization

A �rst test is �tting the simulated datasets with the complete wave pool without
any regularization. This is then analogue to the MLE approach used for inference
with the hand-selected model, but with an increased number of waves in the model.
The results serve to visualize the importance of regularization in these types of �ts.
Di�erent properties of the �t can be observed in the di�erent mass bins.
Multiple local maxima of the likelihood lead to instabilities of the �t, meaning that
multiple solutions can be found by the optimization process. A very prominent
source of instabilities of the model selection is connected with the inclusion of waves
with negative re�ectivity. This e�ect will be discussed in the respective subsections.
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5.2 Fit without regularization

First the results of the higher mass bin at 1.81 GeV/c2 will be discussed. It is
expected from the results obtained on measured data that this bin should be well-
behaved.
In �g. 5.2 the results of the several hundred �t attempts from random starting
positions are presented. The intensities of the waves for the best �t, which is the
result with the largest likelihood, are shown in grey. They are plotted in descending
order.
The results with a smaller likelihood are sorted with respect to the best �t and
drawn underneath. The di�erence in log-Likelihood between the result and the best
�t is color-coded from dark purple to yellow. Where purple corresponds to a smaller
di�erence or better likelihood and yellow to the opposite.
If the scattering of the intensity in the di�erent solutions is small, the wave is found
in a stable manner.
To gauge the quality of the results the reference �ts are overlaid in red such that
they are drawn on top of the corresponding wave of the best �t.
In the logarithmic scale no scattering of the solutions is visible for waves with in-
tensities above several hundreds of events and the reference result matches the best
�t. For lower intensities the �t attempts show a clear scattering over the di�erent
solutions.
In the lower part of �g. 5.2 the di�erence in intensity between the reference �t and
the best �t is plotted for the waves of the generating model on a linear scale. For
the largest wave this di�erence is of the order of thousand events.
It is interesting to perform the �ts with a reduced wave pool from which all waves
of negative re�ectivity have been removed. The MLE �t for the residual 236 waves
shows that the stability over the di�erent �t attempts greatly increases as can be
seen in �g. 5.3. No scattering is visible in this case, except for the smallest wave,
which is the isotropic background wave. Furthermore the di�erence in intensity has
decreased to several hundred events.
For the high-mass bin one can note the following �ndings. In both cases waves
which were not generated in the dataset do pick up some intensity. The inference
for the positive waves that were generated looks reasonable. The inclusion of the
negative sector worsens the result. At this point it is not clear if this occurs simply
because of the higher dimensionality of the problem when the negative re�ectivity
waves are included. This will be discussed in more detail for the application of the
model selection.

The same �ts are performed again in the lower mass bin at 0.99 GeV/c2. The
�t results for the complete wave pool is shown in �g. 5.4 and the one for the reduced
wave pool in �g. 5.5. Here in both cases the deviations from the reference �t result
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Figure 5.2: Intensities of a �t with the complete wave pool of 432 waves to simulated
data at 1.81 GeV/c2. The result with the largest likelihood is shown in grey. The
intensities have been sorted in descending order. Additional results are ordered
according to the best result. The result of the reference �t is superimposed in red.
The other attempts are color-coded according to their absolute di�erence in likelihood
with respect to the best result.
The lower plot shows the absolute di�erence in intensity between the reference �t
and the best �t.

become very large. It is not unexpected that the �ts are more unstable in this bin
as the same behavior is found for measured data. The main source of instability
in the higher mass region was introduced by waves with negative re�ectivity. In
contrast to the well-behaved high-mass bin, the �uctuations over the �t attempts
persist even with the reduced wave pool.
Furthermore it had to be excluded that the �uctuations are not merely a result of
the minimally smaller sample size of 30 · 103 events used in this sample. Therefore
the �t has also been repeated on the larger sample of about 116 · 103 events. In
�g. 5.6 the result of the �t with the reduced wave pool is shown. The increased size
of the sample is not able to resolve the issues.
The application of the unregularized MLE �t on the simulated datasets revealed
the following. Like for measured data the �ts are better behaved for data at high
masses. For the 1.81 GeV/c2 bin the inference worked quite well, but a selection of
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Figure 5.3: Fit of the reduced wave pool of 236 waves to simulated data at
1.81 GeV/c2. This plot is analogue to �g. 5.2. The �t without negative re�ectivity
waves shows less scattering over the di�erent �t attempts.

the important waves is not possible as all waves obtain some intensity.
Inference in the low-mass bin at 0.99 GeV/c2 is practically impossible and the �t is
unstable in this region.
For both bins the inclusion of negative re�ectivity waves makes the results worse.
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Figure 5.4: Intensities of a �t with the complete wave pool of 432 waves to simulated
data at 0.99 GeV/c2. This plot is analogue to �g. 5.2 but for the low-mass bin. Here
many waves show large intensities and the reference �t result cannot be recovered
well.
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Figure 5.5: Fit of the reduced wave pool of 236 waves to simulated data at
0.99 GeV/c2. This plot is analogue to �g. 5.2 but for the low-mass bin and with
the reduced wave pool without negative re�ectivity waves. Even with the reduced
wave pool the reference �t result cannot be recovered.
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Figure 5.6: Fit of the reduced wave pool of 236 waves to the large sample of simulated
data at 0.99 GeV/c2. This plot is analogue to �g. 5.2 but for the low-mass bin and
with the reduced wave pool without negative re�ectivity waves. Even the increased
sample size does not allow a reliable recovery of the reference �t result.
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5.3 Application of the Biggest Conceivable Model

Method

In the previous section it has been shown that an unregularized �t with a large wave
pool is not always suitable even in the case of simulated data that follows the same
model structure. The following section is concerned with the study of the BCM
method and its properties on simulated data. These studies should help building
an understanding of the validity of this approach. In Ref. [Dro15] problems with
the results, in the form of unphysically large intensities, at low masses have been
observed. For the unregularized MLE �t the low-mass region is already problematic
on simulated data and shows exactly these increases in intensity. This section tries
to produce some insight on the e�ects of the BCM method.

5.3.1 Application of the unaltered BCM method

First the BCM method will be applied in the same manner as it has been applied
in the context of the previous analyses. This means that the scale parameter of the
penalty is �xed at a value of Γ = 0.5.

Looking again �rst at the results of the high-mass bin in �g. 5.7 , it is inter-
esting to see that the �uctuations over the �t attempts have disappeared for most
of the large intensity waves and that the di�erence in intensity has decreased to less
than a hundred events.
Two other features are interesting in this plot. First, the two waves with intensities
on the order of a few hundred events that show unstable behavior over the �t at-
tempts are of negative re�ectivity. Second, about half of the waves exhibit stronger
instability. Those are the waves with the smallest intensities on the right half of the
plot. Additionally to the continuous spread of the solutions, three discrete levels
of intensity are visible for some of them. Most solutions cluster around the best
�t. Another set of solutions show extremely small intensities that are smaller than
10−12 events. The third type of solutions show intensities of order 102 events.
The waves that show these spreads in intensity are later identi�ed to be all negative
re�ectivity waves.

The most noticeable e�ect of the method can be seen in the 0.99 GeV/c2 bin.
The simple MLE �t failed to recover the correct intensities of the waves. The
BCM method is capable of recovering the intensities of the biggest waves in the
best �t. The rest of the solutions show scattering in the intensity. In contrast to
the high-mass bin, this is true even for the waves with large intensities of several
hundreds of events and above.
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In both bins the inference can be improved by the application of the BCM method.
The intensity plots are smooth for both bins. Unlike for the application on measured
data, no drop in intensity is observed. This is similar to the �ndings on simu-
lated data for the �ve-pion �nal state [Bic16] and makes the selection of a model
impossible.
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Figure 5.7: Intensities of a �t with the complete wave-pool of 432 waves to simulated
data at 1.81 GeV/c2. The result with the largest likelihood is shown in grey. The
intensities have been sorted in descending order. Additional results are ordered
according to the best result. The result of the reference �t is superimposed in red.
The other attempts are color-coded according to their absolute di�erence in likelihood
with respect to the best result.

5.3.2 Application of the BCM method with decreased scale parameter

Applying the BCM method with the same scale parameter as in the previous works
showed no clear intensity drop in the waves. By decreasing the parameter to Γ = 0.2
the same behavior of the method as on measured data is recovered. An explanation
for the appearance of the intensity drop for a di�erent scale parameter will be given
in section 6.2.
This result is important as it justi�es the interpretation of the intensity drop as the
correct criterion to select the relevant waves.
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Figure 5.8: Intensities of a �t with the complete wave-pool of 432 waves to simulated
data at 0.99 GeV/c2. The result with the largest likelihood is shown in grey. The
intensities have been sorted in descending order. Additional results are ordered
according to the best result. The result of the reference �t is superimposed in red.
The other attempts are color-coded according to their absolute di�erence in likelihood
with respect to the best result.

The high-mass bin is again discussed �rst. Several interesting features appear
in �g. 5.9. The most important is the drop in intensity the 69th wave. This is
exactly the same behavior as observed on measured data for both the three- and the
�ve-pion �nal state analyses. Most of the waves from the reference �t sit on top of
the best �t in this region. Some waves with intensities of order 10 - 100 events are
not found. This suggests that the drop intensity can indeed be used to separate the
important from the less important waves.
The drop after the 69th wave is not the only one in the plot. Additionally a second
intensity drop appears after the 235th wave. This 'double kink'-structure has been
observed on measured data as well [Dro15]. The unregularized MLE �t already
showed the tendency to suppress waves with negative re�ectivity stronger than the
one with positive re�ectivity. Here the second drop corresponds solely to waves
with negative re�ectivity. This behavior of the BCM model selection has �rst been
remarked in Ref. [Uhl16]. For most of the following studies a reduced wave pool,
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consisting only of waves with positive re�ectivity, is used.
Additionally a single wave with large intensity spread over the �t attempts is visible
in the selected sector. This wave is the �at wave, which has no been generated.
It seems that the BCM model selection prefers to use waves from the dominant
positive re�ectivity sector and replace the waves with negative re�ectivity with the
unpenalized �at wave.

For the low mass region shown in Figure 5.10 the same intensity drop is vis-
ible. Here not second drop appears in the best �t, but several waves show a similar
pattern in the other �t attempts. Also the �at wave obtains intensity in this �t.
All waves show a strong intensity spread over the di�erent �t attempts. For the
high-mass bin these spreads were small for the waves with the biggest intensities.
For the low-mass bin this is not the case anymore.
From the plots it is not evident which waves are in the selection of the method.
In this bin an additional wave is found. The 0−+0+f0(1500)πS wave has not been
generated in this bin. This wave is especially interest as it is one of the waves know
to behave problematically on measured data.

5.3.3 E�ect of the Scale Parameter and the Sample Size

The next obvious question is of course the e�ect a further decrease of the scale
parameter has. As already mentioned previously in section 4.2.3.1 the penalty ap-
proaches a form that is proportional to the reciprocal intensity of a wave. Decreasing
the parameter to Γ = 0.05 shows similar results for the low- and high-mass region
of the �t. The results are shown in �g. 5.13 and �g. 5.14. Most importantly neither
the number of selected waves nor the bias is strongly in�uenced by the scale. The
sector of deselected waves get pushed down to smaller intensities while the end of
the selected waves remains at an intensity of several events.
Another noticeable e�ect becomes apparent when looking at the scattering of the dif-
ferent �t solutions. With decreasing scale parameter the spread in the log-likelihood
di�erences increases. The best solutions however remains good especially in the
high-mass region.
For the low-mass bin the more additional waves are introduced. This is thought to
be connected to the increased instability of the waves over the �t attempts.

The BCM method has also been tried for di�erent event sample sizes, but no
dependence on the sample size was found.
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Figure 5.9: Intensities of a �t with the complete wave-pool of 432 waves to simulated
data at 1.81 GeV/c2. The result with the largest likelihood is shown in grey. The
intensities have been sorted in descending order. Additional results are ordered
according to the best result. The result of the reference �t is superimposed in red.
The other attempts are color-coded according to their absolute di�erence in likelihood
with respect to the best result.
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Figure 5.10: Intensities of a �t with the complete wave-pool of 432 waves to simulated
data at 0.99 GeV/c2. The result with the largest likelihood is shown in grey. The
intensities have been sorted in descending order. Additional results are ordered
according to the best result. The result of the reference �t is superimposed in red.
The other attempts are color-coded according to their absolute di�erence in likelihood
with respect to the best result.
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Figure 5.11: Fit of the BCM method with the reduced wave pool to simulated data
in the high-mass bin. Γ = 0.2
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Figure 5.12: Fit of the BCM method with the reduced wave pool to simulated data
in the low-mass bin. Γ = 0.2
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Figure 5.13: Fit of the BCM method with the reduced wave pool to simulated data
in the high-mass bin. Γ = 0.05
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Figure 5.14: Fit of the BCM method with the reduced wave pool to simulated data
in the low-mass bin. Γ = 0.05
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5.4 Diagnosis of the Multimodality

In sections 5.2 and 5.3 it has been demonstrated that the �t su�ers from many local
minima found by the optimization procedure. This problems occurs especially for
lower masses. This section provides more insight on the nature of the multimodality
and its mass-dependence.
In section 3.1 the decay amplitudes have been introduced. For the same JPCM ε,
waves of di�erent isobar ξ are only distinguishable by the isobar line-shape ∆ξ. For
masses far below the typical threshold of the isobar resonance, these line shapes
�atten and become more similar. As an example for this e�ect, simulated data for
single waves has been generated in the high- and the low-mass region. In �g. 5.16
the histograms of the neutral two-pion subsystem are plotted for di�erent waves at
di�erent masses. In �g. 5.16a the 0−+0+f0(1500)πS wave has been generated at a
three-pion mass of 1.81 GeV/c2. The f0(1500) isobar is clearly visible in the spec-
trum of the two-pion system. The same wave has been generated in the low-mass
bin of 0.99 GeV/c2, which is plotted in �g. 5.16b. In this sub-threshold region, only
phase space like structure is visible. This can be compared for data of a di�erent
wave, namely the 0−+0+f0(980)πS wave, in the same mass region. Even though a
di�erent isobar is used, the two-pion mass spectrum looks similar. It is clear that
these waves are expected to su�er from strong cross-talk.

A hint for the cross-talk between two waves can also be found by looking at
the overlap integral of the waves:

Pij =

∫
dϕ3(τ ′)Ψi(τ

′)Ψj(τ
′)∗ (5.1)

The absolute value of the normalized overlap integral
∣∣ Pij√Pii

√
Pjj

∣∣ is a measure

between 0 and 1. Where a value of 1 hints towards strong correlation of the waves.
In �g. 5.15 the maximum absolute value of the overlap integral of any wave is
plotted for a speci�c wave. The dashed line corresponds to the 0−+0+[ππ]SπS wave
and the solid line to the 0−+0+f0(1500)πS wave. For low masses both waves show
a maximum overlap near 1 with some other wave. For higher masses the value
decreases, but remains �nite. This is consistent with the problematic cross-talk of
these two waves.

The consequence of the strong overlap between waves is the possibility for them to
get large intensities that interfere destructively, such that the expected number of
events remains about the same.
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Figure 5.15: Maximum absolute value of the overlap integral with any other wave.
Dashed line: 0−+0+[ππ]SπS wave; Solid line: 0−+0+f0(1500)πS wave
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Figure 5.16: Histograms of the neutral two-pion subsystem.
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5.5 Application of the LASSO method

In this section the LASSO regularization is applied to simulated data. Here only
the reduced wave pool has been used. In �g. 5.18 the e�ects of the LASSO penalty
can be seen. For this �t no smoothing has been applied to the absolute value and
the width parameter was set to Γ = 0.2. For this choice of parameter the wave set
seems to be recovered quite well.
The intensity drop is bigger than for the BCM method, but at the same time the
separation of the large and small intensity sectors is not so well de�ned. The drop is
happening in a smooth fashion, making the exact selection of waves harder. It can
also be seen that the non-di�erentiability at 0 is a problem for the minimizer, as the
solutions show a wide spread in intensity for the deselected waves. The waves that
are actually in the reference model are found without these �uctuations.
Looking at the intensity bias shown in the lower subplot it is obvious that the �t
with the LASSO introduces some bias towards lower intensities.

The tuning of Γ has been performed by performing a BIC scan, which is shown in
�g. 5.17. The degrees of freedom r have been estimated by taking into account waves
with an intensity over 10−3 events. For both bins a value of Γ = 0.2 has been chosen.

The LASSO �t for Γ = 0.2 in the low-mass bin is shown in �g. 5.19. Similarly
to the high-mass bin, a drop in the intensity is visible, which is not as clearly
separated as the BCM drop. The interesting feature of this plot is visible for the
waves with the highest intensities. For the BCM �ts, large spreads over the di�erent
�t attempts appeared.

The smoothing of the absolute value has been introduced to have a better behaved
function fed into the minimizer. The e�ect of the smoothing can be seen in �g. 5.20.
The strong numerical instabilities can be resolved and the scattering over the �t at-
tempts decreases. Of course the results should be consistent as long as the smoothing
is small. This has been checked in �g. 5.21 where instead of the reference �t the best
�t without smoothing is overlaid in red. It is clear that the smoothing only a�ects
the lowest intensities, while the large intensities coincide. It is concluded that the
smoothing is an appropriate way to deal with the non-di�erentiability at zero.
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Figure 5.17: Scan of the BIC criterion for simulated data without smoothing of the
penalty. (a) scan for the low-mass bin (b) scan for the high-mass bin. In both cases
a value of Γ = 0.2 is chosen.
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Figure 5.18: Fit result for the LASSO penalty without smoothing on simulated data
in the high-mass bin. Γ = 0.2

67



Chapter 5 Model-Component Selection on Simulated Data

10-22
10-20
10-18
10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100
102
104

|T
i|2

 [
e
ve

n
ts

 /
 (

2
0M

eV
/
c2

)]

30000 events 
 0. 98  m3π 1. 0 GeV/c2 0. 1 t′ 0. 113 (GeV/c)2

best fit reference fit

0 50 100 150 200
Wave index

5

0

5

|T
i|2 r

ef
−
|T
i|2 b
es
t 1e2

0 2 · 101 4 · 101 6 · 101 8 · 101

∆(lnL)

Figure 5.19: Fit result for the LASSO penalty without smoothing on simulated data
in the low-mass bin. Γ = 0.2
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Figure 5.20: Example for the smoothed version of the LASSO penalty.
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5.6 Application of the MBCM Regularization

The application of the LASSO method revealed that the bias on large intensities,
introduced by the light tails of the penalty term, have the property of prohibiting
the large destructive interferences that are visible in the di�erent �t attempts of the
�t without regularization or with the BCM method. Nevertheless the BCM method
still performs reasonable well in recovering the true model for the best �t result.
Because the waves selected by the BCM method are not very dependent on the free
scale parameter of the method and in general the bias on the large waves is smaller,
it would be desirable to improve this method in such a way that it keeps these prop-
erties while being able to resolve the ambiguities of the large destructive interferences.

The MBCM method, introduced in section 4.2.3.3, intends to combine the ad-
vantages of both BCM and LASSO methods. It has two free parameters. The scale
parameter Γ directly corresponds to the scale parameter of the BCM method. The
decay parameter λ controls the tails of the prior or in other words the bias on large
intensities. For λ = ∞ the MBCM is equal to the BCM method, for smaller values
the BCM tail-behavior gets modi�ed by an exponential decay, the tail are less heavy
and the bias on large intensities increases. The intention is e�ectively to impose a
soft limit on large intensities and therefore requiring more support from the data to
overcome the prior and make a wave large.
λ is chosen such that it is large enough to ensure the same selection behavior as the
BCM method, while resolving ambiguities of large waves similar to the LASSO.
To be comparable to the BCM method, Γ = 0.2 was chosen for the scale parameter.
For λ values of O(1) were found to be adequate and λ = 5 is chosen for the studies
presented in this section.

In �g. 5.22 the results for the low-mass bin are shown. The most obvious change as
compared to the BCM method, shown in �g. 5.12, is the vanishing of solutions that
show a large spread in intensity over the di�erent solutions.
The 0−+0+f0(1500)πS wave, that was found with an intensity of about 453 events
by the BCM method, is successfully removed from the selected sector. With it, the
increase of the intensity of the 0−+0+[ππ]SπS wave also vanishes. This shows how
the additional bias makes it possible to resolve ambiguities of similar waves at low
masses.
The 1++1+ρπD wave and the 1++1+[ππ]SπP wave are swapped, this has also been
observed for the LASSO �ts. This is most likely an artifact due to the �t result used
to generate the data.
All other waves that could not be recovered correctly are of the order O(10) events
or below.
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5.6 Application of the MBCM Regularization

To illustrate that a value of λ = 5 is introducing only a weak bias, the MBCM �ts
are plotted with the results of the BCM method superimposed in red as the reference
model. For both the high-mass, shown in �g. 5.23, and the low-mass bin, shown in
�g. 5.24, the results mostly coincide. For the high-mass bin the only di�erence can
be seen for two small waves in the region around the intensity drop. For the low-mass
the e�ects are more insightful. The waves discussed in the previous paragraph di�er
from the BCM result, while the rest of the found waves are on top of the BCM results.

It is evident that the MBCM method is capable of extending the BCM method such
that regularization properties similar to the LASSO are introduced. The selection
works like for the BCM method, a drop in the intensity spectrum is induced. Be-
cause the scale parameter is related the one of the BCM method, the position of the
drop is only weakly dependent on the exact parameter value. The decay-parameter
is only used as an upper limit for the waves. This should make the method less
dependent on expensive parameter tuning like it is required for the LASSO.
The promising e�ects seen on simulated data justify the application to bins of
measured data in section 6.3.
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Figure 5.22: Intensity plot for the application of the MBCM method on the low-mass
bin for simulated data. The larger bias as compared to the BCM method is able to
resolve issues of destructive interference.
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Figure 5.23: Comparison of the MBCM best �t in the high-mass bin with the BCM
�t results superimposed as the reference �t in red.
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Figure 5.24: Comparison of the MBCM best �t in the low-mass bin with the BCM
�t results superimposed as the reference �t in red.
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Chapter 6

Model Component Selection on

Measured Data

In this chapter studies, analogue to the ones conducted on simulated data, will
be repeated on measured data in the same two mass-bins. Only the most im-
portant results will be shown here as more insight can be gained by extending
these �ts to the whole mass-range, as done in chapter 7. Nevertheless the study on
the two single bins serves as a justi�cation for the application on the rest of the data.

Again the �t with the hand-selected 88-waves model is used for comparison of
the �t results. It is important to stress that this 'reference' model is of course not
necessarily the correct one anymore. Still, the biggest waves should be reasonable
well described by it and di�erences are expected for lower intensity waves.
The focus will lie mostly on the three 0−+0+ waves with isobars f0(1500), f0(980)
and ππS as these waves showed unusually large intensities for lower masses.
Of these waves, only the one with the ππS isobar is considered reasonable in the
low-mass bin. In the hand-selected model the other two were thresholded below
1.7 GeV/c2, for the f0(1500) wave, and below 1.2 GeV/c2, for the f0(980) wave.

The study of Ref. [Dro15] showed that the BCM method was not able to ex-
clude these waves in the low-mass region. Instead the intensities of these waves were
large and the thresholds, used in the hand-selected model, had to be reimplemented.

6.1 Fit without regularization

It has already been seen that the unregularized �t was not able to correctly infer
the waves in the low-mass bin. It is no surprise that the situation is even worse
on measured data. As an example the �t with the reduced wave pool at a mass of
0.99 GeV/c2 is shown in �g. 6.1. The result looks similar to the simulated data in
this region. All waves pick up large intensities.
The two largest waves are the 0−+0+f0(1500) wave with an intensity of 408735
events and the 0−+0+f0(980) wave with an intensity of 258082 events. Both of these
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waves have been excluded in the hand-selected model because their appearance is
not considered reasonable at 0.99 GeV/c2 �nal state mass. The e�ect of cross-talk
within this sector is expected to be large due to destructive interference of the similar
waves. One can conclude that the naive MLE �t of the wave pool does not lead to
useful results just as expected from the observations on simulated data.
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Figure 6.1: MLE �t of the reduced wave pool to measured data in the 0.99 GeV/c2

bin.

6.2 BCM regularization

In this section the issues with the BCM method will be presented. The focus lies on
explaining the problems discovered in Ref. [Dro15].

In �g. 6.2 the BCM result for the high-mass bin and a width-parameter of Γ = 0.5
is shown. For this choice of parameter value the intensity drop does not appear
on simulated data 1. For the measured data however the intensity drop is visible.
The reasons for the appearance of the drop is considered to be related to the
acceptance correction that is applied for measured data. This can be understood
in the following way. The acceptance correction, applied to �ts of measured data,

1compare to section 5.3.1
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e�ectively scales up the intensity of the waves. For this �nale state the acceptance
is roughly η ≈ 0.47. The scaling of the intensity can also be interpreted as a scaling
of the width-parameter by Γacceptance ≈ Γideal√

0.47
. It is therefore possible to calculate a

width-parameter that does not lead to an intensity drop on measured data from the
value used for simulated data. Indeed for a value of Γacceptance ≈ 0.5√

0.47
≈ 0.73 no

such drop occurs, as can be seen in �g. 6.3.

The results of the simulated data show that in general smaller values of the
parameter do not have a large e�ect on the intensities and the selected wave set.
For measured data Γ = 0.5 is close to the value at which the intensity drop appears.
It has been found reasonable to chose Γ = 0.2, which removes more of the smallest
waves, but keeps the multimodality at an acceptable level.

In the high-mass bin, shown in �g. 6.2, the large-intensity waves coincide mostly
with the waves of the 88-wave set. The size of the selected wave set would be
larger, but no arguments can be made about whether the additional small waves are
physical. For the 0.99 GeV/c2 bin the results are shown in �g. 6.4. The intensities
of the 0−+ waves are again large. This is not surprising, considering that �rst signs
of such unphysical behavior are visible even on simulated data.

Di�erent values of the scale parameter Γ have been tried, but none of them
was able to resolve the issues with unphysical high-intensity waves at low masses.
One can conclude that the BCM method is not able to resolve the issues, discovered
in Ref. [Dro15], by decreasing the scale-parameter or using a reduced wave pool of
waves with only positive re�ectivity.
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Figure 6.2: Fit of the reduced wave pool with the BCM method and Γ = 0.5 at
1.81 GeV/c2.

78



6.2 BCM regularization

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

|T
i|2

 [
e
ve

n
ts

 /
 (

2
0M

eV
/
c2

)]

45340 events 
 1. 8  m3π 1. 82 GeV/c2 0. 1 t′ 0. 113 (GeV/c)2

best fit reference fit

0 50 100 150 200
Wave index

4

2

0

2

|T
i|2 r

ef
−
|T
i|2 b
es
t 1e3

0 8 · 102 2 · 103 2 · 103

∆(lnL)

Figure 6.3: Fit of the reduced wave pool with the BCM method and Γ = 0.73 at
1.81 GeV/c2.

79



Chapter 6 Model Component Selection on Measured Data

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103
104
105
106

|T
i|2

 [
e
ve

n
ts

 /
 (

2
0M

eV
/
c2

)]

81155 events 
 0. 98  m3π 1. 0 GeV/c2 0. 1 t′ 0. 113 (GeV/c)2

best fit reference fit

0 50 100 150 200
Wave index

2

1

0

1

|T
i|2 r

ef
−
|T
i|2 b
es
t 1e5

0 8 · 101 2 · 102 2 · 102 3 · 102

∆(lnL)

Figure 6.4: Fit of the reduced wave pool with the BCM method with Γ = 0.5 at
0.99 GeV/c2.
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6.3 MBCM regularization

For simulated data the MBCM method has been introduced in order to improve the
results obtained by the BCM method. A larger bias on the intensity proved to be
advantageous in suppressing unwanted solutions with large destructive interference.
The e�ect on the best �t was not very strong on simulated data.
The width-parameters of BCM and MBCM correspond to each other and Γ = 0.2
has been chosen for the MBCM method as well. To control the strength of the bias
λ = 5.1 2 has been chosen. This value is considered large enough to not introduce
a strong bias on waves that are considered well established, but strong enough such
that waves that do not show a strong support by the data are suppressed.

Again inference of the intensities is not problematic for the high-mass bin and
leads to similar results as the BCM method. The focus lies on the low-mass bin to
explain the properties of the method.

For the low-mass bin the e�ects are more prominent. Looking at the 0−+ sec-
tor it is evident that the issues can be resolved by introducing a more demanding
prior.
Both the 0−+0+f0(980)πS and 0−+0+f0(1500)πS waves are removed from the set of
selected waves in this case. The intensities of the largest waves resemble the hand-
selected wave set much more. Comparing the result of the MBCM method in �g. 6.5
with the result of the BCM method in �g. 6.4, one immediately notices that for
the MBCM method the largest waves coincide with the waves of the hand-selected
88-wave model. This proves the advantage of additional bias on large intensity.
Waves with large intensities that are not strongly supported by the data can easily
be removed, while the e�ect on the other waves is small.
Furthermore, the BCM method showed strong scattering over the �t attempts, even
for the largest waves. The MBCM �t suppresses such behavior almost completely
for large-intensity waves. Uniquely found waves are therefore easier to interpret.

2λ = 5.1 has been chosen for a study conduced in section 7.5. This does not make a signi�cant
di�erence to λ = 5, which has been chosen for the studies on simulated data.
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Figure 6.5: Fit of the reduced wave pool with the MBCM method with Γ = 0.2 and
λ = 5.1 at 0.99 GeV/c2.

6.4 LASSO regularization

The MBCM method has been motivated by a minimal modi�cation of the BCM
method in order to improve it such that solutions with large intensities are sup-
pressed on simulated data. The e�ect on measured data is the removal of the largest
waves that were considered unphysical. The motivation of introducing more bias is
based on the success of the LASSO method in removing large spreads in intensity
for the low-mass bin. It is thus reasonable to also apply the LASSO method and
look at the results.

The results shown here are for di�erent values of the tuning parameter of the
LASSO on the reduced wave set. Both, an application with penalized and without
penalized �at wave have been tried. Because on measured data contributions from
background are expected, especially in the case when waves with negative re�ectivity
are removed from the wave pool, here the results without penalization of the �at
wave are shown. This method is then also more comparable with the BCM and
MBCM methods.

To select an appropriate width for the LASSO the information criteria, presen-
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ted in section 4.2.3.2, can be invoked. It has already been discussed that the
di�erent criteria also select di�erent wave sets. It is not clear whether the applica-
tion of these criteria can be well justi�ed for this analysis. Also, one has to decide
on one of those criteria. Because of this, di�erent values have to be considered for
systematic studies in the end. On simulated data the parameter choice of the BIC
seemed to be able to best recover the input model. On measured data this does not
have to be the case. Nevertheless the sparsest result is obtained by the parameter
choice of the BIC. The BIC-scan of the parameters are shown in �g. 6.8 for the low-
and high-mass bins.
For the low-mass bin a value of Γ = 0.3 is found. For the high-mass bin the value
was Γ = 0.5. Here the regularization is weaker for the high-mass bin than for the
low-mass bin, which makes sense given the experience that inference seems to work
reasonable well in this regime. This can be examined in more detail by extension of
the method to the full mass range in section 7.3.

The intensity plot for the �t results of the 1.81 GeV/c2 bin is shown in �g. 6.6. A
drop in intensity can be observed at about the 130th wave. Similar to the �ndings on
simulated data, this drop is not as pronounced as for the BCM or MBCM methods.
It is important to point out that the �t attempts show less scattering of the solutions.

In the low-mass region the BIC criterion choses a LASSO parameter of Γ = 0.3. The
result is plotted in �g. 6.7. Similar to the MBCM method the large-intensity waves
are removed. It is remarkable that the scattering of the �t attempts is minimal also
for the low-mass bin.

For the LASSO method one can conclude that it is capable of solving issues
with huge destructive cancellations of waves in the low mass region. The method
requires computationally expensive tuning and the selected wave set is strongly
dependent on the choice of the tuning parameter. The �tting procedure shows only
little scattering of the found solutions.
Both the MBCM method and the LASSO method are superior to the BCM method
in removing unphysical waves at low masses. While the LASSO method also provides
a more stable �t, the tuning of the parameter and the selection of the wave set
are not as straight forward as for the MBCM method. Additionally, the choice of
λ = 5.1 for the MBCM prior introduces less bias on large intensities than the choices
of ΓLASSO by the BIC procedure for the LASSO method. The similarity of the
MBCM method to the BCM method makes it possible to select a wave set even for
less bias than the LASSO.
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Figure 6.6: Fit of the reduced wave pool with the LASSO method with Γ = 0.5 at
1.81 GeV/c2.
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Figure 6.7: Fit of the reduced wave pool with the LASSO method with Γ = 0.3 at
0.99 GeV/c2.
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Figure 6.8: Scan of the BIC criterion for the LASSO parameters ΓLASSO =
0.1, 0.3, 0.5, 0.7. (a) Scan for the 0.99 GeV/c2. A value of Γ = 0.3 is chosen. (b)
Scan for the 1.81 GeV/c2. A value of Γ = 0.5 is chosen.
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Chapter 7

Model Component Selection over

complete Mass Range

In chapters 5 and 6 the di�erent model selection methods have been applied to single
bins in mass. The e�ects of the methods in the higher and lower mass region have
been studied in these bins. This chapter extends the methods to the full mass range
between 0.5 GeV/c2 and 2.5 GeV/c2 while still being restricted to the lowest t′-bin.
This allows a direct comparison to the case-study of the BCM method performed in
[Dro15].
With the extension to the full mass range, much more information is available
and the results will be more insightful than for single bins only, because resonance
structures are recovered in the mass-spectrum and can be identi�ed. An example
for this has been shown in section 3.3. The intensity of a wave should show a peak
like structure and a simultaneous phase motion should be visible. The phase motion
however can only be measured relative to a reference wave, which itself may show
resonant behavior. The relative phase motion can therefore serve as an additional
hint for resonant behavior in a wave. A full resonance �t is required to verify this.
Like in the previous analyses [Dro15; Haa13], the 1++0+ρ(770)πS wave has been
chosen to measure the relative phase, because it shows intensity over the complete
mass range and little cross-talk with other waves.

The di�erent model selection methods, introduced in the previous chapters, will be
applied and their properties will be discussed. In section 7.5, a modi�cation of the
MBCM method will be introduced that makes use of the phase space of the decay
amplitudes to further improve the results.

7.1 Unregularized MLE Fit

Before turning to the model selection procedures, the results of the unregular-
ized MLE �t with the full and the reduced wave pool are presented. For this
case, the whole wave pool is equivalent to the �nal wave set. It is known from the
�ndings in the single low-mass bin, that this will probably produce undesired results.
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Chapter 7 Model Component Selection over complete Mass Range

From a Bayesian viewpoint the Frequentist MLE �t is equivalent to a MAP es-
timate with a �at prior. This can be considered a non-informative way of obtaining
estimates of the amplitudes. If this approach were to succeed, meaning that the
results show no unphysical large intensity enhancements or discontinuities, then no
additional regularization of the �t would be needed or even justi�ed and the data
alone is provide enough information to identify all the waves.

Like for the single mass bins, �rst the complete wave pool will be used. The
intensity of several waves with positive re�ectivity are shown in �g. 7.1. The waves
show a strong increase in intensity for the lower was region. This behavior is expec-
ted from the �ndings of the unregularized �t on simulated data in the low-mass bin.
The increase in the intensity of individual waves can be understood as cancellations
due to destructive interference within one JPC-sector. As discussed above section 5.4
in the lower mass region the decay amplitudes become more and more similar as
their only distinguishably criterion is the mass shape of the isobar, which becomes
less characteristic in the far low-mass tail.

In the higher-mass regions starting from 1.5 GeV/c2 and for other isobars than
the three 0++ ones, the e�ects of strongly correlated decay amplitudes diminishes
and the inferred intensities look far more reasonable as can be seen in �g. 7.2.
Additionally signals are visible in the relative phases. Again this is consistent with
the observation of better behaved �ts on simulated and measured data in the single
high-mass bin.

For waves with negative re�ectivity no such structures could be discovered in
neither the intensity nor the phase. In �g. 7.3 two waves with negative re�ectiv-
ity are shown, which were found to be large in the analysis of Ref. [Dro15] or
Ref. [Haa13]. Here an enhancement of the intensities towards lower masses can
be observed, much like for waves with positive re�ectivity. Nevertheless neither
for the higher masses, nor for di�erent isobars any smooth structure could be ob-
served. Regarding the discussion of the �at wave, given in the next paragraph, the
waves with negative re�ectivity are considered to describe artifacts and background.

An interesting e�ect can be seen in the isotropic background wave �g. 7.4. For
the �t with the complete wave pool, which is plotted in green, the intensity vanishes
completely over the full mass range. The �t with the reduced wave pool, plotted in
blue, shows a broad intensity spectrum, starting a bit below a mass of 1.0 GeV/c2.
Even though it may seem desirable to have a perfect model for the data that
makes any type of background description by the isotropic �at wave super�uous,
it is certainly not expected that the �at wave disappears completely. A similar
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7.1 Unregularized MLE Fit

observation was made for the BCM model selection performed in Ref. [Dro15]. The
BCM �ts were also performed for the complete wave pool. While the �at wave did
not vanish completely, it did so for most of the mass range. For tests of rank 2 �ts,
performed in Ref. [Haa13], also a similar result was obtained. Fits with higher rank
are partly comparable to �ts with negative and positive re�ectivity waves, as has
been explained in section 3.1.
Regarding this e�ect in the context of the vast intensity increase in the negative
re�ectivity sector is interesting. It seems that the three di�erent incoherent sec-
tors available to the �t are strongly concurring to describe the data. While there
is certainly structure in the dominant sector of positive re�ectivity the negative
re�ectivity sector shows practically no smooth structure at all. This suggests that
the model has problems describing the data accurately and/or that strong structure
in the background is present. The inclusion of the many degrees of freedom of the
negative sector allows the �t to better adapt to the structure in the data.
It has already pointed out in section 2.2 that resonances with positive re�ectivity
should be dominant in this analysis. Test with and without the inclusion of waves
with negative re�ectivity, performed in Refs. [Ado+17; Haa13; Dro15], proved that
the e�ect on the waves with positive re�ectivity is negligible. For these reasons,
in most of the following studies the reduced wave pool, containing only positive
re�ectivity waves and the �at wave, will be used for most studies as long as not
otherwise stated.
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Figure 7.1: Mass spectrum for selected 0−+ waves for the unregularized MLE �t with
the complete wave pool. An extreme increase in intensity is visible towards lower
masses.
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Figure 7.2: Example of a large signal that is visible even without regularization. (a)
intensity spectrum (b) phase motion.
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Figure 7.3: Example of two waves with negative re�ectivity for the unregularized
MLE �t. (a) selected by the BCM method in Ref. [Dro15] (b) included in the
hand-selected wave set of Ref. [Haa13].
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Figure 7.4: Intensity of the isotropic wave for the unregularized MLE �t with the
reduced and complete wave pools. While the �at wave shows a broad intensity
spectrum for the �t with the reduced wave pool, shown in blue, the �at wave vanishes
completely for �t with the complete wave pool.
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7.2 BCM Regularization

In [Dro15] the BCM method has been applied with the full wave pool of 432 waves.
The scale parameter was �xed to Γ = 0.5. Similar to the unregularized MLE �t
in the above section, large increases in intensity of several waves were observed for
lower masses. The e�ect on the �at wave was also similar. Over most of the mass
range its intensity was practically zero. Some residual intensity was observed up to
a mass of about 1.5 GeV/c2. Also there, no insight could be gained on the nature of
waves with negative re�ectivity.

Because the BCM method has only been applied with the full wave pool of
432 waves, in this section the method will be applied to the reduced wave pool
containing only the positive re�ectivity waves. This is again to check if the inclusion
of the negative re�ectivity sector is causing the intensity increase of the positive
re�ectivity waves. For the �xed parameter Γ = 0.5 the results for the same waves as
in �g. 7.1 are shown in �g. 7.5. The intensity enhancements are smaller than for the
unregularized �t by about a factor of 10. Nevertheless, it is obvious that even with
the reduced wave pool the unphysical behavior persists.

In order to check if a decrease in the scale to Γ = 0.2 and Γ = 0.05 is capable
of resolving the issues, these �ts have been performed as well. The decrease of the
scale-parameter requires a longer time for the �ts to converge. Unfortunately in a
few bins, with large numbers of events, the �ts did not converge in an appropriate
time. Because the decrease of the scale-parameter did not solve the problems in the
rest of the bins, it is not expected to gain any insight from this mass region and no
attempt has been made in repeating these �ts.

The studies performed with the BCM method, presented in this section and
the previous work, reveal that this method is not practically applicable for selection
of a wave set and further manual intervention is needed. This was expected from the
conclusions of the previous work and the results obtained in the single mass-bins.
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Figure 7.5: Mass spectrum for selected 0−+ waves for the unregularized MLE �t with
the complete wave pool. An extreme increase in intensity is visible towards lower
masses.
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7.3 LASSO Regularization

In contrast to the BCM method the LASSO regularization showed good properties
in inference for the single mass bins for both simulated and measured data. As
mentioned above the method requires the tuning of its parameter as there is no
limiting behaviour. For this data the BIC, given in eq. (4.15), produced promising
results in the single mass bins whereas selection via the AIC tended to select very
large wave sets and is considered less suitable for model selection in this context.
These large wave sets would not be suitable for a re�t of the selected model.
The authors of [Gue+15] suggested the penalization of the isotropic �at wave in
their method. Because the negative re�ectivity sector is left out and other sources of
background are expected, a variant with and without penalization of the �at wave
has been tried and preferred.
Due to the computational e�ort required in parameter scanning the smoothed ver-
sion of the LASSO prior has been used. It has been demonstrated in �g. 5.20 that
the smoothing has little in�uence on the actual result while greatly improving �t
stability and convergence time.
The choice of prior value over the masses is shown in �g. 7.6b for the �ts with pen-
alized �at wave and in �g. 7.6a for the ones without. The scan has been conducted
for the following four values of the parameter Γ = 0.1, 0.3, 0.5, 0.7.
The BIC tends to select smaller widths and therefore a stronger bias with lower
masses. This behavior is sensible when considering that the �ts without penalty or
the ones with the BCM method applied become more reasonable at higher masses.
The values are similar in both cases, with penalized �at wave and without.

The results for the LASSO �t are shown in �g. 7.7 for all four Γ values. Re-
turning to the waves chosen to benchmark the method it can be seen that the issues
of large destructive interference can be resolved in the low-mass region for all of the
problematic waves. An interesting property is the thresholding of the 0−0+f0(980)
wave in the region around 1.1 GeV/c2. This is similar to the threshold that has been
chosen for this wave by hand.
Also the 0−0+σ0 has been found to follow the results of the hand-selected model in
the intensity spectrum.
In �g. 7.7b and �g. 7.7d waves with the f0(1500) isobar are shown. They still show
a strong intensity increase below 1.5 GeV/c2.
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Figure 7.6: BIC choices of LASSO parameter for (a) no penalization of the �at wave
(b) with penalization of the �at wave
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Figure 7.7: Fits with LASSO regularization using the reduced wave pool. The
�at wave has not been penalized for these �ts. Four di�erent values for Γ =
0.1, 0.3, 0.5, 0.7 have been used to be able to scan the parameter. For all values
the LASSO is able to provide reasonable thresholds for the f0(980) wave.
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7.4 MBCM Regularization

In the single mass bins, the MBCM method showed a signi�cant improvement over
the BCM method, in The idea of the MBCM method introduced for the single mass
bins was to combine the advantages of both BCM and LASSO. For the single mass
bins it was able to resolve issues with too large intensities of the 0−0+f0(980) and
0−0+f0(1500) waves.
The idea is to keep the tail of the prior as heavy and thereby as weakly informative
as possible, but as informative as necessary. The benchmark was the disappearance
of the 0−0+f0(980) and 0−0+f0(1500) waves in the low-mass bin.
Here the MBCM method has been applied with a scale parameter of Γ = 0.2 and
a decay parameter of λ = 5.1. These values have been chosen for the following
reason. The scale parameter is related to the scale parameter of the BCM method.
The choice of Γ = 0.2 was found to be large enough for fast convergence of the �ts
while simultaneously being small enough to come closer to the limit of the BCM
prior. As argued previously smaller scale-parameters seem to be desirable, at least
on simulated data.
For the decay-parameter λ = 5.1 was chosen because no strong in�uence in the
high-mass bin was observed. It was concluded the the in�uence of the lighter tails
of the MBCM penalty should be weak enough to be acceptable. This can also
be understood when the decay-parameter is related to the scale-parameter of the
LASSO via the relation introduced in section 4.2.3.3. It is therefore expected to
have a weaker bias than the LASSO for any of the LASSO scale-parameters chosen
by the information criteria in section 7.3.

In �g. 7.8a the intensity spectrum of the 0−+0+f0(980) wave is shown for the
MBCM �t. Like for the LASSO methods the threshold of the wave is nicely re-
covered.
Another similarity with the results obtained with the LASSO method is the strong
peak of the 0−+f0(1500) wave, shown in �g. 7.8b. The increase in intensity is bigger,
which can be related to the argument about the relation of the decay-parameter and
the LASSO scale-parameter made above.
There seems to be two kinds of intensity increases that appear for lower masses that
can nicely by demonstrated by the two 0−+ waves discussed so far. Both the LASSO
and the MBCM method were able to resolve issues with the 0−0+f0(980). Because
the f0(980) is very narrow and explicitly separated from the [ππ]S . Only little
additional bias is required to resolve the cross-talk between these two waves. The
separation is not so clear for the f0(1500) and the [ππ]S isobars. The peak structure
found by MBCM and LASSO methods is scaling strongly with the strength of the
suppression. In contrast to the other wave however it is persistent for all but the
most extreme biases induced by the penalties. Which is Γ = 0.1 for the LASSO or
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7.4 MBCM Regularization

λ = 0.1 for the MBCM penalty. These small values are not considered reasonable
because the e�ect on well-established waves is by far to strong.
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Figure 7.8: Mass spectrum for selected 0−+ and 1++ waves for the MBCM and
LASSO �ts. (a) both MBCM and LASSO �ts recover the threshold of the
0−+0+f0(980) wave. (b) and (d) show an enhancement of waves with f0(1500)
isobar below the expected threshold.
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7.5 Weighting according to decay Phase Space

The approach of a binned �t in mass bears the advantage of recovering the mass
dependence of the transition amplitudes without any parametrisation. It therefore
also provides a cross check for the appearance of artefacts in the data. With a
parametrised �t unwanted �uctuations in one bin or a certain region of bins may
translate to structures that look physical over a larger region of the �t but are
instead artefacts.
Ignoring the connection between the bins however means that not all information at
hand is also available to the �t. For example whether a certain decay represented by
a partial wave is sensible in a certain mass region.
Nevertheless this information is later used to check ones believes in the results. In
other words, there is prior knowledge available that is not being used in the �ts.
Not including any of this information several situations arise in which the model
becomes unstable, meaning that waves have no continuous intensity over a certain
mass region or become extremely large, exceeding the number of expected events by
far.
With the usual hand-selection approach this information was included in the form of
thresholds. These thresholds were implemented to forbid problematic waves below
certain masses. The physics reason for this is in the available phase space to the decay.
Certainly a decay which has practically no available phase space is not expected. This
is for example the case for decays that contain a high-mass isobar like the f0(1500)
or ρ3(1690) at low masses. In the extreme low mass regions of the �t it is therefore
reasonable to exclude certain waves altogether. Because the phase space of a wave
is continuous over the mass range it is hard to tell where to put the threshold that
resolves ambiguous behavior.
Here a way of including this knowledge in a continuous and systematic fashion via the
decay parameter λ of the MBCM method is introduced. The underlying assumption
is that for a very small phase space for the decay large productions rates are necessary
for the resonance to be visible. So the prior knowledge would disfavor such decays
and hence in an informative setting the prior should suppress those waves much more
strongly than the ones with a reasonable large phase space of the decay channel. For
large masses the suppression should be equal for all possible waves considered in
the wave pool, because their phase spaces should be su�ciently open or otherwise it
would not make sense including them in the wave pool in the �rst place.
This is also consistent with the property of the �t being more stable for higher
masses.
The strength of the suppression can be controlled by the decay parameter of the
prior. Where a smaller value corresponds to stronger suppression and a vice versa.
For every wave λ becomes a function of the mass. To get the desired behavior
described above the diagonal elements of the phase-space integrals Pii, given in
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Chapter 7 Model Component Selection over complete Mass Range

eq. (5.1), can be used. A simple linear form eq. (7.1) was chosen in such a way
that the value of the decay-parameter becomes equal at a large normalization mass
mnorm
X . A small o�set-parameter o stops the suppression from becoming to strong so

it does not become impossible for a wave to be included, e�ectively giving an upper
limit for the bias. The global scale s de�nes the minimum bias acting on the waves
in the limit of large masses.

λ (i,mX) = o+ s · Pii (mX) /(Pii(mnorm
X )) (7.1)

(a) (b)

Figure 7.9: Example for the mass behavior of the suppression parameter λ (i,mX)
for two 0−0+ waves.

The decay-parameter of the prior is visualized in �g. 7.9 for the two waves
0−0+f0(1500)πS and 0−0+f0(980)πS which have both shown undesired beha-
viour in the region around 1.3 GeV/c2 as discussed above. The parameters of
eq. (7.1) have been chosen to be o = 0.1 for the o�set, which should be small enough
for strong suppression whilst being large enough to keep possible strong signals, and
s = 5 which seems to be a reasonable choice in the high mass region when a �xed
parameter for the bessel-prior is used.
The normalization at 10 GeV/c2 is shown in �g. 7.9a. Additionally a point at
4 GeV/c2 has been included. For larger masses the decay-parameters converge to
the common normalization value, which is 5.1 in this case, while for lower masses
the thresholding behavior of the weighting becomes apparent as seen in more detail
in �g. 7.9b which is constrained to the mass regions of the �t.
The curves rise steeply at about the same region as their respective thresholds in
the hand-selected wave-set. The idea is that the �t can now �nd thresholds that are
compatible with ones believes in a systematic way for all waves while having enough
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(a) (b)

Figure 7.10: Example for the mass behaviour of the suppression parameter for all
waves.

freedom to determine the exact position of the thresholds by itself.
E�ectively the choice of thresholds has been reduced to the choice of two parameters
and one mass for the normalization.

The e�ect of this phase-space weighted MBCM method can best be seen for the
0−+f0(1500) wave. It showed an unphysical increase in intensity below 1.5 GeV/c2

for both the MBCM and LASSO method. The result of the new weighted MBCM
method is capable of using the information about the phase space, such that a
physical threshold is found. The result for the 0−+f0(1500) wave is presented in
�g. 7.12. Only a single mass bin is showing an increased intensity. This can later
be �xed manually without problem and only appears in the �rst t′ bin, as will be
shown in chapter 8.

7.5.1 E�ects of the weighted MBCM Method in single Bins

The properties of the weighted MBCM have also been studied in single mass bins
for both simulated and measured data. The results for the high- and low-mass bin
for measured data are shown in �g. 7.13 and �g. 7.14. The weighted MBCM method
provides much more unique solutions, as almost not scattering of the �t attempts
appears, even in the low-mass bin. A similar result has been found for simulated
data. It has to be remarked that the penalty is quite restrictive at low masses. The
wave sets are therefore small in the low-mass region.
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Figure 7.11: Example of a wave for which the suppression is very strong over the
complete mass range. The high orbital momentum, spin and spin projection in
combination with the heavy ρ3(1690) isobar.
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Figure 7.12: Comparison of the weighted MBCM method with the hand-selected 88-
wave set. The result of the weighted MBCM �t is shown in blue and its re�t in green.
The hand-selected model is overlaid in red. Apart from a single bin, the threshold
is recovered correctly.
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Figure 7.13: Fit result for the weighted MBCM method in the high-mass bin.
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Figure 7.14: Fit result for the weighted MBCM method in the low-mass bin.
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Chapter 8

Model-Component Selection in mX and

t′

The MBCM method in combination with the phase-space weighting of λ is able to
produce results that are physically sensible and resemble the hand-selected model
in the choice of thresholds. Additional waves are found with this approach, some of
which were previously discovered by the BCM method [Dro15] and some, which are
entirely new.
Additionally the hierarchy in the penalization of the waves reduces the e�ects of the
multimodality. This has two advantages. The �rst one being the interpretability
of the found modes. Di�erent modes that are close in likelihood are found to also
produce similar results. The selected model is therefore much more interpretable be-
cause it is clearly separated from the solutions with smaller likelihood and recovered
more than once.
The second is a signi�cant decrease in the time required for the �t to converge. This
speed-up is extremely helpful in performing studies of the wave set.

Together with the above mentioned advantages the promising results obtained
in the lowest t′-bin justi�ed the application of the method to the rest of the available
data. This study takes the step from a case-study performed on the single t′-bin
towards a realistic analysis. The additional information in the complete dataset
should also help to generate reliable wave sets.

In this chapter the weighted MBCM method will be applied to the 11 t′-bins
available. The choice of parameters is the same as in section 7.5, also the normaliz-
ation of λ was chosen to be at 10 GeV/c2. The reduced wave pool, containing only
positive re�ectivity waves, has been used. These settings were found empirically to
be a good choice, but di�erent ones are possible for further systematic studies in the
future.

In section 8.1, the model selection results will be discussed, using the problem-
atic 0−+ partial waves as examples. The individual wave sets, obtained for each
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two-dimensional bin in mass and t′, will then be re�tted. The e�ects of the re�t and
the procedure of re�tting itself will be critically discussed.
The previous analyses relied on a single wave set with lower thresholds in mass. Here
a simple method for building a combined wave set will be presented. This wave set is
then �tted to the complete dataset once more. Selecting a single combined wave set
will also be discussed in the context of this analysis. The results will be compared
with the re�t of the individual wave sets in each bin and the results without re�t.

8.1 Fit results in mX and t′

In this section the results of the weighted MBCM �t are shown for a selection of
waves. A typical representation of the results obtained over all t′-bin is the so-called
t′-summed plot. For these type of plots the intensities for a wave at a given mass are
summed over all 11 t′-bins. These plots usually show a smoother behavior over the
mass range and help to identify resonances by looking for peaks in the spectrum.
The disadvantage is the loss of the relative phase information, which cannot be
summed up.
In �g. 8.1 and �g. 8.2 the t′-summed intensity plots for the 0−+0+f0(980) and
0−+0+f0(1500) waves are shown. Both waves show a smooth intensity spectrum and
no discontinuities. The 0−+0+f0(1500) wave shows a peak structure starting from
1.5 GeV/c2. This wave was thresholded at 1.7 GeV/c2 in the hand-selected 88-wave
set.
The t′-dependence of the intensity spectrum can be made visible in form of a heat
map. For these plots it is very important to stress that size of the bins is not equal
over t′. The non-equidistant binning in t′ is listed in table 3.1. The heat-maps can
use a linear scale for the color, because the number of events in each t′ bin is similar.
In �g. 8.3 and �g. 8.4 the plots for the 0−+ waves with isobars f0(980) and f0(1500)
are resolved in t′. The results are smooth in both mass and t′.

The third 0−+ wave, that usually caused problems with �t stability and large in-
tensities, is the 0−0+[ππ]SπS wave. This wave also shows smooth behavior over
the dataset. In the t′-summed intensity spectrum, shown in �g. 8.5, a pronounced
shoulder is visible at about 1.3 GeV/c2.
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Figure 8.1: t′-summed intensity spectrum of the 0−+0+f0(980)πS wave for the model
selection �t. The intensity smoothly approaches 0 for masses around 1.1 GeV/c2.
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Figure 8.2: t′-summed intensity spectrum of the 0−+0+f0(1500)πS wave for the
model selection �t. The intensity spectrum shows a clear peak starting at about
1.5 GeV/c2. For the hand-selected wave set the threshold was at 1.7 GeV/c2. The
threshold suggested by the weighted MBCM method is lower, such that the full peak
structure could be recovered.
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Figure 8.3: mass and t′ plot of the 0−+0+f0(980)πS wave for the model selection
�t. The di�erent t′-dependence of the dominant peak at about 1.8 GeV/c2 and the
shoulder at 1.3 GeV/c2 is visible.
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Figure 8.4: mass and t′ plot of the 0−+0+f0(1500)πS wave for the model selection �t.
The weighted MBCMmethod nicely recovers the peak structure at about 1.8 GeV/c2.
Only for the lowest t′ bin a single mass bin below the thresholding region is found.
The thresholds show a t′-dependence.
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Figure 8.5: t′-summed intensity spectrum of the 0−+0+[ππ]SπS wave for the model
selection �t. At 1.3 GeV/c2 a shoulder is visible that was not observed in the previous
analysis of Ref. [Haa13].
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8.2 Re�t of the models

The intention of the model selection was the selection of relevant waves over the
two-dimensional bins, which are then joint into a single wave set. The re�tting of
the model is then performed in order to get error estimates that can be used for
the resonance parameter �t. Whether a re�t should be performed or not can be
regarded controversial. A discussion of this can be found at the end of this chapter
in section 8.7.

The weighted MBCM method is capable of �nding the required thresholds sim-
ilar to the hand-selected model, as already mentioned above in section 7.5.
Because the model selection procedure was applied to each bin individually, indi-
vidual models are available for the di�erent bins. This means that waves may appear
and disappear from bin to bin. For a 'classical' wave set only lower thresholds in
mass were given, such that in each t′-bin the wave set was the same.

In this section the individual wave sets have been re�tted in their respective
two-dimensional bins. No additional post-processing of the wave sets has been
applied.

The t′-summed intensity plots are again shown for the 0−+ waves with the iso-
bars f0(980), f0(1500) and [ππ]S in �g. 8.6, �g. 8.7 and �g. 8.8.
Without the regularization the intensities of the waves can increase, so in general
the re�ts show a larger intensity than their corresponding selection �ts.
For the waves with the f0(980) and f0(1500) isobars the re�t keeps the shapes
of the model selection �ts for almost all bins, meaning that no extreme increase
in intensity or distortion is visible. Only in the �rst bin after the threshold this
behaviour appears for both waves. This can easily be removed manually if desired.
The cross talk is stronger for the [ππ]S wave. At 1.1 GeV/c2 a discontinuity in
the spectrum is visible. The increase in intensity can be understood as cross-talk
between the [ππ]S wave and the f0(980) wave. The discontinuity appears exactly at
the threshold of f0(980) wave. Whether the shoulder observed at about 1.3 GeV/c2

can also be related to the cross-talk is not clear. One has to point out that this
mass region su�ers from the cross-talk of these three waves and without further
improvement of the model this has to be included in the systematics of the resonance
parameter �t.
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Figure 8.6: t′-summed intensity spectrum of the 0−+0+f0(980)πS wave for the re�t.
The intensity spectrum is stable, but shows a discontinuity at the thresholding region
of about 1.1 GeV/c2 similar to the hand-selected model.
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Figure 8.7: t′-summed intensity spectrum of the 0−+0+f0(1500)πS wave for the re�t.
The intensity peak does not show any unphysical increases in intensity. The �rst bin,
in which the wave was found, however does behave discontinuous.
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Figure 8.8: t′-summed intensity spectrum of the 0−+0+[ππ]SπS wave for the re�t.
After the re�t, the shoulder 1.3 GeV/c2 persists. At 1.1 GeV/c2 cross-talk, in the
form of an increased intensity, with the 0−+0+f0(980)πS wave is visible (compare
�g. 8.6).
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8.3 Important Waves

8.3 Important Waves

In this section four waves, shown in �g. 8.9, are discussed. These are either dominant
in the intensity spectrum or important for the further analysis.

In �g. 8.9a the t′-summed intensity plot for the a1(1260) resonance in the
1++0+ρ(770)πS wave is shown. This is the wave with the largest intensity in
this analysis. Both the hand-selected wave set and the individual wave sets selected
for each bin in general recover the same shape. A slight modi�cation of the top part
of the peak appears for the selected models. To further investigate this a resonance
�t is required.

Another large wave is shown in �g. 8.9b. The 2++1+ρ(770)πD is dominated
by the a2(1320) resonance and represents one of the cleanest signals in this analysis.
Again both the hand-selected and the model-selection wave sets recover the same
shape, while minor deviations need to be considered in systematic studies of the
resonance �t.

The studies of three-pion di�ractive dissociation data uncovered a new state, known
as the a1(1420) [Ado+17]. This resonance is exclusively in the 1++0+ρ(770)πP
wave, which is shown in �g. 8.9c.

One important study conducted in Ref. [Haa13] was concerned with the spin-
exotic 1−+1+ρ(770)πP wave. The results of the intensity �ts are shown in �g. 8.9d.
In contrast to the previous waves deviations in the double-peak structure are visible.
The �rst peak was identi�ed as thresholding e�ect of the hand-selected model in
Ref. [Haa13]. It is interesting to see that the same peak for the model-selection wave
set is smoother and broader, with a smaller intensity and a shift to lower masses.
The second peak shows a shift to higher masses and higher intensities. These e�ects
are worth investigating in the future and should be included in the systematics of
the analysis.
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Figure 8.9: t′-summed intensity plots for four important waves. The solutions of the
re�t of individual wave sets in each two-dimensional bin are plotted in green. The
solutions of the �t with the hand-selected wave set is plotted in blue.

8.4 Waves discovered in the BCM Case-Study

In the �rst case-study with the BCM penalty several new waves have been dis-
covered as potentially relevant [Dro15]. In this section two of the interesting newly
discovered waves will be discussed. The application of the weighted MBCM model
selection to the complete dataset is able to resolve the t′-dependency of these waves
and can therefore give insight on their possible relevance.

A promising peak was observed in the 1++1+f2(1270)πF wave at about 2.2 GeV/c2.
This structure was connected with a strong phase motion. The wave was also found
with the weighted MBCM method. Its t′-summed plot is shown in �g. 8.10.

116



8.4 Waves discovered in the BCM Case-Study

0.5 1.0 1.5 2.0 2.5
Mass of the π − π − π +  system [GeV/c2]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
u

m
b

e
r 

o
f 

E
ve

n
ts

 /
 (

20
M

eV
/c

2
)

1e3 1+ + 1+f2(1270)πF

Figure 8.10: t′-summed intensity spectrum of the new 1++1+f2(1270)πF wave that
was �rst discovered in the lowest t′ bin by Ref. [Dro15].

The heat-map of the t′-resolved �ts is shown in �g. 8.11. In the two-dimensional
representation it can be seen that the wave shows intensity over almost the complete
t′-region. The extent in mass increases towards higher regions in t′. In the highest
t′-bin it is not found, probably because there are less events in this bin.

The intensity and relative phase-motion in the lowest t′-bin are shown in �g. 8.12a
and �g. 8.12b. Like in the previous analysis a clear phase-motion is visible. The
same is still true for higher t′-bins. In �g. 8.12c and �g. 8.12d the intensity and
phase plots are shown for the t′-range between 0.45 (GeV/c)2 and 0.72 (GeV/c)2. In
this t′-region the peak-structure and phase-motion are still visible.
The stable peak-structure together with the corresponding phase motion suggest
that this wave may indeed contain a resonance and should be included in further
studies. One can speculate at this point, whether this wave contains a signal related
to the resonance candidates a1(1930) or a1(2095), which are listed as further states
in the PDG [Oli+14].

Another interesting structure was visible in the 5++1+ρ(770)πG wave. Its mass and
t′ spectrum is shown in �g. 8.13, its t′-summed spectrum in �g. 8.14. Looking at
bins of low and high t′, more insight can be gained. For the lowest t′-bin a broad
peak-like structure is visible in �g. 8.15a. Also a slow rising phase-motion appears
in �g. 8.15b. This phase motion �attens for higher bins in t′, as shown in �g. 8.15d.
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Figure 8.11: mass and t′ plot of the 1++1+f2(1270)πF wave for the re�t with indi-
vidual wave sets for each bin. The wave is found over all but the highest t′-bin.

Additionally, the peak structure vanishes, leaving only a rise in intensity towards
higher masses, shown in �g. 8.15c. Contributions to high-spin waves are expected
as a result of the non-resonant Deck-E�ect that tends to project into them. The
�attening of the phase-motion and the broad peak support that this wave is most
likely such a background contribution. This has already been speculated in Ref.
[Dro15].
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Figure 8.12: The 1++1+f2(1270)πF wave shows a small, but stable peak over the t′

range. (a) and (b) show the intensity and phase of the wave at the lowest t′ bin.
(c) and (d) show the same for the t′ bin between 0.45 (GeV/c)2 and 0.72 (GeV/c)2.
Both regions show a peak and a phase motion.
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Figure 8.13: mass and t′ plot of the 5++1+ρ(770)πG wave. The wave shows intensity
over all t′ bins.
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Figure 8.14: t′-summed intensity spectrum of the 5++1+ρ(770)πG wave. A broad
structure, starting from 1.2 GeV/c2, is visible.
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Figure 8.15: The 5++1+ρ(770)πG wave shows a peak in the low t′ region and an
increase in intensity for higher t′. (a) and (b) show the intensity and phase of
the wave at the lowest t′ bin. (c) and (d) show the same for the t′ bin between
0.45 (GeV/c)2 and 0.72 (GeV/c)2.
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8.5 Newly discovered Waves

The application of the weighted MBCM method also revealed some new and pos-
sibly interesting waves. Most of these waves are either of high spin or high spin
projection and are also small as the high-intensity waves have mostly been found by
hand-selection and a few during the application of the BCM method.

Two interesting waves are presented here. First the 2−+2+f0(980)πD, which
was mostly found in the higher t′-regions, is shown in �g. 8.16 in the t′-resolved plot.
The t′-summed plot is shown in �g. 8.18a. One can speculate whether this signal is
a decay of the π2(1880). Further studies of this small signal are required.

An interesting structure can also be seen in the spin-exotic 3−+2+ρ(770)πF wave
and partly in the 3−+2+f2(1270)πD wave. The mass and t′ spectrum of this wave
is shown in �g. 8.17 and the t′-summed plot in �g. 8.18b.
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Figure 8.16: Mass and t′ plot of the 2−+2+f0(980)πD wave. For the higher t′ bins
the wave is visible as small intensity enhancement.
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Figure 8.17: Mass and t′ plot of the 3−+2+ρ(770)πF wave. This spin-exotic signal
is small, but appears over a large mass and t′ range.
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Figure 8.18: t′-summed intensity spectrum of two newly discovered waves. (a) the
2−+2+f0(980)πD shows a small peak. (b) Spectrum of the exotic 3−+2+ρ(770)πF
wave.

123



Chapter 8 Model-Component Selection in mX and t′

8.6 Creation of a Combined Wave Set

Any of the analyses so far have relied on a single universal wave set for all of the data.
For reliable inference of the transition amplitudes the introduction of thresholds was
necessary.
In Ref. [Dro15] the results obtained with the BCM method were very much un-
stable over the mass spectrum. In order to merge the wave sets that were found for
the single mass bins and additional �ltering of the sets had to be introduced. The
requirement for the inclusion of a wave into the combined wave set was the stable
appearance over at least ten bins in mass. The threshold was then set at the �rst
stable appearance [Dro15].
The problem of this method is of course the possible removal of waves which are just
su�ering from strong cross-talk with other waves. In the worst case two waves can
easily be swapped and may therefore both be �agged as unstable even though they
are needed to describe the data.
The MBCM method largely suppresses such e�ects due to the hierarchy of the pen-
alty.
Still some residual �uctuations persist. As they are typically small, a similar cri-
terion on the stability over the bins can be invoked. Here instead of using just one
bin in t′ the complete dataset has been used. The thresholds were chosen at the �rst
appearance over more than 5 bins in mass in the t′-summed intensity spectrum. This
criterion is less restrictive than the 10 bins required in the previous analysis. Being
less restrictive is possible as the weighted MBCM method �xes a lot of instabilities
already.

8.6.1 Comparison of Wave Sets

Including every wave that was selected in any of the bins, in mass and t′, results in
a selection of 169 of the 236 waves of the reduced wave pool. The previous study
performed in Ref. [Dro15] used the complete wave pool and was only applied on
the lowest t′-bin. The BCM method recovered every wave in the wave pool [Dro15].
The simple thresholding algorithm and the inclusion of the thresholds used in the
hand-selected wave set reduced the wave set to 118 waves.
The MBCM method does not require so much additional intervention. Thresholds
are mostly found automatically and the re�ts of the single wave sets in each bin,
presented in section 8.2, show stable inference.
The thresholding algorithm, requiring stable inference over more than 5 bins in
mass, was only used to get a cleaner combined wave set. This resulted in a combined
wave set of 134 waves with positive re�ectivity, selected over all t′-bins.

Out of these 134 waves, 29 are neither in the hand-selected 88-wave set, nor in
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8.6 Creation of a Combined Wave Set

1++1+ρ3(1690)πD 2−+1+f0(1500)πD 2−+2+f0(980)πD 2−+2+ρ(770)πF
2−+2+[ππ]SπD 3++0+f0(980)πF 3++0+f2(1270)πF 3++0+f2(1270)πH
3++2+f2(1270)πP 3++2+ρ3(1690)πS 3++2+ρ(770)πD 3++2+ρ(770)πG
3++2+[ππ]SπF 3−+2+f2(1270)πD 3−+2+ρ(770)πF 4++1+f2(1270)πH
4−+0+ρ3(1690)πF 4−+1+f2(1270)πG 4−+2+f2(1270)πD 4−+2+ρ(770)πF
4−+2+[ππ]SπG 5++0+f0(980)πH 5++2+ρ(770)πG 5++2+[ππ]SπH
5−+1+ρ(770)πH 6−+0+f0(980)πI 6−+1+f0(980)πI 6−+1+ρ3(1690)πF
6−+2+ρ(770)πH

Table 8.1: Newly found waves that were neither part of the hand-selected wave set
nor of the one selected in Ref. [Dro15].

1++1+f0(1500)πP 1++1−[ππ]SπP 2++1−ρ(770)πD 2−+1+f2(1270)πG
2−+1−[ππ]SπD 3++1+f0(1500)πF 3++1−f2(1270)πP 3++1−ρ3(1690)πS
4++1−ρ(770)πG 4−+0+f0(1500)πG 4−+0+f2(1270)πI 4−+1+f0(1500)πG
4−+1−[ππ]SπG 5++0+f0(1500)πH 5++0+ρ3(1690)πG 5++1+f0(1500)πH
5++1−ρ(770)πI 6++1−ρ(770)πI 6−+0+f0(1500)πI

Table 8.2: Waves that were removed from the wave set selected in Ref. [Dro15].
Waves with negative re�ectivity were not included in the reduced wave pool in the
�rst place.

the BCM-selected 118 wave set. Most of these newly found waves are small and have
M ≥ 1. It is expected that the extension of the model selection to higher t′-bins will
�nd waves with higher spin-projections, as these are typically suppressed for lower
t′ in this reaction. The most interesting newly found waves were already discussed
in section 8.5.
It is interesting to remark, that 19 waves of the 118-wave set are excluded by
the weighted MBCM method. These include of course all 9 waves with negative
re�ectivity, as they were not included in the reduced wave pool. The residual 10
waves were either small or contained the f0(1500) isobar.
Compared to the hand-selected model, all but 3 waves with positive re�ectivity have
been found. These were typically all small. The negative waves were again of course
excluded.
For the combined wave set the lowest threshold for any wave was at a mass of
0.64 GeV/c2. Below this threshold value, only the �at wave was considered.

8.6.2 Problems of a joined Wave Set

The creation of a single universal wave set over all t′-bins can be regarded contro-
versial. There are two problems that may appear in a combined wave set. The �rst
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Chapter 8 Model-Component Selection in mX and t′

one is related to the t′-dependence of the waves, the second one is related to the
simple way the combined wave set is created here.

In �g. 8.7 it was evident that the thresholds may show a t′-dependence for cer-
tain waves. A universal threshold is therefore either too high or too low in mass
for all t′-bins. The result of this can be seen in the �t with the combined wave set.
In �g. 8.19 the peak structure does not show a slow rise from 0 at the threshold
anymore, while the �t with individual wave sets in �g. 8.2 was able to reproduce the
peak without such a discontinuity. The same feature is visible in the two-dimensional
representation in �g. 8.20.

The method of creating the wave set was chosen to be very simple, so the full
two-dimensional information was not taken into account. Using only the t′-summed
information may lead to the inclusion of waves that are not stable over all bins but
show a continuous intensity in the summed plots. Such a case is shown in �g. 8.21.
This problem can be resolved using a more advanced thresholding technique or by
removing these waves manually. As these waves were small, no further e�ort has
been made to remove them, opting for a larger wave set.
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Figure 8.19: t′-summed intensity spectrum of the 0−+0+f0(1500)πS wave. In blue
the result of the re�t with individual wave sets in each two-dimensional bin is shown,
in green the re�ts of the combined wave set.
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Figure 8.20: Mass and t′ plot of the 0−+0+f0(1500)πS wave for the re�t with the
combined wave set. In the combined wave set for all t′ the same threshold has been
used. The t′ dependence, visible in �g. 8.4, is ignored.
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Figure 8.21: Example of a wave that could be excluded from the wave set by using
the t′-resolved instead of the t′-summed data.
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8.7 Discussion about Re�ts and Wave Sets

The above results show di�erent behaviour for the intensity spectra of the waves. In
previous analyses a simple wave set was used for the partial-wave decomposition. It
was required to introduce thresholds in mass to guarantee reasonable results. The
weighted MBCM method is able to �nd such thresholds automatically.
By applying the model selection procedure for each individual bin in mass and t′

even more information is available. The thresholds can now also be interpreted as a
function of t′. This is for example visible in the 0−+0+f0(1500)πS wave. Also upper
thresholds or even thresholding regions are possible.
This leads to the question whether it is desirable to have only a single wave set for
the complete dataset.
The advantage is certainly the easy handling of such a simple approach. It is only
required to �nd a reasonable lower threshold. For individual wave sets in each bin
or at least in each t′-bin this may become much harder as probably every wave
set should be reviewed by hand in order to �x possible 'holes' in the mass and t′

spectrum.

One can also take this even further and ask if the re�t should be applied at
all. The reason why one would like to stick with the penalized �t as a �nal result
can be justi�ed from a Bayesian point of view. The penalized MLE is interpreted
as a maximum a posteriori estimate. Usually point estimated are not desirable, but
the curse of dimensionality makes it impossible to sample in such a high-dimensional
setting.
As the only meaningful distribution for a Bayesian is the posterior, the mode estim-
ate would also be the �nal result.
It is worth mentioning that the result of the penalized �t shows less discontinuities
than the re�t. This can, for example, be observed in �g. 8.1 where the intensity rises
smoothly from 0 in the thresholding region. For the re�t in �g. 8.6 the same wave
shows a sudden jump to several ten thousands of events.
Continuity is expected in nature and therefore also for the intensity of the waves.
This is a further argument for using the model selection �t directly.

Nevertheless there are also arguments in favour of �tting the selected model again
without penalty. Currently the re�t is a requirement for the analysis chain. The
results of the partial-wave decomposition are the input for the resonance-parameter
�t.
For this second step of the analysis Gaussian errors are assumed. These error
estimates are obtained by approximating the Likelihood as a Gaussian and using
the inverse of the Hessian. It has been shown in the works of Refs. [Bic16; Dro15]
that the Gaussian approximation may not hold in all cases. It is not clear to what
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extent this in�uences the error estimates.
It is expected that then inclusion of a penalty term would further break gaussianity.
This has also been remarked by Ref. [Gue+15] for the LASSO �ts. They suggest
to either perform a re�t as done in this thesis or, like they do themselves, use a
bootstrap approach to estimate the errors.
A second reason is the bias introduced to the number of total expected events N̄ . By
biasing the individual waves towards zero also N̄ gets biased towards zero. As long
as this results only in scaling of the intensities no e�ect on the resonance parameters
should be introduced in the resonance parameter �t. However if one is interested in
branching fraction this may have some negative e�ects.

The author of this thesis thinks that the weighted MBCM method is capable
of producing results that are well suited for the current analysis chain. He suggests
using the results in the following way. The weighted MBCM method provides a fast
way of obtaining wave sets that are suitable for partial-wave decomposition. As each
bin is �tted independently some waves may jump in and out of the wave sets in the
di�erent bins. The analyst should then gauge the relevance of each wave by looking
at the full available information over the mass- and t′-bins and �x potential issues
with the waves.
Large waves can then be included in certain two-dimensional regions. This approach
does not ignore the t′-dependence of the waves and also allows upper thresholds.
These individual, cleaned wave sets should then be used for the analysis.
The results of this method are then comparable with what has been done in previous
analyses.

In the long run a more sophisticated method is proposed. The author believes
that only the posterior should be used for inference. The weighted MBCM method
already introduced di�erent priors or penalties for di�erent waves. The result was
not only the correct derivation of thresholds, but also a speed-up in convergence of
the �ts. This leads to the hope that the individual priors for the waves may produce
a simpler posterior that may make sampling of the posterior possible with the help
of Hamilton Monte Carlo methods like NUTS [HG11].
The partial-wave decomposition could then make a �rst step towards a fully Bayesian
analysis. Of course this is not an easy task and requires the restructuring of the
complete analysis chain. It might well be that this is not even possible due to
computational limitations. However if possible, the results obtained from sampling
the posterior could provide a much better understanding of the errors and a better
justi�cation of the obtained values due to using the posterior.
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Chapter 9

Conclusions and Outlook

The goal of this thesis was the development and veri�cation of a procedure that is
capable of systematically selecting a set of relevant model components in the context
of partial-wave analysis. It aims at replacing less reproducible methods like selection
of partial waves by hand, which was used to built the currently used 88-wave set.
The method has been applied to both simulated and measured di�ractive dissoci-
ation data for the π−π−π+ �nal state.

The previously developed BCM method [Bic16; Dro15] showed promising res-
ults on measured data but was not ready for application due to instabilities in
the selection process that required manual intervention. Continuing this previous
work, at �rst the e�ect of the BCM method has been tested in the idealized case of
simulated data for the π−π−π+ �nal state. The behavior of the BCM method, as
observed on measured data, could be reproduced on simulated data by decreasing its
free scale-parameter from Γ = 0.5 to Γ = 0.2. The reason for this smaller parameter
value could be related to the acceptance correction applied on measured data that
acts as scaling of the intensities. Additionally a separation of the incoherent sectors
could be reproduced on simulated data. Waves with negative re�ectivity may be
completely removed from the selected waves. The same preference has been observed
on measured data. Furthermore, instabilities of the selection procedure were found
at low 3π masses on simulated data. These instabilities are similar to the ones
that appeared on measured data. The reason for the worse inference at low masses
could be related to increasing similarity of some of the decay amplitudes that serve
as basis functions for the statistical model. These similar waves can then interfere
destructively, so that their intensities increase. The destructive interference then
leads to over�tting of the model and multiple unstable solutions.

The LASSO method suggested in Ref. [Gue+15] has been transferred to our 3π ana-
lysis. The authors tested their method on simulated data. Applying it to simulated
and measured data for our analysis showed similar model-selection properties as the
BCM method, but additionally suppressed most of the aforementioned instabilities.
The application of the LASSO method, however, requires the tuning of its free
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parameter as the selection is strongly sensitive to its choice. For this, the authors
of Ref. [Gue+15] suggested the usage of information criteria like AIC [Aka74] and
BIC [Sch78]. The application of these criteria showed that the parameter estimate
provided by BIC comes closest to the desired wave set. However, at the same time a
stronger bias on large-intensity waves was observed as compared to the BCMmethod.

The suppression of the instabilities, were related to the stronger bias of the LASSO
on large intensities. A novel method, named MBCM, was developed that combines
the advantageous properties of both the BCM and LASSO method. This new
method introduces a stronger bias on large-intensity waves similar to the LASSO
method. This regularization property can be adjusted with a free parameter that is
loosely related to the parameter of the LASSO.
The idea is to perform the model selection similar to the BCM method and resolving
ambiguities by the introduction of as much bias as needed, while keeping it as small
as possible. On simulated data, all methods performed well in recovering the true
underlying model.

The methods have then been applied to measured data. The MBCM and LASSO
methods were able to resolve most of the instabilities that persisted when the BCM
method was used. This could be especially seen in the 0−+ waves with the f0(1500),
f0(980) and [ππ]S isobars.

However some waves with the f0(1500) isobars were still found in the mass-region
below 1.5 GeV, where the phase space for such decays is small. These sub-threshold
decays are expected to be suppressed.
Instead of removing these waves manually and thereby treating them di�erently
compared to the rest of the waves, the MBCM method was extended to include
the phase-space information into the suppression parameter of the individual waves.
Applying this �nal method to the data, wave sets are obtained that are not in
contradiction with the physical intuition. The method is able to produce thresholds
required for stable and sensible inference of the transition amplitudes. These
thresholds are similar to the ones introduced by hand.

The promising results of the new weighted MBCM method motivated the ap-
plication to the full available data. Making the �rst leap from a case study to the
application in a realistic setting.
The extensions to the full dataset available recovers most of the waves from the
old 88-wave set obtained form selection by hand. The newly discovered waves of
the BCM method were mostly found as well. Two of the interesting signals, �rst
discovered in the case-study of Ref. [Dro15], could be con�rmed and automatic
thresholds were found. The extension to the full t′ range made it possible to have
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a more detailed look at possible resonance content. The 1++1+f2(1270)πF wave
indeed shows peak-like enhancements and a rising phase motion over almost the
complete t′ range. This signal shows the power of the model-selection procedures
over selection by hand. Additional new waves were found, which were neither in
the 88-wave set nor in the BCM-selected one. Especially in the region of larger
t′ those new waves appeared. Some of them contain interesting signals like the
2−+2+f0(980)πD or the spin-exotic 3−+2+ρ(770)πF wave. Both signals are small,
but could be interesting for future studies.

From the results obtained on the full dataset a wave set was built in a simple
way. This wave set automatically contains thresholds that are comparable with the
ones introduced by hand. This wave set has then again been applied to the full
available dataset.

With the new weighted MBCM method it is possible to select wave sets with
thresholds in a systematic and fast way. The next step would be a resonance
extraction of the newly produced results. Apart from that, the method enables a
variety of future studies. The most obvious one being the extension of the wave
pool to include waves with higher spins or spin projections. But also the e�ects of
improved calculations of the decay amplitudes on the wave set, such as relativistic
corrections or di�erent isobar shapes, can be tested without time consuming and
hardly reproducible studies.
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Appendix A

88 Wave Set

Wave Threshold [GeV/c2] Wave Threshold [GeV/c2]

0−+0+f0(1500)πS 1.7 0−+0+f0(980)πS 1.2
0−+0+f2(1270)πD 0−+0+ρ(770)πP
0−+0+[ππ]SπS

1++0+f0(980)πP 1.18 1++0+f2(1270)πP 1.22
1++0+f2(1270)πF 1++0+ρ3(1690)πD
1++0+ρ3(1690)πG 1++0+ρ(770)πS
1++0+ρ(770)πD 1++0+[ππ]SπP

1++1+f0(980)πP 1.14 1++1+f2(1270)πP
1++1+ρ(770)πS 1++1+ρ(770)πD
1++1+[ππ]SπP 1.1

1++1−ρ(770)πS

1−+0−ρ(770)πP

1−+1+ρ(770)πP

1−+1−ρ(770)πP

2++0−f2(1270)πP 1.18 2++0−ρ(770)πD

2++1+f2(1270)πP 1.0 2++1+ρ3(1690)πD 0.8
2++1+ρ(770)πD

2++1−f2(1270)πP 1.3

2++2+f2(1270)πP 1.4 2++2+ρ(770)πD

2−+0+f0(980)πD 1.16 2−+0+f2(1270)πS
2−+0+f2(1270)πD 2−+0+f2(1270)πG
2−+0+ρ3(1690)πP 1.0 2−+0+ρ(770)πP
2−+0+ρ(770)πF 2−+0+[ππ]SπD

2−+1+f2(1270)πS 1.1 2−+1+f2(1270)πD
2−+1+ρ3(1690)πP 1.3 2−+1+ρ(770)πP
2−+1+ρ(770)πF 2−+1+[ππ]SπD

2−+1−f2(1270)πS

2−+2+f2(1270)πS 2−+2+f2(1270)πD
2−+2+ρ(770)πP
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Wave Threshold [GeV/c2] Wave Threshold [GeV/c2]

3++0+f2(1270)πP 0.96 3++0+ρ3(1690)πS 1.38
3++0+ρ3(1690)πI 3++0+ρ(770)πD
3++0+ρ(770)πG 3++0+[ππ]SπF

3++1+f2(1270)πP 1.14 3++1+ρ3(1690)πS 1.38
3++1+ρ(770)πD 3++1+ρ(770)πG
3++1+[ππ]SπF

3−+1+f2(1270)πD 1.34 3−+1+ρ(770)πF

4++1+f2(1270)πF 4++1+ρ3(1690)πD 1.7
4++1+ρ(770)πG

4++2+f2(1270)πF 4++2+ρ(770)πG

4−+0+f2(1270)πD 4−+0+f2(1270)πG 1.6
4−+0+ρ(770)πF 4−+0+[ππ]SπG 1.4

4−+1+f2(1270)πD 4−+1+ρ(770)πF

5++0+f2(1270)πF 0.98 5++0+f2(1270)πH
5++0+ρ3(1690)πD 1.36 5++0+ρ(770)πG
5++0+[ππ]SπH

5++1+f2(1270)πF 5++1+[ππ]SπH

6++1+f2(1270)πH 6++1+ρ(770)πI

6−+0+f2(1270)πG 6−+0+ρ3(1690)πF
6−+0+ρ(770)πH 6−+0+[ππ]SπI

6−+1+ρ(770)πH 6−+1+[ππ]SπI
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Combined Wave Set

Wave Threshold [GeV/c2] Wave Threshold [GeV/c2]

0−+0+f0(1500)πS 1.6 0−+0+f0(980)πS 1.1
0−+0+f2(1270)πD 1.38 0−+0+ρ3(1690)πF 2.38
0−+0+ρ(770)πP 0.64 0−+0+[ππ]SπS 0.64

1++0+f0(1500)πP 1.6 1++0+f0(980)πP 1.18
1++0+f2(1270)πP 1.12 1++0+f2(1270)πF 1.0
1++0+ρ3(1690)πD 1.72 1++0+ρ3(1690)πG 1.08
1++0+ρ(770)πS 0.64 1++0+ρ(770)πD 0.82
1++0+[ππ]SπP 0.64

1++1+f0(980)πP 1.26 1++1+f2(1270)πP 1.06
1++1+f2(1270)πF 1.58 1++1+ρ3(1690)πD 2.0
1++1+ρ(770)πS 0.66 1++1+ρ(770)πD 0.86
1++1+[ππ]SπP 0.64

1−+1+f2(1270)πD 1.68 1−+1+ρ(770)πP 0.82

2++1+f2(1270)πP 1.1 2++1+f2(1270)πF 1.26
2++1+ρ(770)πD 0.7

2++2+f2(1270)πP 1.42 2++2+ρ(770)πD 0.94

2−+0+f0(1500)πD 2.16 2−+0+f0(980)πD 1.32
2−+0+f2(1270)πS 1.16 2−+0+f2(1270)πD 1.52
2−+0+f2(1270)πG 1.78 2−+0+ρ3(1690)πP 1.62
2−+0+ρ3(1690)πF 2.32 2−+0+ρ(770)πP 0.76
2−+0+ρ(770)πF 1.14 2−+0+[ππ]SπD 0.64

2−+1+f0(1500)πD 2.02 2−+1+f0(980)πD 1.32
2−+1+f2(1270)πS 1.26 2−+1+f2(1270)πD 1.42
2−+1+ρ3(1690)πP 1.84 2−+1+ρ(770)πP 0.64
2−+1+ρ(770)πF 1.02 2−+1+[ππ]SπD 0.66

2−+2+f0(980)πD 1.78 2−+2+f2(1270)πS 1.32
2−+2+f2(1270)πD 1.54 2−+2+ρ(770)πP 0.8
2−+2+ρ(770)πF 1.08 2−+2+[ππ]SπD 1.56

3++0+f0(980)πF 1.98 3++0+f2(1270)πP 1.22
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Wave Threshold [GeV/c2] Wave Threshold [GeV/c2]

3++0+f2(1270)πF 2.1 3++0+f2(1270)πH 2.26
3++0+ρ3(1690)πS 1.7 3++0+ρ3(1690)πD 1.82
3++0+ρ(770)πD 0.98 3++0+ρ(770)πG 1.42
3++0+[ππ]SπF 1.08

3++1+f0(980)πF 2.3 3++1+f2(1270)πP 1.12
3++1+f2(1270)πF 2.06 3++1+ρ3(1690)πS 1.52
3++1+ρ(770)πD 0.88 3++1+ρ(770)πG 1.34
3++1+[ππ]SπF 1.0

3++2+f2(1270)πP 1.58 3++2+ρ3(1690)πS 0.98
3++2+ρ(770)πD 0.94 3++2+ρ(770)πG 1.46
3++2+[ππ]SπF 1.14

3−+1+f2(1270)πD 1.66 3−+1+f2(1270)πG 2.08
3−+1+ρ(770)πF 1.18

3−+2+f2(1270)πD 1.56 3−+2+ρ(770)πF 1.22

4++1+f2(1270)πF 1.6 4++1+f2(1270)πH 2.24
4++1+ρ3(1690)πD 1.92 4++1+ρ(770)πG 1.12

4++2+f2(1270)πF 1.98 4++2+ρ(770)πG 1.54

4−+0+f0(980)πG 1.72 4−+0+f2(1270)πD 1.3
4−+0+f2(1270)πG 2.12 4−+0+ρ3(1690)πP 1.8
4−+0+ρ3(1690)πF 2.38 4−+0+ρ(770)πF 0.9
4−+0+ρ(770)πH 1.54 4−+0+[ππ]SπG 0.96

4−+1+f2(1270)πD 0.8 4−+1+f2(1270)πG 2.02
4−+1+f2(1270)πI 2.22 4−+1+ρ3(1690)πP 0.96
4−+1+ρ(770)πF 0.9 4−+1+ρ(770)πH 1.58
4−+1+[ππ]SπG 1.62

4−+2+f2(1270)πD 1.06 4−+2+ρ(770)πF 1.1
4−+2+[ππ]SπG 2.14

5++0+f0(980)πH 1.46 5++0+f2(1270)πF 1.62
5++0+ρ3(1690)πD 2.14 5++0+ρ(770)πG 1.06
5++0+ρ(770)πI 1.62 5++0+[ππ]SπH 1.46

5++1+f0(980)πH 2.32 5++1+f2(1270)πF 1.54
5++1+f2(1270)πH 2.3 5++1+ρ3(1690)πD 2.06
5++1+ρ(770)πG 1.2 5++1+ρ(770)πI 1.74
5++1+[ππ]SπH 1.62

5++2+ρ(770)πG 1.54 5++2+[ππ]SπH 2.2

5−+1+ρ(770)πH 2.38

6++1+f2(1270)πH 2.16 6++1+ρ(770)πI 1.84

6−+0+f0(980)πI 1.22 6−+0+f2(1270)πG 1.74
6−+0+ρ3(1690)πF 1.18 6−+0+ρ(770)πH 1.16
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Wave Threshold [GeV/c2] Wave Threshold [GeV/c2]

6−+0+[ππ]SπI 1.22

6−+1+f0(1500)πI 1.76 6−+1+f0(980)πI 1.54
6−+1+f2(1270)πG 1.74 6−+1+ρ3(1690)πF 2.26
6−+1+ρ(770)πH 1.38 6−+1+[ππ]SπI 1.78

6−+2+ρ(770)πH 1.92
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