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Abstract

The study of the light-meson spectrum is one of
the major goals of the physics program of the
COMPASS experiment at CERN. The mesons
are produced in diffractive reactions of a high-
energy pion beam with a liquid-hydrogen target.
In 2008 and 2009 an unprecedented number of
these reactions were recorded. In this thesis,
the π−π0π0 and π−ηη final states are studied.
The reconstruction of neutral hadrons, like π0

and η, from their decays into two photons has
been improved by developing a new algorithm to
identify photon signals from the information pro-
vided by the electromagnetic calorimeters. This
method improves the π0 mass resolution by 25 %.
A partial-wave analysis is applied to the two
aforementioned three-body final states. From the
π−π0π0 final state the well-known resonances are
extracted with Breit-Wigner parameters that are
in good agreement with the PDG. In addition,
the hybrid-meson candidate π1 (1600) is observed
in a spin-exotic wave with JPC = 1−+ quantum
numbers that are forbidden for quark-antiquark
states. The novel a1 (1420) signal, which is ob-
served in the π−π−π+ final state, is confirmed in
the π−π0π0 final state. In the π−ηη final state,
a new method to construct a wave set is applied.
The results are in agreement with previous ex-
periments, and lay the foundation to study also
higher-mass states.
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Zusammenfassung

Die Untersuchung des Spektrums leichter Meso-
nen ist eines der Hauptziele des COMPASS Ex-
periments am CERN. Die Mesonen werden in
diffraktiven Reaktionen eines hochenergetischen
Pionenstrahls mit einem Flüssigwasserstofftarget
erzeugt. In 2008 und 2009 wurde eine bis-
lang unübertroffene Anzahl dieser Reaktionen
aufgezeichnet. In dieser Arbeit werden die
π−π0π0 and π−ηη Endzustände untersucht. Die
Rekonstruktion neutraler Hadronen, wie etwa
π0 oder η, aus ihren Zwei-Photonen-Zerfällen
wurde durch die Entwicklung eines neuen Algo-
rithmus zur Identifizierung von Photonsignalen in
den Daten der elektromagnetischen Kalorimeter
verbessert. Mit der neuen Method wird eine um
25 % bessere π0-Massenauflösung erzielt. Eine
Partialwellenanalyse der beiden oben genannten
Dreikörperendzustände wurde durchgeführt. Die
für den π−π0π0 Endzustand bestimmten Breit-
Wigner-Parameter bekannter Resonanzen sind in
guter Übereinstimmung mit dem PDG. Darüber
hinaus wird ein Kandidat für ein Hybridme-
son, das π1 (1600), in einer für Quark-Antiquark-
Zustände verbotenen Welle mit JPC = 1−+

Quantenzahlen beobachtet. Das neuartige
a1 (1420)-Signal, das zuvor im π−π−π+ Endzu-
stand beobachtet wurde, wird auch im π−π0π0

Endzustand bestätigt. Für die Analyse des π−ηη
Endzustandes wurde eine neue Methode zum Ab-
schneiden der Partialwellenentwicklung angewen-
det. Die hierbei erzielten Ergebnisse stimmen
mit vorangegangenen Experimenten überein und
legen den Grundstein für die Untersuchung von
Zuständen mit höheren Massen.
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Chapter 1

Introduction

In the standard model of particle physics, the strong interaction between the color
charges of point-like quarks is described by Quantum Chromodynamics (QCD).
This interaction is mediated by gluons, which carry color charges themselves.
This implies that gluons interact with each other and leads to the non-Abelian
character of QCD. The self-interaction of gluons has far reaching consequences.
It eventually leads to the confinement of quarks and gluons into color-neutral
hadrons. The phenomenon of confinement is responsible for 95 % of the mass of
the visible universe [67]. Its quantitative understanding is still one of the open
questions in particle physics.

Hadrons, the bound states of the strong interaction, exist with integer and half-
integer spin, and are called mesons and baryons, respectively. Due to its running
coupling constant [65], QCD can be treated in a perturbative way only at high
energies. At the energy scales of hadrons, the coupling constant is so large, that
the perturbative expansion does not converge anymore. Currently, the only way to
calculate the hadron excitation spectrum from first principle is lattice QCD [42].
A prediction of masses for states with several quantum numbers JPC is shown in
fig. 1.1. For computational reasons, these calculations cannot yet be performed
at physical quark masses, and the results need to be extrapolated to the physical
point. Decays of the states can in general not be calculated, in the light-meson
sector only the ρ has been studied for its dynamic properties [41]. Therefore,
further models are required to understand the light-meson spectrum.

In the constituent quark model [47], mesons are systems of a quark and an
antiquark (qq̄) bound by the strong interaction. Quarks are fermions with spin 1

2 ,
so that the spins of the quark and the antiquark can couple to a total intrinsic
spin S of either 0 or 1. The relative orbital momentum L between the quark and
the anti-quark couples with the intrinsic spin S to the total spin J of the meson.
The parity P of such a state is given by the intrinsic parities of the quark and
the antiquark, and the parity of the spatial wave function defined by the orbital
angular momentum L. As the intrinsic parities of quarks and antiquarks have
opposite sign, the overall parity of a meson is given by

P = (−1) (−1)L = (−1)L+1 (1.1)

To fulfill Fermi statistics, the wave function of the qq̄ system has to be antisym-
metric under the exchange of quark and antiquark. Therefore the wave functions
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Figure 1.1: Meson spectrum predicted by lattice QCD for states separated by the
quantum numbers isospin I and JPC (figure taken from [42]). The
height of the boxes indicates the statistical uncertainty on the mass
determination.

has to change sign when the coordinates, the spins and the charge variables are ex-
changed. The exchange of coordinates is equivalent to the parity operation, which
has an eigenvalue of (−1)L. The exchange of spins gives a factor of (−1)S+1, so
that

(−1) = (−1)L (−1)S+1C which yields C = (−1)L+S (1.2)

The C-parity is a good quantum number only for neutral mesons. By conven-
tion, the C-parity of the neutral isospin partner is also assigned to charged mesons.
Alternatively, the G-parity is introduced. It is defined as the charge conjugation
followed by a rotation around the y-axis in isospin space, flipping the sign of the
isospin z-component Iz and with it the charge of the meson

G = CeiπIy = C (−1)I = (−1)L+S+I (1.3)

Following these rules, some JPC combinations are forbidden in the constituent
quark model, these are

JPC = 0−−, 0+−, 1−+, 2+−, 3−+, 4+−, . . . (1.4)

These combinations of JPC are called spin-exotic quantum numbers. Accordingly,
states with these quantum numbers are often called “spin exotics” or “spin-exotic
mesons”.

Models and lattice QCD predict states that contain not only qq̄, but additional
gluonic degrees of freedom (“hybrid mesons”, qq̄g), or that are even pure gluonic
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bound states (“glueballs”, gg). In fig. 1.1 such states are indicated by orange
boxes [42]. Some of these states have spin-exotic quantum numbers. Finding
such a state would be unambiguous proof for bound states beyond the constituent
quark model and would be an important confirmation of QCD.

A number of experiments have claimed evidence for states with spin-exotic quan-
tum numbers IGJPC = 1−1−+. The first observations were based on ηπ− and η′π−

final-states produced in diffractive scattering of high-energy pion beams off nuclear
targets. The π1 (1400) was claimed by the “Joint IHEP and CERN experiment”
as a narrow state with a mass of 1406 MeV/c2 and a width of 180 MeV/c2 [12].
The VES experiment observed intensity in the spin-exotic waves for both ηπ−

and η′π− final states [22]. Most of the intensity in the ηπ− final state was found
below 1400 MeV/c2. In the η′π− a bump around 1600 MeV/c2 was observed.
Later, this bump was described by a Breit-Wigner for the π1 (1600) with a mass
of 1570 MeV/c2 and a width of 550 MeV/c2 [80]. The E852 experiment at BNL
found the π1 (1400) in the ηπ− final state at a mass of 1370 MeV/c2 and with
a width of 385 MeV/c2 [31]. A π1 (1600) was found in the η′π− final state at a
mass of 1643 MeV/c2 and with a width of 392 MeV/c2 [4]. E852 also claimed a
π1 (1600) in the (3π)− final states with a mass of 1593 MeV/c2 and a width of
168 MeV/c2 [32], but a later publication using an extended data set explained this
signal with leakage from the π2 (1670) [44]. Also the COMPASS collaboration
claimed a π1 (1600) with a mass of 1660 MeV/c2 and a width of 269 MeV/c2 in
the π−π−π+ final state produced in diffractive scattering of a pion beam off a
lead target [13]. COMPASS also found signals compatible with the π1 (1400) in
the ηπ− and with the π1 (1600) in the η′π− final states when scattering a pion
beam off a liquid-hydrogen target [10]. However, despite the more precise data
set, resonance parameters could not be extracted reliably. For both states, the
π1 (1400) and the π1 (1600), the resonance parameters vary widely. In particular
the widths are only poorly known. For both signals the resonance interpretation
is discussed controversially, it is also not clear that those states can be mapped to
a hybrid meson [63].

But also the knowledge about states with ordinary quantum numbers is limited,
in particular for excited states, like e.g. the a2 (1700) or the π2 (2005). A new axial-
vector meson, the a1 (1420), has been observed for the first time in COMPASS in
the π−π−π+ final state when scattering a pion beam off a liquid-hydrogen target
[50, 11, 9]. Its interpretation is still unclear. Various resonant and non-resonant
explanations have been proposed, but so far none of these describes all features of
the data [9].

Apart from the huge π−π−π+ data set, COMPASS has also collected data for
the π−π0π0 final state. The analysis of this final state is complementary to the one
of the π−π−π+ final state. The two channels contain the same resonances, but the
isospin z-component Iz of the final-state particles is different. As a π0 immediately
decays to two photons which are detected in electromagnetic calorimeters, the two
final states probe different detector systems of an experiment. For the π−π0π0

final state the photon detection efficiency is crucial, while only a single charge
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Chapter 1 Introduction

track has to be reconstructed. For the analysis of the π−π−π+ final state the
electromagnetic calorimeters are not used at all, but three charged tracks have to
be reconstructed. The two channels are therefore affected by completely different
experimental challenges and different systematic effects, and one channel can be
used to confirm findings in the other.

The resonance parameters extracted by a resonance-model fit of the partial-wave
decomposition of the π−π0π0 final state need to be in agreement with previous
experiments to make the complete analysis trustworthy. This is in particular true
for the a2 (1260), the π2 (1670), and the π (1800) resonances, which have well-
known parameters for their mass and width [65]. Once the quality of the data
has been established, it can be studied for the less-known and controversial states.
The search for the a1 (1420) previously observed in the π−π−π+ final state is of
major interest, a confirmation in the π−π0π0 final state would be a first step to
establish this state. Given the long history of the π1 (1600), a final answer on the
existence and resonance nature of this state is improbable. A comparison of the
result in the π−π0π0 final state with the one from the π−π−π+ final state, can
provide further insights into this state.

To improve the reconstruction efficiency for neutral hadrons, in particular for π0

and η, a shower fit for the electromagnetic calorimeters was implemented. Its per-
formance is discussed in chapter 2. The event selection for the π−π0π0 and π−ηη
final state from data recorded with a pion beam scattering off a liquid-hydrogen
target is shown in chapter 3. The partial-wave analysis method is introduced in
chapter 4, results for the π−π0π0 final state are shown in chapter 5. This partial-
wave analysis was performed in the same way as for the π−π−π+ final state. In
chapter 6 a partial-wave analysis of the π−ηη final state is presented as an starting
point to study the spectrum of light hadrons also at higher masses.

1.1 The COMPASS Experiment

The COMPASS experiment (fig. 1.2) is a versatile two-stage fixed-target spectrom-
eter located in the North Area of CERN. The primary 400 GeV/c proton beam
from the SPS is extracted onto a Beryllium production target where secondary
hadrons are produced [17]. Depending on the requirements of the physics pro-
gram, the secondary hadrons, pions, kaons and (anti-)protons, are either directly
guided to the experiment, or the hadrons are removed from the beam by hadron
absorbers keeping only the muons from the pions and kaons that decay between
the production target and the absorbers in the beam. While the particles are
guided to the experiment their momentum is selected via deflection in magnets.
The data used in this thesis have been recorded in 2008 using a negative hadron
beam with a momentum of 190 GeV/c. The negative hadron beam consists mostly
of pions (97 %) with a small admixture of kaons (2.4 %) and anti-protons (0.8 %).
The set-up of the spectrometer is extensively discussed in [1, 2]. Here, only a brief
overview of the set-up used in 2008 is given.
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1.1 The COMPASS Experiment

Figure 1.2: Artistic view of the COMPASS set-up in 2008 and 2009 (figure taken
from [2]). The beam enters the experiment from the bottom left corner.
Different colors indicate different spectrometer components.

Position and direction of the beam particles are measured by one scintillating
fibre detector and three silicon stations in front of the target. The magnitude of
the momentum of the individual beam particles is not measured for the hadron
beam, the momentum spread is about 1 % around the nominal momentum.

The beam then enters the 40 cm long liquid-hydrogen target. The target is
surrounded by a recoil-proton detector (RPD). It consists of two cylindrical layers
of scintillator slabs. A signal in both layers is used to identify protons leaving the
target. This coincidence is used to trigger the recording of an event. The protons
need to have a minimal momentum of 270 MeV/c to reach the outer slab.

The position of the interaction vertex is precisely reconstructed by measuring
the position and direction of charged particles leaving the target with two silicon
stations directly downstream of the target. Momenta of the charged particles are
measured in a two-stage magnetic spectrometer. Photons are detected in two
electromagnetic calorimeters, one in each spectrometer stage.

The first stage is built around the first spectrometer magnet (SM1) with a
bending power of 1.0 Tm [1]. This stage measures particles that have an angle
between roughly 30 mrad and 300 mrad with respect to the beam axis viewed
from the target. It also features the first electromagnetic calorimeter (ECAL1,
section 2.1). The ring-imaging Cherenkov (RICH1) detector in this spectrometer
stage is not used in this thesis, but its light-gas pipe is important for the photon
acceptance (section 2.5.1).

Particles with angles smaller than 30 mrad are measured by the second spec-
trometer stage built around the second spectrometer magnet (SM2) with a bend-
ing power of 5.5 Tm [1]. Charged particles with a momentum above 15 GeV/c
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Chapter 1 Introduction

are able to enter the second stage [2]. This stage also features an electromagnetic
calorimeter (ECAL2, section 2.2).

Events containing particles with angles larger than the acceptance of the first
spectrometer stage are vetoed by a sandwich detector [73, 72]. This ensures that
all final-state particles can be detected, so that an exclusive measurement can be
performed. Photons in the final state are detected in either of the two electro-
magnetic calorimeters.

For the tracking of charged particles a variety of detectors featuring different
detection principles is used. These detectors provide a measurement of the position
perpendicular to the beam axis. To measure particles close to the beam axis,
detectors with a high-rate capability are required. Scintillating fiber detectors
[1] and PixelGEM detectors [2] with an active area of about 10 × 10 cm2 fulfill
this requirement. The scintillating fiber detectors achieve this with a temporal
resolution of around 400 ps, the PixelGEM detectors with a pixelised readout
structure that reduces the maximal rate per pixel to 100 kHz. Micromegas and
GEM detectors with active areas of 40×40 cm2 and 30×30 cm2 [1], respectively, are
used for the tracking of particles with a small angle with respect to the beam axis.
An inactive area with a diameter of 5 cm in the center of each detector ensures
that the detectors are not blinded by the high rates of the beam. Further outside
the position information is provided by drift chambers, straw-tube chambers, and
multi-wire proportional chambers covering areas up to several square meters [1,
2]. These detectors have inactive centers with a diameter larger than 20 cm to
keep the rates below an absolute limit of 250 kHz per channel.

The position measurements are used in a Kalman filter to reconstruct tracks
and measure the momenta of charged particles via the deflection in the magnetic
fields in the two spectrometer magnets [1, 2].
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Chapter 2

Electromagnetic Calorimeters

The COMPASS set-up of 2008 and 2009 comprises two electromagnetic calorime-
ters, one in each spectrometer stage [2]. They are designed to measure the energy
and incident position of electrons and photons. As (electrically) neutral particles
do not leave hits in tracking detectors, the calorimeters are the only detectors able
to measure photons.

2.1 ECAL1

The electromagnetic calorimeter in the first spectrometer stage of COMPASS is
called ECAL1. It is located roughly 14.5 m downstream of the target and covers
an angular acceptance of 37 mrad to 136 mrad in the horizontal and 21 mrad to
98 mrad in the vertical direction as viewed from the target center [2]. Photons
that are emitted under an angle smaller than the lower bounds of the angular
acceptance of ECAL1 can still be detected in the calorimeter in the second spec-
trometer stage (section 2.2), a central hole ensures that the calorimeter does not
affect particles at this small angles. ECAL1 consists of 1500 lead-glass blocks of
three different types (fig. 2.1).

The inner-most part is equipped with 608 blocks with a transverse dimension
of 3.83 × 3.83 cm2 (GAMS [25]). They are arranged in a matrix of 44 columns
times 24 rows with the inner 28 × 16 blocks left empty. The high-voltage of the
photomultipliers is adjusted to give a dynamic range up to 60 GeV [2].

On top of and below the GAMS blocks are matrices of 22× 13 blocks of 7.5×
7.5 cm2 (Mainz). To accommodate for the difference in size compared to the
GAMS blocks in horizontal direction there are vertical gaps of 1.6 mm between the
blocks (fig. 2.2). The two rows left and right of the ECAL1 center are positioned
without a gap, and the two gaps on each side of the center are filled with iron
sheets to ensure that particles perpendicular to the calorimeter surface have to
traverse enough material such that photons create electromagnetic showers. For
the gaps further away from the center this is not necessary as photons from the
target have a sufficiently large angle so that they cannot pass through the gap.
The high-voltage of the photomultipliers of the Mainz-type blocks is adjusted to
give a dynamic range up to 30 GeV [2].

The very outer part of ECAL1 is covered by a matrix of 8 × 20 blocks with a
transverse size of 14.1 × 14.1 cm2 (OLGA [16]) on either side of the calorimeter.
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Mainz	
  OLGA	
  

GAMS	
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Figure 2.1: Schematic view of ECAL1 showing the areas equipped with the three
different block types (figure taken from [2]).

Mainz

GAMS

Figure 2.2: Schematic view of ECAL1 showing the details of the gaps in the center
of ECAL1. In the center the two columns of Mainz-type blocks are
directly adjacent. The next two gaps between columns of Mainz blocks
to either side are filled with iron sheets, the other gaps are filled with
air.
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2.2 ECAL2
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Figure 2.3: Schematic view of ECAL2 showing the areas equipped with the three
different block types (figure taken from [2]).

The high-voltage of the photomultipliers is adjusted to give a dynamic range up
to 20 GeV [2].

The Cherenkov photons emitted by the charged particles in the electromagnetic
showers are detected with one photomultiplier per block. The signals of these
photomultipliers are digitized by a sampling analog-to-digital converter (SADC)
with a frequency of 80 MHz and a dynamic range of 10 bits [62]. For each event
32 samples of the signal waveform are recorded.

2.2 ECAL2

The electromagnetic calorimeter in the second spectrometer stage of COMPASS
is called ECAL2. It is located roughly 33.5 m downstream of the target and covers
the angular acceptance up to 39 mrad in the horizontal and up to 29 mrad in the
vertical direction. The blocks are arranged in a matrix of 64×48 with a transverse
size of 3.83× 3.83 cm2 per block. A hole of 2× 2 blocks is removed at the position
of the non-interacting beam. Three different block types are used according to
the required radiation hardness (fig. 2.3).
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(a) (b)

Figure 2.4: (a) Detail of a Shashlyk block, showing the layers of scintillator
and absorber material. The straight steel rods, and the spiraling
wavelength-shifting fibers are also visible. (b) Sketch of the holes for
the wavelength-shifting fibers and the steel rods (figures taken from
[69]).

The innermost part of ECAL2 consists of so-called Shashlyk blocks (fig. 2.4).
They consist of 155 double layers of 0.8 mm lead and 1.5mm scintillator. The
scintillation light is collected in 16 wavelength-shifting fibers and guided to a
photomultiplier. The layers are stacked onto four steel rods.

The intermediate part of ECAL2 is build from radiation-hard lead-glass blocks
(GAMS-R), the outermost part is made from the same lead-glass blocks already
used in ECAL1 (GAMS). For these lead-glass blocks the Cherenkov photons emit-
ted by the charged particles in the electromagnetic showers are detected by pho-
tomultipliers.

The high-voltage of the photomultipliers for ECAL2 is adjusted to be able to
detect showers up to 200 GeV for the inner 16× 16 blocks, the rest of the central
48×48 blocks covers energies up to 150 GeV. Two stripes of 8×48 blocks on each
side of the central part cover up to 60 GeV. The signals of the photomultipliers
are digitized by a sampling analog-to-digital converter (MSADC) with a frequency
of 80 MHz and a dynamic range of 12 bits [62]. For each event 32 samples of the
signal waveform are recorded.

2.3 Reconstruction

The first steps of the reconstruction are the same for both electromagnetic calorime-
ters. From the 32 signal samples the signal amplitude and time are extracted. A
parabola is defined using the maximal sample and its two neighbors. The signal
amplitude is the maximum of the parabola. The time is given by the position

10



2.3 Reconstruction

of the maximum within the 12.5 ns sampling bin. The extracted signal time is
shifted by a block-specific calibration constant t0 to accommodate for different
cable lengths between the photomultipliers and the read-out electronics.

To convert the signal amplitude into an energy deposit several calibration factors
are applied. The first is a coefficient to convert ADC channels into units of energy.
This coefficient is obtained by shooting an electron beam of known energy onto the
calorimeters and observing their response. This calibration procedure is typically
performed once per year. To correct for fluctuations due to, e.g., changes in the
response of the photomultipliers with the ambient temperature, the response of
the calorimeters is monitored by illuminating the calorimeter blocks with a well
known light pulse from a laser for ECAL1 and an LED for ECAL2. Data for this
LED/laser correction are permanently recorded in the off-spill time, when no other
signals are present. These data give one correction factor per block and spill.

The next level of correction is based on the measurement of the π0 mass [48].
As the electron calibration is performed only for a single energy and with a lim-
ited amount of data, an energy-dependent correction is calculated in an iterative
procedure for each block to bring the π0 mass peak to the correct position.

Finally, to correct for rate effects in the 200 most central blocks of ECAL2, a
correction of the energy depending on the time-in-spill is performed. Again this
calibration is obtained from the π0 mass peak [48].

After all calibrations are applied, the clustering is performed. Adjacent blocks
with a signal are grouped into clusters. Blocks are assigned to the same cluster,
if they are direct or diagonal neighbors.

For ECAL1 one cluster corresponds to one shower produced by one particle.
The position of this shower is calculated from the 3 × 3 blocks around the most
energetic one. The shower time is defined by the block with the highest energy.

2.3.1 Shower Fitting in ECAL2

To improve the spatial resolution and to separate overlapping showers from parti-
cles hitting the calorimeter close to each other, a shower separation is performed
for ECAL2. The algorithm is based on cumulative shower profiles [60]. If a shower
is projected onto any axis in its transverse plane, the ratio of the energy deposited
up to a position x along this axis w.r.t. the total energy in the shower is parame-
terized by (fig. 2.5(a))

F (x) =

∫ x
−∞ dx′ ρE (x′)∫∞
−∞ dx′ ρE (x′)

=
1

2
+

1

π

∑
i

ai arctan
x

bi
(2.1)

Here ρE (x) is the energy density along the axis the shower is projected onto. The
coefficient ai gives the relative contribution of the term with index i, the sum of
all ai is equal to one (

∑
i ai = 1). The parameter bi determines the width of the

contribution i.
The parameters for the lead-glass blocks are determined from the electron cali-

bration data [61]. Those for the Shashlyk blocks are determined from events with
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Figure 2.5: Cumulative shower profiles (a) in one and (b) in two transverse
dimensions.

a single high-energetic photon [59]. These data sets evenly illuminated the surface
of a subset of blocks. In case of the lead-glass blocks of ECAL2 the sum in eq. (2.1)
has two components, for the Shashlyk blocks there are three.

The shower profiles can be extended to the two dimensions x and y in the
transverse plane of the shower parallel to the edges of the calorimeter blocks
(fig. 2.5(b), [60])

F (x, y) =

∫ x
−∞ dx′

∫ y
−∞ dy′ ρE (x′, y′)∫∞

−∞ dx′
∫∞
−∞ dy′ ρE (x′, y′)

(2.2)

=
1

4
+

1

2π

∑
i

ai

arctan
x

bi
+ arctan

y

bi
+ arctan

xy

bi

√
b2i + x2 + y2


(2.3)

There is one term describing the behavior along each dimension, and a third term
to account for the asymmetry along the diagonal. The parameters ai and bi are
the same as in eq. (2.1). The function F (x, y) is used to calculate the ratio of
the energy deposited in an area up to the position (x, y) w.r.t. the total shower
energy. Setting one coordinate to infinity, one again obtains the one-dimensional
function of eq. (2.1) F (x, y →∞) = F (x).

The two-dimensional function is used to determine the ratio of the energy de-
posited in a block w.r.t. the total energy of a shower (fig. 2.6)

Gj (x, y) = F (uj + ∆, vj + ∆)− F (uj + ∆, vj −∆)

− F (uj −∆, vj + ∆) + F (uj −∆, vj −∆) (2.4)
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Figure 2.6: (a) Sketch of eq. (2.4) if the shower center and the block center are at
the same position. (b) Ratio of the energy deposited within a block at
position (0, 0) w.r.t. the total energy of a shower for a shower centered
at position (x, y).

Here j denotes the block, (x, y) is the position of the shower, uj = Xj − x and
vj = Yj − y are coordinates relative to the centre (Xj , Yj) of each block, and ∆ is
half the transverse size of the block.

To extract the shower energy e, position x and y and the time t, a fit of the
shower profiles to the previously created clusters is performed. The energy de-
posited by a shower i in block j is predicted to be

Epred
j,i = ei ·Gj (xi, yi) (2.5)

Several overlapping showers can be fitted into a single cluster, and accordingly
the total energy predicted for one block is the sum over all showers in the current
cluster

Epred
j =

showers∑
i

Epred
j,i =

showers∑
i

ei ·Gj (xi, yi) (2.6)

Timing of the showers is extracted from the signal time of each block. The
predicted time in a block is the average time over all showers weighted by the
energy

T pred
j =

∑showers
i ei ·Gj (xi, yi) · ti∑showers
i ei ·Gj (xi, yi)

(2.7)

The shower parameters are obtained by minimizing the differences between the
predicted and measured energies and times in all blocks belonging to one cluster
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− lnL =
1

2

blocks∑
j


(
Emeas
j − Epred

j

)2

σ2
j,E

+

(
Tmeas
j − T pred

j

)2

σ2
j,T

 (2.8)

The Minuit2 fitter from the ROOT package [29] is used for the fit. The errors on
the measured energies σj,E and times σj,T are taken from parameterizations of the
results from a previous analysis of the calorimeter performance [48].

2.3.2 Correction of Shower Parameters

With the refined resolution from the shower-profile fit, it is possible to resolve
the internal structure of the Shashlyk blocks (fig. 2.7). Selecting electron tracks
and looking at the ratio of the track momentum over the calorimeter energy, the
four rods are clearly visible as spots where a portion of the electron energy is
not detected in the calorimeter. Similarly, the 16 locations of the wavelength-
shifting fibers are seen as places where a surplus of energy is detected in the
calorimeter. The magnitude of these deviations depends on the energy. The
deviations are corrected with a position-dependent energy correction in four energy
bins. Exploiting the symmetry of the Shashlyk blocks the deviations over the
whole block are folded into the upper right quadrant for each energy bin, and a
map for the 1.915× 1.915 cm2 area is calculated with a resolution of 25× 25 bins.
The resulting corrections are smaller than 5 %.

Also the position information of showers can be corrected. The difference be-
tween the position of a shower and the extrapolated incident position of electron
tracks follows a sine-like curve (fig. 2.8): it is zero at the block borders and at the
block center, but reaches deviations of up to 10 mm in between, in particular for
low energies. Two ways have been tried to perform a position-dependent position
correction.

The simpler method is to fit a third-order polynomial to the mean difference
between shower and track position in three energy bins. During the reconstruction,
the polynomial in the appropriate energy bin is used to correct the shower position
depending on its position. This method has the disadvantage that unless the
polynomials are forced to have the same value at the upper and lower edge of the
block, showers might be shifted out of the current block and into a neighboring
one. Also the binning in the energy leads to inconsistencies at the bin borders.

For the more advanced method, the difference is fit with α sin +β sin3 in energy
bins of 2 GeV width. The argument of the sine is scaled such that one period
corresponds to one block size. The parameters α and β are obtained for each
narrow energy slice individually, and then described by the sum of two arctan
functions and a constant offset. This method provides a smooth and consistent
correction across the whole range.

The position-dependent energy correction and the simpler position-dependent
position correction combined improve the π0 mass resolution from 5.7 MeV to
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Figure 2.7: (a) Ratio of track momentum over calorimeter energy for electrons with
an energy larger than 60 GeV as a function of the impact position on
the Shashlyk blocks projected onto a single block. (b) For comparison
the sketch of the internal structure of the Shashlyk blocks is shown
again (fig. 2.4(b)).
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Figure 2.8: Shower position minus electron track position as a function of the
transverse distance to the cell center (a) versus the electron energy,
and (b) projected for an energy range from 60 GeV to 120 GeV.
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4.0 MeV for high-energetic π0 from Primakoff reactions of a π− beam impinging
on a nickel target producing a π−π0 final state [46]. For the analysis presented
below, the position-dependent position correction does not have a sizable effect
on the π0 mass resolution, it is therefore not applied.

2.4 Performance on Real Data

The performance of the two electromagnetic calorimeters has been studied in
terms of time resolution, and π0 as well as η mass resolution. To select the data
for the performance studies, the same cuts as for the physics analysis presented
in chapter 3 are applied. This ensures a clean sample of photons from a known
source.

2.4.1 Stability

The stability of the electromagnetic calorimeters was checked by looking at the
π0 signal over time. To separate effects from the two different calorimeters, only
π0 with both photons detected in the same calorimeter were used. For each run,
the π0 mass peak was fitted by a Gaussian plus a third order polynomial (as for
the analysis of the mass resolution in section 2.4.3).

In principle the LED/laser corrections (section 2.3) should correct fluctuations
that happen with time. For ECAL1, the position of the π0 mass peak versus run
number is indeed stable within 1 % (fig. 2.9(a)), but is offset from the nominal
π0 mass despite the π0 calibration being applied (section 2.3). For ECAL2, the
position is also offset, but in addition there is an inexplicable rise around run
number 70600 (fig. 2.9(b)). Neither the experimental setup nor the beam intensity
were changed at that time. In addition, the width of the π0 mass peak (fig. 2.10)
does not change with time. This suggests that the rise is not the effect of a few
bad blocks in ECAL2, but probably either a shift of the calorimeter response as a
whole, or that it is not caused by the calorimeter itself. Also the jump around run
number 70400 is an artifact of this rise. The whole data set was recorded in three
periods, for each period an independent π0 calibration was prepared. For the last
period starting with run number 70450, the calibration was based on runs taken
after the rise. Runs taken before the rise accordingly observe a too small π0 mass
introducing the discontinuity between the second and third period.

To correct the shift in the position of the π0 mass peak, and also the offset
with respect to the nominal π0 mass position, one correction factor for the shower
energy was determined per calorimeter and run in an iterative procedure.

However, this does not get rid of all artifacts observed in the calorimeters. Even
after this correction the position of the π0 mass peak in the case of one photon
in ECAL1 and the other in ECAL2 is too high by about 1.5 MeV/c2. Also the
position of the η mass peak is found to be approximately 5 MeV/c2 too low if both
photons are detected in the same electromagnetic calorimeter. These effects are
not corrected.
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Figure 2.9: Position of the π0 mass peak versus the run number in (a) ECAL1,
and (b) ECAL2. The red line indicates the nominal π0 mass.

run number
69600 69800 70000 70200 70400 70600 70800 71000

)2
 w

id
th

 (
M

eV
/c

0 π

0

2

4

6

8

10

12

14

16

18

20

(a) ECAL1

run number
69600 69800 70000 70200 70400 70600 70800 71000

)2
 w

id
th

 (
M

eV
/c

0 π

0

1

2

3

4

5

6

7

8

9

10

(b) ECAL2

Figure 2.10: Width of the π0 mass peak versus the run number in (a) ECAL1, and
(b) ECAL2. Due to the small amount of π0 in ECAL1 the fit is bad
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Figure 2.11: Shower time versus shower energy for (a) ECAL1, and (b) ECAL2.
The white markers show the mean shower time in each energy slice
obtained by fitting a Gaussian.

2.4.2 Time Resolution

The time information provided by the calorimeters is important to suppress noise
and off-time particles. Except for a wider cut on the shower times, the same
cuts as in chapter 3 are applied. In fig. 2.11 the time of a shower versus its
energy is shown. A Gaussian fit was performed in energy slices of 0.5 GeV width.
The Gaussians are not centered around zero, this is corrected in the following by
parameterizing the offset and shifting the shower times accordingly.

The width of the Gaussians is used to obtain the time resolution (fig. 2.12).
The energy dependence of the time resolution is empirically parameterized as the
quadratic sum of a constant term and one term falling off with one over the energy.
For ECAL1

σt (E) = 1.06⊕ 0.81

E
(2.9)

and for ECAL2

σt (E) = 0.95⊕ 1.18

E
(2.10)

For both calorimeters the time resolution for energies above 5 GeV is around 1 ns.

2.4.3 Two-Photon Mass Resolution

The mass resolution for the π0 is determined from π0 from the π−π0π0 (π−4γ)
channel, the mass resolution of the η from the π−η (π−2γ) channel. To select
these final states the selection from chapter 3 is applied. For the π−π0π0 final
state exactly four ECAL clusters have to survive the cuts, for the π−η case exactly
two clusters need to pass the cuts.
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Figure 2.12: Shower time resolution versus shower energy for (a) ECAL1, and (b)
ECAL2.

π0 η

both photons in ECAL1 8.85 MeV/c2 24.5 MeV/c2

both photons in ECAL2 3.88 MeV/c2 11.6 MeV/c2

one in ECAL1, one in ECAL2 8.32 MeV/c2 21.9 MeV/c2

overall 4.21 MeV/c2 12.4 MeV/c2

Table 2.1: Mass resolutions for π0 and η. The resolutions are extracted from the
fits show in fig. 2.14 (π0) and fig. 2.15 (η).

Figure 2.13 shows the invariant masses of the two photon pairs in π−4γ final
states versus each other. Dominantly the π−π0π0 final state is visible, but there
is also a small bump associated to π−ηη final states. With the reconstruction for
ECAL2 described above (section 2.3.1) this bump is visible without any further
cuts to select η for the first time in COMPASS.

The mass resolutions of the two electromagnetic calorimeters differ mainly due
to the different energy ranges, but also due to the different incident angles and
reconstruction algorithms. Therefore the mass resolutions for π0 and η are de-
termined separately for three cases: the π0 (respectively η) is build from two
photons in ECAL1, two photons in ECAL2, or one photon in each electromag-
netic calorimeter (see fig. 2.14 for π0 and fig. 2.15 for η). A fit of a Gaussian plus
a third order polynomial to the data is performed, and the width of the Gaussian
is taken as the resolution (table 2.1).

2.5 Simulation

As the shower shapes found in real data are not reproduced by the GEANT3
simulation of COMPASS, the calorimeters are specifically calibrated for Monte
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Carlo data. For ECAL1 the calibration only comprises the π0 calibration.

For ECAL2, shower profiles are extracted in the same way as for real data by
simulating electron-beam data for both types of GAMS blocks, and Primakoff
events for the Shashlyk blocks. Also the π0 calibration is performed in the same
way as for real data. It corrects mostly for losses at high energies due to the
limited length of the calorimeter blocks in the very center of the calorimeters.

2.5.1 Single-Photon Acceptance

The acceptance of the studied final states is mostly determined by the recon-
struction efficiency of the photons from the decays of π0 or η. Figure 2.16(a)
shows that the single-photon acceptance is rather uniform in the photon energy
with a value between 55 % and 60 % for photon energies above approximately
5 GeV and smaller than 140 GeV. However, the acceptance strongly depends on
the direction of the photon (fig. 2.16(b)). The acceptance for photons with the
direction (∆x/∆z,∆y/∆z) ≈ (0.005, 0) drops due to the hole in ECAL2 for the
non-interacting beam. The circular shape intersecting with this hole can be at-
tributed to photons that are absorbed in the light gas pipe of the ring-imaging
Cherenkov detector (RICH1) in the first spectrometer stage. Further outwards,
at ∆y/∆z ≈ ±0.02 the shadows of HCAL1 and SM2 on ECAL2 are visible as a
horizontal line, while the vertical lines at ∆x/∆z ≈ ±0.04 stem from a non-perfect
overlap of ECAL1 and ECAL2. A general trend of lower acceptance towards the
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Figure 2.14: Two-photon invariant mass spectra for π−4γ final states for cases with
(a) both photons detected in ECAL1, (b) both photons detected in
ECAL2, and (c) for the mixed case with one photon in ECAL1, and
the other in ECAL2. (d) shows the sum of these three cases. The
mass spectra are zoomed to the π0 mass region, the components of
the fit are shown in different colors: the Gaussian of the π0 signal in
blue, the polynomial background in green, and the sum of the two in
red. The nominal π0 mass is indicated by the red arrows.
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Figure 2.15: Two-photon invariant mass spectra for π−2γ final states for cases with
(a) both photons detected in ECAL1, (b) both photons detected in
ECAL2, and (c) for the mixed case with one photon in ECAL1, and
the other in ECAL2. (d) shows the sum of these three cases. The
mass spectra are zoomed to the η mass region, the components of the
fit are shown in different colors: the Gaussian fit to the η signal in
blue, the polynomial background in green, and the sum in red. The
nominal η mass is indicated by the red arrows.
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Figure 2.16: Single-photon acceptance depending on (a) the photon energy and
(b) the direction of the photon in the laboratory system.

outer regions is also visible. Figure 2.17 shows the same information for four dif-
ferent energy ranges. For energies above the thresholds applied in the analysis
(0.6 GeV for ECAL1 and 1.2 GeV for ECAL2), the acceptance for single photons
appears to be rather uniform across the calorimeter surface (with the exception
of the aforementioned holes, and, presumably, some detector frames showing up
in ECAL1). Hence the lower acceptance towards the outer regions is caused by
the loss of photons with an energy below the ECAL1 threshold. This is confirmed
by fig. 2.17(c) and fig. 2.17(d) indicating that the circular area illuminated by
photons of a certain energy becomes larger with lower photon energies. The lower
acceptance in the outer regions can therefore simply be explained by the large
fraction of undetectable photons below threshold that go into this region.

2.5.2 Two-Photon Mass Resolution

The π0 mass resolution in Monte Carlo data is compared to the mass resolution in
real data in fig. 2.18 after all cuts of the event selection (chapter 3) are applied. A
comparatively good agreement is found if both photons are detected in ECAL2. In
Monte Carlo data the π0 seems to sit on a lower background, but the width agrees.
As soon as one (or more) photon is detected in ECAL1 the mass distributions differ
significantly. The resolution in real data is about a factor of 1.5 worse than it is
for Monte Carlo data. While for the mixed case the π0 peak is shifted up by about
1.5 MeV/c2 for real data, such a shift is not visible in the Monte Carlo case.

The comparison of the η signal in the calorimeters (fig. 2.19) reveals more dif-
ferences than seen in the π0 case. While in real data the position of the η peak
is shifted down by almost 5 MeV/c2 for ECAL2, it is closer to the PDG mass in
Monte Carlo. Also the width for Monte Carlo is smaller than for real data, and
the η is sitting on a lower background. The comparison for ECAL1 is even worse.
The η are reconstructed with an about 2 MeV/c2 too high mass in Monte Carlo,
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Figure 2.17: Single-photon acceptance depending on the direction of the photon
in the laboratory system for four different energy regions.
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Figure 2.18: Two-photon invariant mass spectra for π−π0π0 final states for cases
with (a) both photons detected in ECAL1, (b) both photons detected
ECAL2, and (c) for the mixed case with one photon in ECAL1, and
the other in ECAL2. The mass spectra are zoomed to the π0 mass
region, Monte Carlo data is shown in black, real data in red. The
nominal π0 mass is indicated by the red arrows.
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Figure 2.19: Two-photon invariant mass spectra for π−ηη final states for cases with
(a) both photons detected in ECAL1, (b) both photons detected in
ECAL2, and (c) for the mixed case with one photon in ECAL1, and
the other in ECAL2. The mass spectra are zoomed to the η mass
region, Monte Carlo data is shown in black, real data in red. The
nominal η mass is indicated by the red arrows.

and with a significantly better mass resolution.
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Chapter 3

Event Selection

The COMPASS experiment has recorded data with a 190 GeV negative pion beam
impinging on a liquid-hydrogen target for six weeks in 2008. Using these data,
final states with one π− plus two π0, or two η, respectively, are studied. Only
the two-photon decays of the π0 and η are considered in the following. A series
of cuts is applied to the initial data set containing 7.4 · 109 events to select only
those events that have the signatures of the two desired final states. The number
of events surviving each cut are listed in table 3.1.

3.1 Preselection

The purpose of the preselection is mainly to reduce the size of the data set by
removing only uninteresting events. The cuts explained in this section reduce the
number of events by more than a factor of 10 from 7.4 · 109 to 6.5 · 108 events.
To further reduce the amount of data, only the information relevant for the later
analysis is kept.

3.1.1 DT0 Trigger

The diffractive trigger (DT0) has been the main physics trigger for the analyzed
data. It selects events where the incoming beam particle reacted with a proton
inside the liquid-hydrogen target. The outgoing proton is identified via its energy
loss in the two cylindrical layers of the recoil-proton detector (RPD, section 1.1,
[2]). The squared four-momentum transfer t to the target (section 3.4.4) has
to be larger than about 0.07 (GeV/c)2 to reach both layers. If t is larger than
4.5 (GeV/c)2, the recoil proton is leaving the target with angles too small to reach
the RPD [39].

The trigger signal is formed by the coincidence of a proton signal in the RPD
and the presence of an incoming beam particle. The beam particle is detected by
a scintillating fiber detector (FI01X dynode signal) and a scintillator disc (beam
counter) upstream of the target. At the same time the two scintillator discs
downstream of the second spectrometer magnet and the sandwich detector just
downstream of the target are required to have no signal. These veto detectors
remove events with non-interacting beam and events with particles outside of
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Chapter 3 Event Selection

π−π0π0 π−ηη

preselection - part 1
number of events

all events 7 389 600 316 100.0 %
DT0 trigger 5 594 989 610 75.7 %
exactly one primary vertex 4 511 796 725 61.1 %
exactly one outgoing track 2 524 071 421 34.2 %
charge unchanged by vertex fit 2 523 925 264 34.2 %
charge conservation in vertex 2 442 511 364 33.1 %
two or more ECAL showers 1 286 750 904 17.4 %

preselection - part 2
number of events

from preselection 1 286 750 904 100.0 %
four or more ECAL showers 835 904 683 65.0 %
RPD reconstruction 653 563 674 50.8 %

selection of calorimeter clusters
number of clusters

from preselection 5 532 424 006 100.0 %
energy threshold 2 831 816 141 51.2 %
time resolution 2 793 860 445 50.5 %
after both cuts 1 933 026 718 34.9 %

selection of neutral particles
number of events number of events

from preselection - part 2 653 563 674 100.0 % 653 563 674 100.0 %
exactly four ECAL showers 74 353 927 11.4 % 74 353 927 11.4 %
exactly two π0/η candidates 21 553 043 3.3 % 328 632 0.050 %
after both cuts 7 667 337 1.2 % 67 561 0.010 %

kinematic selection
number of events number of events

from selection of neutral particles 7 667 337 100.0 % 67 561 100.0 %
vertex position 6 961 698 90.8 % 52 763 78.1 %
beam energy 6 008 822 78.4 % 22 213 32.9 %
coplanarity 6 014 344 78.4 % 30 031 44.5 %
t′ 5 780 253 75.4 % 47 325 70.0 %
mass range for PWA 6 693 763 87.3 % 62 969 93.2 %
after all cuts 3 604 322 47.0 % 13 157 19.5 %

Table 3.1: Number of events after each cut applied during the event selection for
real data.
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3.2 Calorimeter Information

the spectrometer acceptance. All events used in the analysis have to have been
recorded due to the DT0 trigger.

3.1.2 Primary Vertex

Tracks of charged particles are used to reconstruct interaction and decay vertices.
In COMPASS, a vertex with an incoming beam particle is called primary vertex.
To be considered in the following, each event must have one primary vertex. Events
with multiple primary vertices, which might be caused by multiple beam particles
entering the experiment at the same time, are discarded. For the analysis only
vertices with exactly one outgoing charged particle are interesting. As electric
charge is conserved, the outgoing particle needs to have negative charge.

One peculiarity of the vertex fit is, that it can alter the electric charge of a
track. More precisely, if the uncertainty of q/ |p| from the track fit [1, 2] is large
compared to its value, then the vertex fit [1] might achieve a better result when
changing the sign of the electric charge. Vertices containing tracks for which the
electric charge of the vertex fit does not agree with the electric charge of the track
fit are removed.

3.1.3 Photons

To be able to build two π0 or two η at least four photons are required. As the
first step to identify photons, showers in the electromagnetic calorimeters that do
not have an associated charged track are selected. This criterion simply selects
events with enough photon candidates, it does not yet ensure that the showers are
indeed photons.

3.1.4 RPD Reconstruction

The track of the recoil proton is reconstructed from the RPD information [2]. This
includes an energy measurement in the outer layer of the detector, and a velocity
measurement via the time-of-flight between the inner and outer layer. From the
time difference of the signals from the up- and downstream end of the detector,
it is also possible to estimate the hit position along the beam axis in either layer,
allowing the rough measurement of the scattering angle of the recoil proton and
of the vertex position. This vertex position should at least be in the vicinity of
the liquid-hydrogen target.

3.2 Calorimeter Information

3.2.1 Energy Thresholds for Photons

To reduce the impact of noise on the π0 and η signals, showers with a too small
energy are removed from the data set. But these showers might also be genuine
photons originating from low energetic π0 or from assymmetic π0 decays. So
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Figure 3.1: Significance of the π0 mass peak as a function of the applied calorimeter
threshold for (a) ECAL1 and (b) ECAL2.

setting the energy threshold too low will harm the acceptance. To optimize the
threshold, a significance measure is used as an objective criterion [68]

significance =
signal√

signal + background
(3.1)

The significance of the π0 mass peak is calculated for various thresholds ranging
from 0 to 4 GeV. As the energy range of the two electromagnetic calorimeters is
very different, both are treated separately by only looking at those π0 with both
photons in the respective calorimeter. The position and width of the π0 mass
peak are determined from a Gaussian fit (section 2.4.3). The amount of signal is
taken from the full integral of the Gaussian, the amount of background from the
integral of the background function over a 70 MeV wide mass window around the
peak position.

Figure 3.1 shows the significance as a function of the applied threshold. At
low thresholds below 0.2 GeV the significance does not change, because here the
threshold applied during the reconstruction (section 2.3) already removed the
showers. The bumps visible in the spectra are identified with different hardware
thresholds caused by, e.g., different amplification settings for outer and inner cells.
The threshold applied in this analysis is found by searching for the maximum of
the significance for each calorimeter. The thresholds used in the following are
0.6 GeV for ECAL1, and 1.2 GeV for ECAL2.

3.2.2 Time Information

The time information for the showers is used to remove noise and off-time pho-
tons. The time resolution of the calorimeters was already shown in fig. 2.12 in
section 2.4.2. A 3σ cut on the time of a shower is performed.
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3.3 Selection of Neutral Particles

3.3 Selection of Neutral Particles

The next step in the event selection is to build candidates for the π0 or η particles
decaying into two photons. Only events with exactly four photons are considered.
To construct the Lorentz vectors of the photons it is assumed that they originate
from the primary vertex. The Lorentz vectors of each photon pair are summed,
and the pair is considered a π0 candidate if its invariant mass does not differ
from the nominal π0 mass by more than three times the mγγ resolution obtained
in section 2.4.3. After all possible candidates have been built, they are checked
for shared photons. Candidates that share one of their photons with any other
candidate are not considered in the following. In the end only two π0 candidates
per event are allowed to remain.

The selection of η for the π−ηη final state is very similar. In addition to building
η candidates, also π0 candidates are formed. It is then checked that none of the
photons that are used in a π0 candidate also contribute to any η candidate. In the
end only two η candidates per event are allowed to remain. However, if it were not
for the requirement of exactly four photons, any number of π0 candidates could
exist is addition.

Reconstructing the neutral particles reduces the number of events to consider
in the analysis from 6.5 · 108 to 7.7 · 106 for the π−π0π0 case and to 6.7 · 104 for
π−ηη.

3.4 Kinematic Selection

Before further usage of the π0 or η candidates in the analysis, the mass of each π0

or η candidate is set to the nominal mass by rescaling the energy of the photons.
The event selection is then finalized with the cuts discussed in this section. These
cuts reduce the number of π−π0π0 events to consider in the analysis from 7.7 · 106

after the reconstruction of the neutral particles to 3.6 · 106, and respectively from
6.7 · 104 to 1.3 · 104 for the π−ηη case.

3.4.1 Vertex Position

To ensure an interaction of the beam pion with a free proton, the primary vertex
has to be within the volume of the liquid-hydrogen target. The position of the
vertex along the beam axis has to lie between −68 cm and −28 cm, the radial
distance from the nominal beam axis has to be smaller than 1.5 cm (figs. 3.2
and 3.3).

3.4.2 Beam Momentum

The longitudinal component of the beam momentum is not measured for the
hadron beam, but it can be calculated from the information of the outgoing system
and the scattering angle between the beam direction and the direction of the final
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Figure 3.2: Distribution of the position of the interaction vertex for the π−π0π0

final state (a) along the z-direction and (b) in the plane perpendicular
to the z-direction. The yellow area in (a) and the white circle in (b)
indicate the selected ranges.
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Figure 3.3: Distribution of the position of the interaction vertex for the π−ηη final
state (a) along the z-direction and (b) in the plane perpendicular to
the z-direction. The yellow area in (a) and the white circle in (b)
indicate the selected ranges.
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pa
pb θ

pc

pd

Figure 3.4: Sketch of the reaction of an incoming beam particle pa with a target
particle pb initially at rest. Particles pc and pd are the products of the
reaction.

pa pc

t

pb pd

Figure 3.5: Definition of particle momenta and Mandelstam variable t.

state assuming an exclusive measurement. The following information is available
(fig. 3.4)

• The beam particle is a pion, therefore its mass mπ is known (p2
a = E2

a −
|~pa|2 = m2

π). Its direction is precisely measured using the silicon beam
telescope.

• The target particle is a proton with mass mp that is assumed to be at rest
(~pb = 0 and p2

b = m2
p).

• The outgoing system has a fully measured four-vector pc with p2
c = E2

c −
|~pc|2 = m2

c . pc is the sum of the measured four-vectors of the final-state
particles. With the information on the direction of the beam particle the
scattering angle θ = 6 (~pa, ~pc) is known.

• The recoil particle is a proton with mass mp (p2
d = E2

d − |~pd|
2 = m2

p). In
principle the recoil-proton detector gives information on the velocity (via
time of flight) and energy (via the energy deposit) of the recoiling proton
but with a much worse resolution compared to the variables measured by the
spectrometer. Therefore this information will not be used in the following.

The Mandelstam variable t (fig. 3.5) can be written in two ways
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t = (pa − pc)2 (3.2)

= m2
π +m2

c − 2papc (3.3)

= m2
π +m2

c − 2EaEc + 2 |~pa| |~pc| cos θ (3.4)

and

t = (pd − pb)2 (3.5)

= 2m2
p − 2mpEd (3.6)

= 2m2
p − 2mp (Ea +mp − Ec) (3.7)

= −2mp (Ea − Ec) (3.8)

avoiding the usage of information on the recoil particle. Combining eqs. (3.4)
and (3.8) gives

m2
π +m2

c − 2EaEc + 2 |~pa| |~pc| cos θ = 2mp (Ec − Ea) (3.9)

m2
π +m2

c − 2mpEc + 2 |~pa| |~pc| cos θ = 2Ea (Ec −mp) (3.10)

m2
π +m2

c − 2mpEc + 2 |~pa| |~pc| cos θ = 2

√
m2
π + |~pa|2 (Ec −mp) (3.11)

Squaring eq. (3.11) and ordering the terms by powers of |~pa|, one obtains a
quadratic equation for |~pa|

0 =
(

4 |~pc|2 cos2 θ − 4 (Ec −mp)
2
)
|~pa|2

+ 4 |~pc| cos θ
(
m2
π +m2

c − 2mpEc
)
|~pa|

+
(
m2
π +m2

c − 2mpEc
)2 − [2mπ (Ec −mp)]

2

(3.12)

Only the positive solution of the quadratic equation is physically meaningful, so
that the beam momentum and finally the beam energy can be calculated.

The Gaussian peak of the beam energy distribution (fig. 3.6) is at 190.6 GeV,
and has a width of 2.9 GeV. Events to be considered in the further processing
need to have a calculated beam energy that is at maximum three times the width
away from the peak position.

3.4.3 Momentum Conservation

The direction of the outgoing system as measured in the spectrometer has to
be back to back with respect to the direction of the recoil proton measured by
the RPD in the plane transverse to the beam (fig. 3.7). The resolution of this
coplanarity is mainly limited by the 12-fold segmentation of the inner ring of the
RPD. The angle between the two directions, as measured in the reference system
of the incoming beam particle, has to be between π − 0.27 rad and π + 0.27 rad.

34



3.4 Kinematic Selection

calculated beam energy (GeV)
140 160 180 200 220 240

ev
en

ts
 (

pe
r 

0.
5 

G
eV

)

0

0.05

0.1

0.15

0.2

0.25

610×

(a) π−π0π0

calculated beam energy (GeV)
140 160 180 200 220 240

ev
en

ts
 (

pe
r 

0.
5 

G
eV

)

0

0.2

0.4

0.6

0.8

1

310×

(b) π−ηη

Figure 3.6: Calculated beam energy for (a) the π−π0π0 and (b) the π−ηη final
state. The yellow areas indicate the selected ranges.
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Figure 3.7: Coplanarity of the recoil proton and (a) the π−π0π0 and (b) the π−ηη
final state. The yellow areas indicate the selected ranges.
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Figure 3.8: Three-momentum conservation of the reaction in (a) the laboratory
frame and (b) the center-of-mass system.

3.4.4 Reduced Squared Four-Momentum Transfer t′

The squared four-momentum transfer t to the target is used the characterize the
reactions under study. Using the more precisely measured four-momenta of beam
and scattered particle, it can be written as

t = (pa − pc)2 = m2
π +m2

c − 2EaEc + 2 |~pa| |~pc| cos θ (3.13)

A minimal squared four-momentum transfer |t|min is required to create a state
with mass mc ≥ mπ. It corresponds to the squared four-momentum transfer for
the production of a state with mass mc at scattering angle θ = 0. Figure 3.8
shows that it is not possible to simply set cos θ = 1 in eq. (3.13), as changing
the scattering angle θ while keeping the magnitude of ~pc constant would affect
the magnitude of ~pd, which in turn would violate the requirement of having a
recoil proton as the energies would not be affected by the rotation. In the center-
of-mass system the three-momenta of the outgoing system and the recoil proton
are back-to-back with the same magnitude. Changing the scattering angle does
not necessitate a change of the magnitude to conserve the total three-momentum.
With the kinematic variables in the center-of-mass system |t|min is given as

|t|min = 2
(
ECM
a ECM

c + |~pa|CM |~pc|CM
)
−m2

π −m2
c (3.14)

Finally the reduced squared four-momentum transfer t′ is defined as

t′ = |t| − |t|min (3.15)

While t is a negative number, with this definition, t′ is a positive quantity. The
analysis is performed in the t′ range from 0.1 to 1 (GeV/c)2 (fig. 3.9).
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Figure 3.9: Reduced squared four-momentum transfer t′ for (a) the π−π0π0 and
(b) the π−ηη final state. The yellow areas indicate the selected ranges.

The slope of the t′ distribution is related to the production mechanism. Two
exponentials are required for a good description of the data. For the π−π0π0 final
state one obtains

e−9.93 (GeV/c)−2·t′ + 0.0878 · e−3.83 (GeV/c)−2·t′ (3.16)

and for the π−ηη final state

e−7.25 (GeV/c)−2·t′ + 0.0905 · e−3.36 (GeV/c)−2·t′ (3.17)

In both cases the slope of the dominant component has a value consistent with
Pomeron exchange.

The π−π0π0 mass spectrum exhibits a pronounced dependance on the selected
t′ range (fig. 3.10). The relative strength of the shoulder on the low-mass side of
the peak at 1.3 GeV/c2 decreases with increasing t′. At the same time, for higher
invariant masses, the spectrum changes only little. Accordingly the t′ distribution
depends on the mass of the final state (fig. 3.11). While two exponentials are
required to describe the total t′ spectrum as well as the t′ spectrum at low invariant
masses of the final state clearly requires two slopes (fig. 3.11(a)), at higher masses,
a single exponential seems to be sufficient (fig. 3.11(b)). To minimize the effect of
the dependence of the mass spectrum on t′, for the analysis of the π−π0π0 final
state, the data set is subdivided into eight non-equidistant t′ bins, each containing
about the same number of events (table 3.2).

3.4.5 Mass Ranges for Partial-Wave Analysis

The mass ranges selected for the partial-wave analysis (chapters 5 and 6) are
0.5 GeV/c2 to 2.5 GeV/c2 for the π−π0π0 channel and 1.25 GeV/c2 to 4 GeV/c2

for the π−ηη channel (fig. 3.12).
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Figure 3.10: Invariant mass of the π−π0π0 final state at (a) low and (b) high t′

values. The mass spectrum for the t′ range from 0.1 to 1.0 (GeV/c)2

is shown in fig. 3.12(a). The yellow areas indicate the selected mass
ranges.
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invariant masses of the final state. The t′ distribution for the complete
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selected ranges.
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3.4 Kinematic Selection

bin nr. t′ range number of events

(GeV/c)2

1 0.100 - 0.116 446 584
2 0.116 - 0.136 452 057
3 0.136 - 0.159 454 041
4 0.159 - 0.188 451 267
5 0.188 - 0.227 450 540
6 0.227 - 0.285 448 456
7 0.285 - 0.395 450 010
8 0.395 - 1.000 451 367

Table 3.2: Number of events in the t′ bins.
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Figure 3.12: Invariant mass spectra for (a) the π−π0π0 and (b) the π−ηη final
state. The yellow areas indicate the selected ranges.
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3.5 Simulation

To evaluate the acceptance of the COMPASS spectrometer, events are generated
flat in the phase-space of the final state. These events are then tracked through the
spectrometer with a simulation of the response of all detectors, and reconstructed
with the same software used for real data. Finally, the reconstructed Monte Carlo
events are analyzed with the same cuts as applied for real data.

Vertices for the events are only generated inside the volume of the liquid-
hydrogen target. The beam properties including the various correlations between
the beam momentum, beam position and beam slope are taken into account [24].
The reduced squared four-momentum transfer t′ is simulated in the range from
0.1 to 1.0 (GeV/c)2 according to the slope parameters extracted for the π−π0π0

(eq. (3.16)) and π−ηη final state (eq. (3.17)), respectively. The events are evenly
distributed in the mass range used for the partial-wave analysis.

3.5.1 π−π0π0 Final State

In total 3·108 Monte Carlo events were generated and reconstructed for the π−π0π0

final state. The events were analyzed in the same way as real data, the effects of
the cuts applied during the selection are listed in table 3.3.

Figure 3.13 compares the number of generated phase-space events with the
number of phase-space events accepted by the event selection and the number of
real data events. From the 3·108 generated events almost 1.4·107 are accepted after
all cuts. The number of events in the mass bin with the most real data events is
similar to the number of Monte Carlo events accepted in that bin. For other mass
bins, significantly more accepted Monte Carlo events than real data events are
available. From the event counts given before, the average phase-space acceptance
is 4.5 % for the selected kinematic region. Figure 3.14(a) shows this acceptance
as a function of the mass of the final state. The acceptance averaged over the t′

bins increases from around 2.5 % at low masses to 6 % at high masses. The same
trend is also visible in the individual t′ bins, however, while the acceptance at
high masses stays about the same for each t′ bins, at lower masses it decreases
from almost 3 % in the lowest t′ bin to slightly less than 2 % in the highest t′ bin.
The larger acceptance towards higher masses can be explained with the larger
angles between the outgoing three pions in the laboratory system. This also leads
to larger angles of the single photons. As photons with a larger angle will more
likely be detected in ECAL1 instead of ECAL2, those photons have to traverse
significantly less material, and thus the probability to loose one of these is smaller
(section 2.5.1).

The full kinematic information of a three-body final state can be encoded in six
variables: the invariant masses of the final state and one two-body subsystem and
four angles (section 4.2). One pair of angles is defined in the rest system of the
final state (Gottfried-Jackson frame), the other in the rest system of the two-body
subsystem (helicity frame). The two-dimensional acceptance distributions in the
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π−π0π0 π−ηη

preselection - part 1
number of events number of events

all events 300 000 000 100.0 % 11 000 000 100.0 %
DT0 trigger 9 503 573 86.4 %
exactly one primary vertex 8 496 707 77.2 %
exactly one outgoing track 7 158 426 65.1 %
charge unchanged by vertex fit 7 158 393 65.1 %
charge conservation in vertex 7 020 528 63.8 %
two or more ECAL showers 190 357 975 63.5 % 6 983 762 63.5 %

preselection - part 2
number of events number of events

from preselection 190 357 975 100.0 % 6 983 762 100.0 %
four or more ECAL showers 190 352 183 100.0 % 6 983 517 100.0 %
RPD reconstruction 144 156 155 75.7 % 5 432 178 77.8 %

selection of calorimeter clusters
number of clusters number of clusters

from preselection - part 2 875 265 270 100.0 % 31 500 862 100.0 %
energy threshold 583 999 516 66.7 % 22 806 116 72.4 %
time resolution 849 676 951 97.1 % 30 741 068 97.6 %
after both cuts 579 430 158 66.2 % 22 656 849 71.9 %

selection of neutral particles
number of events number of events

from preselection - part 2 144 156 155 100.0 % 5 432 178 100.0 %
exactly four ECAL showers 59 062 548 41.0 % 2 667 018 49.1 %
exactly two π0/η candidates 19 240 637 13.3 % 660 056 12.2 %
after both cuts 15 633 953 10.8 % 608 407 11.2 %

kinematic selection
number of events number of events

from selection of neutral particles 15 633 953 100.0 % 608 407 100.0 %
vertex position 14 886 413 95.2 % 584 913 96.1 %
beam energy 14 386 863 92.0 % 579 484 95.2 %
coplanarity 15 123 848 97.3 % 595 863 97.9 %
t′ 15 633 953 100.0 % 608 407 100.0 %
mass range for PWA 15 633 953 100.0 % 608 407 100.0 %
after all cuts 13 620 345 87.1 % 551 378 90.6 %

Table 3.3: Number of events after each cut applied during the event selection for
Monte Carlo data.
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Figure 3.13: Number of events in each mass bin for the generated phase-space
Monte Carlo data (blue line), for the accepted Monte Carlo data
(green line), and for real data (red line) for the π−π0π0 final state.
The right plot shows a zoomed view with the accepted Monte Carlo
data and real data.
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Figure 3.14: Phase-space acceptance as a function of the final state mass for the
(a) π−π0π0 and (b) π−ηη final state.
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angles of each frame for both charge combinations of the two-body subsystem
are shown in figs. 3.15 to 3.18. In general, the dependence of the acceptance on
the reduced squared four-momentum transfer t′ appears to be small, although at
low masses a lower acceptance at high values of t′ becomes apparent. In contrast
to this, there is a strong dependence of the absolute value and the shape of the
acceptance distributions on the final-state mass. The acceptance of the charged
π−π0 two-body subsystem in the Gottfried-Jackson frame (fig. 3.15) prominently
shows the most important places of photon losses (section 2.5.1). In particular
at higher masses two approximately horizontal bands with lower acceptance are
visible. The lower band, containing the point cos θGJ ≈ −0.5 at φTY = 0, is
visible in each bin. It is due to photons absorbed in the light-gas pipe of the
RICH. The upper band, containing the point cos θGJ ≈ +0.5 at φTY = 0, is
more pronounced at higher masses, and is caused by the not perfect overlap of
the two electromagnetic calorimeters. Also the vertical bands in the acceptance
distribution for the helicity frames (figs. 3.16 and 3.18) are caused by the loss of
photons in this region.

The resolutions obtained from the simulation are summarized in table 3.4. Only
the resolution of the reduced squared four-momentum transfer t′ depends strongly
on t′. For the three other given variables, the final-state mass is more important.
In contrast to the t′ resolution, the position resolution of the primary vertex in
z-direction is improving with mπ−π0π0 . While the larger scattering angle of the
charged pion π− improves the reconstruction accuracy for the vertex position, it
does not improve the t′ resolution, which also includes the effect of the larger
angles of the π0. Apparently the resolution provided by ECAL2 is much better
than the one of ECAL1. The worst mass resolution of around 30 MeV/c2, which
is reached for the highest mass bins, also limits the minimal widths of the mass
bins chosen for the partial-wave analysis.

3.5.2 π−ηη Final State

In total 1.1 · 107 Monte Carlo events have been generated and reconstructed for
the π−ηη final state. As for the π−π0π0 final state the Monte Carlo events have
been passed through the simulation, reconstruction and event selection described
above, the number of events after each selection cut is given in table 3.3.

The comparison of the number of generated phase-space events with the num-
ber of accepted Monte Carlo events and the number of real data events is shown
in fig. 3.19. Out of the 1.1 · 107 generated events, 5.5 · 105 are accepted result-
ing in an average phase-space acceptance of 5 % in the selected kinematic range
(fig. 3.14(b)). The number of accepted Monte Carlo events exceeds the number of
real data events by at least a factor of 10 across the analyzed mass range. There-
fore the influence of the Monte Carlo on the statistical uncertainty of the result is
negligible.

Due to the smaller data sample, the analysis of the spectrometer performance
cannot be performed with the same level of detail as for the π−π0π0 final state.
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of the π−π0π0 final state.

44



3.5 Simulation

ac
ce

pt
an

ce
 (

%
)

0

1

2

3

4

5

6

7

8

9

10

)2 (GeV/c0π0π−πm

)2
t' 

((
G

eV
/c

)

0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5

0.
10

 -
 0

.1
4

0.
14

 -
 0

.1
9

0.
19

 -
 0

.2
9

0.
29

 -
 1

.0
0

hel
φ

he
l

θ
co

s 

3.14− 0 3.14
1−

0

1

3.14− 0 3.14
1−

0

1

3.14− 0 3.14
1−

0

1

3.14− 0 3.14
1−

0

13.14− 0 3.141−

0

1

3.14− 0 3.141−

0

1

3.14− 0 3.141−

0

1

3.14− 0 3.141−

0

13.14− 0 3.141−

0

1

3.14− 0 3.141−

0

1

3.14− 0 3.141−

0

1

3.14− 0 3.141−

0

13.14− 0 3.141−

0

1

3.14− 0 3.141−

0

1

3.14− 0 3.141−

0

1

3.14− 0 3.141−

0

1

1−

1−

1−

0

0

0

1

1

1

π− π− π−0 0 0π π π

Figure 3.16: Distribution of the phase-space acceptance in the angles of the helicity
frame for bins in the three-pion mass and the reduced squared four-
momentum transfer t′ for charged π−π0 isobars of the π−π0π0 final
state.

45



Chapter 3 Event Selection

ac
ce

pt
an

ce
 (

%
)

0

1

2

3

4

5

6

7

8

9

10

)2 (GeV/c0π0π−πm

)2
t' 

((
G

eV
/c

)

0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5

0.
10

 -
 0

.1
4

0.
14

 -
 0

.1
9

0.
19

 -
 0

.2
9

0.
29

 -
 1

.0
0

TY
φ

G
J

θ
co

s 

3.14− 0 3.14
1−

0

1

3.14− 0 3.14
1−

0

1

3.14− 0 3.14
1−

0

1

3.14− 0 3.14
1−

0

13.14− 0 3.141−

0

1

3.14− 0 3.141−

0

1

3.14− 0 3.141−

0

1

3.14− 0 3.141−

0

13.14− 0 3.141−

0

1

3.14− 0 3.141−

0

1

3.14− 0 3.141−

0

1

3.14− 0 3.141−

0

13.14− 0 3.141−

0

1

3.14− 0 3.141−

0

1

3.14− 0 3.141−

0

1

3.14− 0 3.141−

0

1

1−

1−

1−

0

0

0

1

1

1

π− π− π−0 0 0π π π

Figure 3.17: Distribution of the phase-space acceptance in the angles of the
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Figure 3.18: Distribution of the phase-space acceptance in the angles of the helicity
frame for bins in the three-pion mass and the reduced squared four-
momentum transfer t′ for neutral π0π0 isobar of the π−π0π0 final
state.
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t′ range ((GeV/c)2)

0.10 0.14 0.19 0.29
to 0.14 to 0.19 to 0.29 to 1.00

m
π
−
π

0
π

0
ra

n
ge

(G
eV
/c

2
)

0.5 - 1.0

δmπ−π0π0

(
MeV/c2

)
10.43 10.40 10.59 10.85

δt′
(

10−3 (GeV/c)2
)

7.98 9.50 11.86 18.04

δEbeam (GeV) 2.56 2.55 2.55 2.53

δzPV (cm) 2.45 2.36 2.23 2.00

1.0 - 1.5

δmπ−π0π0

(
MeV/c2

)
17.38 17.47 17.57 17.65

δt′
(

10−3 (GeV/c)2
)

9.68 11.45 14.11 21.20

δEbeam (GeV) 2.74 2.72 2.70 2.66

δzPV (cm) 1.83 1.83 1.80 1.72

1.5 - 2.0

δmπ−π0π0

(
MeV/c2

)
24.90 25.09 25.24 25.34

δt′
(

10−3 (GeV/c)2
)

11.95 14.15 17.39 25.62

δEbeam (GeV) 2.71 2.71 2.70 2.67

δzPV (cm) 1.52 1.51 1.50 1.46

2.0 - 2.5

δmπ−π0π0

(
MeV/c2

)
32.85 33.22 33.51 33.92

δt′
(

10−3 (GeV/c)2
)

14.92 17.64 21.48 31.14

δEbeam (GeV) 2.68 2.69 2.69 2.70

δzPV (cm) 1.30 1.31 1.30 1.27

Table 3.4: Absolute resolutions of the three-pion mass mπ−π0π0 , the reduced
squared four-momentum transfer t′, the beam energy Ebeam, and the
primary vertex position zPV as obtained by comparing the Monte Carlo
truth to the reconstructed value. The resolution is the RMS of the dis-
tribution of the residuals.
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Figure 3.19: Number of events in each mass bin for the generated phase-space
Monte Carlo data (blue line), for the accepted Monte Carlo data
(green line), and real data (red line). The right plot shows a zoomed
view with the accepted Monte Carlo data and real data.

In general the same effects visible for the π−π0π0 case also show up in the π−ηη
case. However, due to the higher mass of the η, and thus the larger decay angle be-
tween the two photons, the effects appear in different kinematic regions (figs. 3.20
and 3.21).
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Chapter 3 Event Selection
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Figure 3.20: Distribution of the phase-space acceptance in the four angles for bins
of the final-state mass for charged π−η isobars of the π−ηη final state.
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Figure 3.21: Distribution of the phase-space acceptance in the four angles for bins
in the final-state mass for neutral ηη isobars of the π−ηη final state.
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Chapter 4

Partial-Wave Analysis Method

The analysis method described below follows a two step approach. The first step
is the decomposition of the measured data into individual partial waves in bins of
the invariant mass of the three-pion system m3π and the reduced squared four-
momentum transfer t′. This step is independent of resonant structures in the
three-pion system, and is performed for each kinematic bin independently. As the
dependence on m3π and t′ does not enter in this step, it is commonly referred to
as “mass-independent partial-wave analysis”.

The second step is the description of the m3π dependence of the partial waves in
terms of resonant and non-resonant structures. This is achieved by fitting mass-
dependent functions, like Breit-Wigner amplitudes, or phenomenological functions
describing the non-resonant terms, to the results of the mass-independent partial-
wave analysis. This resonance-model fit is also called “mass-dependent partial-
wave analysis”.

4.1 Cross Section

Considering the production of a single state c, the differential cross section for the
reaction a+ b→ c+ d with c subsequently decaying to c→ 1 + · · ·+n is given by
[65, 33]

dσ =
1

4
√

(papb)
2 −m2

am
2
b

|M|2 dΦn+1 (pa + pb; p1, . . . , pn, pd) (4.1)

with the Lorentz-invariant (n+ 1)-body phase space element

dΦn+1 (P ; p1, . . . , pn+1) = (2π)4
n+1∏
i=1

d3pi

(2π)3

1

2Ei
δ(4)

(
P −

n+1∑
i=1

pi

)
(4.2)

This differential (n+ 1)-body phase space can be split into the differential two-
body phase space for the intermediate state c and the recoil d, and the differential
n-body phase space of the decay of c

dΦn+1 (pa + pb; p1, . . . , pn, pd) = dΦ2 (pa + pb; pc, pd)
dm2

c

2π
dΦn (pc; p1, . . . , pn)

(4.3)
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Chapter 4 Partial-Wave Analysis Method

In the overall center-of-mass system the differential two-body phase space dΦ2 is
given by

dΦ2 (pa + pb; pc, pd) =
1

(4π)2

|~pc|√
s

dcos θ dφ (4.4)

and the flux factor in the cross-section formula (eq. (4.1)) can be simplified

1√
(papb)

2 −m2
am

2
b

=
1

|~pa|
√
s

(4.5)

Substituting dcos θ using dt = −dt′ = 2 |~pa| |~pc| dcos θ and dm2
c = 2mc · dmc, and

integrating over dφ, eq. (4.1) can be written as

dσ

dt dmc
=

1

(8π)2

mc

|~pa|2 s
|M|2 dΦn (pc; p1, . . . , pn) (4.6)

It is assumed that the matrix element M = M (a+ b→ 1 + · · ·+ n+ d) for
this reaction factorizes

M (a+ b→ 1 + · · ·+ n+ d) =M (a+ b→ c+ d)M (c→ 1 + · · ·+ n) (4.7)

The first factor describes the production of the system c when the beam particle
a scatters elastically off the target b which is recoiled as d. This matrix element is
described by the scattering amplitude A (s, t;mc) depending on the Mandelstam
variables s and t [20, 38]. The second factor in eq. (4.7) describes the decay of the
system c to the n-body final state.

Finally, the differential cross section for the production of a single state c is
given as given by

dσ

dt dmc
=

1

(8π)2

mc

|~pa|2 s
|A (s, t;mc)M (c→ 1 + · · ·+ n)|2 dΦn (pc; p1, . . . , pn)

(4.8)
In the limit s� mc � t the norm of the scattering amplitude A (s, t;mc) is given
by [38]

|A (s, t;mc)|2 ∝ Fc (t)

(
s

m2
c

)2α(t)−1

(4.9)

The dependence Fc (t) of the scattering amplitude on the squared four-momentum
transfer t can in principle be different for different produced states c. It is typically
expressed as a sum of exponentials. The Regge trajectory of the Pomeron is
written as α (t) = α0 + α′t [20].

In the following it is assumed that all states are created with the same depen-
dence on t, so that the cross-section allowing multiple states c is proportional
to

dσ

dt dmc
=

1

(8π)2

mc

|~pa|2 s
|A (s, t;mc)|2 I (τ) dΦn (pc; p1, . . . , pn) (4.10)
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Figure 4.1: Schematic diagram of the three-pion decay of the intermediate state
X− with specific quantum numbers in the isobar model.

with I (τ) the total intensity of all partial waves corresponding to the produced
states c and their various decay modes into the n-body final state. For a fixed-
target experiment with a fixed beam energy, the beam momentum |pa| and the
center-of-mass energy

√
s are constant. The dependence of the number of events

on the invariant mass of the final state mc (for example mπ−π0π0) and the reduced
squared four-momentum transfer t′ have been shown in sections 3.4.4 and 3.4.5.
That dependence motivates a binning of the data in these variables. Within each
bin all terms in eq. (4.10) except for the partial-wave intensity I (τ) are assumed
to be constant.

4.2 Decay Amplitudes

The intensity I (τ) is assumed to be dominated by resonances. Hence the ampli-
tude of an intermediate state X with specific quantum numbers factorizes into a
part describing the production of this state and a second part describing its decay.

The decay amplitude ψ can be calculated using the isobar model [51]. The
isobar model assumes that the intermediate state X decays via successive two-
body decays into the measured final state (see fig. 4.1 for the three-pion final
state). In the helicity formalism [56, 33, 70], each two-body decay of a state ξ
with spin J and spin projection M into its daughters ξ1 and ξ2, which have orbital
angular momentum L in between, and can be unstable particles themselves, is
described by the amplitude
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Chapter 4 Partial-Wave Analysis Method

Aξ→ξ1ξ2 LJM (τ) =

+J1∑
λ1=−J1

+J2∑
λ2=−J2

[
DJ
M(λ1−λ2) (φ, θ, 0) fJ Lλ1λ2

(mξ,mξ1 ,mξ2)

×Aξ1→ξ
′
1ξ
′
2 L
′

J1λ1

(
τ ′
)
A
ξ2→ξ′′1 ξ′′2 L′′
J2λ2

(
τ ′′
) ]

(4.11)

For this amplitude the product of the angular part DJ
M(λ1−λ2), the dynamic part

fJλ1λ2
, and the amplitudes of the decays ξ1 → ξ′1ξ

′
2 and ξ2 → ξ′′1ξ

′′
2 of the daughters is

summed up over the various helicity states λ1 and λ2 of the daughters. The angular
part of the amplitude is described by Wigner D-functions [79]. The amplitudes of
the decays of the daughters have the same structure as eq. (4.11). The dynamic
part can be written as

fJ Lλ1λ2
(mξ,mξ1 ,mξ2) =

√
2L+ 1︸ ︷︷ ︸

normalization

FL (mξ,mξ1 ,mξ2) ∆ξ (mξ,mξ1 ,mξ2)

× (L 0 S [λ1 − λ2] | J [λ1 − λ2])︸ ︷︷ ︸
L-S coupling

(J1 λ1 J2 λ2 | S [λ1 − λ2])︸ ︷︷ ︸
spin-spin coupling

(4.12)

The used parameterizations for the angular-momentum barrier factors FL [26, 52]
and for the isobar line shapes ∆ξ are presented in section 5.1.1. In addition, the
dynamic part contains the Clebsch-Gordan coefficient for the coupling of the spins
J1 and J2 of the daughters to the total intrinsic spin S and the one for the coupling
of S with the orbital angular momentum L between the two daughters to J .

The two-body decays are described in right-handed coordinate systems that are
rest frames of the decaying state. The coordinate system for the decay of the state
X is called Gottfried-Jackson (GJ) frame, the others are so-called helicity frames.
The Gottfried-Jackson frame is constructed in the rest system of the state X with
the beam direction defining the zGJ axis. The yGJ axis is perpendicular to the
production plane (~yGJ ∝ ~p lab

beam×~p lab
X ). In the X rest frame, the two daughters are

back to back, so the decay is specified by the polar angle θGJ and the azimuthal
angle (Treiman-Yang angle) φTY of one of the daughters.

For a three-body final state there is only one isobar ξ, and therefore also only
one helicity frame to consider. This frame is constructed by boosting from the
Gottfried-Jackson frame into the rest system of the isobar ξ. The zhel axis is given
by the original direction of ξ, the yhel axis is defined as ~yhel ∝ ~zGJ × ~zhel. In
the isobar rest system the two pions are back to back, so also the isobar decay is
specified by two angles, the polar angle θhel and the azimuthal angle φhel.

For the three-pion final state the amplitudes eq. (4.11) can be simplified further.
A similar argumentation also applies for the π−ηη final state. Only two two-body

decay amplitudes have to be considered: AX→ξπ LJM (τ) and Aξ→ππ L
′

Jξλ
(τ). Since pions

and eta mesons are spin-less particles, their helicities are equal to 0. Also the total
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4.2 Decay Amplitudes

intrinsic spin S in the decay ξ → ππ is equal to 0. Therefore the relative angular
momentum L′ between the two pions is equal to the spin Jξ of the isobar. The
amplitude for the decay ξ → ππ simplifies to

A
ξ→ππ Jξ
Jξλ

(τ) =
√

2Jξ + 1D
Jξ
λ0 (φhel, θhel, 0)FJξ (mξ,mπ,mπ) ∆ξ (mξ,mπ,mπ)

(4.13)
Similarly in the decay X → ξπ, the total spin of the isobar-pion system is given

by the spin Jξ of the isobar. Since the analysis is performed in narrow bins of mX ,
no assumption is made on its line-shape amplitude ∆X (mX ,mξ,mπ). It is set to
unity

AX→ξπ LJM (τ) =

+Jξ∑
λ=−Jξ

√
2L+ 1·DJ

Mλ (φTY, θGJ, 0) (L 0 Jξ λ | J λ)FL (mX ,mξ,mπ)A
ξ→ππ Jξ
Jξλ

(τ)

(4.14)

For a fixed three-pion mass mX , the decay of the state X is fully described by five
variables τ = (φTY, θGJ,mξ, φhel, θhel).

Parity conservation in the production process is directly taken into account by
working in the reflectivity basis [30]. Linear combinations of partial-wave decay
amplitudes with opposite signs of the spin-projection quantum number M form
new amplitudes with positive M and an additional quantum number, the reflec-
tivity ε = ±1. The reflectivity is the eigenvalue of the amplitude with respect
to the reflection through the X production plane. In the high-energy limit, the
reflectivity corresponds to the naturality of the exchanged particle. With this the
decay amplitude can be written as

ψX→ξπ LJMε (τ) = c (M)
[
AX→ξπ LJM (τ)− εP (−1)J−M AX→ξπ LJ,−M (τ)

]
(4.15)

with

ε = ±1, M ≥ 0, and c (M) =

{
1/
√

2 for M > 0
1/2 for M = 0

(4.16)

The two π0 in the π−π0π0 final state, and also the two η in the π−ηη final state,
are indistinguishable, hence the amplitude has to be Bose symmetrized

ψX→ξπ LJM (τ) =
1√
2

(
AX→ξπ LJM (τ12) +AX→ξπ LJM (τ13)

)
(4.17)

In the case of an isobar decaying to π−π0 or π−η, the phase-space variables τ12

and τ13 correspond to the two possible combinations to form this isobar from the
π−1 π

0
2π

0
3 or π−1 η2η3 final states. In general all five variables differ between the two
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Chapter 4 Partial-Wave Analysis Method

combinations. If the isobar decays to π0π0 or ηη, only the angles in the helicity
frame change by a point reflection on the origin of the helicity frame.

Each partial-wave decay amplitude ψX→ξπ LJMε corresponds to a state X with the
quantum numbers J and M ε that is decaying into an isobar ξ and a bachelor pion
or eta meson with a relative orbital angular momentum L in between. Below, the
decay amplitude will simply be written as ψi where i stands for all this information.

4.3 Total Partial-Wave Intensity

The model fitted to the data should reproduce the kinematic distributions observed
in data. It is defined by a set of partial-wave decay amplitudes {ψ (τ)} with τ
being the five kinematic variables fully describing one event, and the (spin-)density
matrix ρ. The intensity for a single event is obtained by summing over all possible
combinations of partial waves i and j

I (τ) =

Nwaves∑
i,j

ψ∗j (τ) ρji ψi (τ) (4.18)

In the reflectivity basis, the spin-density matrix assumes block diagonal form,
with one block for each reflectivity [30]

ρ =

(
ρ+ 0
0 ρ−

)
(4.19)

Therefore partial waves with opposite reflectivities do not interfere. The sum over
the two reflectivities is explicitly stated, and the partial wave indices i and j are
redefined to reflect this. The intensity for a single event can then be rewritten as

I (τ) =
∑
ε=±1

Nε
waves∑
i,j

ψε ∗j (τ) ρεji ψ
ε
i (τ) (4.20)

The spin-density sub-matrices ρε are Hermitian, positive-definite matrices. Us-
ing the Cholesky decomposition they can be expressed as the product of the Her-
mitian conjugate of an upper triangle matrix with this upper triangle matrix

ρε = T ε †T ε (4.21)

with

T ε =


T 1 ε

1 T 1 ε
2 . . . T 1 ε

n−1 T 1 ε
n

0 T 2 ε
2 . . . T 2 ε

n−1 T 2 ε
n

. . .

0 0 . . . T
(n−1) ε
n−1 T

(n−1) ε
n

0 0 . . . 0 Tn εn

 (4.22)
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4.4 Mass-independent Partial-Wave Analysis

where the elements T r εi are called transition amplitudes, and the variable r is
called the rank. The diagonal elements T r εi with i = r are positive and real-valued,
while the off-diagonal elements are complex numbers. A particular element of the
spin-density matrix is given by

ρεji =

Nε
rank∑
r

T r ε ∗j T r εi (4.23)

With this the intensity for a single event can be rewritten as

I (τ) =
∑
ε=±1

Nε
rank∑
r

Nε
waves∑
i,j

ψε ∗j (τ)T r ε ∗j T r εi ψεi (τ) (4.24)

=
∑
ε=±1

Nε
rank∑
r

∣∣∣∣∣∣
Nε

waves∑
i

T r εi ψεi (τ)

∣∣∣∣∣∣
2

(4.25)

Finally, an isotropic background wave, called flat wave, is added incoherently,
so that

I (τ) =
∑
ε=±1

Nε
rank∑
r

∣∣∣∣∣∣
Nε

waves∑
i

T r εi ψεi (τ)

∣∣∣∣∣∣
2

+ T 2
flat (4.26)

4.4 Mass-independent Partial-Wave Analysis

The probability to observe an event e with kinematic variables τe is

P (τe) =
I (τe)∫

dΦn (τ) I (τ) η (τ)
(4.27)

where the denominator N̄ =
∫

dΦn (τ) I (τ) η (τ) is the normalization integral of
the intensity over the complete phase-space weighted with the acceptance η (τ),
which is the number of expected events. The probability depends on the unknown
transition amplitudes T r εi . The level of agreement between data and model is given
by the extended likelihood, which includes the Poisson probability to measure N
events

L =
e−N̄ N̄N

N !

N∏
e

P (τe) (4.28)

=
e−N̄

N !

N∏
e

I (τe) (4.29)
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Chapter 4 Partial-Wave Analysis Method

For the maximum-likelihood estimation, usually the negative logarithm of the
likelihood is minimized.

− lnL = N̄ + lnN !−
N∑
e

ln I (τe) (4.30)

For the minimization, the absolute value of the log-likelihood does not matter.
Therefore the constant term lnN ! can be dropped.

− lnL = −
N∑
e

ln I (τe) + N̄ (4.31)

The expected number of events N̄ can be calculated using

N̄ =

∫
dΦn (τ) I (τ) η (τ) (4.32)

=
∑
ε=±1

Nε
rank∑
r

Nε
waves∑
i,j

T r εj
∗T r εi

∫
dΦn (τ)ψεj

∗ (τ)ψεi (τ) η (τ)︸ ︷︷ ︸
N εij

+T 2
flat

∫
dΦn (τ) η (τ)︸ ︷︷ ︸
Nflat

(4.33)

The appearing normalization integrals N ε
ij are independent of the transition am-

plitudes, and can be pre-calculated ahead of the minimization. The normaliza-
tion integrals are evaluated using Monte Carlo methods, where the integrals are
reduced to a sum over Ngen

MC phase-space events {τgen
e } that are generated and

passed through the complete detector simulation and reconstruction.

N ε
ij =

VΦn

Ngen
MC

Ngen
MC∑
e

ψεj
∗ (τgen

e )ψεi (τgen
e ) η (τgen

e ) (4.34)

Here VΦn =
∫

dΦn (τ) is the phase-space volume [72]. The acceptance η (τgen
e ) is

either 1 or 0 depending on whether the reconstructed MC event passed all selection
cuts, or not. With Nacc

MC accepted events {τacc
e } eq. (4.34) simplifies to

N ε
ij =

VΦn

Ngen
MC

Nacc
MC∑
e

ψεj
∗ (τacc

e )ψεi (τacc
e ) (4.35)

Similarly, the normalization integral for the flat wave simplifies to

Nflat = VΦn

Nacc
MC

Ngen
MC

= A · VΦn (4.36)

where A is the average acceptance of phase-space distributed events. Collecting
the normalization integrals and the expression for the intensity eq. (4.26) into the
log-likelihood eq. (4.31) gives
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4.4 Mass-independent Partial-Wave Analysis

− lnL = −
N∑
e

ln

∑
ε=±1

Nε
rank∑
r

∣∣∣∣∣∣
Nε

waves∑
i

T r εi ψεi (τ)

∣∣∣∣∣∣
2

+ T 2
flat


+
∑
ε=±1

Nε
rank∑
r

Nε
waves∑
i,j

T r εj
∗T r εi N ε

ij + T 2
flatNflat (4.37)

As the phase-space volume VΦn is assumed to be constant in the narrow mass
bins in mX used for the mass-independent fit, and as it can only be evaluated
numerically, it is removed from the log-likelihood. To this end the phase-space
integrals are introduced. They are analogous to the normalization integrals, but
do not include the acceptance

Pεij =

∫
dΦn (τ)ψεj

∗ (τ)ψεi (τ) (4.38)

=
VΦn

Ngen
MC

Ngen
MC∑
e

ψεj
∗ (τgen

e )ψεi (τgen
e ) (4.39)

The phase-space integral for the flat wave is Pflat = VΦn . Not to change the overall
log-likelihood function, a couple of variables are replaced at the same time

N ε
ij → N ε

ij = N ε
ij

1√
PεiiPεjj

(4.40)

T r εi → T
r ε
i = T r εi ·

√
Pεii (4.41)

ψεi (τe)→ ψ
ε
i (τe) = ψεi (τe)

√
VΦn√
Pεii

(4.42)

Inserting these replacements into the log-likelihood eq. (4.37) gives

− lnL = −
N∑
e

ln

 1

VΦn

∑
ε=±1

Nε
rank∑
r

∣∣∣∣∣∣
Nε

waves∑
i

T
r ε
i ψ

ε
i (τ)

∣∣∣∣∣∣
2

+ T
2
flat


+
∑
ε=±1

Nε
rank∑
r

Nε
waves∑
i,j

T
r ε
j
∗
T
r ε
i N

ε
ij + T

2
flatA (4.43)

Changing the variable of the maximum-likelihood estimation to T
r ε
i , this trans-

formation removes the phase-space volume VΦn from the normalization part of
the log-likelihood. The factor 1/VΦn in the sum over the intensities of each event
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Chapter 4 Partial-Wave Analysis Method

can be dropped when not considering absolute values of the log-likelihood. In
summary, the log-likelihood function that is minimized reads

− lnL = −
N∑
e

ln

∑
ε=±1

Nε
rank∑
r

∣∣∣∣∣∣
Nε

waves∑
i

T
r ε
i ψ

ε
i (τe)

∣∣∣∣∣∣
2

+ T
2
flat


+
∑
ε=±1

Nε
rank∑
r

Nε
waves∑
i,j

T
r ε
j
∗
T
r ε
i N

ε
ij + T

2
flatA (4.44)

The intensity per event eq. (4.26) with the transformation applied is given as

I (τ) =
1

VΦn

∑
ε=±1

Nε
rank∑
r

∣∣∣∣∣∣
Nε

waves∑
i

T
r ε
i ψ

ε
i (τ)

∣∣∣∣∣∣
2

+ T
2
flat

 (4.45)

This expression still contains the phase-space volume VΦn . In contrast the expres-
sion to calculate the expected number of events eq. (4.33) with the transformation
applied does not contain VΦn . It is given as

N̄ =
∑
ε=±1

Nε
rank∑
r

Nε
waves∑
i,j

T
r ε
j
∗
T
r ε
i N

ε
ij + T

2
flatA (4.46)

4.5 Spin-density matrix

In the initial expression for the intensity (eq. (4.20)) the spin-density matrix ρij has
been used. Its elements are connected to the transition amplitudes via eq. (4.23).
When transforming the transition amplitudes (eq. (4.41)) also the elements of the
spin-density matrix are transformed

ρεij =

Nε
rank∑
r

T
r ε
j
∗
T
r ε
i (4.47)

Using this spin-density matrix, the number of expected events (eq. (4.46)) is writ-
ten as

N̄ =
∑
ε=±1

Nε
waves∑
i,j

ρεijN
ε
ij + ρflatA (4.48)

Analogously the number of acceptance corrected events is
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4.5 Spin-density matrix

N̄corr =

∫
dΦn (τ) I (τ) (4.49)

=
∑
ε=±1

Nε
waves∑
i,j

ρεijP
ε
ij + ρflat (4.50)

where

Pεij =
Pεij√
PεiiPεjj

with Pεii = 1 and Pεij = Pεji
∗

(4.51)

It can be seen that as a consequence of the transformation of the transition
amplitudes (eq. (4.41)) the elements of the spin-density matrix now are given in
units of numbers of events. The intensity Iεi of a single wave i is given by the
corresponding diagonal element of the spin-density matrix

Iεi = ρεii (4.52)

The intensity sum of two waves can accordingly be written as

I = ρεii + ρεjj + ρεijP
ε
ij + ρεjiP

ε
ji (4.53)

= ρεii + ρεjj +Oεij (4.54)

Here the overlap

Oεij = ρεijP
ε
ij + ρεjiP

ε
ji = ρεijP

ε
ij +

(
ρεijP

ε
ij

)∗
= 2 · <

(
ρεijP

ε
ij

)
(4.55)

has been introduced. These expressions are easily generalized for sets of more
than two waves.

The interferences between the waves are represented by the off-diagonal elements
of the spin-density matrix. Absolute values rεij and phases between two waves ϕεij
of these elements are defined such that

ρεij = rεije
iϕεij (4.56)

The coherence Cεij between two waves is defined as

Cεij =

√
ρεijρ

ε
ij
∗

ρεiiρ
ε
jj

(4.57)

For a fit with rank N ε
rank = 1, the coherence is always one.
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Chapter 5

Partial-Wave Analysis of the π−π0π0

Final State

In this chapter, results of the partial-wave analysis of the π−π0π0 final state are
shown. The partial-wave analysis of the π−ηη final-state is presented in chap-
ter 6. The model employed for the partial-wave analysis of the π−π0π0 final
state is motivated in section 5.1, details of the used parameterizations are given
in section 5.1.1. The quality of the partial-wave decomposition is evaluated in
section 5.2. The total intensity and the contributions of background waves are
presented in section 5.3. Sections 5.4 and 5.5 explain how intensities and phases
of individual waves are investigated in sections 5.7 to 5.13. The resonance-model
fit is explained in section 5.6, some systematics of this fit are discussed in sec-
tion 5.14. To conclude, the results for the π−π0π0 final state are compared to
those of the π−π−π+ final state in section 5.15.

5.1 Fit Model

In eq. (4.18) the total intensity is expanded into a sum over a set of partial waves.
Due to computational constraints this set needs to be truncated from a set con-
taining all possible waves to a set containing only the relevant ones. Each wave
is defined by a combination of the quantum numbers of the intermediate state X,
and the quantum numbers and isobars occurring during its decay (section 4.2).
Pomeron exchange is assumed to be the dominant production process, therefore
isospin and G-parity IG of the intermediate state X have to be equal to those of
the pion, i.e. IG = 1−. As the quantum numbers IG are the same for all waves,
they will not be stated explicitly for the waves discussed below.

A first list of isobars to include into the fit model can be created from the invari-
ant mass spectra of the two-pion subsystems of the π−π0π0 final state (fig. 5.1).
From peaks and shoulders of the distributions, six important isobars are extracted,
namely the ρ (770) and the ρ3 (1690) in the π−π0 subsystem, as well as the f0 (980),
f0 (1500), f2 (1270), and a broad (ππ)S component in the π0π0 subsystem. Isobars
decaying to π0π0 have quantum numbers IGξ = 0+, while those decaying to π−π0

have IGξ = 1+. As pions are spin-less particles, and therefore the total intrin-
sic spin S of two pions always is 0, the spin Jξ of the isobar corresponds to the
relative orbital angular momentum L′ between the two pions. The G parity of
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Figure 5.1: Invariant masses of the two-pion subsystems of the π−π0π0 final state.

the isobar is given by Gξ = (−1)L
′+S+Iξ . Isobars decaying to π0π0 need to fulfill

Gξ = (−1)Jξ = +1, and therefore need to have even spin Jξ. Similarly isobars
with an odd spin can only decay to π−π0.

Some of these isobars can also be seen in Dalitz plots for two slices of the π−π0π0

mass (figs. 5.2 and 5.3). In all three plots the band of the ρ (770) is clearly visible

at m2
π−π0 ≈ 0.6

(
GeV/c2

)2
. In fig. 5.3(b) the ρ (770) can be seen as the diagonal

band. In the slice for the higher invariant mass of the three-pion state (fig. 5.3)

also the f2 (1270) appears at m2
π0π0 ≈ 1.5

(
GeV/c2

)2
.

5.1.1 Masses and Parameterisations

The masses of the stable particles and the resonance parameters for the isobars
used in the analysis of the π−π0π0 and π−ηη final state are summarized in ta-
ble 5.1. With two exceptions the lineshapes ∆ξ (m) of the isobars are parameter-
ized by relativistic Breit-Wigner functions

∆ξ (m) =
Γ0m0

m2
0 −m2 − iΓ (m)m0

with Γ (m) = Γ0
m0

m

q F 2
L (q)

q0 F 2
L (q0)

(5.1)

with the break-up momentum q (q0) of a state with mass m (nominal mass m0)
decaying into its two daughters, and the angular-momentum barrier factors FL (q).
The intensity and the Argand diagram are shown exemplarily for the ρ (770) in
fig. 5.4.

For the f0 (980) isobar the relativistic Breit-Wigner amplitude is not well suited
as the KK decay channel opens close to the resonance mass and distorts the
lineshape. For this isobar a Flatté parameterization taking also the KK decay
into account is used
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system versus the other π−π0 subsystem for a 20 MeV/c2 wide mass
slice around the mass of the a2 (1320) for the π−π0π0 final state
(1.30 < mπ−π0π0 < 1.32 GeV/c2).
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Figure 5.3: Dalitz plots for a 20 MeV/c2 wide mass slice around the mass of the
π2 (1670) for the π−π0π0 final state (1.66 < mπ−π0π0 < 1.68 GeV/c2).
In (a) the squared invariant masses of one π−π0 subsystem versus the
other π−π0 subsystem is shown, in (b) the squared invariant masses
of one π−π0 subsystem versus the π0π0 subsystem is shown.
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particle mass(
MeV/c2

)
p+ 938.272
π− 139.57
π0 134.977
η 547.3

isobars in mass width
π−π0π0

(
MeV/c2

) (
MeV/c2

)
f0 (1500) 1500 112
ρ (770) 769.3 150.2

f2 (1270) 1275.4 185.1
ρ3 (1690) 1691 161

isobars in mass width
π−ηη

(
MeV/c2

) (
MeV/c2

)
a0 (980) 993.1 71
a0 (1450) 1474 265
a2 (1320) 1318 107
a4 (2040) 2014 361
f0 (1370) 1350 350
f0 (1500) 1500 112
f2 (1270) 1275.4 185.1
f4 (2050) 2034 222
π1 (1400) 1354 330

Table 5.1: Particle masses and resonance parameters used for the partial-wave
analysis of the π−π0π0 and π−ηη final state.
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Figure 5.4: Intensity and Argand diagram for the ρ (770) parameterized by a rel-
ativistic Breit-Wigner amplitude. The black markers in the Argand
diagram indicate equidistant points in mass apart by 20 MeV, the num-
bers indicate at which two-body mass these points are reached.
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Figure 5.5: Intensity and Argand diagram for the f0 (980) parameterized by a
Flatté amplitude [3]. The black markers in the Argand diagram indi-
cate equidistant points in mass apart by 20 MeV, the numbers indicate
at which two-body mass these points are reached.

∆ξ (m) =
1

m2
0 −m2 − i (gππρππ + gKKρKK)

with ρππ =
2 qππ
m

and ρKK =
2 qKK
m
(5.2)

with the break-up momentum qππ (qKK) of a state with mass m decaying into ππ
(KK). The parameters for the f0 (980) have been obtained in [3]

m0 = 0.965 GeV/c2 (5.3)

gππ = 0.165
(
GeV/c2

)2
(5.4)

gKK/gππ = 4.21 (5.5)

This parameterization is shown in fig. 5.5.
The relativistic Breit-Wigner is also not used for the (ππ)S amplitude. Here the

modified M -solution from [18] is used with the following modifications removing
the f0 (980), which is taken into account by separate waves, and the diagonal
entries of the M matrix

c4
11 = c4

22 = 0 (5.6)

c0
12 = c1

12 = c2
12 = c3

12 = c4
12 = 0 (5.7)

a12 = 0 (5.8)

f1
1 = f1

2 = 0 (5.9)

This parameterization is depicted in fig. 5.6.
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Figure 5.6: Intensity and Argand diagram for the (ππ)S parameterized by a mod-
ified M -solution from [18]. The black markers in the Argand diagram
indicate equidistant points in mass apart by 20 MeV, the numbers in-
dicate at which two-body mass these points are reached.

The Blatt-Weisskopf barrier factors FL (q) [26] are used with the parameteriza-
tions given in [52]

F0 (q) = 1

F1 (q) =

√
2z

z + 1

F2 (q) =

√
13z2

z2 + 3z + 9

F3 (q) =

√
277z3

z3 + 6z2 + 45z + 225

F4 (q) =

√
12 746z4

z4 + 10z3 + 135z2 + 1 575z + 11 025

F5 (q) =

√
998 881z5

z5 + 15z4 + 315z3 + 6 300z2 + 99 225z + 893 025

F6 (q) =

√
118 394 977z6

z6 + 21z5 + 630z4 + 18 900z3 + 496 125z2 + 9 823 275z + 108 056 025

with z = (q/qR)2, where q is the break-up momentum and qR = 197.3 MeV/c the
range parameter of the interaction.
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5.2 Verification of Fit Quality

5.1.2 Wave Set

Using the six isobars from above, a wave set containing 88 waves had been de-
veloped for the π−π−π+ final state [50, 11] starting from smaller wave sets of
previous analyses [15, 13, 78, 32, 44]. An initial pool of waves with all possible
combinations with spin J ≤ 6, spin projection M ≤ 1, positive reflectivity ε = +1,
and the spin Jξ of the isobar ranging from 0 to 3 was created. From these about
140 waves, those with a flat intensity spectrum over the complete mass range were
removed in an iterative procedure. Some additional waves with spin projection
M = 2 were added when the corresponding wave with M = 1 had a large inten-
sity. Seven waves with negative reflectivity were taken over from the wave sets of
previous analyses. To be able to compare the results for the π−π0π0 final state
presented here with the results for the π−π−π+ final state, the same 88 wave set
is used (table 5.2). Some of the waves are only used above a mass threshold. If
the thresholded waves are used below this threshold, unphysical large destructive
interferences between certain waves appear, distorting also the results for other
waves. The reason for this is not yet fully understood, it is assumed that the
low-mass tails of the isobar amplitudes do not have enough distinguishing power.
A more systematic approach using half-Cauchy priors to suppress the intensity in
unneeded waves [23] has meanwhile been performed for the π−π−π+ final state
[40], but suffers from the same problem. This approach in general confirms the
wave set used here, removing and adding only waves with small intensities in
particular with high spins.

The data are binned into 50 mass bins of 40 MeV/c2 width, ranging from
0.5 GeV/c2 to 2.5 GeV/c2. The bin width is limited by the mass resolution at
high masses (section 3.5.1). As the mass spectrum depends on the reduced squared
four-momentum transfer t′ (fig. 3.10 in section 3.4.4), the data was also binned
in this variable. Eight bins were created such that each t′ bin, integrated over
the analyzed mass range, contains a similar number of events (table 3.2 in sec-
tion 3.4.4).

A rank-1 fit was performed like for π−π−π+. In each of the 400 bins, 100
independent minimizations of the log-likelihood function eq. (4.44) with random
start values for the transition amplitudes were performed to find the best fit and
to avoid local minima of the log-likelihood surface.

5.2 Verification of Fit Quality

Typical tests to judge the quality of the fit directly by comparing data and the fit
result, like the chi-square test, cannot be applied due to the high dimensionality
of data. To estimate the quality of the fit and the acceptance corrections, the
fit result is used to generate distributions of various kinematic variables, and also
their correlations, that can be compared to the distributions obtained from data.
At the maximum of the log-likelihood, the expected number of events N̄ is close
to the number of observed events. Equation (4.32) is rewritten as
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wave threshold wave threshold(
GeV/c2

) (
GeV/c2

)
0−+0+ (ππ)S πS 2−+2+f2 (1270)πD
0−+0+f0 (980)πS 1.20 3++0+ (ππ)S πF
0−+0+f0 (1500)πS 1.70 3++0+ρ (770)πD
0−+0+ρ (770)πP 3++0+ρ (770)πG
0−+0+f2 (1270)πD 3++0+f2 (1270)πP 0.96
1++0+ (ππ)S πP 3++0+ρ3 (1690)πS 1.38
1++0+f0 (980)πP 1.18 3++0+ρ3 (1690)πI
1++0+ρ (770)πS 3++1+ (ππ)S πF
1++0+ρ (770)πD 3++1+ρ (770)πD
1++0+f2 (1270)πP 1.22 3++1+ρ (770)πG
1++0+f2 (1270)πF 3++1+f2 (1270)πP 1.14
1++0+ρ3 (1690)πD 3++1+ρ3 (1690)πS 1.38
1++0+ρ3 (1690)πG 3−+1+ρ (770)πF
1++1+ (ππ)S πP 1.10 3−+1+f2 (1270)πD 1.34
1++1+f0 (980)πP 1.14 4++1+ρ (770)πG
1++1+ρ (770)πS 4++1+f2 (1270)πF
1++1+ρ (770)πD 4++1+ρ3 (1690)πD 1.70
1++1+f2 (1270)πP 4++2+ρ (770)πG
1−+1+ρ (770)πP 4++2+f2 (1270)πF
2++1+ρ (770)πD 4−+0+ (ππ)S πG 1.40
2++1+f2 (1270)πP 1.00 4−+0+ρ (770)πF
2++1+ρ3 (1690)πD 0.80 4−+0+f2 (1270)πD
2++2+ρ (770)πD 4−+0+f2 (1270)πG 1.60
2++2+f2 (1270)πP 1.40 4−+1+ρ (770)πF
2−+0+ (ππ)S πD 4−+1+f2 (1270)πD
2−+0+f0 (980)πD 1.16 5++0+ (ππ)S πH
2−+0+ρ (770)πP 5++0+ρ (770)πG
2−+0+ρ (770)πF 5++0+f2 (1270)πF 0.98
2−+0+f2 (1270)πS 5++0+f2 (1270)πH
2−+0+f2 (1270)πD 5++0+ρ3 (1690)πD 1.36
2−+0+f2 (1270)πG 5++1+ (ππ)S πH
2−+0+ρ3 (1690)πP 1.00 5++1+f2 (1270)πF
2−+1+ (ππ)S πD 6++1+ρ (770)πI
2−+1+ρ (770)πP 6++1+f2 (1270)πH
2−+1+ρ (770)πF 6−+0+ (ππ)S πI
2−+1+f2 (1270)πS 1.10 6−+0+ρ (770)πH
2−+1+f2 (1270)πD 6−+0+f2 (1270)πG
2−+1+ρ3 (1690)πP 1.30 6−+0+ρ3 (1690)πF
2−+2+ρ (770)πP 6−+1+ (ππ)S πI
2−+2+f2 (1270)πS 6−+1+ρ (770)πH

1++1−ρ (770)πS 2++0−f2 (1270)πP 1.18
1−+0−ρ (770)πP 2++1−f2 (1270)πP 1.30
1−+1−ρ (770)πP 2−+1−f2 (1270)πS
2++0−ρ (770)πD

Table 5.2: The 88 waves contained in the wave set from [50, 11]. The flat wave is
omitted.
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N̄ =

∫
dΦn (τ) I (τ) η (τ) (5.10)

=
VΦn

Ngen
MC

Nacc
MC∑
e

I (τacc
e ) (5.11)

This equation indicates that each accepted Monte Carlo event can be weighted
with an individual weight w (τacc

e ) to get the total number of events. Inserting the
total partial-wave intensity eq. (4.45) yields

w (τacc
e ) =

VΦn

Ngen
MC

I (τacc
e ) (5.12)

=
VΦn

Ngen
MC

1

VΦn

∑
ε=±1

Nε
rank∑
r

∣∣∣∣∣∣
Nε

waves∑
i

T
r ε
i ψ

ε
i (τacc

e )

∣∣∣∣∣∣
2

+ T
2
flat

 (5.13)

=
1

Ngen
MC

∑
ε=±1

Nε
rank∑
r

∣∣∣∣∣∣
Nε

waves∑
i

T
r ε
i ψ

ε
i (τacc

e )

∣∣∣∣∣∣
2

+ T
2
flat

 (5.14)

Like the log-likelihood eq. (4.44) the weights do not require an evaluation of the
phase-space volume VΦn .

The kinematic distributions of a single wave i with reflectivity ε in rank r can
be obtained by applying the weight

wr εi (τacc
e ) =

1

Ngen
MC

∣∣∣T r εi ψεi (τacc
e )

∣∣∣2 (5.15)

As for the elements of the spin-density matrix (section 4.5), it is possible to cal-
culate the weights for any sub-set of waves. These weights could for example be
used to find out which parts of the phase space are illuminated by a particular
combination of waves.

Histograms are filled with kinematic information calculated from the accepted
Monte Carlo events, where each entry is weighted with w (τacc

e ). These distri-
butions are directly comparable to the corresponding ones from real data. This
procedure is called kinematic validation.

By construction, the three-pion invariant mass spectra shown in fig. 5.7 agree
perfectly between real data and weighted Monte Carlo. Some differences are seen
in the mass spectra of the two-pion subsystems (figs. 5.8 and 5.9) pointing to a
non-perfect description of the isobars. In particular in the low-mass region below
about 0.6 GeV/c2 some deviations are visible which might also caused by the
indistinguishability of the isobars by only their low-mass tails. In the highest t′

bin a tiny contamination of the π0π0 spectrum for real data with K0
S can be seen

(fig. 5.9(b)), but this should not distort the result.
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Figure 5.7: Three-pion invariant mass mπ−π0π0 spectra for (a) the lowest and (b)
the highest t′ bin. Real data are shown in black, the distribution
obtained from weighted Monte Carlo is shown in red.
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Figure 5.8: Two-pion invariant mass spectra mπ−π0 for the charged π−π0 sub-
systems of the three-pion final state for (a) the lowest and (b) the
highest t′ bin. Real data are shown in black, the distribution obtained
from weighted Monte Carlo is shown in red.
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Figure 5.9: Two-pion invariant mass spectra mπ0π0 for the neutral π0π0 sub-
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highest t′ bin. Real data are shown in black, the distribution obtained
from weighted Monte Carlo is shown in red.

A comparison of the angles depending on mπ−π0π0 and t′ is shown in figs. 5.10
and 5.11 for the π0π0 system. For the two central mass ranges from 1.02 to
1.98 GeV/c2 a good agreement between real data and weighted Monte Carlo data
is found for the four angles used in the partial-wave analysis. The ratio in the
lowest and highest mass range is distorted by the regions with only a few entries,
outside these region a good agreement is found.
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Figure 5.10: Distribution of events in the angles of the Gottfried-Jackson sys-
tem for neutral isobars for real data, and the ratio of real data over
weighted Monte Carlo.
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Figure 5.11: Distribution of events in the angles of the helicity frame for neutral
isobars for real data, and the ratio of real data over weighted Monte
Carlo.

75



Chapter 5 Partial-Wave Analysis of the π−π0π0 Final State

5.3 Total Intensities and Spin Totals

The total intensities of the fit obtained with eq. (4.50) are shown in fig. 5.12. They
can be understood as acceptance corrected versions of the mass spectra shown in
figs. 3.10 and 3.12(a). The change of the mass spectrum below 1.3 GeV/c2 with
the reduced squared four-momentum transfer t′, which lead to the binning in t′

mentioned in section 3.4.4, is also visible in these plots.
Using eq. (4.54) the intensity of a set of waves can be calculated. The intensities

for sets of waves containing all waves with the same quantum numbers JPC , M or
ε, or a combination thereof, are called spin totals. In these spin totals, interference
effects between waves are considered. In contrast to this, the t′-summed intensity
is obtained by incoherently summing the results obtained in the eight t′ bins.

There are two kinds of waves that are considered to not contain resonant con-
tributions. The first is the flat wave (fig. 5.13). The contribution of the flat wave
to the total intensity increases from 0.4 % in the lowest t′ bin to 3.1 % in the
highest t′ bin. Averaged over all eight t′ bins, the contribution of the flat wave is
1 %. The second kind of waves are those with negative reflectivity (fig. 5.14). The
contribution of the ε = −1 spin totals to the total intensity increases from 1.6 %
in the lowest t′ bin to 3.2 % in the highest t′ bin. Averaged over all eight t′ bins,
the contribution is 2 %.

Table 5.3 lists the relative contributions of several spin totals to the total in-
tensity in the lowest and the highest t′ bin, and averaged over all t′ bins. The
first set of spin totals are for waves with positive reflectivity that have the same
JPC quantum numbers, but differ in the decay chain, i.e. in the isobar or in the
relative orbital angular momentum between the isobar and the bachelor pion. Due
to interference effects these relative contributions do not sum up to the relative
contribution of all waves with positive reflectivity. But, as waves with different
reflectivities do not interfere, the sum of the relative contributions of all waves
with positive reflectivity, all waves with negative reflectivity, and of the flat wave
have to sum up to 100 %.

The contributions of the various JPC components with positive reflectivity to
the total intensity change quite drastically with t′. The JPC = 1++ sector with a1-
like quantum numbers is dominant in all t′ bins. However, its relative contribution
to the total intensity decreases from 60 %, which is four times larger than the
second largest contribution in the lowest t′ bin, to 28 % in the highest t′ bin,
which is comparable to the two next smaller contributions. The shape of the
JPC = 1++, ε = + spin total (fig. 5.15) suggests that the intensity on the low-
mass side of the peak at 1.3 GeV/c2 in figs. 3.10, 3.12(a) and 5.12 can to a large
extend be attributed to the a1 sector. Accordingly, the position of the peak moves
from about 1.1 GeV/c2 at low t′ to 1.3 GeV/c2 at high t′. Such a behavior is a
priori not expected for genuine resonances and suggests a strong interference of
the resonant components with possible non-resonant contributions. At the same
time the shape of other spin totals, like e.g. the JPC = 2++ (a2-like, fig. 5.16) or
the JPC = 2−+ (π2-like, fig. 5.17), does not change with t′.
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Figure 5.12: Total intensity of the fit in (a) the lowest and (b) the highest t′ bin,
and (c) the t′-summed total intensity.
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The fraction of the intensity of the flat wave with respect to the total
intensity is given in the upper right corner of the plots.
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reflectivity with respect to the total intensity is given in the upper
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wave lowest t′ bin highest t′ bin average over t′ bins

JPC = 0−+, ε = + 10.3 % 4.5 % 6.5 %
JPC = 1++, ε = + 60.0 % 27.8 % 49.8 %
JPC = 1−+, ε = + 0.9 % 1.0 % 1.0 %
JPC = 2++, ε = + 4.9 % 23.7 % 11.3 %
JPC = 2−+, ε = + 14.1 % 22.6 % 18.0 %
JPC = 3++, ε = + 3.9 % 5.7 % 4.5 %
JPC = 3−+, ε = + 0.1 % 0.2 % 0.1 %
JPC = 4++, ε = + 0.6 % 1.8 % 1.1 %
JPC = 4−+, ε = + 1.4 % 3.6 % 2.4 %
JPC = 5++, ε = + 0.7 % 0.7 % 0.8 %
JPC = 6++, ε = + 0.1 % 0.2 % 0.1 %
JPC = 6−+, ε = + 1.0 % 1.9 % 1.5 %

positive reflectivity 98.0 % 93.7 % 97.1 %

negative reflectivity 1.6 % 3.2 % 2.0 %

flat 0.4 % 3.1 % 0.9 %

Table 5.3: Relative contributions of spin totals with respect to the total intensity.
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Figure 5.15: Spin total for waves with positive reflectivity and quantum numbers
JPC = 1++ for (a) the lowest and (b) the highest t′ bin.
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Figure 5.16: Spin total for waves with positive reflectivity and quantum numbers
JPC = 2++ for (a) the lowest and (b) the highest t′ bin.
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Figure 5.17: Spin total for waves with positive reflectivity and quantum numbers
JPC = 2−+ for (a) the lowest and (b) the highest t′ bin.
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5.4 Individual Partial-Wave Intensities

The intensities of selected individual waves are discussed below (sections 5.7
to 5.13). All waves used in the resonance-model fit (section 5.6) are shown. In
addition, for some of these waves the partners with higher spin projection M or
with the isospin partners of the isobars are also shown. The three waves with the
largest intensities correspond to the wave with the highest intensity in each of the
three JPC sectors mentioned above (1++, 2++, 2−+).

The t′ dependence of the intensity spectra is studied in mass ranges around well
known resonances. For each t′ bin the intensity spectrum of a wave is integrated
over a certain mass range, and this integral is plotted as a function of the t′ bin.
The obtained t′-dependent intensity spectra are exemplarily shown in fig. 5.23 for
waves with JPC = 1++. A χ2-fit to the t′-dependent intensity spectra has been
performed with the function

C · t′Me−b·t′ (5.16)

where the slope parameter b and a constant C are optimized such that the integral
of the function over each t′ bin agrees with the measured intensity in each t′ bin.
To be insensitive to changes in the production mechanism, the highest t′ bin has
been excluded from this fit, as it covers a rather large range of the reduced squared
four-momentum transfer. The results of these fits are summarized in table 5.4,
the corresponding plots can be found in sections 5.7 to 5.13.

5.5 Phases

The presence of a resonance in a specific wave cannot be concluded from the
observation of a peak in the intensity spectrum alone, but needs to be confirmed
by an accompanying phase motion of 90◦ at the mass value of the peak, and a
phase motion of 180◦ over the complete mass range from m = 0 to m → ∞ (as
can be seen in the Argand diagram of a relativistic Breit-Wigner as shown in
fig. 5.4). As absolute phases cannot be measured, the relative phases between two
waves have to be studied. A phase difference of 180◦ is observed only in the ideal
case of a resonance in one wave and no resonance in the second wave. If both
waves contain the same resonance, their phase difference is constant. If the two
waves contain two different resonances with different masses, the resulting phase
difference should be visible in the mass region where the two overlap. Selected
phase are shown in sections 5.7 to 5.13.

5.6 Resonance-Model Fit

Resonance parameters are extracted in the second step of the partial-wave analysis.
The mass-dependence of the spin-density matrix elements, extracted by the mass-
independent analysis, is described with a resonance model.
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wave mass range slope χ2/ndf(
GeV/c2

) (
(GeV/c)−2

)
Major waves

1++0+f2 (1270)πP 1.66 - 1.90 6.7± 0.6 2.51
1++0+ρ (770)πS 1.10 - 1.30 10.9± 0.0 8.45
1++1+ρ (770)πS 1.10 - 1.30 16.1± 0.2 1.75
1−+1+ρ (770)πP 1.50 - 1.70 9.7± 0.3 1.30
2++1+f2 (1270)πP 1.18 - 1.42 7.6± 0.5 3.03
2++1+ρ (770)πD 1.18 - 1.42 8.3± 0.1 2.14
2++2+ρ (770)πD 1.18 - 1.42 9.6± 0.3 0.98
2−+0+f2 (1270)πS 1.54 - 1.78 8.5± 0.1 2.26
2−+1+f2 (1270)πS 1.54 - 1.78 7.4± 0.2 2.06
2−+0+f2 (1270)πD 1.78 - 2.02 7.5± 0.3 1.02
2−+0+ρ (770)πF 1.54 - 1.78 8.7± 0.2 1.70
2−+0+ρ (770)πF 1.78 - 2.02 6.3± 0.2 0.74
4++1+f2 (1270)πF 1.86 - 2.06 10.8± 0.5 1.13
4++1+ρ (770)πG 1.86 - 2.06 8.9± 0.2 0.25

Waves with f0 (980) isobar
0−+0+f0 (980)πS 1.70 - 1.90 10.8± 0.3 0.47
1++0+f0 (980)πP 1.38 - 1.58 11.2± 0.7 1.51
2−+0+f0 (980)πD 1.54 - 1.78 6.6± 0.7 0.75
2−+0+f0 (980)πD 1.78 - 2.02 6.7± 0.6 0.54

Waves with (ππ)S isobar
0−+0+ (ππ)S πS 1.10 - 1.30 19.5± 0.5 7.13
0−+0+ (ππ)S πS 1.70 - 1.90 12.2± 0.3 0.35
1++0+ (ππ)S πP 1.10 - 1.30 13.2± 0.2 5.99
2−+0+ (ππ)S πD 1.54 - 1.78 9.6± 0.3 1.15

Table 5.4: Slopes of the t′ spectra of various waves.
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5.6 Resonance-Model Fit

With the ansatz chosen for the mass-independent fit, the transition amplitudes
absorb the factors of the cross-section formula eq. (4.10) that are assumed to be
constant within one bin of the invariant mass of the final state m and the reduced
squared four-momentum transfer t′√

m

|~pa|2 s
A (s, t;m) (5.17)

Here A (s, t;m) is the scattering amplitude for the process π− + p+ → X− + p+.
For a fixed-target experiment with a fixed beam energy the terms |~pa|2 and s are
constant. The transition amplitudes are parametrized by a sum of model com-
ponents Aεi,k (m, t′; ζk) representing resonant or non-resonant contributions. The
strength of each model component is given by a possibly t′-dependent complex-
valued coupling Cr εi,k (t′). The index i denotes a wave, while the index k runs over
the model components that are used to describe this wave

T̂ r εi
(
m, t′

)
=

√
m

|~pa|2 s
A (s, t;m)

Nr ε
i,comp∑
k

Cr εi,k
(
t′
)
Aεi,k

(
m, t′; ζk

)
(5.18)

The transition amplitudes T̂ r εi (m, t′) are functions of the binning variables m
and t′. Additional parameters of the mass-dependent amplitudes Aεi,k (m, t′; ζk),
as for example resonance mass and width, are represented by ζk. Applying the
same normalization to the transition amplitudes as used in the mass-independent
analysis (eq. (4.41) in section 4.4) yields

T̂
r ε

i

(
m, t′

)
=

√
m

|~pa|2 s
A (s, t;m)

√
Pεii (m)

Nr ε
i,comp∑
k

Cr εi,k
(
t′
)
Aεi,k

(
m, t′; ζk

)
(5.19)

With the transition amplitudes the spin-density matrix can be calculated

ρ̂
ε
ij

(
m, t′

)
=

Nε
rank∑
r

T̂
r ε∗
j

(
m, t′

)
T̂
r ε

i

(
m, t′

)
(5.20)

=
m

|~pa|2 s
|A (s, t;m)|2

√
Pεjj (m)Pεii (m)

×

Nr ε
j,comp∑
k

Cr εj,k
(
t′
)
Aεj,k

(
m, t′; ζk

)∗Nr ε
i,comp∑
k

Cr εi,k
(
t′
)
Aεi,k

(
m, t′; ζk

)
(5.21)

Five different mass-dependent amplitudes Aεi,k (m, t′; ζk) are used, three param-
eterizations for the resonant contributions and two different parameterizations for
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Chapter 5 Partial-Wave Analysis of the π−π0π0 Final State

the background terms. The resonant contributions are parameterized with Breit-
Wigner amplitudes. The simple constant-width Breit-Wigner is used for most
resonant contributions

Aεi,k
(
m, t′;m0,Γ0

)
=

Γ0m0

m2
0 −m2 − iΓ0m0

(5.22)

Resonant contributions with a large intensity are described by Breit-Wigner func-
tions with a mass-dependent width

Aεi,k
(
m, t′;m0,Γ0

)
=

Γ0m0

m2
0 −m2 − iΓ (m)m0

(5.23)

The dynamic width Γ (m) can be parameterized in two different ways. The first
option is based on a quasi-two-body assumption for the three-body decay and sums
the two-body phase-space contributions of the decay channels of the resonance

Γ (m) = Γ0
m0

m

Nchan∑
c

bc
qc F

2
L (qc)

q0 c F 2
L (q0 c)

(5.24)

This parameterization is used to describe the a2 (1320) in the fit presented below
taking into account the branching into b1 = 80 % ρ (770)πD and b2 = 20 % ηπ−D
[65]. The second option uses the three-body phase-space integral over the decay
amplitudes

Γ (m) = Γ0

Nchan∑
c

bc
Pεcc (m)

Pεcc (m0)
(5.25)

The phase-space integrals Pεcc =
∫

dΦn (τ) |ψεc |
2 are equal to the ones used in

the mass-independent partial-wave analysis (section 4.4 and eq. (4.38)). This
parameterization is used to describe the a1 (1260) [27]. Only the branching to
ρ (770)πS is taken into account. It includes the effect of the finite isobar width
and correctly takes sub-threshold behavior into account. For masses far from
threshold the two ways to describe the dynamic width become equivalent, as
q · F 2

L (q) ≈ m · Pεcc (m). For all three different ways to parameterize the Breit-
Wigner amplitude, Γ0 and m0 are the free parameters.

The parameterizations for the background are based on exponentials of the
squared phase-space integral over the decay amplitude. The simple background
parameterization is

Aεi,k
(
m, t′; c0

)
= exp

[
−c0

(
mPεii (m)

mn Pεii (mn)

)2
]

(5.26)

This formula has only one free parameter c0. mn is an arbitrary mass at which
the ratio is normalized, in the following the center of the highest mass bin is used.
The t′-dependent background parameterization is
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5.6 Resonance-Model Fit

Aεi,k
(
m, t′;m0, c0, c1, c2, c3

)
= (m−m0)c0 exp

(
−
(
c1 + c2t

′ + c3t
′2)( mPεii (m)

mn Pεii (mn)

)2
)

(5.27)

This parameterization contains five free parameters, m0, c0, c1, c2, and c3. In the
following m0 is fixed to 0.5 GeV/c2.

To be able to evaluate the elements of the spin-density matrix in eq. (5.21),
the scattering amplitude A (s, t;m) for the production of the intermediate state
X, and the phase-space volume VΦ3 (m) in the phase-space integrals Pεii need
to be calculated. The norm |A (s, t;m)|2 of the scattering amplitude eq. (4.9) is
integrated over the analyzed range of the reduced squared four-momentum transfer

t′ from 0.1 to 1.0 (GeV/c)2 using Fc (t′) = exp
[
−5 (GeV/c)−2 t′

]
, α0 = 1.1 and

α′ = 0.25 (GeV/c)−2 [71] so that

|A (s, t;m)|2 =

(
35.8 GeV/c2

m

)3.47

−
(

23.1 GeV/c2

m

)3.84

(5.28)

The phase-space volume VΦ3 (m) (fig. 5.18) is evaluated using the methods of
reference [57]. It is parameterized as

VΦ3 (m) = 3.25 ·10−5−1.86 ·10−4m+2.81 ·10−4m2−6.54 ·10−5m3 +1.05 ·10−5m4

(5.29)
for the π−π0π0 final state, and for the π−ηη final state as

VΦ3 (m) = 4.44 ·10−4−7.87 ·10−4m+4.08 ·10−4m2−5.55 ·10−5m3 +4.41 ·10−6m4

(5.30)
In both cases m needs to be given in units of GeV/c2.

These factors are shown exemplarily for the 1++0+ρ (770)πS wave and the
2++1+ρ (770)πD wave in fig. 5.19. The red curves show the product of the norm of
the production amplitude with the phase-space volume m |A (s, t;m)|2 VΦ3 , which
is equal for the two waves. The blue curves represent the phase-space integral
Pii (m) divided by the phase-space volume VΦ3 . The black curves show the full
product m |A (s, t;m)|2 Pεii (m) applied onto the diagonal elements of the spin-
density matrix corresponding to the two waves.

The coupling constants
{
Cr εi,k

}
and the parameters {ζk} of the mass-dependent

amplitudes are determined using a least-square fit with the χ2 definition
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Figure 5.18: Phase-space volume as a function of the final-state mass for (a) the
π−π0π0 and (b) the π−ηη final state.
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Figure 5.19: Final-state mass dependence of the partial-wave intensity for (a) the
1++0+ρ (770)πS and (b) the 2++1+ρ (770)πD wave. See text for
details.
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5.6 Resonance-Model Fit

χ2 =
m bins∑
m

t′ bins∑
t′

Nε
waves∑
i,j≥i[

ρ̂
ε
ij

(
m, t′

)
− ρεij

(
m, t′

)]T [
Covij

(
m, t′

)]−1
[
ρ̂
ε
ij

(
m, t′

)
− ρεij

(
m, t′

)]
(5.31)

where the covariance matrix Covij (m, t′) for one spin-density matrix element has
to be calculated from the covariance matrix of the transition amplitudes T

r ε
i from

the mass-independent fit.
Of the 88 waves used in the mass-independent fit, 14 waves are selected for the

resonance-model fit (table 5.5). The model for the analysis of the π−π−π+ final
state [75] was used a starting point, the differences are motivated in section 5.14.
The resonances are described using Breit-Wigner amplitudes with different param-
eterizations for the width. With two exceptions constant widths Breit-Wigners
(eq. (5.22)) are used. The a2 (1320) is parameterized using a dynamic width as-
suming a quasi-two-body decay (eq. (5.23) with eq. (5.24)), the a1 (1260) using a
dynamic width taking into account the isobar width (eq. (5.23) with eq. (5.25)).
Each wave also contains one non-resonant part. The t′-dependent background
amplitude of eq. (5.27) is used for the description of the transition amplitudes of
the three waves with the highest intensities, 1++0+ρ (770)πS, 2++1+ρ (770)πD,
and 2−+0+f2 (1270)πS. Also in two of the smaller waves, the 1−+1+ρ (770)πP
and 2−+0+ρ (770)πF waves, the t′-dependent background amplitude is employed.
For all the other waves the simple exponential background of eq. (5.26) is used.

The results of the resonance-model fit are summarized in table 5.6. Errors are
omitted from this table as the statistical uncertainties are much smaller than the
systematic ones. A full treatment of the systematic errors as performed in [75] for
the π−π−π+ final state has not yet been done for the π−π0π0 final state. Res-
olution effects from the spectrometer (section 3.5.1), that might have a sizable
effect in particular for the widths of narrow resonances, are not unfolded. The
results for the individual waves are shown below (sections 5.7 to 5.13), for ex-
ample in fig. 5.20(a). The red curve corresponds to the t′-summed intensity of
the resonance-model fit in that wave. The blue curves show the intensities of the
resonant contributions, and the cyan curve that of the non-resonant contribution.
Depending on the number of resonances in the wave, there are one to three blue
curves. For phases, e.g. in fig. 5.35(a), the red curve shows the resonance-model.
In all plots, full curves indicate the fitted mass ranges, and dashed curves the
extrapolation of the model over the complete mass range.

87



Chapter 5 Partial-Wave Analysis of the π−π0π0 Final State

wave mass range resonances(
GeV/c2

)
0−+0+f0 (980)πS 1.22 - 2.30 π (1800)

1++0+f0 (980)πP 1.30 - 1.70 a1 (1420)
1++0+f2 (1270)πP 1.42 - 2.10 a1 (1260), a1 (1640)
1++0+ρ (770)πS 0.90 - 2.30 a1 (1260), a1 (1640)

1−+1+ρ (770)πP 0.90 - 1.98 π1 (1600)

2++1+f2 (1270)πP 1.02 - 1.98 a2 (1320), a2 (1700)
2++1+ρ (770)πD 0.90 - 1.98 a2 (1320), a2 (1700)
2++2+ρ (770)πD 1.02 - 1.98 a2 (1320), a2 (1700)

2−+0+f2 (1270)πS 1.42 - 2.30 π2 (1670), π2 (1880)
2−+0+f2 (1270)πD 1.62 - 2.30 π2 (1670), π2 (1880)
2−+0+ρ (770)πF 1.22 - 2.10 π2 (1670), π2 (1880)
2−+1+f2 (1270)πS 1.42 - 2.30 π2 (1670), π2 (1880)

4++1+f2 (1270)πF 1.26 - 2.30 a4 (2040)
4++1+ρ (770)πG 1.42 - 2.30 a4 (2040)

Table 5.5: List of waves used in the resonance-model fit. The waves are only fitted
in limited mass ranges. The resonances used to describe each wave are
also listed.

resonance mass width(
MeV/c2

) (
MeV/c2

)
a1 (1260) 1293 410
a1 (1420) 1414 197
a1 (1640) 1538 713

a2 (1320) 1313 117
a2 (1700) 1670 428

a4 (2040) 1938 362

π (1800) 1793 227

π1 (1600) 1550 435

π2 (1670) 1651 256
π2 (1880) 1886 347

Table 5.6: Resonance parameters extracted by the resonance-model fit. Errors
are not given as the statistical uncertainties are much smaller than the
systematic ones.
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Figure 5.20: Intensities of the 1++0+ρ (770)πS wave in (a) the lowest and (b) the
highest t′ bin. The shaded areas correspond to the regions integrated
over for the t′ spectra.

5.7 The JPC = 1++ Sector

The wave with the overall largest intensity is the 1++0+ρ (770)πS wave (figs. 5.20
and 5.21(a)). Averaged over t′ it contributes about 41 % to the total intensity
(51 % in the lowest, 20 % in the highest t′ bin). In this wave the a1 (1260) is
expected to appear. Further excited states like the a1 (1640) have been observed
by previous experiments, but are not fully established. As this wave dominates the
intensity in the JPC = 1++ sector, the same features are visible as in fig. 5.15. The
shape of the peak structure changes with t′ and the position of its maximum moves
from 1.1 GeV/c2 at low t′ to 1.3 GeV/c2 at high t′. At the same time the peak
is getting more symmetric towards higher t′. Such a behavior is not expected
for a pure resonance, whose shape should not at all depend on t′, but points
to a t′-dependent interference of resonant and non-resonant contributions. The
1++1+ρ (770)πS wave with spin projection M = 1 behaves similarly (fig. 5.21(b)).
Only the high-mass shoulder at 1.8 GeV/c2 is more pronounced in the M = 1 wave
compared to the one with M = 0. The intensity of the M = 1 wave is about one
order of magnitude smaller than the M = 0 wave. This is in agreement with
observations made for the π−π−π+ final state [11].

A peak at 1.3 GeV/c2 is also visible for other decay modes with different isobars
and different relative orbital angular momenta between the isobar and the bachelor
pion. Figure 5.22(a) shows the intensity of the 1++0+ (ππ)S πP wave. As already
for the 1++1+ρ (770)πS wave a shoulder on the high-mass side of the peak is
visible.

For the decay via the f2 (1270) isobar (1++0+f2 (1270)πP wave, fig. 5.22(b))
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Figure 5.21: t′-summed intensities of the 1++M+ρ (770)πS waves with (a) M = 0
and (b) M = 1. The shaded areas correspond to the regions inte-
grated over for the t′ spectra.
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5.7 The JPC = 1++ Sector

this high-mass shoulder is even more prominent. Due to the mass threshold of
1.22 GeV/c2 applied for this wave, the intensity only starts at the position of the
peak in the other waves. Basically from the threshold onwards, the intensity de-
creases with a sharp drop reaching a local minimum around a mass of 1.45 GeV/c2.
The intensity then starts growing again, which might be interpreted as the con-
tribution of a second a1 resonance at about 1.7 GeV/c2.

For the analysis of the t′ dependence of the partial-wave intensities the intensity
spectra are integrated over mass ranges containing the a1 (1260) and a1 (1640). For
the a1 (1260), the intensity distribution of the 1++0+ρ (770)πS, 1++1+ρ (770)πS,
and 1++0+ (ππ)S πP waves are integrated for all t′ bins between 1.1 and 1.3 GeV/c2

(fig. 5.23). The slopes of the t′ spectra (eq. (5.16)) range from about 11 to
16 (GeV/c)−2. This is a bit higher than the around 8 (GeV/c)−2 expected for
Pomeron exchange, again supporting the idea of important non-resonant contri-
butions. The intensity measured in the 1++0+f2 (1270)πP wave is integrated be-
tween 1.66 and 1.9 GeV/c2 where a bump that might correspond to the a1 (1640)
is observed. The slope of about 7 (GeV/c)−2 supports the interpretation of this
bump being caused be a resonant contribution to this wave.

Resonance parameters for two resonances, the a1 (1260) and the a1 (1640), are
determined by the resonance-model fit (table 5.6). According to the fit, the
a1 (1260) has a mass of 1293 MeV/c2 and a width of 410 MeV/c2. The higher-
lying state a1 (1640) has a mass of 1538 MeV/c2 and a width of 713 MeV/c2.

The resonance-model fit supports the expectation that the 1++0+ρ (770)πS
wave contains a large non-resonant component that strongly depends on t′ (cyan
line in fig. 5.20, compared to the resonant contributions in blue). A possible
contribution to the non-resonant component in this wave is the Deck effect [36].
It describes a process in which the incoming pion produces a two-pion resonance
and a virtual pion, this virtual pion is then made real by scattering off a target.
This reaction also produces the three-pion final state, but not via a three-pion
resonance. In [28] it is suggested that the Deck effect can describe the intensity
and phases observed in the 1++0+ρ (770)πS wave to a large extend. This could
explain why the components used in the resonance model (section 5.6), which are
aimed at resonances in the three-pion state, cannot fully describe the peak region
of the 1++0+ρ (770)πS wave in figs. 5.20 and 5.21(a).

91



Chapter 5 Partial-Wave Analysis of the π−π0π0 Final State

)2t' ((GeV/c)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)2
in

te
ns

ity
 (

pe
r 

(G
eV

/c
)

610

710

810

 t'2− 0.0) (GeV/c)±(10.9 −e
/NDF = 42.3 / 52χ

 Sπ(770) ρ +0++1
2 < 1.30 GeV/c0π0π−π1.10 < m

(a) 1++0+ρ (770)πS

)2t' ((GeV/c)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)2
in

te
ns

ity
 (

pe
r 

(G
eV

/c
)

510

610

710
 t'2− 0.2) (GeV/c)±(16.1 − et'

/NDF = 8.7 / 52χ

 Sπ(770) ρ +1++1
2 < 1.30 GeV/c0π0π−π1.10 < m

(b) 1++1+ρ (770)πS

)2t' ((GeV/c)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)2
in

te
ns

ity
 (

pe
r 

(G
eV

/c
)

510

610

710
 t'2− 0.2) (GeV/c)±(13.2 −e

/NDF = 30.0 / 52χ

 Pπ 
S

)ππ (+0++1
2 < 1.30 GeV/c0π0π−π1.10 < m

(c) 1++0+ (ππ)S πP

)2t' ((GeV/c)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)2
in

te
ns

ity
 (

pe
r 

(G
eV

/c
)

410

510

 t'2− 0.6) (GeV/c)±(6.7 −e
/NDF = 12.6 / 52χ

 Pπ(1270) 2 f+0++1
2 < 1.90 GeV/c0π0π−π1.66 < m

(d) 1++0+f2 (1270)πP

Figure 5.23: t′ spectra of (a) the 1++0+ρ (770)πS, (b) the 1++1+ρ (770)πS, (c)
the 1++0+ (ππ)S πP , and (d) the 1++0+f2 (1270)πP waves obtained
by integrating the respective mass distributions in the ranges high-
lighted in figs. 5.20 to 5.22. The single-exponential fit is shown with
the solid red line, the extrapolation to the whole range is shown by
the dashed line.
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Figure 5.24: Intensities of the 2++1+ρ (770)πD wave in (a) the lowest and (b) the
highest t′ bin. The shaded areas correspond to the regions integrated
over for the t′ spectra.

5.8 The JPC = 2++ Sector

The wave with the overall second largest intensity is the 2++1+ρ (770)πD wave
(figs. 5.24 and 5.25(a)). Averaged over t′ it contributes about 10 % of the total in-
tensity (4.3 % in the lowest, 20 % in the highest t′ bin). In this wave the a2 (1320)
is expected. Further states like the a2 (1700) have been seen by previous experi-
ments, but are again not well established. The intensity of the 2++1+ρ (770)πD
wave increases with t′, while at the same time the shape stays constant. When
increasing the spin projection from M = 1 to M = 2 (2++2+ρ (770)πD wave,
fig. 5.25(b)) the intensity decreases by about a factor of 25. A similar decrease
is found in the π−π−π+ and π−η final states [11, 10]. The high-mass side of the
peak at 1.3 GeV/c2 falls steeper in the M = 2 wave compared to the M = 1 wave.

In contrast, the 2++1+f2 (1270)πP wave appears to have a steeper low-mass
side of the peak at 1.3 GeV/c2. This might be caused by the phase space, which for
the decay via the heavier f2 (1270) isobar opens only at higher masses compared
to the ρ (770) isobar. At the high-mass side a shoulder is visible pointing towards
an a2 (1700).

The intensity spectra of all three waves are integrated over the mπ−π0π0 region
around the mass of the a2 (1320). The slopes of the resulting t′ spectra scat-
ter around the expected value for Pomeron exchange of 8 (GeV/c)−2, which is a
strong indication for a clean resonance signal. As expected for a resonance, the t′

dependence is similar for the various decay channels.

This is confirmed by the resonance-model fit. The resonant component for
the a2 (1320) (eq. (5.23) with eq. (5.24)) is able to describe the intensity spec-
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Figure 5.25: t′-summed intensities of the 2++M+ρ (770)πS waves with (a) M = 1
and (b) M = 2. The shaded areas correspond to the regions inte-
grated over for the t′ spectra.
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Figure 5.26: t′-summed intensity of the 2++1+f2 (1270)πP wave. The shaded area
corresponds to the region integrated over for the t′ spectrum.
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Figure 5.27: t′ spectra of (a) the 2++1+ρ (770)πD, (b) the 2++2+ρ (770)πD, and
(c) the 2++1+f2 (1270)πP waves obtained by integrating the respec-
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The single-exponential fit is shown with the solid red line, the extrap-
olation to the whole range is shown by the dashed line.
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tra and phases in this mass region basically on its own. The extracted mass of
this resonance is 1313 MeV/c2, its width is 117 MeV/c2. In the two waves de-
caying via the ρ (770) isobar the additional a2 (1700) is hardly visible, but in the
2++1+f2 (1270)πP wave it is important to describe the high-mass region. Its mass
is 1670 MeV/c2, the width 428 MeV/c2. The very clean signal of the a2 (1320) in
particular in the 2++1+ρ (770)πD wave also guarantees a stable interferometer
against which other resonances can be measured. This is further supported by
the very small statistical errors of the Breit-Wigner parameters for the a2 (1320),
which are at least an order of magnitude smaller than for the other resonances.
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Figure 5.28: Intensities of the 2−+0+f2 (1270)πS wave in (a) the lowest and (b)
the highest t′ bin. The shaded areas correspond to the regions inte-
grated over for the t′ spectra.

5.9 The JPC = 2−+ Sector

The wave with the overall third largest intensity is the 2−+0+f2 (1270)πS wave
(figs. 5.28 and 5.29(a)). Averaged over t′ it contributes about 3.4 % of the total in-
tensity (3.3 % in the lowest, 3.0 % in the highest t′ bin). In this wave, the π2 (1670)
and π2 (1880) are well-established states. Further states like the π2 (2005) have
been claimed by previous experiments, but require confirmation. The shape of this
wave changes only slightly depending on t′. The 2−+1+f2 (1270)πS wave with the
higher spin projection M = 1 (fig. 5.29(b)) is missing the shoulder of the π2 (1670)
peak at a mass of around 2.1 GeV/c2 visible in the M = 0 wave. Compared to
the M = 0 wave the intensity of the M = 1 wave is reduced by about a factor 6
similar to what is observed in the π−π−π+ final state [11].

The intensity spectrum of the wave with a relative orbital angular momentum
of L = 2 between the isobar and the bachelor pion (2−+0+f2 (1270)πD wave,
fig. 5.30(a)) has a peak at about 1.8 GeV/c2 that is shifted by 200 MeV/c2 to-
wards higher masses compared to the decay with L = 0. Also the intensity of
the 2−+0+ρ (770)πF wave (fig. 5.30(b)) exhibits a shoulder at about 1.8 GeV/c2,
which might be attributed to the π2 (1880). In contrast, the two waves with a
spin-0 isobar (2−+0+f0 (980)πD and 2−+0+ (ππ)S πD waves, fig. 5.31) have a lo-
cal minimum at that mass. This might be caused by destructive interference of
two resonant components.

The intensity spectra of various JPC = 2−+ waves feature two bumps. The
two best known resonances in this sector are the π2 (1670) and π2 (1880). The
intensity spectra are integrated over the corresponding mass ranges if they show
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Figure 5.29: t′-summed intensities of the 2−+M+f2 (1270)πS wave with (a) M =
0 and (b) M = 1. The shaded areas correspond to the regions inte-
grated over for the t′ spectra.
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Figure 5.30: t′-summed intensities of 2−+0+ waves with (a) f2 (1270)πD and (b)
ρ (770)πF . The shaded areas correspond to the regions integrated
over for the t′ spectra.
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Figure 5.31: t′-summed intensities of 2−+0+ waves with (a) f0 (980)πS and (b)
(ππ)S πS decay modes. The shaded areas correspond to the regions
integrated over for the t′ spectra.

a bump. In all cases the slopes of the t′ spectra (figs. 5.32 and 5.33) suggest
dominant resonant contributions.

The phase difference between the 1++0+ρ (770)πS and the 2−+0+f2 (1270)πS
waves is shown for two t′ bins in fig. 5.34. At masses below 1 GeV/c2, the phase
cannot be measured reliably due to the small intensity of the 2−+0+f2 (1270)πS
wave. The intermediate mass region from 1 GeV/c2 to 1.5 GeV/c2 changes with
t′: the slightly decreasing phase motion at low t′ becomes a +180◦ phase motion
at high t′. This behavior supports the assumption of a strong non-resonant com-
ponent in the 1++0+ρ (770)πS in particular for low values of t′. Above a mass of
1.5 GeV/c2, the phase motions show similar behavior in both t′ regions.

Due to the limited mass range in which the 2++1+ρ (770)πD wave has a sizable
intensity, the phase between this wave and the 2−+0+f2 (1270)πS wave (fig. 5.35)
is only well defined between 1 GeV/c2 and 1.7 GeV/c2. Starting from around
1.1 GeV/c2 the phase is rising, indicating a resonance in the 2++1+ρ (770)πD
wave, the a2 (1320). At higher masses, beyond 1.5 GeV/c2, the phase starts to
decrease again, this can be interpreted as a resonance in the 2−+0+f2 (1270)πS
wave, probably the π2 (1670).

The resonance model contains the two previously mentioned resonances in JPC =
2−+ waves. The π2 (1670) is extracted with a mass of 1651 MeV/c2 and a width of
256 MeV/c2, the π2 (1880) with a mass of 1886 MeV/c2 and a width of 347 MeV/c2

(table 5.6). A third resonance, for example a π2 (2005), is not required to describe
to data (section 5.14).

The π2 (1880) is in principle too close in mass to the π2 (1670) to be a radial
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Figure 5.32: t′ spectra of the 2−+0+f2 (1270)πS, the 2−+1+f2 (1270)πS, the
2−+0+ρ (770)πF , the 2−+0+ (ππ)S πD, and the 2−+0+f0 (980)πD
waves obtained by integrating the respective mass distributions in
the ranges highlighted in figs. 5.28, 5.28, 5.30 and 5.31. The single-
exponential fit is shown with the solid red line, the extrapolation to
the whole range is shown by the dashed line.
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Figure 5.33: t′ spectra of (a) the 2−+0+f2 (1270)πD, (b) the 2−+0+ρ (770)πF ,
and (c) the 2−+0+f0 (980)πD waves obtained by integrating the re-
spective mass distributions in the ranges highlighted in figs. 5.30
and 5.31. The single-exponential fit is shown with the solid red line,
the extrapolation to the whole range is shown by the dashed line.
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Figure 5.34: Phases of the 1++0+ρ (770)πS with respect to the 2−+0+f2 (1270)πS
waves in (a) the lowest and (b) the highest t′ bin.
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Figure 5.35: Phases of the 2++1+ρ (770)πD with respect to the
2−+0+f2 (1270)πS waves in (a) the lowest and (b) the highest
t′ bin.
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excitation of the ground state. It has instead been proposed as a hybrid-meson
candidate [58, 19]. The experimentally observed intensity of the π2 (1880) found
in the 2−+0+f2 (1270)πD wave (fig. 5.30(a)) is stronger than the one for the
decay into an S wave (fig. 5.29(a)), while model calculations for the hybrid-meson
interpretation predicted the decay via the S wave to be dominant over the one via
the D wave [34, 66]. The π2 (1880) has also been explained as an interference of
the π2 (1670) with the Deck effect [43]. This interference is supposed to cause the
observed shift of the peak position. But, following this explanation, it would not
be expected to observe two peaks in the 2−+0+ρ (770)πF wave (fig. 5.30(b)).
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Figure 5.36: t′ summed intensities of 0−+0+ waves with (a) f0 (980)πS and (b)
(ππ)S πS decay modes. The shaded areas correspond to the regions
integrated over for the t′ spectra.

5.10 The JPC = 0−+ Sector

The sector with the next smaller intensity is the JPC = 0−+ sector. With these
quantum numbers, the π (1800) is well established; further states like the π (1300)
are still disputed. Figure 5.36 shows the intensity of two waves which both have
a peak at 1.8 GeV/c2. In the 0−+0+f0 (980)πS wave (fig. 5.36(a)) no further
structures can be seen, while for the 0−+0+ (ππ)S πS wave (fig. 5.36(b)) another
bump shows up at about 1 GeV/c2. It has an odd triangular shape, and is in a
mass region where other waves show instabilities.

The t′ spectra obtained by integrating the intensity distributions over the mass
region of the π (1800) (fig. 5.37) have a slope of 11 to 12 (GeV/c)−2. In contrast,
the intensity spectrum of the 0−+0+ (ππ)S πS wave integrated in the π (1300)
mass region has a slope of almost 20 (GeV/c)−2. This is far from the expected
8 (GeV/c)−2 for Pomeron exchange, and points towards large non-resonant con-
tributions.

The resonance-model fit of the π (1800) in the 0−+0+f0 (980)πS wave finds only
a small non-resonant contribution in the mass region around the resonance. The
mass of the π (1800) is 1793 MeV/c2, the width is 227 MeV/c2.
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Figure 5.37: t′ spectra of (a) the 0−+0+f0 (980)πS wave, (b) the 0−+0+ (ππ)S πS
wave in the high mass region, and (c) the 0−+0+ (ππ)S πS wave in the
low mass region obtained by integrating the respective mass distribu-
tions in the ranges highlighted in fig. 5.36. The single-exponential fit
is shown with the solid red line, the extrapolation to the whole range
is shown by the dashed line.
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Figure 5.38: t′-summed intensities of 4++1+ waves with (a) ρ (770)πG and (b)
f2 (1270)πS decay modes. The shaded areas correspond to the re-
gions integrated over for the t′ spectra.

5.11 The JPC = 4++ Sector

The waves with JPC = 4++ are not the next smaller group by intensity, but in
contrast to the 3++, 4−+ and 6−+ sectors it features a well established resonance,
the a4 (2040). The intensities of two 4++ waves are shown in fig. 5.38. Both waves
indeed exhibit a peak at around 2 GeV/c2. While for the 4++1+f2 (1270)πF wave
(fig. 5.38(b)) this peak is clean, the 4++1+ρ (770)πG wave (fig. 5.38(a)) features
a shoulder to the low-mass side.

The t′ spectra of the intensities in the a4 (2040) mass region (fig. 5.39) are
compatible with production by Pomeron exchange.

The phase between the 4++1+ρ (770)πG and 2−+0+f2 (1270)πS wave (fig. 5.40)
is unstable below 1.5 GeV/c2 due to the low intensity in both waves. Above
1.5 GeV/c2, the phase motion is similar for all t′ bins, first there is a falling phase
motion by −50◦ till 1.8 GeV/c2, then a rising one by +75◦. The falling phase
motion might be caused by the π2 (1670) in the 2−+0+f2 (1270)πS, which is then
cancelled by the a4 (2040) at higher mass in the 4++1+ρ (770)πG wave.

Also the resonance-model fit finds a clear signal of the a4 (2040) with a mass of
1938 MeV/c2 and a width of 362 MeV/c2.
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Figure 5.39: t′ spectra of (a) the 4++1+ρ (770)πG, and (b) the 4++1+f2 (1270)πF
waves obtained by integrating the respective mass distributions in the
ranges highlighted in fig. 5.38. The single-exponential fit is shown
with the solid red line, the extrapolation to the whole range is shown
by the dashed line.
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5.12 The a1 (1420)

The major new discovery of the partial-wave analysis of the π−π−π+ final state
is a new axial-vector state, the a1 (1420), seen in the 1++0+f0 (980)πP wave [9,
50, 11]. Also in the π−π0π0 channel the intensity of this wave shows a peak that
is compatible with this resonance (fig. 5.41). However, while the peak is clearly
visible for lower t′, it washes out in the highest t′ bin.

The resonance nature of the a1 (1420) is derived from several relative phases
with respect to waves with well-established resonances. The phase motion be-
tween the 1++0+f0 (980)πP and the 2−+0+f2 (1270)πS wave (fig. 5.42) in the
1.4 GeV/c2 region is even more pronounced in the highest t′ bin. Also between
the 1++0+f0 (980)πP and the 4++1+ρ (770)πG wave (fig. 5.43), the phase motion
at 1.4 GeV/c2 is clearly seen.

The t′ spectrum of the intensity distribution is obtained by integrating over a
mass range from 1.38 to 1.58 GeV/c2 (fig. 5.44), it features a slope of 11 (GeV/c)−2

which is still within the expected range for Pomeron exchange.
Indeed the resonance-model fit describes the intensity with a resonance sitting

on top of a non-resonant component. The mass of the resonant component is
1414 MeV/c2, the width is 197 MeV/c2. For the phases of the 1++0+f0 (980)πP
wave with respect to the 2−+0+f2 (1270)πS and 4++1+ρ (770)πG waves, the res-
onance model appears to be jumping down by about 100◦ in the lowest t′ bin at a
mass of 1.3 GeV/c2. At this mass, the intensity in the 1++0+f0 (980)πP wave is
zero, and thus the phase is not well defined. By shifting the phase by −360◦ for
the points below this mass, a smooth transition as for the highest t′ bin could be
constructed.

Several explanations of the a1 (1420) have been brought forward [64, 77] since
the publication of its observation in the π−π−π+ final state [9]. As for the π2 (1670)
and π2 (1880), the a1 (1420) has been explained by interference of the a1 (1260)
with the Deck effect [21]. While this calculation proposes the experimentally
found mass for the a1 (1420), the width is estimated to be about 300 MeV/c2.
Also phases are not correctly predicted.
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Figure 5.41: Intensity of the 1++0+f0 (980)πP wave in (a) the lowest and (b) the
highest t′ bin. (c) shows the t′-summed intensity. The shaded areas
correspond to the regions integrated over for the t′ spectra.
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Figure 5.42: Phases of the 1++0+f0 (980)πP with respect to the
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t′ bin.
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Figure 5.44: t′ spectrum of the 1++0+f0 (980)πP wave obtained by integrating
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olation to the whole range is shown by the dashed line.
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Figure 5.45: Intensities of the 1−+1+ρ (770)πP wave in each of the eight t′ bins,
and the t′-summed intensity (bottom right).

5.13 The π1 (1600)

The intensity of the spin-exotic 1−+1+ρ (770)πP wave is shown in fig. 5.45. It
changes significantly with t′. While for low t′ only a 600 MeV/c2 broad bump is
visible, towards higher t′, a peak at 1.6 GeV/c2 is developing.

The phase with respect to the 1++0+ρ (770)πS wave (fig. 5.46) shows a slight
phase motion at 1.6 GeV/c2 also for the lowest t′ bin. In contrast to that, the
phase with respect to the 2++1+ρ (770)πD wave (fig. 5.47) only moves by about
10◦ around the resonance position, indicating that resonances in each of the waves
cancel each other.

The slope of the t′ dependence of the intensity around the π1 (1600) (fig. 5.48) is
10 (GeV/c)−2 which is in agreement with the expectation for Pomeron exchange
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Figure 5.46: Phases of the 1−+1+ρ (770)πP with respect to the 1++0+ρ (770)πS
waves in (a) the lowest and (b) the highest t′ bin.
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Figure 5.47: Phases of the 1−+1+ρ (770)πP with respect to the 2++1+ρ (770)πD
waves in (a) the lowest and (b) the highest t′ bin.
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Figure 5.48: t′ spectrum of the 1−+1+ρ (770)πP wave obtained by integrating the
respective mass distributions in the range highlighted in fig. 5.45. The
single-exponential fit is shown with the solid red line, the extrapola-
tion to the whole range is shown by the dashed line.

in the production process.
The resonance-model fit supports a resonant contribution of a π1 (1600) with a

mass of 1550 MeV/c2 and a width of 435 MeV/c2. The contribution of the resonant
contribution to the intensity strongly depends on t′. At low t′ it only contributes
little, while a high t′ it dominates the intensity spectrum.

The non-resonant contribution in this wave is expected to be produced via the
Deck effect [36, 37]. For the π−π−π+ final-state a Deck model based on results by
[35] has been simulated and analyzed in terms of its contributions to the partial
waves [50]. It was found that the simulated Deck effect can explain large parts of
the non-resonant contribution observed there, and also has the correct dependence
on t′. For the π−π0π0 final state a similar analysis has recently been started [71].
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standard with branchings with π2 (2005)
resonance mass width mass width mass width(

MeV/c2
) (

MeV/c2
) (

MeV/c2
)

a1 (1260) 1293 410 1382 605 1297 402
a1 (1420) 1414 197 1413 196 1416 196
a1 (1640) 1538 713 1341 619 1630 692

a2 (1320) 1313 117 1314 119 1313 116
a2 (1700) 1670 428 1671 413 1668 426

a4 (2040) 1938 362 1954 326 1947 324

π (1800) 1793 227 1789 222 1799 226

π1 (1600) 1550 435 1539 463 1552 441

π2 (1670) 1651 256 1643 263 1653 285
π2 (1880) 1886 347 1864 335 1852 295
π2 (2005) — — — — 2065 333

Table 5.7: Resonance parameters extracted by the resonance-model fit for three
different resonance models. Errors are not given as the statistical un-
certainties are much smaller than the systematic ones.

5.14 Some Systematics of the Resonance-Model Fit

The resonance model presented above (section 5.6) has two major differences com-
pared to the one for the π−π−π+ final state [75]. The impact of these differences
has been studied, the results are summed up in table 5.7.

The production of a resonance is independent of its decay, thus the t′ depen-
dence of the strength of a resonance should not depend on the decay channel.
This can be incorporated into the resonance model by factorizing the couplings
Cr εj,k (t′) in eq. (5.21) to one possibly t′-dependent complex-valued coupling of the

quantum numbers JPCM ε to a resonance, and one complex-valued branching of
the resonance to a specify decay channel. As an example, the couplings of the
2−+0+f2 (1270)πS and the 2−+0+ρ (770)πF waves to the π2 (1670) can be re-
written as

Cr+
2−+0 f2(1270)πS, π2(1670)

(
t′
)

= Cr+
2−+0, π2(1670)

(
t′
)
Bπ2(1670), f2(1270)πS (5.32)

Cr+
2−+0 ρ(770)πF, π2(1670)

(
t′
)

= Cr+
2−+0, π2(1670)

(
t′
)
Bπ2(1670), ρ(770)πF (5.33)

The coupling Cr+
2−+0, π2(1670)

(t′) is the same in both cases, so that this factorization

reduces the number of parameters in the fit when using multiple t′ bins. For the
resonance-model fit of the π−π−π+ final state [75], these branchings have been
used.

For the resonance model fit presented in section 5.6, using these branchings
reduces the number of fit parameters from 698 to 544. But the additional con-
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Figure 5.49: t′-summed intensities of 1++0+ waves with (a) ρ (770)πS and (b)
f2 (1270)πP decay modes for the resonance-model fit using branch-
ings. The intensities for the fit using only couplings are shown in
fig. 5.21(a) for the ρ (770)πS, and fig. 5.22(b) for the f2 (1270)πP
decay mode.

straints seem to favor a solution of the resonance-model fit where the a1 (1260)
and a1 (1640) resonances in the 1++0+ρ (770)πS and 1++0+f2 (1270)πP waves
have similar Breit-Wigner parameters (table 5.7). A strong destructive interfer-
ence is required to describe the intensity spectra in fig. 5.49. In contrast to the
π−π−π+ final state using the branchings does not stabilize the resonance-model
fit, but causes this unphysical effect. In addition, the Breit-Wigner parameters for
the masses of the π2 (1670) and the π2 (1880) are moved further away from results
of previous experiments [65] towards lower values. Therefore the branchings have
not been used for the result of the π−π0π0 final state.

For a good description of the data, the resonance model for the π−π−π+ required
a third resonance with JPC = 2−+ quantum number, the π2 (2005), in addition
to the ones listed in table 5.6 [75]. Adding the π2 (2005) to the resonance model
for the π−π0π0 final state, has an effect mostly on the parameters of the other
π2 resonances, but also on the a1 (1640) (table 5.7). The mass of the Breit-
Wigner parameterization for the π2 (1880) is shifted further away from results of
previous experiments [65] and towards lower values by 30 MeV/c2 compared to the
standard resonance model. The background component in the 2−+0+ρ (770)πF
wave increases for the extrapolation beyond the fit range, while for the standard
resonance model, the intensity of the model follows the points from the mass-
independent fit also in this range (fig. 5.50). There is also no visible improvement
of the description of data for the extended resonance model. For these reasons the
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Figure 5.50: Intensity of the 2−+0+ρ (770)πF wave in the second highest t′ bin
for (a) the standard resonance model and (b) the resonance model
including the π2 (2005).

π2 (2005) is not included in the resonance model for the π−π0π0 final state.
Obviously those two additional resonance models can only be a starting point

for a full systematic study of the resonance-model fit, as it was performed for
the π−π−π+ final state in [75]. So far the two studies indicate that the Breit-
Wigner parameters of the a2 (1320), the a2 (1700), the a1 (1420), and the π (1800)
have a rather small systematic error. In particular for the a2 (1320) and π (1800)
this is an important message, as those states can be used as stable interferome-
ters. In addition to the studies presented in [75] it might also be interesting to
study the dependence of the a1 (1420) parameters on the fitted mass range in the
1++0+f0 (980)πP wave. To obtain a good description of the intensity for the
π−π0π0 final state, it was necessary to increase the upper limit of the fit range in
the 1++0+f0 (980)πP wave by 100 MeV/c2 compared to the one for the π−π−π+

final state. For the a1 (1420) and π1 (1600) it might also be useful to extract reso-
nance parameters from single t′ bins. The intensity of the 1++0+f0 (980)πP wave
is much stronger at lower t′, while at higher t′ it is washed out with larger errors
(fig. 5.41). In the 1−+1+ρ (770)πP wave (fig. 5.45), a clean peak is visible for the
highest t′ bin, while in the lower t′ bins a large non-resonant contribution has to
be considered.
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Figure 5.51: t′-summed total intensity for the π−π0π0 (blue) and the π−π−π+

(red) final states.

5.15 Comparison with the π−π−π+ Final State

The π−π−π+ final state has also been analyzed in COMPASS [11, 50]. Compared
to the π−π0π0 channel the data set is 15 times larger and contains about 50 million
events. The difference in data-set size is caused by the different acceptances of
the two channels. Due to the larger available data set, the π−π−π+ channel is
analyzed in finer bins of the three-pion mass (20 MeV/c2 instead of 40 MeV/c2) and
the squared four-momentum transfer (11 bins instead of 8). Neglecting details,1

the intensities of the π−π−π+ final state have been scaled up to accommodate the
different mass and t′ binning by a factor of 1.6 for individual t′ bins and a factor
of 2 for t′-summed intensities.

In the total intensities (fig. 5.51), it is apparent that the bump around 1.7 GeV/c2

is much weaker in the π−π0π0 channel compared to the π−π−π+ channel. Com-
paring the JPC = 2−+ spin totals (fig. 5.17) and the total intensity (figs. 5.12(a)
and 5.12(b)) suggests that the 1.7 GeV/c2 mass region has a large contribution
from waves with JPC = 2−+ quantum numbers, which in turn decay predomi-
nantly via the f2 (1270) isobar. Due to isospin symmetry, the decay to isospin-
0 isobars are expected to be suppressed by Clebsch-Gordan coefficients in the
π−π0π0 channel, while waves with isospin 1 should not be affected. This becomes
apparent in fig. 5.52(a) which shows the total intensities of waves decaying via
ρ (770), which are comparable for the two final states, whereas waves decaying via
f2 (1270) (fig. 5.52(b)), have only about half the intensity for the π−π0π0 final
state.

This observation also holds for individual waves. For the 1++0+ρ (770)πS wave

1The two channels have been analyzed using data from two different productions with slightly
different number of events. Also there are still imperfections in the simulation.
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Figure 5.52: t′-summed spin totals of all waves with positive reflectivity with (a)
ρ (770)π and (b) f2 (1270)π decay modes for the π−π0π0 (blue) and
the π−π−π+ (red) final states.

(fig. 5.53(a)), the 2++1+ρ (770)πD wave (fig. 5.53(b)), and the 4++1+ρ (770)πG
wave (fig. 5.53(c)), which all decay via the ρ (770) isobar, the intensities are similar
for the two final states. In contrast, for the 0−+0+f0 (980)πS (fig. 5.54(a)), and
2−+0+f2 (1270)πS (fig. 5.54(b)) waves the intensity of the π−π0π0 final state is
lower, but the shapes still agree.

The lower intensity for waves with isospin-0 isobars in the π−π0π0 final state is
also visible in fig. 5.55 for the 1++0+f0 (980)πP wave. But the a1 (1420) is at a
similar place and has a similar shape in both final states.

For the spin-exotic 1−+1+ρ (770)πP wave (fig. 5.56) no effect due to isospin
symmetry is expected. But the intensities do not match for individual t′ bins. In
general, there is at least an agreement of the shape of the intensity distributions for
the lower t′ bins. For higher t′ bins, the intensity found in the two final state clearly
differs. While for the π−π0π0 final state a peak around 1.6 GeV/c2 is forming, for
the π−π−π+ final state this remains a broad structure until t′ > 0.5 (GeV/c)2.

Those similarities and differences are also visible in the resonance-model fit (see
[75] for the π−π−π+ final state). The masses for the a1 (1260), the a2 (1320),
the a4 (1938), but also the new a1 (1420) are in agreement, the widths in the
π−π0π0 final state are larger by typically more than 10 to 30 MeV/c2. For the π2

resonances a better agreement to the results of the π−π−π+ final state is found
for the resonance-model fit using branchings (section 5.14), while for the a1 (1640)
the usage of the π2 (2005) would improve the agreement.

The mass of the new a1 (1420) found here for the π−π0π0 channel is close to the
one found for π−π−π+ in [75], but the width is significantly broader. For the higher
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Figure 5.53: t′-summed intensities of (a) the 1++0+ρ (770)πS, (b) the
2++1+ρ (770)πD, and (c) the 4++1+ρ (770)πG waves for the π−π0π0

(blue) and the π−π−π+ (red) final states.
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Figure 5.54: t′-summed intensities of (a) the 0−+0+f0 (980)πS, and (b) the
2−+0+f2 (1270)πS waves for the π−π0π0 (blue) and π−π−π+ (red)
final states.
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Figure 5.55: t′-summed intensity of the 1++0+f0 (980)πP wave for the π−π0π0

(blue) and the π−π−π+ (red) final states.
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Figure 5.56: Intensities of the 1−+1+ρ (770)πP wave for π−π0π0 (blue) and
π−π−π+ (red) channels in (a) a low and (b) a high t′ bin. (c) shows
the t′-summed intensity.
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t′ bins the intensity of the 1++0+f0 (980)πP wave washes out and becomes a broad
bump (fig. 5.41(b)), which might affect the width. In this wave the mass range
of the resonance-model fit had to be increased to a higher limit of 1.70 GeV/c2

instead of the 1.60 GeV/c2 used in the π−π−π+ final state as otherwise the non-
resonant contribution would have dominated the complete spectrum. Also the
behavior of this non-resonant contribution might play a role in this difference.

For the π1 (1600) quite different parameters are found. The mass is found to be
50 MeV/c2 lower in the π−π0π0 final state, the width is even 150 MeV/c2 smaller
than in the π−π−π+ final state. This is caused by the different behavior of the
non-resonant contribution for the two final states. While the intensity in the lowest
t′ bin look rather similar, at higher t′ the peak attributed to the π1 (1600) is more
clearly visible in the π−π0π0 final state. In the π−π−π+ final state it becomes
that clean only for t′ ≥ 0.7 (GeV/c)2. Having several t′ bins with a wide object,
a broad resonance might better describe the data. More systematic studies of the
resonance-model fit, also varying the t′ bins used for the fit, are required to resolve
this issue.
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Chapter 6

Partial-Wave Analysis of the π−ηη Final
State

The kinematic selection of the π−ηη final state has been presented in chapter 3.
Compared with the π−π0π0 final state, the number of measured events in this
final state is much smaller. Also previous experiments have collected only small
data samples, but still were able to perform a partial-wave analysis of this final
state [45, 14].

6.1 Partial-Wave Analysis using the Wave Set by E852

The π−ηη mass spectrum after event selection is shown in fig. 3.12(b). The mass
spectra of the two-particle subsystems (fig. 6.1) suggest to include the a0 (980)
and the a2 (1320) as isobars in π−η, as well as the f0 (1500) in ηη. A partial-wave
decomposition of the data set has been performed using the model by E852 [45]
which uses the aforementioned isobars and consists of only four waves listed in
table 6.1.

The COMPASS data were subdivided into 55 mass bins of 50 MeV/c2 width,
ranging from 1.25 GeV/c2 to 4 GeV/c2. A rank-1 fit was performed with 100 fit
attempts per mass bin. In each mass bin the fit result with the highest likelihood
has been selected to create the plots shown below. The lowest three mass bins are
omitted in the plots as the fits did not converge.

The total intensity of all partial waves is shown in fig. 6.2. The flat wave shown
in comparison contributes nearly 40 % to the total intensity. Performing a rank-2
fit decreases the contribution to the total intensity to about 30 %. This points to
some incoherence in the data, that can be resolved by adding a second block of
non-interfering transition amplitudes. The incoherence might be caused by the
integration over a broad range in the reduced squared four-momentum transfer

wave wave

0−+0+a0 (980) ηS 2−+0+a0 (980) ηD
0−+0+f0 (1500)πS 2−+0+a2 (1320) ηS

Table 6.1: Wave set by E852 to analyze the π−ηη final state [45]. The flat wave
is omitted.
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Figure 6.1: Invariant mass spectra for the two-particle subsystems of the π−ηη
final state.

t′. In the π−π0π0 final state the importance of this binning has been shown in
section 3.4.4 and chapter 5, but, due to the limited amount of data, a binning in
this variable cannot be done for the π−ηη final state. Even the smaller contribution
of the rank-2 fit is still larger than the 5 % to 15 % observed in [45]. As the rank-2
fit does not reduce the contribution to this level, in the following only the rank-
1 fit will be shown. Typically such a large fraction hints to contributions from
either non-diffractively produced states, missing waves in the used wave set, or an
imperfect isobar description. The comparison of real data with weighted Monte
Carlo (section 5.2) does not point to any obvious deficiencies of the model.

The intensities of the individual waves are shown in fig. 6.3. In the two 0−+

waves a structure between 1.8 GeV/c2 and 1.9 GeV/c2 is visible, E852 identified
this as the π (1800) in a mass-dependent fit. The peak of the 2−+0+a2 (1320) ηS
wave at around 1.9 GeV/c2 has been identified by E852 as the hybrid candi-
date π2 (1880). As the bump visible in the a0 (980) ηD decay mode at around
2.5 GeV/c2 is at the limit of the mass range studied by E852, they do not claim
anything in this wave, however, given the huge width, it is questionable whether
it is a single resonance.

6.2 Biggest-Conceivable-Model Method

With the E852 wave set, a large contribution of the flat wave to the total inten-
sity is found. To test whether this is caused by missing important waves, the
biggest-conceivable-model method (BCM method) [23] was tried. This method
was initially developed for the analysis of the π−π−π−π+π+ final state, where
basically no prior knowledge of the relevant waves is existing. To overcome this
situation the likelihood as given in eq. (4.44) is modified by adding a prior
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Figure 6.2: Total intensity of all partial waves (blue markers) overlaid with the
contribution of the flat wave (red markers).

− lnL′ = − lnL − lnLprior (6.1)

where the additional term Lprior is a half-Cauchy prior for the intensities of the
individual waves

Lprior =
∏
ε=±1

Nε
rank∏
r

Nε
waves∏
i

(
1 +

T
rε
i
∗
T
rε
i

γ2

)−1

(6.2)

where the width parameter γ is fixed to 0.5 in the following. This prior applies
a penalty for non-zero intensities. Unless including a wave with some non-zero
intensity increases the likelihood significantly, this wave is pushed towards zero.

To select a model, the log-likelihood including the half-Cauchy prior eq. (6.1) is
minimized using the biggest-conceivable wave pool in each mass bin individually.
The wave pool is constructed with waves having a spin J between 0 and 4 and a
spin projection M of either 0 or 1. The angular momentum L between the isobar
and the bachelor pion is allowed to be between 0 and 4. The list of allowed isobars
is given in table 6.2. The resulting wave pool created for the analysis of the π−ηη
final state consists in total of 264 waves, 151 waves with positive and 113 with
negative reflectivity ε.

Figure 6.4 shows the partial-wave intensities for two neighboring mass bins.
The waves are ordered by their intensities. Contributions from the waves with
positive and negative reflectivity and from the flat wave are shown in different
colors. Due to the prior there is at least one steep drop in the intensity spectra.
The waves to the left of the first step are selected for a first, mass bin specific,
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Figure 6.3: Result of the partial-wave fit to the π−ηη final state using the wave
set of E852 (table 6.1).
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isobar JPC isobar name

π−η isobars
0++ a0 (980), a0 (1450)
2++ a2 (1320)
4++ a4 (2040)
1−+ π1 (1400)

ηη isobars
0++ f0 (1370), f0 (1500)
2++ f2 (1270)
4++ f4 (2050)

Table 6.2: List of isobars used to generate the wave pool for the analysis of the
π−ηη final state with the biggest-conceivable-model method.

wave set. In the lowest six mass bins (from 1.25 GeV/c2 to 1.55 GeV/c2) this
first step is after just the flat wave, indicating that the events in this mass region
can by described by pure three-body phase space. The intensities of the waves
with negative reflectivity tend to be small as expected for the dominant Pomeron
exchange. In 44 of the 55 mass bins, the waves with negative reflectivity are even
completely separated from the other waves by a second step as in fig. 6.4(b). In
the remaining mass bins above 1.55 GeV/c2 the waves with negative reflectivity
have low intensities.

The selection of the model is first performed for each mass bin individually. Of
the initial 264 waves 92 are selected in at least one mass bin, 80 of these waves
have positive reflectivity and 12 negative reflectivity ε. Figure 6.5 shows in which
mass bins each wave is selected. Only 12 waves are selected in ten or more mass
bins, more than one third of all waves is selected in only a single mass bin. The
number of waves selected in each mass bin is shown in fig. 6.6. For mass bins
above 1.7 GeV/c2 the number of selected waves is basically constant with a slight
tendency towards smaller wave set sizes at higher masses. Some pairs of isobars
with the same quantum numbers but different masses exist, as for example the
a0 (980) and the a0 (1450). Only one of the two waves is typically selected in each
mass bin for these cases. There are 55 BCM wave sets for the 55 mass bins. If
the standard log-likelihood eq. (4.44) is minimized using the corresponding wave
set for each mass bin, the flat wave contributes about 15 % of the total intensity.
However, the intensities for the individual partial waves are not continuous.

To achieve this, a continuity criterion is applied to select the final wave set.
Only waves which are selected in four or more consecutive mass bins by the BCM
method are considered. In case of isobar pairs, only the one selected more often
is kept. This way the truncated BCM wave set contains twelve waves (table 6.3).
Three of the four waves used by E852 (table 6.1) are also found by this method,
only the 0−+0+f0 (1500)πS wave is not picked up.

The intensity of the flat wave contributes almost 30 % of the total intensity
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Figure 6.4: Intensities of all waves for two neighboring mass bins. The waves are
sorted by intensity, the wave at index 0 is representing the wave with
the largest intensity. Waves with positive reflectivity are drawn in
red, waves with negative reflectivity in blue. The flat wave is drawn
in yellow. The dashed line indicates the width γ of the half-Cauchy
prior.
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Figure 6.5: Mass bins in which the 92 waves are selected by the BCM method. The
gray scale indicates the total number of mass bins that the respective
wave was selected in.
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Figure 6.6: Number of waves selected by the BCM method in each mass bin.

wave wave

0−+0+a0 (980) ηS 2−+0+f2 (1270)πS
1++0+a0 (980) ηP 3++0+a0 (980) ηF
1++0+f0 (1370)πP 3++0+f0 (1370)πF
2−+0+a0 (980) ηD 3++1+a0 (980) ηF
2−+0+a2 (1320) ηS 4−+0+a0 (980) ηG
2−+0+f0 (1370)πD 4−+1+a0 (980) ηG

Table 6.3: The 12 waves selected for the truncated BCM wave set.
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Figure 6.7: Total intensity of all partial waves (blue markers) overlaid with the
contribution of the flat wave (red markers) for the truncated BCM
wave set.

(fig. 6.7) using the truncated BCM wave set. Looking at individual waves (fig. 6.8),
a good agreement between the intensities found with the E852 wave set, the wave
sets of the BCM method, and the truncated BCM wave set is only found for the
0−+0+a0 (980) ηS wave (fig. 6.8(a)). The 2−+0+a2 (1320) ηS wave (fig. 6.8(b)) is
only selected above 1.85 GeV/c2 by the BCM method, also the truncated BCM
wave set has a unstable intensity with large error bars below that mass. For the
2−+0+a0 (980) ηD wave there is a large discrepancy between the E852 and the
truncated BCM wave sets. In general, the intensities using the BCM wave set and
the truncated BCM wave set agree.

As the 0−+0+a0 (980) ηS and the 2−+0+a2 (1320) ηS are the only waves for
which the intensities using the BCM wave set and the truncated BCM wave set
agree, a preliminary resonance-model fit should only use those two waves. As
the 2−+0+a2 (1320) ηS wave is unstable below 1.85 GeV/c2, but this mass region
is where the 0−+0+a0 (980) ηS wave contains most of its intensity there would
be little overlap in which the phase information between the two waves could be
used. Instead the fit would have to rely on the intensity information of single
waves. Therefore a reliable extraction of resonance parameters is unfortunately
impossible at the moment.
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Figure 6.8: Intensities of the three waves the truncated BCM wave set (blue mark-
ers) has in common with the wave set by E852 (red markes, same as
fig. 6.3). The green markers show the intensities using the BCM wave
sets, accordingly green markers are missing if the wave was not selected
in that mass bin.
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Chapter 7

Conclusions and Outlook

7.1 Electromagnetic Calorimetry

The new implementation of the shower fitting ([60], section 2.3.1) and the cor-
rections applied on top of it (section 2.3.2), improved the π0 mass resolution for
high-energetic π0 by 25 % [46]. Despite an LED system being used to compensate
for fluctuations in the amplification of the calorimeter signals, a time dependence
of the π0 mass was found and corrected (section 2.4.1). With these corrections
applied, the π−ηη final state was directly visible for the first time in COMPASS
when plotting the invariant mass of one photon pair versus the invariant mass of
the other one for π−γγγγ events (fig. 2.13).

Using this improved calorimeter information in the kinematic selection (chap-
ter 3), the number of good π−π0π0 candidate events increased by 50 % compared
to the previous reconstruction and analysis of the same data set.

So far the new photon reconstruction is only applied for ECAL2. The applica-
tion for ECAL1 had been prepared [53], but was not applied in a production of
the full data set. The π0 mass resolution of ECAL2 is similar in real data and
Monte Carlo, the one of ECAL1 is about a factor of 1.5 worse in real data than for
the simulation (section 2.5.2). A successful application of the new algorithm with
the necessary corrections could improve this resolution. That way, not only would
the agreement between real data and simulation be improved, but also the cuts on
the π0 and η mass could be tightened providing a cleaner selection of the π0 and
η (section 3.3). As about 30 % of the photons of the π−ηη final state hit ECAL1,
this might have a sizable effect in particular for the analysis of this channel.

7.2 Partial-Wave Analysis of the π−π0π0 Final State

A partial-wave analysis of the π−π0π0 final state was performed in bins of mπ−π0π0

and t′ (chapter 5). The additional binning in t′ provides a leverage to better sepa-
rate non-resonant from resonant contributions already with a rank-1 fit. Previous
analyses relied on higher-rank fits to achieve this. In each bin the five-dimensional
kinematic distributions of the final-state particles were decomposed into 88 partial
waves (table 5.2, [50, 11]). Resonance parameters were extracted from a subset of
theses waves (section 5.6). In general a good agreement with the values from [65]
was found for most resonances. In particular the a2 (1320) and π (1800) resonances
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can provide a reliable interferometer. The π2 (1670) and the a4 (2040) resonances
are found lighter than in [65], but are consistent with previous COMPASS results
[13].

In the JPC = 2−+ sector, the partial-wave intensities and phases can be de-
scribed with only two π2 resonances. This is in contrast to the analysis of the
π−π−π+ final state which required a third π2, the π2 (2005), to describe all fea-
tures of the data [75]. This difference is most obvious in the 2−+0+ρ (770)πF
wave. In the π−π0π0 final state, this particular wave is spoiled by adding the
π2 (2005) (section 5.14 and fig. 5.50). Removing the π2 (2005) from the fit also
moves the mass and width of the π2 (1670) and π2 (1880) closer to the values found
in [65].

The a1 (1420) previously observed in the π−π−π+ final state [50, 9, 11] is
also found in the 1++0+f0 (980)πP wave of the π−π0π0 final state. With the
resonance-model fit a mass consistent with the π−π−π+ results is obtained, while
the width is larger (section 5.12). This is probably caused by the much smaller
data sample for the π−π0π0 final state. While the partial-wave intensities of this
wave show a clear peak for the lower t′ bins, this peak is washed out in the higher
t′ bins (fig. 5.41).

The behavior of the intensity in the spin-exotic 1−+1+ρ (770)πP wave is oppo-
site: A broad bump at low values of t′ transforms to a rather clear peak in the
highest t′ bin (fig. 5.45). A Breit-Wigner has been used to describe the resonant
content in this wave (section 5.13). The resulting mass is compatible with the
π1 (1600). While the width is larger than previous COMPASS results obtained
from the π−π−π+ final state on a lead target [13], its value is within the wide range
spanned by previous experiments. The width is also significantly smaller than the
one obtained for the π1 (1600) in the π−π+π+ final state on a liquid-hydrogen
target [50, 75]. This might be caused by a larger non-resonant contribution in the
π−π−π+ final state that is not fully separated by the resonance-model fit.

A possible candidate for this non-resonant contribution is non-resonant produc-
tion of the three-pion final state via the Deck effect [36]. The Deck effects in
the π−π−π+ and π−π0π0 final-states are currently under study [71]. Preliminary
results show that including a Deck amplitude into the partial-wave analysis re-
moves the intensity in the low-mass region of fig. 5.45 from the 1−+1+ρ (770)πP
wave for all t′ bins, with only a peak similar to that in the highest t′ bin remain-
ing. The Deck effect is also a candidate for the non-resonant contribution in the
1++0+ρ (770)πS wave, however, adding the Deck amplitude has no effect on this
wave.

A systematic study of the resonance-model fit has only been performed with
two additional models so far. For the analysis of the π−π−π+ final state a number
of models have been worked out [75] that need to be tested for the π−π0π0 final
state. In addition the dependence of the Breit-Wigner parameters of the a1 (1420)
and π1 (1600) on the used t′ bins should be studied further. In both cases the
intensity of the corresponding waves does not feature a clear peak in all t′ bins.

The wave set used in the partial-wave analysis was taken over from the analysis
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of the π−π−π+ final state [50, 11]. This wave set was not created in a fully sys-
tematic way, but based on prior knowledge. The creation of a wave set without
any prior knowledge is possible with the biggest-conceivable-model method devel-
oped in [23] and tested for the π−π−π+ final state in [40]. The application of this
method to the π−π0π0 final state would help to confirm the correctness of this
wave set, or provide a better alternative.

7.3 Partial-Wave Analysis of the π−ηη Final State

The partial-wave decomposition of the π−ηη final state (chapter 6) in general
seems to be promising to study mesonic resonances in particular at higher masses.
A large contribution of the flat wave to the total intensity points to non-diffractively
produced states or imperfections in the partial-wave analysis model. To exclude
the latter, the biggest-conceivable-model method from [23] has been employed to
find a wave set for this final state. But also with this method the large contribution
of the flat wave to the total intensity cannot be removed.

A cleaner selection of this final state might be able to reduce the background
contributions, but for the moment is limited by the performance of ECAL1 (sec-
tion 7.1). A better performance of ECAL1 might also lift the severe limit of the
analysis due the available amount of real data events. Some additional events
might be gained by considering not only the two-photon decay of the η, but also
the π−π+π0 decay channel. This possibility will be studied in the future.
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Own contributions

My work on the new reconstruction for the electromagnetic calorimeters was based
on the shower profiles from [60] and Anatoli Lednev’s FORTRAN code for ECAL2
in COMPASS. In an initial study of his code I found several issues, which lead
to the decision to rewrite the code from scratch in C++. While studying the
performance of the new code I noticed that the shower profiles were not suffi-
cient to determine the position with the required precision, but that there was
a systematic shift depending on the position of the showers in the cell. Another
systematic effect was found with the dependence of the energy deposit on the po-
sition of a shower caused by the Shashlyk structure. Recognizing and correcting
for these effects finally vastly improved the photon reconstruction. For ECAL2,
the π0 mass resolution is improved by 25 %. To be on par with real data, I also
had to create calibrations for the shower profiles and corrections of the shower
parameters for Monte Carlo data. The improvement of the photon reconstruction
was an important cornerstone for the measurement of the pion polarizability in
pion Compton scattering (published in [7]).

In the course of the work on the photon reconstruction I supervised a bachelor
thesis [53] studying the possibility to use the same reconstruction algorithm also
for ECAL1. Another bachelor thesis [76] concentrated on extending the usage of
GFLASH previously made available for ECAL2 by Tobias Schlüter [72] to improve
the simulation speed also for ECAL1.

For the first production of real data from 2008 that was using my reconstruc-
tion, and which was used in this thesis, I was responsible to ensure all detector
calibrations and reconstruction options were available and adequate. Due to the
many changes with respect to previous productions, the event selection had to
be revised completely. The selection cuts of previous analyses could only be used
as rough guidelines. This event selection was crosschecked by Tobias Weisrock.
For the acceptance corrections applied in the partial-wave analysis I took care
of the simulation and reconstruction of 300 million phase-space events. Such a
large number of Monte Carlo events had never before been created for a single
analysis. I used the ROOTPWA package to perform the partial-wave analysis.
I contributed a fixed normalization for the weighted Monte Carlo such that real
data and weighted Monte Carlo plots no longer needed to be scaled. The partial-
wave analysis was crosschecked by Dmitry Ryabchikov, and presented on several
national and international conferences. To perform the resonance-model fit, I ex-
tended the fitter included in ROOTPWA to work for multiple t′ bins and added
the resonance and backgrounds amplitudes used for the analysis of the π−π−π+

final state.
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Own contributions

For the Monte Carlo studies of the analyses performed by Christian Höppner [54]
(published in [8]) and Stefanie Grabmüller [49] (published in [5, 6]) I updated the
original versions of the COMPASS reconstruction software used for the production
of the respective real data to work on more recent systems. These modifications
had do be done very carefully, as the outcome of the reconstruction should not be
affected.

For four COMPASS beam times, from 2009 to 2012, I was responsible for the
22 GEM and four to six PixelGEM detectors in the experiment. This included
the commissioning of the detectors before each run, taking care of the necessary
calibrations, and preliminary performance studies to make sure the detectors per-
formed as expected. These studies have later been performed in more detail and
with extended scope in a diploma thesis [74] and a bachelor thesis [55], which
I partially supervised. I also improved the reconstruction of the spatial infor-
mation from the data of the GEM and PixelGEM detectors, and the stability
of gemMonitor, the tool that is used for debugging and calibrating the GEM,
PixelGEM and silicon detectors. Before the Primakoff run in 2012, I lead the pro-
duction of four new PixelGEM detectors in a team with Bernhard Ketzer, Florian
Haas, Alexander Austregesilo and two technical students.
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