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Abstract

The objective of this thesis is the measurement of the Sivers effect for gluons. The Sivers

effect describes the correlation between the spin of the nucleon and the orbital motion

of partons. It can be measured via Semi-Inclusive Deep Inelastic scattering of lepton

on a transversely polarised proton and deuteron targets by determining the azimuthal

asymmetry related to the modulation in the Sivers angle φSiv. In the thesis a method of

obtaining the Sivers asymmetry for gluons is presented. It is based on the model of three

single-photon-exchange processes: photon-gluon fusion (PGF), QCD Compton (QCDC)

and leading process (LP). A method of simultaneous extraction of the Sivers asymmetries

of the three processes with the use of Monte Carlo (MC) and neural networks (NN)

approach is presented. The method has been applied to COMPASS data taken with

160GeV/c muon beam scattered off transversely polarised deuteron and transversely

polarised proton target. For each target a data sample of events containing at least

two hadrons with large transverse momentum has been selected. Finally the results for

gluon Sivers asymmetry were obtained to be: Adg = −0.14± 0.15(stat.)± 0.06(syst.) at

〈xg〉 = 0.13 and Apg = −0.26± 0.09(stat.)± 0.08(syst.) at 〈xg〉 = 0.15.



Pomiar wk ladu gluonów do efektu Siversa w

eksperymencie COMPASS.
Celem niniejszej dysertacji doktorskiej jest pomiar efektu Siversa dla gluonów. Efekt

Siversa opisuje korelacj ↪e mi ↪edzy spinem nukleonu a ruchem orbitalnym partonów w tym

nuklonie. Może być on zmierzony w procesie semi-inkluzywnego g l ↪eboko-nieelastycznego

rozpraszania (ang. SIDIS) leptonów na poprzecznie spolaryzowanej tarczy protonowej

lub deuteronowej poprzez wyznaczenie asymetrii azymutalnej powi ↪azanej z modulacj ↪a

w k ↪acie Siversa φSiv. W niniejszej pracy zaprezentowana jest metoda wyznaczania tej

asymetrii dla gluonów. Opiera si ↪e ona na modelu zak ladaj ↪acym trzy procesy kontry-

buuj ↪ace do rozpraszania lepton-nukleon: fuzja fotonowo-gluonowa (ang. PGF), chro-

modynamiczne rozpraszanie comptonowskie (ang. QCDC) oraz proces wiod ↪acy (ang.

LP). Przedstawiona jest metoda jednoczesnego wyznaczania asymetrii Siversa wszyst-

kich trzech procesów oparta jest na symulacjach Monte Carlo (MC) i wykorzystaniu sieci

neuronowych (ang. NN). Metoda zosta la użyta do analizy danych eksperymentu COM-

PASS zebranych z wi ↪azk ↪a mionow ↪a o energii 160 GeV/c rozpraszanej na poprzecznie

spolaryzowanych tarczach: deuteronowej i protonowej. Dla obu próbek danych doko-

nano selekcji par hadronów o dużym p ↪edzie poprzecznym. Uzyskana asymetria Siversa

dla gluonów wynosi: Adg = −0.14 ± 0.15(stat.) ± 0.06(syst.) przy 〈xg〉 = 0.13 and

Apg = −0.26± 0.09(stat.)± 0.08(syst.) przy 〈xg〉 = 0.15.
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Chapter 1

Introduction

The world that surrounds us is built of atoms. Atoms consist of nuclei and pointlike

electrons. Nuclei are built of protons and neutrons. Neutrons and protons have spin1

1/2. Spin is a quantised entity and is a consequence of space-time symmetry. Since 1960s

and the SLAC experiment we know that neutron and proton are composite objects.

Feynman’s parton model [1] described the experimental cross-section of high-energy

lepton nucleon scattering (SLAC deeply inelastic scattering experiment [2]). In this

model partons had negligible mass with respect to the nucleon mass and the number

of partons in the nucleon could be infinite. The so-called ’quark model’ proposed by

Gell-Mann [3] and Zweig [4] predicted that nucleons consist of 3 quarks (having spin

1/2) carrying 1/3 of the nucleon mass each and a fraction of electric charge.

The differences between the two models and the fact that neither partons nor quarks

were observed outside the nucleon was understood after D. Gross, F. Wilczek [5] and D.

Politzer [6] worked out a theoretical description of the quark interactions in 1973. They

proposed gluons as carriers of the strong interaction between quarks. Six years later

gluons were experimentally proven to exist ([7]).

Today we understand the nucleon structure as built of 3 valence quarks (of spin 1/2 and

fractional electric charge) which exchange gluons (of spin 1 and zero electric charge)

which may fluctuate for a short time into a quark-antiquark pair, the so-called sea

quarks.

The spin of nucleons is measured to be 1/2 and it is a natural expectation that it

should be explained by the spin and orbital angular momentum of quarks and gluons.

In the QCD improved parton model the spin of the nucleon can be decomposed to

the contribution of quark helicity - ∆Σ, contribution of orbital angular momentum of

1throughout this thesis ~ = c = 1 is assumed

1
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quarks - Lq, contribution of gluon helicity - ∆G and contribution of gluon orbital

angular momentum - Lg:

1

2
=

1

2
∆Σ + Lq + ∆G+ Lg.

In this decomposition light-cone gauge is assumed. Throughout this thesis it will always

be the case and gluon orbital angular momentum (OAM) will be used interchangeably

with gluon collective orbital motion. It should be noted, however, that gluon OAM is

not a well defined, gauge-invariant observable in the light-cone gauge.

The value of ∆Σ has been measured first at the SLAC experiment [8] by scattering

polarised electrons on polarised protons. In a kinematic range where valence quarks

dominate a sizeable cross-section asymmetries were obtained which seem to follow the

theoretical expectations for ∆Σ to be ∼ 0.6. But the EMC experiment [9, 10] in

broader kinematic range has shown much smaller contribution of quark polarisation to

the nucleon spin what began the “nucleon spin crisis” and is still an unsolved problem.

The EMC result has been confirmed by SMC [11], SLAC [12, 13] and HERMES [14].

The latest result of ∆Σ measurement has been obtained by COMPASS [15]: ∆Σ ∈
[0.26; 0.36]. The interval limits reflect mainly the large uncertainty in the determination

of the gluon contribution.

The next candidate was the contribution of the spin of the gluons - ∆G =

∫
∆gdx.

Several attempts where made to extract directly the gluon polarisation ∆g/g from

COMPASS data. The so-called Open Charm analysis, selecting mesons with heavy

quarks which originate in the nucleon sea described in [16] and selection of light hadron

pairs with large transverse momentum described in [16] and [17] was performed. Both

methods suffer from large statistical error and they do not exclude neither zero value nor

a significant signal for ∆g/g. The most recent preliminary analysis of COMPASS data

based on hadron production [18] gives a nonzero value: ∆g/g = 0.113±0.038±0.035. All

three methods use a neural network (NN) approach and will be presented in Chapter

6 in detail. Recent global QCD analysis including data from Relativistic Heavy Ion

Collider (RHIC) [19] gives a result of ∆G different from zero but not sufficient to solve

the nucleon spin puzzle. It should be noted that all available data concerning ∆g were

obtained for relatively large x. The region of small x will be covered by the planned

Electron Ion Collider (EIC) [20].

In the parton model the cross-section of the lepton nucleon scattering is fully described

by the unpolarised structure function F1. The spin dependent part of the cross-section

(accessible in measurement with polarised beam and polarised target) is described by

the function g1 in case of polarisation longitudinal to the virtual photon. The density

function F1(unpolarised case) and the helicity function g1 are not sufficient to describe
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the nucleon at leading order. Another function called transversity - h1 describes the

correlation of parton spin to the transversely (with respect to the intermediate photon)

polarised nucleon [21]. As the nucleon is described as a relativistic object moving with

the speed of light helicity and transversity are not the same because boost and rotation

do not commute.

These three functions, F1, g1, h1 do not depend on intrinsic transverse momentum of

partons - kT . Functions which vanish after integration over kT were expected to be

small until the measurement of proton-proton collisions [22] (pp↑→πX) which revealed

a significantly large asymmetry. There are 8 kT -dependent distribution functions in-

cluding the Sivers function [23], describing the correlation of transverse momentum of

quarks with the spin of a transversely polarised nucleon and connected to the parton’s

orbital angular momentum. Measurement of the Sivers function for gluons is the topic

of this thesis.

The thesis has the following structure. In Chapter 2 the theoretical basis of the nucleon

spin structure is shortly described. Chapter 3 gives a brief summary of the measurements

of the nucleon spin decomposition elements. The COMPASS experiment is presented in

Chapter 4. Chapters 5 and 6 are meant to be an introduction to describe the analysis

method used in the thesis. The former provides basic statistical concepts for extracting

asymmetries from COMPASS data, the latter describes in more detail (with respect

to Chapter 3) three COMPASS analyses in which these concepts were applied. The

necessary tools, the Neural Networks and Monte Carlo simulations are presented in

Chapter 7. The final analysis method of the measurement of the gluon contribution to

the Sivers effect at COMPASS is given in Chapter 8 which is the main chapter of this

thesis. It contains the discussion of the data sample selection, the analysis method, the

results and the discussion of statistical errors. Finally, the systematic studies are given

in Chapter 9. Chapters 8 and 9 are the author’s contribution to the spin physics.

In Appendix A a description of the cross-section for Semi-Inclusive Deep Inelastic Scat-

tering two-hadron production is given. Some technical details concerning assumptions

on the average values of asymmetries extracted in the analysis are the subject of Ap-

pendix B and the procedure of the alignment of the spectrometer (one of the author’s

responsibilities in the collaboration) is described in Appendix C.





Chapter 2

Theoretical Framework

2.1 Deep Inelastic Scattering

2.1.1 Kinematic variables

Deep Inelastic Scattering (DIS) is a process of scattering a point-like lepton off a nucleon:

l +N → l′ +X, (2.1)

where the nucleon N breaks into the hadronic final state X. In Figure 2.1 a schematic

DIS event is presented. A lepton is scattered on a proton via single photon exchange. To

P

q= k−k′

(E ,
→
k)

(E ′,
→
k′)

X

Figure 2.1: Deep Inelastic Scattering. Single photon exchange approximation. Figure
from [17].

describe this DIS process cross-section for a given beam energy it is enough to use two

independent Lorentz invariant variables: Q2 - the virtuality of the intermediate photon

and ν - the energy transferred to the nucleon defined in Equations (2.2) and (2.3):

Q2 = −q2 = (k − k′)2 lab
= 2(|k̃||k̃′| cos θ − EE′ +m2), (2.2)

ν =
P · q
M

lab
= E − E′, (2.3)

5



Chapter 2. Theoretical Framework 6

where M is the nucleon mass and P is the initial nucleon momentum P
lab
= (M, 0̃). The

momenta of the incoming (k) and outgoing (k′) lepton are defined as follows

kµ = (E, k̃)
lab
= (E, 0, 0, |k̃|), (2.4)

k′µ = (E′, k̃′)
lab
= (E′, |k̃′| sin θ cosφ, |k̃′| sin θ sinφ, |k̃′| cos θ). (2.5)

The angles are defined in Figure 2.2. Instead of the two variables: Q2 and ν one can

Figure 2.2: The definition of angles in the laboratory frame. Figure from [24].

use two other dimensionless variables:

x =
Q2

2P · q
=

Q2

2Mν
, (2.6)

y =
P · q
P · k

lab
=

ν

E
. (2.7)

Here x is the Bjorken’s scaling variable which has the meaning, in the infinite momentum

frame, of nucleon momentum fraction carried by the struck parton and y is the fraction

of lepton’s energy transferred to the nucleon in the laboratory frame. Another quantity

used to describe deep inelastic scattering is the invariant mass of the final hadronic state

X,

W 2 = (P + q)2 = M2 +
Q2

x
−Q2 = M2 + 2Mν −Q2. (2.8)

The inelastic kinematic region is defined by two conditions: W 2 � M2 and ν � M ,

while the Deep Inelastic Scattering region by the condition Q2 > 1GeV 2.
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2.1.2 DIS inclusive cross-section

The inclusive, meaning that the hadronic final state X is not measured, differential

cross-section for lepton-nucleon scattering can be written in the form (as in [16])

dσ

dE′dΩ
=

(
E′

Mν

)
dσ

dxdydφ
=

(
Q2E′

yMν

)
dσ

dxdQ2dφ
=

α2

16π2Q4

E′

ME
LµνW

µν , (2.9)

where the scattered lepton energy is between E′ and E′ + dE′ and Ω(θ, φ) is the solid

angle in which the scattered lepton was detected. Lµν is the leptonic tensor and Wµν is

the hadronic tensor (for detailed derivation see [25, 26]). The leptonic tensor contains

information about the emission of photon by lepton of mass m and spin s:

Lµν(k, s, k′, s′) = ū(k′, s′)γµu(k, s)ū(u, s)γνu(k′, s′), (2.10)

where u, ū denote the Dirac spinors and s, s′ is the spin four-vector of incoming and

scattered lepton. Lµν can be decomposed into the symmetric and antisymmetric part

both calculable in QED

Lµν = Lµν(S) + iLµν(A), (2.11)

where

Lµν(S) =2k′µkν + 2k′νkµ + 2(m2 − k′ · k)gµν , (2.12a)

Lµν(A) =2mεµνρσqρsσ. (2.12b)

Here gµν is the symmetric metric tensor and εµνρσ is the Levi-Civita antisymmetric

tensor. sσ - the lepton spin four-vector is present only in the antisymmetric part of Lµν .

The hadronic tensor describes the internal structure of the nucleon. By definition

Wµν = 〈P, S|jµj+
ν |P, S〉, (2.13)

where S is the spin four-vector of the nucleon with momentum P . Here S · P = 0 and

S2 = −1. In the laboratory frame where the nucleon is at rest

S
lab
= (0, sinα cosβ, sinα sinβ, sinα). Here α and β are defined by Figure 2.2. Also Wµν

can be decomposed into symmetric and antisymmetric part

Wµν = Wµν
(S) + iWµν

(A), (2.14)
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k k’

p p

W

L

µ!

µ!

Figure 2.3: Separation of leptonic and hadronic part of the DIS process. Figure from
[16].

In general Wµν cannot be calculated directly as it depends on non-perturbative QCD.

However, it can be parametrised by spin-averaged and spin-dependent structure func-

tions in the following way

Wµν
(S) =2F1

(
−gµν +

qµqν

2

)
+

2F2

P · q

(
Pµ − P · q

q2
qµ
)(

P ν − P · q
q2

qν
)
, (2.15a)

Wµν
(A) =

2Mg1

P · q
εµνρσqρSσ +

2Mg2

(P · q)2
εµνρσqρ ((P · q)Sσ − (s · q)Pσ) . (2.15b)

The structure functions of the nucleon, F1, F2, g1, g2, are typically presented as functions

of x and Q2 and are measured in experiments. The first two describe the unpolarised

structure of the nucleon while the latter pair contains information about the nucleon

spin orientation. Equations (2.15a) and (2.15b) can be simplified by means of lepton

current conservation (qµL
µν = 0) which implies that terms containing qµ vanish.

The differential cross-section described in equation 2.9 can now be split into the sym-

metric and antisymmetric part where only the latter depends on the spin of lepton

and nucleon. Taking into account that the contraction of symmetric and antisymmetric

tensors cancel one gets

dσ

dxdQ2dφ
=

α2y2

16π2Q6

{
2Q2

(
1− 2m2

Q2

)
F1 + 4M

(
E′

y
− Q2

4Ey

)
F2

+ 4mM2Ey

[
(S · q)(s · q)
(P · q)(P · q)

+ 2x
s · S
P · q

]
g1

+ 4mMQ2

[
s · S
P · q

− (s · P )(S · q)
(P · q)(P · q)

]
g2

} (2.16)

The symmetric and antisymmetric part of the differential cross-section can now be named

as σ̄ - the spin-averaged cross-section - and ∆σ - spin-dependent cross-section. The

latter can be split into ∆σ|| - the longitudinally polarised cross-section, and ∆σ⊥ - the

transversely polarised cross-section:

σ = σ̄ − 1

2
hl∆σ = σ̄ − 1

2
hl(cosα∆σ|| + sinα cosφ∆σ⊥), (2.17)
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where hl = ±1 is the lepton helicity, the angles are defined in Figure 2.2 and

σ̄ ≡ d3σ̄

dxdQ2dφ
=

α2y

4πQ4

[
y

2

(
1− 2m2

Q2

)
F1 +

1

2xy

(
1− y − γ2y2

4

)
F2

]
, (2.18a)

∆σ|| ≡
d3∆σ||

dxdQ2dφ
=

α2y

4πQ4

[(
2− y − γ2y2

2
− 2m2y2

Q2

)
g1 + γ2yg2

]
, (2.18b)

cosφ∆σ⊥ ≡
d3∆σ⊥
dxdQ2dφ

= cosφ
α2y

4πQ4
γ

√
1− y − γ2y2

4
(yg1 + 2g2), (2.18c)

with γ =
2Mx√
Q2

=
2Mx

Q
=

Q

Ey
which is small in COMPASS kinematics since the beam

energy is high. The structure functions F1(x,Q2) and F2(x,Q2), which describe the

unpolarised part of the cross-section σ̄, have been measured experimentally in wide range

of x and Q2 both with proton and deuteron targets. The results of several experiments

are presented in Figure 2.4. They show that in the Bjorken limit (νQ2 → ∞ and

x =
Q2

2Mν
) and in the mid-values of x F2 does not depend on Q2 what is known as

Bjorken scaling. Moreover the Callan-Gross relation [27] holds: 2xF1(x) = F2(x) what

is consistent with the fact that quarks are particles of spin 1/2.

Structure functions g1 and g2 can be measured in experiments with polarised beam

and polarised target. The cross-section ∆σ|| and ∆σ⊥, defined by equations 2.18b and

2.18c, refer to a configuration where the nucleon spin is (anti)parallel or orthogonal to the

lepton beam momentum direction. g1 can be measured in the (anti)parallel configuration

where g2 is strongly suppressed by a factor γ2. Then this result can be used to disentangle

g2 from the orthogonal cross-section measurement (where the contributions of g1 and g2

are similar) using the previously measured g1.

The above formulas hold when a 1/2 spin target is taken into consideration. How-

ever, COMPASS has taken data (analysis of which will be also part of this thesis) with

deuteron target of spin 1. In this case the cross-section formula becomes more complex

and needs 8 structure functions. It can be shown, however, that the structure functions

b1−4 (so-called quadrupole structure functions) are negligible [29, 30]. When quadrupole

structure functions are neglected, asymmetry decompositions are the same for nucleon

and deuteron target.

2.1.3 The measurement of g1 and g2. Cross-section asymmetries.

As it has been written above a measurement of g1 and g2 requires polarised beam

and polarised target. By changing the polarisation of the target (or the beam) one

can measure parallel or antiparallel cross-sections. In the difference of the two the

unpolarised part of the cross-section (i.e. F1 and F2) cancels out. For better treatment
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of systematic effects (mainly acceptance of the detector) asymmetries are measured. For

the lepton-nucleon cross-section one can define longitudinal double spin asymmetry

ALL =
σ
→⇐ − σ

→⇒

σ
→⇐ + σ

→⇒
(2.19)

and transverse spin asymmetry

AT =
σ→⇓ − σ→⇑

σ→⇓ + σ→⇑
, (2.20)

where → denotes the beam polarisation which does not change at COMPASS and de-

pends on the beam kinematics while ⇒ represents the target polarisation. More inter-

esting physics quantities are virtual photon-nucleon cross-section asymmetries:

A1 =
σT1/2 − σ

T
3/2

σT1/2 + σT3/2
, A2 =

σTL1/2

σT1/2 + σT3/2
. (2.21)

Here the subscript of σ is the total angular momentum of the virtual photon-nucleon

system and the superscript corresponds to the initial and final state of the virtual photon.

Asymmetries A1 and A2 are related to the spin dependent structure functions in the

following way

A1 =
g1 − γ2g2

F1
, A2 = γ

g1 + g2

F1
. (2.22)

The double spin asymmetries defined in Equations (2.19) and (2.20) which are measured

in experiments can be expressed in terms of A1 and A2:

ALL = D(A1 + ηA2) AT = d(A2 − ξA1), (2.23)

with kinematic factors:

D =
y
(

1 + γ2 y

2

)
(2− y)

y2(1 + γ2) + 2

(
1− y − γ2y2

4

)
(1 +R)

, (2.24)

η =

γ

(
1− y − γ2y2

4

)
(

1 + γ2
y

2

)(
1− y

2

) , (2.25)

d =

√
1− y − γ2y2

4(
1 + γ2

y

2

)(
1− y

2

)D, (2.26)

ξ =
γ
(

1− y

2

)
1 + γ2

y

2

. (2.27)
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The factor D, known as depolarisation factor of the virtual photon, can be understood

as the fraction of the longitudinal beam polarisation transferred to the photon. It is

equal to zero when y = 0 and is close to one when y = 1. Therefore experiments with

high y are most sensitive to the spin dependent structure functions. The quantity R

given by

R =
σL

σT
=

F2

2xF1
(1 + γ2)− 1 (2.28)

is the ratio of longitudinal and transverse photon-nucleon cross-section.

Taking into account the fact that g2 is strongly suppressed by a factor γ2 and that η is

also small it can be easily shown that

g1(x) ≈ F1(x)ALL(x)

(1− γ2)D(y)
. (2.29)

Results of measurements of g1 structure functions are presented in Figure 2.5.

x
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x
-210 -110 1
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xg
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COMPASS

Figure 2.5: The spin dependent structure function xg1(x) of the proton (left) and
the deuteron(right) measured in deep inelastic scattering of electrons/positrons (E143,

E155, HERMES, CLAS) and muons (EMC, SMC, COMPASS).

2.2 Parton model

2.2.1 Naive parton model

In the naive quark parton model (QPM) the nucleon is described as a composition

of point-like particles which have spin 1/2 and carry fractional charge. These parti-

cles are naturally identified as quarks. The nucleon is described in infinite momentum

frame where the nucleon momentum along the z axis is infinite. Masses and transverse

momenta of quarks are negligible. The Bjorken x variable can be then interpreted as

nucleon momentum fraction carried by the parton. In DIS, where the parton interacts

with the virtual photon, it is assumed that, within the time frame of this interaction,

the partons do not interact with each other and therefore are considered as free objects.

The hadronic part of the lepton-nucleon scattering cross-section can be then formulated
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as an incoherent sum of virtual photon absorption by a quark. Under these conditions

the hadronic tensor Wµν can be calculated. The structure functions can be expressed

in the following way:

F1(x) =
1

2

∑
q

e2
q [q

+(x) + q−(x)] ≡ 1

2

∑
q

e2
qq(x), (2.30)

F2(x) =2xF1(x), (2.31)

g1(x) =
1

2

∑
q

e2
q [q

+(x)− q−(x)] ≡ 1

2

∑
q

e2
q∆q(x), (2.32)

g2(x) =0. (2.33)

Here the superscript + denotes a quark with spin parallel to the nucleon spin and − a

quark with spin antiparallel to the spin of the nucleon. The summation is over quark

flavours and eq stands for the charge of the given quark flavour. Equation (2.32) is once

again the Callan-Gross relation [27].

Combining these expressions with 2.28 one gets R ' 0 what can be interpreted as the fact

that in this naive model quarks cannot absorb longitudinally polarised virtual photons.

In this model structure functions are expressed in terms of parton distribution functions

(PDF) which do not depend on Q2. This is known as Bjorken scaling [31] and is true

for region x ∼ 0.1.

2.2.2 QCD improved parton model

The QCD improved parton model takes into account the interactions between quarks

inside the nucleon. Then the decomposition of g1 becomes Q2 dependent:

g1(x,Q2) =
1

2

∑
q

e2
q

1∫
x

dy

y
[∆q(y,Q2) + ∆q̄(y,Q2)]Cq(x/y, αs(Q

2))

+
〈e2
q〉
2
nf

1∫
x

dy

y
∆G(y,Q2)CG(x/y, αs(Q

2))

=
1

2

∑
q

e2
qCq(αs(Q

2))⊗ [∆q(Q2) + ∆q̄(Q2)]

+
〈e2
q〉
2
nfCG(αs(Q

2))⊗∆G(Q2),

(2.34)

where ⊗ denotes the convolution integral and αs(Q
2) is the QCD strong coupling con-

stant. The coefficient functions Ci are calculable in a QCD perturbation series in αs,

and it has been done up to next-to-leading order [32, 33, 34]. Quarks interact by ex-

change of gluons which may for a moment produce a quark-antiquark pair. These are
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so-called ’sea quarks’, and antiquarks from the sea give contribution to the g1 decompo-

sition (denoted as ∆q̄ ≡ q̄+ − q̄− in the above equation). The QCD evolution (violation

of the Bjorken scaling) is described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

(DGLAP) [35, 36, 37] equations:

Q2 d

dQ2

(
∆q

∆g

)
=

αs(Q
2)

2π

1∫
x

dy

y

 ∆Pqq ∆PqG∑
q

∆PGq ∆PGG

 (x/y, αs(Q
2))

(
∆q

∆g

)
(y,Q2)

=
αs(Q

2)

2π

 ∆Pqq ∆PqG∑
q

∆PGq ∆PGG

 (αs(Q
2))⊗

(
∆q

∆g

)
(Q2).

(2.35)

The splitting functions Pij where indices i and j run over quarks, antiquarks and gluons

have an probabilistic interpretation. Pij(x/y, αs(Q
2)) is the probability that the parton

i carries the x/y fraction of parent parton j of momentum y > x. The splitting functions

can be calculated for certain processes (presented in Figure 2.6) using Feynman rules.

q(x)q(y)

Pqq

q(y) g(x)

PGq

g(y) q(x)

PqG

g(y) g(x)

PGG

Figure 2.6: Feynman diagrams for the four splitting functions. The splitting function
Pij gives the probability that a parton i with momentum fraction x originates from

parton j.

The scale breaking is presented in Figure 2.7 where several measurements of g1(x,Q2)

are shown.

2.3 Semi-Inclusive Deep inelastic scattering (SIDIS)

2.3.1 Transversity

Tranversity h1 describes a correlation between the parton and nucleon polarisation when

the nucleon is polarised transversely to the direction of the virtual photon. The functions

F1, g1, h1 are the result of integration of Transverse Momentum Dependent structure

functions (TMDs) over kT (the intrinsic parton transverse momentum) and they are the

only structure functions which do not vanish under such an integration. The informa-

tion about kT and hence about Transverse Momentum Dependent structure functions

(TMDs) can be accessed by measuring azimuthal asymmetries of distributions of hadrons

produced in the scattering process.
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2.3.2 Transverse Momentum Dependent structure functions (TMDs).

Beyond the collinear approximation and with a finite transverse momentum of the par-

tons inside the nucleon, k⊥, eight transverse momentum dependent PDFs are needed

to fully describe the cross section at leading twist (Equation (2.39)). Apart from the

scattered lepton the detection of hadrons produced in the process is necessary to be sen-

sitive to the k⊥ distribution. To get access to TMDs one needs to study Semi-Inclusive

Deep Inelastic Scattering (SIDIS) processes (see Figure 2.8):

l(k) +N(P )→ l(k′) + h(P h) +X. (2.36)

Figure 2.8: Semi-Inclusive Deep Inelastic scattering (SIDIS) of lepton on nucleon.

The intrinsic parton transverse momentum (with respect to the intermediate photon

direction) - kT - is small compared to the longitudinal component. However, if we take

it into account we need 8 instead of 3 structure functions TMDs (see Figure 2.9). Among

all TMDs in this thesis I will concentrate on Sivers structure function which describes

the influence of the nucleon spin on the unpolarised parton distribution function and is

directly related to parton’s collective orbital motion. This relation is, however, model

dependent.

The SIDIS cross-section is described in terms of two azimuthal angles presented in Figure

2.10: φS - the angle between the target spin and the lepton scattering plane and φh -

the angle between the hadron momentum vector and the lepton scattering plane. They
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parton
U L T

nu
cl
eo
n

U

F1(x)

L

helicity g1(x)

T

transversity h1(x)

(a)

parton
U L T

nu
cl
eo
n

U

f1(x, kT ) Boer-Mulders h⊥1 (x, kT )

L

helicity g1(x, kT ) worm gear L h⊥1L(x, kT )

T
Sivers f⊥1T (x, kT ) worm gear T g⊥1T (x, kT )

transversity h1(x, kT )

pretzelosity h⊥1T (x, kT )

(b)

- nucleon or transverse or longitudinal spin respectively

- parton transverse or longitudinal spin respectively

- parton orbital angular momentum

Figure 2.9: Structure functions. (a) integrated over intrinsic transverse momentum
kT , (b) Transverse Momentum Dependent structure functions (TMDs). The virtual
photon direction points into the plane. The axes are labelled with U - unpolarised , L
- longitudinally polarised, T - transversely polarised. Vertical axis corresponds to the

nucleon polarisation and the horizontal axis to the parton polarisation.
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can be expressed in the following way

φS =
(q × k) · S
|(q × k) · S|

arccos

(
(q × k) · (q × S)

|q × k||q × S|

)
, (2.37)

φh =
(q × k) · P h

|(q × k) · P h|
arccos

(
(q × k) · (q × P h)

|q × k||q × P h|

)
, (2.38)

where S is the target spin vector and P h is the hadron momentum vector. The cross-


S


h

yz

x

S

l
l'

q

Ph

Figure 2.10: Definition of the azimuthal angles φh and φS , measured around the
direction of the virtual photon - q . Figure from [39]

section for SIDIS one hadron production reads ([40])

dσ

dxdydψdzdφhdPh⊥
=

α2

xyQ2

y2

2(1− ε)

(
1 +

γ2

2x

){
FUU,T + εFUU,L +

√
2ε(1 + ε) cosφhF

cosφh
UU

+ ε cos 2φhF
cos 2φh
UU + λe

√
2ε(1− ε) sinφhF

sinφh
UU

+ S||

[√
2ε(1 + ε) sinφhF

sinφh
UL + ε sin (2φh)F

sin (2φh)
UL

]
+ S||λe

[√
1− ε2FLL +

√
2ε(1− ε) cosφhF

cosφh
LL

]
+ |S⊥|

[
sin (φh − φS)

(
F

sin (φh−φS)
UT,T + εF

sin (φh−φS)
UT,L

)
+ ε sin (φh + φS)F

sin (φh+φS)
UT + ε sin (3φh − φS)F

sin (3φh−φS)
UT

+
√

2ε(1 + ε) sinφSF
sinφS
UT +

√
2ε(1 + ε) sin (2φh − φS)F

sin (2φh−φS)
UT

]
+ |S⊥|λe

[√
1− ε2 cos (φh − φS)F

cos (φh−φS)
LT +

√
2ε(1− ε) cosφSF

cosφS
LT

+
√

2ε(1− ε) cos (2φh − φS)F
cos (2φh−φS)
LT

]}
,

(2.39)

where

ε =
1− y − 1

4
γ2y2

1− y +
1

2
y2 +

1

4
γ2y2

(2.40)
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is the ratio of longitudinal and transverse photon flux. The eight transverse spin mod-

ulations from Equation (2.39) are independent from each other [40] and hence can be

extracted from one data set simultaneously. In this thesis we will concentrate only

on Sivers modulation (sin (φh − φS)). The angle ψ is the azimuthal angle of l′ around

the lepton beam axis with respect to an arbitrary fixed direction, which in case of a

transversely polarised target is chosen to be the direction of S.

2.3.3 The Sivers effect and the orbital motion of gluons.

Independently of the model there is a correlation between the Sivers effect and the

orbital angular momentum (OAM). Currently, for quantification of this relation a model

is needed. The most popular is the Burkardt model ([41, 42, 43]). This model bases on

the relation of the Sivers function and the parton distribution in the transverse plane.

From the Gluon Sivers Function (GSF) it is possible, using the Burkardt model, to

calculate the spatial gluon distribution in the transverse (with respect to the virtual

photon) plane. The available measurements of the GSF are shortly presented in Section

3.4. The extraction of the Sivers effect for gluons from COMPASS SIDIS data is the

main topic of this thesis.

There are two methods of describing the nucleon as a 3D object. One is x, the fraction

of the nucleon momentum carried by the parton known as the Björken variable, vs k⊥,

with the use of TMDs. The other uses Fourier transform of General Parton Distribu-

tions (GPDs) [44] which gives a description in momentum fraction x and position in

the transverse plane b⊥ (also referred to as the impact parameter). In the Burkardt

model hadrons produced in a SIDIS event gain transverse momentum via Final State

Interaction (FSI) with the strong field of the nucleon remnant (Fig. 2.11). This process

is also known as QCD lensing. The asymmetric distribution of the parton in the trans-

verse plane, gx̂(x,~b⊥) produces an asymmetry in azimuthal angle and this is the Sivers

asymmetry.

Figure 2.11: Chromodynamic lensing as a Sivers mechanism.

Asymmetric distribution of a parton and its OAM can be connected. A parton distribu-

tion in an unpolarised nucleon is described by a symmetric general parton distribution
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(GPD), gx̂ = H. When the nucleon is polarised the distribution becomes asymmetric

due to a nonzero spin-flip function E what means a nonzero OAM of this parton:

gx̂(x,~b⊥) = Hg(x,~b⊥)− 1

2M

∂

∂by
Eg(x,~b⊥). (2.41)



Chapter 3

Nucleon spin decomposition in

measurements

Nucleon spin decomposition assuming light-cone gauge reads

1

2
=

1

2
∆Σ + ∆G+ Lq + Lg, (3.1)

where ∆Σ is the quark helicity contribution to the nucleon spin, ∆G is the gluon helicity

contribution to the nucleon spin, Lq and Lg stand for orbital angular momentum (OAM)

of quarks and gluons respectively.

In this chapter the measurements of ∆Σ and ∆G will be described. The results show

that the parton spin contribution do not sum up to the nucleon spin. Up to now there

are no direct measurements of parton OAM. However some manifestations of OAM

existence may be studied. In this thesis the results of the measurement of the Sivers

effect for gluons are described. These results may be an indication of the gluon OAM,

Lg.

3.1 ∆Σ - the fraction of nucleon spin carried by quark

spins

The first moment of g1(x,Q2) contains information about the total quark helicity con-

tribution to the nucleon spin. For the naive QPM

Γ1 =

1∫
0

g1(x)dx =
1

2

∑
q

e2
q

1∫
0

[∆q(x) + ∆q̄(x)]dx. (3.2)

21
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Writing ∆q ≡
1∫

0

[∆q(x) + ∆q̄(x)]dx leads to expression for the first moment of g1(x) for

proton:

Γp1 =
1

2

(
4

9
∆u+

1

9
∆d+

1

9
∆s

)
=

1

12
(∆u−∆d) +

1

36
(∆u+ ∆d− 2∆s) +

1

9
(∆u+ ∆d+ ∆s).

(3.3)

Doing the same for neutron reads

Γ
p(n)
1 = ± 1

12
a3 +

1

36
a8 +

1

9
a0, (3.4)

where
a3 = ∆u−∆d,

a8 = ∆u+ ∆d− 2∆s,

a0 = ∆u+ ∆d+ ∆s.

(3.5)

The terms ai can be related to expectation values of the proton matrix elements of a

SU(3) flavour octet of quark axial-vector current [24]:

〈P, S|J i5µ|P, S〉 = MaiSµ, i = 1, ..., 8 (3.6)

and

J i5µ = Ψ̄γ5γµ
λi
2

Ψ. (3.7)

Here λi are Gell-Mann matrices and Ψ is a column vector in flavour space:

Ψ =


Ψu

Ψd

Ψs

 . (3.8)

The term a0 is determined by the flavour singlet operator:

J0
5µ = Ψ̄γ5γµΨ (3.9)

and

〈P, S|J0
5µ|P, S〉 = Ma0Sµ. (3.10)

The quantities ai (i = 1, ..., 8) are independent of Q2 because the octet currents are

conserved however a0 is a priori dependent on Q2 as the singlet current is not conserved.

This feature is known as axial anomaly [45, 46, 47, 48].
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The axial charges - a3 and a8 - can be obtained in the measurements of β decay and

spin 1/2 hyperon decays [24, 49, 28]:

a3 =F +D ≡
∣∣∣∣gAgV

∣∣∣∣ = 1.2694± 0.0028, (3.11)

a8 =F −D = 0.585± 0.025. (3.12)

Here gA/gV is the ratio of axial-vector and vector coupling constant measured in neutron

β decay. F and D are symmetric and antisymmetric couplings measured in hyperon

decays. It should be noted here that the use of a8 in DIS kinematics is debatable.

In naive QPM the total contribution of quark helicities to the nucleon spin - ∆Σ =

∆u+ ∆d+ ∆s = a0. By measuring Γ1, the first moment of g1, a0 value can be obtained

which in naive QPM is equal to ∆Σ.

In QCD improved quark parton model the expression for Γ
p(n)
1 becomes more compli-

cated:

Γ
p(n)
1 =

1

12

[(
±a3 +

1

3
a8

)
ENS(Q2) +

4

3
a0ES(Q2)

]
, (3.13)

with

ENS(Q2) =1− αs
π
−

(
3.58

3.25

)(αs
π

)2
. . . , (3.14)

ES(Q2) =1−

(
0.333

0.040

)
αs
π
−

(
1.10

−0.07

)(αs
π

)2
. . . . (3.15)

The values in brackets correspond to the number of flavours: the upper is for 3 flavours,

the lower for 4 flavours. The result depends on the used renormalisation scheme. Here

Modified Minimal Subtraction (MS) renormalisation scheme is used [50]. The value of

the difference between Γp1 and Γn1 leads to the Björken sum rule [51, 52]:

Γp1 − Γn1 =
1

6

∣∣∣∣gAgV
∣∣∣∣ENS . (3.16)

The agreement between DIS experiments measuring Γ
p(n)
1 and experiments measuring

gA/gV in β decay is on the level of 5% [53].

The first result, obtained by the EMC collaboration [9, 10], of ∆Σ measurement: ∆Σ =

0.12 ± 0.17 began the so-called ”spin crisis”. The expectation of the naive QPM was

that ∆Σ = 1, taking into account relativistic effects ∆Σ ∼ 0.6, [54].

These results have shown the necessity of the use of the QCD improved quark parton

model. Then g1 does not only depend on ∆q but also on ∆G. To present this relation

it is convenient to rewrite the DGLAP Equations (2.35) in terms of flavour-singlet (S)
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and flavour-nonsinglet (NS) polarised quark distributions:

Q2 d

dQ2
∆qNS(x,Q2) =

αs(Q
2)

2π
∆PNSqq (αs(Q

2)⊗∆qNS(Q2), (3.17)

Q2 d

dQ2
∆qS(x,Q2) =

αs(Q
2)

2π

[
∆PSqq(αs(Q

2)⊗∆qS(Q2) + 2nf∆PqG(αs(Q
2))⊗∆g(Q2)

]
,

(3.18)

Q2 d

dQ2
∆g(x,Q2) =

αs(Q
2)

2π

[
∆PGq(αs(Q

2))⊗∆qS(Q2) + ∆PqG(αs(Q
2))⊗∆g(Q2)

]
,

(3.19)

where

∆qS =
∑
q

∆q(x,Q2), (3.20)

∆qNS =
∑
q

(
e2
q

〈e2〉
− 1

)
∆q(x,Q2), (3.21)

with 〈e2〉 =
∑

eqn
−1
f and nf is the number of flavours. The evolution of the flavour-

nonsinglet quark distribution function does not depend on the gluon distribution func-

tion while the flavour singlet quark PDF evolution is sensitive to the evolution of gluon

PDF.

The structure function g1 given by equation 2.34 can now be rewritten in terms of the

flavour-singlet and flavour-nonsinglet contributions:

g1(x,Q2) =
1

2
〈e2〉

[
∆CNS(x, αs(Q

2))⊗∆qNS(x,Q2) + ∆CS(x, αs(Q
2))⊗∆qS(x,Q2)

+ 2nf∆CG(x, αs(Q
2))⊗∆g(x,Q2)

]
.

(3.22)

The splitting functions ∆CNS ,∆CS ,∆CG are calculated up to next-to-leading order

(NLO) in αs [32, 33, 34]. As mentioned before the g1 structure function is related not

only to the quark parton distribution function (PDF) but also to gluon PDF. However in

leading order (LO) ∆CG = 0 and g1 does not depend on ∆g. The dependence appears in

NLO calculations. But in NLO the values of the splitting functions depend on the choice

of factorisation and renormalisation scheme. In the MS scheme ∆CG = 0 and ∆g does

not contribute directly to g1. On the other hand the Adler-Bardeen (AB) scheme gives

∆CG 6= 0 and g1 as well as Γ1 depends directly on ∆g. ∆Σ can be written as the first

moment of the flavour singlet quark distribution. Its values in the two aforementioned

schemes are in the following relation

∆ΣMS = ∆ΣAB − nf
αs(Q

2)

2π
∆G(Q2), (3.23)
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where ∆G is the first moment of the gluons distribution

∆G(Q2) =

1∫
0

∆g(x,Q2)dx. (3.24)

In the MS scheme the quark distributions depend on the Q2 evolution. In the AB

scheme, on the other hand, quark distributions are evolution independent but ∆Σ is

Q2 dependent due to anomalous contribution of gluons represented by a triangle graph

shown in Figure 3.1. This fact leads to a suggestion that in the AB scheme the measured

small a0 value might be explained by the anomalous gluon contribution [46, 47, 48].

γµ γ5

Figure 3.1: Triangle diagram giving rise to the axial anomaly. The gluons couple
via the triangle to the axial current and thus contribute to the corresponding proton

matrix element.

In perturbative QCD (pQCD) by means of the DGLAP Equations (2.35) it is possible

to calculate g1(x,Q2) at any Q2 if one knows x-dependence of g1 at given referential Q2
0.

These calculations depend on ∆q and ∆G. By measuring x-dependence of g1 at several

Q2 values one can try to fit the DGLAP evolution (with parameters ∆q and ∆G) to

the experimental points. Also Semi-Inclusive DIS data are taken into account in these

fits. The results of spin-independent and spin-dependent fits of pQCD are presented in

Figure 3.2.

The pQCD analysis for all available g1 measurements has been performed by the COM-

PASS collaboration. Two equivalent solutions were found: one with positive and one

with negative ∆G. The final result for ∆Σ is

∆Σ ∈ [0.26; 0.36]. (3.25)

To decrease the errors it is needed to perform measurements of g1(x,Q2) in wider kine-

matic range. This will be possible in the planned Electron-Ion Collider experiment [20].
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Figure 3.2: COMPASS results of the QCD fits to g1 world data at Q2 = 3GeV2. The
fit is performed for several sets of functional shapes. Top: singlet x∆qS(x) and gluon
distribution x∆g(x). Bottom: distributions of x[∆q(x) + ∆q̄(x)] for different flavours
(u, d and s). Continuous lines correspond to the fit with γS = 0, long dashed lines to
the one with γS 6= 0. The dark bands represent the statistical uncertainties, only. The

light bands, which overlay the dark ones, represent the systematic uncertainties.

3.2 ∆G - the gluon spin contribution to the nucleon spin

The observable ∆G is well defined and can be measured in experiments. The best way to

evaluate it is to measure gluon helicity function ∆g as a function of the gluon momentum

fraction xg and calculate its first moment

∆G =

∫
∆g(xg)dxg. (3.26)

What can be measured directly and will be shortly presented in this Section, is the

average gluon polarisation 〈∆g/g〉. It has been measured in a model-dependent way

with the use of photon-gluon Fusion (PGF) process (Figure 6.1) by SMC [55], Hermes

[56, 57] and COMPASS [58, 59, 18]. All these measurements cover relatively large xg

region. Small xg region will be covered by the EIC experiment [20].

Constraints on gluon polarisation ∆g/g have been also obtained by PHENIX [60] and

STAR [61] where the production of π0 or high transverse momentum jets have been

analysed.
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3.2.1 Open Charm production

The production of hadrons containing charm quarks is a signature of the Photon Gluon

Fusion process (see Figure 6.1). In the PGF process the interacting quark and gluon

Figure 3.3: Photon Gluon Fusion (PGF)

produce a quark-antiquark pair. This hard process is the main source of heavy c quarks

(mc = 1.5 GeV) as the production via fragmentation of light quarks are strongly sup-

pressed. Interaction of virtual photon with intrinsic charm quark, on the other hand,

may be significant for large xBj which in the case of D0 production is rather small.

In this method asymmetries of several decay channels of the D meson have been ob-

tained with the use of weighted background subtraction. The analysis involved QCD

calculations of the analysing power aLL which relates the partonic asymmetry with

the asymmetry on the measurable parton level. The calculation of aLL has been done

at leading order (LO) but may also involve next-to-leading order (NLO) corrections.

Therefore two official COMPASS results are presented here:〈
∆g

g

〉LO
= −0.06± 0.21(stat.)± 0.08(syst.) (3.27)〈

∆g

g

〉NLO
= −0.13± 0.15(stat.)± 0.15(syst.). (3.28)

The Open Charm analysis will be discussed in more detail in Section 6.1 as background

subtraction method is similar to the one used in the main analysis of this thesis.

3.2.2 ∆g/g from high transverse momentum hadron pairs

The lowest order perturbative QCD (LO pQCD) process of interaction of a virtual

photon with a gluon is the PGF process. In the scattering of lepton on a nucleon

γ∗N → hhX two other processes (mostly on light quarks u, d, s) are involved: leading

process - photon absorption by quark and QCD Compton process - photon absorption by
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quark with gluon emission in the final state. The processes are presented in Figure 3.4.

The approximation of the lepton-nucleon scattering by these three processes is applied

(a) (b) (c)

Figure 3.4: Feynman diagrams considered for γ∗N scattering: A) Leading order
process (LP), B) gluon radiation (QCD Compton scattering), C) photon–gluon fusion

(PGF).

in MC simulators: PYTHIA [62] which covers the region of Q2 < 1 and LEPTO [63]

which covers the region Q2 > 1.

In the total two-hadron sample the leading process is dominating. The observed two

hadrons from a LP event obtain transverse (w.r.t. the virtual photon) momentum only

through fragmentation whereas in the other two processes transverse momentum is also

gained in the two-body final state system. The cut on pT of the hadrons suppresses the

leading process. However, the final sample is still a mixture of the three processes and to

extract ∆g/g MC simulations to obtain the fractions of the three processes are needed.

Three experimental results will be shortly described here: SMC for Q2 > 1, COMPASS

for Q2 < 1 and for Q2 > 1.

1. SMC at CERN (Q2 > 1).

The SMC experiment was the COMPASS predecessor. It was placed in the same

experimental hall and worked on the same 190 GeV polarised muon beam (however

the intensity was five times smaller than in COMPASS times). It studied scattering

polarised muons off polarised proton and deuteron targets. A deuterated buthanol

target was used for the latter. The detailed description of the SMC experimental

setup is given in [64].

The gluon polarisation has been obtained from the equation

AlN→l
′hhX =

∆q

q
(〈aLL〉LPRLP + 〈aLL〉QCDCRQCDC)

+
∆g

g
〈aLL〉PGFRPGF .

(3.29)

The quark asymmetry ∆q/q has been approximated by the value of A1 obtained

in inclusive measurement. The processes fractions were obtained with the use of

the LEPTO generator [63].
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For the gluon polarisation extraction a sample of high-pT hadron pairs (pT1, pT2 >

0.7 GeV,
∑

p2
T > 2.5 GeV2) with Q2 > 1 GeV2 has been used. For both hadrons

the cut on xF > 0.1 and z > 0.1 has been applied to select current fragmentation

region.

To obtain better signal purity a neural network was used to optimise the selection.

As an input several inclusive (Q2, x, y, the multiplicity of the tracks) and hadronic

(pT1, pL1, pT2, pL2, z1, z2, charges of the two leading hadrons, and their azimuthal

angle φ) variables were chosen. The NN has been trained on a MC sample where

the target value was one for PGF and zero otherwise. The trained NN was applied

to the real events and a threshold was set to select a sample with the optimised

statistics and purity. The final result of this analysis [55] is:

∆g

g
= −0.20± 0.28(stat.)± 0.10(syst.) (3.30)

at xg = 0.07 and scale µ2 = 3 GeV2.

2. COMPASS at CERN (Q2 > 1).

The COMPASS experimental setup will be described in detail in Chapter 4. The

high-pT hadron pair for Q2 > 1 GeV is the main subject of the PhD thesis [17].

It will be described in more detail in Section 6.2 as some of its basic statistical

features, like event-by-event weighting with the use of NN, were used in this thesis.

The main idea is to analyse two samples: inclusive and high-pT . The inclusive

sample is defined by the cuts in inclusive kinematic variables: Q2, y,W . For the

high-pT sample it is additionally required for the event to contain at least two

hadrons with pT1 > 0.7 GeV and pT2 > 0.4 GeV, xF1,2 > 0. Two equations are

written for asymmetries measured in the two samples:

A2h
LL(xBj) = RPGFaPGFLL

∆g

g
(xg) +RLPDALO1 (xBj) +RQCDCaQCDCLL ALO1 (xC),

(3.31)

AinclLL (xBj) = RPGFincl a
incl,PGF
LL

∆g

g
(xg) +RLPinclDA

LO
1 (xBj)

+RQCDCincl aincl,QCDCLL ALO1 (xC).
(3.32)

The fractions in both samples differ Riincl 6= Ri and from the set of two different

equations for two unknowns
∆g

g
and ALO1 can be expressed in terms of AinclLL which

has been taken from global fits. The details are presented in Section 6.2 The final

value of this analysis is

∆g

g
= 0.125± 0.060(stat.)± 0.063(syst.) (3.33)
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at xg = 0.09 and a scale of µ2 = 3 GeV2.

3.2.3 ∆g/g from COMPASS for Q2 < 1

In this analysis the following criteria have been used: the pT of the two fastest hadrons

had to be > 0.7 GeV and their
∑

p2
T > 2.5 GeV2 to suppress the contribution of the

LP and to ensure factorisation; 0.35 < y < 0.9 to remove regions not sensitive to ∆g

and regions with large radiative corrections; xF > 0 to select the current fragmentation

region and Minv > 1.5 GeV to cut away the resonance production.

At low Q2 not only the three hard subprocesses contribute to the cross-section but

there is also considerable input from resolved photon processes. The contributions are

presented in Figure 3.5. Three of them are treated as signal: PGF, qg → qg, gg → gg.

”Low-pT ” labels non perturbative processes. This contribution and the contribution of

the LP are neglected. The full expression for the measured double spin asymmetry is

given by:

A||/D = RPGF
〈
aPGFLL

D

〉
∆g

g
+RQCDC

〈
aQCDCLL

D

〉
A1

+ Rqq→qq
〈
aqq→qqLL

D

〉
∆q

q

∆qγ

qγ
+Rgq→gq

〈
agq→gqLL

D

〉
∆q

q

∆gγ

gγ

+ Rqg→qg
〈
aqg→qgLL

D

〉
∆g

g

∆qγ

qγ
+Rgg→gg

〈
agg→ggLL

D

〉
∆g

g

∆gγ

gγ
.

(3.34)

The fractions Ri are obtained from the PYTHIA generator [62]. The analysing power

(partonic cross-section) aiLL is calculated at LO approximation using kinematics from

the MC sample [65]. The polarised and unpolarised parton distributions in the nucleon,

∆q and q, are taken from fits to global data [11, 12, 66, 67]. Also the unpolarised PDFs

in the photon, qγ , gγ were taken from global data [68]. There are no data available for

the polarised PDFs in the photon, ∆qγ ,∆gγ . They can be treated as a sum of calculable

pQCD (point-like) term and non-perturbative (VMD) term. For the latter minimal and

maximal scenarios [69] are considered. The official COMPASS results of this analysis

taking into account data collected in 2002-2003 on deuteron target [70] reads

∆g

g
= 0.024± 0.089(stat.)± 0.057(syst.) (3.35)

at xg ≈ 0.095+0.08
−0.04 and scale µ2 = 3 GeV2. A more precise preliminary result of combined

2002-2004 data [71] gives

∆g

g
= 0.016± 0.058(stat.)± 0.055(syst.) (3.36)
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Figure 3.5: Relative contributions R of the dominant PYTHIA processes to the MC
sample of high-pT events at Q2 < 1 GeV2. Left: point-like photon processes, right:
resolved photon processes. Longitudinal photons, as well as minor resolved photon

contributions, are not shown. Figure from [17].

3.2.4 ∆g/g from inclusive single hadrons and high-pT hadron pairs

from HERMES data

The HERMES experiment at the DESY laboratory used the HERA accelerator which

has been shut down in 2007. However, the data analysis in the HERMES collaboration

is still ongoing. The experimental setup is described in [72].

This analysis is described in the HERMES collaboration publication [57].

The method is based on PYTHIA [62]. Apart from the three aforementioned hard

subprocesses which are LO pQCD also non-perturbative processes are taken into account.

The analysis is based on the data taken with both hydrogen and deuterium targets.

There were three main categories of events:

• ”’anti-tagged’ single hadrons” - single hadrons with no scattered e+′ detected.

Contains mostly events with low Q2 (e+′ in the beam pipe). With the criterion -

pT (beam) > 1.0 GeV the deuteron (proton) data sample in this category contains

1272k (419k) hadrons.

• ”’tagged’ single inclusive hadrons” - the scattered positron has been detected with

Q2 > 0.1 GeV2, W 2 > 4 GeV2, and y < 0.95. For pT (γ∗) > 1 GeV this deuteron

(proton) data sample contains 53k (19k) hadrons.

• ”inclusive pairs of hadrons” - The hadron pair sample consists of all pairs of charged

hadrons with pT (beam) > 0.5GeV . Only in 10% of events a positron was detected.
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With the additional requirement
∑

p2
T (beam) > 2.0 GeV2 the deuteron (proton)

data sample contains 60k (20k) hadron pairs. With this requirement applied 6%

of the ”’anti-tagged’ inclusive hadrons” are contained in this sample.

The asymmetry of the signal is given by

ASIG

〈
∆g

g
â(ŝ, t̂, µ2, Q2)

∆fγ
∗

a (xa, µ
2)

fγ
∗

a (xa, µ2)

〉
, (3.37)

where â is the analysing power calculable in pQCD. In order to calculate ∆fγ/fγ , the

photon polarisation, the averages of the maximal and minimal scenarios of the GRS

[69, 73] helicity-dependent PDFs are used in conjunction with the GRS [68] helicity-

averaged PDF. The background processes asymmetries are taken into account by〈
∆g

g

〉
(pT ) =

Ameas(pT )−RBGABGMC(pT )

RSIG(pT )
〈
â(ŝ, t̂, µ2, Q2)∆fγ

∗
a

fγ
∗

a

〉SIG
(pT )

. (3.38)

Here ABGMC is the average asymmetry of all background processes which are either negli-

gible or taken from the world data as it is in case of the A1 - the inclusive DIS photon-

nucleon asymmetry. The fractions of each process Ri are taken from MC simulations.

The final result is

∆g

g
(〈x〉, 〈µ2〉) = 0.049± 0.034(stat.)± 0.010(syst.-exp.)+0.126

−0.099(syst.-models) (3.39)

at scale 〈µ2〉 = 1.35 GeV2 and 〈x〉 = 0.22.

The summary of the direct ∆g/g measurements is given in Figure 3.6.

3.2.5 ∆g/g from single all-pT hadrons for Q2 > 1 GeV2

This analysis [18] combines the approaches of the high-pT analysis and the background

subtraction of the Open Charm method. It will be described in more detail in Section

6.3. It is a method of solving a set of equations obtained not for different data samples

like in the COMPASS high-pT analysis but by weighting the equation for the number

of events. It will be shown in Section 5.3 that this method is similar to the Unbinned

Maximum Likelihood (UML) method. In this way an optimisation of statistical error is

obtained. The result reads

∆g

g
= 0.113± 0.038(stat.)± 0.036(syst.) (3.40)

at scale 〈µ2〉 = 3 GeV2 and 〈xg〉 = 0.10.
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Figure 3.6: Compilation of the ∆g/g measurements from open charm and high-pT
hadron pair production by COMPASS [70, 59], SMC [55], HERMES [57] and Open
Charm by COMPASS [58] as a function of xg. The horizontal bars mark the range in
xg for each measurement, the vertical ones give the statistical precision and the total

errors (if available). Figure from [16].

3.2.6 ∆G global fit with data from pp collisions

The measurements of polarised proton-proton collisions are performed at Brookhaven

laboratory in USA at the Relativistic Heavy Ion Collider (RHIC). There are two exper-

iments dedicated to the proton spin structure: STAR and PHENIX. The data collected

in the years 2002-2006 and 2009 were taken with the centre-of-mass energy
√
s = 200

GeV.

The processes involving gluons are prompt photon production, quark-gluon and gluon-

gluon fusion with jet production (see Figure 3.7). Both, prompt photon and jet produc-

Figure 3.7: Selected lowest-order Feynman diagrams for elementary processes with
gluons in the initial state in p-p collisions: quark-gluon Compton process with prompt
photon production (left), gluon-gluon (centre) and gluon-quark (right) scattering for

jet production.

tion suffer from large background. For the former it is the π0 → γγ decay, for the latter
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the jet channels of quark-quark interactions. The big advantage of the RHIC collider is

high data statistics.

The polarised protons are obtained from the polarised proton source and after three

steps of acceleration they are injected into the two RHIC rings. Vertical polarisation

of the protons during acceleration is maintained by the use of a magnetic field shape

called ”Siberian Snakes” which flips the spins of protons compensating the depolarisation

effects. The maximum polarisation has been measured to be 30% in 2003, 65% in

2006. The average polarisation in 2009 reached 56%. The polarisation is rotated to the

longitudinal direction directly before the collision.

The STAR detector [74] is designed to track and identify charged particles and is very

well suited for jet reconstruction. The main advantage of the PHENIX detector [75] is a

very precise calorimeter enabling π0 identification especially in the mid-rapidity region.

It has also good performance in lepton registration.

Both experiments measure the asymmetry between parallel (++) and anti-parallel (+-)

polarised proton-proton collisions:

AexpLL =
1

P1P2

σ++ − σ+−

σ++ + σ+− , (3.41)

where P1 and P2 are the polarisations of the colliding beams. The measured asymmetry

is the sum of asymmetries of different partonic reactions i:

AiLL =
∆f i1
f i1

∆f i2
f i2

aiLL. (3.42)

The ∆f i/f i are the ration of spin-dependent and spin averaged parton density functions.

The partonic cross-section asymmetries aiLL are calculable in perturbative QCD.

The asymmetry of the signal ∆g/g is impossible to be separated or to be obtained from

experimental asymmetry by background asymmetry subtraction. Therefore different

scenarios of ∆g(x) distribution are assumed and corresponding double spin asymmetries

of a given final state are evaluated. These scenarios are then compared to the data.

The method of global fit to both SIDIS and RHIC data has been developed by D. de

Florian, R. Sassot, M. Stratmann, W. Vogelsang [76] (known as DSSV). The result

obtained without 2009 RHIC data show very small contribution of ∆G. The analysis

has been repeated by the same authors with the 2009 RHIC data [19]. This result

is significantly different from zero and is presented in Figure 3.8. The newest result

has been published by the STAR collaboration [61] where the authors use the NNPDF

collaboration fit to the early data [77] and modify it by reweighting with the 2006 and
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2009 STAR inclusive jet ALL results. The obtained value of ∆G is 0.21 ± 0.10. The

latest global fits are presented in Figure 3.8.
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Figure 3.8: Left panel: gluon helicity distribution at Q2 = 10 GeV2. The dotted
lines present the gluon densities for alternative fits that are within the 90% C.L. The
x-range primarily probed by the RHIC data is indicated by the two vertical dashed
lines. Right panel:(Colour online.) Gluon polarisations from NNPDF(blue dot-dashed
curve, hatched uncertainty band) [77], and from a modified version of NNPDF that
obtained when including the 2006 and 2009 STAR inclusive jet ALL results through

reweighting (red solid curve and uncertainty band).

3.3 Quark and gluon orbital angular momentum

The orbital angular momentum (OAM) of partons cannot be directly accessed via mea-

surement. One of the signatures of the parton orbital motion is the Sivers effect [23].

The transition from the Sivers effect to the OAM is, however, model dependent. The

other possibility to access quark and gluon OAM is via the generalised parton distribu-

tion (GPD) function Eq,g and the Ji’s sum rule [78]. OAM of quarks and qluons have

been also calculated on the Lattice QCD.

3.3.1 Sivers asymmetry measurements

Measurements of the Sivers asymmetries for charged pions and charged and neutral

kaons produced in semi-inclusive deep-inelastic scattering of high energy leptons off

transversely polarised protons were obtained both by COMPASS [79] and HERMES

[80] experiments. The Sivers asymmetries are found to be positive for positive pions

and kaons and compatible with zero otherwise. The results are presented in Figure 3.9.

COMPASS has also published results of the Sivers asymmetry for identified hadrons

with the deuteron target. As presented in Figure 3.10 the results are compatible with
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Figure 3.9: COMPASS results of the Sivers asymmetries for charged pions (top),
charged kaons (middle) and neutral kaons (bottom) as a function of x, z and phT . COM-

PASS data taken with the proton target.

zero. The nonzero result for positive hadrons on proton target and zero on deuteron

(isoscalar) target suggests that the Sivers effects from u and d quark are different from

zero but of opposite sign.

3.3.2 General Parton Distributions

Polarised GPDs contain information about parton’s orbital angular momentum. In par-

ticular OAM can be obtained from GPD E via the Ji’s sum rule [78]. COMPASS has ob-

tained results from ρ0 meson production with transversely polarised proton and deuteron

targets [81] based on Hard Exclusive Meson Production process (see Figure 3.11). The
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Figure 3.10: Sivers asymmetry measured by COMPASS against x, z and phT for pions
and kaons. COMPASS data taken with the deuteron target.

cross-section of this process contain azimuthal angle modulations similar to the mod-

ulations in the SIDIS single hadron cross-section 2.39. The asymmetry A
sin (φ−φS)
UT is

sensitive to GPD E. The results, both for proton and deuteron targets, are compatible

with zero (see Figure 3.11) which indicates that GPD E for u and d quarks is of the

same value but opposite sign (Eu ≈ −Ed). This fact is consistent with the hypothesis

that OAM of u and d quarks cancel in the nucleon.

3.3.3 Calculations on QCD Lattice

QCD lattice calculation is a very effective and fast developing tool of theoretical cal-

culation based on QCD first principles. The calculations are evaluated numerically on

a quantised phase space called lattice (see Figure 3.12) with the use of the QCD La-

grangian. The renormalisation requires setting certain renormalisation constants (see

[83] for details). The results of the total Ju,d and separated spin Su,d and OAM Lu,d

u and d quark contribution to the spin of the nucleon is presented in Figure 3.13. The

fine lattice spacing used in the calculations is a = 0.084 fm and the number of flavours

Nf = 2+1. For renormalisation several values of pion mass down to 300 MeV have been

applied. Results of two methods of obtaining the quark masses: domain wall fermions

(DWF) [84] and hybrid (Hy) action - DWF for valence quarks and improved Asqtad
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Figure 3.11: Left: Hard Exclusive Meson Production (HEMP) ”handbag” diagram.

Right: COMPASS results of the A
sin (φ−φS)
UT asymmetry on deuteron and proton targets

as a function of xBj , Q
2 and p2T . Error bars show statistical uncertainties, while the

systematic ones are represented by grey bands at the bottom. The curves show the
prediction of the GPD model by Goloskokov and Kroll [82] using the set of parameters
called ‘variant 1’. They are calculated at W = 8.1 GeV and p2T = 0.2 GeV2 for the left
and middle panels, and at W = 8.1 GeV and Q2 = 2.2 GeV2 for the right panels. The
theoretical error bands reflect uncertainties of GPD parametrisations. Blue line is the

Goloskokov-Kroll model expectation.
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Figure 3.12: Illustration of the periodic lattice and its degrees of freedom.
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action [85]. These calculations confirm that the contribution of OAM of u and d quarks

to the nucleon spin can be opposite and cancel one another. There seams to be room

for significant contribution of gluon OAM.
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Figure 3.13: Left: u and d quark contributions to the nucleon spin from the domain
wall and hybrid action calculations. Right: u and d quark spin and orbital momentum

from the domain wall calculations.

3.4 Measurements giving access to Gluon Sivers Function

The Sivers effect for gluons can be evaluated from both proton-proton collisions and semi-

inclusive DIS experiments. The results of the left-right asymmetry AN (Equation (3.43))

obtained by the PHENIX collaboration for the pp↑ → π0X lead to model dependent

constraints on the Gluon Sivers Function (GSF) published in [86].

AN =
σL − σR
σL + σR

(3.43)

The results, presented in Figure 3.14, obtained in the mid-rapidity and negative xF re-

gion where gluon contribution should be dominant, show that the GSF is small or even

zero. In order to evaluate theoretically AN the assumption of a generalised QCD factori-

sation scheme which involves unintegrated TMD parton distribution and fragmentation

function D̂π/c(z, k⊥π) are made. In the given kinematic region AN is largely dominated

by the Sivers effect and then the following equation holds [86]

Eπdσ
↑

d3pπ
− Eπdσ

↓

d3pπ
'
∑
a,b,c,d

∫
dxadxbdz

πxaxbz2s
d2k⊥ad

2k⊥bd
3k⊥πδ(k⊥π · p̂c)J(k⊥π)

×∆f̂a/p↑(xa,k⊥a)f̂b/p(xb,k⊥b)ŝ
2dσ̂

ab→cd

dt̂
(xa, xb, ŝ, t̂, û)δ(ŝ+ t̂+ û)D̂π/c(z, k⊥π),

(3.44)
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where

∆f̂a/p↑(xa,k⊥a) ≡ f̂a/p↑(xa,k⊥a)− f̂a/p↓(xa,k⊥a) = ∆N f̂a/p↑(xa, k⊥a) cosφa (3.45)

is referred to as the Sivers distribution function of parton a inside a transversely polarised

(along the Y -axis) proton (moving along the Z-axis) and φa is the azimuthal angle of the

intrinsic transverse momentum k⊥a of parton a. The extra phase-space factor J(k⊥π) is

the proper invariant Jacobian factor for the transformation from the parton momentum

pc to the hadron momentum pπ. In the model the TMDs and the fragmentation function

are assumed to be Gaussian-like.

The curves in Figure 3.14 represent different scenarios for the gluon and sea-quark Sivers

function:

• dot-dashed line - no sea quark contribution, GSF chosen to saturate the natural

positivity bound:

∆N f̂g/p↑(x, kT ) = −2f̂g/p↑(x, kT ), (3.46)

• solid line - all valence and sea-quarks contribution included and a non-vanishing

positive Sivers function for sea-quarks which saturates the positivity bound

∆N f̂qs/p↑(x) ≡ f̂qs/p(x) together with the largest negative GSF. Dashed line rep-

resents the contribution of the GSF. Dotted line shows the quark contribution.
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Figure 3.14: AN measurement at PHENIX two scenarios: positive GSF and no sea-
quark contribution (dot-dashed line), negative GSF and positive sea-quark contribution

(solid line) divided into gluon (dashed line) and quark contribution (dotted line).
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Recently a new analysis of all PHENIX data has been published [87]. The authors use

two parametrisations of quark Sivers function obtained from SIDIS measurements KRE-

SIDIS1 [88] and DSS-SIDIS2 [89]. Again Gaussian-like function are chosen to represent

the GSF and the fragmentation functions. A fit to the PHENIX AN measurement is

performed with

χ2 =
∑ (AgluonN +AquarkN −AexpN )2

σ2
exp + σ2

quark

, (3.47)

where σexp is the error of the experimental point and σquark is the uncertainty of the

theoretical prediction of the quark contribution. The results are shown in Figure 3.15.

These results show very small, almost negligible Gluon Sivers Function. It should be

noted, however, that the results depend strongly on the applied models. The uncertain-

ties of the theoretical predictions are proportional to the obtained value and hence very

small under the assumptions made.
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Figure 3.15: The SSA AN , red solid line, compared with PHENIX data [90] at√
s = 200 GeV and at mid-rapidity, as a function of PT (in the lower PT range),

obtained adopting the SIDIS2 set [89] (left panel) and the SIDIS1 set [88] (right panel)
for the quark Sivers functions. The red (green) band represents a tolerance of 10% (2%)

in χ2. The gluon contribution to AN , blue dotted line, is also shown.

3.5 Future measurements of gluon Sivers effect

Measurements of single spin asymmetries (SSA) similar to the aforementioned PHENIX

experiment could be done at AFTER@LHC where the beam of protons or lead ions of

the LHC would be scattered on a fixed transversely polarised target [91]. Such collisions

would have a centre-of-mass energy of 115 GeV for proton beam and 72 GeV for lead

beam. LHC provides high luminosity what enables study of the rare processes like J/Ψ

production to measure gluon Sivers effect directly. Also Sivers effect for quarks and glu-

ons could be measured with larger precision via polarised Drell-Yann and prompt photon

production, and the gluon contribution can be estimated more precisely. In addition,

the comparison of Pbp↑ → γjetX and pp↑ → γjetX could be useful in determining the

relative sizes of quark and gluon Sivers functions.

The golden channel for studying the gluon Sivers effect should be open charm production
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at the Electron-Ion Collider (EIC) [20], ep↑ → e′cc̄X. This reaction gives direct access

to gluons. EIC kinematics should enable measurements at small x.



Chapter 4

The COMPASS experiment at

CERN

4.1 Introduction

COMPASS (COmmon Muon Proton Apparatus for Structure and Spectroscopy) is a

fixed target experiment at CERN. It uses the beam from the Super Proton Synchrotron

(SPS). In the years 2002-2012 COMPASS has taken data for two main programs, nucleon

structure and hadron spectroscopy. Since 2012 COMPASS entered phase II (described

in the COMPASS II proposal, [92]) and in 2015 has been taking data for the Drell-Yan

reaction. The measurement of the Deeply Virtual Compton Scattering (DVCS) reaction

giving access to GPDs is planned for 2016 and 2017.

The hadron structure program consists of both longitudinal and transverse spin structure

of the nucleon. In both cases polarised muon beam and polarised targets have been used.

COMPASS has obtained a precise result for the contribution of the quark spin to the

spin of the nucleon ∆Σ, [93]. In the same publication the collaboration estimated the

gluon spin contribution ∆G from the QCD evolution. It should be noted, however, that

the precision of this measurement is based on the assumption of the applied evolution

model. Results of different approaches to the direct measurement of gluon polarisations

from SIDIS data have been published in [58] - Open Charm, [59] - high-pT hadron

pairs and [18] - all-pT hadrons. COMPASS has been also taking data with transversely

polarised targets obtaining results of the Collins and Sivers asymmetry measurements for

identified hadrons, [94, 79]. The paper on other asymmetries, giving access to different

Transverse Momentum Dependent structure functions (TMDs), from the cross-section

given in Equation (2.39) is in preparation. The SIDIS data are also used to obtain

hadron multiplicities needed for calculation of fragmentation functions.

43
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The General Parton Distributions (GPDs) has been studied with the use of data taken

with transversely polarised target via the Hard Exclusive Meson Production (HEMP).

Results of this analysis have been published in [81, 95]. In 2012 a test run of the DVCS

measurement has been performed with an unpolarised liquid hydrogen target and a

recoil proton detector surrounding the target area. The actual measurement is planned

for the years 2016 and 2017.

The hadron spectroscopy program has been using the hadron (a mixture of pions, kaons

and protons) beam scattered off unpolarised liquid hydrogen and nuclear targets. The

cross-sections of these processes enable to collect high statistics in relatively short time.

The analysis method is called the Partial Wave Analysis (PWA) method and the most

important results are the radiative width for the a2(1320) and π2(1670) resonances [96]

and the discovery of the a1(1420) resonance [97]. In addition a very important results

have been obtained in a pion polarisability measurement via the Primakoff reaction [98].

In the year 2015 COMPASS has been taking data with pion beam and transversely po-

larised target to measure the asymmetries of the Drell-Yan reaction. It is an alternative

way to access TMDs and a test of our understanding of QCD.

Here the setup for the muon beam and transversely polarised target will be described

as data collected in this configuration have been used to extract the Sivers asymmetry

for gluons.

4.2 The beamline

The COMPASS experiment is situated on the CERN M2 beamline coming from SPS.

The SPS synchrotron produces 400 GeV protons which hit a 500 mm beryllium target

(called T6) producing hadrons (mostly pions). The intensity of the proton beam is

of the order of 1013 protons per spill. Magnets situated behind the T6 target enable

momentum and charge selection of the hadron beam (172 GeV for the nominal 160 GeV

muon beam). Then in the 600 m long decay channel approximately 10% of pions decay

into muons. As this is a parity violating reaction muons are naturally 100% polarised in

the rest frame. In the laboratory frame the polarisation is ∼ 80% [64]. The sign of the

polarisation depends on the muon charge. For the 160 GeV µ+ beam the polarisation

is about −80% (see Figure 4.1). The 1.1 m beryllium absorber stops the remaining

hadrons. This absorber is followed by another set of dipole and quadrupole magnets

which shape and clean the muon beam. Mouns are delivered to the experimental hall

through a 250 m long channel. The momentum spread of the final beam is typically 5%

with respect to the nominal momentum. The beamline scheme is presented in Figure 4.2.
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The Beam Momentum Stations (BMS) built of scintillating fiber detectors enable beam

momentum reconstruction and set the time reference. Details of the beam reconstruction

algorithm and procedure can be found in [99].
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4.3 The polarised target

The objective of building and maintaining a polarisation of a deuteron or proton target

is very difficult to achieve and it has been a big success of the COMPASS target group

to cope with this task. Especially that the length of the target has to be large enough to

obtain reasonable rates with small DIS cross-section. In order to build and maintain the

polarisation the target material has been cooled to about 50 mK in the frozen spin mode

and put in a homogeneous 2.5 T magnetic field. For the cooling an efficient 3He/4He

dilution refrigerator has been used and to produce the magnetic field a superconducting

solenoid magnet has been utilised. This magnet enables polarisation of the target in

the longitudinal direction. An additional dipole magnet of 0.5 T allowed rotation of

longitudinal polarisation and obtaining transverse polarisation of the target. In case of

the transversely polarised target in order to change the direction of polarisation it has

to be destroyed and rebuilt in the opposite direction.
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The procedure of building of the polarisation is called Dynamic Nuclear Polarisation

(DNP) [100]. Due to the nucleon magnetic moment of nucleons it is very hard to

polarised them directly. The electrons in the atoms are easily polarisable and in the

2.5 T field and a temperature of a few degrees Kelvin a 99.8% polarisation of electrons

is obtained. By means of microwave radiation this polarisation is transferred to the

nucleons. Microwaves of characteristic energy needed for simultaneous spin flip of the

proton and the electron are radiated on the target material. This energy depends, in

the proton target case, on the total final spin of the electron-proton system (0 or 1)

therefore the direction of the spin of the proton can be chosen by the proper choice of

microwave frequency (illustrated in Figure 4.3). The high magnetic moment of electrons

causes them to relax in milliseconds to the lower energy state. At the same time low

magnetic moment of nucleons keeps them polarised as the spontaneous spin flip is of low

probability. The relaxation time of the polarisation built in this way is approximately

1000 h. The average relaxation rate for the transverse mode is about 1% per day.
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Figure 4.3: The dynamic nuclear polarisation for the proton-electron system.

The main difference between the setup with the deuteron and the proton targets was

the number of target cells. In the former case there were two 60 cm cells (upstream

and downstream) and in the latter three cells of the length of 30 cm, 60 cm and 30 cm

(upstream, centre and downstream). The scheme of the three cell target area is presented

in Figure 4.4. The cells can be polarised in the direction or opposite direction to the

solenoid field by applying microwaves of certain frequencies. In this way at the same

time both target polarisations are probed what enables control of the systematics. In

case of the three-cell target the central cell is polarised oppositely to the outer cells.

Polarisation in all cells is reversed every two or three days in case of the longitudinal

polarisation and in case of the transverse polarisation on a weekly basis.

During the data taking important in the context of this thesis two target materials have

been used: the deuterated lithium (6LiD) which will be referred as ”deuteron target”
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and ammonia (NH3) referred as ”proton target”. The polarisation obtained for 6LiD

is about 48% and for NH3 is about 80%. The other important parameter of the target

is the dilution factor (described in Section 5.2.1) which by definition is the ratio of the

total cross-section of polarisable material in the target to the total cross-section of all

target material. Taking into account the fact that the cooling substances(4He/3He) are

also present in the target area the values of the dilution factor are 38% for 6LiD and

15% for NH3.

The data taken with the deuteron target was taken before the upgrade of the spectrom-

eter which took place in 2005. The main improvement was the radial acceptance due to

the change of the solenoid magnet from ±70 mrad to ±180 mrad.
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Figure 4.4: The sketch of the three-cell polarised COMPASS target according to
[101]. The marked elements are: (1)upstream target cell, (2) middle target cell, (3)
downstream target cell, (4) microwave cavity, (5) upstream microwave stopper, (6)
downstream microwave stopper, (7) target holder, (8) still or 3He evaporator, (9) 4He
evaporator, (10) 4He liquid/gas separator, (11) 3He pumping port, (12) solenoid mag-
net, (13) correction coils, (14) dipole coil, (15) solenoid end compensation coil and (16)

magnet current leads. Figure from [99].
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4.4 The COMPASS spectrometer

The COMPASS spectrometer can be divided into three main parts:

1. The Beam Telescope (BT) which measures the time, position and direction of the

incoming beam.

2. The Large Angle Spectrometer (LAS) consisting of tracking detectors, calorimeters

and muon filters surrounding the first magnet SM1.

3. The Small Angle Spectrometer (SAS) consisting of tracking detectors, calorimeters

and muon filters surrounding the second magnet SM2.

For particle identification in the LAS area there is the Ring Imaging CHerenkov (RICH)

detector. The LAS is set just behind the target area, its angular acceptance is ±180

mrad (±70 mrad before the upgrade in 2005). The dipole magnet SM1 has the bending

power of 1 Tm. The bending power of the second magnet (in the SAS area) SM2 is

4.4 Tm. The schematic drawing of the COMPASS spectrometer is given in Figure 4.5.
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Figure 4.5: The top view of COMPASS 2004 muon setup.

4.4.1 The Beam Telescope

This part of the spectrometer consists of scintillating fiber detectors (FI) and silicon mi-

crostrip stations (SI). Scintillating fibers give precise time measurement of the incoming

particles which is essential in the beam reconstruction. Both fiber stations and silicon

detectors have good spatial resolution and they can handle high counting rates. This
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features are needed for reconstruction of the interaction vertex and the scattering angle

of the muon.

4.4.2 Very small area trackers

The structures of SAS and LAS are similar and consist of several types of detectors.

Very small area trackers are detectors operating close to the beam axis and therefore

they need to be resistant to radiation damages, cope with high counting rates and have

a good spacial resolution. Scintillating fibers (FI) are used for this purpose. Several FI

station are placed both in LAS and SAS centred on the beam axis.

4.4.3 Small Area Trackers

These detectors cover the area up to 40 cm away from the beam axis. For this purpose

gaseous type detectors which separate gas amplification area from the readout are used:

GEM - Gas Electron Multiplier (GM) and MicroMeGas - Micromesh Gaseous Structure

(MM). They introduce minimal amount of material into the beam and can operate in

sufficiently high flux of incoming particles. GEM detectors cover also the beam axis

area, however in normal data taking conditions their central parts are switched off in

order to avoid damaging them. They are turned on during runs dedicated to alignment

of the spectrometer when the beam intensity is low.

4.4.4 Large Area Trackers

In the outer parts of the spectrometer the particle flux is much less intensive. Therefore

the granularity of the detectors can be lower. Good resolution is, however, still needed.

Both of this features are satisfied by MultiWire Proportional Chambers (MWPC) and

drift detectors. Straw Tubes (ST) and MWPCs are placed in both parts of the spec-

trometer. In the LAS Drift Chambers (DC) and in SAS large drift Chambers (W45) are

used.

4.4.5 Calorimeters

Both LAS and SAS are equipped with electromagnetic and hadronic calorimeters. The

Electromagnetic Calorimeters (ECAL1 and ECAL2) where in full operation since 2006.

Earlier only part of ECAL2 was equipped with readout and ECAL1 was not installed.

As these detectors are to measure electrons and photons and estimate their energies they
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are essential in the DVCS and HEMP measurements which objective is to extract the

GPDs. Hadronic Calorimeters (HCAL1 and HCAL2) provide discrimination between

hadrons and muons. They are an important part of the trigger system.

4.4.6 Muon Filters

In order to identify muons muon wall detectors are placed in both LAS (MA) and SAS

(MB). They are both composed of active part (proportional chambers in MA, drift

chambers in MB) and an absorber (60cm of iron for MA and 2.4 m of concrete in case

of MB). The Muon Filters have been used in COMPASS mainly to detect the scattered

muon.

4.4.7 Ring Imaging CHerenkov (RICH) detector.

The RICH detector is placed in the LAS. Its role is to distinguish between different

hadrons (pions, kaons and protons). It enables the measurement of particle velocity

by the size of the ring of the Cherenkov light emitted in a C4F10 pure gas. Velocity

combined with the particle momentum obtained in magnetic spectrometers give particle

identification. Pions, kaons and protons can be identified for momenta greater than 2.6,

9, 18 GeV respectively. The separation is possible for momenta up to 50 GeV.

4.5 Trigger System

The COMPASS Data Acquisition System (DAQ) can handle 25 kHz therefore a trigger

system ([102]) has to be used to lower the signal rates entering the DAQ. The trigger

system is designed to collect events with full range of the fractional energy of the virtual

photon, 0 < y < 1, and a large range of Q2 , from a quasi-photoproduction at Q2 ≈ 0

to a maximum value allowed by the kinematics. It also provides time reference, taken

from the BMS, for hit correlations and drift time calculations. The veto system, located

upstream of the target, working with anti-coincidence with trigger logic protects from

unnecessary triggering by the beam halo.

The COMPASS trigger system is based on hodoscope detectors but also uses calorimeter

detectors. The schematic drawing of the most important elements of the trigger system

is shown in Figure 4.6. Each part of the system is based on two hodoscope stations sepa-

rated by an absorber, which suppresses the occupancy caused by hadrons and electrons.

The hodoscopes trigger system consists of the following subsystems:
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Figure 4.6: The sketch of the most relevant elements for the trigger system.

• Inner Trigger (IT) - composed of H4I and H5I hodoscope stations, covers the region

of photoproduction (low Q2) and very small energy loss of the scattered muon y,

• Ladder Trigger (LT) - composed of H4L and H5L stations, covers small Q2 large

y region,

• Middle Trigger (MT) - composed of H4M and H5M stations, covers DIS region

with small to moderate Q2,

• Outer Trigger (OT) - composed of H3O and H4O stations, covers DIS region with

moderate to large Q2.

The signal from each of the above-mentioned subsystems triggers the DAQ under two

additional conditions: that there is no signal in the veto system and that, for certain

triggers, the energy deposit in the hadronic calorimeters is above a 6 GeV threshold.

In this way the contamination from radiative events, µe scattering and low energy halo

tracks is reduced. In addition there is a pure Calorimetric Trigger (CT) which fires when

an energy deposit exceeds 8 - 18 GeV. This trigger extends the Q2 range to events where

the scattered muon does not hit the hodoscope triggers.

All triggers of the system can be divided into three parts:

• Inclusive triggers (OT, inclMT)- the triggers that require only coincidence in the

hodoscopes,

• Semi-inclusive triggers (IT, LT, MT) - the triggers that require certain energy

deposit in the hadronic calorimeters in addition,

• Pure calorimetric trigger (CT) - the trigger which requires only certain energy

deposit in the hadronic calorimeters.
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Figure 4.7: Left panel shows the fraction of inclusive, semi-inclusive, and calorimetric
triggers as a function of x. Right panel presents the kinematical coverage in y and Q2

for the COMPASS trigger subsystems. The two lines, xBj = 1; W = Mp and θ = 0
show the kinematic limits of elastic scattering and forward scattering, respectively.

Figure 4.7 shows the coverage of the kinematic regions by given triggers.

For calibrations, efficiency and alignment studies additional triggers exist:

• Beam Trigger (BT) - fires when a particle in the first FI station is detected,

• Veto Trigger (VT) - fires when a particle in the Veto detectors is detected,

• Random Trigger (RT) - the DAQ is started randomly.

Events recorded with these triggers usually contain small number of particles which

makes the reconstruction and interpretation simpler.

4.6 DAQ - the data acquisition system

The data acquisition system (DAQ) described here has been used in the years in which

the data analysed in this thesis has been collected. Recently the system has been changed

by using (partially) different front-end electronics and programmable FPGA cards re-

ducing the number of computers.

The role of the DAQ is to digitise the analog signals from the detectors, collect the

incoming data when the trigger system fires, built events from the collected data and

store them on disks. The digitisation takes place as close to the detectors as possible

on the front-end boards. The readout drivers (CATCH and GeSiCa) concentrate the

data into high bandwidth streams sent via optic links to the Readout Buffer computers

(ROBs). Then the data is transferred using a gigabit Ethernet network to the Event
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Builder computers. The Event Builders collect the information from all the detectors

and combine it into events. The events are sent to Central Data Storage (CDR) at

CERN and copied to long term storage tapes. The data acquisition (DAQ) software is

based on DATE framework developed for the ALICE experiment at the LHC accelerator

[103]. The scheme of the COMPASS DAQ system is shown in Figure 4.8.

Modules

64 Readout buffer

12 Event builder
& Recording

16 PCs

5 km
70 MByte/s

4 Gigabit
Ethernet
switches

Central Data

TCS

Recording

S−links

Front−ends
1 400 Detector

(250 000 Channels)

100 MByte/s/link
10 m

100 MByte/s/link
10 m

TCS

20 m

SMUXS−Link
Multiplexer

64 optical

150 m
100−160 MByte/s/link

10−100 m

40 MByte/s/link150 Readout

event builder

Gigabit switch

CATCH GeSiCA

4 x 512 MByte spill buffer per PC

and filter

Figure 4.8: General architecture of the DAQ system. Digitised data from the detector
front-ends are combined on the readout modules named CATCH and GeSiCA close
to the detectors. The storage of the data during the spill and the event building is

performed locally. The data are recorded at the CERN computer centre.

4.7 Data analysis

In order to ensure a correct performance of the DAQ and the detectors a constant

monitoring during the data taking is required. For this purpose several tools are used:

• MurphyTV - allows for monitoring of readout errors that are returned by readout

drivers,

• COOOL (Compass Object Oriented On Line) [82] - performs quick decoding of

raw data and allows to create histograms of hit positions, time spectra etc.. This

provides a monitoring of detector performance by comparison to reference his-

tograms,
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• DCS (Detector Control System) [83] - monitors all available parameters of vari-

ous spectrometer elements e.g. temperatures, voltages, currents, NMR readings,

gas flows. The implementation of safety “interlocks” in DCS prevents a detector

damage due to abnormal operating conditions. Apart from monitoring it enables

for interactive setting of detectors parameters.

The reconstruction - decoding the raw detector information into measured quantities (ab-

solute hit positions, energy deposits in calorimeters, etc.), tracking of charged particles,

vertexing (both interaction and decay vertices are positioned), calorimeter clustering -

is performed by the CORAL package [104]. Finally also particle identification with the

use of RICH information can be performed. The CORAL is used for data production

where the raw data is reconstructed and stored in Data Summary Tapes (DST). It is

also used for detector alignment (described in Appendix C) and calibration purposes.

The author of this thesis was responsible for the alignment during the 2012 DVCS test

run.

The DST data is used by PHAST program [105]. It provides a versatile tool for event

filtration and analysis of events in terms of desired physics quantities. The second part

of the off-line analysis focuses not on direct analysis of the recorded data but rather

on the Monte Carlo (MC) simulations of the data using a selected physics model and a

model of the spectrometer. The MC simulations performed in the scope of this thesis

are presented in Chapter 7.



Chapter 5

Statistical concepts for extracting

signal and background

asymmetry at COMPASS

5.1 Number of measured events and the asymmetry

The double spin asymmetry is defined as

ALL =
σ
→⇐ − σ

→⇒

σ
→⇐ + σ

→⇒
, (5.1)

where → denotes the beam polarisation which does not change at COMPASS and de-

pends on the beam kinematics while⇒ represents the target polarisation. The expected

number of events in one cell polarised in a certain direction is given by the integral of

the differential cross-section (including the unpolarised or anti-polarised nucleons in the

target) d2σ, the beam flux φ, the density of the scattering centres (nucleons) in the

target n and the spectrometer acceptance a over all significant variables: x,Q2, time,

etc., denoted by
→
ξ :

N =

∫
aφn

(
d2σ

dxdQ2

)
d
→
ξ (5.2)

Here σ is a function of only x,Q2 as for the inclusive measurement but the reasoning is

similar in the semi-inclusive case. For example when at least two hadrons are detected

together with the scattered muon the cross-section is a function of nine variables. For

simplicity the differential cross-sections
d2σ

dxdQ2
will be denoted by σ. Here the most

general case of the deuteron target which has three possible spin projections −1, 0, 1

is presented. The beam flux will be denoted by φ↑, φ↓, where the arrows refer to the

55
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parallel and anti-parallel polarisation and hence the beam polarisation Pb =
φ↑ − φ↓

φ
with φ = φ↑ + φ↓. Similarly, the total number of deuterons can be expressed as nd =

n↑ + n↓ + n0. Here the superscripts indicate the deuteron spin states and the target

polarisation can be defined as Pt =
n↑ − n↓

nd
. Splitting the differential cross-section σ

into all possible components:

φnσ = ndφσd+
∑

A nAσA = (φ↑n↑+φ↓n↓)σ↑↑+φ↑n↓+φ↓n↑)σ↑↓+φn0σ↑0 +φ
∑
A

nAσA,

(5.3)

where the arrows in σ↑↑ denote the beam spin and the target spin respectively. As only

relative spin orientation matters it holds σ↑↑ = σ↓↓, σ↑↓ = σ↓↑, σ↑0 = σ0↑. The term∑
A nAσA corresponds to all nucleons in the target which are not polarisable. Using the

definition of Pt and Pb and introducing the asymmetry A =
σ↑↓ − σ↑↑

σ↑↓ + σ↑↑
and the averaged

differential cross-section σ̄ =
σ↑↓ + σ↑↑

2
gives

φnσ = φndσ̄ − φndσ̄PbPtA+ φ
∑

A nAσA. (5.4)

Here it was assumed that the asymmetry of the unpolarised deuteron cross-section σ↑0

is equal to the spin averaged cross-section σ̄. In the proton target case the situation is

simpler as we have only two possible spin projections and n0 = 0. Taking into account

the depolarisation factor D which describes the polarisation transfer from the incoming

muon to the virtual foton we can introduce the dilution factor (described in more detail

in Section 5.2.1:

f =
ndσd

ndσd +
∑

A nAσA
=

ndσ̄(1 +DPbPtA)

nσ̄(1 +DPbPtA) +
∑

A nAσA
=

ndσ̄

ndσ̄ +
∑

A nAσA
, (5.5)

where the last equality assumes that that DPbPtA is small. Hence the number of events

is given by

N =

∫
d
→
ξ aφnσ0(1− fDPbPtA). (5.6)

Here σ0 =
ndσ̄ +

∑
A nAσA

n
is the total spin-averaged cross-section. The depolarisation

factor D is a function of y and can be calculated event by event. It is worth mentioning

here that the Sivers asymmetry does not depend on the beam polarisation and that the

depolarisation factor is equal 1. The derivation of Equation (5.6) for the transversely

polarised target is exactly the same as in the longitudinal case presented above. The

number of events in a given angle φ is given by

N(φ) =

∫
d
→
ξ aφnσ0(1 + fDPtA(φ)) (5.7)
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with

A(φ) =
σ↑ − σ↓

σ↑ + σ↓
. (5.8)

The sign of the Sivers asymmetry is positive for when it is positive for the upward

polarisation of the COMPASS target cell.

5.2 Inputs to the raw asymmetry

The raw asymmetry is defined with the use of Equation (5.6):

Araw = fDPbPtA (5.9)

and is a quantity which is measured directly in experiments. In this section the inputs

to the raw asymmetry are discussed.

5.2.1 Dilution factor

In principle the dilution factor f is a measure of the fraction of interaction in the polar-

isable material. In the calculation of the dilution factor not only pure target material

(6LiD or NH3) has to be taken into account but also 3He and 4He used for the cooling

and C, F, Ni and Cu from the NMR coils. Nucleons in different materials have different

cross-sections and therefore f depends on the event kinematics. The definition of bare

dilution factor is natural:

f(x,Q2) =
npσp(x,Q

2)

npσp +
∑

A nAσA(x,Q2)
, (5.10)

where the subscript p denotes the polarisable material and A stands for the non-

polarisable materials. It is useful to rewrite the above equation in the following form

f =
np

np +
∑

A nA
σA
σp

(5.11)

The ratio σA/σp is approximately proportional to the ratio of unpolarised structure

function FA2 /F
p
2 . The dilution factor is computed using a parametrisation of the cross

section ratios measured by NMC and EMC experiments and the composition of the ma-

terial inside the COMPASS target [106]. The calculation of the dilution factor takes into

account purity of the target material, nuclear effects and radiative correction obtained

from the TERAD program [107].
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5.2.2 Beam and target polarisation

The beam polarisation Pb is calculated for the measured beam momentum on the event-

by-event basis using a parameterisation, as discussed in Section 4.2. In Figure 4.1 the

dependence of the beam polarisation on its momentum is presented for year 2004. The

relative uncertainty of the beam polarisation is 5% [108]. The target polarisation Pt is

measured by the NMR coils (cf. Section 4.3) several times per run, which typically takes

30-60 minutes, and then averaged to obtain a single polarisation value for a given run.

The relative precision of the target polarisation measurement is 5% [108]. Transverse

polarisation is not measured directly. Longitudinal polarisation before rotation to the

transverse position measured and after each data taking period the polarisation is rotated

to the longitudinal direction and measured again. The Sivers effect measurement is

affected by the target polarisation but not by the beam polarisation.

5.3 Asymmetry extraction with the optimisation of statis-

tical errors

In this section two methods of asymmetry extraction will be discussed: the weighted

method and the Unbinned Maximum Likelihood method. In this section α = anφσ0

will be the generalised acceptance and β = fDPbPt. The probability distribution n(ξ)

is introduced:

N =

∫
n(ξ)d(ξ). (5.12)

For simplicity the probability distribution will be considered as a function of only one

variable x and the generalisation is straightforward.

Three basic examples are going to be presented:

1. Very simple. A case with known acceptance with n(x) = α(x)(1 + β(x)A).

2. Single asymmetry, realistic case (unknown acceptance) - n(x) = α(x)(1 + β(x)A).

3. Realistic case with signal and background asymmetry -

n(x) = α(x)

(
1 +

s

s+ b
β(x)As +

b

s+ b
β(x)Ab

)
.

For each example it will be shown that the extracted asymmetry is the same and the

estimated statistical errors are (almost) the same.
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5.3.1 A very simple example

Here perfect acceptance is assumed and for simplicity it is put as 1. Let us assume that

β is a function of x and A is a constant. Then the number of events distribution n(x)

is given by:

n(x) = α(x)(1 + β(x)A). (5.13)

Here

∫
n(x)dx = N = N0(1 + 〈β〉A) with N0 =

∫
α(x)dx. For a given variable η the

following notation and approximations are used

〈η〉 =

∫
α(x)η(x)dx∫
α(x)dx

βA�1
≈

∫
n(x)η(x)dx∫
n(x)dx

N→∞
≈ 1

N

N∑
i=1

ηi. (5.14)

THE WEIGHTED METHOD

Let us integrate Equation (5.13) with a for the moment arbitrary weight ω(x):

p :=

∫
n(x)ω(x)dx =

∫
α(x)ω(x)dx+A

∫
ω(x)α(x)β(x)dx = N0〈ω〉+AN0〈ωβ〉,

(5.15)

A =
p−N0〈ω〉
N0〈ωβ〉

=
(N −N0)〈ω〉
N0〈ωβ〉

. (5.16)

Using (δp)2 = (δ
N∑
i=1

ωi)
2 =

N∑
i=1

(δωi)
2 =

N∑
i=1

ω2
i the statistical error of A reads

(δA)2 =

(
∂A

∂p
δp

)2

=

∑N
i=1 ω

2
i

(N0〈ωβ〉)2
=

N〈ω2〉
(N0〈ωβ〉)2

. (5.17)

Looking for the optimal choice of ω:

∂(δA)

∂ωi
=

∂

∂ωi

( ∑N
j=1 ω

2
j

(
∑N

j=1 ωjβj)
2

N

N2
0

)
= 0. (5.18)

Then for every index i it holds

2ωi(
∑

ωjβj)
2 − 2βi

∑
ωjβj

∑
ω2
j = 0⇒ ωi = βi. (5.19)

Comparing the optimal error for ωi = βi and the one obtained without weighting ω = 1

the statistical uncertainty decreases by a factor
√
〈β〉2/〈β2〉. The optimised value of

asymmetry is

A =
(N −N0)〈β〉
N0〈β2〉

(5.20)

THE UNBINNED MAXIMUM LIKELIHOOD METHOD

The likelihood function L in the extended unbinned maximum likelihood method is given
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by [109]:

L = e−
∫
n(x)dx

N∏
i=1

ni. (5.21)

In our simple case

∫
n(x)dx = N0(1 + 〈β〉A) and ni = αi(1 + βiA). Searching for the

maximum of lnL gives

∂ lnL
∂A

= −N0〈β〉+

N∑
i=1

βi
1 + βiA

≈ −N0〈β〉+

N∑
i=1

βi −A
N∑
i=1

β2
i . (5.22)

Hence

A =
(N −N0)〈β〉

N〈β2〉
(5.23)

and

(δA)2 = −
(
∂2 lnL
(∂A)2

)−1

=
1

N〈β2〉
. (5.24)

With the choice ωi = βi the two methods are equivalent under the condition that

N0/N ≈ 1 which is true when 〈β〉A� 1. It is also easy to show that:

χ2 ≡ (p−N0〈ω〉 −N0〈ωβ〉A)2

(δp)2
(5.25)

gives χ2/2 = − lnL+ const. when ωi = βi and N0/N ≈ 1.

5.3.2 An example with unknown acceptance

Let us assume a more general case where we do not know N0 =

∫
α(x)dx. In the

unbinned maximum likelihood method an assumption on the dependence of α on x has

to be assumed. The simplest case is when α does not depend on x:

nt(x) = αt(1 + βt(x)A), (5.26)

where t = u, u′, d, d′ is the target configuration as in the COMPASS setup. To solve the

problem without knowing αt one further assumption has to be made:

αuαd′

αu′αd
= 1, (5.27)

what means that the ratio of acceptances in the upstream and downstream cell does not

change with the polarisation reversal. In case of the weighted method the situation is a
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little different. For any α(x) it holds

pt :=

Nt∑
i=1

≈
∫
nt(x)ωt(x)dx = α̃t(1 + 〈βt〉ωtA), (5.28)

where α̃t =

∫
αt(x)ωt(x)dx and 〈βt〉ωt =

∫
αt(x)ωt(x)βt(x)dx∫
αt(x)ωt(x)dx

βtA�1
≈

∑Nt ωiβi∑Nt ωi
. The

general formula for χ2 reads

χ2 = ( ~Nobs − ~Nexp)Cov
−1( ~Nobs − ~Nexp)

T , (5.29)

where ~Nobs = {pu, pd, pu′ , pd′} and ~Nexp = {α̃u(1 + 〈βu〉ωuA), α̃d(1 + 〈βd〉ωdA),

α̃u′(1 + 〈βu′〉ωu′A), α̃d′(1 + 〈βd′〉ωd′A)}. The covariance matrix elements are given by

cov(px, py). In this example the covariance matrix is diagonal since the measurements

in different cells don’t interfere:

Cov =



Nu∑
i=1

ω2
i 0 0 0

0

Nd∑
i=1

ω2
i 0 0

0 0

Nu′∑
i=1

ω2
i 0

0 0 0

Nd′∑
i=1

ω2
i


(5.30)

The modified assumption on acceptances now reads:

α̃uα̃d′

α̃u′α̃d
= 1. (5.31)

Note, that it is reasonable to assume:

αu(x)αd′(x)

αu′(x)αd(x)
= 1. (5.32)

Then Equation (5.31) holds if
ωu(x)ωd′(x)

ωu′(x)ωd(x)
= 1. The smallest statistical error of solv-

ing the set of Equations (5.28) is ω = β. If with this choice Assumption 5.31 would

be satisfied then this method would be statistically optimal and valid for any kind of

acceptance. Moreover it would be equivalent with the unbinned maximum likelihood

method when the acceptance is a constant. Unfortunately in case of the COMPASS

experiment it is, in general, not the case. Under real conditions the target polarisation

Pt drops with time. Therefore to avoid a systematic error ω = β/Pt is chosen. Then
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the weighted method is not statistically perfect (however close to optimal) but does not

require any condition on the generalised acceptance. On the other hand the Unbinned

Maximum Likelihood method is statistically optimal but some constraint on the gener-

alised acceptance has to be made. Both methods have been applied to obtain the main

results of this thesis and the difference is insignificant (Section 8.5).

5.3.3 Extracting signal and background asymmetry

Let us consider an example similar to the very simple case discussed in Section 5.3.1 but

now

A = RSAS +RBAB, (5.33)

where RA and RB are the fractions of signal and background respectively. On an event-

by-event basis the fractions have the meaning of the probability that the event is a signal

or a background. More generally RA, RB can be functions of x. For example R can

be a function of invariant mass like in the Open Charm analysis described in Section

6.1. Probabilities can be also assigned by the NN trained on MC data with process

identification. Like in the ”very simple example” it is assumed that N0 =

∫
α(x)dx is

known.

WEIGHTED METHOD

The formula for the distribution of events n(x) = α(x)(1 + βS(x)AS + βB(x)AB) is

weighted twice: with the weight of the signal ωS(x) and the weight of the background

ωB(x):

pS :=

N∑
i=1

ωSi = N0〈ωS〉+N0〈ωSβS〉AS +N0〈ωSβB〉AB

pB :=
N∑
i=1

ωBi = N0〈ωB〉+N0〈ωBβS〉AS +N0〈ωBβB〉AB.
(5.34)

Once again the set of equations may be solved by minimising χ2 = ( ~Nobs− ~Nexp)
TCov−1( ~Nobs−

~Nexp). In this case the covariance matrix can be approximated by CovS,B ≈ cov(pS , pB) =∑
ωSωB:

Cov =


∑
i

(ωSi )2
∑
i

ωSi ω
B
i∑

i

ωSi ω
B
i

∑
i

(ωSi )2

 . (5.35)
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When ωSi = βSi and ωBi = βBi then the inverse of the error matrix reads

1

2

∂2χ2

∂Am∂An
=


N2

0

N2

∑
i

(βSi )2 N2
0

N2

∑
i

βSi β
B
i

N2
0

N2

∑
i

ωSi β
B
i

N2
0

N2

∑
i

(βSi )2

 . (5.36)

With m,n = S,B and (〈βS〉AS + 〈βB〉AB)� 1⇒ N0 ≈ N the error matrix is equal to

the inverse of the covariance matrix of the measurement given by Equation (5.35) what

means the choice of weighting is optimal. The signal and background asymmetries are

given by

AS =
(N −N0)[〈(βB)2〉〈βS〉 − 〈βSβB〉〈βB〉]

N0[〈(βS)2〉〈(βB)2〉 − 〈βSβB〉2]

AB =
(N −N0)[〈(βS)2〉〈βB〉 − 〈βSβB〉〈βS〉]

N0[〈(βS)2〉〈(βB)2〉 − 〈βSβB〉2]
.

(5.37)

Note that the denominators are zero when βSi = βBi because after weighting the two

Equations (5.34) will be identical. The same happens when the weights do not change

from event to event. This means it is better to choose a sample where the fractions

R of the signal and of the background cover wide range of values. These features of

the method motivate the sample selection given in Section 8.1. The extreme situation is

when the sample can be divided into subsamples of signal and background then 〈βSβB〉 =

0 and we obtain two equations similar to Equation (5.20).

UNBINNED MAXIMUM LIKELIHOOD

The probabilities for each event are given by ni = αi(1 + βSi A
S + β + iBAB). The

likelihood function reads

L = e−N0(1+〈βS〉AS+〈βB〉AB)
N∏
i=1

ni (5.38)

The minimum necessary condition
∂ lnL
∂AS

=
∂ lnL
∂AB

gives

AS =
(N −N0)[〈(βB)2〉〈βS〉 − 〈βSβB〉〈βB〉]

N [〈(βS)2〉〈(βB)2〉 − 〈βSβB〉2]

AB =
(N −N0)[〈(βS)2〉〈βB〉 − 〈βSβB〉〈βS〉]

N [〈(βS)2〉〈(βB)2〉 − 〈βSβB〉2]
.

(5.39)

These values differ from the ones obtained with the weighted method (Equations (5.37))

by a factor N0/N which as before can be approximated by 1 for small raw asymmetries.

The covariance matrix obtained from the likelihood function
−∂2 lnL
∂Am∂An

is equal to the
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covariance matrix of pS , pB from the weighted method. This shows that the weighting

method and the unbinned likelihood method are identical for small asymmetries.



Chapter 6

Methods of extracting gluon

asymmetries in the COMPASS

experiment

6.1 Open Charm production

The production of hadrons containing c quarks is a signature of the Photon Gluon

Fusion process (see Figure 6.1) In the PGF process the interacting quark and gluon

Figure 6.1: Photon Gluon Fusion (PGF)

produce a quark-antiquark pair. This hard process is the main source of heavy c quarks

(mc = 1.5GeV ) as the production via fragmentation of light quarks or interaction of

virtual photon with intrinsic charm quark is rare as is the appearance of charm quarks

in the sea.

The longitudinal double spin cross-section asymmetry for D0(D̄0) meson production

65
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events is defined as

AµN→µ
′D0X ≡ d∆σ

2dσ̄
=
σ
→⇐ − σ

→⇒

σ
→⇐ + σ

→⇒
, (6.1)

where the arrows indicate relative beam (→) and target (⇒) spin orientations. The

decomposition of the differential cross-section for D0 meson production, dσ and d∆σ,

show
∆g

g
dependence:

dσ = g ⊗ dσ̂ ⊗H, (6.2)

d∆σ = ∆g ⊗∆dσ̂ ⊗H. (6.3)

Here ⊗ denotes the convolution integrals as in Equation (2.34).

In LO dσ and d∆σ are spin averaged and spin dependent partonic cross-sections for

µg → µ′cc̄ reaction. g and ∆g denote the spin averaged and spin dependent gluon PDFs

respectively. The quark pair (cc̄) fragments into charmed hadrons (mainly D mesons).

H is the fragmentation function which is assumed to be spin-independent. The as-

sumption of single-hadron independent fragmentation is not needed. The fragmentation

described by H is a one charmed quark fragmentation into a D meson and any number

of unobserved hadrons. In particular, H is described by the Lund string hadronisation

model [110] used in many Monte-Carlo generators.

The spin-dependent cross-section, d∆σ can be expressed in the following way

d∆σ =
∆g

g
g ⊗ aLLdσ̂ ⊗H (6.4)

and aLL is the analysing power which is defined as partonic level asymmetry of the

polarisation dependent and polarisation averaged cross-sections:

aLL =
d∆σ̂

dσ̂
. (6.5)

Using Equation (6.2) and 6.4 the asymmetry given in Equation (6.1) can be rewritten

in the following way

AµN→µ
′D0X =

〈
∆g

g
aLL

〉
=

〈
∆g

g

〉
aLL

〈aLL〉, (6.6)

where

〈aLL〉 =
aLLg ⊗ dσ̂ ⊗H
g ⊗ dσ̂ ⊗H

,

〈
∆g

g

〉
aLL

=

∆g
g aLLg ⊗ dσ̂ ⊗H
aLLg ⊗ dσ̂ ⊗H

. (6.7)

The analysing power aLL depends on partonic kinematics and cannot be accessed ex-

perimentally event by event. It has been obtained with the use of MC generator and

then assigned to each real event by a neural network (NN). The network is trained with

the MC data using the measurable kinematic variables.
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The asymmetry AµN→µ
′D0X is obtained by subtracting a large combinatorial back-

ground. The method of the background subtraction are described in detail in Section

5.3. The number of events collected in a given target cell and time interval is given by

[58]
dN

dmdX
= aφn(s+ b)

[
1 + PtPµf

(
s

s+ b
AµN→µ

′D0X +
b

s+ b
AB

)]
, (6.8)

where m ≡ MKπ is the invariant mass of the reconstructed kaon-pion pair, X denotes

the list of kinematic variables {Q2, y, z, ...}, a, φ, n are the spectrometer acceptance, the

incident muon beam flux integrated over the time interval and the number of target nu-

cleons respectively. Target polarisation Pt, muon beam polarisation Pµ and the dilution

factor f are described in Section 5.1. The signal purity is given by the ratio s/(s + b).

The background asymmetry AB is assumed to be independent of m.
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Figure 6.2: Invariant mass spectra for the D0
kπ and D∗kπ samples with approximate

number of D0 mesons above background. Figure from [58]

To extract ∆g/g from the background it is possible to integrate over X and obtain an m

dependence of the number of events for different cell polarisations. Then the background

asymmetry needs to be subtracted, and from Equation (6.8) with the use of Equation
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(6.6) gluon polarisation can be obtained. The invariant mass spectrum of kaon-pion pairs

is presented in Figure 6.2. In fact it is a weighted average gluon polarisation 〈∆g/g〉β
where the proportionality coefficient β = PtPµfaLL is the weight. It can be proved,

however (see Section 5.3.2, that, taking into account a systematic bias, it is preferable

to weigh each event by β/Pt, [111]. In this way a reduction of statistical error by the

value
√
〈β2〉/〈β〉2 is obtained. Moreover it is better not to subtract the background but

to use two weights, one for signal and one for background:

ωS = PµfaLL
s

s+ b
, (6.9a)

ωB = PµfD
b

s+ b
. (6.9b)

Here D is the depolarisation factor accounting for the polarisation transfer from the

lepton to the virtual photon and AB = DAγ
∗N
B . (Note, that this definition of weights

provides optimisation of the statistical and systematic error. The results published

in [58] and presented in Section 3.2.1 has been obtained with different weight ωS =

PµfDs/(s+ b)). Then Equation (6.8) can be rewritten in the form:

dN

dmdX
= aφn(s+ b)

(
1 + βS

∆g

g
+ βBA

γ∗N
B

)
. (6.10)

Then this equation can be weighted with ωS and ωB what results in a set of equations:〈
Nt∑
i=1

ωS,i

〉
=

∫
ωS(X,m)

dkNt

dmdX
dXdm

= α̃S , t

[
1 + 〈βS〉ωS

〈
∆g

g

〉
βSωS

+ 〈βB〉ωS
〈
Aγ
∗N
B

〉
βBωS

]
,

(6.11)

〈
Nt∑
i=1

ωB,i

〉
=

∫
ωB(X,m)

dkNt

dmdX
dXdm

= α̃B, t

[
1 + 〈βS〉ωB

〈
∆g

g

〉
βSωB

+ 〈βB〉ωB
〈
Aγ
∗N
B

〉
βBωB

]
,

(6.12)

where

αt = atφtnt(s+ b) (6.13)

α̃S/B,t =

∫
ωS/BαtdmdX (6.14)

〈η〉ωS/B =

∫
ηωS/BαtdmdX∫
ωS/BαtdmdX

. (6.15)

Here t stands for the target cell before (t = u, d) and after (t = u′, d′) the target polar-

isation rotation. The number of events observed for the given target configuration t is
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denoted by Nt. Altogether there are eight equations for twelve unknowns, 〈∆g/g〉βSωS ,

〈∆g/g〉βSωB ,
〈
Aγ
∗N
B

〉
βBωS

,
〈
Aγ
∗N
B

〉
βBωB

and eight acceptance factors αS/B,t. The fac-

tors
〈
βS/B

〉
ωS/B

have been obtained from data using the approximate formula:

〈
βS/B

〉
ωS/B

≈
∑Nt

i=1 βS/BωS/B∑Nt
i=1 ωS/B

. (6.16)

The number of unknowns can be reduced. Firstly by assuming that〈
∆g

g

〉
βSωS

=

〈
∆g

g

〉
βSωB

≡
〈

∆g

g

〉
, (6.17)〈

Aγ
∗N
B

〉
βSωS

=
〈
Aγ
∗N
B

〉
βSωB

≡
〈
Aγ
∗N
B

〉
. (6.18)

Secondly assuming that the acceptance ratio before and after field reversal is the same:

α̃uS/B

α̃dS/B
=
α̃u
′

S/B

α̃d
′
S/B

. (6.19)

This reduces the number of unknowns to eight. The number of seven unknowns is

obtained by assuming that signal and background events are affected by the acceptance

variations in the same way. The set of equations is now overdetermined and can be

solved with the standard least square minimisation procedure as shown in Section 5.3.

Using this method ∆g/g at LO accuracy is obtained.

This method optimises the statistical error and is (assuming βA� 1) equivalent to the

maximum likelihood method [112].

To extract the ∆g/g value an evaluation of aLL is needed. This can be done at LO:

AµN = DAγN = aLL
∆g

g
, (6.20)

where aLL is the analysing power (also called ”partonic asymmetry”) of the process

µg → µ′cc̄. The values of aLL have been calculated for MC events and then have been

assigned by a NN to every real event. The obtained LO result is〈
∆g

g

〉LO
= −0.08± 0.21(stat.)± 0.09(syst.). (6.21)

However aLL can be calculated at NLO and this have been done. The examples of NLO

diagrams for the muoproduction of cc̄ are presented in Figure 6.3. The final result with

the use of NLO calculation reads〈
∆g

g

〉NLO
= −0.20± 0.21(stat.) (6.22)
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Figure 6.3: Examples of NLO processes contributing to the muoproduction of cc̄ pair:
a) virtual correction, b), c) gluon bremstrahlung, d) light quark background. Figure

from [58].

at 〈xg〉 ≈ 0.28 and at scale µ2 ≈ 13 GeV2. The result is plotted in Figure 6.4 together

with the global fits, DSSV and LSS that include DIS and SIDIS asymmetries. The

COMPASS NLO fits include the 〈∆g/g〉NLO result. The mean asymmetry as in Equation

x
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Figure 6.4: The present NLO measurement of the gluon polarisation ∆g/g at µ2 = 13
GeV2, compared to the NLO QCD fits of COMPASS with ∆g > 0 (continuous line) and
∆g < 0 (long–dashed), of LSS (dashed and dotted curves respectively) and of DSSV
(dashed–dotted curve), all at the same value of Q2 = 13 GeV2. The measurement error
and the error bands are statistical, horizontal bar marks an interval of xg in which

∆g/g is determined. Figure from [16].
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(6.15) is given by〈
∆g

g
(X,m)

〉
βω

=

∫
dmdX∆g/g(X,m))ω(X,m)β(X,m)α(X,m)∫

dmdXω(X,m)β(X,m)α(X,m)
. (6.23)

Once again m ≡MKπ and X = xg, Q
2, z1, z2. Introducing X ′ = Q2, z1, z2 and assuming

linearity of ∆g/g in xg what means ∆g/g(X,m) = a(xg − 〈xg〉) + ∆g/g(〈xg〉, X ′,m),

where a is a number, the above equation reads〈
∆g

g
(X,m)

〉
βω

=

〈
∆g

g
(〈xg〉, X ′,m)

〉
βω

≡ ∆g

g
(〈xg〉) (6.24)

when

〈xg〉ωβ ≡
∫
dmdXα(X,m)xBjω(X,m)β(X,m)∫
dmdXα(X,m)ω(X,m)β(X,m)

≈
∑

i x
i
Bjβ

iωi∑
i βiωi

. (6.25)

The last approximation assumes that the raw asymmetries are small βASivers � 1.

Note that the definition of 〈xg〉ωβ is such that βi and ωi carry information about the

distribution of all kinematic variables X,m.

6.2 High-pT hadron pair production

In the pQCD region defined by Q2 > 1 GeV2 the spin-averaged and spin-dependent

differential cross-sections contain three terms related to the three contributing processes

(PGF, LP, QCDC):

dσ = g ⊗ dσ̂PGF ⊗H +

(∑
q

e2
qq

)
⊗ dσ̂LP ⊗H +

(∑
q

e2
qq

)
⊗ dσ̂QCDC ⊗H, (6.26)

d∆σ = ∆g ⊗ d∆σ̂PGF ⊗H +

(∑
q

e2
q∆q

)
⊗ d∆σ̂LP ⊗H +

(∑
q

e2
q∆q

)
⊗ d∆σ̂QCDC ⊗H. (6.27)

Here ⊗ denotes the convolution integrals as in Equation (2.34). In LO dσ and d∆σ are

spin averaged and spin dependent partonic cross-sections. g and ∆g denote the spin

averaged and spin dependent gluon PDFs respectively. Similarly q and ∆q stand for the

quark PDFs.

Using the Equations (6.4), (6.5), (6.7) the measured asymmetry as a function of xBj (all

other variables are integrated over the experimental kinematic domain) can be expressed
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as follows

A2h
LL(〈x〉) =

〈
∆g

g
(xg)

〉
aPGFLL RPGF

〈
aPGFLL RPGF

〉
+
〈
ALO1 (xBj)

〉
DRLP

〈
DRLP

〉
+
〈
ALO1 (xC)

〉
aQCDCLL RQCDC

〈
aQCDCLL RQCDC

〉
,

(6.28)

where

ALO1 ≡
∑

q e
2
q∆q∑

q e
2
qq

. (6.29)

The partonic cross-sections aPGFLL and aQCDCLL have been calculated in [113]. The fraction

of the process i is defined as

Ri ≡ dσi

dσ
=

dσi∑
i dσ

i
(6.30)

The weighted averages 〈〉 read

〈
aPGFLL RPGF

〉
≡
aPGFLL g ⊗ dσ̂PGF ⊗H

dσ
,

〈
∆g

g

〉
aPGFLL RPGF

≡
∆g/gaPGFLL g ⊗ dσ̂PGF ⊗H
aPGFLL g ⊗ dσ̂PGF ⊗H

(6.31)

for PGF. Similar definitions hold for LP and QCDC. Assuming linearity on x of A1 and
∆g

g
Equation (6.24) holds and Equation (6.28) can be rewritten in the form

A2h
LL(〈x〉) =

∆g

g
(〈xg〉aPGFLL RPGF )

〈
aPGFLL RPGF

〉
+ALO1 (〈x〉)

〈
DRLP

〉
+ALO1 (〈xC〉aQCDCLL RQCDC

)
〈
aQCDCLL RQCDC

〉
.

(6.32)

Similar formula is obtained for the asymmetry of the inclusive sample:

AinclLL (〈x〉) =
∆g

g
(〈xg〉aincl,PGFLL RPGFincl

)
〈
aincl,PGFLL RPGF

〉
+ALO1 (〈x〉)

〈
DRLPincl

〉
+ALO1 (〈xC〉aincl,QCDCLL RQCDCincl

)
〈
aincl,QCDCLL RQCDCincl

〉
.

(6.33)

The weighted averages of xC and xg were found to be similar in both samples. Hence,

the following holds:

〈xg〉aPGFLL RPGF ≈ 〈xg〉aincl,PGFLL RPGFincl
≡ 〈xg〉

〈xC〉aQCDCLL RQCDC
≈ 〈xC〉aincl,QCDCLL RQCDCincl

≡ 〈xC〉
(6.34)

To combine Equations (6.32) and (6.33) it is necessary to find the expression forAinclLL (〈xC〉):

AinclLL (〈xC〉) =
∆g

g
(〈x′g〉)

〈
aincl,PGFLL RPGF

〉
+ALO1 (〈xC〉)

〈
DRLPincl

〉
+ALO1 (〈x′C〉)

〈
aincl,QCDCLL RQCDCincl

〉
.

(6.35)
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Here 〈x′g〉 and 〈x′C〉 are the average fractions of momentum of the nucleon carried by

the struck parton at 〈x〉 = 〈xC〉. Neglecting terms proportional to
RPGFincl R

QCDC
incl

(RLPincl)
2

or

(RQCDCincl )2

(RLPincl)
2

one gets

ALO1 (〈x〉) =
1〈

DRLPincl
〉(AinclLL (〈x〉)− ∆g

g
(〈xg〉)

〈
aincl,PGFLL RPGF

〉

−AinclLL (〈xC〉)

〈
aincl,QCDCLL RQCDCincl

〉
〈
DRLPincl

〉 )
,

(6.36)

similarly

ALO1 (〈xC〉) =
1〈

DRLPincl
〉(AinclLL (〈xC〉)−

∆g

g
(〈x′g〉)

〈
aincl,PGFLL RPGF

〉

−AinclLL (〈x′C〉)

〈
aincl,QCDCLL RQCDCincl

〉
〈
DRLPincl

〉 )
.

(6.37)

Substituting Equations (6.36) and (6.37) into Equation 6.32:

A2h
LL(〈x〉) =

∆g

g
(〈xg〉)

〈
aPGFLL RPGF

〉
−
〈
DRLP

〉〈
DRLPincl

〉∆g

g
(〈xg〉)

〈
aincl,PGFLL RPGFincl

〉
−

〈
aQCDCLL RQCDC

〉
〈
DRLPincl

〉 ∆g

g
(〈x′g〉)

〈
aincl,PGFLL RPGFincl

〉
+

〈
DRLP

〉〈
DRLPincl

〉
AinclLL (〈x〉)−AinclLL (〈xC〉)

〈
aincl,QCDCLL RQCDCincl

〉
〈
DRLPincl

〉


+

〈
aQCDCLL RQCDC

〉
〈
DRLPincl

〉
AinclLL (〈xC〉)−AinclLL (〈x′C〉)

〈
aincl,QCDCLL RQCDCincl

〉
〈
DRLPincl

〉
 .
(6.38)

Instead of working with averages the terms standing next to the asymmetries ∆g/g,AinclLL

can be evaluated event-by-event with the use of a NN trained on several MC samples.
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The formula for the function A2h
LL(x) reads [16]:

A2h
LL(x) =

∆g

g
(xg)

[
aPGFLL RPGF − RLP

RLPincl
aincl,PGFLL RPGFincl

]
−
aQCDCLL RQCDC

DRLPincl

∆g

g
(x′g)a

incl,PGF
LL RPGFincl

+
RLP

RLPincl

[
A1(x)−A1(xC)

aincl,QCDCLL RQCDCincl

DRLPincl

]

+
aQCDCLL RQCDC

RLPincl

[
A1(xC)−A1(x′C)

aincl,QCDCLL RQCDCincl

DRLPincl

]
,

(6.39)

with A1 = AinclLL /D.

Then a new definition of average xg is applied

xavg =
α1xg − α2x

′
g

α1 − α2
, (6.40)

where

α1 = aPGFLL RPGF − aincl,PGFLL RLP
RPGFincl

RLPincl
(6.41)

α2 = aincl,PGFLL RQCDC
RPGFincl

RLPincl

aQCDCLL

D
. (6.42)

This definition relies on the assumption that
∆g

g
is linear in xg which can be assured by

proper binning. The formula which relates the gluon polarisation to the measured A2h
LL

asymmetry is the following

∆g

g
(xavg ) =

A2h
LL(x)−Acorr

α1 − α2
, (6.43)

with

Acorr = A1(x)
RLP

RLPincl
+A1(xC)

1

RLPincl

(
aQCDCLL RQCDC − aincl,QCDCLL RQCDCincl

RLP

RLPincl

)
−A(x′C)aincl,QCDCLL

RQCDCincl

RLPincl

RQCDC

RLPincl

aLLQCDC

D
.

(6.44)

Similarly to the Open Charm method described in the previous section the sum of

weights for each target configuration t(= u, d, u′, d′) is calculated: pt =

Nt∑
i=0

ωi, where

the weight ω = fPb(α1−α2) is used. Then the gluon polarisation is estimated from the
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following equation

pupd′

pu′pd
=

(1 + 〈Cu〉ω + 〈βu〉ω∆g/g(xavg ))(1 + 〈Cd′〉ω + 〈βd′〉ω∆g/g(xavg ))

(1 + 〈Cu′〉ω + 〈βu′〉ω∆g/g(xavg ))(1 + 〈Cd〉ω + 〈βd〉ω∆g/g(xavg ))
. (6.45)

Here Ct = fPbPtA
corr and βt = fPbPt(α1−α2). The use of double ratio method provides

cancellation of the acceptances, unpolarised cross-sections and the beam flux. The final

value obtained in this analysis is

∆g

g
= 0.125± 0.060(stat.)± 0.063(syst.) (6.46)

at xg = 0.09 and a scale of µ2 = 3 GeV2.

The method used for this analysis provides two new features. Both data samples contain

signal and background asymmetry but the proportions of signal and background are

different in the two samples. This means that the two Equations (6.32) and (6.33) differ

and form a solvable set of equations. The second feature is the weighting of the samples

on event-by-event basis for which the NN trained on MC data is used. Both these

features have been applied in the analysis called ”all-pT ” and in the analysis which is

the subject of this thesis.

6.3 All-pT method of ∆g/g extraction

This method is based on the same principle of background asymmetry subtraction as

described in Section 5.3 and used in the Open Charm method (Section 6.1).

In this analysis only one hadron in the final state is demanded and there is no lower

cut on pT of this hadron. The kinematics of the hadron together with the inclusive

variables is used by the NN to assign (event-by-event) three weighting factors Ri in the

same way as in the high-pT method (Section 6.2). The formula for a single event based

on Equation (6.33) reads

AhLL(x) =
∆g

g
(xg)a

PGF
LL RPGF +ALO1 (x)DRLP +ALO1 (xC)aQCDCLL RQCDC . (6.47)

The number of events for a given target cell t = (u, d, u′, d′) can be expressed as

Nt(x) = αt(x)
(

1 + fPbPtA
h
LL(x)

)
. (6.48)

What means

Nt(x) = αt(x)
(

1 + βPGFt

∆g

g
(xg) + βQCDCt ALO1 (xC) + βLPt ALO1 (x)

)
, (6.49)
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where

βPGFt = fPtPbR
PGFaPGFLL , (6.50)

βLPt = fPtPbR
LPD, (6.51)

βQCDCt = fPtPbR
QCDCaQCDCLL . (6.52)

Both sides of Equation (6.49) may now be integrated with three different weights pt =∫
Nt(x)ω(x)dx ≈

Nt∑
i=1

ωi. For optimisation of the statistical and systematic errors the

weights for different processes j = PGF,QCDC,LP are chosen to be ωj = βj/Pt. As a

result a set of equations is obtained:

pjt =

Nt∑
i=1

ωji = α̃jt

(
1 +

〈
βGt
〉
ωj
〈∆g
g

(xg)〉

+
〈
βQCDCt

〉
ωj
〈ALO1 (xC)〉+

〈
βLPt

〉
ωj
〈ALO1 (xBj)〉)).

(6.53)

The integrated acceptances α̃t
j =

∫
dxω(x)αt(x) are to fulfil

α̃juα̃
j
d′

α̃jdα̃
j
u′

= 1, (6.54)

for j = PGF,LP,QCDC what means setting three constraints on the set of Equations

(6.53). The weighted average is defined in the same way as in Section 6.1,

〈β〉ω =

∫
β(x)ω(x)αt(x)dx∫
ω(x)αt(x)dx

≈
∑

i βiωi∑
i ωi

. (6.55)

Also 〈βA〉ωj = 〈β〉ωj 〈A〉ωj and 〈A〉ωLP = 〈A〉ωQCDC = 〈A〉ωPGF for A = ALO1 ,∆g/g is

assumed. To fulfil this assumption a special kind of binning has been introduced. It will

be discussed later in this section. The set has twelve Equations (6.53) and 15 unknowns

(twelve integrated acceptances and 3 asymmetries). Using the three constraints given

by Equation (6.54) reduces the number of unknowns to twelve and the set is solvable.

Like described in Section 5.3 we can now construct two vectors:

~Nobs = (

Nu∑
i=0

ωGi , ...,

Nd′∑
i=0

ωCi ) (6.56)

~Nexp = (Nu
exp,G, ..., N

d′
exp,C), (6.57)
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where the expected number of events is given by

N t
exp,j = α̃t(1 +APGF

〈
βG
〉
ωj

+ALP
〈
βL
〉
ωj

+AQCDC
〈
βC
〉
ωj

). (6.58)

where t denotes target cells: c = u, u′, d, d′, and j = G,L,C for PGF, LP and QCD sub-

processes, respectively. In this analysisAPGF =

〈
∆g

g
(xg)

〉
, ALP =

〈
ALO1 (xBj)

〉
, AQCDC =〈

ALO1 (xC)
〉
. The parameters (APGF , ALP , AQCDC) can be obtained by minimising χ2

defined as

χ2 = ( ~Nexp − ~Nobs)
TCov−1( ~Nexp − ~Nobs). (6.59)

The covariance matrix is defined as Cov(px, py) ≈
∑
Nc

ωxωy:
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. (6.60)

One can eliminate the acceptances from the equations and at the same time decrease

the number of equations by writing

rG :=
puGp

d′
G

pdGp
d′
G

=
α̃uGα̃

d′
G(1 + 〈βuG〉ωG APGF + 〈βuL〉ωG ALP + 〈βuC〉ωG AQCDC)

α̃dGα̃
u′
G (1 +

〈
βdG
〉
ωG
APGF +

〈
βdL
〉
ωG
ALP +

〈
βdC
〉
ωG
AQCDC)

×
(1 +

〈
βd
′
G

〉
ωG
APGF +

〈
βd
′
L

〉
ωG
ALP +

〈
βd
′
C

〉
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AQCDC)
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〈
βu
′
G

〉
ωG
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〈
βu
′
L

〉
ωG
ALP +

〈
βu
′
C

〉
ωG
AQCDC)

,

rL :=
puLp

d′
L

pdLp
d′
L

=
α̃uLα̃

d′
L (1 + 〈βuG〉ωL APGF + 〈βuL〉ωL ALP + 〈βuC〉ωL AQCDC)

α̃dLα̃
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d′
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(6.61)
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In this way we get 3 equations for 3 unknowns what helps with the convergence of the

fit. For the new set of equations we need to recalculate the covariance matrix:

Covnew(3, 3) = prop(12, 3)TCov(12, 12)prop(12, 3), (6.62)

where prop(12, 3) contains all partial derivatives:
∂ri

∂pji
.

For example two bins I and II of xBj can be applied. Then βLPI = βLPwhen xBj ∈
I and βLPI = 0 for xBj ∈ II. Hence

βLPALO1 (xBj) = βLPI ALO1 (xIBj) + βLPII A
LO
1 (xIIBj). (6.63)

Putting the last Equation into Equation (6.49) gives an extra asymmetry but also an

extra weight can be set. With this binning there are more parameters to fit but more

equations at the same time. The ranges of xBj and xC overlap for sufficiently high xBj

and in the common region the same binning is applied. In the overlap region for the

same bin j
〈
ALO1 (xjBj)

〉
=
〈
ALO1 (xjC)

〉
. The binning, 12xBj , 6xC and 1 − 3xg bins, is

presented in Figure 6.5. In total there were 76-84 equations of the type of Equation

(6.53). The results obtained in this method are presented in Figure 6.6 together with

R
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event(x_Bj, x_C, x_g, ....)
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Figure 6.5: All-pT method. Binning in x. The same event contributes several times
in different x bins.

the results of COMPASS high-pT hadron pair results and with the world ∆g/g LO

measurements.
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Figure 6.6: Left Panel: Comparison of the all-pT analysis results with high-pT hadron
pair COMPASS analysis. The statistical errors of the all-pT method are significantly
smaller; Right Panel: Comparison of the all-pT analysis results with world LO ∆g/g

extractions.

The result in single xg bin reads:

∆g

g
= 0.113± 0.038(stat.)± 0.036(syst.) (6.64)

at scale 〈µ2〉 = 3 GeV2 and 〈xg〉 = 0.10.





Chapter 7

Monte Carlo simulation and

Neural Network training

In this chapter the simulation chain is described in detail. First and main part of

the simulation procedure is the LEPTO generator ([63]) which generates the physics

process of muon-nucleon scattering and hadronisation. The latter has been tuned to the

COMPASS data, by adjusting available LEPTO parameters, during previous analysis

([17]).

Second part of the MC chain is the description of the COMPASS spectrometer. For

this purpose the collaboration developed a program called COMGEANT ([114]) based

on GEANT3.

The last two parts are the same as for the experimental data analysis. Particle tracks,

charges, energy are evaluated from signals collected from the detectors with the use of

the CORAL software. Then PHAST software is applied for event-by-event analysis.

7.1 LEPTO generator

LEPTO generator uses leading order electroweak cross-sections and QCD correlations

with the use of the first order matrix elements of PGF and QCDC processes. The

fragmentation is implemented by application of the LUND model.

7.1.1 Generation procedure

The procedure applied to simulate the event kinematics for a chosen process is based

on the experimentally measured cross-sections. For neutral current interactions a phase

81
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space point, usually in the (x,Q2) plane, has to be generated. The probability of this

generation is proportional to the known cross-section.

The cross-section is parameterised separately for Q2 and x. The simplified functional

form f is the upper bound of the cross-section, f(χ) > dσ/dχ, χ = Q2, x (Figure 7.1)

and its cumulative distribution function (F ) should be invertible. (This is done because

the inverse cumulative distribution function is very difficult to evaluate directly from

the cross-section.) Then an univocal value of χ can be obtained:

Figure 7.1: Illustration of the acceptance-rejection method. Random points are cho-
sen inside the upper bounding figure (Cḣ(x)), and rejected if the ordinate exceeds
f(x). The lower figure illustrates a method to increase the efficiency by selecting an

“envelope” that closer follows the variation of f(x). The figure is from [28].

χ = F−1(u), (7.1)

where u is generated from the uniform distribution and F−1 is an inverse of cumulative

distribution of function f . As f is an envelope of the cross-section it may overestimate

its value. Therefore another random number v is generated from uniform distribution

and only when vf(χ) < dσ/dχ the point is accepted.

7.2 Cross-section parameterisations

In the LO approximation the cross-section of the lepton-nucleon scattering can be written

as
d2σ

dxdQ2
=

2πα2

xQ2
(1 + (1− y)2)F2(x,Q2), (7.2)

where the structure function F2 can be parameterised in terms of q(x,Q2), q̄(x,Q2) and

g(x,Q2) parton density functions (PDFs). The parameterisation of the PDFs has been
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chosen to be consistent with the NMC experiment [115] as it had a similar x,Q2 coverage

to COMPASS. The PDFs tables MSTW08LO have been used in further simulations.

7.3 First order QCD processes

The simulation model assumes only three processes contributing to the cross-section:

leading process γq → q, QCD Compton scattering γq → qg and Photon-Gluon Fusion

(PGF) γg → qq̄. Because all higher order processes are neglected the probabilities of the

three processes - PLP , PQCDC , PPGF - sum up to one. The calculations of the first order

matrix elements require assuming cut-offs to avoid singularities. (In full calculation soft

and collinear divergences are cancelled by virtual corrections or absorbed by the PDFs).

In the presented analysis the “zŝ cut-off” scheme was used (it is the default option for

LEPTO generator). It has two cut-off parameters: the fraction zq of parton energy

with respect to the virtual photon and the invariant mass of the partonic subsystem

ŝ, to regulate separately the divergences with respect to the incoming parton direction

and for the two produced partons, respectively. During the systematic studies two MC

sample with parton shower off have been produced. In those cases the ”W 2 cut off”

scheme was used.

The factorisation scale, appearing in parton densities and the renormalisation scale

included in the expressions depending on the strong coupling constant αs have been

chosen to be equal Q2 which is the default choice in LEPTO.

7.4 Hadronisation

The process of production of observable hadrons from the struck partons is based on the

LUND model implemented in the JETSET package [62]. The model describes hadronisa-

tion by a colour triplet string which is stretched between the partons moving away from

each other. When the string breaking is energetically favourable then quark-antiquark

pairs appear. The process is iterative since the new pairs may have sufficient energy to

stretch and break a new string. The string fragmentation mechanism is schematically

presented in Figure 7.2. The transverse momentum is locally compensated between

the quark antiquark pair. The kT distribution is described in JETSET by two flavour

independent Gaussian functions (one for the main distribution and the other one for

the tails). The parameters of this distribution are adjustable in LEPTO and have been

tuned to COMPASS data [17].

The other parameters which were tuned relate to the shape of the probability of the
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Figure 7.2: Iterative string fragmentation into hadrons. The string breaking continues
as long as enough energy for the production of new qq̄ pairs is available.

fraction z of the available energy taken by the newly created hadron:

f(z) = z−1(1− z)ae−bm2
T /z, (7.3)

where m2
T = m2 + p2

T and m is the mass of the hadron. Parameters a and b have been

tuned to better describe the COMPASS data, [17].

Let us describe the hadronisation scenario for the leading process (LP). If the struck

quark is a valence quark the string is stretched between the quark and the nucleon

remnant (diquark in this case). Then the string is split according to the LUND frag-

mentation function f , given by Equation (7.3). When the struck quark (or antiquark)

is a sea quark then the valence quarks separate into diquark and a single quark and

two strings are formed: one between the struck quark and the diquark and the other

between the sea antiquark and the single valence quark. The fraction of the nucleon

longitudinal momentum assigned to the antiquark (the partner of the struck quark) is

evaluated from the Altareli-Parisi splitting function P (g → qq̄) (cf. Section 2.2.2).

Similarly in the PGF process the remnant is splitted. Two strings are formed between

the diquark and the produced quark and between the single valence quark and the an-

tiquark from the pair.

For the QCDC process the string is stretched from the scattered quark via gluon to the

target remnant.

7.5 Parton shower

Higher order QCD effects are taken into account in LEPTO by the parton shower (PS)

approach. Extra gluons can be emitted before (initial state PS) or after (final state PS)
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Figure 7.3: Selected Feynman diagrams of the PGF process with gluon emissions
treated by Parton Shower mechanism. Figures (a-c) present final state showers while

figure (d) shows a initial state one.

the boson vertex (Figure 7.3). With this method any higher order (in αs) processes can

be simulated but only in the leading logQ2 approximation. The Sudakov form factor

governs the shower evolution. Inclusion of PS in the simulation strongly improves the

data description. Therefore, for the final results the MC with PSON was used, while for

systematic studies also simulations without PS have been tested.

7.6 Simulation of experimental conditions

The experimental setup of COMPASS and its response to the passage of particles pro-

duced in the considered reaction is simulated with the use of the COMGEANT package

[114]. It is an implementation of the COMPASS spectrometer based on GEANT 3 [116]

package which includes description of all materials in the experimental hall, magnetic

fields, the passage of particles through them and the detectors response.

Signals from the detectors are then reconstructed with the same CORAL ([104]) package

version as the one used for data reconstruction, so the tracking inefficiencies are taken

into account in the simulation. The fully simulated and reconstructed events can then be

analysed in the same way as data but more information (e.g. the process identification)

is available in the MC events.
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7.7 Comparison between data and Monte Carlo simula-

tions

The tuning of the LEPTO fragmentation parameters is described in detail in [17]. For

the systematic studies (Section 9.1) different MC settings and its influence on the final

results have been studied. For all MC samples the agreement with corresponding data

has been checked. In the plots presented here, the main MC sample (the MC sample

which agrees best with the data) which is used to evaluate the final results is shown.

There are two sets of plots: one for the simulations and data with the deuteron target

(Figure 7.4) and the second with the proton target (Figure 7.5). Both sets contain

distributions of six variables: xBj , Q
2, y, pT1, pT2, pL1, pL2. These are used in the neural

network (NN) training.

It should be noted that in case of the ammonia (NH3) target in the generation of the

interaction by LEPTO a pure proton target is simulated. The true proportion in the

target material is 10 protons/ 7 neutrons. The latter is simulated in COMGEANT

package for the material through which the products of interaction pass. The choice of

a pure proton target in LEPTO is justified by the fact that from the MC simulations

the processes fractions on protons are needed for the analysis. It may, however, have

influence on the kinematic distribution comparison with data. In case of the deuteron

(6LiD) target an equal number of protons and neutrons is simulated with the use of the

LEPTO generator.
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Figure 7.4: Kinematic variable distributions in MC and Data high-pt samples nor-
malised to the same number of events. Deuteron Data and MC2004.
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Figure 7.5: Kinematic variable distributions in MC and Data high-pt samples nor-
malised to the same number of events. Proton Data and MC2010.

The agreement is satisfactory for both samples. The influence of the small discrepancy

for large Q2 for the proton data is studied in the systematics Section 9.6. The effect is

very small as for large Q2 the photon-gluon fusion process is rare.

7.8 Neural Networks

Artificial Neural Networks are a very powerful tool supporting data analysis. Typically

they are applied to separate signal from noise. However, as it will be shown in the next

Chapter, 8, it is sufficient and statistically more effective to assign weights on event-by-

event basis. In this analysis a multilayer perceptron (MLP) neural network type has

been used. In this type of network there is no feedback and the signal is propagated

throughout the NN in one direction. In Figure 7.6 a schematic diagram of MLP is shown.

The NN is composed of several layers of neurons. Neurons in each layer are connected

only to neurons in the previous and next layer. The input signal is introduced through

the input layer by setting states of its neuron and then is propagated through the hidden

layers to the output layer via the connections between neurons. To parameterise the

exclusive OR (XOR) logic function at least one hidden layer is needed. Already two

hidden layers, however, are sufficient to cope with any parameterisation problem [117].

Each neuron has a number of inputs with assigned weights. Its state is a function

of weighted input signals. Output signals are connected to the neurons in the next
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Figure 7.6: Multilayer perceptron (MLP) neural network. The “+1” inputs for each
layers are the bias terms and allow for adjustment of the activation threshold.

layer. In most general MLP neural network with L layers each consisting of Nk neurons

(k = 1, 2, ..., L) the state of a neuron i from a layer k(E
(k)
i ) is defined as

y
(k)
i = f

(
s

(k)
i

)
, (7.4)

where

s
(k)
i =

Nk−1∑
j=0

ω
(k)
ij x

(k)
j , f(x) =

{
1 when x ≥ 0

0 when x < 0
. (7.5)

The input signals xj of the neuron E
(k)
j come from the neurons from the layer k− 1 and

they are set differently for the input and other layers:

x
(k)
i =


ui for i > 0, k = 1

y
(k−1)
i for i > 0, k = 2, ..., L

+1 for i = 0, k = 1, ..., L

. (7.6)

A simple scheme of a neuron with the input signals weighted by weights ωij is shown in

Figure 7.7. The weights ωi0 are called bias terms which define the threshold value for

Figure 7.7: Schematic representation of a neuron E
(k)
i .
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the neuron activation as combining the above Equations gives

y
(k)
i =

{
1 when ŝ(k) + ω

(k)
i0 ≥ 0

0 when ŝ(k) + ω
(k)
i0 < 0

, ŝ
(k)
i =

Nk−1∑
j=1

ωijx
(k)
j . (7.7)

The activation function f(x) is typically chosen a sigmoid function of the shape f(x) =

1/(1 + exp(−βx)); β > 0 or a hyperbolic tangent f(x) = tgh(αx/2); α > 0. Different

activation functions are presented in Figure 7.8. The choice of an activation function

Figure 7.8: Neuron activation functions

sets the sensitivity of the network to the outliers. In this analysis a NN with unipolar

sigmoid function has been used. The output layer neurons activation function is chosen

as a simple linear function f(x) = x what assures proportionality to the input signals.

The learning procedure is performed by adjusting the weights corresponding to the

connections between neurons. For purposes of this measurement a supervised training

technique is used. For each input vector an expected output value di(n) is known. On

every iteration an error is calculated defined by the network response and the desired

output. Here Mean Squares Error (MSE) is used

Q(n) =

NL∑
i=1

(
di(n)− y(L)

i (n)
)2
, (7.8)

where L is the output layer. This choice is ensures that the probabilistic interpretation

of the NN results is justified.

An iterative procedure based on the steepest gradient algorithm is performed in order

to minimise the error

ω
(k)
ij (n+ 1) = ω

(k)
ij (n)− η ∂Q(n)

∂ω
(k)
ij (n)

, (7.9)
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where η is the step size. Let us consider

∂Q(n)

∂ωij(k)(n)
=

∂Q(n)

∂s
(k)
i (n)

∂s
(k)
i (n)

∂ωij(k)(n)
=

∂Q(n)

∂s
(k)
i (n)

x
(k)
j (n) = −2δ

(k)
i (n)x

(k)
j (n);

δ(k)(n) = −1

2

∂Q(n)

∂s
(k)
i (n)

.

(7.10)

Thus, the weight after the n-th iteration is given by

ω
(k)
ij (n+ 1) = ω

(k)
ij (n) + 2ηδ

(k)
i (n)x

(k)
j (n). (7.11)

For the MSE function the expression for δ
(k)
i (n) reads

δ
(k)
i = ε

(k)
i (n)f ′(s

(k)
i (n)); ε

(k)
i (n) =


di(n)− y(L)

i (n) for k = L
Nk+1∑
m=1

δ(k+1)
m (n)ω

(k+1)
mi for k = 1, ..., L− 1

.

(7.12)

Here f ′ is the derivative of f . In the considered case an ”error back propagation” was

used in which the error is first calculated for the output layer and then propagated

towards the input layer. In the beginning of the training the step is fairly large and it

is decreased when the error value is approaching minimum.

To avoid over-training (learning by heart) of the network the training set is randomly

divided into two subsamples: the training set on which the network is trained and a

testing set to monitor the training procedure. The error value from both sets is compared

on every iteration and the training is stopped when the obtained values diverge.

A dynamic structure, where the network can add extra neurons or remove unused errors

is applied. If the network modification leads to smaller error a new structure is set.

Otherwise the previous state is restored. The modifications are made periodically and

a new neuron appears in a random position. In this way the network can ”jump out”

from a local minimum to search for a global one.

In this analysis the NetMaker package [118] has been used. It was implemented for

COMPASS and ICARUS neutrino experiment. The program is written in C# language

and it has been optimised for working with large data sets. The trained neural network

output is stored in a XML standard file. The author of this thesis has written a simple

interface enabling evaluation of the trained NN output by ROOT and PHAST packages.

7.9 Parameterisation

The LEPTO model assumes three contributing processes: photon-gluon fusion (PGF),

QCD Compton (QCDC) and leading process (LP). The expected neural network output
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consists of three positive weights: RPGF , RQCDC , RLP with:

RPGF +RQCDC +RLP = 1. (7.13)

Hence, there the output can be parameterised by two free and equivalent parameters o1

and o2. The target values (t1, t2) assigned to MC events by process identification are the

following: PGF - (0, 0), QCDC - (1, 0) and LP - (1/2,
√

3/2), vertices of an equilateral

triangle. The output of a trained network is presented in Figure 7.9.
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Figure 7.9: Neural Network output for the three given target values PGF - (0, 0),

QCDC - (1, 0) and LP - (1/2,
√

3/2). The separation of the sample is difficult and
weighted method, which is statistically more optimal, is applied instead.

The probabilities RPGF , RLP , RQCDC can be easily obtained from the NN output

o1, o2:

RPGF = 1− o1 − 1/
√

3o2, RQCDC = o1 − 1/
√

3o2, RLP = 2/
√

3o2. (7.14)

The input vector is constructed of six kinematic variables: xBj , Q
2, pT1, pT2, pL1 and

pL2. The transverse (pT ) and longitudinal (pL) part of the leading and next-to-leading

hadron momenta are obtained with respect to the virtual photon direction. The hadron

with the largest transverse momentum is chosen as the leading hadron. The vector of

the kinematic variables fully characterises the event kinematics and has been chosen to

be the same as in the ∆G measurement described in [17] and shortly in Section 6.2. To

assure equal sensitivity of the network to different input elements each input parameter

distribution is normalised to have mean value zero and standard deviation one.
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7.10 Validation of the neural network training

The neural network training is a complicated process and the minimisation of Mean

Square Error can lead to a local minimum different from the global one despite the

usage of the testing set. The method of NN training validation have been developed

during the ∆G measurement from high-pT hadron pairs ([17]). It is done with the use

of different MC sample than the one used for the training. The sample is divided in

two and both subsamples are binned with respect to a certain kinematic variable (e.g.

p2
T = p2

T1 + p2
T2). For the first subsample particle identification from MC is used to

obtain the fraction of one of the processes in each bin. As an example PGF probability

for each bin i is obtained from

P iMC = N i
PGF /N

i
all, (7.15)

where N i
PGF is the number of PGF events in bin i and N i

all is the number of all events in

this bin. For the second subsample in the same kinematic bins the average NN output for

an MC event in each bin is evaluated, labelled as PNN . The results of this exercise for p2
T

obtained for the main MC settings are presented in Figures 7.10 (deuteron target) and

7.11 (proton target). The results show very good agreement between the NN output and

the true MC process fraction. The p2
T dependence is important as the processes fractions
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Figure 7.10: Neural Network training validation - p2T dependence. Top panels: NN
output PNN - open triangles compared to MC process fraction PMC - full circles in bins
p2T = p2T1 + p2T2. Bottom panels: difference PMC − PNN in bins of p2T . Monte Carlo
simulations and Neural Network training prepared for measurements with deuteron

target with the main MC settings.
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Figure 7.11: Neural Network training validation - p2T dependence. Top panels: NN
output PNN - open triangles compared to MC process fraction PMC - full circles in
bins p2T = p2T1 + p2T2. Bottom panels: difference PMC − PNN in bins of p2T . Monte
Carlo simulations and Neural Network training prepared for measurements with proton

target with the main MC settings for the 2010 data sample.

are sensitive to it. This is due to the fact that in the PGF and QCD Compton processes

transverse momentum can be generated in the two-body final state system. Thus their

fractions are enhanced with larger p2
T . During the analysis procedure similar plots have

been produced for other kinematic variables (Q2, xbj , y, pT1, pT2, pL1, pL2). This has

been done for every NN training described in Section 9.1 prepared for the systematic

studies. Apart from the kinematic dependence PMC value in bins of PNN have been

evaluated (this time the MC sample is not divided). The expected dependence should

be linear as it is shown in Figures 7.12 (deuteron target) and 7.13 (proton target).

The agreement is satisfactory and thus a conclusion that the training is validated can

be made. Again similar plots have been produced for NN trained with different MC

settings which are not presented here for brevity.

7.11 The gluon momentum fraction xG and the quark mo-

mentum fraction in QCD Compton process xC

The fraction of the nucleon momentum carried by the struck parton is given by:

ξ = xBj

(
ŝ

Q2
+ 1

)
, (7.16)



Chapter 7. Monte Carlo simulation and Neural Network training 94

NNP
0 0.2 0.4 0.6 0.8 1

M
C

P

0

0.2

0.4

0.6

0.8

1

pre
lim

in
ar

y
LP

NNP
0 0.2 0.4 0.6 0.8 1

M
C

P

0

0.2

0.4

0.6

0.8

1

pre
lim

in
ar

y
QCDC

NNP
0 0.2 0.4 0.6 0.8 1

M
C

P

0

0.2

0.4

0.6

0.8

1

pre
lim

in
ar

y
PGF

NNP
0 0.2 0.4 0.6 0.8 1

N
N

P−
M

C
P

-0.1

-0.05

0

0.05

0.1

pre
lim

in
ar

y
LP

NNP
0 0.2 0.4 0.6 0.8 1

N
N

P−
M

C
P

-0.1

-0.05

0

0.05

0.1

pre
lim

in
ar

y
QCDC

NNP
0 0.2 0.4 0.6 0.8 1

N
N

P−
M

C
P

-0.1

-0.05

0

0.05

0.1

pre
lim

in
ar

y
PGF

Figure 7.12: Neural Network training validation - process fraction dependence. Top
panels: NN output PNN - solid line compared to MC process fraction PMC - full circles
in bins PNN . Bottom panels: difference PMC − PNN in bins of PNN . Monte Carlo
simulations and Neural Network training prepared for measurements with deuteron

target with the main MC settings.
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Figure 7.13: Neural Network training validation - process fraction dependence. Top
panels: NN output PNN - solid line compared to MC process fraction PMC - full circles
in bins PNN . Bottom panels: difference PMC − PNN in bins of PNN . Monte Carlo
simulations and Neural Network training prepared for measurements with proton target

with the main MC settings for the 2010 data sample.



Chapter 7. Monte Carlo simulation and Neural Network training 95

where ŝ is the Mandelstam variable for the hard process and is known for simulated

PGF and QCDC events but cannot be directly determined from data. For LP ξ = xBj .

A pure PGF (or QCDC) MC sample can be used to train a neural network to assign

xG (or xC) to every event. The input is the same as in the processes fraction case

(Q2, xBj , pT1, pT2, pL1, pL2) and the output is just the value of xG (xC). The validation

of this training is given in Figures 7.14 (deuteron) and 7.15 (proton).
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Figure 7.14: Validation of the NN training for xC (left) and xG (right). Deuteron
target.
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Figure 7.15: Validation of the NN training for xC (left) and xG (right). Proton
target.





Chapter 8

The gluon contribution to the

Sivers effect at the COMPASS

experiment

8.1 Data selection

8.1.1 Discussion of the main cuts

The aim of the analysis presented here is to extract the gluon contribution to the Sivers

effect. The method chosen for this purpose combines approaches presented in Chapter

6. The most similar approach has been applied in the all-pT analysis described in

Section 6.3. There are important differences, however. First of all in case of ∆G there

exists a translation from the ”intrinsic” asymmetry to the measured asymmetry called

aLL calculable in perturbative QCD. This is not the case for the Sivers effect. The

nature of the ”intrinsic” Sivers asymmetry, the translation from the Sivers function to

the final state Sivers effect, is model dependent. Then, even the final state effect is

strongly diluted by fragmentation as the azimuthal angle of the measured hadrons is

affected by hadronisation process. As it will be shown later, for the measurement it is

necessary to assume that the asymmetries of the processes involved are constant in all

kinematic variables except x where linear dependence is assumed. The single hadron

Sivers asymmetry (without process separation) has been shown before and is repeated

here in Figure 8.1. The only strong dependence of the Sivers asymmetry is for the region

of small pT . This is why a cut for all considered hadrons pT > 0.4 GeV has been chosen.

On the other hand the region of pT bin should be as wide as possible as the processes

fractions for the sample vary with pT . It has been shown in Section 5.3.3 that the variety

97
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Figure 8.1: COMPASS and HERMESS results of single hadron Sivers asymmetry
measurement with the proton target. x, z and pT dependence. Results show strong

Sivers asymmetry dependence for small pT .

of fractions values in the sample is crucial for the applied method. At the same time

cutting on the hadrons transverse momenta reduces the statistics.

The important question was whether to choose single hadrons or hadron pairs. The

latter choice seemed reasonable as the photon-gluon fusion produces a two-body final

state. This has been decided by a Monte Carlo exercise. A sample of PGF events has

been selected and the correlation between the gluon azimuthal angle and the azimuthal

angle of the reconstructed hadrons has been studied. It should be noted here that only

hadrons with z > 0.1 have been taken into consideration to select current fragmentation

region. The results for single hadron transverse momentum and the sum of the two

leading hadrons are shown in Figure 8.2. It has been decided to choose the sample with

at least two hadrons and pT1 > 0.7 GeV and pT2 > 0.4 GeV. The sample with the
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Figure 8.2: Monte Carlo studies of correlations between the gluon azimuthal angle
φG and the hadronic azimuthal angle φh or φ2h. The plots present correlations for
different data selection. For the left column (abc) at least one hadron is demanded
and: (a) no further cuts; (b) hadrons with pT1 > 0.4 GeV; (c) hadrons with pT1 > 0.7
GeV. For the write column (def) a sample with at least two hadrons is selected and:
(f) no cut on pT1 and pT2; (e) pT1 > 0.4 GeV and pT2 > 0.4 GeV; (f) pT1 > 0.4 GeV

and pT2 > 0.4 GeV.
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demand of at least one hadron and stronger pT cut has similar statistics and correlation

factor but taking sum of momenta of the two leading hadrons is more intuitive in the

view of two-body final state of the PGF process.

In the two hadron case a selection of opposite charge can also be done. This was not

applied during the main selection but its influence has been studied in the systematic

Section (9.4).

8.1.2 Selection of the two data samples for the deuteron and proton

targets

TARGET POLARISATION.

In case of the deuteron target the target was divided in two cells (”up” and ”down”)

polarised in opposite directions. In the proton case the target was constructed of three

polarised cells (”up”, ”centre” and ”down”). Central cell was polarised oppositely to

the up and down cells. The polarisation in the cells were inverted every several days.

THE INTERACTION VERTEX.

The PHAST-defined “best primary vertex”( e.iBestPrimaryVertex()) is taken to select

a interaction vertex. To ensure a position of the interaction vertex inside of the target

material, the PHAST-defined function PaAlgo::InTarget is used. This routine rejects all

the events where the projection of the incoming muon lies outside the most upstream

(z=-62.5 cm) and the most downstream end (z=+67.5 cm) of the target. Interaction

vertex events in between the target cells are also rejected. A further cut was applied

to ensure identical beam intensity for the two (deuteron) or three (proton) target cells.

The PaAlgo::CrossCells which assures that the beam trajectory passes through all target

cells.

BEAM MUON.

The beam muon associated in the reconstructed data (miniDST) with the best inter-

action vertex is taken as the beam particle. A cut on a momentum of 140 GeV/c <

pbeam < 180 GeV/c. In addition (for the proton target sample) the associated track

must have χ2
red = χ2

tot/(Nhits − 5) < 4.

PARTICLE IDENTIFICATION.
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The identification of the scattered muon is slightly different for the deuteron and proton

data samples. A combination of cuts with the use of PHAST functions isMuPrimCoral()

and CanBeMuon() has been applied. In case of more than one µ in the event, the event

is rejected too. If there exists another track satisfying the conditions for X/X0 and χ2

and has at least 6 hits in MA01 (muon wall) and at least 4 hits in MA02 (muon wall)

the event is rejected. Moreover the µ track must not cross yoke of SM2.

In the proton case the scattered muon, µ′, is identified using the PHAST(version 7.136)

([105]) isMuPrim(false, true, true, false) which, in principle, should impose equivalent

conditions as the ones given above. This difference is arises from the principle of being

consistent with other COMPASS analysis on transversely polarised deuteron and proton

targets.

The scattered muon candidate, µ′, is required to be very penetrating and therefore a

cut X/X0 > 30 is used on the number of traversed radiation lengths. Here X is the

measured length of the track of the particle, X0 the average radiation length of the

materials through which the particle passed. It is also required to pass through the

active area of the trigger hodoscopes that have fired the trigger for the considered event.

The event is also rejected when there is a high momentum particle passing through the

absorber’s hole. Additionally there is a requirement for the reduced χ2 of the track

fit (χ2/ndf < 10). The scattered muon track is required to have at least one hit in

detectors upstream the SM1 magnet.

In case of more than one µ′ candidate in the event, the event is rejected. Moreover the

µ′ track must not cross yoke of the second magnet SM2.

Two particles, coming from the interaction vertex, with the largest pT with respect

to the virtual photon four-momentum q are considered as hadron candidates. First of

all, both of them should not be identified as muons. Therefore the number of radiation

lengths corresponding to their tracks should be small (X/X0 < 10). In order to avoid

tracks reconstructed in the SM1 fringe field, we also require for a track of hadron can-

didate to have one hit before the SM1 magnet and one hit after SM1. Finally, there is

a cut on the reduced χ2 of the track fit (χ2/ndf < 10).

KINEMATIC CUTS.

There are two major reasons for choosing the high-pT sample. First, with this choice

the fraction of PGF in the sample is enhanced. Secondly it improves the correlation

between the azimuthal angle of the gluon momentum and the azimuthal angle of the

reconstructed sum of two leading hadron momenta.
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The following cuts on inclusive kinematic variables were applied: Q2 > 1 (GeV/c)2 to

select events in the perturbative region, 0.003 < xBj < 0.7, 0.1 < y < 0.9 and W >

5 GeV/c2.

For further selection the high-pT cut was used:pT1 > 0.7 GeV/c, pT2 > 0.4 GeV/c, which

ensures that PGF fraction in the sample is enhanced and that the correlation between

the azimuthal angle of the gluon and the azimuthal angle of the vector sum of two

hadrons is stronger. The cuts z1 > 0.1 and z2 > 0.1 are used to select current

fragmentation region and the cut z1 + z2 < 0.9 is applied to reject decay products of

diffractively produced vector mesons. The list of cuts, statistics after each cut with its

crosscheck are gathered in Tables 8.1 and 8.2.

deuteron

cuts # events after cut percentage of total events

mini DST 1214158067 100%

≥ 4 particles in event 888719155 73.2%

BestPrimaryVertex() 797099263 65.65%

iMuPrimCoral() 496925126 40.93%

#mu′ > 1 493519435 40.65%

new mu′ flag 493487059 40.64%

CanBeMuon() 491776987 40.5%

χ2
mu/ndf < 10 489700428 40.33%

CrossYoke() 489264574 40.3%

χ2
mu′/ndf < 10 485228133 39.96%

X/X0(mu′) > 30 423950392 34.92%

ZFirst(mu
′) < 350 388352215 31.99%

140 < Pmu < 180 386928114 31.87%

CrossCells 275348777 22.68%

InTarget 232442156 19.14%

W > 5 224975534 18.53%

Q2 > 1 20826864 1.72%

0.003 < xBj < 0.7 20668093 1.7%

0.1 < y < 0.9 20052924 1.65%

#hadrons ≥ 2 12520188 1.03%

pT1 > 0.7 2320824 0.19%

z1 ≥ 0.1 2172634 0.18%

pT12 ≥ 0.4 1037793 0.09%

z2 ≥ 0.1 770990 0.06%

z = z1 + z2 < 0.9 747484 0.06%

final 747484 0.06%

Table 8.1: Statistics after cuts for whole deuteron target data (three period pairs)
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2010 proton

cuts # events after cut percentage of total events

mini DST 27889279577 100 %

≥ 4 particles in event 22560143966 80.89 %

BestPrimaryVertex() 21496813770 77.08 %

iMuPrim() 3628460819 13.01 %

CanBeMuon() 3628460244 13.01 %

χ2
µ/ndf < 10 3628348463 13.01 %

χ2
µ′/ndf < 10 3622460155 12.99 %

X/X0(µ′) > 30 3538330516 12.69 %

ZFirst(µ
′) < 350 2866709555 10.28 %

140 < Pµ < 180 2852443924 10.23 %

µerrbeam ≤ 4 2620265555 9.4 %

CrossCells 2293426026 8.22 %

InTarget 1846646977 6.62 %

W > 5 1743173397 6.25 %

Q2 > 1 143679400 0.52 %

0.003 < xBj < 0.7 140651648 0.5 %

0.1 < y < 0.9 130894917 0.47 %

#hadrons ≥ 2 95221468 0.34 %

pT1 > 0.7 22711725 0.08 %

z1 ≥ 0.1 18733398 0.07 %

pT2 ≥ 0.4 10921467 0.04 %

z2 ≥ 0.1 6830653 0.02 %

z = z1 + z2 < 0.9 6619361 0.02 %

final 6619361 0.02 %

Table 8.2: Statistics after cuts for whole 2010 year (12 periods)

8.2 Two-hadron SIDIS cross-section

The full two-hadron cross-section given in Appendix A in terms of φh and φR⊥, the

azimuthal angles of Ph = P1 + P2 (sum of two leading hadron momenta) and R =

(P1 − P2)/2 respectively. In the case of this analysis the angle φR⊥ is not taken into

consideration so the two-hadron cross-section is integrated over this angle. The number

of partial waves is then reduced and lmax in Equations (A.2), (A.4), (A.3), (A.5), (A.6)

and (A.7) is zero and hence m = 0. This leads to cross-section exactly the same as in

the one hadron case (Equation (2.39)). Here the azimuthal angle of the sum of the two
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hadrons momenta is denoted by φ2h:

dσ

dxdydψdzdφhdPh⊥
=

α2

xyQ2

y2

2(1− ε)

(
1 +

γ2

2x

){
FUU,T + εFUU,L +

√
2ε(1 + ε) cosφ2hF

cosφ2h
UU

+ ε cos 2φ2hF
cos 2φh
UU + λe

√
2ε(1− ε) sinφ2hF

sinφ2h
UU

+ S||

[√
2ε(1 + ε) sinφ2hF

sinφh
UL + ε sin (2φ2h)F

sin (2φ2h)
UL

]
+ S||λe

[√
1− ε2FLL +

√
2ε(1− ε) cosφ2hF

cosφ2h
LL

]
+ |S⊥|

[
sin (φ2h − φS)

(
F

sin (φ2h−φS)
UT,T + εF

sin (φ2h−φS)
UT,L

)
+ ε sin (φ2h + φS)F

sin (φ2h+φS)
UT + ε sin (3φ2h − φS)F

sin (3φ2h−φS)
UT

+
√

2ε(1 + ε) sinφSF
sinφS
UT +

√
2ε(1 + ε) sin (2φh − φS)F

sin (2φ2h−φS)
UT

]
+ |S⊥|λe

[√
1− ε2 cos (φ2h − φS)F

cos (φ2h−φS)
LT +

√
2ε(1− ε) cosφSF

cosφS
LT

+
√

2ε(1− ε) cos (2φ2h − φS)F
cos (2φ2h−φS)
LT

]}
,

(8.1)

where

ε =
1− y − 1

4
γ2y2

1− y +
1

2
y2 +

1

4
γ2y2

. (8.2)

As the target was transversely polarised and the beam was also polarised all eight terms

with S⊥ should be taken into consideration. It will be shown later (see Equation (8.10))

the expression for the number of events is integrated with a weight containing the Sivers

modulation sin (φ2h − φS). The other seven modulations are orthogonal and therefore

can be neglected. The orthogonality has been tested during the systematic studies (see

Section 9.8). The amplitudes in the Sivers modulation are given by [119]:

F
sin (φ2h−φS)
UT,T =

∑
q

e2
q

∫
d2kTd

2pT δ
2
(
kT − pT −

p2h⊥
z

)
×|kT |
M

f⊥1T (x,kT )D1(z,M2h, |pT |) cos (φk − φ2h)

F
sin (φ2h−φS)
UT,L = 0

, (8.3)

where k denotes the parton momentum in the distribution functions, p the parton

momentum occurring in the fragmentation functions, while p2h refers to the final hadron

momentum. The Sivers function f⊥1T is convoluted with the unpolarised two-hadron

fragmentation function D1.
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8.3 The weighted method for gluon Sivers asymmetry ex-

traction

Let us define the two hadron Sivers asymmetry by

A2h
T (φSiv) =

d8σ↑(φSiv)− d8σ↓(φSiv)

d8σ↑(φSiv) + d8σ↓(φSiv)
. (8.4)

Here φSiv = φ2h − φS . Then the number of events in a φSiv bin is given by

N(~x, φSiv) = α(~x, φSiv)
(

1 + f(~x)PtA
2h
T (~x, φSiv)

)
, (8.5)

where ~x = (xBj , Q
2, pT1, pT2, z1, z2). Throughout this Section only Sivers modulation

will be taken into account:

N(~x, φSiv) = α(~x, φSiv) (1 + f(~x)PtASiv(~x) sinφSiv) . (8.6)

In the LO approximation it is possible to decompose the asymmetry defined in Equation

(8.4):

A2h
T (φSiv) =

∆σ

σ̄
(φSiv)

=
σ̄PGF
σ̄

(φSiv)
∆σPGF
σ̄PGF

(φSiv) +
σ̄QCDC
σ̄

(φSiv)
∆σQCDC
σ̄QCDC

(φSiv) +
σ̄LP
σ̄

(φSiv)
∆σLP
σ̄LP

(φSiv)

=RPGF (φSiv)A
2h
PGF (φSiv) +RQCDC(φSiv)A

2h
QCDC(φSiv) +RLP (φSiv)A

2h
LP (φSiv).

(8.7)

Here Rj = σ̄j/σ̄ is the fraction of each process j in a given data sample. It has been

checked on Monte Carlo data produced with the LEPTO generator ([63]) that the frac-

tions Ri do not depend on φSiv (Figure 8.3). Furthermore, it is assumed that the raw

asymmetries are small. Hence, the Sivers asymmetry given in Equation (8.6) can be

decomposed into asymmetries of the sub-processes:
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Figure 8.3: Monte Carlo simulation of the dependence of process fraction on the
Sivers angle for the high-pT hadron pair sample. The lower raw is in larger scales.
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ASiv = RPGFAPGFSiv +RQCDCAQCDCSiv +RLPALPSiv. (8.8)

Using Equation (8.8) and introducing βjt (φSiv) = RjfPT sinφSiv one can rewrite Equa-

tion (8.6):

Nt(~x, φSiv) = αt(~x, φSiv)
(

1 + βPGFt (~x, φSiv)A
PGF
Siv (~x)

+ βQCDCt (~x, φSiv)A
QCDC
Siv (~x) + βLPt (~x, φSiv)A

LP
Siv(~x)

)
,

(8.9)

which is similar to Equation (6.53). For each process weight is introduced chosen to be

ωj ≡ βj/PT which optimises the statistical and systematic error.

pjt =

∫
d~xdφSivω

j(~x, φSiv)Nt(~x, φSiv) =

Nt∑
i=1

ωji

= α̃jt

(
1 +

〈
βPGFt

〉
ωj

〈
APGFSiv (~x)

〉
βPGFt ωj

+
〈
βQCDCt

〉
ωj

〈
AQCDCSiv (~x)

〉
βQCDCt ωj

+
〈
βLPt

〉
ωj

〈
ALPSiv(~x)

〉
βLPt ωj

)
,

(8.10)

where

〈β〉 =

∫
βωαd~x∫
ωαd~x

≈
∑
βω∑
ω

(8.11)

is the weighted mean and

α̃ =

∫
αωd~x (8.12)

is the integrated acceptance. Also linearity of Aj in x is assumed like in Section 6.1,

〈A(~x)〉βω =
〈
A(〈x〉, ~x′)

〉
βω
≡ A(〈x〉). (8.13)

It can be also checked (see Appendix B) that

〈xg〉ωPGF βPGF ≈ 〈xg〉ωQCDCβPGF ≈ 〈xg〉ωLP βPGF ≡ 〈xg〉,
〈xC〉ωPGF βQCDC ≈ 〈xC〉ωQCDCβQCDC ≈ 〈xC〉ωLP βQCDC ≡ 〈xC〉,
〈xBj〉ωPGF βLP ≈ 〈xBj〉ωQCDCβLP ≈ 〈xBj〉ωLP βLP ≡ 〈xBj〉.

(8.14)

Then Equation (8.10) with the use of Equations (8.13) and (8.14) can be rewritten in

the form

pjt =

Nt∑
i=1

ωji = α̃jt

(
1 + {βGt }ωjA

φSiv
PGF (〈xg〉)

+ {βQCDCt }ωjA
φSiv
QCDC(〈xC〉) + {βLPt }ωjA

sin(φ2h−φs)
LP (〈xBj〉)

)
.

(8.15)
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In order to avoid the integrated acceptance defined in Equation (8.12) and the denomi-

nator in Equation (8.11) from approaching zero binning in φSiv is introduced. Two bins

(φISiv, φ
II
Siv) = ([0, π], [π, 2π]) have been applied assuming AjI = AjII . With the use of the

constraint on integrated asymmetries in each bin

α̃uα̃d′

α̃u′α̃d
= 1 (8.16)

a set of 24 equations for 21 unknowns is obtained. It is much easier to make a fit with

smaller number of parameters to use the double ratio method:

rj :=
pjup

j
d′

pju′p
j
d

. (8.17)

In this way the integrated acceptances cancel out and a set of six equations for three

unknowns is obtained. It can then be solved by fitting procedure of χ2 minimisation,

χ2 = (~R− ~L)T [prop(12, 3)TCov(12, 12)prop(12, 3)]−1(~R− ~L). (8.18)

Vectors ~R and ~L are defined by right hand side and left hand side of Equations (8.17).

The former contains the asymmetries - parameters of the fit, while the latter is given

by the measured values of ωji . The Cov(12, 12) matrix elements refer to correlations

between pairs of pjt defined in Equation (8.15) and can be approximated by Cov(px, py) ≈∑
Nt

ωxωy given by Equation (6.60). The propagation matrix prop(12, 3) is given by

prop(m,n) = ∂rn/∂pm.

As discussed in Section 8.1 there is a pT dependence of the measured Sivers asymmetries

which seems to be connected to the fragmentation process. To calculate how strong this

dilution is a fragmentation model has to be used. To keep the results independent of this

model a high-pT region has been selected where the asymmetries (APGF , AQCDC , ALP )

seem to be constant. The asymmetries ALP and AQCDC should be equal on the ”parton

level” but not necessarily on the measured hadron level. Therefore the constraint used

in the all-pT ∆g/g between the asymmetries of the LP and QCDC process cannot be

applied here. In the same time pT range needs to be sufficiently large to have a wide

range of the processes fractions in the bin. Taking all this into consideration it has been

chosen to perform the analysis in a single pT bin. Due to the small statistics also only

a single x bin is applied.
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Figure 8.4: Validation of the analysis method. Exemplary plot. ASIMPGF =
−0.25, ASIMQCDC = 0.2, ASIMLP = 0.05.

8.3.1 Analysis method test on a Monte Carlo sample

To validate the method we generate MC events. Each event is tagged with the label

of the process (LP, QCDC, PGF) which was used to generate given event. Then every

event is weighted by 1 +ASIMi sin (φ2h − φS), where i labels the process which is known

in MC. We put the simulated asymmetries (ASIMPGF , A
SIM
QCDC , A

SIM
LP ) to constant values.

To such weighted MC sample we apply the described method of asymmetry extraction

expecting to get Aextractedi ' ASIMi . An exemplary result is shown in Fig. 8.4. The red

lines indicate the simulated values and the points represent the extracted ones.

8.4 Results

8.4.1 Deuteron target

The data collected with the transversely polarised target are not large in statistics. It

has been divided into three periods, namely ”P1H-P1G”, ”W33-W34”, ”W36-W35”.

Each period contains four target configurations t = u, d, u′, d′. The results are presented

in Figure 8.5.

The final result is obtained by

Afinal =

∑3
i=1

Ai
σ2
i∑3

i=1
1
σ2
i

, σ2
final =

1∑3
i=1

1
σ2
i

(8.19)
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Figure 8.5: Period-by-period results for Sivers asymmetry of three processes: PGF,
QCDC, LP. Deuteron target.

and it reads
ASiv

PGF,d = −0.14± 0.15(stat.),

ASivQCDC,d = 0.12± 0.11(stat.),

ASivLP,d = −0.033± 0.024(stat.).

(8.20)

ASivPGF,d has been obtained at < xg >= 0.13 and at scale µ2 = 3 GeV2.

8.4.2 Proton target

Most of the COMPASS data with transversely polarised target has been collected in

2010 with the proton (NH3) target. The data has been grouped into twelve periods each

containing all target configuration. The three cell target is treated in the following way:

the upstream and downstream cells are joined together and labelled by u(u′) as they

have the same sign of polarisation. The central cell is labelled by d(d′). The positive

polarisation (u, d) is chosen to point up. Results period-by-period together with the

final results are shown in Figure 8.6.

ASiv
PGF,p = −0.26± 0.09(stat.),

ASivQCDC,p = 0.13± 0.05(stat.),

ASivLP,p = 0.34± 0.012(stat.).

(8.21)

ASivPGF,p has been obtained at < xg >= 0.15 and at scale µ2 = 3 GeV2.
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Figure 8.6: Period-by-period results for Sivers asymmetry of three processes: PGF,
QCDC, LP. Proton target 2010.

The final results read:

8.4.3 Interpretation of statistical errors

The results given in the previous section are obtained with a three-parameter fit. The er-

rors given above are the diagonal of the error matrix. The period-by-period distribution

gives for deuteron:

χ2
PGF /ndf = 0.76, probχ2 = 0.86,

χ2
QCDC/ndf = 3.3, probχ2 = 0.34,

χ2
LP /ndf = 2.1, probχ2 = 0.56

(8.22)

and for proton:

χ2
PGF /ndf = 19.6, probχ2 = 0.08,

χ2
QCDC/ndf = 17.5, probχ2 = 0.13,

χ2
LP /ndf = 14.1, probχ2 = 0.29.

(8.23)

The results both for deuteron and for proton are compatible and thus can be merged

in one data sample for each target. The results obtained with this method for deuteron

are the following

ASivPGF,d = −0.13,

ASivQCDC,d = 0.13,

ASivLP,d = −0.035,

(8.24)

with the error matrix

(
1

2

∂2χ2

∂Aj∂Ak

)−1

=


0.0198 −0.0116 −0.0006

−0.0116 0.0115 −0.0009

−0.0006 −0.0009 0.0005

 , (8.25)
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where j, k = PGF,QCDC,LP . Similar results for proton

ASivPGF,p = −0.26,

ASivQCDC,p = 0.12,

ASivLP,p = 0.035,

(8.26)

with the error matrix

(
1

2

∂2χ2

∂Aj∂Ak

)−1

=


0.0070 −0.0032 −0.0006

−0.0032 0.0025 −0.0002

−0.0001 −0.0002 0.0001

 . (8.27)

The naive expectation is that gluons are flavour-blind and the results obtained for

deuteron and proton target could be combined. It should be taken into account that

gluons originate from quarks of different flavours and this could influence the collective

orbital motion of gluons differently for protons and neutrons. The two results are statis-

tically compatible with each other but the uncertainties are rather large. The obtained

precision does not authorise a conclusion that the Sivers effect for gluons is the same for

deuteron and proton targets.

8.5 Results with the Unbinned Maximum Likelihood method

This analysis can be also performed with the use of the maximum likelihood method.

Figures 8.7 and 8.8 show that there is practically no difference between the weighted

method presented in this note and the maximum likelihood method. The difference in

the final APGF is 0.008 that is 6% of σstat for deuteron and 0.004 that is 5% of σstat for

proton. The difference is only due to use of different estimator so no systematic error

due to the choice of statistical method is assigned.

8.6 COMPASS 2007 data set from transversely polarised

protons

In 2007 COMPASS has dedicated part of the data taking run to measurements on

transversely polarised proton target. The statistics of this date set is around 25% of the

statistics collected during 2010 run. The problems with the agreement with the Monte

Carlo simulation and collected data for the 2007 sample disables a proper systematic

studies for different MC settings. Therefore only an estimation of the possible influence

of this data sample has been made. The results, with the use of a MC simulation with
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Figure 8.7: Weighted method vs maximum likelihood method. Deuteron.

S
iv

er
s 

A
sy

m
m

et
ry

P
G

F

) sφ−
2hφ

si
n(

A
Q

C
D

C

) sφ−
2hφ

si
n(

A
LP

) sφ−
2hφ

si
n(

A

W23 W24 W26 W27 W29 W31 W33 W35 W37 W39 W42 W44 final

-0.5

0

0.5

-0.5

0

0.5

-0.2

-0.1

0

0.1

0.2

-0.5

0

0.5

-0.5

0

0.5

0

0.1

0.2

0.3

0.4

-0.5

0

0.5

-0.5

0

0.5

-0.2

-0.1

0

0.1

0.2

-0.5

0

0.5

-0.5

0

0.5

-0.2

-0.1

0

0.1

0.2

-0.5

0

0.5

-0.5

0

0.5

-0.2

-0.1

0

0.1

0.2

-0.5

0

0.5

-0.5

0

0.5

-0.2

-0.1

0

0.1

0.2

-1.5

-1

-0.5

0

-0.5

0

0.5

-0.2

-0.1

0

0.1

0.2

-0.5

0

0.5

-0.5

0

0.5

-0.2

-0.1

0

0.1

0.2

-0.5

0

0.5

-0.5

0

0.5

-0.2

-0.1

0

0.1

0.2

-0.5

0

0.5

-0.5

0

0.5

-0.2

-0.1

0

0.1

0.2

-0.5

0

0.5

-0.5

0

0.5

-0.2

-0.1

0

0.1

0.2

-0.5

0

0.5

-0.5

0

0.5

-0.2

-0.1

0

0.1

0.2

-0.5

0

0.5

-0.5

0

0.5

-0.2

-0.1

0

0.1

0.2

weighted maximum likelihood

Figure 8.8: Weighted method vs maximum likelihood method. Proton.

satisfactory agreement with the data, are shown in Figure 8.9. The final results for the

2007 data sample are the following

APGF,p = −0.13± 0.13,

AQCDC,p = 0.12± 0.09,

ALP,p = 0.001± 0.018.

(8.28)

The results are different but statistically compatible with the results obtained for the

2010 data sample (Equation (8.21)). Combining the two results for APGF,p gives

APGF,p = −0.24± 0.08, (8.29)
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Figure 8.9: Period-by-period results for Sivers asymmetry of three processes: PGF,
QCDC, LP. Proton target 2007.

what only slightly differs from the result for the 2010 data sample and hence 2007 data

can be neglected in the further studies.

8.7 The gluon Sivers asymmetry measurement via J/Ψ

production at COMPASS

The Sivers asymmetry in J/Ψ production in scattering of muons off transversely po-

larised protons µ+ + p↑ → µ′ + J/Ψ + X is measured in two z-bins in the COMPASS

2010 data. 480 726 suitable events with outgoing 2µ+1µ− are selected, of which 8 026

µ+µ− pairs with invariant mass compatible with MJ/Ψ are made. The Sivers asymmetry

is extracted using a simple double-ratio method and is found compatible with zero in

the lower z bin and with a slight preference for negative value in the higher z bin.

8.7.1 Event selection

The 2010 data has been preselected with the following conditions:

• defined best interaction vertex,

• 3 outgoing particles identified as muons (plus any other outgoing particles not

identified as muons)

• a scattered muon identified by the iMuPrim PHAST function ([105])
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The further selection contain more detailed cuts:

• There is a beam particle in the vertex.

• There are at least 3 outgoing particles in the vertex.

• The beam track obeys χ2/Ndf < 10.

• The beam muon momentum ~k was measured and k ∈ [140, 180] GeV.

• The beam track projection crosses both the most upstream and the most down-

stream end of the target cells.

• There are at least 2µ+ and 1µ− among the outgoing particles. A muon identifica-

tion is positive, if it

– has crossed more than 30 radiation lengths,

– last detection is behind Muon Wall 1 (Z last > 1495 cm).

8.7.2 J/Ψ candidate selection

First few more conditions are checked:

• The event does not come from a bad spill (using a list produced for the SIDIS

analysis, usually done already by Phast call).

• There are at least two µ+ and one µ− and not more 5 (but there can be any other

particles).

• The outgoing muon tracks obey χ2/Ndf < 10.

It is not possible to tell which one of the two µ+ comes from the J/Ψ decay and which one

is the scattered beam muon, so both possibilities are examined. For each combination

the kinematic variables Q2, x, z and Mµµ are calculated. Then:

• The variable z is checked to be in one of the two bins: [0.3, 0.95], or [0.95, 1.05].

• The invariant mass of the pair Mµµ is checked to be in [2.999, 3.239] GeV (signal

band, corresponds to MJ/Ψ±2σ, where MJ/Ψ and σ are parameters of the invariant

mass fit) or in [2.579, 2.939] ∪ [3.299, 3.659] GeV (side-bands).
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Cut Events

Events after preselection 839 450

Beam track χ2/Ndf 827 424
k ∈ [140, 180] GeV 770 421
One mu− and two µ+ 483 940

Muon track χ2/Ndf < 10 480 726

Both muon combinations 961 452
Vertex in cells 795 072
z ∈ [0.3, 1.05] 736 264

Mµµ ∈ [2.999, 3.239] GeV 8026
Or Mµµ in side-bands 4784

Table 8.3: Effect of cuts for the J/Ψ events selection

Figure 8.10: Dimuon invariant mass in the two z-intervals. The boundaries of the
side-bands and the signal band are denoted by vertical red lines. The red fit to the
data is the normal distribution plus background in the form AN(Mµµ, µ, σ) + BMC

µµ.

The dotted green line is the background estimation BMC
µµ.

The statistics after each cut is presented in Table 8.3.

The invariant mass distributions are shown in Figure 8.10 separately for the two z-bins

together with the boundaries of the signal band and two side-bands, which are used to

evaluate the asymmetry of the background. The good agreement of the centre and the

width of the measured peak with the PDG reference ([28]) authorises the assumption

that entries in the histograms that come from wrong choice of the scattered muon

distribute in the same way as the physics background. Their can be treated as the

physics background under a justified assumption that both physics and ”wrong choice”

background asymmetries are the same.
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8.7.3 The Sivers asymmetry evaluation

The Sivers asymmetry is again the amplitude of the modulation sin (φpT − φS), where

pT is the transverse (with respect to the virtual photon) momentum of the reconstructed

J/Ψ. The asymmetry is evaluated by a simple method, where the histograms of counts

in the cells are measured Nt(φi), (t = ud, c, ud′, c′) with eight bins in the Sivers angle φ

are combined to form a double-ratio:

ASiv(φ) =
Nud(φ)Nc′(φ)

Nud′(φ)Nc(φ)
. (8.30)

The double ratio then should follow the formula

ASiv(φ) = C(1 + 4ArawSiv sinφ), (8.31)

where ArawSiv is the raw Sivers asymmetry. A small correction due to the finite (but

constant) bin width is applied, because the mean values of the expected distribution in

the bins are different from the values at the bin centre. Therefore, instead of Equation

(8.31), the bin contents follow a distribution of its mean values. For an i-th bin with

width w and centre at φi it is

〈ASiv(φ)〉i =
1

ω

∫ φi+ω/2

φi−ω/2
ASiv(φ)dφ = C

(
1 +

8

ω
sin (ω/2)ArawSiv sinφi

)
. (8.32)

This function is fitted using a standard ROOT graph-fitting procedure. The asymmetry

is calculated period-by-period and then an error-weighted mean is calculated:

Afinal =

∑12
i=1

Ai
σ2
i∑12

i=1
1
σ2
i

, σ2
final =

1∑12
i=1

1
σ2
i

. (8.33)

8.7.4 Background subtraction

It is assumed that the asymmetry measured in the signal band ArawSiv gets contribu-

tion from the real asymmetry ArawSiv |sig and the asymmetry of the background ArawSiv |bg
weighted by the numbers of signal and background events

ArawSiv =
Nsig

Ntot
ArawSiv |sig +

Nsig

Nbg
ArawSiv |bg. (8.34)

If, in addition, one assumes the asymmetry of the background to be zero, the real

asymmetry of the signal is

ArawSiv |sig =
Ntot

Nsig
ArawSiv . (8.35)
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In this model, the background just dilutes the asymmetry of the signal. The asymmetry

measured in the side-bands is indeed consistent with this assumption.

Another option is to assume that he background asymmetry is the same as the side-band

asymmetry, then one can subtract it as

ArawSiv |sig =
Ntot

Nsig
ArawSiv −

Nbg

Nsig
ArawSiv |side. (8.36)

In both cases one needs to know the number of signal and background events. The Ntot

is obtained integrating the fit of the invariant mass peak

AN(Mµµ, µ, σ) +BMC
µµ (8.37)

over the signal region (N(x, µ, σ) being the normal distribution). The Nbg is calcu-

lated integrating just the background term B(Mµµ)C . This is done separately for

the two z bins, since the signal-to-background ration differ significantly (Figure 8.10).

The signal to background and signal to total ratios were calculated to be Nsig/Nbg =

4.31, Nsig/Ntot = 0.81 for the first bin in z and Nsig/Nbg = 5.25, Nsig/Ntot = 0.84 for

the second. The errors of the numbers of events are considered small with respect to the

errors of the asymmetries and are not taken into account when propagating the errors

through Equations (8.35) or (8.36). Both the dilution compensation and the background

subtraction were applied on the weighted means, because the background is not expected

to change over the year and the signal-to-background ratio can be measured more reli-

ably using the bigger data sample.

The actual Sivers asymmetry A Siv can be obtained from the raw asymmetry by division

by the average target polarisation Pt and the dilution factor f

ASiv =
ArawSiv

Ptf
. (8.38)

A mean dilution factor, obtained by Phast function for every pair, is used. The value is

f = 0.15. The average value of Pt is 0.80, The final Sivers asymmetry is in the Table 8.4

and Figure 8.11.

The results of this analysis show that the statistics of J/Ψ events in COMPASS is too

z ∈ [0.3, 0.95] z ∈ [0.95, 1.05]
ArawSiv σraw ASiv σ ArawSiv σraw ASiv σ

Dilution compensated -0.012 0.038 -0.11 0.32 -0.040 0.021 -0.33 0.18
Background subtracted -0.006 0.039 -0.05 0.33 -0.034 0.021 -0.28 0.18

Table 8.4: Summary of the results of the gluon Sivers asymmetry extraction from
J/Ψ production

small to draw any resolute conclusions. The errors in the two methods of the background

treatment are similar due to the fact that the signal-to-noise ratio is large. This makes
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Figure 8.11: The final Sivers asymmetry for two methods of background treatment.
The z coordinates of the points were shifted by ±0.005 not to overlap.

it unnecessary to apply more advanced method of background subtraction presented in

this thesis. The results, however, show the same tendency in the negative sign of the

obtained Sivers asymmetry as in the case of semi-inclusive dihadron production.

8.8 Conclusions

The Sivers effect for gluons have been evaluated for the first time from the SIDIS data.

The results were obtain from the COMPASS measurements on transversely polarised

deuteron and proton targets. A novel weighted method of data analysis have been

introduced and applied for the Sivers effect for gluons extraction. It has been tested

with a simple Monte Carlo simulation and its final results perfectly agree with the more

standard unbinned maximum likelihood method. The main results read

ASiv
PGF,d = −0.14± 0.15(stat.)± 0.10(syst.),

ASiv
PGF,p = −0.26± 0.09(stat.)± 0.06(syst.).

(8.39)

The estimation of the systematic errors is given in the next Chapter. For both targets

the results are negative. For the deuteron target the value is one σ below zero while

for the proton target the value is over three σ below zero (0.257 ± 0.084). The last

result seems particularly interesting and its theoretical interpretation can bring first

information about the Gluon Sivers Function at the COMPASS scale.
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Systematic studies

9.1 Systematic error due to MC

Several different MC samples were produced for systematic studies, as in Ref. [17]

differing by the choice of PDF model (CTEQ or MSTW), LEPTO tuning (default or

tuned to COMPASS data), parton shower on or off, FL from LEPTO or from the

R = σL/σT . Namely:

1. LEPTO DEF. tuning, parton shower ON, PDF=CTEQ;

2. LEPTO DEF. tuning, parton shower OFF, PDF=MSTW;

3. LEPTO DEF. tuning, parton shower ON, PDF=MSTW;

4. LEPTO COMPASS tuning, parton shower ON, PDF=CTEQ;

5. LEPTO COMPASS tuning, parton shower OFF, PDF=MSTW;

6. LEPTO COMPASS tuning, parton shower ON, PDF=MSTW, NO FL;

7. LEPTO COMPASS tuning, parton shower ON, PDF=MSTW.

For each of them asymmetry APGF has been calculated in the same way as the final

results and all of them were used in the systematics studies. The results are presented

in Figure 9.1. Red colour indicates the MC used to obtain the final result. For both

data sets MSTW08LO PDF table has been used. In the deuteron case CTEQ5L and in

the proton case CTEQ10NLO tables have been applied.

The Monte Carlo versus data agreement is rather poor for the settings with parton

shower off. This is why for the systematic error that is due to MC tuning the half of

119
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Figure 9.1: APGF for different MC simulations for deuteron (left) and proton (right)
targets. Red colour indicates the settings used for the final results.

the maximum difference of obtained results has been chosen instead of the RMS of all

results. The systematic error due to MC has been estimated to be 0.060 for deuteron

and 0.054 for proton.

9.2 False asymmetries

The false asymmetries were calculated by extracting the asymmetries between the up-

stream and downstream cell and by dividing the central cell into 2 parts using the vertex

Z coordinate. The central cell has been divided into c1 : Z < 2.5 cm and c2 : Z > 2.5

cm. Then APGF asymmetry was extracted between u and d and between c1 and

c2 in the same way as it was done in the standard asymmetry extraction. In case of

the two-cell target both cells were divided into two parts. The expected value is 0. The

results are presented in Figures 9.2 and 9.3.

The overall final value and χ2 for photon-gluon-fusion for deuteron is: PGF : Au =

−0.60 ± 0.25, χ2
u = 6.4, Ad = −0.17 ± 0.17, χ2

d = 1.9 and for proton PGF : Aud =

−0.08± 0.12, χ2(Aud = 0) = 9.5, Ac = −0.09± 0.12, χ2(Ac = 0) = 10.6.

The second exercise is to calculate the asymmetry between upstream and downstream

parts of the target cells. For the three-cell target the asymmetries between the upstream

cell u and the upstream part of the central cell cu and between the downstream part

of the central cell cd and the downstream cell d have been obtained. The results from

the upstream and downstream part of the target should be compatible with each other.
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Figure 9.2: False asymmetries. Compatibility with zero. Deuteron.
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Figure 9.3: False asymmetries. Compatibility with zero. Proton.
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They are presented in Figures 9.4 and 9.5 . In case of the deuteron the two samples

differ. The obtained χ2 between them is equal 7.0. The statistics is, however, too small

to draw any conclusions. The χ2 between the two values for PGF is 7.2 for 12 periods

what means the two samples are compatible in terms of the extracted asymmetry.

9.3 Influence of the generated false asymmetry on the final

result

To check the potential influence of the false asymmetry on the final result the artificial

false asymmetry is generated by multiplying the weight of the one target configuration

(in this case u) by a factor 1+0.01 sinφSivers. This factor is chosen arbitrarily but it is

justified by a number of analyses carried out in COMPASS to estimate false asymmetries.

The results are presented in Figure 9.6. The difference in the final APGF is for deuteron

0.016 that is 11% of σstat and for proton 0.032 that is 38% of σstat. However, due to

the fact that the false asymmetries presented in Section 9.2 are compatible with zero no

systematic error is assigned to this exercise as given in the summary in Table 9.1

9.4 Cut on charges of the two leading hadrons

An extra cut can be made on the leading and next-to-leading hadron charges, q1 ·q2 = −1

as the hadrons originate from the quark-antiquark pair. This cut reduces the statistics

by 33% so it was decided not to apply it for the crosschecked result. Here a systematic

error due to this cut is estimated. A new NN was trained by a MC containing the extra

cut on the charges. The results are presented in Figures 9.7 and 9.8. The difference

in the final APGF is 0.05 for deuteron that is 33% of σstat. For proton the estimated

error is 0.038 that is 44% of σstat. The expected statistical fluctuation due to the sample

reduction is on the level of 55% of σstat. No systematic error is assign to this exercise

as given in Table 9.1.

9.5 Radiative corrections systematics

In this analysis a MC production for 2010 setting is used and it does not contain radiative

corrections. RC can change the kinematics and therefore may have an influence on the

fractions assigned by the NN. Using existing MC+RADGEN for 2006 settings a new NN

has been trained. Then it was applied on the 2010 data. Results are shown in Figure

9.9. The difference in the final APGF is 0.018 that is 21% of σstat.
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Figure 9.4: False asymmetries. Compatibility with between upstream and down-
stream part of the target.
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Figure 9.5: False asymmetries. Compatibility with between upstream and down-
stream part of the target.
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Figure 9.6: Final result dependence on false asymmetry. For one target configuration:
ω′ = ω(1.0 + 0.01 sinφ). Top panel: deuteron target. Bottom panel: proton target.

9.6 Q2 cut

In Figure 7.5 the comparison between MC and data for Q2 is presented and it shows

small discrepancy for large Q2. Here the influence of the cut Q2 < 20(GeV/c)2 on the

final result is shown. This time the same NN was used to the data with and without the

cut as Q2 was used for the NN training and the network distinguishes between smaller

and larger Q2 domain. The results are shown in Figure 9.10. The difference in the final

APGF is 0.014 that is 16.5% of σstat. The statistics reduction due ti the cut is almost

10% which means a possible 32% σstat statistical fluctuation. Hence no systematic error

is assigned as indicated in Table 9.1.



Chapter 9. Systematic studies 125

S
iv

er
s 

A
sy

m
m

et
ry

P
G

F

) sφ−
2hφ

si
n(

A
Q

C
D

C

) sφ−
2hφ

si
n(

A
LP

) sφ−
2hφ

si
n(

A

  P1H_P1G   W33_W34  W36_W35 final

-0.5

0

0.5

-0.5

0

0.5

-0.2

-0.1

0

0.1

0.2

-0.5

0

0.5

-0.5

0

0.5

-0.2

-0.1

0

0.1

0.2

-0.5

0

0.5

-0.5

0

0.5

-0.2

-0.1

0

0.1

0.2

-0.5

0

0.5

-0.5

0

0.5

-0.2

-0.1

0

0.1

0.2

standard =-1
2

q
1

q

Figure 9.7: The influence of the cut on the hadron charges q1 · q2 = −1. Deuteron.
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Figure 9.8: The influence of the cut on the hadron charges q1 · q2 = −1. Proton.

9.7 Two xBj bins

The weighted method described in this text allows to apply binning for one process

asymmetry leaving the asymmetry of the two remaining processes. In this section bin-

ning in xBj is applied (for the LP). In Figures 9.11 and 9.12 the result of such a binning

is presented. The difference in the final APGF for deuteron is 0.07 that is 47% of σstat

and for proton 0.011 that is 13% of σstat.
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Figure 9.9: Standard value with the use of MC 2010 without radiative corrections
compared to the results obtained with MC+RADGEN 2006 for 2010 data. The plotted
histograms show negligible difference of the fractions of the three processes in the two

MC samples
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Figure 9.10: Comparison between the standard analysis and the analysis with the
cut Q2 < 20(GeV/c)2 applied.
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Figure 9.11: Result of applying two xBj bins. Deuteron.
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Figure 9.12: Result of applying two xBj bins. Proton.

9.8 Sivers + 7 other asymmetries

Until now it was assumed that different modulations in the two-hadron SIDIS cross-

section defined by Equation (8.1) are orthogonal. Here this assumption is tested. The

possible interplay between different modulation is due to the fact that the spectrometer

acceptance is not flat. Sivers asymmetry separated in the three processes was extracted

together with seven other standard SIDIS asymmetries. Only the Sivers asymmetry is

divided into the three subprocesses. Hence, the fit has ten parameters. Figures 9.13 and

9.14 show that the difference is negligible. The difference in the final APGF is 0.005 that

is 6% of σstat.
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Figure 9.13: Proof of the orthogonality of Sivers and 7 other SIDIS modulations.
Deuteron.
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Figure 9.14: Proof of the orthogonality of Sivers and 7 other SIDIS modulations.
Proton.

9.9 Single fit vs two fits in two φSivers bins

As mentioned in Section 8.3 the data is separated into two φSivers bins. There are two

ways of extracting the asymmetry in the two bins. The first one is to perform single

fit with the constraint A(1st bin)=A(2nd bin), how main results of this theses were

obtained. The second one is to make two fits separately and combine the results, how

crosscheck was performed. The difference between the two methods is shown in Figure

9.15. The difference in the final APGF is 0.0002 that is < 1% of σstat.
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Figure 9.15: One fit in two φSivers bins vs two fits in each bin.

9.10 Target polarisation and dilution factor: δPT and δf

Relative δPT is taken as 5% and relative δf as 5%. It is assumed that the systematic

error due to target polarisation and dilution factor is proportional to the given above

and is negligible comparing to the systematic error of MC.

9.11 Systematics summary

deuteron proton

source value assigned error % σstat(= 0.15) value assigned error % σstat(= 0.085)

Monte Carlo 0.060 0.060 40% 0.054 0.054 64%

False asymmetries 0.016 0 0% 0.032 0 0%

cut on hadron charges q1 · q2 = −1 0.05 0 0% 0.038 0 0%

radiative corrections 0.018 0.018 12% 0.018 0.018 21%

large Q2 - - - 0.014 0 0%

xBj binning 0.07 0.07 47% 0.011 0.011 13%

all asyms vs only Sivers 0.003 0.003 2% 0.005 0.005 6%

ML vs Weighted 0.008 0 0% 0.004 0 0%

target polarisation 0.0075 0.0075 5% 0.0043 0.0043 5%

dilution factor 0.0075 0.0075 5% 0.0043 0.0043 5%

total
√∑

σ2
i - 0.10 63% - 0.06 69%

Table 9.1: Systematics summary.





Chapter 10

Conclusions

The aim of this thesis was the measurement of the Sivers effect for gluons in the COM-

PASS experiment. The main difficulty is the separation of the photon-gluon fusion

events (scattering off gluons) from the statistically dominating events where the muon

is scattered off a quark. The method presented in the thesis separates the asymmetries

of scattering processes not the events themselves. It has been developed by the COM-

PASS collaboration for the ∆g/g measurements described in Chapter 6. Proper sample

selection led to results which are much more precise then the method of selection of the

clean J/Ψ channel (see Chapter 8).

The main results read

ASiv
PGF,d = −0.14± 0.15(stat.)± 0.10(syst.),

ASiv
PGF,p = −0.26± 0.09(stat.)± 0.06(syst.).

(10.1)

The fact that the systematic errors are smaller than statistical ones suggests a need

for more experimental data. It is interesting to compare the results on the deuteron

and proton targets. They are statistically compatible with each other. This fact is

satisfying from the point of view of the naive expectation that the gluons and their

orbital motion in the nucleon should be flavour blind. The negative value for the proton

target (three σ bellow zero) suggests a possibility that the orbital momentum of the

gluons contributes to the nucleon spin. A theoretical interpretation of these results

(possibly via the Burkardt model [41, 42, 43]) is needed.

The future of the experimental spin physics is the exploration of the low x region giving

direct access to the quark-gluon sea. This is one of the objectives of the planned EIC

experiment [20].
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Appendix A

Two-hadron SIDIS cross-section

The two-hadron SIDIS cross-section has been derived in [119]. The total differential

cross-section can be divided into parts of UU (unpolarised beam and unpolarised tar-

get), LU (longitudinally polarised beam and unpolarised target), UL (unpolarised beam

and longitudinally polarised target), LL (longitudinally polarised beam and longitudi-

nally polarised target), UT (unpolarised beam and transversely polarised target), LT

(longitudinally polarised beam and transversely polarised target):

dσ

dxBjdydψdzhdφhdP
2
h⊥dφR⊥dMhd cos θ

= dσUU + dσLU + dσUL + dσLL + dσUT + dσLT ,

(A.1)

where ψ is the azimuthal angle of the scattered muon, Ph = P1 + P2, zh =
P · Ph
P · q

, φh

and φR⊥ are the azimuthal angles of Ph and R = (P1 − P2)/2 respectively, and cos θ is

the polar angle of the scattered muon. The parts of the two-hadron SIDIS cross-section

can be written in the following form

dσUU =
α2

2πxyQ2

(
1 +

γ2

2x

)
×
lmax∑
l=0

{
A(x, y)

l∑
m=0

[
Pl,m cos (m(φh − φR⊥))

(
F
Pl,m cos (m(φh−φR⊥))
UU,T + εF

Pl,m cos (m(φh−φR⊥))
UU,L

)]
+B(x, y)

l∑
m=−l

Pl,m cos ((2−m)φh +mφR⊥)F
Pl,m cos ((2−m)φh+mφR⊥)
UU

+ V (x, y)

l∑
m=−l

Pl,m cos ((1−m)φh +mφR⊥)F
cos ((1−m)φh+mφR⊥)
UU

}
(A.2)
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dσLU =
α2

4πxyQ2

(
1 +

γ2

2x

)
λe

×
lmax∑
l=0

{
C(x, y)

l∑
m=1

[
Pl,m sin (m(φh − φR⊥))2

(
F
Pl,m cos (m(φh−φR⊥))
UU,T + εF

Pl,m cos (m(φh−φR⊥))
UU,L

)]
+W (x, y)

l∑
m=−l

Pl,m sin ((1−m)φh +mφR⊥)F
Pl,m sin ((1−m)φh+mφR⊥)
LU

}
(A.3)

dσUL =
α2

4πxyQ2

(
1 +

γ2

2x

)
SL

×

{
A(x, y)

lmax∑
l=1

l∑
m=1

Pl,m sin (−mφh +mφR⊥)F
Pl,m sin (−mφh+mφR⊥)
UL

+B(x, y)

lmax∑
l=0

l∑
m=1

Pl,m sin ((2−m)φh +mφR⊥)F
Pl,m sin ((2−m)φh+mφR⊥)
UL

+ V (x, y)

l∑
m=−l

Pl,m sin ((1−m)φh +mφR⊥)F
Pl,m sin ((1−m)φh+mφR⊥)
UL

}
(A.4)

dσLL =
α2

4πxyQ2

(
1 +

γ2

2x

)
λeSL

×
lmax∑
l=0

{
C(x, y)

l∑
m=0

22−δm0Pl,m cos (m(φh − φR⊥))F
Pl,m cos (m(φh−φR⊥)
LL

+W (x, y)
l∑

m=−l
Pl,m cos ((1−m)φh +mφR⊥)F

Pl,m cos ((1−m)φh+mφR⊥)
LL

} (A.5)

dσUT =
α2

4πxyQ2

(
1 +

γ2

2x

)
|ST |

×
lmax∑
l=0

l∑
m=−l

{
A(x, y)

[
Pl,m sin ((m+ 1)φh −mφR⊥ − φS))

×
(
F
Pl,m sin ((m+1)φh−mφR⊥−φS))
UT,T + εF

Pl,m sin ((m+1)φh−mφR⊥−φS))
UT,L

) ]
+B(x, y)

[
Pl,m sin ((1−m)φh +mφR⊥ + φS)F

Pl,m sin ((1−m)φh+mφR⊥+φS)
UT

+ Pl,m sin ((3−m)φh +mφR⊥ − φS)F
Pl,m sin ((3−m)φh+mφR⊥−φS)
UT

]
+ V (x, y)

[
Pl,m sin (−mφh +mφR⊥ + φS)F

Pl,m sin (−mφh+mφR⊥+φS)
UT

+ Pl,m sin ((2−m)φh +mφR⊥ − φS)F
Pl,m sin ((2−m)φh+mφR⊥−φS)
UT

]}

(A.6)
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dσLT =
α2

4πxyQ2

(
1 +

γ2

2x

)
λe|ST |

×
lmax∑
l=0

l∑
m=−l

{
C(x, y)2Pl,m cos ((1−m)φh +mφR⊥ − φS)F

Pl,m cos ((1−m)φh+mφR⊥−φS)
LT

+W (x, y)
[
Pl,m cos (−mφh +mφR⊥ + φS)F

Pl,m cos (−mφh+mφR⊥+φS)
LT

+ Pl,m cos ((2−m)φh +mφR⊥ − φS)F
Pl,m cos ((2−m)φh+mφR⊥−φS)
LT

]}
(A.7)

The dependence of the cross section on the polar angle cos θ and on the azimuthal angles

φh, φR⊥ , is transformed by expanding it on a basis of spherical harmonics. In particular,

for the cos θ dependence the basis of Legendre polynomials is adopted, the first few of

which read

P0,0 = 1, P1,0 = cos θ, P1,1 = P1,−1 = sin θ (A.8)

The following depolarisation factors have been used

A(x, y) =
y2

2(1− ε)
=

1− y + 1
2y

2 + 1
4γ

2y2

1 + γ2
≈
(

1− y +
1

2
y2

)
, (A.9)

B(x, y) =
y2

2(1− ε)
ε =

1− y − 1
4γ

2y2

1 + γ2
≈ (1− y), (A.10)

C(x, y) =
y2

2(1− ε)
√

1− ε2 =
y(1− 1

2y)√
1 + γ2

≈ y
(

1− 1

2
y

)
, (A.11)

V (x, y) =
y2

2(1− ε)
√

2ε(1 + ε) =
2− y
1 + γ2

√
1− y − 1

4
γ2y2 ≈ (2− y)

√
1− y, (A.12)

W (x, y) =
y2

2(1− ε)
√

2ε(1− ε) =
y√

1 + γ2

√
1− y − 1

4
γ2y2 ≈ y

√
1− y. (A.13)

In case of one hadron SIDIS , the hadronic tensor is built by using three four-vectors:

q - virtual photon, P - nucleon momentum, Ph - hadron momentum and one pseudo

four-vector, S - the spin of the nucleon. Since the target is a spin-1/2 particle, the

hadronic tensor can be at most linear in S. By imposing the invariance under the usual

transformations (parity, time-reversal, gauge), the hadronic tensor can be parametrised

in terms of 18 structure function. In the two-particle-inclusive SIDIS, even in the sim-

plest case when the target and the two final hadrons are unpolarised, the pseudo-vector

S is replaced by R and the hadronic tensor does not necessarily need to be linear in R.

Actually, the number of partial waves depending on φR⊥ is in principle not limited, and

so the number of structure functions is also not limited and lmax is infinite.





Appendix B

Approximation of asymmetries by

linear dependence on x

Repeating Equation (8.10)

pjt =

Nt∑
i=1

ωji = α̃jt (1 +
〈
βGt
〉
ωj

〈
A

sin(φ2h−φs)
PGF

〉
ωjβGt

+ 〈βLt 〉ωj 〈A
sin(φ2h−φs)
LP 〉ωjβLt + 〈βCt 〉ωj 〈A

sin(φ2h−φs)
QCDC 〉ωjβCt ).

(B.1)

Here j = G, L, C ≡ PGF, LP, QCDC. Asymmetries A
sin(φ2h−φs)
j (xj) can be

approximated with a linear function, as discussed in Section 6.1. To simplify the

Equations (B.1) one needs to have 〈xj〉ωkβjt ≈ 〈xj〉ωmβjb ≡ 〈xj〉 j, k,m = G,L,C

and t, b run over ud, c, ud′, c′ 12 such values for each process can be approximated by

{xj}ωkβjt ≈

(∑
i

ωki β
j
i x

i
j

)/(∑
i

ωki β
j
i

)
. Here summation over i is performed for

each target configuration t. The results for every period of 2010 are stored in the Tables

B.1 and B.2. Taking the average value of 〈xPGF 〉 ≡ 〈xG〉, 〈xLP 〉 ≡ 〈xBj〉 and

〈xQCDC〉 ≡ 〈xC〉 one can rewrite equations (B.1) as follows:

pjt =

Nt∑
i=1

ωji = α̃jt (1 +
〈
βGt
〉
ωj
A

sin(φ2h−φs)
PGF (〈xG〉)

+
〈
βLt
〉
ωj
A

sin(φ2h−φs)
LP (〈xBj〉) +

〈
βCt
〉
ωj
A

sin(φ2h−φs)
QCDC (〈xC〉))

(B.2)
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P1G-P1H

ωLP ωQCDC ωPGF
u d u’ d’ u d u’ d’ u d u’ d’ RMS < x >

〈xLP 〉 0.0243 0.0322 0.0247 0.0321 0.0303 0.0376 0.0309 0.0375 0.0189 0.0218 0.019 0.022 0.0064 0.0276

〈xQCDC〉 0.1216 0.1406 0.1221 0.1404 0.1365 0.1563 0.1374 0.1562 0.123 0.1402 0.1235 0.1406 0.0116 0.1365

〈xPGF 〉 0.1196 0.1244 0.1197 0.1245 0.1258 0.1314 0.1261 0.1316 0.1231 0.1286 0.1232 0.1288 0.0038 0.1256

W33-W34

ωLP ωQCDC ωPGF
u d u’ d’ u d u’ d’ u d u’ d’ RMS < x >

〈xLP 〉 0.025 0.0324 0.0245 0.0324 0.0315 0.0381 0.0309 0.0381 0.0192 0.0221 0.0192 0.0221 0.0065 0.028

〈xQCDC〉 0.1221 0.1406 0.1217 0.1407 0.1376 0.1569 0.1369 0.1569 0.1231 0.1409 0.1232 0.141 0.0119 0.1368

〈xPGF 〉 0.1196 0.1245 0.1197 0.1246 0.1259 0.1317 0.126 0.1318 0.1229 0.1289 0.1232 0.1289 0.0039 0.1256

W36-W35

ωLP ωQCDC ωPGF
u d u’ d’ u d u’ d’ u d u’ d’ RMS < x >

〈xLP 〉 0.0251 0.0331 0.025 0.0327 0.0317 0.0391 0.0314 0.0384 0.0193 0.0222 0.0191 0.0221 0.0067 0.0283

〈xQCDC〉 0.1225 0.1413 0.1226 0.141 0.1374 0.1578 0.1376 0.1573 0.1232 0.141 0.1234 0.1406 0.0119 0.1371

〈xPGF 〉 0.1198 0.1245 0.1198 0.1245 0.126 0.1317 0.126 0.1316 0.1231 0.1288 0.1232 0.1287 0.0038 0.1256

Table B.1: Values of weighted averages of x 〈x〉βω for the three processes for all
periods and target configurations. Deuteron.
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W23

ωLP ωQCDC ωPGF
u+d c u’+d’ c” u+d c u’+d’ c’ u+d c u’+d’ c’ RMS < x >

〈xLP 〉 0.0482 0.0486 0.049 0.0482 0.0487 0.0494 0.0496 0.0491 0.0269 0.0268 0.027 0.0269 0.0103 0.0415

〈xQCDC〉 0.1664 0.1666 0.1669 0.1665 0.1758 0.1758 0.1761 0.1757 0.1598 0.1592 0.1596 0.1594 0.0067 0.1673

〈xPGF 〉 0.1412 0.1406 0.1414 0.1411 0.1537 0.1528 0.1536 0.1534 0.1427 0.1415 0.1425 0.1423 0.0056 0.1456

W24

ωLP ωQCDC ωPGF
u+d c u’+d’ c” u+d c u’+d’ c’ u+d c u’+d’ c’ RMS < x >

〈xLP 〉 0.0498 0.0497 0.0502 0.0485 0.0516 0.0513 0.052 0.0506 0.0278 0.0275 0.028 0.0275 0.0108 0.0429

〈xQCDC〉 0.1678 0.1677 0.1684 0.1675 0.1784 0.1785 0.1796 0.1783 0.1608 0.161 0.1617 0.1611 0.0072 0.1692

〈xPGF 〉 0.1412 0.1409 0.1413 0.1409 0.1541 0.1542 0.1546 0.1544 0.1426 0.1426 0.143 0.143 0.0059 0.1461

W26

ωLP ωQCDC ωPGF
u+d c u’+d’ c” u+d c u’+d’ c’ u+d c u’+d’ c’ RMS < x >

〈xLP 〉 0.0501 0.0499 0.0506 0.0505 0.0517 0.0516 0.0521 0.0521 0.0277 0.0275 0.0274 0.0277 0.0111 0.0432

〈xQCDC〉 0.168 0.1679 0.1679 0.1684 0.1782 0.1784 0.1779 0.1792 0.1606 0.1607 0.1601 0.1616 0.0073 0.1691

〈xPGF 〉 0.1411 0.1407 0.1408 0.1413 0.1538 0.1539 0.1534 0.1548 0.1425 0.1423 0.1419 0.1432 0.0058 0.1458

W27

ωLP ωQCDC ωPGF
u+d c u’+d’ c” u+d c u’+d’ c’ u+d c u’+d’ c’ RMS < x >

〈xLP 〉 0.0499 0.0494 0.0498 0.0497 0.0513 0.051 0.0515 0.0514 0.0275 0.0274 0.0276 0.0273 0.0109 0.0428

〈xQCDC〉 0.1678 0.1675 0.1676 0.1674 0.178 0.1783 0.178 0.1776 0.1607 0.1608 0.1605 0.1602 0.0072 0.1687

〈xPGF 〉 0.1409 0.1409 0.1409 0.1404 0.1539 0.154 0.1537 0.1533 0.1427 0.1425 0.1424 0.142 0.0058 0.1456

W29

ωLP ωQCDC ωPGF
u+d c u’+d’ c” u+d c u’+d’ c’ u+d c u’+d’ c’ RMS < x >

〈xLP 〉 0.0494 0.0482 0.0499 0.0489 0.0513 0.0502 0.0515 0.0505 0.0275 0.0275 0.0277 0.0274 0.0106 0.0425

〈xQCDC〉 0.1674 0.1668 0.1677 0.1671 0.1782 0.1777 0.1782 0.1778 0.1605 0.1604 0.1606 0.1606 0.0072 0.1686

〈xPGF 〉 0.1404 0.1401 0.1407 0.1406 0.1535 0.1532 0.1537 0.1537 0.1419 0.1417 0.1421 0.1423 0.0058 0.1453

W31

ωLP ωQCDC ωPGF
u+d c u’+d’ c” u+d c u’+d’ c’ u+d c u’+d’ c’ RMS < x >

〈xLP 〉 0.0519 0.0509 0.0514 0.0512 0.0543 0.0538 0.0541 0.054 0.0279 0.028 0.0282 0.028 0.0117 0.0445

〈xQCDC〉 0.1693 0.1689 0.1691 0.1689 0.1803 0.1802 0.1806 0.1801 0.1613 0.1612 0.1616 0.1611 0.0078 0.1702

〈xPGF 〉 0.1407 0.1402 0.1407 0.1403 0.1541 0.1539 0.1543 0.1539 0.1422 0.1416 0.1422 0.1419 0.0061 0.1455

W33

ωLP ωQCDC ωPGF
u+d c u’+d’ c” u+d c u’+d’ c’ u+d c u’+d’ c’ RMS < x >

〈xLP 〉 0.0528 0.053 0.0527 0.0518 0.0557 0.056 0.0552 0.0545 0.0286 0.0282 0.0282 0.0282 0.0122 0.0454

〈xQCDC〉 0.1703 0.1702 0.17 0.1696 0.1818 0.1816 0.1813 0.1811 0.1621 0.1618 0.1617 0.1617 0.0081 0.1711

〈xPGF 〉 0.1412 0.1403 0.1406 0.1404 0.1548 0.1544 0.1543 0.1543 0.1425 0.142 0.1423 0.142 0.0062 0.1458

W35

ωLP ωQCDC ωPGF
u+d c u’+d’ c” u+d c u’+d’ c’ u+d c u’+d’ c’ RMS < x >

〈xLP 〉 0.0525 0.0516 0.0519 0.0519 0.0552 0.0546 0.0544 0.055 0.0282 0.0281 0.0281 0.0283 0.0119 0.045

〈xQCDC〉 0.1701 0.1693 0.1695 0.1699 0.1811 0.1808 0.1806 0.1816 0.1615 0.1612 0.1615 0.162 0.008 0.1708

〈xPGF 〉 0.1407 0.14 0.1407 0.1407 0.1543 0.1538 0.1542 0.1548 0.1422 0.1415 0.1422 0.1423 0.0062 0.1456

W37

ωLP ωQCDC ωPGF
u+d c u’+d’ c” u+d c u’+d’ c’ u+d c u’+d’ c’ RMS < x >

〈xLP 〉 0.0519 0.0513 0.0517 0.0515 0.0546 0.0542 0.0545 0.0545 0.0282 0.0283 0.0283 0.0281 0.0118 0.0448

〈xQCDC〉 0.1698 0.1696 0.1697 0.1697 0.1813 0.1813 0.1812 0.1816 0.162 0.1619 0.1619 0.1621 0.008 0.171

〈xPGF 〉 0.141 0.1408 0.1411 0.1406 0.1548 0.1546 0.1546 0.1549 0.1426 0.1422 0.1425 0.1424 0.0062 0.146

W39

ωLP ωQCDC ωPGF
u+d c u’+d’ c” u+d c u’+d’ c’ u+d c u’+d’ c’ RMS < x >

〈xLP 〉 0.0522 0.0511 0.052 0.0516 0.0552 0.0545 0.055 0.0547 0.0283 0.0282 0.0282 0.0281 0.0119 0.0449

〈xQCDC〉 0.1696 0.1692 0.1695 0.1693 0.181 0.181 0.1807 0.1807 0.1614 0.1616 0.1613 0.1613 0.008 0.1705

〈xPGF 〉 0.1403 0.14 0.1404 0.14 0.1541 0.1541 0.1539 0.1539 0.1417 0.1416 0.1418 0.1416 0.0062 0.1453

W42

ωLP ωQCDC ωPGF
u+d c u’+d’ c” u+d c u’+d’ c’ u+d c u’+d’ c’ RMS < x >

〈xLP 〉 0.053 0.0529 0.0527 0.0521 0.0557 0.056 0.0556 0.055 0.0282 0.0282 0.0283 0.0279 0.0123 0.0455

〈xQCDC〉 0.1701 0.17 0.1699 0.1693 0.1812 0.1815 0.181 0.1805 0.1615 0.1616 0.1615 0.161 0.0081 0.1708

〈xPGF 〉 0.1406 0.14 0.1405 0.1398 0.1542 0.1541 0.1543 0.1535 0.1421 0.1416 0.1422 0.1412 0.0062 0.1453

W44

ωLP ωQCDC ωPGF
u+d c u’+d’ c” u+d c u’+d’ c’ u+d c u’+d’ c’ RMS < x >

〈xLP 〉 0.0533 0.0527 0.0535 0.053 0.056 0.0556 0.0562 0.056 0.0282 0.0282 0.0282 0.0281 0.0125 0.0458

〈xQCDC〉 0.1701 0.17 0.1703 0.1699 0.1812 0.1815 0.1812 0.1811 0.1614 0.162 0.1615 0.1612 0.0081 0.171

〈xPGF 〉 0.1405 0.1405 0.1406 0.1398 0.1542 0.1546 0.1543 0.1537 0.1419 0.1423 0.1421 0.1413 0.0062 0.1455

Table B.2: Values of weighted averages of x 〈x〉βω for the three processes for all
periods and target configurations. Proton 2010.





Appendix C

COMPASS spectrometer

alignment

The objective of the alignment procedure is to determine the positions of the tracking

detectors. The more accurate the the alignmnet is the more effective the tracking and

vertex reconstruction is. A good alignment leads also to precise determination of the

kinematic variables.

The alignment procedure is done in two stages. First is performed by surveyors, where

the absolute (with respect to the experimental hall) positions of the detectors are mea-

sured directly with a ∼ 1mm precision. The second stage reconstructed particle tracks

are used to evaluate the true detectors positions. The procedure described in details

in [120] leads to an accuracy of a fraction of detector resolution in determination of its

position.

The author was responsible for the alignment during 2012 DVCS (Deeply Virtual Comp-

ton Scattering) test run which last for almost two months.

C.1 Alignment parameters

The main COMPASS coordinate system is defined with respect to the experimental hall

and consists of the following axes:

• Z axis - along the beam direction,

• Y axis - vertical, directed from bottom to top,

• X axis - defined in such a way that the system is right-handed.

141
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For each detector a local coordinate system is defined:

• Z axis - the same as the main coordinate system,

• U axis - in the detector plane and perpendicular to the strips or wires (this is the

coordinate measured by this detector plane),

• V axis - parallel to the strips or wires and defined in such a way tat the system is

right-handed (this coordinate is not measured by the given detector plane).

For alignment purposes the following set of parameters have been chosen to describe the

position of the detector centre and its wires or strips:

• δu - the transverse detector offset perpendicular to the detector wires,

• δv - the transverse detector offset parallel to the detector wires,

• δθ - the rotational detector offset in a plane perpendicular to the beam axis,

• δz - the longitudinal detector offset along the beam axis,

• δp - the scaling factor of the nominal pitch (distance between the wires/strips)

pmeas = (1 + δp)pNome.

To describe the rotational offsets out of the plane perpendicular to the beam axis two

other parameters could be used δθu and δθV . However the internal representation of

detectors in COMPASS tracking software (CORAL) assumes that the detectors are

perpendicular to the beam and the detector planes are manually align in such a way.

This makes such parameters unusable in our case. Moreover if misalignments in θu and

θv are small, their effect on the tracking would be of second order with respect to other

parameters.

The δu value is obtained directly from the measurement. If a single plane is shifted in

u then the obtained residual will not be centred at zero.

The transverse offset of a detector along the wires (δv) cannot be directly taken into

account since the detector does not give any information about the position along this

direction. However if a detector station consists of at least two planes with a non zero

angle between the measured directions then the δv can be determined.

A misalignment is θ is visible on a δu vs v plot as the discrepancy between the hit and

the reconstructed track should change with the position along the wire.

The δU vs V plot is sensitive to wrong pitch value or misalignment in z - position along

the beam. Moreover, the pitch, p, and z misalignment can be easily seen on the δu vs

θ. The difference between misalignment in z and in p is that the case of z the slope of
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the δu vs θ should be larger in the outer parts of the detector plane than in the central

parts while wrong pitch should affect the central and outer parts of the detector plane

in the same way.

Examples of different kind of plots will be given in section C.4.

C.2 The principle of alignment

The alignment procedure is based on the difference between the measured hits and the

corresponding positions of the reconstructed tracks. This difference, ∆S can expressed

as a function of three independent sets of parameters

∆Sj(uj , α
t, αaj ), (C.1)

where uj is the hit position in the j-th detector, αt are the track parameters (a curvature

or a straight line) and αaj standing for the alignment parameters. Every track has has a

set of track parameters while the alignment parameters, αa, are common to all tracks.

The principle of the alignment procedure is to minimise the χ2 defined as

χ2 =

Ntrack∑
i=1

ndet∑
j=1

[
∆Sij(uij , α

t
i, α

a
j )
]2

σ2
j

. (C.2)

Here σj is the resolution of the j-th detector, ntrack is the number of used tracks, ndet is

the number of detectors contributing to track i and uij is the hit position corresponding

to the track i measured by the j-th detector. Assuming linear dependence of ∆S on αt

and αa it is true that

∆Sij = ∆S0
ij +

∑
k

∂∆Sij
∂αk

αk, (C.3)

where ∆S0
ij ≡ ∆Sij(0, 0, 0) and k goes over all tracking and alignment parameters.

Searching for the minimum requires all partial derivatives to be equal zero:

1

2

∂χ2

∂αm
=
∑
i

∑
j

1

σ2
j

∂∆Sij
∂αm

(
∆S0

ij +
∑
k

∂Sij
∂αk

αk

)
= 0. (C.4)

Here m, k goes over all tracking and alignment parameters. This results in following

matrix equation



∑
i

∑
j

1

σ2
j

∂∆Sij
∂α1

∂∆Sij
∂α1

. . .
∑
i

∑
j

1

σ2
j

∂∆Sij
∂α1

∂∆Sij
∂αm

. . .

...
. . .

...∑
i

∑
j

1

σ2
j

∂∆Sij
∂αm

∂∆Sij
∂α1

. . .
∑
i

∑
j

1

σ2
j

∂∆Sij
∂αm

∂∆Sij
∂αm

. . .

...
. . .




α1

...

αm
...

 = −



∑
i

∑
j

1

σ2
j

∂∆Sij
∂α1

δS0
ij

...∑
i

∑
j

1

σ2
j

∂∆Sij
∂αm

δS0
ij

...


. (C.5)
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Most of the terms are zero and hence the above equation can be rewritten in the following

form 

∑
iCi · · · Gi · · ·
...

. . . 0 0

GTi 0 Γi 0
... 0 0

. . .




αa
...

αti
...

 =



∑
i bi
...

βi
...

 . (C.6)

In this equation the matrices Ci,Γi, Gi and the vectors bi and βi contain contributions

from the i-th track. The matrices Ci are symmetric matrices of dimension ndet while

bi is a vector of with size ndet and both contain partial derivatives of ∆S with respect

to the alignment parameters αa. The Γi are symmetric matrices of size v equal to the

number of parameters per track (size of αti vector). The βi are vectors of size v. Both

Γi and βi include only derivatives of ∆S with respect to track parameters αt. The Gi

is a matrix with a row number of ndet and a column number of v and includes mixed

terms of type (∂∆Sij/∂α
a
j )(∂∆Sij/∂α

t
i).

Solving equation C.6 is very CPU time consuming. Fortunately the matrix in the given

equation is sparse and has a special structure. It has been proven [121] that the alignment

parameters can be extracted from much simpler equation

αa = (C ′)−1b′, (C.7)

where

C ′ =
∑

iCi −
∑

iGiΓ
−1
i GTi , b′ =

∑
i bi −

∑
iGiΓ

−1
i βi. (C.8)

The C ′ matrix inversion which is the core of the alignment program is performed by a

“Millepede” routine which was written by Volker Blobel, the co-author of Ref. [121].

C.3 The alignment procedure

The procedure of alignment consists of three main steps:

• low intensity alignment run with SM1 and SM2 switched off

• low intensity alignment run with nominal fields in SM1 and SM2

• nominal intensity physics data taking run

The low intensity of the alignment runs enables switching on GEM detector’s centres.

The alignment without magnetic field simplifies the tracking as all tracks are assumed

to be straight lines along the whole spectrometer. During the alignment runs special
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trigger mix is used. The final alignment with physics data is usually splitted into two

parts: alignment of the detectors downstream of the target and alignment of the Beam

Telescope (BT) - detectors upstream of the target. In the former BT detectors are not

use while in the latter positions of all other detectors are fixed.

The alignment procedure is relative. Two detectors has to be used as reference points.

GEM detectors have been chosen as they are far enough from the magnets not to be

affected by their fringe fields and they have good spacial resolution and suitable size.

When the magnets are on (off) GM04 and GM10 (GM09) are used. Their positions are

taken directly from the surveyor’s measurements.

Every alignment step consists of several iterations (typically four or five) each consisting

of three phases:

1. In the first one the data sample is reconstructed by the CORAL program using a

description of the spectrometer stored in detectors.dat file. As an output, a ROOT

[122] tree containing information about reconstructed tracks, hits and clusters is

created.

2. In the second phase the information from the tree is used as an input for χ2 min-

imisation performed by the Millepede. As a result a set of alignment parameters

for each detector is obtained.

3. In the last phase the positions stored in detectors.dat file are updated using results

from the second phase.

The parameters of different detectors can be fixed during different stages of the alignment

procedure. The position along the beam z is usually fixed (obtained from the surveyor’s

measurements) during the whole procedure). Typically for the majority of the detectors

the angle θ and the pitch p are fixed during the stage without magnetic field. The pitch

is also typically fixed during the stage with magnetic field switched on while the angles

are set free. In the final steps (with the use of physics data) all parameters are tuned at

the same time apart from z.

C.4 Exemplary plots

In Figure C.1 exemplary residuals before and after the alignment procedure are pre-

sented.

The Figures bellow show two planes of silicon 01 detector (oriented at different angles).

It can be seen, in Figure C.2 that the δU vs U plot is fine but there is a visible slope in
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Figure C.1: Exemplary residual (δU histogram) plots for plane SI03 V1. Left panel:
iteration nr 1 - before the alignment procedure. Right panel: after five iterations of the

alignment algorithm.
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Figure C.2: Misalignment in z of the SI01 station. Top panel dU vs U - no slope -
the angle θ is fine. Middle panel: dU vs V slope indicating the misalignment confirmed

by the slope in the bottom panel: dU vs tan θ.



Appendix C. COMPASS Spectrometer alignment 147

[mm]
-30 -20 -10 0 10 20

[m
m

]

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

[mm]
-15 -10 -5 0 5 10 15 20

[m
m

]

-0.015

-0.01

-0.005

0

0.005

d
U

d
U

U U

SI01 1st plane  _ SI01 2nd plane  _

[mm]
-25 -20 -15 -10 -5 0 5 10 15

[m
m

]

-0.008

-0.006

-0.004

-0.002

0

0.002

[mm]
-30 -20 -10 0 10 20

[m
m

]

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

d
U

d
U

V V

SI01 1st plane  _ SI01 2nd plane  _

[tg theta]
-0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003

[m
m

]

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

[tg theta]
-0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

[m
m

]

-0.01

-0.005

0

0.005

0.01

0.015

0.02

d
U

d
U

SI01 1st plane  _ SI01 2nd plane  _

Figure C.3: Corrected z position of the SI01 station. Top panel dU vs U - no slope -
the angle θ is fine. Middle panel: dU vs V slope indicating the misalignment confirmed

by the slope in the bottom panel: dU vs tan θ.

the δU vs V plot and even more visible slope in the δU vs tan θ plot. In Figure C.3

corrected z position of SI01 station is applied. The reason of a 5 cm discrepancy was

the wrong recalculation of the detector position from the surveyor’s measurements. The

plots after the correction do not show any significant dependence.

C.5 Quality criteria

Apart from the local criteria, the plots composed of alignment parameters, described in

Section C.1 there are also global criteria of the alignment:

• χ2/ndf of all reconstructed tracks,

• agreement with particle data tables of reconstructed invariant masses of J/Ψ, K0,

D0,

• number of all reconstructed tracks per event,
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• ratio of the numbers of tracks reconstructed in the LAS and the SAS,

• number of reconstructed vertices per event,

• number of tracks associated to vertex,

• fraction of events with reconstructed primary vertex.

During the DVCS 2012 test local criteria and the χ2/ndf have been monitored for every

iteration. The obtained mean value of the latter is 1.7. Pseudoefficiencies of all detector

planes have been also monitored during the data taking. The data analysis carried out

since the final alignment was ready did not show any evidence of misalignment from the

global criteria given above.



Abbreviations

QCD Quantum Chromodynamics

DIS Deep Inelastic Scattering

SIDIS Semi-Inclusive Deep Inelastic Scattering

PDFs Parton Distribution Functions

TMDs Transverse Momentum Dependent Distribution Functions

LP Leading Process

QCDC QCD Compton

PGF Photon-Gluon Fusion

LO Leading Order

NLO Next-to-Leading Order

MC Monte Carlo

NN Neural Network

COMPASS COmmon Muon Proton Apparatus for Structure and Spectroscopy
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