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Abstract

One important physics topic addressed by the COMPASS collaboration at CERN
is the investigation of so-called Primakoff reactions. This class of reactions is stud-
ied by impinging high-energetic pions on a nuclear target. Exploiting the equiva-
lence of the electromagnetic field of a relativistic charged particle and a pulse of
radiation, the interaction of the pions and the electromagnetic field of the nucleus
is described by the exchange of quasi-real photons. This effect is quantitatively
described by the Weizsäcker-Williams equivalent-photon approximation.

A short pilot run in 2004 with a lead target revealed important insights, which
were taken into account for the Primakoff measurement in 2009. This measure-
ment lasted roughly two weeks and used a nickel target. The measurement focused
on final states with neutral particles, which requires a suitable trigger. The re-
quirements have been matched by developing a digital trigger, which is sensitive
to the energy deposit in the electromagnetic calorimeter.

An event sample with one negatively charged and two neutral pions in the
final state has been selected from the recorded data. This event sample is used
to measure the differential cross section of the process π−γ → π−π0π0 near the
three-pion threshold. In order to do so, the contribution of Primakoff events to
the event sample, which is dominated by diffractive dissociation, is determined.
The Primakoff production, having a significantly different momentum transfer
t′ dependence than strong processes, peaks at very small t′. On the one hand,
this is exploited to determine the contribution of Primakoff production by study-
ing the t′ spectrum. On the other hand a partial-wave decomposition in the
range of t′ ≤ 0.002 GeV2/c2 has been conducted, where quasi-real one-photon ex-
change exhibits a spin projection M = 1. Production by diffractive dissociation
is proportional to t′M . Consequently, at small momentum transfer contribution
to amplitudes with M 6= 0 are suppressed. In the study of the t′ spectrum the
contribution of Primakoff events is determined matching the production signa-
ture. In case of the partial-wave decomposition the event distribution in the
phase-space of the final state is studied. Thus, these two methods represent two
complementary approaches to determine the contribution of Primakoff produc-
tion. In order to measure the differential cross section the integrated luminosity
is determined by analyzing decays of beam kaons into the π−π0π0 final state.
The measured differential cross section is compared to predictions from chiral
perturbation theory.





Kurzfassung

Die Untersuchung von sogenannten Primakoff-Reaktionen ist ein Forschungss-
chwerpunkt der COMPASS Kollaboration am CERN. Diese Reaktionen wer-
den mit Hilfe eines hoch-energetischen Teilchenstrahls aus negativ geladenen
Pionen untersucht. Primakoff-Reaktionen zeichnen sich dadurch aus, dass das
hochenergetische Pion mit dem elektromagnetischen Feld eines Atomkerns wech-
selwirkt. Die Wirkung des elektromagnetischen Feldes ist äquivalent zu der
Wirkung eines Strahlungspulses aus Photonen. Quantitativ wird dieser Effekt
durch die Weizsäcker-Williams Äquivalent-Photon-Näherung beschrieben. Das
Primakoff-Programm am COMPASS Experiment deckt durch die Untersuchung
verschiedener Endzustände ein breites physikalisches Spektrum im Bereich der
Quanten-Chromodynamik bei niedrigen Energien.

Eine erste Testmessung im Jahr 2004, bei der ein Blei-Target zum Einsatzt
kam, brachte wichtige Erkenntnisse für die Primakoff Messung im Jahr 2009.
Bei der etwa zweiwöchigen Messung wurde das Blei- durch ein Nickel-Target
ersetzt. Die Messung konzentrierte sich auf Reaktionen mit neutralen Teilchen
im Endzustand. Daher benötigte man ein Trigger-System, das auf diese Teilchen
sensitiv ist. Um dies zu erreichen wurde ein digitaler Ereignis-Trigger entwickelt,
der sensitiv auf den Energie-Eintrag im elektromagnetischem Kalorimeter ist.

Im Rahmen dieser Arbeit wurde der differentielle Wirkungsquerschnitt der ra-
diativen Produktion des π−π0π0 Endzustands bestimmt. Das beobachtete Spek-
trum wird durch Prozesse der starken Wechselwirkung, vorwiegend diffraktive
Dissoziation, dominiert. Davon muss der Beitrag radiativer Produktion separiert
werden. Dies geschieht mittels zweier unterschiedlicher Methoden. Primakoff-
Reaktionen finden bei sehr kleinem Vierer-Impuls-Übertrag statt. Die Verteilung
der Impuls-Überträge t′ unterscheidet sich deutlich von der Verteilung, die bei
Prozessen der starken Wechselwirkung auftreten. Dies wird zur Bestimmung
mittels Untersuchung des Impulsübertrags-Spektrum genutzt. Anderseits wird
eine Partialwellen-Zerlegung bei kleinen Impulsüberträgen t′ ≤ 0.002 GeV2/c2

zur Identifikation radiativer Prozesse an Hand der Spin-Projektion genutzt. Die
Spin-Projektion M = 1 radiativer Prozesse ist durch die Eigenschaften des quasi
reellen Photons gegeben. Bei kleinen Impulsüberträgen ist diffraktive Dissozi-
ation mit M 6= 0 unterdrückt. Um den Wirkungsquerschnitts zu bestimmen
benötigt man dieintegrierte Luminosität. Dies geschieht durch die Analyse von
Kaon-Zerfällen. Der Messung des Wirkungsquerschnitts werden Vorhersagen der
chiralen Störungsrechnung gegenübergestellt.
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Chapter 1

Physics Motivation

The discovery of nuclear decays and the produced radiation at the end of the 19th

century opened up new fields of research. Rutherford used the α radiation pro-
duced in nuclear decays to investigate the structure of atomic matter. Based on
his observations he developed an atomic model with a positively charged compact
atomic nucleus surround by electrons [Rut11]. Furthermore, he suggested, that
the nucleus is made up of positively charged particles, protons, and neutral parti-
cles, neutrons, of approximately the same mass [Rut20]. This, however, rises the
question, which force holds the nucleus together. Hideki Yukawa answered this
question in the framework of quantum field theory by introducing the charged
u-particle as mediator of this strong force [Yuk35]. The pion, which was finally
discovered in cosmic ray experiments, was the first particle of a new family of
particles called mesons. During the 1950, the development of accelerator experi-
ments led to the discovery of a growing number of new particles, often referred to
as particle zoo. In the early sixties a pattern based on the SU(3) flavor symmetry,
was found by Gell-Mann [GM61], which described the, at that time observed, 25
light and strange hadrons and their properties by arranging them in octets and
decuplets .

1.1 The Quark Model and Quantum Chromo-

dynamics

It took a few more years to develop a theory, which could explain the underly-
ing symmetry of the observed pattern. Independently from each other, Georg
Zweig [Zwe64] and Gell-Mann [GM64] suggested a theory based on the SU(3)
flavor symmetry, postulating that mesons and baryons are build from point-like
particles, which follow the Fermi-Dirac statistics. Following the nomenclature in-
troduced by Gell-Mann these fermions with spin S = 1/2 are today called quarks
q . The quarks are organized in a unitary triplet, which consists of an isopin sin-
glet s with isopin I = 0 and an isopin doublet (u, d) with I = 1/2. The charges

3



4 CHAPTER 1. PHYSICS MOTIVATION

of the quarks are correlated, thus by choosing the charge of the singlet s to z,
the charges of the u and d quarks are given by z + 1 and z respectively. The
choice consistent with the electric charge of the observed composed objects is the
non-integer charge z = −1/3. The anti-quarks q have opposite signed charges, of
course. The parity P of quarks and anti-quarks is P = +1 and P = −1 respec-
tively. Additionally, the new introduced quantum number strangeness S = −1
is attributed to the s quark, with s having S = 1. The Gell-Mann-Nishijima
formula [NN53, GM56]

Q = Iz +
Y

2
, (1.1)

which helps to describe regularities of observed particles, relates the electrical
charge Q of a particle with the third component of the isospin Iz and the hyper-
charge Y . At that time, knowing only three quark flavors, the hypercharge was
defined as sum of the baryon number B, where the quarks and anti-quark carry
B = 1/3 and B = −1/3 respectively, and the strangeness S. Today three more
quark flavors – c, b and t – are known. The associated quantum numbers are
added to the sum, which defines the hypercharge

Y = B + S + C + B + T . (1.2)

Baryons are constructed by combining quarks and anti-quarks to have Baryon
number B = 1, i.e. any combination of qqq, qqqqq etc. Mesons are required to
have B = 0 and can therefore be constructed of states having an equal amount
of quarks and anti-quarks, i.e. qq, qqqq etc.

This theory did not only describe the known particle zoo, but also provides
predictive power. The Ω− Baryon was discovered soon after the prediction by
Gell-Mann to complete the S = 3/2 Baryon decuplet. The Ω−, being a ground
state, has a symmetric space wave function. It is formed by three strange quarks
with aligned spins building the total spin of S = 3/2 and seems to violate the
Pauli principle, which requires an asymmetric wave function. This issue was
finally resolved by introducing an additional degree of freedom, the color . Thus,
for each quark flavor three quarks exist, which differ only in color, extending the
number of known quarks from three to nine. This approach did not only solve the
Ω− problem, but also fixed several other discrepancies between prediction and
experiments as for example the cross section of electron-positron annihilation.
Soon after, the basis of Quantum Chromodynamics (QCD) was set by treating
the color group as gauge group, with an octet of gauge bosons, called gluons,
mediating the strong force [FGM72]. The gluons carry color charges and are
therefore self interacting, which is a big difference to Quantum Electrodynamics
(QED). This does not only imply, that in principle states composed of gluons,
so-called glueballs, or states composed of quarks and gluons, so-called hybrids,
may exist, it is also responsible for the fact, that the strong coupling αs(Q

2)
gets smaller for high energies, i.e. small distances, leading to asymptotic freedom.
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This allows to treat the high energetic regime within a perturbation theory. On
the other hand αs(Q

2) is large for low energies, which leads to confinement,
i.e. the fact, that no free object with a net color charge can exist. QCD, based
on the SU(3) color symmetry also implies, that the structure of hadrons is more
complicated than the constituent quark model suggests. The properties of hadron
are defined by so-called valence quarks and possibly valence gluons1, which are
accompanied by a rich dynamic structure formed by so-called sea quarks and sea
gluons. Today we know three more quark flavors - charmed c, bottom b and top
t. Reflecting the observed transition probabilities and mass hierarchies the six
quarks are similar to leptons arranged in three families each with an up-like quark
(electrical charge 2/3) and a down-like (electrical charge −1/3) quark, i.e. (u, d),
(c, s) and (t, b).

The search for states beyond the known qq and qqq states, such as tetra-
quark or penta-quark states as well as states with valence gluons, is a topic of
active research and one of the topics addressed by the COMPASS collaboration
[BKT96, GHK+10]. These states are called exotic states. Mixing with the known
states, it is difficult to discover exotic states with the same quantum number as
known states, thus one actually searches for states with quantum number not
allowed for qq and qqq, so called spin exotics such that exotic nature is obvious.

1.2 Chiral Perturbation Theory

At low momentum transfer Q2, i.e. large distances, the coupling constant αs(Q
2)

of the strong interaction gets large and QCD becomes non-perturbative. However,
confinement suggests, that in this regime the relevant degrees of freedom are given
by hadrons, which are color neutral, rather than quarks and gluon. In chiral
perturbation theory (ChPT) the SU(3)L×SU(3)R×U(1)V symmetry of the QCD
Lagrangian for vanishing masses of u, d and s quarks is spontaneously broken
down to SU(3)V×U(1)V . The Goldstone theorem gives rise to an octet of massless
Goldstone bosons, which have the same quantum properties as the octet of the
light pseudoscalar mesons, i.e. pions, kaons and the eta. In order to expand the
Greens function in terms of the quark masses mu, md and ms, the light quark u, d
and s are assumed massless, while the heavy quarks are assigned to their physical
masses. By assigning finite masses to the u, d and s quarks, chiral symmetry
is not only spontaneously but also explicitly broken, such that the Goldstone
bosons acquire masses. In contrast to fundamental gauge theories, where the
perturbative treatment is done in expansion of a small coupling constant, ChPT,
doing an expansion in particle momentum, is an effective field theory. ofHowever,
renormalization of ChPT on a given finite order can be achieved by calculating
contact terms. All inner dynamic is described by low-energy constants (LECs).
These LECs have to be determined by experimental observaoftion.

1In principle allowed by the theory, up to now no such state is established.
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(a) π−γ→π−π−π+ (b) π−γ→π−π0π0

Figure 1.1: Chiral perturbation theory prediction of the differential cross section
for π−γ→π−π−π+ (a) and π−γ→π−π0π0 (b). The prediction in leading order
(dashed line) and next-to-leading-order calculation (solid line) are shown. The
dotted line shows the effect of isospin breaking, i.e. mπ0 6= mπ, for the tree
approximation of π−γ→π−π0π0. (From [Kai10]).

Strong interaction conserves the flavor current, thus in many cases it is suf-
ficient to restrict to the two-flavor sector of QCD and the chiral symmetry is
given by SU(2)L×SU(2)R rather than SU(3)L×SU(3)R. Applying ChPT to the
two-flavor sector one speaks about SU(2) ChPT. In this case the s is treated as
heavy quark and gets its physical mass assigned. The SU(2)L×SU(2)R chiral
symmetry gets spontaneously and explicit broken to SU(2)V , giving a rise to
three Goldstone bosons with JP = 0−. The Goldstone bosons are identified as
π−, π+ and π0. Within the SU(2) ChPT, the LECs required for tree level calcu-
lations, which are given by the mass mπ of the pion and the pion decay constant
fπ, are known to high precision. The six LECs l1, l2, ..., l6, which are required for
next-to-leading order (NLO) calculations, are known with varying precisions and
can be potentially improved by further experimental input.

In order to prove that the low-energy dynamic of QCD is correctly described
by ChPT, theoretical predictions have to be verified by measurements, as it
was achieved for the pion-pion scattering length, where accurate predictions of
two-loop calculations [CGL01] are confirmed by experimental results [PAA+03]
[BCK+08] [BCK+09]. Besides the scattering of strong interacting particles ChPT
also allows predictions in the field of electromagnetic processes as for example
the πγ scattering, which is related to the measurements of pion polarizability in
πγ → πγ (see 4.1.1) or the chiral axial anomaly in π±γ → π±π0 processes. Also
the πγ→3π process has already been subject to ChPT calculations [KF08, Kai10].
This calculation does not only cover the π−γ→π−π−π+ reaction, which has been
investigated at COMPASS 2004 data (see 4.1.3), but also the non-resonant pro-
duction of the π−π0π0 final state, which is subject to the analysis of the data
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presented in chapter 13. Figure 1.1 shows the prediction for the cross sections
of both processes, which are obtained by leading and next-to-leading order cal-
culations. As discussed in section 3.3, π−-photon reactions are accessible in π−

nucleus scattering exploiting Primakoff reactions, which are subject to this thesis.
Due to the relevance of this calculation, it is discussed in more detail in the follow-
ing concentrating on the π−(p1) + γ(k, ε)→π−(p2) + π0(q1) + π0(q2) process. The
prediction of the cross section σtot(s) is obtained by integrating the the squared
T-matrix T over the three-pion phase space. In order to represent NLO terms,
one has to start with the general form of the T-matrix, which in Coulomb-gauge
can be decomposed

T =
2e

f 2
π

[~ε · ~q1A1 + ~ε · ~q2A2] , (1.3)

where A1 and A2 are two dimensionless products, which depend on the squared
center-of-mass energy s = (p1 + k)2 and ~ε the unit vector in direction of the
momentum of the photon. The independent Mandelstam variables s1, s2, t1 and
t2 are given by

s1 = (p2 + q1)2 , s2 = (p2 + q2)2 , t1 = (q1 − k)2 , t2 = (q2 − k)2. (1.4)

This choice allows to describe the permutation of the two identical π0 conve-
niently. Going to the center-of-mass frame, all diagrams where the photon cou-
ples to the incoming π− vanish, leaving only one tree diagram contributing to the
amplitude. This Feynman diagram is depicted in figure 1.3(a). The leading-order
amplitude can then be written as [Kai10]

A
(tree)
1 = A

(tree)
2 =

2m2
π + s− s1 − s2

3m2
π − s− t1 − t2

. (1.5)

Figure 1.3(b) and 1.3(c) show examples for loop diagrams, which contribute to
the NLO amplitude. In case of the LO calculations, ALO

1 and ALO
2 are used to

calculate the T-matrix (see Eq. 1.3). The LO amplitudes are given by the tree
level amplitudes

ALO
1 = A

(tree)
1 and

ALO
2 = A

(tree)
2 ,

(1.6)

Going to the next-to-leading-order calculations, the contributions from loop dia-
grams A

(loop)
1 and A

(loop)
2 and counter terms A

(ct)
1 and A

(ct)
2 have to be added

ANLO
1 = A

(tree)
1 + A

(loop)
1 + A

(ct)
1

ANLO
2 = A

(tree)
2 + A

(loop)
2 + A

(ct)
2 .

(1.7)

The exact parametrization of the loop contribution and counter terms can be
found in [Kai10]. The differential cross section as function of the squared center-
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γ

π−

π−

π0

π0

Figure 1.2: Schematic drawing of π−γ→π−π0π0 as subject to the calculations
within ChPT.

of-mass energy s = m2
3π is then given as

σ(s) =
α

32π2f 4
π(s−m2

π)

x

z2<1

dw1dw2

∫ 1

−1

dx

∫ π

0

dφ
∣∣∣k̂ × (~q1A1 + ~q2A2)

∣∣∣2 (1.8)

with w1,2 being the energies of the outgoing π0s and ~q1,2 their momenta. k̂ de-
notes the unit vector in the direction of the incoming photon. The squared cross
products expressed in terms of the direction cosines x, y and z are given by(
k̂ × ~q1

)2

= q2
1(1−x2),

(
k̂ × ~q2

)2

= q2
2(1−y2) and

(
k̂ × ~q1

)
·
(
k̂ × ~q2

)
= q1q2(z−xy),

(1.9)
with q1,2 = (w2

1,2 −mπ)1/2. Applying the relations

q1q2z = w1w2 −
√
s(w1 + w2) +

s+m2
π

2
and y = xz +

√
(1− x2)(1− z2) cosφ

(1.10)
the Mandelstam variables s1,2 and t1,2 are given by

s1,2 = s+m2
π − 2

√
sw2,1 and t1,2 = m2

π +
m2
π − s√
s

(w1,2 − q1,2x1,2) . (1.11)

with x1 = x and x2 = y. Including even higher order diagrams, based on the
calculation presented in [EU02], contributions from single and double ρ exchange
can be included. A few examples of diagrams contributing to this calculations
are shown in figure 1.3. The chiral amplitudes are known in the fully differential
form, thus these calculations can be included in partial-wave analysis as depicted
in 3.2.3. The detailed parametrization2 of the ρ contributions as it is used in the
partial-wave analysis is given in appendix A.

2Kindly provided by the author of [Kai10].
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(b)

γ

π−
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π−

(c)

γ

ρ

π−

π−

π0

π0

(d)

γ
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π−

π−

π0

π0

(e)

γ

π−

π−

π0
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(f)

Figure 1.3: Examples of Feynman diagrams contributing to the π−γ → π−π0π0

cross section in leading order (a), next-to-leading order (b),(c) as well as single
(d),(e) and double (f) ρ exchange. Not all possible contribution are shown. Please
refer to [Kai10] and [EU02] for a complete list.
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Chapter 2

Meson Spectroscopy

The identification of meson resonances and their properties, called meson spec-
troscopy, is a fundamental method to investigate the nature of strong interaction.
Today, one can distinguish two types of experiments, which are done in this field.
In formation experiments, two reaction partners form such a state. In this type of
experiment, the quantum numbers of the formed state are given by the parent par-
ticles. The invariant mass and the orbital angular momentum L is varied by the
impact parameter of the reaction partners, being either two colliding beam par-
ticles or a beam particle impinging on a target. The second class of experiments
are production experiments. They are typically done by scattering high-energetic
hadronic beams on nuclear targets. In contrast to formation experiments, where
one studies resonances by investigating the cross section, in production exper-
iments the reaction is studied by investigating the final state, being either the
resonance itself or, in case of short lived resonances, its decay products. Pro-
duction experiments make a wide spectrum of kinematics and physical processes
available for investigation. The COMPASS experiment (see chapter 4) is follow-
ing this approach. The dominating process in this reaction is the production of
an intermediate state X, a short lived state often referred to as resonance, which
decouples production and decay processes. Due to its relevance for the analysis
of the data set described in chapter 8, the underlying physics is shortly depicted
in the following.

2.1 Meson Resonances

The mesons resonances established today can in the constituent-quark model,
be described as color-neutral qq pairs. They are characterized by the quantum
numbers JPC . The total angular momentum J is composed of the relative angular
momentum L between the qq pair and the total intrinsic spin S

|L− S| ≤ J ≤ |L+ S|. (2.1)

11
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Thereby, the spin components of the quark and the anti-quark couple to the total
intrinsic spin S = 1 (| ↑↑〉) or S = 0 (| ↑↓〉). The parity P is given by

P = (+1)(−1)(−1)L = (−1)L+1, (2.2)

where the factors (+1)(−1) are accounting for the intrinsic parity of the quark
and anti-quark, respectively. The naturality η is defined as

η = P (−1)J . (2.3)

The C-parity C defines the behavior under charge conjugation. As this symmetry
exchanges particles with their antiparticles, the C-parity eigenstates are built of
a quark and its anti-quark.

C = (−1)L+S (2.4)

Only for neutral qq systems the C-parity is properly defined. However, as conven-
tion, the charged mesons have the C-parity of their neutral isospin partners. Be-
ing conserved in strong interactions the additional quantum numbers IG, i.e. the
Isospin I and the G-parity G, are considered. The G-parity is a generalization
of the C-parity, which is defined for all meson multiplets. It is a combination of
charge-conjugation followed by a rotation of 180 degrees around the Iy axis in
the isospin space

G = C · eiπIy = C(−1)I . (2.5)

Following these rules, not all spin parity states can be constructed from qq pairs.
The mesons with the quantum numbers

JPC = 0−−, odd−+, even+− (2.6)

cannot be formed by qq pairs and therefore are called spin exotic. As there
is no overlap with qq states the exotic nature of the state is obvious. These
states may be either multi-quark states such as tetra-quark states ( qqqq) or
states with valence gluons. States like qqg, which have both valence quarks and
gluons are called hybrids. States formed only from gluons like gg are called
glueballs. In principle exotic states are not forbidden by QCD and therefore
should exist. Exotic states, which have quantum numbers allowed for qq pairs,
are experimentally difficult to distinguish from the qq, which gives rise to the
search for spin exotic states. Evidences for such states have been report by
different experiments, also at COMPASS, but require further clarification.

2.2 Parametrization of Resonances

Resonances are mathematically described as pole in the scattering amplitude.
However, in contrast to stable or meta-stable particles, which have poles on or
near the real axis of the complex s-plane, the poles of resonances have a signif-
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icant deviation from the real axis and therefore a finite life-time. These short
lived resonances are often described using relativistic Breit-Wigner functions (see
section 11.2). Thereby the features of the Breit-Wigner function are respecting
the fact, that a resonance is not only characterized by an enhancement in the
production cross section, but also by a phase motion, where the phase changes
by π. The steepness of the phase motion is connected to the width of the reso-
nance. Wide resonances show a slow phase motion, while narrow resonance show
a faster phase change. In many experiments, like production experiments, it is
not possible to measure absolute phases, but often it is possible to measure rela-
tive phases between different resonances, which still allow to observe the expected
phase motion. Thus one has to consider that non-resonant processes like the deck
process (see 3.2.3) may influence the observed relative phase.

2.3 Decay of Resonances

For final states with more than two particles, enhancements in agreement with
the mass and width of known resonances are often observed in the mass spectra of
subsystems, which gives rise to the isobaric decay model. In the isobaric model,
the decay of a resonance is described as a chain of subsequent two particle decays.
A detailed discussion of this decay model is given in section 10.5.
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Chapter 3

Scattering Processes

Typical reactions investigated in production experiments are exclusive scattering
processes of a high energetic beam a from a nuclear target b as depicted in fig-
ure 3.1(a). The exchange particle R transfers momentum, angular momentum L
and possibly other quantum numbers between the target and the beam particle.
Due to the fact, that for elastic scattering the momentum transfer is smaller than
typical nuclear excitation energies, the target, which recoils with low momentum
d, stays intact, while the beam is exited to the short lived state c, which is often
called a resonance.

a+ b→ c+ d (3.1)

The resonance c then decays into an n-particle final state.

c→ 1 + 2 + ...+ n, (3.2)

1, 2, ..., n denote the single particles of the observed final state. Under the as-
sumption that neither the resonance c nor its decay products interact with the
recoil particle d, production and decay of the resonance c are decoupled. At low
momentum transfer the transferred energy is very small, thus the energy of the
beam particle Ea equals in good approximation the energy of the resonance Ec,
which is given by the sum of the energies Ei of the final state particles

Ea ≈ Ec =
n∑
1

Ei. (3.3)

Starting with a short introduction to S-matrix and Regge theory, the production
mechanism of the strong interaction, which dominates the observed spectra, is dis-
cussed below. A nice introduction of this topic can also be found in [Haa14]. This
is followed by a short excursion to electrodynamics introducing the Weizsäcker-
Williams-Method of virtual quanta, which allows to access radiative processes in
pion-nucleus scattering in so-called Primakoff Reactions.

15
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d

c

(a) Production of resonance c.

c

n

...

2

1

(b) Decay of resonance c.

Figure 3.1: Schematic drawing of the scattering of beam a from target b. R
mediates the interaction. The target recoils at low momentum d, while the beam
gets excited to the resonance c (a). The resonance c subsequently decays into a
n-particle final state (b).

3.1 Introduction to S-Matrix and Regge Theory

The scattering process is described by the scattering matrix S, a Lorentz-invariant
linear operator, which transforms the initial state |i〉 into the final state |f〉.

S|i〉 = |f〉 (3.4)

The S-matrix can be written as the sum of the identity operator I and the tran-
sition matrix T multiplied by i

S = I + iT, (3.5)

with the matrix elements
Sif = δif + iTif (3.6)

The T-matrix can be separated into a δ function, accounting for the four momen-
tum conservation and the scattering amplitude Aif (s, t).

Tif = i(2π)4δ4(pf − pi)Aif (s, t) (3.7)

The scattering amplitude depends on s and t, two of the three Lorentz-invariant
Mandelstam variables

s = (pa + pb)
2 = (pc + pd)

2, (3.8)

t = (pa − pc)2 = (pb − pd)2 and (3.9)

u = (pa − pd)2 = (pb − pc)2. (3.10)
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It is possible to investigate relativistic scattering amplitudes in different reference
frames, which are named s-channel (a+ b = c+ d), t-channel (a+ c = b+ d) and
u-channel (a+ d = b+ c) according to the corresponding Mandelstam invariants.
An incoming particle x with momentum p can be regarded as its outgoing anti-
particle x with momentum −p. This property is called crossing symmetry and
implies, that the amplitude does not change, when looking at the same process
in the three different channels. This means, that for analytical amplitudes the
channel can be chosen freely for the parametrization of an amplitude. The partial-
wave expansion of the scattering amplitude Aif (s, t) = A(s, t) in the t-channel is
defined as

A(s, t) = A(s, cos θt) =
∞∑
l=0

(2l + 1)Al(t)Pl(cos θt) (3.11)

with the cosine of the scattering angle

cos θt = 1 +
2s

t− 4m2
. (3.12)

Al(t) are the partial-waves and Pl(cos θt) the corresponding Legendre polynomi-
als. Investigating the Regge limit, i.e. fixed t and s → ∞, the Legendre polyno-
mials behave like

Pl(cos θt) ∼
s→∞

sl, (3.13)

which leads to the phenomenon, that the expansion 3.11 diverges at high energies

A(s, t) ∼
s→∞

∑
l

Al(t)s
l. (3.14)

Originally Regge theory aimed to calculate this sum in the non-relativistic case
[Reg59]. Regge described bound states in a framework of non-relativistic quantum
mechanics as poles of the partial-wave amplitude al(k). Thereby the bound states
are according to their angular momentum l grouped into families. The partial-
wave amplitude a(l, k) can formally be extended to complex numbers of l, such
that for integer values of l the relation a(l, k) = al(k) is fulfilled. For certain
kinds of potentials, the Regge poles are lying on the Regge trajectory α(k), i.e.

l = α(k). (3.15)

It was found, that under certain hypotheses this ansatz can be adapted to rela-
tivistic scattering processes described by the S-matrix formalism. Therefore, the
relativistic partial-wave amplitude Al(t) is advanced to A(l, t), which has poles
at

l = α(t). (3.16)

As each of these poles contribute to the scattering amplitude, the scattering
process is described by the exchange of a whole family of resonances. For fixed
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t, A(s, t) is proportional to sα(t).

A(s, t) ∼
s→∞

∑
l

sα(t) (3.17)

Here, each Regge trajectory is described by the linear equation

α(t) = α(0) + α′ · t. (3.18)

An important theorem in hadron-hadron scattering process is the Froissart-
Martin bound [Fro61][Mar63], which claims that the total cross section of such
scattering processes is limited by

σtot ≤
π

m2
π

ln2s, with s→∞. (3.19)

This theorem is fulfilled for Regge trajectories with

α(0) < 1. (3.20)

Looking at single Regge exchange, the scattering amplitude A(s, t) can be written
as

A(s, t) = β(t)ηξ(t)s
α(t). (3.21)

The residue β(t) = gab(t)gcd(t) is factorized into the couplings at the two vertices.
ηξ(t) is called signature factor after the signature ξ, a quantum number connected
with the angular momentum l, being +1 or −1 for even and odd l respectively

ηξ(t) =

−
exp(−iπ

2
α(t))

sin(π
2
α(t))

if ξ = +1

− exp(−iπ
2
α(t))

cos(π
2
α(t))

if ξ = −1
. (3.22)

The optical theorem

σtot =
1

s
=(Ael(s, t = 0)) (3.23)

is one of the key features of S-matrix theory. It relates the cross section to
the imaginary part of the elastic scattering amplitude Ael(s, t) in the forward
limit t = 0 and avoids the theoretically unlimited summation over all possible
inelastic terms. Applying this to the Regge theory, the cross section of single
Regge exchange is proportional to sα(0)−1

σtot ∼ sα(0)−1. (3.24)

This, however, lead to a contraction between experiment and theory. On the
one hand experimental observation show a flat minimum in the cross section at
center-of-mass energies

√
s≈10 − 20GeV/c2. On the other hand know Regge
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Figure 3.2: Chew-Frautschi plot showing examples of Regge trajectories. The
trajectory of the Pomeron is among the shown trajectories (From [Chu08] ).

trajectories had an intercepts α(0)≤0.6, which suggest a decreasing cross section.
In order to resolve this contradiction Gribov introduced a Regge trajectory with
an intercept around one, which he named pomeron after his former student Isaac
Pomeranchuck. Besides the intercept, this trajectory has two other properties,
which significantly differ from all other known Regge trajectories. On the one
hand it has a much flatter slope, which makes the Pomeron the dominant exchange
particle at high energies, on the other hand no known meson resonance lies on
the Pomeron trajectory1. Figure 3.2 shows the Chew-Frautschi plot for several
Regge trajectories include the Pomeron trajectory. The Pomeron carries the
quantum numbers of the vacuum JPC = 0++ and JPC = 2++, which suggest,
that it is a glue rich state. Fitting experimental data, the Pomeron trajectory is
parametrized as [DDLN02]

α(t)≈1 + εP + 0.25(GeV/c)2 · t with εP≈0.06-0.08 (3.25)

Due to its intercept being larger than one, which is required to describe the
slow increase of the cross section at high energies, this trajectory is violating the
Froissart-Martin bound (equation 3.19). Up to now this discrepancy between
experimental data and theory is unresolved. As mentioned before, due to the
large intersect and shallow slope the Pomeron is the leading trajectory at large

1A glueball candidate, which would lie on the Pomeron trajectory was reported , but needs
confirmation [AAB+94].
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Figure 3.3: Schematic drawing of diffractive dissociation of π− into π−π0π0 in
π−-Ni scattering.

s. The Pomeron contribution to the scattering processes is dominant at center-
of-mass energies of

√
s≈19 GeV, which are investigated at COMPASS, such that

the strong processes can be regarded as being mediated by the Pomeron P.

3.2 Production Mechanisms of the Strong In-

teraction

As discussed previously, the scattering processes in the strongly interacting sec-
tor can be described by Regge exchange. At the center-of-mass energy reached
at COMPASS, this reactions are dominated by Pomeron exchange. Three dif-
ferent production mechanisms can be distinguished. The diffractive dissociation
is the leading process and the only one considered relevant for the analysis of
the data set presented in chapter 8. The following discussion is extended to
central and non-resonant production. All examples schematics are given for the
π−Ni→π−π0π0 Ni, which is the process under investigation.

3.2.1 Diffractive Dissociation

Single-diffractive dissociation, depicted in 3.3 is a single Regge exchange between
the incoming pion and the nucleus, where the pion gets excited to the intermediate
resonance X, while the target nucleus stays intact. Within the triple Regge limit

s�m3π�t, (3.26)

which is fulfilled by the COMPASS data under investigation, the scattering am-
plitudes behaves as

A(s, t) ∼
s→∞

∑
i

gaX(t)gbd(t)ηi

(
s

m2
3π

)αi(t)
, (3.27)
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Figure 3.4: Schematic drawing of central production of a three-pion final state in
π−-Ni scattering.

where m3π = mX is the invariant mass of the resonance. The sum accounts
for the contribution of different Regge trajectories. For the center-of-mass energy
s≈150 GeV2/c4 reached in π−-Ni collisions at COMPASS, the Pomeron trajectory
is the leading Regge trajectory. Momenta and angular momenta are exchanged.
Due to the quantum properties of the Pomeron charge and flavor remain un-
changed. Thus the excitation of the pion only changes spin J and parity P . Due
to the expected t-dependence [Per74]

dσ

dt
∝ tMe−bt (3.28)

excitations with spin projections M > 0 are suppressed for very small values of
t.

3.2.2 Central Production

Central production is a multi-Regge exchange, where two Regge an intermediate
resonance is produced in a fusion of two Reggeons. Thereby one Reggeon is
emitted by the pion, the other one by the target. Figure 3.4 shows this process for
scattering of a π− beam off a nickel target with three-pions in the final state. Due
to the production mechanism, one expects to observe a fast negatively charged
pion and a slower neutral subsystem. This reactions can be identified by their
experimental signature. A helpful quantity, to do this, is the rapidity

y =
1

2
ln
E + p‖
E − p‖

. (3.29)

E is the energy of a particle or subsystem and p‖ the component of the cor-
responding momentum, which is parallel to the incoming beam. The scattered
beam pion has a significant higher rapidity, then the other two pions. This can
be used to identify contribution from central production.
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Figure 3.5: Schematic drawing of one possible non-resonant production mech-
anism, which is embedded in π−-Ni scattering and produces a three-pion final
state.

3.2.3 Non-resonant Production

An important source of possible contributions is the non-resonant production of
the final state under investigation. These contributions to the observed spec-
trum are not necessary flat. Thus it is hard to disentangle them from resonant
contributions. For the three-pion final state a possible source of non-resonating
production is the process depicted in figure 3.5, where the beam pion dissociates
into an intermediate state decaying into a two pion system and a pion, which
scatters of the nucleus. This reaction also called Deck effect was proposed as
alternative explanation of the experimentally observed a1(1260) shortly after its
discovery [Dec64].

3.3 Weizsäcker-Williams-Method of Virtual Quan-

tum

The method of virtual quantum was independently developed by Weizsäcker [Wei34]
and Williams [Wil33]. It exploits the fact, that the electromagnetic field of a
charged particle moving at relativistic velocity is similar to a pulse of radiation.
This allows to relate the effect induced by a relativistic charged particle with the
one induced by radiation. At the COMPASS experiment, this allows to study
pion-photon interaction embedded in hadron-nucleus scattering processes. Ap-
plying Lorentz transformation, one finds, that the field of an incoming particle
with charge q traveling at relativistic velocity v'c in x1 direction passing a struck
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system S at impact parameter b is given by [Jac62]

E2(t) = q
γb

(b2 + γ2v2t2)3/2

B3(t) = βE2(t)

E1(t) = −q γvt

(b2 + γ2v2t2)3/2
.

(3.30)

β = vc−1 and γ = (1− β2)−1 denotes the quantities, which are typical for special
relativity calculations. In the ultra-relativistic approximation β'1, E2(t) and
B3(t) are equal. Such that these two components form a field, which is equivalent
to a linearly polarized radiation P1 impinging on S in the x1 direction. In order
to form a radiation P2 together with E1(t) one has to introduce an additional
field, which in principle modifies the problem. However, P2 involves γ−2. Thus,
the resulting radiation pulse vanishes in the ultra-relativistic case. Thus the
electromagnetic interaction is described by the exchange of quasi real photons.
Therefore this approach is also called equivalent-photon method. Deducing the
dependence of the cross section on the squared momentum transfer t = t′ + tmin

one finds
dσ

dt′
∝ t

(t′ + tmin)2
, (3.31)

where tmin is the minimal squared momentum, which is required to excite the pion
to the higher mass s and t′ is the by tmin reduced squared momentum transfer.
The function peaks at t′ = tmin or t = t′+ tmin = 2 · tmin, respectively. For a beam
scattering of a target with the target staying intact tmin is given by

tmin =
(s−m2

beam)
2

4 |~pbeam|2
. (3.32)

For the Primakoff measurement in COMPASS the values of tmin reach from
O(10−7)GeV2/c2 at

√
(s) = 0.4 GeV/c2 toO(10−4)GeV2/c2 at

√
(s) = 2.5 GeV/c2.

The intensity of the radiation and therefore the flux of quasi-real photons
depends on the charge q and the velocity v of the relativistic particle. Inves-
tigating radiative processes in hadron nucleon scattering, one typically looks at
the rest frame of the hadron, in which the nucleon with charge q = Z moves
with relativistic velocity v. Knowing the reaction partners, it is convenient to use
the center-of-mass energy s as parameter. The Weizsäcker-Williams equivalent
photon approximation, which is deduced from this approach, relates the experi-
mentally observed cross section σπ,nucleus of pion-nucleon scattering to the one of
pion-photon scattering σπ,γ [PS61]

dσπ,nucleus

dsdtdΦ
=

α · Z2

π(mπ)2
· F 2

eff(t′ + tmin) · t′

(t′ + tmin)2
· dσπ,γ(s)

dΦ
. (3.33)
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Figure 3.6: Schematic drawing of Primakoff reaction π−γ → π−π0π0 in π−-Ni
scattering.

where Feff(t′) is the elastic form factor. In the limit of very small momentum
transfer, where the cross section peaks, the elastic form factor can be approxi-
mated by the form factor of a sphere with sharp radius

Feff(t′) =

[
3

(qr)3
(sin(qr)− qr cos(qr))

]2

with q =
√
t′. (3.34)

The radius of the nucleus is given by

r = r0·A1/3. (3.35)

r0 can be slightly different for different nuclei, with r0 = 1.25 fm being a good ap-
proximation for most nuclei. For the nickel target a radius r = 4.8 fm is used. As
the Weizsäcker-Williams distribution peaks at very small values of t′, Primakoff
production gets visible at low three-pion mass, where no resonances are present.
The fact, that this peak is much sharper than the comparatively shallow t′ de-
pendence of strong processes, can be exploited to separate radiative and strong
processes. Due to the helicities of λγ = ±1 of quasi real photon, their exchange
exhibits a spin projection |M | = 1. This gives an additional handle to distinguish
radiative from strong processes. Where for the later contribution with M 6=0 are
suppressed at low t′. The resonant production via excitation of the beam pion
(see figure 3.6), allows to access the radiative width of the resonance produced in
Primakoff reactions. This, however, requires a deep understanding of the inter-
ference between production processes. Investigating non-resonant contributions,
especially in absence of resonances, i.e. at low m3π, the interference term between
different production mechanisms is negligible. Comparison of the experimental
findings to the ChPT calculations (see section 1.2) can provide valuable input.
As the calculations are given in differential form, not only the total differential
cross section, but also phase space-behavior, can be compared.
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Chapter 4

COMPASS

The Common Muon and Proton Apparatus for Structure and Spectroscopy (COM-
PASS) is a fixed target experiment at CERN studying the quark and gluon struc-
ture of nucleons and other hadrons. The experiment addresses a wide range
of physics topics in the non-perturbative regime of Quantum Chromo-Dynamics
(QCD) by performing measurements of nucleon structure functions and hadron
spectroscopy.

Originally proposed in 1996 [BKT96], combining the efforts of the CHEOPS
[ABB95, Pau96] and HMC [HMC95] experiments, COMPASS was approved by
CERN in the same year. The proposal for the successor physics program of
COMPASS-II [GHK+10], was approved in 2010, while the recording of physics
data for the original COMPASS proposal, starting in 2002 and ending in 2011,
was still on going. The measurements for COMPASS-II started in the following
year 2012.

Section 4.1 will give an overview of the physics program addressed at COM-
PASS, concentrating on the hadron program, which is most relevant for this thesis.
The layout of the COMPASS experiment, which was used during the COMPASS
Primakoff measurements in 2009, i.e. the setup used to record the data on which
the event selection presented in chapter 8 is based, will be described in 4.2. Having
an experimental setup, which can be adapted to different measurements with only
small changes, the setup for other measurements is similar to the one presented.
However this setup has a feature, which is unique for COMPASS measurements –
a digital electromagnetic-calorimetric trigger. Due to its relevance for this work,
this trigger will be discussed in a separate chapter (see chapter 6). Section 4.4
will give an overview of the different software frameworks, which are used in the
COMPASS experiment.

4.1 Physics Program

The COMPASS collaboration addresses a wide variety of physics topics in the
non-perturbative regime of QCD. Due to the large variety of physics addressed
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at COMPASS, the following discussion can only cover a small part of the COM-
PASS research program and restricts to the topics, which are most relevant for
the presented work. Are more complete picture of the topics addressed by the
COMPASS collaboration can be found in [BKT96, GHK+10].

4.1.1 Pion Polarizability

Chiral perturbation theory (ChPT) is an effective theory deduced from QCD,
which describes the non-perturbative regime of QCD (see section 1.2). While
some of the calculations done in the framework of ChPT, like the pion-pion
scattering length, which was measured in Kaon decays, could already be con-
firmed experimentally, some still need confirmation. The measured value of
απ = (2.0±0.6stat±0.7syst) ·10−4fm3 [AAA+15b] is in good agreement with cal-
culation done in the framework of ChPT. However some tension with previous
measurements remain. In order to reduce uncertainties a data set with roughly
ten times the number of events was recorded in 2012 and is subject to a similar
on-going analysis.

4.1.2 Measurement of Radiative Width

The radiative decay is an important tool to study the distribution of electric
and magnetic currents within mesons and therefore their internal structure. De-
duced from the few days of hadron data taking at COMPASS in 2004, a mea-
surement of the radiative decays a2(1320) → πγ, a magnetic quadrupole transi-
tion, and π2(1670)→ πγ, an electric quadrupole transition, had been performed
and is discussed in more details in [Krä14] and [AAA+14b]. The COMPASS
measurement adds an important contribution to the measurements of the ra-
diative width Γ0(a2(1320) → πγ), which was measured several time before (see
[MAA+77], [CBB+82] and [MAA+01]) and predicted using various models (see
[Ros81], [AO88] and [IYO89]). Γ0(π2(1670) → πγ), being measured at COM-
PASS for the first time, can only be compared to model predictions, which can
be found in [MYO+13]. The typically low cross section and numerous background
processes make the direct measurement of radiative decays of a resonance X to
a πγ final state is difficult to accomplish. Thus the COMPASS measurement
exploits the Primakoff effect. The radiative production cross section of the reso-
nance X is measured in π−-Lead interactions by studying the π−π−π+ final state.
Partial-wave analysis techniques are used to distinguish diffractive and radiative
processes. 3 million exclusive π−π−π+ events in the small squared our-momentum
transfer regime (t′ < 0.01 GeV2/c2), which were recorded in 2004 using 190 GeV
π− beam, enters the partial-wave analysis.

The differential cross section for Primakoff production of a broad resonance
X is given by
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Figure 4.1: Total waves intensities of JPCM ξ Lπ = 2++1 ρD π waves (a) and
JPCM ξ Lπ = 2−+1 f2 S π (b) waves. The intensities are fitted with Breit-Wigner
shapes. From [AAA+14b].
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dσ

dmdt′
= 16αZ2

(
m

m2 −m2
π

)3
m2

0Γπγ(m)Γfinal(m)

(m2 −m2
0)

2
+m2

0Γtotal(m)2

t′

(t′ + tmin)2 |F (t′)|2.

(4.1)

Γtotal(m) denotes the the total mass-dependent width of the resonanceX. Γfinal(m)
is the mass-dependent width of resonance X decaying to the investigated final
state. Here Γπγ(m) = fdynπγ (m) · Γ0(X → πγ) is the mass-dependent radiative
width, with the factor fdynπγ (m) accounting for the mass-dependence.

Thus the total cross section in a certain mass and t′ range given by the prod-
uct of a normalization integral CX and the radiative width Γ0(X → πγ) of the
resonance.

σPrimakoff =

∫ m2

m1

∫ t′2

t′1=0

dσ

dmdt′
dt′dm = Γ0(X → πγ) · CX , (4.2)

and it can be determined experimentally as

σPrimakoff =
Nx/ε

L · CG2 ·BR(X → π−π−π+) · εresol

. (4.3)

Here, the integrated luminosity L is measured analyzing decays of beam kaons.
The branching fraction of the resonance X decaying into the three-pion final
state BR(X → π−π−π+) is taken from the PDG [B+12], CG denotes the re-
spective Clebsch-Gordan coefficient. εresol accounts for effects of the experimental
resolution. The quantity Nx/ε is determined by fitting Breit-Wigners functions
to the acceptance-corrected intensity obtained by a mass independent partial-
wave analysis, similar to the analysis described in section 10, in the four mo-
mentum range t′ ≤ 0.001 GeV2/c2 in bins of the invariant mass of the outgoing
three-pion mass m3π. The radiative width of the a2(1320) is extracted by fit-
ting the mass-dependence of the JPCM = 2++1ρ[D]π total waves intensities1

(see figure 4.1(a)) and that of the π2(1670) by fitting the mass-dependence of
the JPCM = 2−+1f2[S]π total waves intensities (see figure 4.1(b)), were JPCM
are the quantum numbers of the resonance X as described in chapter 10. The
normalization is obtained by measuring the decay of kaons, present in the beam.
For the radiative width, one gets

Γ0(a2(1320)→ πγ) = (358± 6± 42) keV/c2 (4.4)

and
Γ0(π2(1670)→ πγ) = (181± 11± 27) keV/c2 · 0.56/BRf2π. (4.5)

In case of the π2(1670), the factor 0.56/BRf2π accounts for the uncertainty of

1The coherent sum of all partial-waves with the described properties.
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Figure 4.2: Dependence of the cross section of π−γ → π−π−π+ on the center
of mast energy

√
s = m3π measured at COMPASS 2004. The error bars shows

only the statistical uncertainty, while the total systematic uncertainties is given
as dashed line at the bottom of the histogram. From [AAA+12].

the branching ratio BRf2π, which was given as 0.56 by PDG at the time of the
analysis.

4.1.3 Chiral-Dynamics Near Threshold

Similar to the work presented in this thesis, the partial-wave analysis used for
extracting radiative widths (see section 4.1.2) can be applied for three-pion masses
down to the three-pion threshold. Extending the isobar model of partial-waves,
with a non-isobaric chiral wave, the total cross section of π−γ → π−π−π+ is
measured. In the range, in which ChPT is expected to be applicable, i.e. up to
a few pion masses above threshold, the result is used to verify the prediction of
ChPT calculations (see section 1.2). The observed cross section (see figure 4.2) is
in good agreement with leading-order calculations of chiral perturbation theory.
However, in case the final state contains three charged pion the cross section
expected from LO and NLO calculation (see figure 1.1), lie close together. Thus
experimentally it is difficult to distinguish the two solutions. A more detailed
discussion of this analysis can be found in [AAA+12] and [Gra12].

4.2 Experimental Setup

The COMPASS experiment is located at the M2 beam line in the CERN north
area. It is an approximately 60 m long two staged spectrometer (see figure 4.3)
and can be divided into three parts. The part upstream the target, the large angle
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Figure 4.3: Schematic view of the COMPASS spectrometer. The beam enters
from the left. The CEDARs on the very left are positioned 30 m upstream of the
target. (From [AAA+14a]).

spectrometer (LAS), which provides the large angular acceptance of 180 mrad,
and the small angle spectrometer (SAS), which allows precise measurement of
particles with momentum larger than 5 GeV/c. Each of the two spectrometers
are build around a dipole magnet, preceded and followed by tracking telescopes,
and are equipped with electromagnetic and hadronic calorimetry as well as muon
identification. A Ring Imaging Cherenkov Detector (RICH) located in the LAS
provides particle identification for particles with momentum starting at a few
GeV/c up to approximately 45 GeV/c.

The apparatus can be adapted to the requirements of the different physics
measurements, having in common the requirement for a high-rate capability and
large angular acceptance. During the years, the apparatus has undergone several
upgrades. Besides it flexibility, the apparatus configuration as used during the
period of 2009 Primakoff data taking will be described here.

The M2 beam line is described in section 4.2.1. Section 4.2.2 will describe the
beam telescope, followed by the description of the LAS (section 4.2.3) and SAS
(section 4.2.4). Section 4.3 will give a short overview of the detectors in use. A
detailed description of the initial spectrometer setup can be found in [AAA+07],
while [AAA+15a] focuses on the setup for measurements with hadron beams.

4.2.1 Beam Line

For its physics program, COMPASS uses high intensity beams of tertiary muon or
secondary hadron with a nominal momentum of approximately 160 and 190 GeV/c,
respectively. These beams are delivered by the CERNs Super Proton Synchrotron
(SPS) to the M2 beam line. A beam of low energetic electrons is used for detector
calibrations.

In order to produce a beam of secondary hadrons, protons with momenta of



4.2. EXPERIMENTAL SETUP 33

400 GeV/c are extracted from the SPS during a period of 9.6 s and guided to
the primary production target T6, where the conversion to a beam of secondary
hadrons takes place. Depending on other users of the SPS, this process is repeated
every 30 to 48 s, giving the so-called spill structure. The primary production
target T6 is interchangeable from so called empty or air target, i.e. absence of
any solid target material, up to a 500 mm-thick beryllium target. By inserting
a hadron absorber, a beam of tertiary muons can be extracted. The momentum
of the extracted beam particles as well as their charge are selected by adjusting
the optics of the beam line. The COMPASS hadron program uses high intensity
hadron beams with 190 GeV/c and typically 5 · 106 particles/s, which are realized
by impinging 9 · 1012 protons/cycle onto the 500 mm thick Beryllium production
target. The number of protons per cycle and thus the intensity of the beam may
vary dependent on other SPS users and technical issues.

4.2.2 Target Region and Beam Telescope

The Beam Telescope starts around 100 m upstream of the target with the Beam
Momentum Station (BMS), which measures the momentum of individual par-
ticles contained in the muon beam. The BMS consists of six Scintillating Fibre
(SciFi) detectors grouped around an analyzing magnet and is removed for hadron
beams due to the large interaction length of the SciFi. The 2009 setup includes
two cherenkov differential counters with achromatic ring (CEDAR), which are
located around 30 m meters upstream of the target. These detectors provide par-
ticle identification for beam particles. The beam telescope in front of the target
consists of fast trackers, i.e. two SciFi detector and three cryogenic silicon micro-
strip detector stations. Scintillating veto counters define the beam diameter and
separate the beam from the beam halo. The target is surrounded by a recoil pro-
ton detector (RPD), which, in case of proton targets, allows to detect the recoil
particle. Due to the properties of solid nuclear targets, this detector does not
play an important role for the 2009 Primakoff measurement, which uses a 4.2 mm
thin nickel disc as target. The disc is mounted into the RPD using the detector
as part of the holding structure.

4.2.3 The Large Angle Spectrometer

The second part of the spectrometer, the large angle spectrometer, is built around
SM1, a 1.1 m long dipole magnet with an integrated field strength of 1.0 Tm lo-
cated 4 m downstream of the target. The LAS is designed to ensure a polar
acceptance of 180 mrad. The preceding tracker telescope starts shortly behind
the target with two stations of cryogenic silicon microstrip detectors, which en-
sure a good vertex resolution, followed by a set of various small and medium-sized
gas detectors. Downstream of SM1, the setup is completed with the RICH detec-
tor, providing particle identification, an electromagnetic calorimeter (ECAL1 ), a
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hadronic calorimeter (HCAL1 ) and a muon filter, which allows to identify high
energetic muons. Thereby, ECAL1 and HCAL1 as well as the muon filter have
a central hole matching the acceptance of the SAS.

4.2.4 The Small Angle Spectrometer

The small angle spectrometer is designed to provide good momentum resolution
for particles with momenta larger than 5 GeV/c and has an angular acceptance of
±30 mrad. The analyzing magnet SM2, located 18 m downstream of the target,
has an integrated field strength of 4.4 Tm. The electromagnetic (ECAL2 ) and
hadronic (HCAL2 ) calorimeter are positioned at the downstream end of the SAS
and are followed by a muon identification system.

4.3 Particle Detection at COMPASS

The following section gives a short overview of the detectors used for the different
parts of the COMPASS spectrometer. A more comprehensive discussion can be
found in [AAA+07, AAA+15a].

4.3.1 The Tracking System

The tracking system of COMPASS consists of planar tracking detectors, which are
grouped in stations. Each detector station consists of multiple tracking detectors
of the same type, which are mounted at approximately the same z-position2, but
with different orientation. In order to provide a large acceptance for slow parti-
cles, detectors with several square-meters of active area are required. On the other
hand, going to small scattering angles, the particle rates quickly increase with de-
creasing distance to the beam. Thus, a variety of different detectors technologies
and sizes is used at COMPASS. Several types of wire-based gaseous drift detec-
tors such as multiwire proportional chambers (MWPCs), drift chambers (DC)
and straw tubes provide the large-area tracking. Going closer to the beam, two
types of micro-pattern gas detectors with stripe readout are used – micromegas
and gas electron multipliers (GEMs). In the beam area itself, the particle rate
exceeds 105 mm−2 s−1, which exceeds the rates possible to readout with the de-
tectors mentioned so far. This area is covered by scintillating fibre detectors and
GEM detectors with pixel readout and in the target area, as mentioned before,
with silicon stripe detectors, which are operated at cryogenic temperatures.

2With the z-axis pointing along the axis of the incoming beam.
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4.3.2 Particle Identification

An important aspect of the COMPASS spectrometer is the particle identification
(PID). Different identification schemes are applied. The identification of the
beam pions and kaons is provided by two CEDAR detectors, which are installed
several meters upstream of the target. They rely on the Cerenkov effect. Another
Cerenkov detector, the RICH, can identify charged pions, kaons and protons with
a momentum up to 45 GeV/c. Muon identification is provided by a combination
of iron (Muon-Filter 1) and concrete (Muon-Filter 2) absorbers and drift tube
detectors, namely Muon-Wall 1 (MW1) and 2 (MW2). Last but not least, photons
are detected in the two electromagnetic calorimeters and can be identified by using
information of the tracking system.

4.4 Software

Taking approximately 0.5 PByte of raw data per year, COMPASS relies on several
pieces of software, which are used during data recording and for the analysis of the
data. In the following, an overview of the software components and frameworks
used at COMPASS will be given, concentrating on the components relevant for
the work presented in this thesis.

4.4.1 ConfigServer - A Distributed Frontend Configura-
tion Service

Most of the frontend electronics used in COMPASS need to be programmed or
configured before they can be used. While this, in principle can be done manually
or partial manually using scripts, due to the total number of front ends, different
settings and the expert knowledge required, this is practically not achievable.

Thus, this task is taken over by the ConfigServer, a process which runs on
all frontend computers, with a direct programming interface to the electronics
[Kuh07]. The configuration is stored in a database, which is consulted by the
ConfigServer processes retrieving a list of frontend modules, which are connected
to the frontend computer, it is executed on, and the required settings. These
modules identified by integer numbers, so-called srcids, are registered to a master
process via the Distributed Information Management System (DIM) developed at
CERN3. All control commands are distributed via this interface.

The program, written in C++, has a modular design, which handles the load-
ing and controlling of different type of frontends. The core program handles the
communication via DIM and provides some general interfaces like database con-
nection, VMEbus (Versa Module Europa bus) and I2C (Inter-Integrated Circuit)

3dim.cern.ch
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access. The functionality of retrieving configuration as well as writing the con-
figuration to the frontend is then implemented in these modules. This design
provides a maximum of flexibility to adapted the software to the requirements of
different frontend electronics.

4.4.2 The Online Filter Cinderella

Cinderella is a framework, developed in ANSI C, which provides online filtering
capability to the data acquisition system (DAQ) of COMPASS [Nag05]. Being
part of the COMPASS data acquisition system, every event, which is acquired
from the frontend electronics upon a trigger signal, is processed online by this
software, using a computer farm at the experimental cite. Due to the fact, that
events are processed online, there are strong time constraints.

In order to provide flexibility for different experimental setups as well as dif-
ferent physics channels, the framework is designed modular with inter module
dependencies. The configuration is managed via XML files. CINDERELLA acts
not only as a second level trigger, but also as an online monitoring system, as in
the case of monitoring of the configuration parameters of the digital trigger (see
chapter 6).

4.4.3 The ROOT framework

ROOT [BRo14, ABB+09], developed at CERN and written in C++, is an object
orientated software framework, which provides basic functionality and utilities
for analysis of large amounts of data in high energy particle physics and is used
by many COMPASS software projects.

4.4.4 Event Reconstruction with CORAL

Event reconstruction at COMPASS is done using CORAL4. The detector re-
sponse of real data or Monte Carlo simulation is taken as input to reconstruct
full event information, i.e. particle tracks, vertices, calorimeter clusters, particle
IDs. The reconstruction is done in several steps. The first step is the decoding.
During decoding, detector hits are formed out of digitized detector signals, ap-
plying detector mappings and calibrations. For some detectors, like calorimeters,
this includes pulse shape analysis. During the next step, clustering, hits within
one detector, which, by the expected detector response are assumed to origin
from the same particle trajectory, are combined into clusters. The pattern recog-
nition combines clusters of different detectors into track-lets, i.e. straight tracks
in certain spectrometer regions. Those track-lets are combined during bridging.
A Kalman filter is used to get the best track parameters. Upon the track pa-
rameter the vertexing algorithm determines interaction points. Calorimeter hits,

4COMPASS Reconstruction and AnaLysis project
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which are excluded from tracking, are made up into calorimeter showers, which
describes the energy deposit as well as time and position of the detected particle.
If a track crosses the calorimeter in the region of a calorimeter cluster, the cluster
will be associated with the track. The results are stored in Data Summary Trees
(DST) using the I/O functionality of the ROOT framework. There is the pos-
sibility to store additional detector information, like raw data and detector hits
of specific information, which might be used for detector analysis. For physics
analysis the so-called minimal Data Summery Trees (mDST) are used, which con-
tain all relevant information. For the here presented work revision 13489 of the
CORAL framework, which except some fixes for Monte-Carlo data is identical to
the revision used for the initial data production (see chapter 8), is used.

4.4.5 Monte-Carlo Simulations with COMGEANT

COMGEANT simulates particle reactions, including detector response, within
the COMPASS spectrometer. It is used to accomplish Monte-Carlo studies for
COMPASS. Currently, it is based on the well established GEANT 3.21 Monte
Carlo framework, which is used to simulate particle interactions in high-energy
physics. All relevant interactions in the COMPASS spectrometer are simulated
using material and magnetic field maps. Internal or external event generators
may be used as starting point of the event simulation. The output files contain
a list of detector hits, which can be processed with CORAL doing the event
reconstruction. For the presented work revision 384 of COMGEANT is utilized.
This revision contains all general available tuning for the 2009 Primakoff data
taking period.

4.4.6 The Analysis Framework PHAST

The PHysics Analysis Software Tools (PHAST), an object oriented COMPASS
specific analysis framework written in C++, provides a convenient way to access
and analyze the content of DSTs. The framework provides a plugin mechanism
for user defined analysis functions and an easy to use interface to the ROOT I/O
stack for the purpose of storing the results.
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Chapter 5

ECAL2

Calorimeters are detectors, which measure the energy of an incoming particle. In
contrast to tracking detectors, where it is desirable to have a minimum impact to
the passing particle, measuring the energy of a particle is a destructive measure-
ment. In high-energy particle physics two types of calorimeters play an important
role – electromagnetic and hadronic calorimeters. The principle of operation of
these types of calorimeters will be described in this section. As mentioned be-
fore both the LAS and SAS of COMPASS are equipped with electromagnetic
and hadronic calorimeters. All COMPASS calorimeters have similar design and
function principles. ECAL2, the electromagnetic calorimeter of the small angle
spectrometer, plays a prominent role for the work presented in this thesis. There-
fore the discussion will concentrate on the specific properties of this detector and
its setup during the Primakoff run in 2009 (see section 5.2). But before discussing
the details of ECAL2 a short introduction to the fundamental working principle
of electromagnetic and hadronic calorimeters (section 5.1) is given. The readout
system of ECAL2, which is similar to other calorimeters used at COMPASS, is
then discussed in section 5.3, followed by a more detailed discussion (section 5.4)
of the mezzanine sampling ADC (MSADC ), which plays a central role in the
trigger scheme, which is used for the Primakoff measurement and discussed in
chapter 6.

5.1 Principle of Particle Detection

Electromagnetic calorimeters are used to measure the energy of electrons, positrons
and photons. For electrons and positrons at energies of more than a few 100 MeV
the dominant process of energy loss is the emission of photons due to the decel-
eration in the electric field of the nucleus. This process is called Bremsstrahlung.
The dominant reaction for photons at these energies is the production of e+-
e− pairs. By successive combination of these two processes an electromagnetic
shower is generated, which can be detected by its ionization or light signal. The
signal is proportional to the deposited energy and can be detected by suitable
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readout systems.

Hadronic calorimeters are used to measure the energy of hadrons, which gen-
erate hadronic showers by series of inelastic reactions. Hadronic calorimeters are
usually sampling calorimeters build up of alternating layers of absorbing and de-
tecting materials. Hadronic showers have a large variance in number and type
of particles. This and the fact, that only a small part of the energy is actually
deposited into the detecting layer, reduces the energy resolution in comparison
to electromagnetic calorimeters.

5.2 The Detector Layout of ECAL2

During the Primakoff run in 2009, ECAL2 was equipped with 3068 cells, which
were arranged in a grid of 64 × 48 cells leaving a hole of 2 × 2 at the posi-
tion of the undeflected beam. Each cell has a quadratic front surface with of
3.83 cm×3.83 cm. The length of the cells is 45 cm. The central part of the
calorimeter is equipped with 860 Shashlik modules, which are accompanied in
the outer part with GAMS and radiation hard GAMS-R modules, as depicted in
Figure 5.1. The Shashlik modules are made out of alternating layers of lead, which
induce the electromagnetic showers, and scintillating material, which is made out
of plastic. Wave-length shifting scintillating fibres transport the signal to photo-
multiplier tubes (PMTs), which are used to amplify the signal. Figure 5.2 shows
the photograph of a Shashlik module as installed in ECAL2. The GAMS and
GAMS-R modules are made out of transparent blocks of lead-glass and radiation
hard lead-glass, respectively. The signal amplification for the GAMS modules is
also realized with PMTs.

5.3 The Readout Chain of ECAL2

The PMTs attached to the calorimeter modules are connected to shaper cards,
which transform the analogue PMT pulses into pulses with a rise time of 50
to 62.5 ns and a long falling tail. The shaped analog signals are fed into sam-
pling ADCs (see section 5.4). The 12bit ADCs work with a sampling frequency
of 80 MHz. After digitization, pedestals calculated during the off-spill time are
subtracted, setting the baseline to 50 ADC channels. Upon a trigger signal a con-
figurable number of samples per module with configurable latency is transferred
to the central data acquisition system. Thereby, a zero suppression algorithm
reduces the amount of data by only transferring samples from modules, where
the signal exceeds a certain threshold.
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Figure 5.1: Schematic view of ECAL2 showing the cells installed during the 2009
Primakoff data taking period. (From [AAA+15a]).

Figure 5.2: Photograph of a Shashlik module as installed in ECAL2. (From
[AAA+15a]).
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Figure 5.3: Mezzanine sampling ADC module used for ECAL2 readout. (From
[FHK+09]).

5.4 The MSADC Readout

Given the advantage of having access to the pulse shape of a signal, versatile sam-
pling Analog to Digital Convert (ADC) modules [MKP07] are used to digitize the
signals of ECAL2. These ADCs are mounted on mezzanine cards (see figure 5.3),
which makes this card versatile as the mezzanine card can be mounted to different
types of carrier cards. This allows to the same ADC cards in small experimental
setup with only a few channels, which a readout via a local connection, and large
scale setups, like COMPASS. In case of COMPASS the mezzanine cads them-
selves are mounted to 9U1 VME2 carrier cards. The 12bit ADCs chips, which
are mounted to the mezzanine card, are capable of sampling 16 input signals at
a frequency of 40 MHz. In order to reach a sampling frequency of 80 MHz, two
ADC chips run in an interleaved mode. This means both chips are connected the
same 16 input channels sampling at 40 MHz, but the clock signal of both chips
differ by half a clock cycle. Each mezzanine card mounts four chips and is able
to read 16 channels at a combined sampling rate of 80 MHz. The carrier cards
holds four mezzanine cards reading 64 channels in total. Each mezzanine card as
well as each carrier is equipped with a Field Programmable Gate Array (FPGA),
which is used to control the readout and transfer the data to the upstream data
acquisition system. The FPGAs mounted on the mezzanine cards are connected
to the FPGA on each carrier card as depicted in the scheme shown in figure 5.4.
While the FPGAs are operated at 80 MHz in order to increase the bandwidth,

1Height in rack units (1 U = 4.4 cm)
2Versa Module Eurocard, IEEE 1014
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Figure 5.4: Schematic view of the VME carrier card holding the mezzanine sam-
pling ADCs. (From [FHK+09]).

the link between carrier and mezzanine card is driven with 160 MHz. The pro-
gramming and controlling of the ADCs and FPGAs is done via the VME back
plane, enveloping an I2C interface into the VMEbus interface. The data acquisi-
tion itself uses front side connectors running a custom protocol called HOT-LINK
[MKA+09].
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Chapter 6

The Primakoff Trigger

A suitable trigger setup is required to access the low momentum transfer regime
in π−Ni reactions and therefore Primakoff interaction at COMPASS. For the
Primakoff run in 2009, a completely new trigger scheme was developed. This
trigger setup was optimized to measure the Pion polarizability in π−Ni→ π−γNi
reactions, but is also suitable for other physics topics. Aiming for the low transfer
momentum regime, the reactions of interest are identified by a clear signature, i.e
the emission of a hard photon in forward direction. Due to the relativistic boost
the trajectories of the emitted photons pointed towards the center of ECAL2.
Thus a calorimetric trigger sensitive to the energy deposit in ECAL2 is a good
choice to select interesting events. The trigger scheme discussed in the following
was first presented in 2009 [FHK+09]. A more complete discussion with the
focus on the FPGA implementation and performance assessment can be found in
[Hub10].

The choice of implementing a digital trigger have several advantages over an
analog setup. On the one hand time and energy calibrations are used to simplify
commissioning (see section 6.1). On the other hand advanced signal detection
algorithms and pulse shape analysis improve noise rejection and feature extraction
(see section 6.2). The main disadvantage of a digital trigger is its higher latency1

in comparison to analog trigger. While in COMPASS the latency of 500 ns for the
analog triggers are given by the time of flight and signal transmission, the digital
trigger was estimated to need additional 500 ns for digitization and processing.
The maximum achievable latency is defined by the caching capabilities of the
front-end electronics. A latency of 1.2µs was chosen, which is still compatible
with the limitation given by the front-end electronics and provide some safety
margin with respect to the estimated latency required by the digital trigger logic.

In order to avoid development and production of new hardware, the function-
ality of the existing ADC readout as described in section 5.4 had been extended
by modifying the firmware of the FPGA. Thereby, the strongest limitation to the

1The time between the moment, where the beam particle crosses the target position, and
the moment, where the trigger decision reaches the front-end electronics.
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implemented trigger logic is the limited communication bandwidth between the
FPGAs, which has to be shared with the readout logic. Due to this limitation the
trigger logic restricts itself to a rather simple summation scheme. The scheme
respects the time and amplitude information, which are obtained by means of
pulse-shape analysis, and incorporates the use of energy and time calibrations.
In principle all calorimeter cells maybe considered. However the contributing
calorimeter cells can be freely chosen by marking active cells. Finally, a trigger
decision is formed by comparing the energy sum to a threshold. The newly de-
signed trigger backplane, the only new hardware component, supports the output
of two trigger signals with two different thresholds. The threshold had been set to
approximately 40 and 60 GeV. The output signals of the backplane are so-called
level signals, which are present for the length of a clock cycle of the main refer-
ence clock of the COMPASS experiment, i.e. 25.6 ns. They occur synchronous to
the 80 MHz clock, which is used to drive the FPGAs. Thus these signals provide
only limited time information. A precise trigger time is obtained by building the
coincidence of each of this signals with a minimum-bias beam trigger, which uses
the coincidence of two SciFi detector stations, which are placed upstream of the
target.

6.1 Time- and Energy-Calibrations

In many trigger schemes, the coincidence of signals from different detectors play
an important role. This is especially true for a calorimetric trigger, where each
cell, which is considered, has its own readout and amplification system and there-
fore also its own latency. This has to be respected when considering the coinci-
dence of the signals. In contrast to an analog trigger setup, where all latencies
have to be adapted to the same value2, in the digital trigger setup at COMPASS,
this is fixed by applying time calibration. In case of a calorimetric trigger, which
is sensitive not only to the appearance of a signal but also to the energy deposit,
it is important, that all signals have the same or at least similar response to the
energy deposit. Building an analog trigger, this requires are fine-tuning of the
high voltage setting of the PMTs. For the digital trigger energy calibration are
used to account for difference in the gain. Using time and energy calibration
instead of fine-tuning cable length and high voltage of individual channels has
obviously a big advantages during commissioning and operation of the trigger.

The energy calibrations are obtained during a dedicated calibration proce-
dure, which is used to determine basic calibration for offline analysis and has to
be applied in any case. Indeed, the same energy calibrations are used for offline
reconstruction and triggering3. The programming of the trigger modules is done

2Traditionally the cable length and therefore the delay for each individual channel are
adapted.

3Offline reconstruction however uses additional corrections to the energy calibrations, which
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using the ConfigServer, which converts the floating point values stored in the
database into 10bit integers as required for the FPGA4. An energy equivalent is
calculated by multiplying the observed amplitude of a signal with the correspond-
ing calibration value. The algorithm, which converts the floating point values to
integer, takes the targeted energy threshold into account making optimal use of
the available precision. In general the ConfigServer retrieves the configuration
necessary to program the frontends from a database. Thus the calibrations and
configurations of the trigger are also stored into a database. In contrast to the
calibration files, the database is extended by additional fields. This fields allows
on the one hand tracking of the configuration active at a certain time and on the
other hand easy management of active and passive cells, i.e. cells used to build
the trigger decision and cells, which are ignored.

A similar database holds the time calibrations. The time calibrations are
determined by a specific module added to the COMPASS online filter Cinderella,
which runs on a computer farm at the experimental site providing online analysis
capabilities. It also monitors the stability of energy calibrations by evaluating
LED pulses injected into the calorimeter. In order to determine the latency of
individual cells a software implementation of the constant fraction algorithm (see
section 6.2), which accounts for the latency between individual trigger signals
and the experimental clock, is used. Evaluating the time distribution of detected
signals, the latency is measured on a run by run basis. This allows monitoring of
the stability of this quantity and provides a convenient update mechanisms, thus
new calibration can be applied easily. For the FPGA programming, a common
offset, which allows to adjust the latency with respect to other signals, like the
beam trigger, is added to the time calibration. Technically the time calibrations
are split into two parts. The first part is a multiple of the clock cycle of 12.86 ns,
which directly configures the depth of a delay buffer. The second part is the
remainder, which is added to the measured time tsignal of individual signals(see
section 6.2).

6.2 Signal Detection on an FPGA

One of the key components of the digital trigger is the identification of a signal
and extraction of its features, i.e. time and amplitude. This is done on chan-
nel level applying an algorithm resembling a Constant Fraction Discriminator
(CFD). A CFD splits the incoming signal into two, delaying and inverting one
and attenuating the other one to a fixed fraction. Independent of the signal am-
plitude the sum of this signals becomes zero at a time, which is fixed to the signal
shape and therefore a good measure of the signal time. The amplitude of the sig-

are not available at the time of data recording.
4The floating point performance of FPGAs is much worse than their integer performance.

Thus floating point operation has to be avoided.
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nal is measured at a fixed latency to this time exploiting the fact that all signals
have similar shapes. Providing a digital implementation of the algorithm, the
algorithm has to be tuned to give good precision and high efficiency. Targeting
the FPGA as execution platform the attenuation of the inverted signal is replaced
by an amplification of the delayed signal s(t+ ∆t), replacing a division, which is
inefficient on FPGAs, by a much more efficient multiplication with factor a. The
inversion of signal s(t) is omitted by calculating the difference instead of the sum

d(t) = s(t)− a · s(t+ ∆t). (6.1)

The time tsignal a signal is triggered, is defined by the condition

f(t0) = 0 AND f(tsignal − dt) < 0 AND f(tsignal + dt) > 0. (6.2)

The long exponential tail of the signal, as it comes out of the shaper, does not
provide any time information5. Thus choosing the two parameters a and ∆t in
a way that this condition is fulfilled, when s(t) is approaching its maximum, the
full information of the rising flank of the signal is used to achieve the best possible
time resolution. The sampling structure of the data, which gives the amplitude
of the signal at discrete times, requires modification of the algorithm. Thus for
each sample i the difference di between the pedestal corrected signal si at sample
time i and the amplified signal a · si−n at sample time i− n is calculated

di = si − a · si−n. (6.3)

Thereby a signal is triggered under the conditions

di−1 > 0 AND di ≤ 0 AND si−1 − si > b, (6.4)

where b is a programmable threshold rejecting noise. This parameter is chosen to
20 (ADC channels), which dependent on the actual energy calibration implements
an amplitude threshold of approximately 1 GeV. Figure 6.1 shows the signal si
and the delayed and amplified signal a · si−n as well as the resulting difference di.
The parameters are chosen to a = 2 and n = 2. This parameters are also used
for the final implementation of the trigger algorithm.

Keeping in mind the implementation on the FPGA, the time information are
similar to the time calibration, split into a coarse time tcoarse given in full clock
cycles and a fine time tfine, which provides sub clock cycle information. The coarse
time of the signal is given by the sample index i

tcoarse = i (6.5)

5Without prior knowledge of the amplitude
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Figure 6.1: The digital constant fraction discriminator. Shown is the signal si,
the delayed and amplified signal 2 ·si−2 and the difference di of both. Taken from
[FHK+09].

while the fine time of the signal is obtained via linear interpolation

tfine =
di

di−1 − di
. (6.6)

In order to avoid divisions, the calculation of (di−1 − di)−1 is implemented using
a look up table. Note that the fine time is negative, thus the signal time tsignal is
obtained via summation

tsignal = tcoarse + tfine. (6.7)

In order to compensate the dispersion of signals in different channels the earlier
discussed time calibration tshift is used to synchronize the signals off all readout
channels by calculating the synchronous signal time

tsignal,sync = tsignal + tshift. (6.8)

The amplitude smax of the signal is determined by scanning three sample with
fixed latency to the coarse time tcoarse for its maximum, which is converted to a
normalized amplitude a by multiplication with the corresponding energy calibra-
tion constant cecalib

a = cecalib · smax. (6.9)

The normalized amplitude is filled into time bins according to the measured signal
time. Implemented in a synchronized FIFO running at the internal frequency of
the FPGA in order to allow for fluctuation two bins are filled. The first bin is
filled using the coarse time tcoarse,sync of the synchronous signal time. The second
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bin is chosen according to the Most Significant Bit (MSB) of the synchronous fine
time. The MSB of the fine time indicates, if the signal appeared in the first or
second half of the clock cycle, thus the previous or next bin is chosen to be filled.

6.3 Summation of Signals

As mentioned before, the bandwidth between the mezzanine card and the carrier
card as well as between the carrier card and the back plane module is limited. This
has to be taken into account when calculating the trigger energy sum. Thereby,
not only the piece of hardware, where each summation step is executed, but also
the precision of input and output values have to be chosen carefully.

The ADC chip, which is used to digitize the analog signals, has a dynamic
range of 12 bit. The normalized amplitude is calculated by multiplying the ampli-
tude of the detected signal given in ADC channels with the corresponding 10 bit
calibration value. In order to account for the precision of the measurement, only
the 12 most significant bits (MSB) of the result are taken into account. Summing
over all connected channels, the first step of summation is executed on the mez-
zanine cards. The result of the summation has formally a width of 16 bit. Taken
into account, that the physically interesting range of the sum is identical with
the range of a single cell, only 12 bits are transferred to the carrier card handling
an overflow by transferring the maximum value 0xFFF. If no overflow occurs the
12 least significant bits (LSB) are transferred. The transfer to the carrier card is
done using a semi-serial connection transferring six bits at 160 MHz. The FPGA
on the carrier card is used to calculate the sum of the 64 channels connected
to the four attached mezzanine cards. The resulting 15 bit value is reduced to
nine bits considering overflows and transferred to the back-plane, where the total
sum is calculated. In 2009, the trigger scheme, is restricted to the inner part of
ECAL2. Thus only one back-plane module, which is connected to up to eight
carrier cards, was used. However the design allows to extend the trigger up to
the complete calorimeter by combining multiple back-plane modules. The back-
plane module is equipped with two NIM outputs, which are activated, when the
sum over all channel exceeds the threshold, which is assigned to the output. The
thresholds can be independently assigned to each of the outputs. The described
data flow is visualized in figure 6.2.

6.4 Configuration of the Trigger

Figure 6.3 shows the shower occupancy of ECAL2, which was obtained during the
2009 data taking period. The dashed line indicates the area, which was connected
to the back-plane and therefore would have been available for the trigger decision.
The solid line encloses the area, which was considered for the trigger. It is an area
of 12×12 cells in the center of ECAL2, where 3×4 cells, which are located around
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Figure 6.2: Schematic drawing of data flow form the ADCs to the trigger back
plane. The flow chart is illustrating the evolution of the data width within each
calculation and transmission step. While each calculation increase the width of
the intermediate result, the width has to decreased during transmission due to
bandwidth limitations. (Based on [Hub10]).
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the hole where the undeflected beam pass, are excluded. The correlation between
the occupancy and the active area is clearly visible. As mentioned before in 2009
the thresholds for the two independent NIM signals, which occur synchronized to
the internal 80 MHz clock, were set to 40 GeV and 60 GeV. The triggers formed
with coinciding beam triggers are called Prim1 (40 GeV threshold) and Prim2
(60 GeV threshold), respectively. For typical signals and calibration constants,
the energy resolution achieved by the summation process is in the order of 1 GeV.
In order to match the readout capabilities of the data acquisition system for the
Prim1 trigger only every second trigger attempt is considered.

6.5 Evaluation

Besides the evaluation of general feasibility the expected trigger rate and perfor-
mance was evaluated before the trigger had been implemented. The results of
this study are presented in 6.5.1. In [Hub10] a detailed analysis of the perfor-
mance finally achieved and of observed problems is presented. Nevertheless in
section 6.5.2 an overview of the findings of this analysis will be given.

6.5.1 Performance Expectation

As part of the feasibility study, the expected trigger performance had been eval-
uated. Thereby, the capability of the online filter Cinderella to run offline, i.e. on
recorded data, was exploited. A configurable module, which besides the full eval-
uation of the trigger scheme allows to determine the time calibrations (see sec-
tion 6.1), was developed. A central feature of this module is the implementation
of the mentioned CFD algorithm, which can be extended to an optional full simu-
lation of the complete trigger algorithm. Further options allow to account for the
limited precision of the algorithm implemented on the FPGA. The evaluation is
based on a data sample of 50 spills recorded in 2008, when a proton target was in
use. Random and beam trigger events are selected to extract a minimal-bias event
sample. It is expected, that the spectrum is dominated by strong processes. Thus
considering, that the proton and nickel target have similar interaction length, it
is assumed, that the proton data allows to estimate trigger rates for different
trigger topology and algorithms. Therefore the 32 samples, which are recorded
for each channel are evaluated. The trigger rate is estimated on bases of beam
trigger events, thus the fraction of beam triggers, which coincide with calorimetric
triggers, is obtained. This fraction was estimated to 1.8 % and 1.1 % for Prim1
and Prim2 configuration. This numbers can be set in correlation with observed
trigger rates. During physics data taking about 2.7 · 107 beam trigger attempts
are received during the on spill time of each spill. Having an on-spill time of 9.6 s,
this corresponds to trigger frequencies of ≈ 50 kHz and ≈ 30 kHz, respectively.
This is in good agreement with the 4.5·105 and 2.7·105 trigger attempts per spill,
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which were observed in 2009. It should be mentioned, that during the Primakoff
run a slightly modified beam trigger with a rate of 2.6 ·107 attempts per spill was
used to form the coincidence. Figure 6.4 shows the time residual distribution after
applying time calibrations for all signals occurring in the 3068 cells of ECAL2 for
the 50 spills event sample used for evaluation. For this small data sample, which
was recorded with lower luminosity, the average time resolution σ̄t of ECAL2 is
determined to be below 1 ns. Due to various effects, like temperature variation
and luminosity effects, the time resolution, which is achievable for an extended
run, is expected to be a bit worse. From past experience with ECAL2 it is ex-
pected, that time calibrations are quite stable. Further more the time calibration
are continuously monitored, allowing for adaptions. Thus also for longer runs a
time stability in the order of a few ns is achievable.

6.5.2 Evaluation of the Trigger Performance

A detailed study of the trigger performance was carried out on the basis of the
data recorded during the Primakoff data taking period in 2009 [Hub10]. As an
outcome of this study the average time resolution is determined to σ̄t = 1.04 ns
(see [Hub10] section 5.4), which is in the perfect agreement with the expectations
(see section 6.5.1).

Besides the time resolution of the signal, the behavior of the threshold plays
an important role. This is especially true, when a good understanding of the
trigger properties is required. This is the case, when modeling the acceptance
of the trigger, where a better defined threshold, finally yield larger statistics and
access to events closer to the thresholds. The threshold behavior of the Prim2
trigger is studied on the basis of the Prim1 sample, investigating the dependence
of the fraction of events, where both Primakoff trigger have fired, to the ones,
where at least the Prim1 tag is set. The dependence of this fraction on energy
Ethr ≤ Esum is evaluated (see figure 6.5). The energy sum can be calculated
using either the energy calibration available for the hardware trigger (blue) or
considering further corrections, which are only available during offline production
(yellow). These corrections include corrections based on LED monitoring as well
as E- and time-in-spill -dependent corrections, which are obtained using a π0-
calibration algorithm. Unfortunately, there is no reference sample with a suitable
number of events, which allows to study the Prim1 threshold. Thus, a similar
evaluation of the Prim1 trigger is impossible.

Already during the data taking some implementation-specific problems have
been observed by means of data quality monitoring. The largest impact to the
data is a problem of the synchronization between FPGA and ADC. This problem
effects always all eight channel connected to one ADC. Due to instabilities, which
are for example introduced by thermal effects, the timing of such a channel group
may change by a clock cycle, i.e. 12.86 ns. These time jumps can occur from spill
to spill. For the recorded data, this can easily be corrected by applying time
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calibrations, which account for the time shift. The trigger logic, which is also
affected by this time jumps, has some build in robustness against such problems.
This is achieved by accounting each detected signal in two consecutive clock cycle
and thus extending the signal to 25.6 ns. Thus the effect to the trigger, which is
discussed in details in [Hub10], is found to be minimal. Considering a reference
frame like the Gottfried-Jackson frame (see section 11.1), no acceptance effects
with angular dependencies are introduced. Only a small change of the overall
efficiency is expected. A detailed discussion of all problems, which occurred, can
be found in [Hub10].
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Figure 6.3: Distribution of showers in ECAL2, which are detected during the
Primakoff data taking period in 2009. Only showers with energy above 2 GeV
are considered. x and y are divided by the cell width of 3.83 cm and the origin
of the coordinate system is set to the lower left corner of the calorimeter. The
area considered to form the trigger decision is indicated by the polygon. The
outer rectangle indicates the area, which is connected to the back plane module,
which was installed during the 2009 Primakoff run. The cell structure of the
calorimeter is apparent due to clusters, which due to threshold effects on cell
level do not provide the full spacial resolution.
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Figure 6.4: Time residual of all 3068 ECAL2 channels after applying time shifts,
determined for a 50 spill data sample with Proton target. The ADC threshold
for noise rejection is set to 10 ADC channels. (From [FHK+09]).

Figure 6.5: Threshold behavior of the Prim2 trigger for the energy calibration
available at the time of data taking (blue) and energy calibrations available for
production (yellow). (From [Hub10]).
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Chapter 7

Reconstruction of the Pion Beam
Energy

While the beam trajectory of the incoming beam particle is determined to high
precision, using the silicon beam telescope, due to the removal of the beam mo-
mentum station for the hadron beam the momentum and therefore the energy of
individual beam particles in the hadron beams is not measured at COMPASS.
However the beam momentum has to lie within the momentum distribution im-
posed by the beam optics, which incorporates correlation between beam energy
and trajectory. Extrapolating to the z position of the target at −72.5 cm the
beam trajectory is defined by its transverse coordinates x and y and its incli-
nation dx/dz and dy/dz. Figure 7.1 shows the dependence of the beam energy,
which is determined through analysis of the π+π−π− final state, on each of the
parameters of the beam trajectory. Clear correlations are observed. The beam
energy, however, depends on all four parameters. Thus the complete picture is
much more complex.

Having better knowledge of the beam momentum, as the considerable large
spread of 3 % around the mean energy of the beam, namely 191 GeV/c, has consid-
erable impact to many physics analysis, where the beam energy or its momentum,
respectively, plays an important role. In order to get a description of the highly
non trivial dependency of the beam energy E(x, y, dx/dz, dy/dz) on the beam
trajectory parameters x, y, dx/dz and dy/dz, about 1.37 million events from the
2009 Primakoff data set, which have three charged pions in the final state, are
used to train an artificial neural network (NN ). The trained network then can
be used to determine the beam energy of beam particles depending on the beam
trajectory parameters.

In section 7.1 a short description of the artificial neural networks is given.
The focus of this discussion lies on the multilayer perceptron, which is the type
of network chosen for this application. The selection of training samples is shortly
described in section 7.2. Last but not least the achievements of this approach are
presented in section 7.3. A detailed discussion of this topic can also be found in

59
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Figure 7.1: Dependence of the beam energy measured by final state analysis of
π+π−π− events on the parameters of the beam trajectory.

[FK12].

7.1 Neural Networks - Short Introductions

Artificial neural network, inspired by the human brain, consist of neurons with
relative simple logic. The neurons process multiple input signals and generate
one output signal. The network is formed by connecting the neurons with each
other using links, which are often called synapses. Besides the simple logic of
the neurons, this kind of networks is an approach to solve problems, which are
otherwise computationally difficult to solve. In the following the discussion will
focus on multilayer perceptrons (MLP). MLPs are a class of feed-forward artificial
neural network, that maps a set of input data onto an appropriate set on output
data. It consists out of at least three layers. The input and the output layer have
one neuron for each input and output variable, respectively. They are connected
via one or more hidden layers with arbitrary number of neurons. Each neuron
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of the output and hidden layers are connected to all neurons of the preceding
layer. Figure 7.2 shows a simple example of such a MLP. In order to describe the

Input Hidden Output

Figure 7.2: Schematic drawing of a multilayer perceptron having three input
neurons, two output neurons and one hidden layer, which have four neurons.

topology of a given MLP a commonly used notation is used. The input and output
layers are described by a comma separated list of variables. Hidden layers are
characterized by the number of neurons. Layers are separated by colons starting
from the input layer and ending with the output layer. Using this notation the
MLP depicted in figure 7.2 is characterized by i1, i2, i3 : 4 : o1, o2.

Since otherwise the topology can be reduced to the two layer schema of input
and output layer, except for the input and output neurons, all neurons have non-
linear activation functions. For typical application sigmoids, which are evaluated
for a linear combination of the input values, are used. The process to adapt the
weights of the input values is called training. MLPs are trained using a supervised
learning technique called backpropagation, which is a least mean square algorithm.
This technique thereby uses a set of examples, where input and output values are
given, to adapt the weights. The same data set is repeatedly fed to the training
algorithm until the error on a test sample, which is split up from the training
sample, does not significantly improve any more. Processing the test data set
once is called an epoch.
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7.2 The Training Sample

In order to get a suitable set of data, which can be used as training sam-
ple for the neural network, 1.37 events in the low momentum transfer regime
t′ ≤ 0.02 GeV2/c2 having three charged pions in the final state are selected. Ad-
ditionally, in order to separate from final states with less particles in the final
state, the maximum energy of a single pion in the final state is required to be
smaller than 155 GeV. The energy transferred to the target is negligible, the
energy sum Eπ−π−π+ of the final state pions equals the energy of the beam due
to energy conservation. As the COMPASS spectrometer has a good momen-
tum resolution for charged particles the beam energy for the three-pion events is
determined with good accuracy.

The parameters of the beam trajectory are measured with high precision by
the silicon beam telescope and extrapolated to the z-position of the target at
−72.5 cm. As the z position is fixed the trajectory is completely described by
the coordinates in the x-y-plane perpendicular to the z-axis and the inclination
of the beam, which is given by dx/dz and dy/dz.

7.3 The Performance of the Neural Network

The C++ Class TMultiLayerPerceptron, which is part of the ROOT framework
(see section 4.4.3), provides an implementation of the multilayer perceptron. Sev-
eral different learning algorithm are included in this implementation. As the
systematic of the given problem is not known before hand, a suitable topology
for the MLP has to be determined by trial and error. A MLP with four hidden
layers is found to be suitable to determine the beam energy. The MLP with the
topology 1 x,y,dx,dy:50:25:6:6:E is trained utilizing the stochastic minimization
algorithm until after 100 epochs no further improvements are observed.

Subtracting the energy ENN = E(x, y, dx/dz, dy/dz), which is obtained by
evaluating the MLP, from the energy Eπ+π−π− observed in the final state no
further systematic correlation are observed (see figure 7.3). This is a huge im-
provement over using the average beam energy E = 191 GeV, which gets , when
looking at the difference between the final state energy Eπ−π−π+ and the beam
energy EBeam (see figure 7.4). The width of the so-called exclusivity peak, which
is observed in this distributions, is determined by fitting a double Gaussian func-
tion with a tanh background. By using the neural network the width reduces
from 2.0 GeV to 1.5 GeV. This is near the natural Gaussian beam energy spread
of 1.2 GeV, which is measured at the production target. The neural network is

1Due to some imperfection in the normalization behavior of the input neurons under available
learning algorithms the input values for dx and dy had to be multiplied by 103. Thus all
input variables have approximately the same size and spread. This multiplication is finally
incorporated into the code of the NN.
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(a) Dependence of Eπ−π−π+ − ENN on x.
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(b) Dependence of Eπ−π−π+ − ENN on y.
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(c) Dependence of Eπ−π−π+ −ENN on dx/dz.
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(d) Dependence of Eπ−π−π+ −ENN on dy/dz.

Figure 7.3: Dependence of the difference of energy Eπ−π−π+ observed in the final
state and the beam energy ENN, which is obtained by evaluating the neural
network, on the parameters of the beam trajectory.

calculating the energy of pion particles contained in the beam. The beams op-
tics, which are composed of magnets, act on the momentum of the beam particle.
Thus, the energy of other kinds of beam particles can be calculated by accounting
for the mass difference of the actual particle and the π−

EK−/p =

√
E2

NN +
(
m2
K−/p −m2

π−

)
· c4. (7.1)
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Chapter 8

Event Reconstruction and
Selection

8.1 Data Set

The analysis presented in chapter 13 is based on data recorded during the COM-
PASS Primakoff run in 2009 using a hadron beam with a mean momentum of
191 GeV/c impinging on a 4.2 mm Nickel target. A set of calorimetric triggers as
described in chapter 6 was used to select events, which are recorded. The event
selection is based on the so called t70 production. This production includes the
pre-production correction described in section 8.2.

A first event selection is applied by requiring the prerequisites for the later
event reconstruction. At least one primary vertex with exactly one incoming
and one negatively charged outgoing particle is required. Additionally at least
four electromagnetic showers in ECAL2 have to be present. The electromagnetic
showers have to fulfill the selection criteria presented in section 8.4. Due to
discrepancies between simulation and data, for the current analysis data from
ECAL1 are at the moment omitted. The possible increase of the number of
events is small (< 5 %), while the possible impact on systematic uncertainties
is considered large. Due to the specific properties of the trigger imposed on the
investigated final state, the impact on the covered phase space of this events is
small.

8.2 Pre-Production Corrections

In order to get a suitable stable resolution of the energy of final state particles,
which rely on detection of neutral particles, the reconstruction performance of
the electromagnetic calorimeters ECAL1 and ECAL2 have been improved. The
initial energy calibrations are obtained by using mono-energetic electron beams
with different energies. At that place a linear energy response is assumed. Upon

65



66 CHAPTER 8. EVENT RECONSTRUCTION AND SELECTION

this base calibration several corrections of the energy calibrations are applied.
This correction are briefly discussed in the following.

8.2.1 Laser and LED Correction

In order to detect and account for temporal fluctuation on time scale of spills, the
calorimeter modules are regularly lashed with laser (ECAL1) and LED (ECAL2)
pulses [AAA+15a]. This pulses are constant over time, thus fluctuation of the cell
response have their origin in the detection and amplification system. Evaluating
the change of the response to this pulses allows to correct for temporal instabilities
of the calorimeter by applying time dependent corrections.

8.2.2 π0-Calibration

Another important set of calibrations are the so called π0-calibrations. This cor-
rection are obtained by determining the position mπ0,rec of the π0 peak observed
in the γγ invariant mass spectrum. The mean of this peak is expected to co-
incide with the nominal mass mπ0 of the π0 [Ger12, B+12]. The γγ invariant
mass spectrum are obtained for each individual calorimeter module. Therefore,
the invariant mass of each γγ combination is connected with the two main cells1

of the showers. Assuming that only one shower energy Ei change at a time, the
invariant mass mγγ is proportional to Ei. The correction factor is then given by

a =
mπ0

mπ0,rec

(8.1)

and the corrected energy is
E ′i = a · Ei. (8.2)

This calculation does not take into account, that the calculated invariant mass
depend on the calibration of other cell, which are changed at the same time. Thus
the π0-calibration have to be obtained in an iterative procedure. Considering
2 GeV wide bins of shower energy, the obtained calibrations also accounts for
energy dependence of the calibration. The spill structure of the beam introduces
occupancy effects, which are taken into account by analyzing the time in spill
dependence of the calibration. A more detailed description of this method as well
as its effects can be found in [Nag12].

8.3 Post-Production Corrections

Before the actual reconstruction and event selection some general post-production
correction are applied. Incorrect cell response functions, which show up in a

1Here main cell denotes the cell with its center next to the shower center.
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displacement of ECAL2 showers, had been used during the t70 production. This
requires a correction of the cluster position. Another important correction, which
accounts for the internal structure of the Shashlik modules, is applied to the
energies measured by Shashlik cells. The details of these correction are discussed
in the following.

8.3.1 Shower Position

Looking at the in-cell position (xic, yic) = (x− xcell, y − ycell) of clusters, which is
measured relative to the center (xcell, ycell) of the nearest cell, a uniform distribu-
tion is expected due to symmetry. This also applies when looking at a projection
of this distribution. However, for low energetic showers there are exceptions due
to threshold effects. An obvious example for such an exception are showers, which
fired only cells within one row or column. These showers provide only limited
information2 of the position within the row or column, respectively. Thus, their
position is set to the center of the row or column. As the threshold effects ob-
viously depend on the shower energy, this is more likely for showers with lower
energy Eshower.

Besides the expected exceptions due to some hard to cure imperfection of the
shower profiles, which are used during production, the observed distributions of
showers are not uniform, where they are expected to be. This is accounted by
correcting the shower position by applying a additional cell response functions.
These cell-response functions add a correction term. In general the corrections
depend on the energy Eshower of the shower and its position relative to the cell
center, i.e. xic or yic

x′ = x+ f(Eshower, xic)

y′ = y + f(Eshower, yic).
(8.3)

In practice a cubic correction function in the form

f(E, x) = a(E) · x3 + b(E) · x2 + c(E) · x (8.4)

is used. The parameters a(E), b(E) and c(E), are constant for certain ranges
of the shower energy Eshower and defined individually for x- and y-position. Ta-
ble 8.1 lists the parameters used during the t70 production. The corrections for
y-position lead to a quite uniform and continuous distribution of clusters (see
figure 8.1(b)), which leaves only structures, which are due to threshold effects,
construction properties of the Shashlik modules and the value range of the correc-
tion function. These effects have only small impact and are in difficult to correct.
The distribution along the x-axis in contrast to the distribution along the y-axis
shows below 35 GeV a significant reduced number of showers reconstructed at
the edge of the cells (see figure 8.1(a)). Furthermore, a non continuous behavior

2Depending on the shower energy a bigger or smaller region at the cell borders may be
excluded.
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Figure 8.1: Distribution of the in cell position of electromagnetic showers depen-
dent on the shower energy Eshower obtained for the t70 production. Please note,
that the value range of the color scale does not cover the full value range. For
values exceeding the range colors saturate at the maximum of the scale.

x/y a [mm−2] b [mm−1] c Range

x −7.335 · 10−4 −2.991 · 10−4 2.49 · 10−1 EShower ≤ 20 GeV

x 7.313 · 10−4 2.484 · 10−4 −2.460 · 10−1 EShower > 35 GeV

x 0 0 0 else

y 8.568 · 10−4 4.176 · 10−4 −2.971 · 10−1 EShower ≥ 0 GeV

Table 8.1: Parameter of cubic cell response function as used for the production.

at 20 GeV and 35 GeV is observed. Due to symmetry considerations it is not
expected, that correction for x- and y-coordinate should differ. Thus, the cor-
rection, which are proved to work suitable well for the y-coordinate are applied
to the x-coordinate. This requires, that the correction applied during produc-
tion are reverted, before the new ones are applied. Unfortunately the production
correction are not vanishing at the cell boarder. Thus, some clusters are moved
above the cell borders into neighboring cells. This introduces ambiguities, which
cannot be resolved. Thus, some structures are generated near the cell border
(see figure 8.2). However only a small number of showers are affect. Thus, the
overall effect on the analysis is small. In addition to the in-cell correction a miss
alignment of ECAL2 was found during the analysis of the π−γ [AAA+15b]. This
is compensated by a global shift of −1.5 mm of the x-position of ECAL2 showers.
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Figure 8.2: Distribution of the in cell position of electromagnetic showers depen-
dent on the shower energy Eshower as obtained after post-production corrections
are applied. Please note, that the value range of the color scale does not cover the
full value range. For values exceeding the range colors saturate at the maximum
of the scale.

8.3.2 Corrections for Shashlik-type Calorimeter Cells

It was found, that the energy measured by Shashlik modules, show some depen-
dence on the in cell position of the cluster. This dependence reflect the inner
structure of the modules, which are hold together with rods of inactive material
(see figure 5.2). Corrections to compensate this effects are deduced (see [Nag12]
section 3.2). This corrections are given by the additive energy correction

Ecorr(x, y, Eγ) = p0(Eγ) + p1(Eγ) · (x/cm)2 + p2(Eγ) · (y/cm)2

+ p4(Eγ) · exp

(
−(x/cm− p6)2 + (y/cm− p7)2

2p2
5

)
. (8.5)

x and y are the cluster position relative to the nearest cell center after applying the
position corrections presented in section 8.3.1. The energy dependent parameters
are given as

p0(Eγ) = 9.57965 + 6.42201 · arctan (7.28429 · (x190 − 0.649578))− 0.64

p1(Eγ) = −1.89692− 1.2888 · arctan (8.79757 · (x190 − 0.638527))

p2(Eγ) = −1.61223− 1.13902 · arctan (9.43193 · (x190 − 0.659991))

p4(Eγ) = −2.57235 + 15.9715 · x190

p5(Eγ) = 0.214072− 0.202193 · x190

p6(Eγ) = 1.00

p7(Eγ) = 0.97

(8.6)
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where x190 = Eγ/190 GeV is the normalized shower energy. Due to limits of the
calibration method, the correction parameters are calibrated for high energetic
showers. Thus the corrected energy E ′γ is applied only for high energetic showers.
A smooth transition in the range 60 to 70 GeV is achieved by introducing an
additional factor

E ′γ = Eγ + a(Eγ) · Ecorr(x, y, Eγ) (8.7)

with

a(E) =


1 for E > 70 GeV

(E · GeV−1 − 60)/10 for 60 GeV ≤ E ≤ 70 GeV

0 for E < 60 GeV.

(8.8)

Note, that this is the range, where the absolute value of the average correction
energy gets minimal.

8.4 Shower Selection

Showers detected in the electromagnetic calorimeter are not only produced by
photons, but also by any kind of charged particles. Thus in order to select elec-
tromagnetic showers the tracking system of the spectrometer is used to identify
showers produced by photons, by requiring, that no track can be associated with
the shower due to the position of the shower. In order to suppress detector noise,
a shower energy Eγ ≥ 2 GeV is required. If more than four showers fulfilling this
criteria are found, the four showers with the highest energies are considered for
reconstruction. Other clusters are ignored.

8.5 Vertex Selection

During event reconstruction, all primary vertices with exactly one outgoing nega-
tively charged particles are considered. In order to select beam-target interaction
vertices, which fulfill the target hypothesis are selected

|−72.5 cm− zV ert,rec| ≤ 3 · σz(θ(π−i , π−f )). (8.9)

Where zV ert,rec is the z-position of the reconstructed vertex. σz(θ(π
−
i , π

−
f )) de-

scribes the resolution achieved for the z-position of the vertex. The z vertex
resolution is found to depend on the angle θ(π−i , π

−
f ) = θi,f between the trajec-

tories of the beam π−i and the outgoing negatively charged particle π−f . This
resolution is described by the empirical function

σz(θi,f ) = exp (1.53046e− 855.164 · θ)+
exp (2.52980− 3466.52 · θ) + 0.801737. (8.10)
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Figure 8.3: Angle θi,f between incoming beam pion π−i and the charged pion
of the final state π−f versus z-position of the reconstructed vertex zV ert for the
π−π0π0 final state. The red lines indicate the cuts applied in the shown variables.

Additional cuts assuring data quality are applied. The selection of scattering
angle

θi,f ≥ 1.6 · 10−4 rad (8.11)

respects the resolution of the beam telescope (see figure 8.3). A cut on the
transferred transverse momentum pT,π−f

of the outgoing π− accounts for multiple

scattering (see figure 8.4)
pT,π−f

≥ 15 MeV/c. (8.12)

Figure 8.3 shows the event distribution in regard to zVert,rec and θi,f . The red
line indicates the selection criteria described above. One can also observe the
two very thin tungsten targets between −40 and −30 cm. Above −20 cm the
detector planes of the beam telescope show up. The enhancements introduced by
the tungsten targets are well separated from the nickel target. At small values
of θi,f the presented cut extends towards the position of the tungsten targets.
However, studying the distribution of zVert,rec for selected events (figure 8.5) no
clear indication of events, which have their origin in interaction of the beam
particles with the tungsten targets, are observed. Thus, the number of these
events can be estimated to lie in the order of a few dozen. Comparing this
to the total amount of evnts, which is approximately 1.1 million, the intensity
contribution introduced by scattering on one of the tungsten targets is considered
to be negligible.
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Figure 8.4: Transferred transverse momentum of the outgoing π− pT,π−f
vs z-

position of the reconstructed vertex for π−π0π0 final state. The red line indicate
the lower requirement on pT,π−f

.

8.6 Beam Selection and Beam Particle Identifi-

cation

Particle identification (PID) for beam particles is provided by a set of two CEDAR
detectors upstream of the target. During the Primakoff run in 2009, the gas
pressure, which allow to modify the identification behavior of the CEDARs, of
both detectors has been set to distinguish between pions and kaons. This implies,
that it is not possible to identify anti-protons. In [Fri10] a method to determine
the PID of a beam particle traversing the cedar detectors is described. This
method is relying on a detector response function, which depend on the beam
parameters. The method provides a tag, CPID, which can have one of the three
values Kaon,Pion or NULL (undetermined). The given parameters are optimized
to extract a clean Kaon sample. In order to provide a uniform behavior of the
beam particle identification algorithm the beam divergence has been limited by
requiring, that the divergence of the beam

(dx, dy)i =

(
px
pz
,
py
pz

)
i

(8.13)

is lying within the limits defined by the points given in table 8.2. This limits are
indicated in figure 8.6, which shows the dx-dy-distribution of beam tracks. The
given shape thereby provide uniform behavior of the beam PID algorithm and at
the same time maximize the acceptance.
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Figure 8.5: Distribution of the z-position of the reconstructed vertex for events
in the π−π0π0 final state.

8.7 Event Reconstruction and Selection

Event reconstruction assumes, that the beam pion reacts with the nickel target at
the position of the primary vertex and form the π−π0π0 final state, while the nickel
target stays intact. The π0’s are assumed to decay practically instantaneous into
two photons. The four momentum vector of the incoming π−-beam is obtained
by combining the measured beam position and direction with the beam energy
obtained by evaluating the neural network (see chapter 7) and the particle mass
mπ− of the π− as given by the PDG [B+12]

pbeam = (E2
NN , ~ubeam ·

√
E2
NN −m2

π−,PDG). (8.14)

~ubeam is the unit vector parallel to trajectory of the beam. ENN = Eπ−,i is the
beam energy determined with the neural network. The outgoing charged particle
is assumed to be also a π−

pπ−f
= (
√
|~pπ− |2 +m2

π−,PDG, ~pπ−). (8.15)

~pπ− is the three momentum of the charged particle, which is measured by the
spectrometer. Exclusive events are selected by requiring, that the determined
energy of the incoming beam particle Ebeam = ENN and the sum

Ef = E3π = Eπ−f
+

4∑
i=1

Eγ,i,rec (8.16)
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dx ·
104

-2.56 -1.61 -0.65 0.1 1.03 1.23 1.23 -0.27 -2.26 -2.56

dy ·
104

-3.95 -5.1 -5.1 -4.6 -4.16 -0.88 -0.88 -0.22 -0.22 -1.97

Table 8.2: Points limiting the area in the x-y-plane of the beam divergence, which
is used to select events.

i
)

z
p/

x
p( 

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8

3−10×

i) z
p/ y

p(

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8
3−10× (COMPASS 2009) iN0π0π−π→iN−π

2c/2 0.0256 GeV≤ t'

Figure 8.6: Divergence of the incoming beam particle in x-y plane for selected
π−π0π0 final state. For analysis events within the area indicated by the red lines
are considered.
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Figure 8.7: |Ebeam − Ef | of events with π−π0π0 final state. The red lines indicate
the selection criteria for exclusive events.

of the energies of the detected particles fulfill the condition

|Ebeam − Ef | ≤ 12 GeV. (8.17)

Eγ,i,rec denote the energies of the electromagnetic showers, where the corrections
described in 8.3 are applied. Figure 8.7 shows |Ebeam − Ef | for events with the
π−π0π0 final state. It is assumed, that the uncertainty of the measurement of
electromagnetic showers is much larger, than the uncertainty of Ebeam and Eπ−f

.

Assuming, that the uncertainty of the photon energy measurement increases lin-
early with the energy, an exclusivity constraint is applied by multiplying the
energies of the photons Eγ,i,rec with a common factor v

Eγ,i = v · Eγ,i,rec. (8.18)

v is given by

v =
Ebeam − Eπ−f∑4

i=1 Eγ,i,rec
, (8.19)

such that
4∑
i=1

Eγ,i = Ebeam − Eπ−f . (8.20)
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(i, j) σi,jm /(MeV/c2) mi,j
π0/(MeV/c2)

(sh,sh) 3.7335 135.413

(rlg,rlg) 6.89592 136.752

(lg,lg) 6.26035 136.388

(sh,rlg),(rlg,sh) 5.94527 136.22

(sh,lg),(lg,sh) 7.10832 136.218

(rlg,lg),(lg,rlg) 7.55552 136.536

Table 8.3: Width and mass of the π0 peak in the mγγ mass spectrum for different
combination of calorimeter modules.

Each of the selected electromagnetic shower (see section 8.4), is assumed to be
caused by a photon, which is generated at the vertex position. Thus the four-
momentum of a photon candidate is determined by the energy of the shower Eγ,i
as defined by equation 8.18 and the position of the measured cluster relative to
the primary vertex

pγ = (Eγ, ~pγ) =

(
1, (~xshower − ~xvertex)/

√
|~xshower − ~xvertex|2

)
· Eγ. (8.21)

π0 candidates are built by adding the four-momenta of two photons. All possible
pair wise combinations of the four highest-energetic photons are used to identify
events with two π0 in the final state. Therefore the invariant mass mγγ of each
of the two γγ subsystems have to pass a specific cut, which ensures compatibility
with the assumption of a π0 decay. In order to take into account, that the
three different types of modules used in ECAL2, i.e. Shashlik (sh), radiation-hard
lead glass (rlg) and lead glass (lg), perform differently, each calorimeter cluster
is tagged with the module type of its center cell. For each combination the
parameters, which define the π0 mass cut are determined individually by fitting
a Gaussian function with a constant background to the observed spectrum (see
figure 8.8). The π0 mass cut is finally given by∣∣mi,j

π0 −mγγ

∣∣ ≤ 3 · σi,jm (8.22)

where i and j nominates the cell type attributed to the two showers. mi,j
π0 and

σi,jm are the mean and width of the π0 mass peak. The actual values are given in
table 8.3. In order to identify two π0 in the final state, this criteria must apply to
both γγ pairs. Figure 8.8 shows the peaks due to the decay and reconstruction
of π0. Next the mass of the γγ-subsystems representing a π0 is constrained by
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Figure 8.8: The γγ invariant mass distribution for different combinations of mod-
ule types of ECAL2 is shown. Red lines indicate the selection range.
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Figure 8.9: The γγ invariant mass distribution is shown. The doted line shows the
distribution before applying the π0 mass cut. The solid line shows the distribution
after applying the cut on one of the γγ subsystems.

rescale the four-vectors to match the mass of the π0 as given by [B+12]

p′π0 =
(
~uγγ ·

√
E2
γγ −m2

π0,PDG, Eγγ

)
. (8.23)

Here Eγγ is the sum of the rescaled energy of the two photons and ~uγγ the unit
vector along the sum of the three-momenta ~pγγ.

A preselection of events with low transferred four momenta t′ is done with a
loose cut selecting the first diffractive maximum. This cut with

t′ ≤ 0.0256 GeV2/c2 (8.24)

is shown in figure 8.10. Aiming to identify the Primakoff contribution with the
help of partial-wave analysis techniques an event select with low interference of
Pomeron and photon production is required. As discussed in section 1.2, this can
be done by exploiting the fact, that Primakoff reactions, which feature M = 1,
peak at very low values of t′, which follows the Weizsäcker-Williams distribution,
while the leading strong production of M = 1 states is suppressed by a factor t′.
Optimizing the t′ cut taking into account the resolution effects, that determines
the yield of Primakoff events, for the partial-wave analysis a cut with

t′ ≤ 0.002 GeV2/c2 (8.25)

is applied.
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t′ distribution. The red line at the first diffractive minimum is

indicating the preselection chosen.

8.8 Calorimetric Trigger

During the Primakoff run in 2009 an FPGA based calorimetric trigger was used,
which is in detail discussed in chapter 6. The trigger decision is made upon the
sum over cell energies, which occurs in a specific area of ECAL2. This sum is then
compared to a threshold. Having two thresholds, which are independently set,
two triggers are defined. The area covering 12×12 minus 3×4 calorimeter cells
in the center of ECAL2 used in 2009 is common to both triggers. The excluded
area of 3×4 cells accounts for the increased particle rate around the undeflected
beam. Using advanced pulse shape analysis the trigger includes zero subtraction
and cell-wise energy and time calibration.

Being a digital logic, the trigger logic can in principle be implemented in
software, which matches the hardware implementation one to one. Indeed doing
so allows to study the trigger performance. However due to the fact, that showers
simulated by the COMPASS Monte Carlo framework have a shower shape with
differs from the one observed in the experiment, it is not sensible to use this
approach to evaluate the acceptance of the trigger. The observed differences are
account during reconstruction by using different cell response function, i.e. shower
profiles, for Monte-Carlo and recorded data. By doing so on shower level a good
agreement of simulations and data is achieved. Thus, a more restrictive selection
based on shower properties is used to superceed the hardware trigger. Applying
this selection to both Monte Carlo events and recorded data allows to determine
the a common phase space acceptance. Such a selection is defined by summing
the energy of those ECAL2 showers, which are lying in the area of the original
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Figure 8.11: Number of events flagged with Prim2 and Prim1 divided by the
number of events with Prim1 flag under the condition ETrigger ≥ E. Due to
the analog part of the primakoff triggers, the Prim1 and Prim2, triggers are not
perfectly synchronous. Thus, having a trigger at the edge of the considered time
window, it happens, that a Prim2 trigger is not adjuncted to the same clock-cycle
as the corresponding Prim1 trigger. This leads to the observed behavior, that
instead of a plateau a region with constant slope is reached. The observed slope
corresponds to time differences in the order of one picosecond.

trigger. In order to account for the shower size the shower center is required to
lie in a slightly smaller area, which is defined by the original area and considers
a margin of one cell at each of the borders. In order to reduce influence from
background-only clusters, which can be attributed to the final state particles,
i.e. the four π0 showers and a possible energy deposit coming from the π−, are
considered. Evaluating the energy dependence of the sum for the Prim2 trigger a
threshold of 67 GeV is determined (figure 8.11). This threshold provides a good
purity and a good yield at the same time. As already discussed before due to
the lack of a reference sample3 such an evaluation is not possible for the Prim1
trigger.

8.9 Kinematic Distributions

Studying the three-pion invariant massm3π of the selected events (see figure 8.12(a))
some well-known resonance structure shows up. The spectrum is dominated by a

3The possible event sample with minimum-bias and/or random trigger, have to few events
with the Prim1 trigger bit set to make a reliable evaluation of the Prim1 threshold.
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broad peak with its maximum at around m3π = 1.25 GeV/c2. This corresponds
to the properties of the a1(1260). The shoulder on the right side of this peak,
which gets more prominent, when restricting to smaller values of t′, hints for the
contribution of the radiatively produced a2(1320). Going further to even higher
masses a small enhancement, which is better visible in case of the relaxed t′-cut,
can be observed. The position of this enhancement is roughly at the mass of the
π2(1670). The well-visible narrow peak in the low mass region originates from
decays of K−, which are contained in the hadron beam. These events have a t′

of zero, which is only affected by experimental resolution. The experimental res-
olution (see also figure 15.3), that these events are not effected by the presented
t′-cuts. Further prove of this conclusion is gained by accounting for the PID of the
beam particle. The spectrum for beam particle identified as Kaon (figure 8.12(c))
differs significantly from the total spectrum, while the Kaon decay peak has the
same strength as in the spectrum of all events. The spectrum of tagged pion
events (figure 8.12(b)) on the other side shows, besides the absence of the Kaon
decay peak, the same behavior as the total spectrum. It is assumed, that except
of the kaon decay peak the spectrum originates from beam target interaction.
The dominant strong interactions conserves strangeness. Thus, the assumption,
that the outgoing particle is a pion, does not necessarily apply any more. In-
stead it is likely, that it is indeed a kaon. In the presented reconstruction these
events are reconstructed applying the wrong assumption of the invariant mass of
the beam particles. Thus, the kaon spectrum is not expected to show structure,
which allow straight forward physical interpretation. As the kaon decay peak is
completely removed in the pion spectrum, a pure pion sample can be assumed.
Within this analysis a quantitative evaluation is not possible, however in [Fri10]
the remaining contribution from kaon events is found to be less than 0.5 %. As a
consequence the disturbance of beam kaons is negligible. At this point it should
be mentioned, that the applied event selection enriches the pion contribution.
Events, where the beam PID could not be determined (figure 8.12(d)), show on
the one hand a remaining kaon decay peak and on the other hand the course
features of the pion spectrum.

However, not only the m3π spectrum, but also the invariant mass spectra of
the two pion subsystems can reveal valuable insights to the underlying physics.
In this case the charged two pion system reveals a resonance structure, which is
dominated by an enhancement showing the mass and width of the well known
ρ(770) resonance (see figure 8.13(a) and 8.13(b)). As this enhancement com-
pletely disappears for the kaon sample, one can conclude, that the kaon sample
has a high purity. The invariant mass spectrum (figure 8.14) of the neutral sub-
system on the other hand reveals a spectrum, which shows the features of several
light scalar mesons. The spectrum is dominated by the f0(500), which is also
called σ.

A commonly used tool to study three body decays are so called Dalitz plots,
where the dependence of two kinematic decay variables on each other are plotted.
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Figure 8.12: Distribution of the invariant massm3π of the outgoing π−π0π0 system
for events with t′ ≤ 0.0256 GeV2/c2 (yellow) and t′ ≤ 0.002 GeV2/c2 (red). The
mass spectra for all events (a) and for events with different beam PID (π: (b),
K: (c), others: (d)) are shown.
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Figure 8.13: Distribution of the invariant mass mπ−π0 of the charged two pion
subsystem for events with t′ ≤ 0.0256 GeV2/c2 (yellow) and t′ ≤ 0.002 GeV2/c2

(red). The mass spectra for all events (a) and for events with different beam PID
(π: (b), K: (c), others: (d)) are shown.
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Figure 8.14: Distribution of the invariant mass mπ0π0 of the neutral two pion
subsystem for events with t′ ≤ 0.0256 GeV2/c2 (yellow) and t′ ≤ 0.002 GeV2/c2

(red). The mass spectra for all events (a) and for events with different beam PID
(π: (b), K: (c), others: (d)) are shown.
.
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Traditionally the axis are chosen to be the invariant mass of two-particle subsys-
tems. The observed three-pion decays are, as one can conclude from the two
pion invariant mass spectra, dominated by resonant decay processes. In the pres-
ence of such processes the Dalitz plots show a non uniform structure. Figure 8.15
shows the Dalitz plots, with the invariant mass of the two charged ππ subsystems
used as axis. Four regions of the three-pion mass are shown, ranging from masses
near the three-pion threshold, i.e. 0.52 GeV/c2 ≤ m3π ≤ 0.82 GeV/c2, to the mass
region of the π2(1670). Intermediate mass ranges show the behavior at the ρπ
threshold and around the mass of the a1(1260) and a2(1320). In the lowest mass
range near the three-pion threshold, but already above the kaon mass, the Dalitz
distribution still shows quite uniform behavior. Only slight increase at the lower
left edge of the allowed kinematic range indicates the presence of the f0(500) in
the π0π0 subsystem4. At the ρπ threshold, i.e. 0.90 GeV/c2 ≤ m3π ≤ 1.10 GeV/c2,
the typical vertical and horizontal enhancement at the mass of the ρ are observed.
The enhancement is increased further, where not only the ρ but also the f0(500)
contributes. This structure evolves further, when going to the mass region of the
a1(1320) or even π2(1670).

4Resonant processes in the third two body system show up as diagonal structures.
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Figure 8.15: Dalitz plots showing the dependence of the invariant masses of
the charged ππ subsystems on each other. Events with transferred momenta
t′ ≤ 0.0256 GeV2/c2 and the beam tagged as pionare considered. The depen-
dence is shown for three-pion masses in the range of the 0.52 GeV/c2 ≤ m3π ≤
0.82 GeV/c2 (a) and 0.90 GeV/c2 ≤ m3π ≤ 1.10 GeV/c2 (b) as well as around the
a1(1320) (c) and π2(1670) (d) resonance, i.e. 1.22 GeV/c2 ≤ m3π ≤ 1.42 GeV/c2

and 1.52 GeV/c2 ≤ m3π ≤ 1.82 GeV/c2, respectively.



Chapter 9

Phenomenological Fit of the t′

Spectrum

Investigating the event selection presented in the previous chapter, the dominat-
ing production process is diffractive dissociation, where the dependence of the
transferred momentum t′ is given by (c.f. section 3.2.1)

dσ

dt′
∝ t′Me−bt

′
. (9.1)

At small masses m3π the diffractive spectrum is dominated by spin projection
M = 0 due to the resonance structure. Thus, in first approximation contribu-
tions with M > 0 can be neglected. However, studying small masses and small
momentum transfer another process gets apparent, the Primakoff production. It
is visible by an enhancement at very low momentum transfer. This allows to
determine the contribution of this radiative process to the spectrum by a fit to
the observed t′ distribution. In contrast to a partial-wave analysis, which inves-
tigates the process by analyzing the angular distributions of the decay particles
and therefore investigates the decay, studying the t′ distribution, the production
process is under investigation.

A crucial input to this fit is the knowledge of the momentum dependence
including resolution and reconstruction effects of the different production mecha-
nisms. In case of diffractive dissociation, which has a shallow t′ dependence, the
distortion has a small impact and the observed dependence can be parametrized
as

fdd(t′,m3π) = ea(m3π)−b(m3π)t′ (9.2)

with the parameters a(m3π) and b(m3π) describing the amplitude and the slope,
respectively. Looking at a t′ range, where no Primakoff contribution is expected,
the parameters can be determined from the data.

87
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9.1 Primakoff t′ Distribution

The t′ dependence of Primakoff events is given by the Weizsäcker-Williams pho-
ton approximation (see equation 3.33), which for masses near threshold is peaking
at very small values of t′. This narrow peak cannot be resolved with the exper-
imental resolution achieved at COMPASS. Thus the observed shape, which is
used as signature, is dominated by resolution effects. This makes it impossible
to use the theoretical t′ dependence as given by the Weizsäcker-Williams approx-
imation to describe the data. However processing Monte-Carlo generated events,
which follow the t′ dependence of the Weizsäcker-Williams approximation and
the phase space distribution given by next-to-leading order calculations in chiral
perturbation theory, the observed shape can be recovered. For this purpose the
COMPASS Monte-Carlo chain accounts for the distortion by resolution and re-
construction effects. The resulting t′ distribution is found to be described by the
empirical function

fPrimakoff(t′,m3π) = ep0(m3π)+p1(m3π)·t′ +
p2(m3π)

(t′ − p3(m3π))1.6 . (9.3)

The mass dependent parameters pi are determined by a fitting individual mass
bins. Figure 9.1 show the fit in the most relevant mass bins. The evolution of
the parameters are found to be

p0(m3π) = −1.10 ·m3π ·
(
GeV/c2

)−1
+ 7.40

p1(m3π) = −1.058 · 103 ·m3π ·
(
GeV/c2

)−1
+ 4.076 · 103

p2(m3π) = −7.68 · 10−4 ·m3π ·
(
GeV/c2

)−1
+ 2.89 · 10−3

p3(m3π) = −1.55 · 10−3.

(9.4)

Apart from the extraction of the t′ dependence, the same Monte-Carlo study also
allows to determine the acceptance, which is calculated as the fraction of events
matching the selection criteria and generated events. The evaluation is done in
mass bins.

APrimakoff =
Nacc

Nsim

(9.5)

The determined efficiency is shown in figure 9.2

9.2 Determination of the Primakoff Contribu-

tion

The Primakoff contribution to the observed spectrum is determined by a fit to
experimental data. In order to get information about the mass dependence the fit
is done in mass bins with 40 MeV/c2 width. These are the same mass bins, which
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Figure 9.1: Monte-Carlo study of the transferred four momentum of Primakoff
π−γ → π−π0π0 events. The phase-space behavior of the events follow next-to-
leading order chiral perturbation theory calculations. Shown is the t′ distribu-
tion including resolution and reconstruction effects in the m3π mass range from
0.50 GeV/c2 to 0.78 GeV/c2. The study is done in mass bins of 40 MeV/c2 width.
The red curve shows the empirical function (equation 9.3) as deduced from the
Monte-Carlo study.
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Figure 9.2: Dependence of the acceptance APrimakoff of Primakoff π−γ → π−π0π0

events with a phase-space behavior given by next-to-leading order ChPT calcu-
lations. The acceptance is determined in mass bins with a width of 40 MeV/c2.

are used for the Monte-Carlo study and later on in the partial-wave analysis.

Considering t′ ≤ 0.0256 GeV2/c2 the t′ range exceeds the region, where the
Primakoff contribution is important. Thus the parameters, which describes the
diffractive dissociation, are determined by the fit. Thereby the starting parame-
ters are determined by fitting an exponential function in the range of 0.004 GeV2/c2≤t′ ≤
0.0256 GeV2/c2. The shape of the Primakoff contributions is given by equation 9.3
evaluating the parameters (see equation 9.4) for the central value of the mass bin.
In order to account for the unknown magnitude of the contribution the Primakoff
shape fPrimakoff(t′,m3π) is multiplied a factor c(m3π) = cm, which is subject to the
log-likelihood fit. The function, which is fitted to the data is then given by

Fm(t′) = cm · fPrimakoff,m(t′) + eam−bmt
′
. (9.6)

The fit parameters am and cm allow to account for the contribution of diffractive
and Primakoff production, while the fit parameter bm allows adjusting the t′

dependence of the diffractive contribution, which depends on m3π. Binning the
data into mass bins, the parameters are denoted with an index corresponding to
the bin centers. Figure 9.3 shows the fit in the most relevant mass bins, i.e. the
same mass bins as shown in figure 9.1 for the Monte-Carlo study. Going beyond
the shown mass of range m3π ≤ 0.78 GeV/c2 the background from diffractive
dissociate, mainly the rising of the a1(1260) resonance, vastly increases and the fit
becomes unstable. This makes it impossible to derive the Primakoff contribution
considering only the t′ spectrum. The number of detected Primakoff events within
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Figure 9.3: The observed distribution of four momentum transfer t′ for three-
pion masses m3π from 0.50 GeV/c2 to 0.78 GeV/c2, shown in 40 MeV/c2 mass
bins. The data are fitted with function 9.6 (red line), which accounts for the
contribution of radiative production (magenta line) and diffractive dissociation
(blue line).
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Figure 9.4: Number of detected Primakoff events in bins off invariant mass m3π.

a mass bin (see figure 9.4) is given by the integral

NPrimakoff,acc =

∫ ∞
t′=0

cm · fPrimakoff,m(t′)dt′. (9.7)

Applying the acceptance derived from the Monte-Carlo study (see section 9.1)
the total or accepted corrected number of events

NPrimakoff,tot =
NPrimakoff,acc

APrimakoff

(9.8)

is obtained. Figure 9.5 shows the result in a range of 0.50 GeV/c2 to 0.78 GeV/c2.
As discussed in chapter 15, this information is an important step towards the
determination of the cross section.
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Chapter 10

The Amplitude Analysis
Technique

Doing amplitude analysis one aims to identify and characterize all relevant pro-
cesses present in a given data set, which contribute to a transition from an initial
state X to a final state f . The experimentally observed distribution of intensity
I(mf , t

′, τ), which depends on the the invariant mass on mf of the final state,
the transferred momentum t′ and a set of other kinematic observables τ , can
be expanded in a basis of partial waves ψi, which are referred as amplitudes.
Thereby the final state is completely determined by mf and τ 1. Partial-waves,
which describe a transition to the same final state f , interfere with each other.
This is taken into account by building the coherent sum

I(m3π, t
′, τ) =

∣∣∣∣∣∑
i

ψi(m3π, t
′, τ)

∣∣∣∣∣ . (10.1)

Here i runs over all contributing partial waves. Following this idea partial-wave
analysis (PWA) is one of the fundamental methods in spectroscopy. The con-
tributing resonances and their properties (i.e. mass, width and quantum numbers)
are determined by fitting predefined correlations of the parameter τ to the data.
The parametrization of this correlation is an important input to partial-wave
analysis. In the following the basic approach of the chosen partial-wave analysis
technique will be presented. A short discussion of the fitting algorithm, i.e. the
extended maximum likelihood estimator, and, how the results can be interpre-
tation by calculating observables, follows. After this general introduction some
light will be shed on the specific aspects of the underlying model discussing rank
and partial coherence as well as the model, which enters the analysis presented
in chapter 13.

1For a given three particle final state the invariant mass mf and five independent kinematic
variables are required.

95
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10.1 The Partial-Wave Analysis Technique

Dealing with complicated wave sets, a global fit, which accounts for all angular
dependencies and the dependencies of mass and transferred momentum at once, is
challenging and with available methods technically impossible. Thus, usually the
analysis is done in a two step approach. In the first step, which is referred to as
mass-independent PWA, the data are divided into bins of mass m and transferred
momentum t′. Each analysis bin is fitted with the known τ distributions of the
partial-waves. The results of this fit are grouped in the spin-density matrix, which
contains the product of the transition amplitudes and their conjugate complex
value. In the second step, the mass-dependent PWA, resonance parameters are
extracted by studying the spin-density matrix. This is usually done with a χ2 fit.

10.1.1 Mass-Independent Partial-Wave Analysis

Technically seen, the mass independent PWA is a likelihood maximization fit (see
10.2) to the angular distributions of a data set with a certain final state. Thus,
in general, precise measurement of all final state particles is required. The pro-
duction intensity of a particular intermediate state X in general depends on its
mass m and the transferred momentum t′. However, under the assumption, that
the production intensity does not change rapidly with these kinematic variables,
within suitable small ranges in m and t′, the production intensity can be re-
garded as independent of m and t′. Consequently, within such a bin, the angular
distributions are assumed to only depend on the phase-space variables τ .

Under the assumption, that the decay of the resonance X can be decoupled
from its production, the total intensity Im observed in amass bin is given by

Im(τ, t′) =
∑
ε=±1

Nr∑
r=1

∣∣∣∣∣∑
i

T εir(m)f
ε

i(t
′,m)ψ

ε

i(τ,m)

∣∣∣∣∣
2

(10.2)

with ψ
ε

i(τ,m) being the normalized decay amplitudes. The sum over i runs over
all partial waves. Again, within a reasonably small analysis bin this quantity is
assumed to have no mass dependence. Thus, ψ

ε

i(τ,m) depends only on τ . Decay
amplitudes are normally used in their normalized form, which is obtained by
dividing out the corresponding phase space integral

ψ
ε

i(τ,m) =
ψεi (τ,m)√∫
|ψεi (τ,m)|2 dτ

. (10.3)

The factor f
ε

i(t
′,m) models the known t′ and m dependence of a particular partial
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wave i within an analysis bin.

f
ε

i(t
′,m) =

f εi (t
′,m)√∫ ∫

|f εi (t′,m)|2 dt′ dm
. (10.4)

These dependencies are in general unknown and absorbed into the transition
amplitudes T εir(m), which are determined by the fit. T εir(m) are complex numbers,
which defines the relative strength and phase of a particular wave within the
considered mass bin.

A rank Nr > 1 of the fit introduces additional degrees of freedom by allowing
for an incoherent sum over sets of coherent decay amplitudes. In a physics inter-
pretation this parameter accounts for multiple non-interfering processes and has
to be chosen to match the coherence of the analyzed scattering process. A dis-
cussion in more details is given in section 10.4. The additional quantum number
ε is the reflectivity and accounts for the parity conservation on the production
side (see section 11.3) and therefore for the naturality of the Regge trajectory
(see section 2.1). Final states with different reflectivity cannot interfere and are
therefore summed incoherently.

10.1.2 Mass-dependent Partial-Wave Analysis

The second step of the partial-wave analysis technique presented here is the so
called mass-dependent PWA, which aims to extract resonance parameter by fit-
ting the spin density matrix, which contains the results of the mass-independent
fit. In order to extract resonance parameters by a χ2 fit, the mass dependence
of the observed resonance have to be modeled. In the simplest case this is done
by exploiting relativistic Breit-Wigner functions. As this step is not part of the
presented work, further details will be omitted.

10.2 The Extended Maximum Likelihood

Estimator

In the following the technical details of the fit algorithm, which is used to extract
the contribution of different amplitudes, will be briefly discussed. A introduction
to this topic can be found in [Haa14], partly reproduced for completeness.

The probability to observe a given set of N random variables x1, x2, ..., xN ,
which are distributed according to the same probability density function f̂(x|a1, ..., ak)
depending on a finite set of constant parameters a1, ..., ak, is

f̂(x1, ..., xN |a1, ..., ak) =
N∏
l=1

f̂(xl|a1, ..., ak), (10.5)
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where the probability density function is normalized∫
dxf̂(x|a1, ..., ak) = 1. (10.6)

In many cases the outcome of the experiment and therefore the set of observed
variables xl is known, while the constants aj are not. In order to determine the
aj one introduces the likelihood

L̂(a1, ..., ak|x1, ..., xN) =
N∏
l=1

f̂(xl|a1, ..., ak) (10.7)

as an function of aj. Then the most probable parameters are given by the max-
imum of the likelihood function, which can be obtained by evaluating first and
second derivatives. In this case the probability of observing N events is given by
the Poisson statistics

P (N) = e−λ
λN

N !
, (10.8)

with the expected number of λ of events. Following the discussion presented in
[Bar90] the unnormalized probability density function

f(x|a1, ..., ak) = λf̂(x|a1, ..., ak) (10.9)

is introduced and equation 10.6 modifies to∫
dxf(x|a1, ..., ak) = λ. (10.10)

Please note, even not written explicitly the expected number of events λ in
general depends on the parameters aj. Now the extended likelihood function

L(a1, ..., ak|x1, ..., xN) is defined as the product of the likelihood function L̂(a1, ..., ak|x1, ..., xN)
equation 10.7 and the Poisson probability Pw(N) equation 10.8. With the defi-
nition of the unnormalized probability function f(x|a1, ..., ak) equation 10.9 the
extended likelihood can then be written as

L(a1, ..., ak|x1, ..., xN) =
e−λ

N !

N∏
l=1

f(xl|a1, ..., ak). (10.11)
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10.2.1 Application to Partial-Wave Analysis

Recalling equation 10.2 and following the discussion in section 10.1.1 the total
observed intensity I in a bin of m3π and t′ is given by

I(τ |T ) =
∑
Nr

∑
ε=±

∣∣∣∣∣∑
i

T εirψ
ε
i (τ)

∣∣∣∣∣
2

(10.12)

where the theoretical infinite sum over partial-waves i has has to be limited
to certain waves set. In order to allow the fit to determine events, where the
contribution to the used wave set can not be identified, a flat wave, which is
isotropic in phase space, is added incoherently

I(τ |T ) =
∑
Nr

∑
ε=±

∣∣∣∣∣∑
i

T εirψ
ε
i (τ)

∣∣∣∣∣
2

+ A2
Flat. (10.13)

The flat wave, which is summed incoherently, can technically treated like the sum
over a third reflectivity

I(τ |T ) =
∑
Nr

∑
ε=±,Flat

∣∣∣∣∣∑
i

T εirψ
ε
i (τ)

∣∣∣∣∣
2

. (10.14)

The expected number λ(T ) of events is then given by the phase space integral
over the intensity

λ(T ) =

∫
dφ(τ) I(τ |T )η(τ) (10.15)

with the phase space differential dφ(τ) and the acceptance η(τ), which accounts
for inefficiency of the experimental setup. The phase space integral, thereby
runs over the allowed kinematic region. Comparing to equation 10.10 the term
I(τ |T )η(τ) can be identified as an unnormalized probability density function
f(x|a1, ..., ak), where the transition amplitudes T are identified by the a1, ..., ak.
The according extended likelihood function is

L(T |τ1, ..τN) =
e−λ

N !

N∏
l=1

I(τl|T )η(τl). (10.16)

In order to determine the maximum of the likelihood function and therefore the
optimized set of transition amplitudes T , it is necessary to calculate the first
and second derivative of L(T |τ1, ..τN). As the number of events N and expected
events λ are potential large, it is convenient to use the natural logarithm of
the likelihood for computation. Due to the fact that the logarithm function
increases monotonically, the maxima remain unchanged. Applying the logarithm
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and dropping the constant factor 1/N one gets

lnL =
N∑
l=1

ln η(τl) +
N∑
l=1

ln I(τl|T )− λ(T ). (10.17)

The sum over the acceptance is also constant and therefore irrelevant for the
determination of the maxima of the likelihood function and consequently dropped
from the calculation. Expanding the remaining terms, the log-likelihood function
reads

lnL =
N∑
l=1

ln

 Nr∑
r=1

∑
ε

∣∣∣∣∣∑
i

T εirψ
ε
i (τl)

∣∣∣∣∣
2


−
∫

dφ(τ)η(τ)
Nr∑
r=1

∑
ε

∣∣∣∣∣∑
i

T εirψ
ε
i (τl)

∣∣∣∣∣
2

=
N∑
l=1

ln

[∑
ε

∑
qs

ψεq(τl)ψ
ε∗
s (τl)

Nr∑
r=1

T εqrT
ε∗
sr

]

−
∑
ε

∑
qs

∫
dφ(τ)η(τ)ψεq(τ)ψε∗s (τ)

Nr∑
r=1

T εqrT
ε∗
sr .

(10.18)
Note that the second expressions is sorted separating the known components and
the transition amplitudes, which are determined by the fit.

The computationally expensive part is the calculation of the decay amplitudes
ψεq(τl)ψ

ε∗
s (τl) and the determination of the integral in the second term. As these

integrals are independent from the actual transition amplitudes, they have to be
calculated only once, and can be reused. In general the analytic form of the phase
space integral is not known. Especially the experimental acceptance is usually
not known in analytic form. Thus the integrals are computed numerical by using
Monte-Carlo integration∫

dφ(τ)η(τ)ψεq(τ)ψε∗s (τ) = IεA qs ≈
V

NMC

NMC∑
l=1

η(τl)ψ
ε
q(τl)ψ

ε∗
s (τl). (10.19)

Here V is the phase space volume. The acceptance is taken into account by
evaluating the acceptance for single Monte-Carlo event. In order to derive the
acceptance, a simulation, which accounts for all properties of the experimental
setup, is required. The purpose of the normalization integrals is to cover the
whole phase space. Thus, the number NMC of Monte-Carlo events has to be
large, as compared to the number of observed events.

Neglecting acceptance effects similar to the normalization integrals phase
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space integrals are calculated. These integrals allow to normalize the decay am-
plitude such that a common scale is established. For the normalization only the
diagonal terms∫

dφ(τ)ψεq(τ)ψε∗q (τ) = Iεqq =
V

NMC

NMC∑
l=1

ψεq(τl)ψ
ε∗
q (τl) (10.20)

are needed as the normalized decay amplitudes are given by

ψ
ε

q(τ) =
ψεq(τ)√
Iεqq

. (10.21)

The normalization integrals are scaled accordingly

I
ε

A qs =
IεA qs√
IεqqI

ε
ss

. (10.22)

Applying proper normalization the physical interpretation of the transition am-
plitudes T εqrT

ε∗
sr is straight forward. The summation of this transition amplitudes

over the rank, which show up in equation 10.18, are the elements of the spin-
density matrix

ρεqs =
∑
Nr

T εqrT
ε∗
sr . (10.23)

Due to the incoherence of partial-waves with different reflectivity the spin density
matrix can be written in block diagonal form

ρ =

 Flat 0 0
0 ρ+ 0
0 0 ρ−

 . (10.24)

The log-likelihood function can now be written as

lnL =
N∑
l=1

ln

[∑
ε

∑
qs

ψ
ε

q(τl)ψ
ε∗
s (τl)ρ

ε
qs

]
−
∑
ε

∑
qs

ρεqsI
ε

A qs. (10.25)

The actual maximization of the likelihood is computed by using a modified ver-
sion of the MINUIT minimization package [JR75], which provides a variety of
minimization algorithms.
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10.2.2 Comparison of Different Models Through Likeli-
hood

At this place the interpretation of the likelihood must be shortly discussed. The
likelihood, by design is meant to optimize a parameter set applying a given model
to a given data set. Looking at equation 10.16, the maximum of the likelihood
defines the most probable parameters for a given data set fitted with certain
model. Due to the fact, that the absolute value of the likelihood dependence on
the data set, the likelihood cannot be used to compare fits to different data sets.
However, it is possible to compare different models fitted to the same data set, if
one of the models contains the other. Thereby the maximum likelihood cannot
be decreased by adding additional amplitudes, i.e. free parameters. This can be
easily seen, when looking at the case, where the additional parameters are set to
zero, which is a valid solution. In this case the extended model reduces to the
original model and the likelihood for a given parameter set for both models is
identical. In fact as the degrees of freedom increase one also expects an increase
of the likelihood.

10.2.3 Determination of Uncertainty

Following the discussion in [EH78], the uncertainty of the maximum likelihood
estimator is given by the reciprocal observed Fischer information

Cov(T ) = F−1(T ) (10.26)

were the observed Fischer information is given by

Fqs(T ) = −E
[
∂2 lnL
∂Tq∂Ts

]
(10.27)

with expectation value E. Neglecting correlations the statistical uncertainties on
one σ confidence level of the transition amplitudes Tq are given by the square-root
of the diagonal elements of the covariance matrix

σq =
√

Cov(T )qq. (10.28)

In reality also the non-diagonal terms play a role and have to be considered by
applying the rules of error propagation.

10.3 Observables

As the fitted complex transition amplitudes T εij have no straight forward physical
interpretation, it is more convenient to look at derived quantities, which have a
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physical interpretation.
Considering equation 10.15 the number λ of expected events, i.e. the accepted

corrected number of events is connected to the intensity I(τ). Considering equa-
tion 10.2 and applying equation 10.20 and 10.23 as well as 10.21 the number of
expected events is given by

λ =
∑
ε

∑
qs

ρεqsI
ε

qs with I
ε

qs =
Iεqs√
IεqqI

ε
ss

. (10.29)

Due to the normalization of the decay amplitudes the intensity Iεq of a particular
partial-wave q and reflectivity ε is given by the corresponding diagonal element
of the spin density matrix

Iεq = ρεqq. (10.30)

For q 6= s the overlap between two amplitudes is defined as

Oε
qs = 2<(ρεqsI

ε

qs). (10.31)

In production experiments like COMPASS it is not possible to measure the abso-
lute phase, however the phase difference ∆ϕεqs between two partial wave q and s,
which have the same reflectivity ε, is an important source of understanding the
observed resonance structure. ∆ϕεqs is given by the argument function of the spin
density matrix elements

∆ϕεqs = arg(ρεqs). (10.32)

In many cases it is useful to chose an anchor wave, which has a significant con-
tribution in a wide mass range, to investigate the relative phase motion of other
waves. Apart from the phase, another important quantity, which is reflected to
interference effects, is the coherence

Cohεqs =

∣∣ρεqs∣∣√
ρεqqρ

ε
ss

=

√
<(ρεqs)

2 + =(ρεqs)
2

IεqI
ε
s

. (10.33)

The coherence lies in the interval [0, 1], where the diagonal terms Cohεqq are one
by definition. In case of a rank one fit, which describes a coherent scattering
process, the coherence is one by definition and therefore reveals no further in-
formation, while for fits, which uses rank greater than one or partial-coherence
(see section 10.4)models, the coherence might reveal important information to
understand the resonance structure.

10.4 Rank and Partial Coherence

The rank Nr of a partial-wave decomposition as introduced before (see sec-
tion 10.1.1), adds an incoherent sum over the partial-wave (c.f. 10.2) and therefore
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introduces completely independent sets of transition amplitudes T εir, which have
to be determined by the fit. On a physical point of view a rank Nr > 1 accounts
for incoherent production processes, which are reflected in different states of the
usually unobserved recoil systems. A typical example for processes, where tra-
ditionally a Nr = 2 is chosen, is scattering of protons, which allows helicity-flip
and helicity-non-flip production processes. If the rank exceeds the number of
considered decay amplitudes one speaks of an unlimited rank. However, at very
small momentum transfer t′ the presented scattering process is assumed to be a
coherent process, which is represented by a Nr = 1. Nevertheless rank two may
be considered, as this can also account for experimental resolution effects, which
distorted the coherence of a process.

Here the concept of partial-coherence is introduced. This gives more freedom
to the fit and thus also allows to account for resolution effects. The experimentally
observed reduced coherence is thereby reflected by real parameters rij∈[0, 1] with
rii = 1, These parameters are introduced in the coherent sum and determined by
the fit, by using the substitution

TiT
∗
j → rijTiT

∗
j . (10.34)

Obviously the parameters rij dilute the contribution of interference terms of the
amplitudes i and j, while at the same time the phase (see section 10.3) remains
unchanged. This is an important difference to a rank-two fit. Tuning of the fit
model is applied by fixing some rij. For obvious reasons the parameters rij for
partial-waves with the same spin projection M is set to one for the given analysis.

10.5 Isobaric Model

Motivated by the experimental observation that nature seems to prefer two-body
decays over multi-particle decays, the isobaric model is used to describe decay into
multi-particle final states as sequence of two-body decays. Looking at scattering
processes at COMPASS an intermediate resonance X with mass mX and quantum
numbers is produced in beam-target interaction (see chapter 3). At high energies
neither the resonance nor its decay products interact with the recoil particle, thus
the decay of the resonance can be described in the isobaric model.

Considering the process π−Ni→π−π0π0Ni, which is investigated here, the pro-
duced resonance decays into an two-pion isobar ξ with mass mξ and an spectator
pion with an orbital angular momentum L between the decay products. After-
ward the isobar decays into two pions, which are part of the final state. The
schematics of this decay is shown in figure 10.1. The resonance is characterized
by its quantum numbers JPCM ε, with J being the total angular momentum, P
denoting the parity and C the C-parity. M is the spin projection and ε the reflec-
tivity. Due to the nature of the pomeron, which is as the leading Regge trajectory
mediating the beam-target interaction, the resonance must have the same IG as
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P/R

X− (JPCM ε)

ξ

L

Ni

π−

Ni

π

π

π

1

2

Figure 10.1: The schematic shows the production of resonance X with quantum
numbers JPCM ε in π−-nickel scattering and the isobaric decays into a three-pion
final state. At vertex 1 X decays into a bachelor pion and an isobar ξ. L is the
angular momentum between those two. The isobar ξ then decays at vertex 2 into
two pions, which together with the bachelor pion form the final state.

the incoming pion. Thus, a particular partial-wave, describing an isobar decay, is
characterized by the quantum numbers of the intermediate state, the isobar and
the orbital angular momentum. In the following the notation JPCM ε ξ L π shall
be used.
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Chapter 11

Parametrization of Partial-Waves

An important input to the PWA is the parametrization of the partial-wave ampli-
tudes. Dealing with isobaric partial-waves, each wave is defined by the quantum
numbers IGJPCM ε of the intermediate state X, the isobar ξ, through which
the decay is realized, and the angular momentum L between the isobar and
the bachelor pion. The quantum numbers IG = 1− are given by the quantum
numbers of the incoming pion. Thus, the quantum numbers IG are omitted in
the notation JPCM ε ξ L π, which in the following is used to characterize isobaric
partial-waves. The so-called helicity formalism is a convenient way to describe
the angular dependence of many-body decays, which are realized by consecutive
two-body decays. This formalism, which is also applied in the analysis presented
in chapter 13, is discussed in the following. The discussion is extended to the
description of the parametrization of the mass-dependence of the isobars, which
enters the calculations. A brief discourse of the reflectivity ε follows. Last but not
least the parametrization of a possible non-resonant contribution to the observed
spectra is presented.

11.1 The Helicity Formalism

The decay of the resonance X with mass mX into the π−π0π0-final state is fully
specified by five additional kinematic variables. Using the helicity formalism
these variables are chosen to be the decay angles in the Gottfried-Jackson frame,
i.e. the azimuthal angle, which is called Treiman-Yang angle, φTY and the polar
angle θGJ, the mass mξ of the isobar and the decay angles θHF and φHF in the
helicity frame of the isobar. The Gottfried-Jackson frame is the rest frame of the
resonance X with the z-axis zGJ in direction of the beam momentum and the
y-axis being a normal

~ey =
~ptarget × ~precoil

|~ptarget × ~precoil|
(11.1)

107
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to the production plane, which is defined by the trajectories of the target ~ptarget

and recoil ~precoil particle. The helicity frame is the rest frame of the isobar, with its
z-axis zhel along the flight direction of the isobar and the y-axis perpendicular to
the plane spanned by the z-axis of the Gottfried-Jackson and helicity frame yhel =
zGJ×zhel. For both coordinate system the x, y and z-axis form a right-handed
coordinate system x = y×z. Looking at the center-of-mass frame the helicity is
given by the spin projection to the reference axis, i.e. λ = szhel , which simplifies
the calculation. Considering that the final state is described by (2s1 + 1)(2s2 + 1)
helicity states |qλ1λ2〉 and the breakup momentum q of the final state particles
1 and 2. λ1 and λ2 couple to the spin S with the helicity λ = λ1 − λ2. The
two-body decay amplitude in the helicity formalism is given by

A(m,φ, θ) =
∑
λ

DJ
λM(φ, θ, 0)fλ(m,PR, w1, p1, w2, p2). (11.2)

The angular dependence is described by the D-function, trigonometrical function,
which allows to write the rotation of the spin state |JM〉 as linear combination
of |JM ′〉 states

R(α, β, γ)|JM〉 =
J∑

M ′=−J

DJ
M ′M(α, β, γ)|JM ′〉. (11.3)

R(α, β, γ) = e−iαJze−iβJye−iγJz is the operator of an active rotation with the
Euler angle α, β and γ. The magnitude of the total angular momentum with its
eigenvalue J is invariant under this rotation. In equation 11.2 the third angle is
set to zero, which has no physical implication. The angular dependence of the
two-body decay is given by [Chu71]

DJ
λM(φ, θ, 0) = e−iMφdJλM(θ) (11.4)

with

dJλM(θ) = [(J + λ)!(J − λ)!(J +M)!(J −M)!]1/2

·
∑
κ

[
(−1)κ

(J −M − κ)!(J + λ− κ)!(M + κ− λ)!κ!

·
(

cos
θ

2

)2J+λ−M−2κ(
− sin

θ

2

)M−λ+2κ
]
.

(11.5)

The sum runs over all values of κ, for which the term is greater than zero [Ros75].

The non-angular part of the two-body amplitude (see equation 11.2) is given
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by

fλ(m,PR, w1, p1, w2, p2) =
√

2l + 1︸ ︷︷ ︸
normalization

(l0sλ|Jλ)(s1λ1s2λ2|sλ)(I1I1zI2I2z|IRIRz)︸ ︷︷ ︸
Clebsch−Gordon coeff.

Fl∆(m)αls︸ ︷︷ ︸
dynamics

A1A2. (11.6)

A1 and A2 are the decay amplitudes of the daughter particles. For final state
particles this amplitudes are set to one. The couplings are described by Clebsch-
Gordon coefficient. The first one (l0sλ|Jλ) describes the l-s-coupling to the
total angular momentum J , with, as l is perpendicular to the reference axis,
lz = 0. (s1λ1s2λ2|sλ) describes the coupling of the spins s1 and s2 of the daughter
particles to the total spin s, with its projection to the z-axis being the helicity
λ = λ1 − λ2. The last Clebsch-Gordon coefficient (I1I1zI2I2z|IRIRz) stems from
the isospin coupling. Fl are the angular momentum barrier factors, which are
discussed below. The mass-dependent dynamics are parametrized by ∆(m). The
mass-dependent dynamics of the resonance X are in general unknown and the
subject of the mass-dependent partial-wave analysis. Within an analysis bin the
partial-wave are assumed to not depend on m. Thus, the m-dependent dynamics
of the resonance X are neglected by using ∆X(m) = 1. The mass-dependence
of the isobar ξ is an important input for the partial-wave fit and discussed in
section 11.2.

11.2 Parametrization of Mass-Dependent

Dynamics

In order to parametrize the mass-dependence of the two-body decay, there are
three formalisms, which are commonly used. The most common formalism is the
Breit-Wigner formalism, which describes a short-lived, i.e. narrow, resonance,
by a Breit-Wigner shape, which is sometimes also referred as Cauchy shape.
However, for two resonances lying close to each other the Flatté formalism, which
accounts for two decay modes, gives a better description. Going to a system of
heavily overlapping resonances, the K-matrix formalism shows its advantage. It
regards both the overlap of mother state and their decay modes. Table 11.1 gives
an overview of the isobar parametrization relevant for the presented analysis.

11.2.1 The Breit-Wigner Formalism

The Breit-Wigner formalism parametrizes the mass-dependence of a short-lived
resonance of mass m0 and width Γ0 with a relativistic Breit-Wigner function (see
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isobar paramters formalism

(ππ)S Wave available at [AMP87] ”M -Solution”
K-Matrix-Formalism

(ππ)S Wave∗ available at [AMP87] ”K1-Solution”
K-Matrix-Formalism
f0(980) subtracted from
amplitude

f0(980) m0 = 0.98 GeV/c2 Breit-Wigner Formalism
Γ0 = 0.04 GeV/c2

f0(980)∗ mδ = 0.965 GeV/c2 Flatté Formalism
gππ = 0.165 GeV/c2

gKK = 4.21·gππ

f0(1500) m0 = 1.507 GeV/c2 Breit-Wigner Formalism
Γ0 = 0.109 GeV/c2

ρ(770)/ρ m0 = 0.770 GeV/c2 Breit-Wigner Formalism
Γ0 = 0.161 GeV/c2

f2(1270)/f2 m0 = 1.275 GeV/c2 Breit-Wigner Formalism
Γ0 = 0.185 GeV/c2

Table 11.1: Overview of parametrization of isobars. Isobar parametrization
marked with ∗ have been studied, but are not used for the presented analysis.
The a1, a2 and π2 are three-pion isobars, which are used for the PWA in t′ to
model the m3π dependence of the resonance X.
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2.2). The Breit-Wigner amplitude

ABW(m) =
m0Γ0

m2
0 −m2 − im0Γtot(m)

(11.7)

with the mass-dependent width

Γtot(m) =
∑
n

Γ0
m0

m

qn
q0n

F 2
ln

(qn)

F 2
ln

(q0n)
(11.8)

describes a mass-dependence ∆(m) = ABW(m) of the two-body decay. Here, the
sum in principle contains all available decay channels. q = q(m) is the breakup
momentum with q0 = q(m0) and consequently Γtot(m0) = Γ0 and ∆(m0) = 1.
The Blatt-Weisskopf centrifugal-barrier factors Fl(q) are accounting for the con-
servation of the angular momentum, which require a certain breakup momentum
between the two daughter particles. In the parametrization suggested by Quigg
and Hippel [HQ72] these factors are given by [Chu10]

Fl(q) =
h

(1)
l (1)

xh
(1)
l (x)

with x = q/qR. (11.9)

h
(1)
l (x) are the spherical Hankel function of the first kind and are given by a power

series expansion

h
(1)
l (x) =

−ieix

xl

l∑
k=0

(−1)k
(l + k)!

2kk!(l − k)!
(−ix)l−k. (11.10)

Note that Fl(qR) = 1 by definition. The quantity qR = 0.1973 GeV/c corresponds
to the effective range of the strong interaction, which is approximately 1 fm. The
centrifugal-barrier factors for l ≤ 3 are [Chu10]

F0(q) = 1 (11.11)

F1(q) =

√
2z√
z + 1

(11.12)

F2(q) =

√
12z2√

(z − 3)2 + 9z
(11.13)

F3(q) =

√
277z3√

z(z − 15)2 + 9(2z − 5)2
(11.14)
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with z = (q/qR)2. Looking at the kinematic boundaries q → 0 and q → ∞ the
Quigg-Hippel factors behave like

Fl(q)|q→0 ∝ pl and Fl(q)|q→∞ = const, (11.15)

which reproduce the right physical behavior at small values of q by having a finite
intensity for large q.

Note for unknown branching ratios, a Breit-Wigner function with constant
width Γ0 can be used as approximation.

11.2.2 The Flatté Formalism

The Flatté formalism [Fla76] parametrize the decay of a two-channel resonance
by explicitly accounting both channels and their thresholds. Using the Breit-
Wigner parametrization in the coupled channel form the Flatté amplitude of the
resonance δ with nominal mass mδ decaying into the two channels a and b is given
by [Chu10]

AFlatté(m) =
|Dδ(mt)|
Dδ(m)

(11.16)

with
Dδ(m) = m2

δ −m2 − imδ
mt

m

(
g2
aqa + g2

bqb
)
. (11.17)

The constant mt is usually chosen to be the threshold of the channel, which opens
up, and provides proper normalization, with AFlatté(mt) = 1. ga and gb denote
the coupling constants for the resonance coupling to states a and b, respectively.
qa,b are the corresponding phase space factors or so-called breakup momenta. If
a or b, respectively, is a two-body state αβ these phase space factors are given by

qa, b = qαβ = m−2
αβ

√(
m2
αβ − (mα +mβ)2) (m2

αβ − (mα −mβ)2) (11.18)

with the invariant mass mαβ of the two-body system. If this mass is below
the threshold of the decay channel mαβ < mα + mβ the breakup momentum
becomes imaginary1. This parametrization is especially helpful for resonance
with a decay channel opening up near the resonance mass. A prominent example
is the f0(980), which is relevant for the partial-wave analysis of the π−π0π0 final
state and lies near the KK threshold. The two couplings gππ = 0.165 GeV/c2 and
gKK = 4.21·gππ have been determined by a partial-wave analysis of J/Ψ decaying
into φπ+π− and φK+K− [ABB+05]. This parametrization has been investigated
for the description of the event sample, which obtained by the event selection

1Often an additional heavy side function Θ(mcd−mc−md), which below threshold ensures
the phase space factor to be zero, is introduced (see [B+12]). For the present analysis, however,
the parametrization introduced by [Fla76], which uses an analytic continuation into the complex
plane, is used.
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in chapter 8. The simple Breit-Wigner parametrization, however, describes the
observed data better. Thus the f0(980) is described by a simple Breit-Wigner.

11.2.3 The K -Matrix Formalism

States with heavily overlapping resonances in the initial state cannot be described
with Breit-Wigner shapes. An example for such states are the light scalar mesons.
Some of this resonances have a large decay width, which produces significant
overlap. An additional complication is the opening up of several decay channels
within a short mass interval. The (ππ)S decay channel, which describes the
sector of light scalar mesons, is in the presented analysis parametrized using the
K-matrix formalism. In the K-matrix formalism the transition amplitude T ,
which connects the initial and the final state, is written as

T = K(I− iρK)−1 (11.19)

= (M− iρ)−1, (11.20)

where the K-matrix K is a real symmetric matrix and M its inverse. I is the
identity matrix. The elements ρ1 and ρ2 of the diagonal ρ-matrix are the weighted
average of the neutral and charged phase-space factors. Multiple solutions for the
(ππ)S parametrization had been obtained fitting to ππ scattering data [AMP87].
For this fit the elements of the 2× 2 K-matrix is given by

Kij =
s− s0

4m2
K

∑
p

fpi f
p
f

(sp − a)(sp − s0)
+
∑
n=0

cnij = (s− s0)K̂ij. (11.21)

with the squared center-of-mass energy s = m2. Alternatively the M-matrix is
parametrized as

Mij =
aij

s− s0

+
∑
p

f ′pi f
′p
f

s′p − s
+
∑
n=0

c′nij

(
s

4m2
K

− 1

)n
. (11.22)

The M solution2 from [AMP87] is found to deliver the best description of the
present data set and is consequently used to describe the (ππ)S waves in the
partial-wave fit presented in chapter 13. In addition the parametrization using
the K1 solution from the same publication has been studied. In contrast to the M
solution the K1 solution contains besides the wide scalar mesons also the f0(980),
which is treated as a single resonance. Thus using the K1 solution the f0(980)
described by a Breit-Wigner with m0 = 0.9855 GeV/c2 and Γ0 = 0.0449 GeV/c2

is subtracted from the (ππ)S line-shape

Aππ → Aππ − c · Af0(980) with c = −0.3878 + 0.2991i. (11.23)

2Please refer to the original publication for the exact parametrization.
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11.3 Reflectivity

As discussed in section 2.1 for strong processes in the light quark sector the G-
Parity is a good quantum number. The parity P in contrast is a quantum number,
which can be used regardless of the actual meson content or the nature of the
observed process. It is useful to describe processes like A+B→X +C regarding
their behavior under reflection on the production plane. In any rest frame of X
with the y axis perpendicular to the production plane the reflection operator is
connected with the parity by a rotation by π through the y-axis

Πy = P exp(−iπJy). (11.24)

Let ψεJM be an eigenstate of Πy. The behavior of ψεJM under the rotation operator
is then described by the reflectivity ε, which is defined by

Πyψ
ε
JM = −εψεJM . (11.25)

Here the eigenstates of Πy are given by linear combinations of states with opposite
spin projection M

ψεJM = c(M) (ψJM − εPψJ−M) . (11.26)

The reflectivity for M = 0 states is ε = + per definition. For M > 0 the
reflectivity can take values of ε = ±. The factor

c(M) =

{
1
2

, for M = 0
1√
2

, for M > 0
(11.27)

establishes proper normalization. Looking at the high energy limit within the
Gottfried-Jackson frame the reflectivity and the naturality coincide [Sch12].

Due to the nature of the photon exchange for small values of m3π and t′ the
reflectivity observed in Primakoff reaction is expected to be positive, i.e. ε = +.
However at small masses m3π and low transferred momentum t′ the experimental
resolution does not allow to measure the production plane precisely, thus a leakage
into negative reflectivity waves is expected.

11.4 Non-Resonant Contributions

Besides the resonant contributions, which are described by the isobar model,
there are also non-resonant contributions, like the Deck effect (see section 3.2.3).
If the angular dependence of such a contribution is known in differential form, it
can be introduced as a partial-wave. In the present analysis this is achieved for
the π−γ → π−π0π0, which is calculated in the framework of chiral perturbation
theory.
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11.4.1 Parametrization of the Chiral-Waves

Looking at equation 1.8 the total differential form of the chiral amplitude is given
by

~A =

√
α

32π3f 4
π(s−m2

π)

(
k̂ × (~q1A1 + ~q2A2)

)
. (11.28)

In the chosen reference frame, i.e. the Gottfried-Jackson frame, the direction
vector of the photon k̂ = (0, 0,−1) has vanishing x and y components. Thus

the z component of ~A is zero. Considering the behavior under the reflectivity
operation, the negative reflectivity part ε = −1 of the amplitude is given by the x
component of ~A, which change sign. The y component, which remains unchanged
under the reflectivity operator, corresponds to ε = +1. The partial-wave decay
amplitudes ψεch are then given by

ψ−ch = −
√

α

32π3f 4
π(s−m2

π)
((q1)xA1 + (q2)xA2) (11.29)

and

ψ+
ch =

√
α

32π3f 4
π(s−m2

π)

(
(q1)y A1 + (q2)y A2

)
. (11.30)

A1,2, in general sum all possible Feynman diagrams. This sum is usually truncated
at a given order. For the presented analysis four different flavors of the chiral-
waves are available, which corresponds to the ChPT calculation presented in
section 1.2. For each flavor two partial waves are calculated, one with positive
and one with negative reflectivity. The different flavors of the chiral wave describe
the same process and thus have to be used mutually exclusive. The resulting
partial-waves are denoted as (ChPT)εΛ, where Λ ∈ {LO,NLO, ρ, ρρ} is the flavor
of the chiral waves.

11.4.2 Properties of the Chiral Waves

The chiral wave waves exhibit spin projection M = 1 due to the nature of quasi-
real photon exchange. At low values of t′, physically only waves with positive
reflectivity contribute. Consequently, in the following the chiral waves with pos-
itive reflectivity are studied. Thus, if not stated explicitly, the given discussion
and quantity refer to ε = +1.

Figure 11.1 shows the Dalitz plot of the normalized intensity for the different
flavors of chiral-waves at the three-pion mass m3π = 0.7 GeV/c2. The masses of
the two charged ππ subsystems are drawn on the x and y axis. Near the three-
pion production threshold and well below the ρπ threshold the Dalitz plots of the
four chiral waves are similar. This is especially true for those of the chiral waves,
which include higher order corrections. The leading-order calculation feature a
diagonal shape, which does not fade at the kinematic limits, where one of the two



116 CHAPTER 11. PARAMETRIZATION OF PARTIAL-WAVES

pion masses is approaching its minimum. Higher-order calculation still reveal
a diagonal structure, which, however, show elliptic shapes. Studying three-pion
masses in the region of 1 GeV/c2, in case of the double ρ amplitude the influence
of ρ exchange becomes apparent (see figure 11.2). Favoring two-pion masses
around the rest mass mρ of the ρ meson a significant deviation from the elliptic
shape is observed. While the principle shape of LO and NLO chiral waves remain
unchanged, the Dalitz plots of chiral waves including single ρ exchange shows a
small distortion. Stepping further to 1.3 GeV/c2 gives rise to the characteristic
structure connected to the ρ resonances for both the single and double ρ exchange
calculations (figure 11.3).

Besides the Dalitz plots another set of distribution, which show the depen-
dence of the normalized intensity on the decay angles in the Gottfried-Jackson
frame θGJ and φTY, gives further impression of the behavior of partial-waves.
Being a M = 1 process the dependence on φTY shows the cos2 structure, which
is typical for this spin projection. The cos2 structure is observed for all flavors
of chiral waves and all three-pion masses. Figure 11.4, 11.5 and 11.6 show the

dependence of the squared normalized decay amplitude |ψ+

ch|2 of the chiral waves
on the decay angles in the Gottfried-Jackson frame. The dependence is shown
for three-pion mass m3π of 0.7 GeV/c2, 1.0 GeV/c2 and 1.3 GeV/c2, respectively.
Besides the dominating M = 1 behavior, which generates two maxima at φTY = 0
and φTY = ±π, one can observe, that all chiral-waves tend to prefer high values
of θGF. At 0.7 GeV/c2 the LO and NLO wave still extend to smaller values of θGJ,
LO more than NLO. These waves show only one maximum inn θGJ. Due to the
M = 1 behavior, which leads to a cos2 modulations in φTY, two distinct maxima
are formed. In case of the LO calculation the θGJ-position of the maxima is at
≈ 2.3, while for NLO one finds a slightly higher value of ≈ 2.4. The observed
structure in general reminds of a fork. The structure of the chiral-waves includ-
ing ρ-exchange shifts the maxima to θGJ ≈ 2.7. Besides the two global maxima
local maxima at θGJ ≈ 0.4 are formed. At a three-pion mass of 1.0 GeV/c2 the ρ
amplitudes have converged to a structure similar to the one observed for LO and
NLO calculation for all masses and extend towards slightly smaller azimuthal an-
gles. With LO and NLO extending to slightly higher azimuthal angles all flavors
of chiral waves reveal similar angular dependencies at 1.0 GeV/c2. The maxima
are found at θGJ ≈ 2.6. Going to m3π = 1.3 GeV/c2 the general shape does not
change any more, however, the maxima move to θGJ ≈ 2.7 and a much faster
depletion towards small angles is observed. In case of the NLO local maxima at
θGJ ≈ 0.6 show up.
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Figure 11.1: Dalitz plots showing the invariant mass dependence of one charged
ππ subsystems to the other for the partial-waves, which are based on calculations
in the framework of ChPT at a three-pion m3π = 0.7 GeV/c2. Due to physical
expectation the behavior for reflectivity ε = 1 is shown.
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Figure 11.2: Dalitz plots showing the invariant mass dependence of one charged
ππ subsystems to the other for the partial-waves, which are based on calculations
in the framework of ChPT at a three-pion m3π = 1.0 GeV/c2. Due to physical
expectation the behavior for reflectivity ε = 1.
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Figure 11.3: Dalitz plots showing the invariant mass dependence of one charged
ππ subsystems to the other for the partial-waves, which are based on calculations
in the framework of ChPT at a three-pion m3π = 1.3 GeV/c2. Due to physical
expectation the behavior for reflectivity ε = 1.



120 CHAPTER 11. PARAMETRIZATION OF PARTIAL-WAVES

GJθ
0 0.5 1 1.5 2 2.5 3

T
Y

φ

0

1

2

3

4

5

6

15

20

25

30

35

40

45

50

-610×)2c = 0.7 GeV/π3m (LO
+ChPT

(a) LO

GJθ
0 0.5 1 1.5 2 2.5 3

T
Y

φ

0

1

2

3

4

5

6

15

20

25

30

35

40

45

50

-610×)2c = 0.7 GeV/π3m (NLO
+ChPT

(b) LO+NLO

GJθ
0 0.5 1 1.5 2 2.5 3

T
Y

φ

0

1

2

3

4

5

6

20

30

40

50

60

-610×)2c = 0.7 GeV/π3m (ρ
+ChPT

(c) LO+NLO+single ρ

GJθ
0 0.5 1 1.5 2 2.5 3

T
Y

φ

0

1

2

3

4

5

6

20

30

40

50

60

-610×)2c = 0.7 GeV/π3m (ρρ
+ChPT

(d) LO+NLO+single ρ+double ρ

Figure 11.4: Dependence of the normalized intensity of chiral waves on the decay
angle θGJ and φTY at m3π = 0.7 GeV/c2. The dependence is shown for the
different flavors of chiral-waves with positive reflectivity ε = 1.
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Figure 11.5: Dependence of the normalized intensity of chiral waves on the decay
angle θGJ and φTY at m3π = 1.0 GeV/c2. The dependence is shown for the
different flavors of chiral-waves with positive reflectivity ε = 1.
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Figure 11.6: Dependence of the normalized intensity of chiral waves on the decay
angle θGJ and φTY at m3π = 1.3 GeV/c2. The dependence is shown for the
different flavors of chiral-waves with positive reflectivity ε = 1.



Chapter 12

Acceptance

Following the discussion in section 10.2 another important input to the mass-
independent PWA fit, is the understanding and modeling of the acceptance1

introduced by the imperfection of the apparatus. This is taken into account by
means of Monte-Carlo integration. Each Monte-Carlo event is processed through
the full COMPASS Monte-Carlo chain and it is determined weather the event is
accepted or not. The events are generated by an external event generator, which
simulates events distributed flat in phase-space by choosing kinematic variables
randomly within the allowed kinematic range. The kinematics of the event are
defined by the kinematics chosen from the event generator. The use of a beam
file with recorded beam trajectories accounts for the properties of the beam,
which are imposed by the beam optics. In order to overcome the statistical
limitation imposed by the limited number of recorded beam trajectories, the
parameters are randomly smeared within their uncertainties. The COMGEANT
software, then propagates the final state particles of the generated event through
the spectrometer, simulating interaction and decays of the produced particles.
The detector response obtained by this simulation is processed with CORAL
reconstructing events. The acceptance is determined by reconstructed events
imposing the same selection criteria as established in chapter 8.

12.1 Properties of the Acceptance

In contrast to other COMPASS date sets, which are analyzed doing a partial-wave
decomposition (see for example [Haa14, Gra12]), the acceptance of the present
data-set, is not expected to be uniform due to the geometrical properties of the
calorimeter trigger. The acceptance is defined as the fraction of accepted Monte-
Carlo events, i.e. events, which are reconstructed and pass the event selection.
This fraction can be studied by investigating the dependence on a wide variety

1Here the definition of acceptance does not only contain the angular acceptance of the ap-
paratus, but also the event reconstruction efficiency, where the detection efficiency for particles
and resolution effects enters.
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Figure 12.1: Dependence off the acceptance on the three-pion mass m3π and the
transferred momentum t′.

of kinematic variables. The dependence of the acceptance on a small selection
of kinematic variables, will be discussed here. Some of the more important kine-
matic variables are the invariant mass m3π and the transferred momentum t′.
The dependence of the acceptance on these variables is shown in figure 12.1. A
noticeable dependence of the acceptance on the three-pion m3π is revealed, while
within the relevant kinematic range the acceptance does not vary with t′. The
dependence of the acceptance on the invariant mass of the charged and neutral
subsystem is shown in figure 12.2 and 12.3, respectively. The entire mass range
of the three-pion final state is divided into four equally large mass bins with a
width of 0.5 GeV/c2, each. On the upper bound of the allowed phase space, which
depends upon the three-pion mass, high statistical fluctuations are observed due
to the fact that only a few events are observed at this boarder. However, as this
is true for Monte Carlo and recorded events, no significant effect is expected. Es-
pecially in the lowest three-pion mass bin from 0.5 GeV/c2 to 1.0 GeV/c2, a non
uniform behavior of the acceptance in terms of the dependence on the invariant
mass of the two pion systems is observed. In this mass region the acceptance
value varies by approximately 20%. Looking at higher three-pion mass the de-
pendence of the acceptance on the invariant mass of the two pion subsystems
becomes more uniform. Still large distortions at the upper edges of the allowed
kinematic range remain.

Besides the mass dependence of the acceptance, of course, the dependencies
on many other kinematic variables are studied. Their study is not limited to the
Gotfried-Jackson and Helicity frame, which are discussed below. The discussion
of all studied dependencies, which are used to check the agreement of simulated
and recorded events, would exceed the scope of this work. Thus, in the follow-
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Figure 12.2: Dependence of the acceptance on the invariant mass mπ−π0 of the
charge two pion subsystem. The dependence is shown in 0.5 GeV/c2 mass bins
of the three-pion mass m3π.



126 CHAPTER 12. ACCEPTANCE

]2c [GeV/0π0πm  
0 0.5 1 1.5 2 2.5

A
cc

. [
%

]

0

1

2

3

4

5

6

7

8

9

10

2c 1.0 GeV/≤ π3m ≤ 2c0.5 GeV/

(a) 0.5 GeV/c2 ≤ m3π≤1.0 GeV/c2

]2c [GeV/0π0πm  
0 0.5 1 1.5 2 2.5

A
cc

. [
%

]

0

1

2

3

4

5

6

7

8

9

10

2c 1.5 GeV/≤ π3m ≤ 2c1.0 GeV/

(b) 1.0 GeV/c2 ≤ m3π≤1.5 GeV/c2

]2c [GeV/0π0πm  
0 0.5 1 1.5 2 2.5

A
cc

. [
%

]

0

1

2

3

4

5

6

7

8

9

10

2c 2.0 GeV/≤ π3m ≤ 2c1.5 GeV/

(c) 1.5 GeV/c2 ≤ m3π≤2.0 GeV/c2

]2c [GeV/0π0πm  
0 0.5 1 1.5 2 2.5

A
cc

. [
%

]

0

1

2

3

4

5

6

7

8

9

10

2c 2.5 GeV/≤ π3m ≤ 2c2.0 GeV/

(d) 2.0 GeV/c2 ≤ m3π≤2.5 GeV/c2

Figure 12.3: Dependence of the acceptance on the invariant mass mπ0π0 of the
charge two pion subsystem. The dependence is shown in 0.5 GeV/c2 mass bins
of the three-pion mass m3π.



12.1. PROPERTIES OF THE ACCEPTANCE 127

GJθ
0 0.5 1 1.5 2 2.5 3

T
Y

φ

0

1

2

3

4

5

6

A
cc

. [
%

]

0

1

2

3

4

5

6

7

8

9

10
Charged Isobar

(a) Gottfried-Jackson frame

HFθ
0 0.5 1 1.5 2 2.5 3

H
F

φ

0

1

2

3

4

5

6

A
cc

. [
%

]

0

1

2

3

4

5

6

7

8

9

10
Charged Isobar

(b) Helicity frame

Figure 12.4: Dependence of the acceptance on the decay angles in the Gottfried-
Jackson and helicity frame of the charged two pion subsystem.

ing the discussion is limited to some dependencies, which are closely connected
with the parametrization of decay amplitudes. These are the dependencies of the
acceptance on the decay angles, which play an important role for the parametriza-
tion of isobaric amplitudes. Following the discussion in section 11.4, the charged
two-pion system is now regarded as a quasi bound system, i.e. as isobar, and
used to define the Gottfried-Jackson and helicity frame. The dependencies on
the decay angles in the Gottfried-Jackson frame are shown in figure 12.4. The
azimuthal angle in the Gottfried-Jackson frame chosen randomly in respect to
laboratory coordinate system. Thus, geometric effects cancel and the acceptance
does not depend on the Treiman-Yang angle φTY (see figure 12.4(a)). On the
other hand a high energy deposit in the central region of ECAL2 is required.
Thus a clear dependency on the polar angle θGJ, preferring backward scatter-
ing of the charged subsystem, is observed due to the boost from the rest to the
laboratory frame. Qualitatively this behavior can be deduced, considering that
the trigger is sensitive to the energy deposit in the center of ECAL2. The main
contribution to the deposited energy comes from photons, which are produced in
decays of π0. Due to the geometry of the trigger and the boost to the laboratory
frame, the energy contribution to the trigger energy is largest, when these pho-
tons are scattered forward. The scattering angle of the π0, however, is connected
with the scattering angle of the charged two pion subsystems. Thus the energy
deposit in ECAL2 is loosely connected to θGJ of the charged two pion subsystem.
The acceptance in the helicity frame of the charged isobar shows a more compli-
cated structure (see figure 12.4(b)) and in general cannot be easily deduced from
simple considerations. Doing the same for the neutral ππ system, i.e. looking
at the neutral isobar (see figure12.5), the suppression of backward scattering of
the ππ system due to the calorimetric trigger becomes apparent. However other
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Figure 12.5: Dependence of the acceptance on the decay angles in the Gottfried-
Jackson and Helicity Frame of the neutral two pion subsystem.

structure seen in the charged case do not show up in the Gottfried-Jackson frame,
but propagate to the Helicity frame, which shows a more complicated structure.
Taking into account, that the π0 cannot be distinguished, a forward-backward
symmetry with a shift of π in φHF is observed.

The described features of Primakoff production are not trivially recognized,
when studying data. This has several reasons. At the one hand the dominating
process is diffractive dissociation, which serves not only as large experimental
background, but may also introduce interference effects changing the features of
Primakoff production. On the other hand the described shape as discussed above
do not account for experimental resolution and acceptance. Thus the observed
shape are expected to be distorted. Last but not least one has to take into ac-
count, that in order to generate Dalitz distributions for data (see figure 8.15),
one has to integrate over a certain m3π-range. As this integrals contains the m3π,
which is to be studied, this integration is not easily reproduced for the hypo-
thetical changes. However, the presented method of partial-wave decomposition
accounts the discussed effects, except for the distortion by experimental resolu-
tion, and makes it possible to study the contribution and the features of Primakoff
production in the investigated final state (see section 13).

12.2 Limitation of the Monte-Carlo

The Monte-Carlo tools, which are available to simulate the COMPASS spectrom-
eter and to determine the acceptance, account for the material budget and the
positioning and response of detectors and are well suited to simulate the angular
acceptance of the spectrometer. However, with the currently available meth-
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ods, not all aspects are taken into account. The simulation of background effects,
which are introduced by pile-up events2 or detector noise, for example lacks a good
description. The presented analysis and event selection is sensitive to additional
signals in ECAL2. In order to overcome this issue, the event selection, which
supersedes the calorimetric trigger, does only account electromagnetic showers
connected with the actual event. Thus the effect on the trigger can be neglected.
However, the reconstruction algorithm is still sensitive to additional calorimetric
clusters, which increase combinatorial background. The additional signals, which
effective lowers the acceptance, are independent from the events and their kine-
matics. Therefore the angular properties of the acceptance are maintained, and
the normalized acceptance integrals are unchanged.

As consequence the relative strength of different partial-wave does not change,
while the total number of acceptance corrected number of events change. Thus,
in principle an absolute measurement, like the measurement of cross section, is
affected. However, using the K → π−π0π0 to determine the integrated luminosity,
where the acceptance of the Kaon decay enters, the systematic introduced by the
limited knowledge of the absolute scale of the acceptance cancel, assuming that
the kinematics of the Kaon decay and the pion-target interactions are similar.

2Events origin from other beam particles or interaction, which due to their temporal ap-
pearance can interfere with the investigated event.
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Chapter 13

Partial Wave Analysis

Applying the amplitude analysis technique described in chapter 10 to the data
sample obtained by the event selection introduced in chapter 8, several resonat-
ing and non-resonating states and their contribution to the observed spectra are
investigated. The regime of low momentum transfer with t′≤0.002 GeV2/c2 is
studied with a mass-independent PWA. For this purpose the event sample is di-
vided into 40 MeV/c2 mass bins (see section 13.2.1). At small t′ ≤ 0.002 GeV2/c2,
M = 1 amplitudes are predominantly produced via Primakoff production with
only a small contribution of strong production. Studies, which investigate the
data in bins of t′, are used to understand the t′ dependence of the different am-
plitudes (see section 13.2.2) and therefore reveal insights to the contribution of
diffractive production to M = 1 waves. This study, however, cannot use narrow
mass bins due to statistical limitation. Thus the use of wider mass ranges is
required. But first the wave-sets of the models are discussed.

13.1 The Model

Finding a PWA model, which is appropriated for a given data set well, is a del-
icate procedure. On the one hand all relevant contribution, which are present,
have to be represented in the model. On the other hand the number of waves,
which can be used, is limited by the amount of available events. Luckily it is
possible to deduce some ideas about the contributing amplitudes by considering
the quantum number and decay channel of known resonance. One important con-
straint, which applies to the present analysis, is the conservation of IG in strong
interactions, i.e. diffractive dissociation. Thus, the resonance X produced by
diffractive dissociation must have the same IG = 1− as the beam pion. This of
course does not apply for Primakoff productions, which is a radiative process.
As discussed before, these quantum numbers are omitted in the notation used
here. Evaluating the three-pion mass spectrum signs of the a1(1260), a2(1320)
and π2(1670) are observed. Thus the model has to contain waves with the cor-
responding quantum numbers, i.e. JPC = 1++, JPC = 2++ and JPC = 2−+.

131



132 CHAPTER 13. PARTIAL WAVE ANALYSIS

Considering the coupling to radiative or strong production of this resonance ei-
ther partial waves with M = 1 or M = 0 or both have to be considered. For
strong production, i.e. diffractive dissociation, waves with M 6= 0 can in first
approximation be neglected for the presented analysis due to the suppression at
low t′. The reflectivity ε of M = 0 waves is positive. In the M = 1 sector at
small values of t′ and m3π only contributions from positive reflectivity amplitudes
are expected. However, the production plane may not be measured correctly due
to limited experimental resolution. This leads to a leakage from M ε = 1+ into
M ε = 1− waves, which otherwise have the same quantum numbers and decay
modes. Thus, the M ε = 1− sector ”mimics” the M ε = 1+ waves by using the
corresponding waves with negative reflectivity and applying the same thresholds.
The question, which isobars to consider, can be attacked in different ways. The
mass spectra of the ππ subsystems provides valuable information by revealing
resonance structures. Additionally know decay modes taken from literature (see
for example [B+12]) are considered. This allows to develop a base model, which
covers the most prominent contribution. The base model however has to be mod-
ified and extended to provide a good description of the event sample. Finding
such a model by adapting the wave set and the thresholds, which are applied to
the individual partial-waves and effectively reduce the wave set in certain mass
ranges, is a complicated iterative procedure.

In the presented analysis several models are developed. In the following four
models, with chiral-waves extended to high values of m3π are compared with a
conservative model, which only contains isobaric waves. The presented isobaric
model is the best model found to describe the data and only contain isobar
amplitudes. The four models, which includes chiral waves, do only differ in flavor
Λ ∈ {LO,NLO, ρ, ρρ} of the isobaric waves. Here flavor is not to be confused
with the flavor of the strong interaction. The models will therefore be named
after the flavor of the chiral waves. Table 13.1 and 13.2 describe the complete
wave set for both the chiral models and isobaric model.

13.2 Results

The mass-independent PWA in mass bins, which is presented below, restricts to
low values of transferred momentum t′ ≤ 0.002 GeV2/c2 and events with the beam
particle tagged as pion. The PWA allows to study the presence of resonances,
which are not only identified by peaks or bumps in the intensity spectrum of
amplitudes, but also by their phase. A first separation of different production
mechanism is achieved by selecting the spin projections. In order to study the
contribution of diffractive production to M = 1 waves, a PWA fit in bins of t′ is
done.
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Wave mmin in GeV/c2

0−+0+ (ππ)S S π

0−+0+ f0(980) S π 1.10

0−+0+ ρ P π

0−+0+ f2 D π 1.22

0−+0+ f0(1500) S π 1.62

1++0+ ρ S π

1++0+ ρ D π 0.78

1++0+ (ππ)S P π

1++0+ f0(980) P π 1.22

1++0+ f2 P π 1.38

2−+0+ f2 S π 1.22

2−+0+ ρ P π 0.78

2−+0+ (ππ)S D π 0.78

2−+0+ f2 D π 1.50

2−+0+ ρ F π 1.22

3++0+ ρ D π 1.50

3++0+ f2 P π 1.50

3++0+ (ππ)S F π 1.50

Table 13.1: Partial-waves with M = 0 and the applied thresholds. Threshold,
which are not set explicitly, are omitted. In this sense, as no upper thresholds
are set for M = 0 waves, only the lower threshold is given. Please note, that
the model in the M = 0 sector is identical for all presented chiral and isobaric
models.
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13.2.1 Mass-Independent PWA in Mass-Bins

Considering the regime of small momentum transfer t′≤0.002 GeV2/c2, ampli-
tudes with M = 1 are considered to mainly origin from Primakoff production.
M = 0 waves are produced by strong interaction. Thereby the diffractive disso-
ciation is expected to dominate the observed spectrum. This expectation is con-
firmed by the applied mass-independent PWA. The M = 0 spin total, which is
the coherent sum of all waves with M = 0 (see figure 13.1(a)), has significant sim-
ilarities with the mass spectrum shown in figure 8.12(b). However due to the ac-
ceptance correction the total scale differs and the enhancement at ∼ 1.7 GeV/c2,
which corresponds to the π2(1670), is more pronounced. Studying the available
fit models only little differences are observed in the M = 0 spin total. The
different flavors of chiral models are almost identical concerning intensity and
uncertainty. The isobaric models, still maintaining the coarse features observed
in chiral models, show significant deviations in a wide mass range. The uncer-
tainties are in general larger for the isobar model, when compared to the chiral
model. This behavior becomes even more striking, when looking at the M = 1
spin total (figure 13.1(b)), where the radiatively produced a2(1320) shows up as
a narrow peak. The a2(1320) sits on a broad structure. The obvious increase of
error bars at 0.78 GeV/c2 is explained by the properties of the model as shortly
discussed in the following. Below this threshold the model is restricted to a few
M = 0 waves and the chiral-waves or in case of the isobaric model a few isobaric
waves with M = 1. Above this threshold a bunch of amplitudes opens up, where
most of the amplitudes feature M = 1. Thus, the number of degrees of freedom
gets significantly larger, which is reflected by increased error bars. Similar to the
M = 1 spin total the difference between the different flavors of the chiral model
is small.

The spin totals give a first overview of the present amplitudes and their con-
tribution, however, the strength of a fully featured PWA is the ability to inves-
tigate the intensity and phase of individual amplitudes. As deduced from the
mass spectrum and the spin totals, the dominant contribution comes from the
diffractively produced a1(1260) resonance1. The a1 has JPC = 1++ and in the
given kinematic region its predominant decay channel is know to be the (ρπ)S
channel. The intensity of the corresponding partial-wave, the (1++)0+ ρ S π, is
shown in figure 13.2(a). At this point it should be mentioned, that due to its
large intensity the a1 is expected to be observed in other decay channels as well.
Thus, it is no surprise, that studying the intensity of the 1++0+ (ππ)S P π wave a
similar spectrum, but with lower intensity, is observed (see figure 13.2(b)). Look-
ing at the relative phase between both waves a phase lock in the mass range of
the a1 is observed (figure 13.2(c)), i.e. a mass range where the relative phase
between the waves is approximately constant. This is a strong indication, that
both waves are connected by the same intermediate state a1. The offset, how-

1In the following also the abbreviation a1 will be used for the a1(1260).
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Figure 13.1: Total waves intensities of partial-waves with spin projection (a)
M = 0 and (b) M = 1. The result for the chiral model up to LO (black), NLO
(red), single ρ (blue) and double ρ exchange (green) are shown. For comparison a
fit using the isobaric model is shown in magenta. The colored spectra are shifted
to the right, the original position is given by the black curve.
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Figure 13.2: Intensity of the (1++)0+ ρ S π (a) and 1++0+ (ππ)S P π (b) partial
waves and the phase between this two waves (c). For the color coding please refer
to figure 13.1.
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Figure 13.3: Intensity of the (2++)1+ ρD π (a) partial waves and its relative phase
to the 1++0+ ρ S π (b). For the color coding please refer to figure 13.1.

ever, can be understood, considering interference or non-interference of different
production mechanisms or final state interactions. While the (1++)0+ ρ S π is
believed to be dominated by diffractive dissociation, for the 1++0+ (ππ)S P π the
Deck-effect might play an important role. Thereby the Deck-effect being no reso-
nance has no phase-motion itself, but can modify the phase and phase-motion of
1++0+ (ππ)S P π by introducing a shift of the complex amplitude. Up to here it
is shown, that the spectrum of the (1++)0+ ρ S π and 1++0+ (ππ)S P π have the
same origin. However, as the origin of these amplitudes is a resonance it should
show the phase motion, which is typical for a resonance. In order to observe this
phase motion, it is requires to study the relative phase of waves with different
intermediate states. A good option to study the phase motion of the a1 is another
narrow resonance, which lies in the same mass range, i.e. the a2(1320) resonance2.
As already mentioned this resonance with JPC = 2++ is produced in Primakoff
reaction and therefore exhibits M = 1. Considering the quantum numbers and
the decay channel of the a2 it is expected to occur in the (2++)1+ ρD π amplitude,
where indeed a narrow peak at the right mass is observed (see figure 13.3(a)).
Now studying the relative phase between (2++)1+ ρD π and (1++)0+ ρ S π (fig-
ure 13.3(b)) the expected phase motion between both resonances is observed.
Due to the sign first a falling phase from the a1 is observed, which is followed by
a sharp rise at around 1.2 GeV/c2, which indicates the appearance of the a2.

Figure 13.4(a) shows the intensity of the (2−+)0+ f2 S π, one of the waves,
where the π2(1670) resonance shows up as a enhancement in the intensity. Addi-
tionally the phase behavior of this amplitude shows the presence of a resonance at
the mass of the π2. This can for example be studied using the 1++0+ ρ S π as ref-
erence (see figure 13.4(b)). The π2(1670), however, is not only observed in strong
production, but can also be produced by radiative coupling. Thus it is no surprise,

2Similar to the a1, the abbreviation a2 is used for the a2(1320).
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Wave mmin in GeV/c2 mmax in GeV/c2

1++1± ρ S π 0.78 (∗) ∗

1++1± (ππ)S P π − (∗) − (∗)

1−+1± ρ P π 1.42 (∗) ∗

2++1± ρ D π 0.78 (∗) ∗

2−+1± f2 S π 1.42 (1.34) ∗

2−+1± ρ P π 1.42 (∗) ∗

2−+1± (ππ)S D π − (1.22) − (∗)

2−+1± ρ F π 1.52 ∗

(ChPT)±Λ
∗ (−) 1.62 (−)

Table 13.2: Wave with spin projection M = 1 and their thresholds. As waves with
positive and negative reflectivity are always used pairwise with identical thresh-
old, the notation of both waves is done only once. All chiral models use identical
thresholds. Diverting threshold in the isobaric model are given in brackets. The
symbol ∗ denotes the absence of a threshold, i.e. the wave is not threshold, while
the symbol − denotes, that the wave is omitted in a model.
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Figure 13.4: Intensity of the (2−+)0+ f2 S π (a) partial waves and its relative
phase to the 1++0+ ρ S π (b). For the color coding please refer to figure 13.1.



13.2. RESULTS 139

]2c [GeV/π3m
0.5 1 1.5 2 2.5

)2 c
E

ve
nt

s 
/ (

40
 M

eV
/

0

0.5

1

1.5

2

2.5

310× (COMPASS 2009) iN0π0π−π→iN−π
 )πS  2f +1+−2Intensity( 

(a) 2−+1+ f2 S π Intensity

]2c [GeV/π3m 
0.5 1 1.5 2 2.5

 [
D

eg
re

e]
φ 

150−

100−

50−

0

50

100

150

(COMPASS 2009) iN0π0π−π→iN−π
 )πS  2f +0+−2 - πS  2f +1+−2Phase( 

(b) Phase( 2−+0+ f2 S π − 2−+1+ f2 S π )

Figure 13.5: Intensity of the 2−+1+ f2 S π (a) partial waves and its relative phase
to the 2−+1+ f2 S π (b). For the color coding please refer to figure 13.1.

that one observes a small peak at the mass of the π2(1670), when studying the
intensity of the (2−+)1+ f2 S π wave (figure 13.5(a)). At the same mass a phase
lock at approximately −100◦ between (2−+)1+ f2 S π and the (2−+)0+ f2 S π is
observed (see figure 13.5(b)). At this place it should be mention, that neglecting
further effects [FT09], the production phase difference between Primakoff produc-
tion and diffractive dissociation is expected to be 90 Degree due to the properties
of the photon and pomeron. Allowing for additional disturbances the observed
relative phase difference of 100◦ is in good agreement with the picture of the
π2(1670) produced either by diffractive dissociation or Primakoff reaction.

Besides the a1(1260), there is another known resonance with JPC = 1++ –
the a1(1670). This resonance predominately decays via ρπ. As already shown
the 1++0+ ρ S π is dominated by the a1(1260), thus it is impossible to judge on a
possible contribution of the a1(1670). However this picture changes when going to
(ρπ)D decays. The intensity spectrum of the 1++0+ ρD π (see figure 13.6(a)) looks
different from the one of the 1++0+ ρ S π wave. The maximum of the broad spec-
trum lies approximately at the mass of the a1(1670), between 1.6 and 1.7 GeV/c2.
The long shoulder towards low mass however indicates, that there is also contri-
bution from the a1(1260). This is confirmed by studying the phase between
1++0+ ρD π and 1++0+ ρ S π wave (see figure 13.6(b)), where a plateau between
roughly 1 and 1.3 GeV/c2 is observed. The plateau is followed by a rise of the
relative phase, which indicates the a1(1670) appearing in the 1++0+ ρD π.

So far all waves, which were discussed, reveal negligible difference of the be-
havior of the fits with different models. However, studying the 1++1+ ρ S π am-
plitude, where the radiatively produced a1(1260) can be observed, the situation
changes. The PWA fit with the isobaric model show, as the intensity of the
1++1+ ρ S π amplitude vanishes in the mass region of the a1(1260), no hints of
a radiatively produced a1(1260) (figure 13.7(a)). On the other hand all chiral
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Figure 13.6: Intensity of the 1++0+ ρD π (a) partial waves and its relative phase
to the 1++0+ ρ S π (b). For the color coding please refer to figure 13.1.

model show a clear enhancement of intensity between 1 and 1.3 GeV/c2. The
behavior of all chiral models, except the LO model, is almost identical. This
grouping of chiral models is later on observed several times. Thus for practical
reasons the chiral waves and models, which are based on ChPT calculation be-
yond leading-order calculations, are referred as advanced chiral waves and models,
respectively. The LO model, however, reveal a significant higher intensity, which
have a similar shape, in the same mass region. Studying the phase between the
dominating 1++0+ ρ S π and the 1++1+ ρ S π (figure 13.7(b)), in the mass range
of the a1(1260) all chiral models show a phase lock between the two waves. This
phase lock is at ≈ −90◦, which supports the picture of radiative and diffractive
production of the a1.

So far it had been demonstrated, that the applied partial-wave analysis is
able to resolve amplitudes, which contribute with a few per-mill to the observed
spectra. However, up to now the chiral amplitudes, which are introduced to de-
scribe non-resonant radiative process, had not been discussed. Studying their
contributions is a central part of this work. Figure 13.8(a) shows the intensity of
the chiral waves with positive reflectivity. Again there are no large differences be-
tween the advanced chiral models. At low three-pion masses for these models the
observed shape follows roughly the shape expected from ChPT prediction, where
the intensity increases towards high masses due to the increasing cross section.
On the other hand the Weizsäcker-Williams approximation predicts a damping
at high masses, which roughly explains the vanishing of the wave at high masses.
However, considering the fundamental assumptions, ChPT is applicable up to a
few pion masses. The fact, that the experimental data are obviously described
well by ChPT waves, even at high center-of-mass energies, is an experimental
finding, which requires further interpretation. This, however, goes beyond the
scope of this work. The intensity of the LO chiral amplitude is up to 0.78 GeV/c2
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Figure 13.7: Intensity of the 1++1+ ρ S π (a) partial waves and its relative phase
to the 1++0+ ρ S π (b). For the color coding please refer to figure 13.1.

identical with the intensity found by the advanced chiral models. However, going
to higher center-of-mass energy, the LO amplitude shows up to ≈ 1.2 GeV/c2 sig-
nificantly less intensity than the other chiral waves. The observed intensity shows
a plateau in the region form 0.78 GeV/c2 to 1.2 GeV/c2. This is the same mass
range, where the intensity of the 1++1+ ρ S π for the LO model is higher than for
the advanced chiral models. Having a non-continuous behavior at the transition
from the raising intensity below 0.78 GeV/c2 to the plateau above, seems to be
unphysical as a continuous shape is expected. The identical behavior of all chi-
ral waves up to 0.78 GeV/c2 can be understood by considering, that up to this
threshold the chiral waves are the only M = 1 waves included in the models. In
order to study the phase of the chiral waves, again the 1++0+ ρ S π anchor wave
is used (figure 13.8(b)). All chiral waves show falling phases with similar behav-
ior. This matches the expectation for the phase between an amplitude describing
non-resonant processes and one which contains a resonance. The curves, however,
show different absolute values. Again the LO wave sticks out, revealing a phase,
which differs by approximately 90◦ form the one of the advanced chiral models.
The LO chiral amplitude is real, while the advanced amplitudes take on complex
values due to loop and ρ contributions. Looking at the advanced chiral waves
the NLO amplitude has a smaller phase than the other chiral amplitudes, which
show almost identical phases. This can be understood as an effect of resonating
pion-pion scattering as introduced by considering the ρ.

So far only amplitudes with positive reflectivity are discussed, which are phys-
ically expected. However, as discussed before, at small transferred momentum
and masses the production plane is not always correctly resolved due to experi-
mental resolution (see also section 11.3). As a consequence leakage into negative
reflectivity waves with the same quantum number and the same decay channel
is expected. For example studying the 2++1− ρD π intensity (figure 13.9(a)) a
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figure 13.1.
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Figure 13.9: Intensity of selected amplitudes with negative reflectivity ε = −.
For the color coding please refer to figure 13.1.



13.2. RESULTS 143

]2c [GeV/π3m  
0.5 1 1.5 2 2.5

)2 c
E

ve
nt

s 
/ (

40
 M

eV
/

  

0

2

4

6

8

10

310× (COMPASS 2009) iN0π0π−π→iN−π
(ChPT) Total

Figure 13.10: Total wave intensity of the chiral waves (ChPT)+
Λ and (ChPT)−Λ .

For the color coding please refer to figure 13.1.

spectrum, which is similar to the one observed for the intensity of the 2++1+ ρD π
amplitude, is observed. A prominent a2(1320) peak shows up. The intensity of
the negative reflectivity wave however is smaller than for its counter part with
positive reflectivity. The observed a2 peak shows only 60% of the intensity, which
is observed in the intensity of the positive reflectivity amplitude. Similar observa-
tions are true for the Primakoff produced π2(1670) (figure 13.9(b)). Considering
the small intensity of the signal observed in the positive-reflectivity wave, the
intensity in the negative-reflectivity wave gets very small. This is also true for
the 1++1− ρ S π wave (see figure 13.9(c)). Thus, without knowing the positive
reflectivity wave the enhancement of the intensity lacks significance. The small
narrow peak at the position of the a2(1320) is probably an artifact of model
leakage. Coming back to the chiral amplitudes the chiral wave with negative
reflectivity (figure 13.9(d)) also resembles the behavior of its counter part with
positive reflectivity. The drop of the LO amplitude at 780 MeV/c2 is however
much more pronounced. This, of course, also translates to the total wave inten-
sity of chiral waves (see figure 13.10). Looking at the spin totals for M ε = 1+

and M ε = 1− (figure 13.11) the intensity in the fit using the (ChPT)±LO waves
for both reflectivity values recovers to the level of the other chiral models. This
indicates, that the different behavior of LO and advanced models is due to model
leakage between M = 1 waves with the same reflectivity. The isobaric fit mimics
the behavior, which was already discussed when looking at the M = 1 spin total.
But increased uncertainties are observed.
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Figure 13.11: Total waves intensity of the M ε = 1+ (a) and M ε = 1− partial
waves. For the color coding please refer to figure 13.1.

While there is hardly any handle to make a statement regarding, which of the
chiral models describes the data best, all chiral models show more continuous and
therefore physical behavior and due to the smaller wave set smaller uncertainties
as isobaric models. This is already visible at the level of spin totals. This leads
to the conclusion, that the chiral wave describe the data better than isobaric
waves. However, regarding the chiral models only the LO model show significant
differences compared to the other chiral waves. Thereby, the behavior of the
LO chiral waves itself may indicate, that the NLO, ρ or ρρ chiral amplitude are
better suited to describe the underlying physics, since a more continuous intensity
of the chiral wave is observed3. However, in order to make a more substantial
statement, a better understanding of the behavior of the different fit models is
required. Thereby a central point is the understanding of the so-called model
leakage, i.e. the leakage from a certain amplitude into other partial waves. A
study aiming to investigate this behavior concerning different flavors of chiral
waves is discussed in chapter 14.

13.2.2 Fit in Bins of t′

The PWA in mass bins allows first conclusions on the involved production mech-
anisms using the spin projection M and the phase of different waves. However,
as M = 1 can be produced by Primakoff production and diffractive dissociation,
this is only a rough classification. In order to study the contribution to M = 1,
which is due to diffractive dissociation, a study of the t′ dependence of the partial
waves is required. This is achieved by doing a PWA in bins of t′. This study

3From a physics point of view a continuous development is expected and, assuming chiral
perturbation theory applies, the low mass regime of M = 1 waves is, in the absence of resonance,
completely described by the chiral amplitude.



13.2. RESULTS 145

]2c/2 [GeVt' 

0 5 10 15 20 25 30

3−10×

]
-1 )2 c/2

 [
(G

eV
t'∆

 / 
N∆ 

0

5

10

15

20

25

30

35

40

610× (COMPASS 2009) iN0π0π−π→iN−π
 = 0 Total Waves IntensityM

2c 0.780 GeV/≤ π3m ≤ 2c0.540 GeV/

(a) M = 0 total waves intensity

]2c/2 [GeVt' 

0 5 10 15 20 25 30

3−10×

]
-1 )2 c/2

 [
(G

eV
t'∆

 / 
N∆ 

0

2

4

6

8

10

12

14

16

610× (COMPASS 2009) iN0π0π−π→iN−π
 = 1 Total Waves IntensityM

2c 0.780 GeV/≤ π3m ≤ 2c0.540 GeV/

(b) M = 1 total waves intensity

Figure 13.12: Total waves intensity of M = 0 (a) and M = 1 (b) partial waves
in a mass range 0.54 GeV/c2 ≤ m3π ≤ 0.78 GeV/c2.

cannot be applied in the narrow 40 MeV/c2 mass bins used before due to statis-
tical limitations. Thus this study is done in broad mass ranges. In the following
the results in the ranges from 0.54 to 0.78 GeV/c2, which is near the three-pion
threshold, and from 1.22 to 1.38 GeV/c2, which covers the radiatively produced
a2(1320) are discussed.

Similar to the fit in mass bins, the results of fits applying chiral models are
describing the data in better than isobaric waves, showing a more continuous and
therefore more physical shape and due to the smaller wave-set smaller uncertain-
ties. Furthermore, the fits with one of the advanced chiral models describe the
data best. These fits differ only marginally. Thus, in the following the discussion
restricts to the most advanced chiral model, i.e. the one, which includes the chiral
wave with double ρ exchange. Having said this the explicit notation of the flavor
is omitted in the following discussion.

The t′ Dependence Near the Three Pion Threshold

Later on, in the discussion in chapter 15 the partial-wave analysis technique will
be used to measure the differential cross section of the process π−γ → π−π0π0.
This cross section is measured for masses 0.54 GeV/c2 ≤ m3π ≤ 0.78 GeV/c2.
In this mass range the only M = 1 waves are the chiral waves (ChPT )ε=±.
The chiral amplitudes refer to radiative production. However, the contribution
from diffractive dissociation to the observed intensity has to be quantitatively
understood. This is achieved by applying the partial-wave analysis in bins of
t′. Considering only masses above 0.54 GeV/c2 contribution from K− → π−π0π0

decays, which show up in the around the invariant mass of the K−, are omitted.
At this point it should be emphasized, that within the given mass range no reso-
nant radiative processes are expected. This is reflected by the absence of isobaric
M = 1 amplitudes. At small masses the overlap between M = 1 diffractive and
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radiative production is minimal due to the sharp t′ dependence of the Primakoff
production, which is given by the Weizsäcker-Williams approximation (see sec-
tion 3.3), and the relative phase of 90◦. Thus, interference effects between the
different production mechanisms is expected to be small.

Considering the simple structure of the M = 1 sector all important infor-
mation is already contained in the spin totals. The M = 0 spin total (fig-
ure 13.12(a)) shows as expected an exponential shape, while the M = 1 spin
total (figure 13.12(b)) shows a sharp peak at low t′ followed by a long tail. The
sharp peak matches the shape expected from the Monte-Carlo study of Primakoff
events (see section 9.1). The tail can be used to constrain the contribution of
diffractive dissociation, which is proportional to t′ · exp(−bt′). Neglecting pos-
sible interference effects the observed spectrum can then be fitted by using the
combined model

F (t′) = a · f(t′,m3π) + t′ · exp(−bt′). (13.1)

f(t′,m3π) is the expected Primakoff shape (equation 9.3). The parameters of
the function depend on the three-pion mass m3π. These parameters however
change only slowly, thus they are allowed to vary within the limits of the mass
range letting the fit determine the exact values. The parameters a and b are the
parameters, which in leading order determine the amplitude of the Primakoff and
diffractive production, respectively. These parameters are used to determine the
corresponding contributions. The result of the fit is shown in figure 13.13. The
observed t′ shape is well described by the model and no signs of interference are
observed. By integrating the individual contribution in a certain range of t′ one
can determine the admixture of diffractive and Primakoff production, respectively.
The fraction of Primakoff events with transferred momentum t′low ≤ t′ ≤ t′high is
then given by

FPrimakoff(t′low, t
′
high) =

∫ t′high
t′low

dt′ p0 · f(t′,m)∫ t′high
t′low

dt′ F (t′)
. (13.2)

The t′ Dependence at the Mass of the a2(1320)

Looking at three-pion masses larger than 1 GeV/c2, several resonances are present
and besides the small overlap of diffractive and radiative production the inter-
ference of the different production mechanisms might become significant. This is
especially true for the a2(1320), which dominates the M = 1 spectrum. An im-
portant input to the understanding of these effects is the observed t′ spectrum at
the mass range of the a2(1320). A quantitative understanding of this inference is
necessary to determine the absolute value of the radiative width of the a2(1320).
Thus, a partial-wave analysis in t′ bins is applied, considering three-pion masses
from 1.22 GeV/c2 ≤ m3π ≤ 1.38 GeV/c2.

As in this particular mass region, multiple and partially narrow resonance ap-
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and the fit (green) to the data. The contributions of Primakoff production (red)
and diffractive dissociation (blue) are shown, which are added incoherently as
described in the text.

pear, the assumption of the mass-independent PWA, that the mass-dependence
in a certain analysis bin can be neglected, brakes down. Thus, the contribution
of the resonances observed in different partial-wave has to be accounted. Neglect-
ing the t′-dependence in the narrow t′ bins this is achieved by introducing the
mass-dependent decay amplitude f εi (t

′,m3π) = AX(m3π) to the partial-waves (see
equation 10.2 and 10.4), where X denotes the resonance with known parameters,
which is observed in the amplitude i with reflectivity ε. Considering the results
of the PWA in bins of m3π as well as the particle listing given in [B+12] the mass
dependence of the a1(1260), a1(1420), a2(1320) and π2(1670) are modeled (see ta-
ble 13.3). Table 13.4 lists which mass dependence is applied to which amplitude.

The M = 0 total waves intensity obtained with this method is shown in
figure 13.14(a). Similar to the small mass an exponential dependence com-
patible with diffractive dissociation is observed. The M = 1 total waves in-
tensity (figure 13.14(b)) shows, as expected, a sharp peak at low values of t′

and a long tail. However, in contrast to lower masses, the transition between
the peak at very low t′ and the tail towards higher values shows an intensity,
which cannot be described by equation 13.1. The intensity between roughly
0.001 GeV2/c2 ≤ t′ ≤ 0.004 GeV2/c2 is too high, to be described with this model.
At this point it should be mentioned again, that equation 13.1 neglect interference
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isobar paramters comments

a1(1260) m0 = 1.220 Gev/c2 According to [Bow86]
Γ0 = 0.370 GeV/c2

a1(1420) m0 = 1.412 GeV/c2 Using constant width
Γ0 = 0.155 Gev/c2

a2(1320) m0 = 1.314 GeV/c2 Decay channels: ρπ, σπ
Γ0 = 0.120 GeV/c2

BR(ρπ)/BR(σπ) = 4/1

π2(1670) m0 = 1.672 GeV/c2 Decay channels: f2π , ρπ
Γ0 = 0.259 GeV/c2

BR(f2π)/BR(ρπ) = 7/3

Table 13.3: Overview of parametrization of the mass dependence of three-pion
resonances. The a1(1260) is parametrized according to [Bow86]. The a2(1320)
and π2(1670) are parametrized using relativistic Breit-Wigner function consider-
ing the two most important decay modes.
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Figure 13.14: Dependence of the total waves intensity of M = 0 (a) and M = 1
(b) amplitudes on t′ in the mass range 1.22 GeV/c2 ≤ m3π ≤ 1.38 GeV/c2.
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Wave Mass dependence

1++0+ ρ S π a1(1260)

1++0+ ρ D π a1(1260)

1++0+ (ππ)S P π a1(1260)

1++0+ f0(980) P π a1(1420)

1++0+ f2 P π a1(1260)

2−+0+ f2 S π π2(1670)

2−+0+ ρ P π π2(1670)

2−+0+ (ππ)S D π π2(1670)

2−+0+ f2 D π π2(1670)

2−+0+ ρ F π π2(1670)

1++1± ρ S π a1(1260)

1++1± (ππ)S P π a1(1260)

2++1± ρ D π a2(1320)

2−+1± f2 S π π2(1670)

2−+1± ρ P π π2(1670)

2−+1± (ππ)S D π π2(1670)

2−+1± ρ F π π2(1670)

Table 13.4: Listing of the mass dependence applied to different partial waves,
when doing the PWA fit in bins of transferred momentum t′. The mass depen-
dencies are not used for three-pion masses bellow 0.78 GeV7c2. Waves with flat
mass dependence are omitted.
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Figure 13.15: Dependence of the total waves intensity of JPCM = 2++1 ampli-
tudes on t′ in the mass range 1.22 GeV/c2 ≤ m3π ≤ 1.38 GeV/c2.

effects. This discrepancy cannot be resolved by looking at the JPCM = 2++1
total waves intensity (see figure 13.15). At the current state of understanding,
the discrepancy is not introduced by experimental uncertainties, but is a evi-
dence for the interference of production mechanisms. Lacking a suitable model
the quantitative understanding of this effect, which is necessary for an absolute
measurement in this mass region, is currently impossible. This includes the mea-
surement of the radiative width of the a2(1320).

Nevertheless, the contributions to the JPCM = 2++1 total wave are studied.
These are the 2++1+ ρD π wave (figure 13.16(a)) and its counter part with nega-
tive reflectivity, the 2++1− ρD π wave (figure 13.16(b)). The suppression of high
t′ in the negative reflectivity is expected due to the fact, that negative reflectiv-
ity waves are populated through experimental uncertainties. Last but not least
the phase difference between the 2++1+ ρD π and the 1++0+ ρ S π should be dis-
cussed (figure 13.17). As seen in the PWA in mass bins the 1++0+ ρ S π intensity
comes from the a1(1260), while the a2(1320) shows up in the 2++1+ ρD π. The
phase between this two waves change from ≈ −100◦ to values of ≈ 20 with a
continuous transition. This can be interpreted as the changeover from different
productions mechanisms of the a2(1320), starting with radiative production at
low t′. At higher t′ the contribution of diffractive dissociation increases until it
takes over completely and a constant phase is observed.



13.2. RESULTS 151

]2c/2 [GeVt' 

0 2 4 6 8 10 12 14 16 18 20 22 24

3−10×

]
-1 )2 c/2

 [
(G

eV
t'∆

 / 
N∆ 

0

10

20

30

40

50

60

70

610× (COMPASS 2009) iN0π0π−π→iN−π
 )π D ρ +1++Intensity( 2

2c 1.38 GeV/≤ π3m ≤ 2c1.22 GeV/

(a) Intensity( 2++1+ ρD π )

]2c/2 [GeVt' 

0 2 4 6 8 10 12 14 16 18 20 22 24

3−10×

]
-1 )2 c/2

 [
(G

eV
t'∆

 / 
N∆ 

0

10

20

30

40

50

60
610× (COMPASS 2009) iN0π0π−π→iN−π

 )π D ρ -1++Intensity( 2
2c 1.38 GeV/≤ π3m ≤ 2c1.22 GeV/

(b) Intensity( 2++1− ρD π )

Figure 13.16: Dependence the intensity of the 2++1+ ρD π and 2++1+ ρD π am-
plitude on t′ in the mass range 1.22 GeV/c2 ≤ m3π ≤ 1.38 GeV/c2.



152 CHAPTER 13. PARTIAL WAVE ANALYSIS

]2c/2 [GeVt' 
0 2 4 6 8 10 12 14 16 18 20 22 24

3−10×

 [
D

eg
re

e]
φ 

120−
100−
80−
60−
40−
20−
0

20

40
(COMPASS 2009) iN0π0π−π→iN−π

 )π S ρ +)0++ - (1π D ρ +1++Phase( (2

Figure 13.17: Dependence of the phase( 2++1+ ρD π− 1++0+ ρ S π ) on t′ at the
mass of the a2(1320).



Chapter 14

Systematic Studies

Demonstrating, that the presented partial-wave analysis is able to identify and
characterize partial-waves with contributions on the sub-percent level, a careful
analysis of systematic effects imposed by the model and apparatus is required.
Besides a classical leakage study, where the obtained model is simulated and fed
back to the PWA, a more comprehensive study of the chiral wave and their flavors
has been carried out. For this study four event samples, one for each flavor of
the chiral amplitudes, have been generated in the mass range of 0.42 GeV/c2 to
1.62 GeV/c2. Only a positive-reflectivity wave is taken into account. The event
samples is generated in mass bins of 10 MeV/c2 width and follow a t′ distribution
imposed by the Weizsäcker-Williams approximation. The angular dependencies
of the chiral wave are generated with a sample and reject algorithm. At the end,
each mass bin with a width 10 MeV/c2 of provide the equal amount of 112 events,
which have passed the selection. The generated event samples are than fitted with
each of the chiral models, which are also used to fit the data (see chapter 13).
Named after the underlying chiral wave, the event samples are referred as LO,
NLO, single ρ and double ρ sample, respectively.

The visual presentation of the results uses the color scheme introduced in
chapter 13. The LO model is plotted in black, the model including the NLO
chiral wave in red. The models including chiral waves, which account for single
and double ρ exchange, are printed in blue and green, respectively. For better
distinction the colored points are increasingly shifted to the right. The bin center
is always given by the black LO points.

14.1 The (ChPT)+LO Monte-Carlo Sample

First the behavior of the PWA fits to the event sample obtained by using the
(ChPT)+

LO chiral wave function to weight the Monte-Carlo events should be dis-
cussed. Figure 14.1 show the spin totals for M = 0, M = 1 as well as M ε = 1+
and M ε = 1− total wave intensities, which are obtained by fitting with the dif-
ferent flavors of the chiral model. Fitting with the LO model, which contains the

153
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chiral wave used to generate the sample, a significantly lower leakage into M = 0
waves than for other models is observed. Except for the lowest mass bins in the
relevant kinematic range a leakage, which is in the order of ten percent, is found
for this model. All other fits show significant more leakage, which increase to-
wards higher masses. This behavior cannot be confirmed, when compared to the
result of the PWA (see chapter 13), where all chiral model show a similar behavior
of the spin totals. For the recorded data above 0.78 GeV/c2 the LO model reveals
a significant lower intensity in the chiral wave than other chiral models. This is
the behavior, which is opposite to the one observed studying the LO event sam-
ple. Here the fit with LO model reveal a higher intensity of the chiral wave due
to the smaller leakage into M = 0 waves. Furthermore, at masses from 0.78 to
0.98 GeV/c2 a non-continuity in the intensity of the advanced chiral is observed.
This is not observed for the COMPASS 2009 data. The model leakage from pos-
itive to negative reflectivity of the advanced model vanishes at higher masses,
where for the COMPASS data an almost constant ratio of positive and negative
reflectivity waves is observed for all models. For the LO Monte-Carlo this ratio
of 10/7 is only reproduced with the LO fit. Thus, from these observations the
conclusion is drawn, that the chiral amplitude observed in the COMPASS data
does not follow the angular dependencies, which are predicted by the LO ChPT
calculation.

14.2 The (ChPT)+NLO Monte-Carlo Sample

The spin totals obtained by the fit to the NLO sample are shown in figure 14.3.
Similar to the fits to the real data and the previously discussed LO sample again a
grouping of the advanced models is observed. Below m3π = 1 GeV/c2 the fits with
advanced models show a comparatively small leakage into M = 0 waves, which
is in the order of 10-20%. Above 1 GeV/c2 this leakage is continuously increased.
For the LO model a similar increase can be observed. However this increase
extend over the hole mass range, where the starting value is with approximately
30% much higher. The model leakage from positive to negative reflectivity is again
found to be compatible with recorded data. Looking at the chiral amplitudes
(figure 14.4) some principle similarities of the PWA applied to the COMPASS
data are found. The fits for advanced chiral models still group together having
a higher intensity than the LO chiral model. This is the behavior observed in
the PWA of the COMPASS data for masses above 0.78 GeV/c2. However, at
lower masses, where for the real data set no significant difference between LO
and advanced chiral models exists, the intensity of chiral amplitude in the LO
model is still lower than the intensity obtained for advanced models. Thereby
the difference is smaller than at large values of m3π. At this place one should
emphasize, that in the recorded data set there might be additional contribution,
which might modify the behavior of the fit. Thus no final conclusion can be
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Figure 14.1: Total wave intensity fitted to Monte-Carlo sample, weighted with the
(ChPT)+

LO chiral wave. The different color represents different fit models (details
given in the text).

drawn from this difference. Looking even more closely to the mass range from
0.78 GeV/c2 to 1.22 GeV/c2 the fit using the single ρ exchange model (blue) has
a slightly higher intensity in the chiral wave than observed for the NLO or double
ρ exchange model. This matches the observation made for COMPASS data (see
chapter 13).

14.3 The (ChPT)+ρ Monte-Carlo Sample

Advancing further figure 14.5 shows the spin totals obtained by fitting the Monte-
Carlo sample featuring single ρ exchange. The intensities of the chiral waves are
shown in figure 14.6. Similar to the fit to the NLO sample, the coarse features
observed in the analysis of recorded data are observed. However a close look to the
chiral wave intensity of the different fit models show a wider spread of advanced
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chiral models at high values of m3π. This is not observed for the recorded data.
Thus, the NLO sample produces a behavior, which matches the behavior observed
in the PWA analysis of the COMPASS data, better than the single ρ sample. This
is, however, no strong evidence.

14.4 The (ChPT)+ρρ Monte-Carlo Sample

Introducing double ρ exchange into the weighted Monte Carlo, it is found, that
the coarse feature of the analysis of the COMPASS data are reproduced (see
figure 14.7). Also investigating the chiral waves (figure 14.8) do reveal a very
similar behavior as observed for COMPASS data and the NLO sample. This
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Figure 14.3: Total wave intensity fitted to Monte-Carlo sample, weighted with
the (ChPT)+

NLO chiral wave. The different color represents different fit models
(details given in the text).

makes it impossible to determine, which model fits the data best. However, as
the model is based on the most advanced ChPT calculations and no significant
difference of advanced models are observed, the ρρ model is regarded as the
leading model. Thus all measurements are based on the results obtained with
this model.

14.5 Conclusion of the Leakage Study

The study of PWA fits to the Primakoff data recorded at COMPASS in 2009
already revealed, that PWA models, which contain an amplitude based on ChPT
calculations, produces superior fit results than pure isobar models. These fits
however revealed, that the difference between available chiral models are compa-
rably small, with only the LO model sticking out. Thus, a comprehensive study,
which reveals the behavior of the different fit models, when used to describe
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Figure 14.4: Intensity of the chiral waves (ChPT)+ and (ChPT)− fitted to the
chiral event sample of NLO calculations and their coherent sum, the ChPT Total
wave intensity. The different fitting models are indicated with the color code
discussed in the text.

hypothetical chiral waves, had been conducted and discussed.

This study revealed, that for angular dependence produced by advanced mod-
els many of the features observed for COMPASS data are not only qualitatively,
but also quantitatively reproduced, as it is the case for the leakage from positive
to negative reflectivity. However, all advanced chiral waves behave very similar.
This is also true, when the available number of Monte-Carlo events is increased
by an order of magnitude. A study using larger event sample, which do not follow
the t′ distribution imposed by the Weizsäcker-Williams approximation, did not
reveal further insights (see appendix C). Fits to the Monte Carlo truth, i.e. to
the four-vectors generated by the event generator with acceptance being applied,
show no model leakage. Thus, the observed model leakage is due to experimental
resolution.
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The LO event sample in contrast to the advanced sample, could not reproduce
the fit behavior observed for COMPASS data. Thus, the hypothesis, that the
recorded data contain a chiral amplitude with pure leading-order behavior can
be rejected.

Since none of the advanced chiral waves stick out, from this study no clear
preference for one of the advanced wave can be deduced. Thus, the preference
for the chiral amplitude which includes double ρ exchange is deduced from the
fact, that it is based on the most advanced ChPT calculations.

Last but not least it should be recalled, that not all features of the behavior
of the fit, like the similar behavior of all chiral models at large masses or the
almost identical behavior all models for m3π < 0.78 GeV/c2, of the fit with differ-
ent chiral models are reproduced. This leaves room for further clarification and
improvements, which, however, exceeds the scope of this work.
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Chapter 15

Cross Section of π−γ → π−π0π0

Absolute measurement like the determination of the cross section require besides
a good understanding of the apparatus and involved systematic, a normalization.
The normalization is obtained through the integrated luminosity. At COMPASS
decays of kaons, which are contained in the beam, are used to measure the in-
tegrated luminosity. The details of this measurement are discussed, before dis-
cussing how the differential cross section is obtained and which correction are
necessary to compensate for known systematic effects.

15.1 Determination of Luminosity

The life time of the K− is known with high precision. Thus by measuring the
number of kaon decay within a certain period the integrated kaon flux can be
determined. By accounting for the BR(K− → f) not all kaon decays, but only
kaon decays into a certain final state f have to be measured. The integrated flux
of kaons is related to the integrated pion flux by the fraction of kaons and pions
contained in the hadron beam at COMPASS. The hadron beam at COMPASS
contains 2.4% kaons1 and 0.8% anti-proton [AAA+15a]. The remaining particles
are pions. The fraction of the kaon, thereby, is known by a relative uncertainty
of 5%. Combining the integrated flux of pions with the target properties the
integrated luminosity L, which enters the calculation of the differential cross
section, is determined.

In the following this method, which is used for the measurement of π−γ →
π−π0π0 cross section at COMPASS, is discussed in more details. In order to
account for unknown systematic effects the final state of the kaon decays, which
are used for normalization, is chosen to be identical to the final state of the
reaction, which is under investigation. Thus, although there are other decay

1Currently an analysis of spectrometer aiming to measurement the beam composition is
ongoing. Intermediate results revealed hints for a slightly larger kaon contribution. This would
increase the absolute values of the measured cross section.
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channels with higher branching fraction and better acceptance, theK− → π−π0π0

is used to determine the pion luminosity.

15.1.1 K− → π−π0π0 – Reconstruction and Selection

The selection of a clean K− → π−π0π0 event sample requires only minimal mod-
ification of the event selection of pion-target interactions, which is descried in
section 8.7. Thus the following discussion will concentrate on the necessary mod-
ification.

For the measurement of the integrated kaon flux a decay volume between
the nickel and tungsten targets is selected. This decay volume, being close to the
target, features similar systematics as the measurement of pion target interaction.
Additionally, the influence of beam interaction is minimized due to the absence
of solid material. The decay volume is selected by requiring the z position of the
vertex to lie in a range of −65 to −20 cm2 replacing the original target cut.

− 65 cm ≤ zvert ≤ −20 cm (15.1)

The assumption, that the reaction takes place at the position of the target is
not applicable any more. Thus the vertex position is not constrained and the
reconstructed coordinates are used. Figure 15.1 shows the distribution of re-
constructed vertices along the z axis for the selected kaon decays as well as for
simulated events. The distribution obtained by Monte-Carlo simulation is scaled
down to match the amount of observed kaon decays. The observed distribution
of kaon decays is in good agreement with simulations. Besides the overlap with
the target cut, the contribution from beam-target interaction is negligible due
to additional requirements. This is confirmed by the fact, that except a small
enhancement at the nominal target position at −72, 5 cm, which is not accounted
for the measurement of the integrated flux, no target effects are observed in the
distribution of vertices along the z-axis.

Decaying resonances and pseudo stable particles show up as peaks in the
invariant mass spectrum of the final state. The peak position and width is defined
by the mass and lifetime of the mother state, respectively. Thus by cutting
on the invariant mass of the final state particles it is possible to select particle
decays. Usually both the width and the peak position may also be effected by
experimental resolution, which have to be taken into account, when defining the
cut. Figure 15.2 shows the mass spectrum of the kaon decay discussed here. Kaon
decays are selected by requiring

|mK− −mf | ≤ 15MeV/c2, (15.2)

where mf = m3π is the invariant mass of the three-pion system. The mass of the

2Coordinates given in the main reference system of the experiment.
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Figure 15.1: Reconstructed z position of the vertex for selected K− → π−π0π0

events (Black: Data, Red: Scaled Monte Carlo). The vertical red lines indicate
the selected range.

kaon mK− is taken from [B+12]. The selection is indicated by red lines.

For a particle decay like K− → π−π0π0 four-momentum conservation require
formally a transferred momentum t′ = 0. However due to experimental resolution
the measured value of t′ for the kaon differs from zero and the distribution shown
in figure 15.3 is observed. This observation is incorporated in the Kaon decay
selection by requiring

t′ ≤ 0.001(GeV/c)2. (15.3)

Applying the event selection with the modification discussed above to the present
data set of NK−,rec = 1515 kaon decays K− → π−π0π0 are found. Thereby, of
course, double counting of beam particles is avoided.

15.1.2 Acceptance Correction for K− → π−π0π0

In order to determine the integrated flux of kaons the found number of kaon decays
NK,rec has to be corrected for acceptance effects. Thus in order to maintain proper
normalization, having a good understanding of the acceptance of the experimen-
tal setup is important. Thereby the limitations of the COMPASS Monte-Carlo
framework are taken into account by using the same final state for the normaliza-
tion and the measurement itself. Thus the systematic, introduced by uncorrelated
background, cancel due to the similarities of the kinematics (see chapter 12). Be-
sides not describing the uncorrelated background, the observed properties and
therefore angular distributions are correctly described by the Monte-Carlo. This
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Data, Red: Scaled Monte Carlo). The vertical red lines indicate the selected
range.
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can for example be seen by studying the distribution discussed in section 15.1.1.
At this place it should be mentioned, that the Monte-Carlo event sample accounts
for the angular dependence of the kaon decay, which is described by dalitz plot
variables (see [B+12]). The acceptance A(K− → π−π0π0) is then given by the
fraction Nrec/Nsim of accepted events and events, which are simulated within the
decay volume.

A(K− → π−π0π0) =
NMC,rec

NMC,sim

(15.4)

Bin migration is accounted by simulating decays in a sufficiently large range of z
values.

15.1.3 Luminosity of the Primakoff Measurement with
Pion Beam

Using the obtained results for the number of observed kaon decays the integrated
flux of pions is∫

φπdt =
NK−,rec/A(K− → π−π0π0)(

1− e
s

cβγτ

)
BR(K− → π−π0π0)

NK−,beam
Nπ−,beam

, (15.5)

with s being the length of the volume used to observe kaon decay. τ is the life time
of the kaon taken from [B+12]. β = v/c and γ = 1/

√
1− v2/c2 are the velocity

in units of the speed of light c and the Lorentz factor, respectively. Where γ is
calculated dividing the average beam energy Ebeam = 191 GeV by the rest energy
of the kaon mKc

2 = 493.667 MeV.

γ =
Ebeam

mKc2
, β =

√
1− γ−2 (15.6)

The first factor of the quotient in equation 15.5 accounts for the decay volume,
the lifetime of the kaon and the velocity of the kaon. The branching fraction
BR(K− → π−π0π0) = 1.761(22) · 10−2 (from [B+12]) accounts for decays to
other final states. NK−,beam/Nπ−,beam = 2.4

97
finally is relation between the kaon

and pion contributions to the beam. Connecting the integrated beam flux with
the target properties the integrated luminosity is given by∫

Lπdt =

∫
φπdt · target particles

area
. (15.7)

For the 4.2 mm thin nickel disc, which served as target for the present measure-
ment, the number of target particles per area is determined as

target particles

area
=
d ρNi NA

AWNi

= 3.839µb−1 (15.8)



170 CHAPTER 15. CROSS SECTION OF π−γ → π−π0π0

with the nuclear density ρNi = 8.908 g/cm3 of nickel and its average atomic weight
AWNi = 58.6934 u. NA = 6.022 · 1023 mol−1 denotes the Avogado constant.
d = 0.42 cm is the thickness of the target. The uncertainty arising from this
quantity is 2.4%, which is dominated by the uncertainty, with which d is known.
The relative uncertainty, with which the beam composition is known, is 5%.
A statistical uncertainty of ≈2.6% is introduced by the measurement and the
determination of acceptance correction. The integrated luminosity then is found
to be ∫

Lπdt = (4.52± 0.28) · 103 Events

µb
. (15.9)

15.2 Beam Particle Identification Efficiency

As described in section 8.6 the beam particle identification is achieved with two
CEDAR detectors. In order to reduce background arising from Kaon decays and
interactions, only beam particles with a pion tag are considered. This, however,
means, that possible mis- or unidentified pions are neglected. For the measure-
ment of the cross section this fact has to be taken into account. The event
selection presented in chapter 8 enrich the pion sample, such that 97.1% of the
events have a pion tag and only 0.7% have a kaon tag. The remaining 2.2% have
unknown beam PID. Having such a high pion content the efficiency of identifying
pions is difficult to access, however knowing the efficiency εCEDAR,K of tagging
kaons the number of pions can be determined as

Nπ = Ntot −
NK,tag

εCEDAR,K

(15.10)

with the total number of events Ntot and the number of events NK,tag with a
kaon tag. As the measurement of the beam PID is independent from the target
interaction, the measured intensities can be corrected by using

cCEDAR = Nπ/Nπ,tag (15.11)

with Nπ,tag being the number of events having a pion tag. As the mass dependence
of kaon reaction differs from the one of pion reactions, this correction factor is
calculated for each individual analysis bin. The kaon tag efficiency is determined
by using the K− → π−π0. This channel features not only a larger branching
fraction but also a better acceptance than the K− → π−π0π0. Thus the number
of available events is higher. Consequently the uncertainty of the measurement
is smaller. This of course require modification of the event selection, which are
discussed briefly.
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Figure 15.4: Invariant mass m2π of selected K− → π−π0 events (Black: All
Events, Red: Beam tagged as Kaon, Green: Beam tagged as Pion, Blue: No
decision ).

15.2.1 K− → π−π0 – Reconstruction and Selection

Large extends of the reconstruction and selection of K− → π−π0π0 can also be
applied to the selection of K− → π−π0 due to similarities. Thus the event
selection described in section 15.1.1 is taken as starting point and the discussion
restricts to the necessary modifications.

There is only one π0 in the final state. Consequently, the minimum required
number of photons, i.e. electromagnetic showers, reduces to two. Each of these
showers is still required to deposit more than 2 GeV in ECAL2. Similar to the
selection of the three-pion final state only the two showers, which have the highest
energy deposits, are considered. The pion mass cut is applied to the invariant
mass of the γγ system, which is calculated with the energy conservation con-
strained applied. Equation 8.19 is adapted to the reduced number of photons.

u =
Ebeam − Eπ−f∑2

i=1 Eγ,i,rec
. (15.12)

Besides the adaption of the reconstruction presented here the selection remains
unchanged.
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Figure 15.5: The χ2-distribution of the kaon tag efficiency over time.

15.2.2 Kaon Tag Efficiency

Studying the mass distribution of the selected K− → π−π0 events (figure 15.4) a
clean kaon decay peak is observed. The background beneath the peak is negligible.
This allows to determine the efficiency of the beam particle tagging for kaon by
looking at the decomposition of the spectrum regarding beam PID. Concentrating
on the mass region around the peak center as indicated, it can be assumed, that
independently from the measured beam particle ID the beam particle indeed is a
K−. On this base the efficiency of identifying a beam kaon as a kaon is

εCEDAR,K =
Nkaon

Ntot

= 86.9±0.4 (stat). (15.13)

The stability of this value is studied by dividing the data sample taken in 2009
into ten smaller samples of roughly equal amount of events. Each of these event
sample corresponds to a continuous time period of the Primakoff run 2009. For
each of the ten consecutive periods the kaon tag efficiency εCEDAR,K,i is determined
and the

χ2 =
(εCEDAR,K,i − εCEDAR,K)2

εCEDAR,K

(15.14)

is calculated. The χ2 distribution of this independent measurements (see fig-
ure 15.5) is fitted with a Gaussian function, which reveals a width of σ = 0.9±0.4.
This is in good agreement with the hypothesis of having statistical fluctuations,
where σ = 1 is expected. As no systematic effects are observed one can conclude,
that the tagging efficiency is stable throughout the 2009 Primakoff run and is only
subjected to statistical fluctuations. The number N ′m,K of kaon events, which con-
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tribute in a certain mass bin, is then given by the quotient of the number of events
Nm,K with a kaon tag and the kaon tag efficiency εCEDAR,K .

N ′m,K =
Nm,K

εCEDAR,K

(15.15)

15.3 t and m Dependence of the Primakoff Re-

actions

The Weizsäcker-Williams equivalent photon method connects the electromagnetic
field of the nucleus with a flux of quasi free photons. The flux of photon described
by this approximation has to be taken into account for the measurement of pion-
photon reactions in pion-nucleus scattering. The t and m dependence of is given
by [KF08, AAA+14b]

dWW(m, t) =
2αZ2

π

t′

(t′ + tmin)2

m

m2 −m2
π

F 2(t′ + tmin) (15.16)

with Z being the charge of the the nucleus, α = 1/137 the coupling strength and
mπ the mass of the pion (from [B+12]). tmin is denoting the minimum squared
transferred momentum.

tmin =
(m2 −m2

π)
2

4 · |~pbeam|2
with |~pbeam| ≈ Ebeam/c (15.17)

t is then composed from the minimum squared transferred momentum and the
reduced squared transferred momentum t′ = t − tmin (see section 3.3). Ebeam is
the beam energy. F (t) is the form factor of the nucleus. Here the elastic form
factor

F (t) =
3
(
sin
(
tR
~c

)
− tR

~c cos
(
tR
~c

))(
tR
~c

)3 . (15.18)

is used. R = r0 · A1/3 denotes the radius of the nucleus. In order to calculate
the cross section dWW(m, t) has to be integrated over the mass m and transferred
momentum t of each analysis bin. Thus the integral Dm,t is considered. The
indices m and t denote the analysis bin, which is defined by its borders mlow,
mhigh, t′low and t′high.

Dm,t =

∫
Ebeam

∫ mhigh

mlow

∫ t′high

t′low

dEbeamdm dt′

%beam (Ebeam)
2αZ2

π

t′

(t′ + tmin)2

m

m2 −m2
π

F (t′ + tmin) (15.19)
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Figure 15.6: Dependence of Dm,t calculated for t′low = 0 and t′high =
0.002 (GeV/c)2 on the three-pion mass m3π. The calculation is done in narrow
mass bins with ∆m = 40 MeV/c2.

The integration over the beam energy Ebeam respects the spread of the beam
energy.

%beam(E) =
%beam(E)∫

Ebeam
dE ′ %beam (E ′)

(15.20)

is the normalized distribution of the beam energy distribution. The distribu-
tion of the beam energy %beam(E) of the beam energy is in the current analysis
approximated using the Gaussian function3

%beam(E) = exp

(
−
(
E − Ebeam

)2

2 · σ2
beam

)
(15.21)

with the mean beam energy Ebeam = 191 GeV and the width of σbeam = 2.0 GeV.
For the given analysis the minimum t′low = 0 and maximum t′high = 0.002 (GeV/c)2

of the transferred momentum t′ = t + tmin is given by the range of t′ considered
for the PWA in mass bins. The mass range is chosen accordingly to the mass bin
of the PWA. Figure 15.6 shows the dependence of Dm,t on the invariant mass of
the final state particle.

3The change introduced by using a Gaussian function instead of a delta function
%beam(E) = δ

(
E − Ebeam

)
is in the order of one (m3π ≈ 0.44 GeV/c2) to four (m3π ≈

2.3 GeV/c2) per-mil. Thus, a more detailed description of the beam is considered to have
no significant impact.
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15.4 Correction to the PWA Measurement

So far we discussed ingredients, which enters the calculation of the cross section,
no matter weather the t′ spectrum is fitted or the partial-wave analysis is applied.
However, if the much more complex partial-wave analysis is used to determine
the cross section, some specific effects have to be taken into account.

15.4.1 Bin Migration

Experimental uncertainties lead to an effect of bin migration, i.e. the measured
mf and t′ differs from their real values. Therefore events migrate in or out of
a certain analysis bin and leak into neighboring bins. The mass dependence is
assumed to be shallow, thus in good approximation the net migration between
neighboring mass bins vanishes. However this is not the case for leakage in t′.
Especially for Primakoff events, which occur at very small values at t′, a significant
fraction of events will appear at higher values of t′, while practically no events
migrate from high to low t′. This effect is studied using a Monte-Carlo event
sample. The t′ distribution of the Monte-Carlo events follow the Weizsäker-
Williams approximation. Events with t′sim ≤ 0.0256 GeV2c−2 are generated and
are required to fulfills all selection criteria except the t′ cut. The correction
factor, which accounts for the bin migration in t′ is then given by the ratio of
events with simulated transferred momentum t′sim ≤ 0.002 GeV2c−2 and event
with reconstructed transferred momentum t′rec ≤ 0.002 GeV2c−2.

cmig,m =
Nacc(t

′
sim ≤ 0.002 GeV2c−2)

Nacc(t′rec ≤ 0.002 GeV2c−2)
(15.22)

The index m indicates, that this fraction is not evaluated at global scale, but for
each individual analysis bin.

15.4.2 Diffractive Background

Considering small values of t′, the M = 1 waves are mainly produced by Pri-
makoff reaction. However, contribution from diffractive dissociation remains.
This contribution is an experimental background, which has to be considered,
when measuring the radiative cross section. Studying the t′ dependence of the
M = 1 and also M = 0 by a partial-wave analysis in t′ bins give access to this con-
tribution (see section 13.2.2) and allows to subtract the introduced background.
To obtain a quantitative description the different contributions and possible in-
terference has to be modeled. This has been achieved for the t′ spectrum of the
total wave intensity of the chiral waves near the three-pion threshold (see fig-
ure 13.13). Following equation. 13.2 the correction factor cBG, which has to be
applied for the present measurement, is given by the fraction of Primakoff events
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contributing to the observed intensity.

cBG = FPrimaoff(0, 0.002 GeV2/c2) = 0.964 (15.23)

15.4.3 Accounting for Model Leakage

Aiming to measure the differential cross section of π−γ → π−π0π0, the leakage
study presented in chapter 14 allows to determine a compensation factor, which
accounts for leakage from chiral waves to waves with spin projection M = 0.
This compensation factor is determined by the total intensity, i.e. square of the
coherent sum of all amplitudes, divided by the M = 1 total waves intensity. In
the relevant mass range from 0.54 GeV/c2 to 0.78 GeV/c2 the M = 1 total wave
intensity is given by the sum of the chiral waves with positive and negative re-
flectivity. The best case (bc) is considered applying the model featuring double
ρ exchange to the event sample, which is based on the corresponding calculation.
In this case the resulting leakage fluctuates around a common value and no sys-
tematic are observed. A compensation factor for the model leakage is determined
by the weighted mean of the leakage within each bin in the given mass range.

cleak,bc = 1.18± 0.06 (15.24)

The uncertainty is calculated using Gaussian error propagation. The leakage from
M = 1 to M = 0 can be explained by experimental resolution washing out the
φTY behavior of M = 1 waves. Thus a contribution from M = 1 amplitude with
flat φTY dependence is observed. It is not expected, that experimental resolution
can introduce non flat φTY components of M = 0 waves. This is especially true as
the acceptance does not show a φTY dependence. Thus the leakage from M = 0
to M = 1 is believed to be small and therefore neglected.

The factor, which is obtained by applying fit models with different flavors to
their corresponding event sample, is similar for all flavors of chiral waves. However
looking at the case, where the simulated event sample is fitted with a different
flavored model, the model leakage and therefore the required compensation factor
can become large. Thereby a worst case scenario is considered to be the fit to
the double ρ exchange event sample using the leading-order model. In this case
a leakage compensation factor

cleak,wc = 2.30± 0.15 (15.25)

is found. However, all advanced fit models group together. Thus leakage is similar
for these models. It is hard to imagine, that the leakage for the presented chiral
models will become smaller, when applied to a event sample, which exploits
chiral physics beyond the calculations presented here. The cleak,bc should be
regarded as a lower limit of the required correction. However, accounting for the
similar leakage of the advanced fit model, it is also regarded as realistic value.
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Consequently it is directly applied to the measurement. cleak,bc on the other hand
is used to determine the upper bound of possible model leakage and the necessary
correction.

Last but not least it should be mentioned, that summing over positive and
negative reflectivity, the model leakage between the different reflectivities is ac-
counted and does not require further corrections.

15.5 The Differential Cross Section

The differential cross section of π−γ → π−π0π0 near the three-pion threshold is
given by

σ(π−γ → π−π0π0) =
Iγ,m · cCEDAR,m · cBG · cmig,m · cleak

Dm,t ·
∫
Lπdt

. (15.26)

where the intensity Iγ,m is either given by the total wave intensity of M = 1
amplitudes or by the acceptance corrected number of events determined by the
fit to the observed t′ distribution. In the second case the correction factors cBG,
cmig,m and cleak do not apply and are consequently set to one. Figure 15.7 shows
the cross section measured with this method. For comparison the prediction from
ChPT are also shown.

The resulting cross section lies between LO and NLO prediction being in better
agreement with the NLO predictions. Still the uncertainty of the measured points
is comparable large. Thus prediction, which accounts for ρ exchange, are still in
agreement with the single points. However, the points lie on a rather smooth
curve showing only small fluctuations. Thus a systematic deviation from this
prediction is observed, which is not within the range of the common systematic
uncertainty. This is a hint for possible contribution of effects, which are not yet
modeled. This hypothesis is strengthen by the leakages studies for the partial-
wave analysis. This studies, applying the currently available chiral models is
able to produce a behavior, which is similar, but not identical, to the behavior
observed studying the COMPASS data.

The result obtained by applying the partial-wave analysis (see chapter 13) is
shown in figure 15.8. In general the cross section measured with this technique is
smaller, then the one obtained by fitting the t′ spectrum. However as discussed
the systematic uncertainty towards a higher cross section arising from model
leakage is huge. In the best case (bc) the uncertainty introduced by leakage is
described by the solid blue area. The hatched area describes the upper limit given
by the worst case (wc). Towards lower values the uncertainty is much smaller.
Thus in conjunction with the results of the leakage study (see chapter 14), which
shows that the observed angular dependencies are not reproduced by leading-
order ChPT calculation, there is a strong preference for chiral models based on
calculations beyond leading-order. The fact, that the observed fit behavior could
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Figure 15.7: Total differential cross section measured by fitting the observed
t′ spectrum of π−Ni → π−π0π0NI events. The blue, red, green and magenta
lines show the predictions of the ChPT calculation in leading order, next-to-
leading order, including single and double ρ exchange, respectively. The error bars
give the statistical uncertainty of the measurement, while systematic uncertainty
coming from the determination of the luminosity is indicated by the yellow curve.

not be exactly reproduced with the MC event samples, delivers further evidence
for contributions of effects beyond the available models. However, at this point,
it should be stressed again, that the investigated chiral models are superior to
isobaric models, when it comes to describe the angular distributions observed in
the COMPASS data. Accounting for all systematic effects, not only the cross
section predicted by NLO calculations but also the slightly higher prediction,
which also accounts for ρ exchange, are in agreement with the measurement.

Last but not least one should mention, that both measurements of the cross
section of π−γ → π−π0π0 agree within their uncertainties. One should keep in
mind, that the fit to the t′ identifies Primakoff events by the properties of the
production mechanisms, while the partial-wave analysis relies on properties of the
decay. Thus these two method represent two distinguished approaches to identify
pion-photon reactions, which, however, share the normalization via kaon decays
and the selection of events. Thus a correction, which effects the measurement of
the luminosity, will affect all measured point in the same way.
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Figure 15.8: Total differential cross section measured by applying a PWA to the
π−Ni → π−π0π0NI event sample . The blue, red, green and magenta lines show
the predictions of the ChPT calculation in leading order, next-to-leading order,
including single and double ρ exchange, respectively. The error bars give the sta-
tistical uncertainty of the measurement, while systematic uncertainty excluding
model leakage effecting all data point in the same way is given by the yellow curve.
The light blue area is showing the uncertainty due to model leakage, while the
solid area indicate the uncertainty considering only the optimal case the hatched
area includes also the worst case scenario.
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Chapter 16

Conclusion

In 2009 a period of roughly two weeks was dedicated to a measurement of Pri-
makoff reactions at COMPASS. For this measurement, a digital event trigger
was developed, which enriches the sample of events with high energetic photons
in the forward direction. The trigger scheme is not only suitable for the mea-
surement of the pion polarizibility, for which it was optimized, but also for the
measurement of events with π0s in the final state. A clean sample of exclu-
sive π−π0π0 events is selected. A partial-wave decomposition of events in the low
transferred momentum t′≤0.002 GeV2/c2 is used to analyze the event sample. Be-
sides isobar amplitudes, partial-waves, which are based on calculations of SU(2)
chiral perturbation theory, are introduced and successfully used to describe the
observed angular correlations. The ChPT calculations are available in leading
order and next-to-leading order approximation as well as higher order approxi-
mations, which account for the exchange of up to one or two ρs. Iindependent
from the flavor of the chiral it is found, that models, which include the newly
introduced chiral amplitudes, are better suited to describe the data than models,
which restrict to isobar amplitudes. It is shown, that the partial-wave analysis
is able to resolve amplitudes, which contribute with a few per-mil. This shows,
that not only a well defined wave-set is found, but also a good understanding of
the experimental setup is achieved.

This finding is strength by the findings of extensive Monte-Carlo studies,
which are used to determine systematic effects. This studies reproduce the model
leakage between corresponding amplitudes with positive and negative reflectivity
quantitatively. The same studies are also used to get further insights to the
behavior of the different flavors of the chiral waves. Therefore events sample,
which follow the angular distribution of different flavors of the chiral amplitude,
are fitted with all available chiral models. This studies reveal, that based on the
available experimental resolution chiral amplitudes and models, which include
calculations beyond leading order, cannot be distinguished. The fits of event
samples based on advanced chiral wave show a similar behavior as observed,
when fitting the COMPASS data, while the event sample, which is based on the
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leading order calculations, is not able to reproduce the observed behavior.

Analyzing the decay K− → π−π0π0 of kaons, which are contained in the beam,
the integrated luminosity is determined. Subsequently, the differential cross sec-
tion π−γ → π−π0π0 is obtained by combining the results of the partial-wave de-
composition and the measurement of the luminosity. Using the same final state
for both measurements systematic effects, which are not directly connected to
the kinematic of individual events, cancel out. A complementary determination
of the Primakoff contribution to the observed spectrum is achieved by analyz-
ing the t′ spectrum. This measurement concentrate on the production signature
of Primakoff event distribution. The partial-wave decomposition, on the other
hand, investigates the phase-space distribution of final state particles. The results
of both measurements are within the given uncertainties compatible with each
other. The measurements of the cross section π−γ → π−π0π0 are compared to
the prediction of chiral perturbation theory, which are available in the same four
flavors as the chiral waves. Accounting for the uncertainties, the predictions of
the next-to-leading order calculation matches the measurements best. Giving the
large systematic uncertainty prediction from ChPT calculation, which accounts
for the exchange of one or event two ρ are also compatible with the PWA results.
Considering leading-order prediction, the situation is different. The systematic
uncertainties towards smaller values are comparable small. Thus even-though
some of the measured points are best compatible with the LO prediction, con-
sidering others the the deviation of measurement and leading-order prediction is
slightly larger than the three sigma confidence level. Additionally most measured
points are on a rather smooth curve, which roughly follows the ChPT predictions.
Thus a systematic deviation is observed. Combining this results with the results
of the partial-wave analysis and the study of systematic effects, which revealed
that the observed angular distribution differs from the ones expected from LO
ChPT calculations, the hypothesis of observing a leading order chiral amplitude
can be rejected.

Most of the features, which are observed in the partial-wave decomposition
of the recorded data, are reproduced, when studying Monte-Carlo sample based
on ChPT calculation beyond leading order. One feature, however, is not. The
recorded data revealed, that below m3π = 0.78 GeV/c2 all chiral models, includ-
ing the leading order model, show similar intensity in the chiral waves. In the
Monte-Carlo study, on the other hand, the leading order model shows a reduced
intensity due to model leakage. The possibility, that this is caused by unac-
counted properties of the apparatus, has been intensely studied, but no evidence
are found. Thus it is likely caused by unaccounted physical effects. On the one
hand this might be caused by missing contributions, i.e Feynman diagrams, to
the chiral amplitude. On the other hand, the presence of strong processes may
play an important role. The observed discrepancy may be caused by interference
of strong and radiative production. This effects, which are clearly observed at
higher masses, are currently not accounted due to the lack of a suitable model.
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Being able to describe this interference quantitatively, also the radiative width of
the observed radiative produced resonance can be determined.

Near the three-pion threshold no resonance exist. Thus not only radiative
processes but also processes of the strong force should be described with non-
resonant amplitudes. In case of the strong force, this processes are described by
the Deck effect. This effect could analog to the chiral amplitude, be introduced to
the partial-wave decomposition and potential replace several isobar waves. How-
ever, the currently available calculations treating the Deck effect are restricted
to proton targets. Taken into account, that the Deck effect and its parametriza-
tion is under discussion and investigation for many years, the development of
a suitable parametrization is beyond the scope of the thesis. Still it should be
mentioned, that the use of such an amplitude could potentially reduce systematic
effects and uncertainties.

The systematic uncertainties contribute significant to the uncertainty of the
measurement. Thus for possible future measurements an important aspect would
be to reduce the systematic uncertainties by improving the experimental setup.
Obviously an improvement of calorimeter performance and vertex reconstruction
would add. Additional it is observed, that the precise knowledge of the energy
of the beam particles improve the quality of the measurement. Thus a beam
momentum station, which allows to determine the energy of individual beam
particles on a level below, the one achieved using the neural network, will help to
reduce systematic uncertainties. Considering developments in detector technol-
ogy, micro-pattern gaseous detector with pixel readout would allow to overcome
the issue of interaction length.
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Appendix A

Parmetrization of ρ-Exchange

In [EU02] the contribution of Feynman diagrams with a photon coupling to four
pion are calculate for the production of a four pion final state in e+e− annihilation,
i.e. γ → ππππ. Due to the universality of this diagrams the same Feynman
diagrams contribute to the pion-photon scattering πγ → πππ. However as the
given parametrization of this contribution is not well suited for the application, in
the following the parametrization of the contribution of diagrams with a single ρ
exchange and those featuring two ρ exchanges is given. The low energy constants,
which are introduced to describe the ρ exchange, are the rest mass mρ of the ρ
meson and the coupling constant gρ, describing the ρ→ ππ coupling. Using the
Mandelstam variables introduced in 1.2, the following parametrization is provided
by N. Kaiser. The contribution of diagrams featuring one ρ propagator is given
by

A
(ρ)
1 =

1

4m2
ρ

{
2

3m2
π − s− t1 − t2

[
(2s+m2

π − 2s1 − s2 + t2)(s− 2m2
π − s2 + t1)2

m2
ρ + s− 2m2

π − s2 + t1 − Σρ (2m2
π − s+ s2 − t1)

+
(2s+m2

π − 2s2 − s1 + t1)(s− 2m2
π − s1 + t2)2

m2
ρ + s− 2m2

π − s1 + t2 − Σρ (2m2
π − s+ s1 − t2)

]
+

(m2
π + s− 2s1 + 2t2)(s− 2m2

π − s2 + t1)

(m2
ρ + s− 2m2

π − s2 + t1 − Σρ (2m2
π − s+ s2 − t1))

+
s2(2s1 + 2s2 − 2s− t2 −m2

π)

m2
ρ − s2 − Σρ(s2)

+
s1(2s1 − s+ t2)

m2
ρ − s1 − Σρ(s1)

}
(A.1)
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with the complex selfenergy of the ρ meson

Σρ(s) =
g2
ρs

24π2

{
4m2

π

(
1

m2
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− 1

s

)
−
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π
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)3/2
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π|
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ln

(
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√
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π
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+
iπ

2

(
1− 4m2

π
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)3/2

Θ

(
s

m2
π

− 4

) }
(A.2)

for s < 0 or s > 4m2
π. Θ(x) denotes the heaviside function. A

(ρ)
2 is obtained by

substitution of variables s1 ↔ s2 and t1 ↔ t2.

A
(ρ)
2 = A

(ρ)
1 |(s1 ↔ s2), (t1 ↔ t2) (A.3)

The diagrams with two ρ propagators contribute with

A
(ρρ)
1 =

(s− t2)(s− 2m2
π − s1 + t2)

4
[
m2
ρ − s1 − Σρ(s1)

] [
m2
ρ − 2m2

π + s− s1 + t2 − Σρ(2m2
π − s+ s1 − t2)

]
+

2s2
2 + s2(2m2

π − 5s+ 4s1 − 2t1 − 3t2) + (s+ t1 − 2m2
π)(2s+m2

π − 2s1 + t2)

4
[
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] [
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π
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ρ
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2m2

π − s− t2
4
[
m2
ρ − s2 − Σρ(s2)
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+

t2 − s
4
[
m2
ρ − 2m2

π + s− s1 + t2 − Σρ(2m2
π − s+ s1 − t2)

]
+

2m2
π − s− t2

4
[
m2
ρ − 2m2

π + s− s2 + t1 − Σρ(2m2
π − s+ s2 − t1)

] (A.4)

and
A

(ρρ)
2 = A

(ρρ)
1 |(s1 ↔ s2), (t1 ↔ t2). (A.5)

For the given analysis m2
ρ = 30.4367 ·m2

π and gρ = 6.03 are used.



Appendix B

PWA in Mass Bins: More
Amplitudes

In chapter 13 the partial-wave analysis has been discussed and the intensity and
phases of the most important waves are shown. The used wave-set however
contains much more amplitudes. In order to give a more complete picture here
the intensities of the remaining amplitudes as well as some selected phases are
shown. However this is done without further discussion of the amplitude. Having
different fit models, the color code introduced in 13 will be used. The different
flavors of the chiral model, LO, NLO, ρ and ρρ are drawn in black, red, blue and
green, respectively. The isobaric reference model is shown in magenta.
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Figure B.1: PWA in mass bins: More intensities (1).
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Figure B.2: PWA in mass bins: More intensities (2).
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Figure B.4: PWA in mass bins: More intensities (4).
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Figure B.5: PWA in mass bins: More phases (1).
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Figure B.6: PWA in mass bins: More phases (2).
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Figure B.7: PWA in mass bins: More phases (3).
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Appendix C

Leakage Study with Extended
Statistics

Similar to the leakage study, which is discussed in chapter 14 a leakage study
based on a larger Monte-Carlo event samples has been conducted, aiming to study
the effect of increased events sample. The event sample, however, do not follow
the t′ dependence of the Weizsäcker-Williams equivalent photon approximation.
Due to computational limitation, the weights are imposed on the event sample,
which is used to determine acceptance. This event sample follow a exponential
t′ distribution observed for recorded data. While the acceptance, as it does not
depend on t′, is not affected by this, the model leakage between positive and
negative reflectivity waves is expected to be smaller. The observed behavior
is in agreement with expectations and the previously discussed leakage study,
revealing no further insides. Thus a detailed discussion is omitted. However for
completeness in the following a selection of obtained intensities and total wave
intensities are shown. The intensities are arrange according the chiral model used
to generate the event samples. The fit models are marked with the color code
introduced in chapter 14.
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Figure C.1: Intensities of coherent sums of waves as well as the chiral waves
obtained with the extended LO event sample. The different colors introduced in
chapter 14 refer to different fit models. Please see the text for more details.
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Figure C.2: Intensities of coherent sums of waves as well as the chiral waves
obtained with the extended NLO event sample. The different colors introduced
in chapter 14 refer to different fit models. Please see the text for more details.
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Figure C.3: Intensities of coherent sums of waves as well as the chiral waves
obtained with the extended ρ exchange event sample. The different colors intro-
duced in chapter 14 refer to different fit models. Please see the text for more
details.
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Figure C.4: Intensities of coherent sums of waves as well as the chiral waves
obtained with the extended double ρ exchange event sample. The different colors
introduced in chapter 14 refer to different fit models. Please see the text for more
details.
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Own Contribution

In order to match the requirements of the Primakoff measurement at COMPASS
in 2009 a completely new trigger setup was developed under the supervision of Igor
Konorov. As part of my work I optimized and evaluated the trigger scheme and
algorithms for the calorimetric trigger setup. In preparation of the measurement
I developed all parts of the software, which is necessary to operate and monitor
the trigger. This includes but is not limited to the extension of the COMPASS
online filter Cinderella and the ConfigServer, which is used for programming and
controlling the trigger. During the Primakoff data taking in 2009 I was involved
in all aspects of the commissioning and operation of the trigger, which is also true
for a second Primakoff measurement in 2012. For this measurement I again got
involved in the development and maintenance of necessary software components.

In the course of the production of the recorded data, I was involved in the
revision and extension of the reconstruction software, CORAL. The work focused
on the improvement of the performance of the calorimeters. Among the modifica-
tion of the software, was the introduction of new calibrations, which rely on the
knowledge of the mass of the neutral pion, so called π0 calibrations. At that part
I contributed to the determination of these calibrations.

In order to determine the relations of the energy of individual beam particles
on the parameters of their trajectory, I developed a interface to the multilayer per-
ceptron implementation of root. Based on a sample of exclusive π−π−π+ events,
which was provided by Jan Friedrich, I determined a suitable network topology
and trained the neural network. I provided the outcome to the COMPASS collab-
oration, where it is used in several other analysis.

I developed a event selection fro exclusive π−π0π0 events, which is presented
here. Last but not least I carried out the analysis presented in this thesis, which
lead to the measurement of the differential cross section of π−γ → π−π0π0. The
analysis was supervised by Stefan Paul and Jan Friedrich. The partial-wave de-
composition has been carried out in close collaboration with Dima Ryabchikov,
who maintains and develop the employed amplitude analysis framework. I adapted
the software to the requirements of the analysis and added several features, which
are unique to the presented analysis. I also added to the general improvements of
the software.

The results of the partial-wave analysis were presented to the COMPASS col-
laboration, which agreed to release the results and present them to the public.
The results have been shown at national and international conferences.
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