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Abstract
The light-meson spectrum is an important ingredient to understand
quantum chromodynamics, the theory of strong interaction at low ener-
gies, where quarks and gluons are confined into hadrons. However, mea-
suring this spectrum experimentally is very challenging, due to the large
number of overlapping resonances it contains. To disentangle this com-
plicated spectrum, partial-wave techniques are used. At the COMPASS
experiment at CERN, the light-meson spectrum is studied in diffractive
dissociation reactions. One such reaction, π− + p→ π−π+π−π+π− + p,
puts the analysis methodology to the test, because the large number
of final-state particles requires a dedicated model-selection procedure
and introduces a complicated background situation. In this thesis, such
a model-selection procedure is developed and verified on simulated
events. In addition to finding a suitable model, it can be used to assess
the reliability of the results. The model-selection procedure is then
successfully applied to data from the COMPASS 2008 data-taking cam-
paign. A partial-wave decomposition is performed using the selected
model. The results are compared to partial-wave decompositions of
other final states and good agreement is found.



Kurzfassung
Das Spektrum der leichten Mesonen ist wichtig um die Quantenchro-
modynamik, das heißt die Theorie der starken Wechselwirkung, bei
niedrigen Energien zu verstehen, wo Quarks und Gluonen in Hadro-
nen gebunden sind. Durch die große Zahl überlappender Resonanzen
ist die Messung dieses Spektrums experimentell sehr anspruchsvoll.
Partialwellenzerlegungen werden verwendet, um dieses komplizier-
te Spektrum zu entflechten. Das COMPASS Experiment am CERN
untersucht das Spektrum der leichten Mesonen in diffraktiver Dissozia-
tion. Eine dieser Reaktionen, π− + p→ π−π+π−π+π− + p, stellt hohe
Anforderung an die Analysemethoden, da wegen der großen Zahl an
Endzustandsteilchen sowohl der Untergrund kompliziert also auch eine
dedizierte Prozedur zur Selektion eines Modells nötig ist. In dieser
Arbeit wird eine solche Modellauswahlprozedur entwickelt und auf
simulierten Ereignissen getestet. Sie findet nicht nur ein geeignetes
Modell, sondern kann auch benutzt werden, um die Zuverlässigkeit
der Resultate zu beurteilen. Die Modellauswahl wird erfolgreich für
die Daten aus der COMPASS Messkampagne von 2008 eingesetzt.
Die Resultate der Partialwellenzerlegung mit dem gefundenen Modell
werden mit Partialwellenzerlegungen anderer Endzustände verglichen,
wobei eine gute Übereinstimmung festgestellt werden kann.
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CHAPTER 1

Introduction

“[...] you will not go to space today.”

Randall Munroe,
http://xkcd.com/1133/

Hadron spectroscopy is the study of the excitation spectrum of bound states of the strong interaction,
i.e. the measurement of the masses and decays of hadrons. A branch of hadron spectroscopy, the
light-meson spectroscopy, focuses on states made up by quark-antiquark pairs containing u, d and s
quarks.

Quantum chromodynamics, abbreviated QCD, is the theory of strong interaction. As such, it should
in principle be able to predict the spectrum of hadronic states which can be compared to experimental
results. However, the running of the coupling constant αs of QCD prevents expansions in αs from
converging at the energy scales probed by light-meson spectroscopy. One ab-initio approach to
solving QCD, which is not hampered by this problem, is lattice QCD. It uses a discretized grid in
space and time to make predictions with numerical Monte Carlo methods. Although in lattice QCD,
quark masses are typically chosen heavier than those observed in nature and bound states are assumed
to be quasi-stable, it is still possible to make qualitative predictions of the light-meson spectrum from
first principles [1]. The main limiting factor are the extraordinary computational resources which are
required to perform the calculations. Considering Moore’s law [2], it is reasonable to assume that the
prediction of a quantitative spectrum of light mesons from first principles is achievable in the near
future with lattice QCD.

While the light-meson sector has been under study experimentally for a long time [3], due to the
comparatively low energy scales involved, the situation remains challenging to this day. The spectrum
is characterized by a large number of broad strongly-overlapping resonances and, in addition, the
systems under study are quantum-mechanical in nature, which means interference effects have to be
taken into account. Advanced analysis techniques are required to extract the light-meson spectrum
from the kinematic distributions measured experimentally. In most cases, some sort of model and
prior knowledge are needed for the analysis. In addition, the large data sets required for precise
measurements demand considerable computing resources. In this light, it is not surprising that the
light-meson spectrum is in parts still heavily debated, with many resonances needing confirmation, in
particular in the mass region of 2.0 GeV/c2 and above [4].
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Chapter 1 Introduction

Diffractive dissociation reactions, described in more detail in section 3.1, are one possible way to
study the light-meson spectrum. These reactions, among others, have been measured in the 2004 and
2008 data-taking campaigns of the COMPASS experiment, during which large data samples were
collected. Due to the large cross section and the very good acceptance for charged particle tracks,
the dominant channel is π− + p → π−π+π− + p. From this reaction, resonance parameters can be
extracted with high precision and several recent publications based on the 2008 data set focused on
it [5–9].

Using the same 2008 data set, the topic of this work is the related reaction π− + p→ π−π+π−π+π− + p.
It allows to access areas of the spectrum which lie at higher masses, where a number of higher
excitations of light mesons are expected. These are particularly challenging to measure, because
many reactions are not able to access these masses with large cross sections. The reactions that do
probe the high-mass region generally involve complex multi-body final states, which, as will be
shown below, pose a number of problems on their own. At the same time, heavier mesons generally
have a larger width, aggravating the problem of overlapping resonances, putting the analysis methods
currently available to the test and requiring large data samples. Additional insight can be gained
by combining the measurements of different decay modes. In this context, the five-pion reaction
can make an important contribution to the understanding of the high-mass part of the light-meson
iso-vector spectrum.

However, the analysis of final states with many particles poses a challenge in itself. The final-state
particles are usually arranged into subsystems, which is described in section 3.3.1. Large numbers
of final-state particles lead to large numbers of possible subsystems. For many of the subsystems,
imposing constraints is difficult because there is only little knowledge about them. Due to the
combinatorics of the many possible subsystems and the lack of constraints on them, data-driven
model selection is a prerequisite for extracting resonances and their parameters. Such a model-
selection procedure was part of an earlier analysis of the five-pion channel, based on the COMPASS
data set from 2004 [10]. However, several open questions remained in that work and for the analysis
of the significantly larger 2008 data set, it was deemed important to revisit and thoroughly test the
model-selection procedure. As a consequence, this work focuses heavily on the development and
verification of analysis methodology.

After a short overview of the experimental setup, chapter 2 will discuss the selection of an exclusive
five-pion sample from the 2008 COMPASS data set and present kinematic distributions. In chapter 3,
the basic principles of the analysis method are laid out. Chapter 4 deals with the model-selection
procedure. It is split into two main parts, the first one showing Monte Carlo studies of the model-
selection procedure suggested in [10] and the second one introducing an alternative approach to
model selection. For the latter, a number of studies are presented. The chapter concludes with a
discussion of the model which has been selected for the description of the measured data set. With a
model selected, chapter 5 discusses the results of the analysis in terms of their physical interpretation.
Finally, chapter 6 summarizes the results and presents the conclusions and the outlook.
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CHAPTER 2

Experimental Setup and Event Selection

“How about instead of epigraphs you just
put a bunch of emoticons?”

Dr. Daniel Greenwald

This work is based on data measured by the COmmon Muon and Proton Apparatus for Structure
and Spectroscopy, abbreviated to COMPASS, which is a fixed-target experiment located at CERN.
A brief overview of its experimental setup is given in the first part of this chapter. The second part
discusses the selection of exclusive events with 5 charged pions in the final state.

2.1 The COMPASS Experiment

The COMPASS experiment has been described in great detail in [11] and [12]. Therefore, only a very
brief description of the components relevant to this analysis will be included here. A schematic view
of the spectrometer setup is shown in figure 2.1.

2.1.1 Beam and Target

For the dataset analyzed here, COMPASS was supplied with a negatively-charged secondary hadron
beam with an energy of 190 GeV from CERN’s Super Proton Synchrotron, SPS. The beam consists
mainly of pions (96.8 %) with a small admixture of kaons (2.4 %) and anti-protons (0.8 %). The beam
impinges on a liquid-hydrogen target with a length of 40 cm, corresponding to 5.5 % of one nuclear
interaction length. The target is surrounded by a recoil-proton detector, RPD, which consists of two
concentric barrels of scintillator slabs.
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Beam telescope

RPD with
target

Dipole magnet (SM1)

RICH

Dipole magnet (SM2)

Tracking detectors

Calorimeters
(ECAL1 + HCAL1)

Calorimeters
(ECAL2 + HCAL2)

Muon tracking

Figure 2.1: Schematic view of the COMPASS spectrometer setup in 2008.

2.1.2 Tracking System and Particle Identification

For beam definition, a combination of silicon-microstrip and scintillating-fiber detectors are used.
Behind the target, four silicon-microstrip detector modules constitute the vertex detector. After the
target region, a two-stage magnetic spectrometer measures charged final-state particles. Apart from
two spectrometer magnets, it is made up from several types of gas detectors. GEM and Micromega
detectors measure small angles while multi-wire proportional and drift chambers cover medium and
large-angle tracking. In the first stage of the spectrometer, a ring-imaging Cherenkov detector, RICH,
provides pion and kaon separation in the momentum range of about 9 to 40 GeV/c.

2.1.3 Trigger

A schematic view of the trigger system used for this analysis is shown in figure 2.2. Two detectors,
the scintillating-fiber detector SciFi 1 and the Beam Counter scintillator define the incoming beam.
Both scintillator rings of the RPD are required to register a recoiling proton, ensuring an interaction
in the target volume. To clean up the event sample, several veto detectors in front of the target
prevent the recording of events with beam particles not passing the target volume, while the Beam
Killer scintillators placed at the end of the spectrometer filter out events with a non-interacting beam
particle. The Sandwich calorimeter ensures that all outgoing particle tracks lie within the geometrical
acceptance of the spectrometer.
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Beam Axis

Veto BL

SciFi 1

Veto 1

Beam Counter

Veto 2

Target

RPD

Sandwich

SM1 SM2

Beam Killer 1+2

Figure 2.2: Elements of the trigger used in this analysis (not to scale). The target is shown in blue,
trigger components in green and the veto system in red. The spectrometers magnets are drawn in
gray.

2.1.4 Detector Simulation

The COMGEANT software package, which is based on GEANT-3.21, is used to simulate the passage
of particles through the COMPASS experimental setup. To achieve this, it comes with a detailed
geometrical description of the material distribution within the spectrometer and uses precise magnetic
field maps of the bending magnets. Events from an event generator, i.e. the particle momenta resulting
from a physics interaction, are passed to COMGEANT, which will then simulate the trajectories
of the particles and their interaction with the spectrometer material and detectors. The resulting
pseudo data are then analyzed like the measured data and are used to estimate the acceptance and the
resolution of the spectrometer.

2.2 Event Selection

For both technical and practical reasons, the even selection is split into two parts. In the first part,
called preselection, the events are filtered by requiring (1) exactly one primary vertex, (2) the position
of this primary vertex in z, i.e. along the beam axis, roughly in the target area and (3) five tracks with
total charge of −1 measured by the spectrometer. This reduces the size of the event sample by a factor
of ∼35.

For the second part of the event selection, the trigger described in section 2.1.3 is selected. Because
of condition (1) from above, only events with exactly one RPD track are allowed. The distribution of
the primary vertex position and the corresponding cuts are shown in figures 2.3 to 2.5.
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Figure 2.3: Distribution of the primary vertex position along the beam axis. Shown in blue are all
events after the preselection, in yellow after all cuts.
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Figure 2.4: Distribution of the primary vertex position perpendicular to the beam axis. In (a), all
events after the preselection are shown while (b) shows the distribution after all cuts.
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Figure 2.5: Distribution of the primary vertex position in the (r, z) plane. The bin content has been
corrected for the area element of the cylindrical coordinates. In (a), all events after the preselection
are shown while (b) shows the distribution after all cuts.

With the four-momentum pbeam of the beam, the total four-momentum pX of the outgoing five-pion
system and the scattering angle θ in the center-of-mass frame, the four-momentum transfer squared

t =
(
pbeam − pX

)2

= p2
beam + p2

X − 2 pbeam pX

= m2
beam + m2

X − 2
(
Ebeam EX − |~pbeam| |~pX | cos θ

) (2.1)

is defined. One can see that |t| is minimal for θ = 0 if every other variable is kept constant. This
yields

|t|min = −m2
beam − m2

X + 2
(
Ebeam EX − |pbeam| |pX |

)
(2.2)

which we use to define the reduced four-momentum transfer squared

t′ = |t| − |t|min (2.3)

This removes the kinematic effect due to the creation of an intermediate object with mass mX >

mbeam.

The measured t′ distribution is shown in figure 2.6. Because the recoiling proton needs a minimal
amount of momentum to be able to leave the target cell and produce a signal in both rings of the RPD,
the RPD trigger is only fully efficient for t′ > 0.1 (GeV/c)2. Events below 0.1 (GeV/c)2 are not used.
Since this analysis aims at a proof of principle, only a narrow bin in t′ from 0.1 to 0.15 (GeV/c)2,
indicated in the figure, is used for the partial-wave decomposition. Within the bin, the t′ dependences
are neglected. The t′ region was chosen because it has the lowest non-exclusive background.
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Figure 2.6: Distribution of t′ in logarithmic scale (a) and linear scale (b). Shown in blue are all events
after the preselection, in yellow after all cuts and in brown the t′ bin used for the partial-wave analysis.
The yellow and brown distributions have been scaled by a factor of 6 in (b).

The selection of exclusive events is complicated by the fact that the COMPASS apparatus does not
measure the magnitude of the beam momentum, but only its direction. However, with the scattering
angle θ and the four-momentum pX of the five-pion system, it is possible to calculate the beam energy
by solving the quadratic equation [13]

2a2E2
beam − 2a1Ebeam − a0 = 0, where a0 = m2

beam |~pX | cos θ

a1 = mtarget EX −
1
2

(
m2

X + m2
beam

)

a2 = mtarget − EX + |~pX | cos θ

(2.4)

The distribution of the calculated beam energy is shown in figure 2.7, together with the cut applied.
One can see a clear peak at the nominal beam energy already in the preselection sample. The
non-exclusive background is reduced considerably after all cuts are applied.

Because of momentum conservation, the momenta of the beam pion, the recoiling proton and the
five-pion system have to be coplanar. It is advantageous to define the angular difference

∆φ = 180° − ∠
(
~p⊥ X , ~p⊥ recoil

)
(2.5)

where ~p⊥ X and ~p⊥ recoil are the projections of the five-pion momentum and the recoil-proton mo-
mentum, respectively, onto the plane perpendicular to the beam momentum. For an exclusive event,
∆φ should be zero. The geometrical angular resolution of the RPD depends on the combinations
of scintillator segments which are hit and can either be ±7.5° or ±3.75°, as is shown in figure 2.8.
To take into account multiple scattering of the recoiling protons in the scintillator material, the cut
windows have been opened to ±8.432° and ±5.377°. The ∆φ distribution is shown in figure 2.9a.
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Figure 2.7: Distribution of the calculated beam energy. Shown in blue are all events after the
preselection, in yellow after all cuts and in brown the t′ bin used for the partial-wave analysis.
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Figure 2.9: (a) distribution of ∆φ. In blue are all events after the preselection, in yellow after all cuts
and in brown the t′ bin used for the partial-wave analysis. The narrow peak visible at π/2 in the blue
distribution is due to errors in the reconstruction and is removed in the event selection. In (b), ∆φ is
shown against the calculated beam energy with all cuts applied. In both plots, the width of the blue
lines correspond to the difference between the two cuts applied to ∆φ.

The cut on the calculated beam energy and on ∆φ heavily influence each other. In fact, the drop in
non-exclusive background which can be seen in figure 2.7a when going from the preselection events
to the ones with all cuts applied comes almost entirely from the cut on ∆φ and the converse is true for
the ∆φ distribution. This can also be seen when the two quantities are plotted against each other in
figure 2.9b.

After applying all cuts, the size of the preselected event sample is reduced further by a factor of
∼19, giving a total reduction factor of the event selection of ∼660 and leaving a data set containing
11 243 496 events. The t′ bin which is subsequently used in the partial-wave decomposition contains
2 914 914 events.

2.3 Kinematic Distributions

The invariant mass distribution of the five-pion system after all cuts is shown in figure 2.10a. Apart
from a small peak-like structure with the maximum at about 1.9 GeV/c2, the distribution is rather
featureless. In figure 2.10b, the mass range from 1.36 GeV/c2 to 2.56 GeV/c2 used for the partial-
wave analysis is highlighted, containing 1 345 046 events .

Shown in figure 2.11 are the distributions of the mass of the neutral two- and charged three-pion
subsystems for the full m5π range. The peaks from ρ(770) and f2(1270) are visible in the m2π
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Figure 2.10: The five-pion mass distribution (a), in blue after all cuts and in yellow the t′ bin used for
the partial-wave analysis scaled up by a factor of 2. The yellow distribution from (a) is shown again
in (b), with the hatched region indicating the range studied in the partial-wave analysis, which uses
the same 30 MeV/c2 mass binning.

distribution, as well as a shoulder from f0(980). The relative strength of the ρ(770) peak decreases
in the lower t′ region. The small enhancement at ∼ 0.5 GeV/c2 comes from K0

s and K0
s → π+π−

originating from π−p→ π−K0
s K0

s . In the m3π distribution, all combinations forming a positively or
negatively charged three-pion system have been included. A peak at ∼ 1.3 GeV/c2 is visible which
most likely corresponds to the a2(1320). Its relative strength also decreases in the lower t′ region.

In the mass distribution of the neutral four-pion subsystem shown in figure 2.12a, a very sharp peak
is visible from f1(1285), owed to its small width of ∼ 24 MeV/c2. Two more peak-like structure are
visible around 1.5 GeV/c2, which cannot be clearly attributed to established resonances. Possible
candidates are f1(1420), f0(1500), f2(1565) or ρ-like states. When the mass distribution of the
two-pion subsystem originating from a four-pion system is plotted against the mass of that four-pion
system, as shown in figure 2.12b, one can see rich structure. The sharp vertical line comes from the
f1(1285), which does not seem to favor ρ(770) as a decay mode. The peaks at higher m4π have strong
ρ(770) contribution and a small f2(1270) shadow is visible.

In similar fashion, figure 2.13 shows the masses of the two two-pion subsystems from a four-pion
system against each other, for different regions of four-pion mass. As soon as the four-pion mass is
large enough, double-ρ(770) contribution is clearly visible, followed by ρ(770)- f2(1270) and even
double- f2(1270) modes.

Because the five-pion final state prefers high masses, a great number of states are contributing to the
spectra discussed above. Combined with the large combinatorial background for the subsystems, only
very limited conclusions can be drawn from these purely kinematic distributions. Most importantly,
there are structures appearing in the mass distributions of all three subsystems, which hints at the
appearance of resonances. To infer physical meaning from the measured data, they have to be
decomposed into partial waves, which will be discussed in the following chapters.
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Chapter 2 Experimental Setup and Event Selection

0.0 0.5 1.0 1.5 2.0
m2π [GeV/c2]

0

1

2

3

4

5

6

6
E

nt
ri

es
pe

rE
ve

nt
/

(5
M

eV
/c

2 )

×105

scaled ×2

COMPASS 2008

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
m3π [GeV/c2]

0

1

2

3

4

5

9
E

nt
ri

es
pe

rE
ve

nt
/

(5
M

eV
/c

2 )

×105

scaled ×2

COMPASS 2008

(b)

Figure 2.11: Distribution of (a) m2π and (b) m3π, in blue after all cuts and in yellow the t′ bin used for
partial-wave analysis. The latter is scaled by a factor of 2. In (b), both the positively and negatively
charged three-pion systems have been included.
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Figure 2.12: The mass distribution of the four-pion system in (a), in blue after all cuts and in yellow
the t′ bin used for partial-wave analysis. In (b), the mass distribution of two pions from a four-pion
system is shown against the mass distribution of the four-pion system, after all cuts, with 12 entries
per event.
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2.3 Kinematic Distributions
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Figure 2.13: Distribution of two-pion masses from a four-pion system for different mass regions of
the four-pion system. Depending on how many of the three combinations forming a neutral four-pion
system fulfill the mass constraint, there are up to 6 entries per event.
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CHAPTER 3

Analysis Technique

“error: ‘long long long’ is too long for
GCC”

GCC 4.8.2 error message

The ultimate goal of the analysis technique described in this chapter is the identification of resonances
in a given set of events and the extraction of their resonance parameters. For conceptual as well as
technical reasons, the analysis is conducted in two steps. In the first step, a decomposition of the
data set in terms of partial waves is performed. This means, one extracts the complex production
amplitudes for given quantum states. In the second step, a resonance model is fitted to the extracted
amplitudes to extract resonance parameters.

Several names exist for the individual steps of the analysis as well as the analysis as a whole. The
analysis is often called “partial-wave analysis” or, more generally, “amplitude analysis” although this
name technically only applies to the first step of the analysis. The first step is sometimes distinguished
by using the suffix “. . . in mass bins” or by calling it “mass-independent fit”, while the second step is
often called “mass-dependent fit”. Here, for clarity, the first step of the analysis will be referred to as
“partial-wave decomposition” and the second step will be called “resonance extraction”.

As this analysis technique is a crucial part of this work, it will be described here in detail, even though
it can be traced back to the 1960s and 1970s [14] and is well-covered in literature [6, 15–18].

3.1 Production of Excited Mesons in Diffractive Reactions

Consider the scattering process
1 + 2→ 3 + 4 (3.1)

i.e. particles 1 and 2 react in some way and the result of this reaction are the particles 3 and 4. The
four-momentum of particle i is denoted by pi and the corresponding invariant mass by mi. The
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π−beam

ptarget precoil

h1

h2

hn−1

hn
P

X− ...

Figure 3.1: Diffractive dissociation of a π− beam impinging on a proton target into n final-state
hadrons hi.

reaction can now be characterized by the three Mandelstam variables [19]

s = (p1 + p2)2

t = (p1 − p3)2

u = (p1 − p4)2

(3.2)

Note that because
s + t + u =

∑

i

m2
i (3.3)

one of the three can be expressed by the other two. The sum is running over all four particles in
equation (3.1).

In the process which is the focus of this work, there are two incoming and six outgoing hadrons. This
can be understood in the framework of equation (3.1) if one assumes an intermediate state which
decays into 5π. At COMPASS, the center-of-mass energy

√
s is 18.9 GeV and thereby far above

the resonance region, while the typical squared four-momentum transfer t is O[1 (GeV/c)2]. In this
constellation, which is commonly referred to as diffraction, one expects t-channel exchange to be
dominant, i.e. the dominant event topology is expected to look like shown in figure 3.1.

As every measured event has the same initial and the same final state, the intermediate state X is
actually a superposition of all possible resonances which are allowed by energy and momentum
conservation laws. Unfortunately, in the mass region of interest, the resonances in question are
plentiful and overlapping due to their finite width. Therefore, the simple practice of identifying
resonances as peaks in the final-state mass distribution

m2
FS =

(∑

i

pi

)2

(3.4)

is usually impossible. The summation index i here runs over the decay products of X.
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3.1 Production of Excited Mesons in Diffractive Reactions

However, fortunately, the measured event carries more information than just this mass: the actual
three-momenta of all decay products are measured. This means one has access to the kinematic
distribution of the decay products, which is crucial in decomposing the data in terms of partial
waves.

Every intermediate state X is characterized by its isospin I, the G and C parities, its spin J, parity P,
the spin projection M and reflectivity ε. This set of quantum numbers is usually written as IG JPC Mε ,
e.g. 1−1++0+.

As charge-exchange reactions are strongly suppressed at COMPASS energies, the particle X has to
carry the charge of the incoming beam particle, i.e. −1, which implies I > 0. Furthermore, since there
are no known mesons with isospin I ≥ 2, only I = 1 is considered for X−. In addition, assuming that
the exchange particle is a Pomeron P with I = 0 and G = P = C = +1, X− can only have G = −1
because of the G-parity of the incoming pion. The reflectivity quantum number ε results from a
transformation to the reflectivity basis, where states with positive and negative spin projections M
are combined, leading to M always being positive and the appearance of ε = ±1 as a new quantum
number [17, 18]. While charged particles are not eigenstates of the C-parity operator, it is customary
to give the C eigenvalue of the corresponding neutral partner state.

The superposition of X states is described by a spin-density matrix %αβ [17]. It is a Hermitian and
positive-definite Ns × Ns matrix, with Ns being the number of contributing states. Therefore, one can
write its Cholesky decomposition

%αβ =

Ns∑

r

Tr α Tr ∗
β , where Tr α,β = 0 if α, β < r

and Tr α,β ∈ R if α, β = r

(3.5)

meaning that Tr α is a lower triangular matrix. The unusual index placement and nomenclature is
chosen to be consistent with the following sections. The structure of Tr α is more easily visible in
matrix notation:



%11 · · · %1Ns
...

...

%Ns1
· · · %Ns Ns


=



T1 1 0 · · · 0
...

...

T1 Ns−1 · · · TNs−1
Ns−1 0

T1 Ns
T2 Ns

· · · TNs
Ns



·



T1 ∗
1 T1 ∗

2 · · · T1 ∗
Ns

0 T2 ∗
2 · · · T2 ∗

Ns
...

...

0 · · · 0 TNs ∗
Ns



(3.6)

Decomposing %αβ has the advantage that the matrix Tr α is a minimal representation of %αβ, i.e. all
entries are linearly independent.
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3.2 Partial-Wave Decomposition

According to Fermi’s golden rule [20], the differential cross-section for scattering reactions can be
written as

dσ
dτ

(τ; mFS, t′, s) = σ̃0(mFS, t′, s) ·
∣∣∣M(τ; mFS, t′, s)

∣∣∣2 (3.7)

where mFS is the invariant mass of the final state, i.e. the mass of X in the picture of diffractive
reactions. As COMPASS typically runs at a fixed beam energy, s is constant and will be dropped
from here on. The dependence on t′, which is as defined in equation (2.3), will be discussed below.
The kinematic variables τ describe the final state, i.e. they are the four-momenta of the n final-state
particles. Because (1) three-momentum conversation holds, (2) the final-state mass mFS is explicitly
separated from τ and (3) the masses of the final-state particles are assumed to be known, the number
of linearly independent degrees of freedom in τ is

dim τ = 4 · n − 3 − 1 − n

= 3 · n − 4
(3.8)

The actual choice of the variables in τwill be discussed in section 3.3.1. Coming back to equation (3.7),
M(τ; mFS) is the scattering-matrix element for the process in question. As COMPASS does not
measure absolute cross-sections in the relevant channels, all the normalization constants are absorbed
in σ̃0(mFS).

The reason for the explicit separation of the mFS dependence is one of the pillars of the analysis
method: in the partial-wave decomposition, the data are subdivided into narrow bins of the final-state
mass, meaning that over the bin width, σ̃0 and

∣∣∣M
∣∣∣2 can be assumed constant with respect to mFS.

Due to this, the first step of the analysis is sometimes labeled to be “model-independent”, but it must
be stressed that this only applies to the resonance content of the intermediate state, while indeed a
number of model assumptions still have to be made, as we will see in section 3.3.

There are two approaches to resolve the dependency on t′. While the older approach parameterized
the t′ dependence [16, 21], larger data sets allowed to subdivide the data not only in mFS, but
simultaneously also in t′ [6]. The latter approach is assumed in this discussion.

We now proceed to write the cross section as

dσ
dτ

(τ; mFS, t′) = σ0(mFS) · I(τ; mFS, t′) (3.9)
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3.2 Partial-Wave Decomposition

with the intensity[a]

I(τ; mFS, t′) =
∑

ε=±1

∑

α,β

∑

k

Ψ ε
• α,k(τ; mFS, t′) %ε• αβ(mFS, t′) Ψ ε∗

• β,k(τ; mFS, t′)

=
∑

ε=±1

∑

α,β

∑

k

Ψ ε
• α,k(τ; mFS, t′)

∑

r

[
Tr ε
• α(mFS, t′) Tr ε

• β
∗(mFS, t′)

]
Ψ ε∗
• β,k(τ; mFS, t′)

=
∑

ε=±1

∑

r

∣∣∣∣∣∣∣
∑

α

Tr ε
• α(mFS, t′)

∑

k

Ψ ε
• α,k(τ; mFS, t′)

∣∣∣∣∣∣∣

2

(3.10)

where the spin-density matrix %• αβ
[b] from equation (3.5) has been used and split into two separate

parts %ε• αβ for the reflectivities ε = ±1. This is possible because different reflectivities do not interfere,
leading to a block diagonal form of %• αβ with respect to to ε. The determination of the complex-
valued production amplitudes Tr ε• α(mFS) for the states X, and thereby also of %ε• αβ, is the goal of the
partial-wave decomposition. The Ψr ε

• β,α(τ) ∈ C are amplitudes that describe the decay of the states X
into the final state. They can be calculated and will be discussed in section 3.3. The indices α and β
run over the possible quantum numbers JPC M (but not the reflectivity ε), while the index k runs over
all possibilities in the parameterization of the decay of X into the final state (which always stays the
same). At this point, it is not obvious why there should be more than one possibility for k, but as will
become clear in section 3.3, different intermediate states in the decay cause this to happen. All three
indices have to be summed coherently, while the sum over the two reflectivity states +1 and −1 is
incoherent.

The incoherent sum running over r takes into account different non-interfering production processes,
e.g. spin-flip or non-flip processes at the proton vertex or the integration over a large t′ range. It is
important to note that the conditions on Tr ε• α from equation (3.5) still apply here, i.e. certain production
amplitudes are either real or zero. For reactions where the number of non-interfering production
processes Nε

r is smaller than Nε
s , one usually imposes

Tr ε
• α = 0, if r > Nε

r (3.11)

as an additional condition. Because this lowers the rank of the spin-density matrix %ε• αβ from Nε
s

to Nε
r , the quantity Nε

r is also called the rank of the partial-wave decomposition. Note that due to
the block-diagonal nature of %• αβ with respect to ε, the two ranks N+1

r and N−1
r need not be the

same. The analysis presented in the following chapters will always use N+1
r = N−1

r = 1; however, the
description in this chapter will remain without any assumptions on Nε

r .

In the intensity given in equation (3.10), the coupling of the X states to the decay modes is included
in the decay amplitudes, which is a problem as these couplings are generally unknown. However,
because they are assumed to only depend on mFS and not on τ, the couplings can be easily moved

[a] While the conclusion that I ≡
∣∣∣M

∣∣∣2 might be easily drawn from the given formulas, it would be wrong, because I and∣∣∣M
∣∣∣2 are normalized differently, which will become clear in equation (3.16). This difference of normalization is also

reflected in the transition σ̃0(mFS)→ σ0(mFS).
[b] There is no difference between %αβ from equation (3.5) and %• αβ from equation (3.10): the “•” has been introduced to

facilitate the notation after the upcoming transformation in equation (3.12).
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from the decay amplitudes to the production amplitudes giving new variables

Ψ ε
• α,k(τ; mFS, t′) → Ψ ε

i (τ; mFS, t′)

Tr ε
• α(mFS, t′) → Tr ε

i (mFS, t′)
%ε• αβ(mFS, t′) → %εi j(mFS, t′)

(3.12)

The new index i now includes both the quantum numbers α of X and the specific decay mode k into
the final state. With this, one obtains a slightly simpler form of the intensity

I(τ; mFS, t′) =
∑

ε=±1

Nε
r∑

r=1

∣∣∣∣∣∣∣
∑

i

Tr ε
i (mFS, t′)Ψ ε

i (τ; mFS, t′)

∣∣∣∣∣∣∣

2

(3.13)

with which we can write the probability to observe an event EmFS from the set of measured events E
with coordinates τE

P(EmFS) =
I(τE ; mFS, t′)∫

dφn(τ)I(τ; mFS, t′) η(τ; mFS, t′)
(3.14)

The integral in the denominator runs over the whole n-body phase space of the final-state particles,
while η(τ) is the product of the acceptance of the measuring device and the reconstruction efficiency
for the final state, abbreviated in the following to “acceptance”. In the numerator, the acceptance does
not appear because for measured events, it has already been applied by the measurement itself. With
this probability, we are now able to formulate an extended likelihood function we can maximize in
order to find the maximum-likelihood estimate for Tr ε

i :

L(T ;E) =
e−N N

N

N!

N∏

k=1

P(Ek) (3.15)

N is the number of measured events and N is the number of expected measured events. The factor
e−N NN/N! is the Poisson probability to observe N events, which ensures that the maximum of L is
at a point in parameter space where the condition N = N is fulfilled within the expected Poissonian
fluctuations. To declutter the equations, mFS and t′ have been dropped and will be omitted from this
point onwards. However, it is important to keep in mind that all the quantities, including N and N, are
given under the assumption that they are constant with respect to the final state mass mFS. Using

N =

∫
dφn(τ)I(τ) η(τ) (3.16)

imposes a normalization constraint which leads to the intensity I being expressed in terms of number
of events. Using the fact that N is the denominator in equation (3.14), one can cancel the factor N

N
in

equation (3.15) and the likelihood simplifies slightly to

L(T ;E) =
e−N

N!

N∏

k=1

I(τk) (3.17)
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3.2 Partial-Wave Decomposition

Now, because of numerical stability, we transition to the log-likelihood

lnL(T ;E) = −N − ln N! +

N∑

k=1

lnI(τk) (3.18)

As the term ln N! does not depend on Tr ε
i , it can be dropped from the log-likelihood without changing

its shape:

lnL(T ;E) =

N∑

k=1

lnI(τk) − N (3.19)

For the purpose of describing measured events, which unfortunately are usually not background-free,
the intensity given in equation (3.13) is extended by adding an isotropic background amplitude
Tflat ∈ R, called flat wave, giving

I(τ) =
∑

ε=±1

Nε
r∑

r=1

∣∣∣∣∣∣∣
∑

i

Tr ε
i Ψ

ε
i (τ)

∣∣∣∣∣∣∣

2

+ T 2
flat (3.20)

To evaluate L from equation (3.19), one needs to calculate N. For clarity, let’s first note that
∣∣∣∣∣∣∣
∑

i

Tr ε
i Ψ

ε
i (τ)

∣∣∣∣∣∣∣

2

=

(∑

i

Tr ε
i Ψ

ε
i (τ)

) (∑

j

Tr ε
j Ψ

ε
j (τ)

)∗

=

(∑

i

Tr ε
i Ψ

ε
i (τ)

) (∑

j

Tr ε
j
∗Ψ ε

j
∗(τ)

)

=
∑

i, j

Tr ε
i Tr ε

j
∗Ψ ε

i (τ)Ψ ε
j
∗(τ)

(3.21)

Therefore, N from equation (3.16) can be written as

N =

∫
dφn(τ)


∑

ε=±1

Nε
r∑

r=1

∣∣∣∣∣∣∣
∑

i

Tr ε
i Ψ

ε
i (τ)

∣∣∣∣∣∣∣

2

+ T 2
flat

 η(τ)

=

∫
dφn(τ)


∑

ε=±1

Nε
r∑

r=1

∑

i, j

Tr ε
i Tr ε

j
∗Ψ ε

i (τ)Ψ ε
j
∗(τ) + T 2

flat

 η(τ)

=
∑

ε=±1

Nε
r∑

r=1

∑

i, j

Tr ε
i Tr ε

j
∗
∫

dφn(τ) Ψ ε
i (τ)Ψ ε

j
∗(τ) η(τ) + T 2

flat

∫
dφn(τ) η(τ)

(3.22)

which is easy to calculate provided one can determine the normalization integrals

N
ε
i j =

∫
dφn(τ) Ψ ε

i (τ)Ψ ε
j
∗(τ) η(τ) (3.23)
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These high-dimensional integrals are calculated using Monte Carlo methods [22], which approximate
the integral over a multivariate, real- or complex-valued function f over the volume Ω by sampling
random points ~xk from Ω and averaging the function values f (~xk).

f : Rn → C, Ω ⊂ Rn, ~xk ∈ Ω, VΩ =

∫

Ω

d~x

∫

Ω

d~x f (~x) = lim
N→∞

VΩ
N

N∑

k=1

f (~xk)

(3.24)

We apply equation (3.24) to equation (3.23) by generating a set of Monte Carlo events Ω ={
τMC

1 , . . . , τMC
NMC

}
which are distributed isotropically in the final state’s phase space. These events are

then processed through the detector simulation described in section 2.1.4 and subjected to the same
selection cuts as the measured data (see section 2.2). The events remaining after this procedure are
ΩAcc =

{
τAcc

1 , . . . , τAcc
NAcc

}
. The acceptance η(τ), which is a continuous function of the phase space

variables τ, only assumes two values on Ω:

η : Ω→ {0, 1} , η(τk) =


1, if τk ∈ ΩAcc

0, otherwise
(3.25)

The integrals from equation (3.23) can now be approximated by

N
ε
i j ≈

VΩ
NMC

NAcc∑

k=1

Ψ ε
i (τAcc
k

)Ψ ε
j
∗(τAcc
k

) (3.26)

The quantity VΩ =
∫

dφn(τ) is not easily calculable, however, one can eliminate it from the formulas
by a variable transformation. To this end, we normalize our variables

Ψ ε
i (τ) → ψεi (τ) = Ψ ε

i (τ)
√

VΩ√Pεii
Tr ε

i (mFS) → Tr ε
i (mFS) = Tr ε

i (mFS) ·
√
Pεii

N
ε
i j → N ε

i j =
Nεi j√
PεiiPεj j

Tflat → Tflat = Tflat ·
√

VΩ

%εi j → ρεi j = %εi j

√
Pεii Pεj j =

Nε
r∑

r=1

Tr ε
i Tr ε∗

j

(3.27)
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using the phase-space integrals

Pεi j =

∫
dφn(τ) Ψ ε

i
∗(τ)Ψ ε

j (τ)

≈ VΩ
NMC

NMC∑

k=1

Ψ ε
i
∗(τMC
k

)Ψ ε
j (τMC
k

)
(3.28)

which do not include the acceptance η(τ). As the decay amplitudes ψεi are now normalized and
the intensity I is expressed in terms of number of events, the diagonal element of the spin-density
matrix

ρεii =

Nε
r∑

r=1

∣∣∣ Tr ε
i

∣∣∣2 (3.29)

is the acceptance-corrected expected number of events in wave i.

Because Tr ε
i Ψ

ε
i (τ) = Tr ε

i ψ
ε
i (τ) /

√
VΩ and Tr ε

i Tr ε
j
∗Nεi j = Tr ε

i Tr ε
j
∗N ε

i j, the likelihood from equa-
tion (3.19) transforms to

lnL(T ;E) =

N∑

k=1

ln


∑

ε=±1

Nε
r∑

r=1

∣∣∣∣∣∣∣
∑

i

Tr ε
i ψ

ε
i (τk)√

VΩ

∣∣∣∣∣∣∣

2

+
T 2

flat

VΩ



−
∑

ε=±1

Nε
r∑

r=1

∑

i, j

Tr ε
i
∗ Tr ε

jN ε
i j − T 2

flat

∫
dφn(τ) η(τ)

VΩ

=

N∑

k=1

ln


∑

ε=±1

Nε
r∑

r=1

∣∣∣∣∣∣∣
∑

i

Tr ε
i ψ

ε
i (τk)

∣∣∣∣∣∣∣

2

+ T 2
flat

 − N ln VΩ

−
∑

ε=±1

Nε
r∑

r=1

∑

i, j

Tr ε
i
∗ Tr ε

jN ε
i j − T 2

flat

∫
dφn(τ) η(τ)

VΩ

(3.30)

As before, additive constants which do not depend on Tr ε
i can be dropped from the log-likelihood,

which means we can disregard N ln VΩ. The factor
∫

dφn(τ) η(τ)

VΩ
≈ NAcc

NMC ≡ A (3.31)

is the total acceptance. Putting everything together, we arrive at

lnL(T ;E) =

N∑

k=1

ln


∑

ε=±1

Nε
r∑

r=1

∣∣∣∣∣∣∣
∑

i

Tr ε
i ψ

ε
i (τk)

∣∣∣∣∣∣∣

2

+ T 2
flat

 −
∑

ε=±1

Nε
r∑

r=1

∑

i, j

Tr ε
i
∗ Tr ε

jN ε
i j − T 2

flatA (3.32)

This is the log-likelihood formulation as it is used to determine the maximum-likelihood estimate
for the free parameters Tr ε

i . Because the decay amplitudes Ψ ε
i and the two integral matrices Pεi j and

Nεi j do not depend on Tr ε
i , they can be pre-calculated once and then reused in every iteration of the

minimization process.
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Figure 3.2: Isobar decay topologies for X− → π−π+π−π+π−.

3.3 Decay Amplitudes

In the derivation of the formalism to determine the production amplitudes Tr ε
i in section 3.2, it was

assumed that the decay amplitudes Ψ ε
i , which describe the decay of the intermediate state X to the

n-body final state, are calculable. Here, we present the model which has been used as a basis for this
calculation in this analysis. For simplicity, we sacrifice the generality of section 3.2 by assuming that
the final state consists of five charged pions.

3.3.1 The Isobar Model

The isobar model presupposes that the decay into the final state takes place via a chain of subsequent
two-particle decays. For the decay into five charged pions, there are three possible ways this can be
realized, as shown in figure 3.2. For a decay into n particles, this requires the introduction of n − 2
additional intermediate states which are called isobars. The total decay amplitude Ψ ε

i then essentially
becomes a product of the amplitudes for the two-body decays.

The reference frames which are used to calculate the two-body decay amplitudes are shown in
figure 3.3. The coordinate system used to describe the decay of the X particle is called the Gottfried-
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3.3 Decay Amplitudes

~pbeam

~ptarget

~precoil

ẑGF ∼ ~pbeam

ŷGF ∼ ~pbeam × ~precoil

x̂GF = ŷGF × ẑGF

~pisobar1

ẑHF ∼ ~pisobar1

ŷHF = ẑGF × ẑHF

x̂HF = ŷHF × ẑHF

Figure 3.3: The Gottfried-Jackson and helicity reference frames.

Jackson frame (GF), which is a rest frame of X. The z-axis ẑGF is defined along the beam momentum
~pbeam, while the y-axis ŷGF is along the normal of the X production plane, given by ~pbeam × ~precoil,
where the latter is the momentum of the recoil particle. The x-axis x̂GF is chosen such that the
resulting coordinate system is right-handed.

For the description of the decay of the first isobars in the decay chain, the helicity frame (HF) is used,
which is a rest frame of the decaying isobar. The z-axis ẑHF points along the direction of motion of
the isobar; therefore, the spin projection with respect to this quantization axis is the isobar helicity λ.
Even though the direction of motion is ill defined, because the isobar is obviously at rest in its own
rest frame, the axis’ direction can be easily preserved through the Lorentz boost. The y-axis ŷHF is
then defined by the cross product of the two z-axes ẑGF × ẑHF and as before, the x-axis x̂HF is given by
ŷHF × ẑHF to fulfill right-handedness.

This definition of the helicity frame can be applied analogously for the decay of isobars further down
the decay chain, i.e. isobars where the parent particle is an isobar itself. In this case, the y-axis is
defined as the cross product of the z-axes of the helicity frames of the parent isobar and the daughter
isobar.

It is important to note that we use active Lorentz transformation to transform the relevant four-
momenta to the corresponding coordinate systems. Because Lorentz transformations do not commute
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Chapter 3 Analysis Technique

in general, their order has to be specified. We always start by transforming into the Gottfried-Jackson
frame and then proceed sequentially along the decay chain.

Let us now consider the decay of a parent particle into two daughter particles. To facilitate notation,
we collect the quantum numbers J and M/λ as well as the nominal mass m0 and width Γ0 of the
respective particles into one index. For the particle X, we also include the reflectivity ε. This index
shall be P for the parent particle and D1,2 for the two daughters. If any of the variables is given
explicitly, the subscript P is used for the parent particle, while the subscripts 1 or 2 denote the daughter
particles. Additionally, L is the orbital angular momentum between the two daughters, and S is the
total intrinsic spin to which the spins of the daughters J1 and J2 couple. Using these definitions and
the reference frames specified earlier, one can write down the two-body decay amplitude

AP
D1D2

(ϕ, ϑ,mP,m1,m2) =
∑

λ1,λ2

DJP*
MPλ

(ϑ, ϕ, 0) fP
D1D2

(mP,m1,m2) (3.33)

with λ = λ2 − λ1. The angles ϕ and ϑ are the spherical coordinates of the momentum of one of
the decay particles, while mP, m1 and m2 are the measured masses for the respective event. The
amplitude factorizes in an angular part, described by the Wigner D-function DJ*

Mλ [23] and a dynamic
part fP

D1D2
(mP,m1,m2). As the momenta of the daughters are oriented back to back, only two angles

are needed and the third angle is set to zero. Furthermore, if P is an isobar, MP in DJP
MPλ

is replaced
by λP, the helicity of the parent particle.

The dynamic part describes the strong interaction in the decay and is written as

fP
D1D2

(mP,m1,m2) =

normalization︷    ︸︸    ︷√
2L + 1

Clebsch-Gordan coefficients︷                                      ︸︸                                      ︷
(J1 λ1 J2 −λ2 | S λ) (L 0 S λ | JP λ)

FL(mP,m1,m2)∆P
D1D2

(mP,m1,m2)αP
D1D2︸                                               ︷︷                                               ︸

dynamics

AD1 AD2

︸   ︷︷   ︸
daughter decays

(3.34)

where two Clebsch-Gordan coefficients appear, the first for the coupling of the two daughter spins
J1 and J2 to the total intrinsic spin S , the second for the coupling of S and the orbital angular
momentum L to the spin JP of the parent. The real-valued functions FL are the Blatt-Weisskopf
angular-momentum barrier factors [24] in the parameterization by von Hippel and Quigg [25]. The
propagator of the parent particle ∆P

D1D2
describes the mP dependence of the amplitude. For most of the

cases, it is parameterized by a Breit-Wigner function. This will be discussed in detail in section 3.3.3.
The complex number αP

D1D2
is the coupling of the parent particle to the two decay products. The

decay amplitudes AD1 and AD2 are set to unity if the corresponding decay product is quasi-stable, i.e.
a pion. If D is an isobar, then AD is the full two-body decay amplitude including all the dependencies
as given in equation (3.33), which were left out in equation (3.34) for clarity. This means that to
get the total decay amplitude Ψ ε

i for X going into five pions, equation (3.33) has to be evaluated
recursively starting with AX

D1D2
and then propagating down the decay chain.

The couplings αP
D1D2

are generally unknown; however, because they do not depend on λ1 and λ2, they
can be pulled in front of the sum in equation (3.33). If, in addition, they do not depend on mP, m1 and
m2, which is an assumption that might not be true for non-resonant parts of the decay, they can be
moved in front of the total decay amplitude and combined to a total coupling of the particle X to the
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3.3 Decay Amplitudes

particular decay mode. As described in equation (3.12), this coupling is then moved to the production
amplitudes.

The amplitude for the decay of X has to include the reflectivity ε as well. This is reflected in a
modified Wigner D-function

Dε JX
MXλ

(ϑ, ϕ, 0) = c(M)
[
DJX

(+MX)λ(ϑ, ϕ, 0) − εPX(−1)JX−MX DJX
(−MX)λ(ϑ, ϕ, 0)

]
(3.35)

with

c(M) =


1/2, if M = 0
1/
√

2, otherwise
(3.36)

which replaces the one used in equation (3.33) if P = X.

Now we can specify the quantities constituting τ: for every isobar in the decay chain, there are two
angles and the mass of the isobar. The decay of X contributes only two angles as the data have been
binned in the mass of X. Because there are n−2 intermediate states, τ consists of (n−2)·3+2 = 3·n−4
quantities, which we have found already in equation (3.8).

It is useful to define a notation to identify isobar decay chains. To write the decay of one particle, we
use

P→ D1

[
L
S

]
D2 (3.37)

Should one or both of the daughter particles happen to be unstable, i.e. an isobar, we apply equa-
tion (3.37) recursively and enclose the subdecay in round brackets, e.g.

P→
(
Isobar→ D1

[
L
S

]
D2

) [
L
S

]
D3 (3.38)

Using this notation, any decay chain can be written. If a full wave is referenced, the quantum numbers
of X are added on the left. The wave

1−1++0+ →
(

f1(1285)→
(
a1(1260)→ ρ(770)

[
0
1

]
π−

) [
1
1

]
π+

) [
1
1

]
π− (3.39)

can serve as an example for the decay of an X with IG JPC Mε = 1−1++0+ into five charged pions via
the topology shown in figure 3.2c, where Isobar 1, 2 and 3 are the resonances f1(1285), a1(1260) and
ρ(770), respectively. Because the decay of isobars into two charged pions is unambiguous, it is not
explicitly included in the notation for brevity. Since IG is always equal to 1− in diffractive reactions
with a pion beam, it is sometimes omitted.

3.3.2 Symmetrization

Because pions of the same charge are indistinguishable particles, the decay amplitude Ψ ε
i has to be

invariant under the exchange of the four-vectors of a same-charge pion pair. This property is called
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Chapter 3 Analysis Technique

Bose symmetry and is ensured by writing the decay amplitude as

Ψ ε
i (τ) =

1√
N
B

∑

B

Ψ ε
i (τB) (3.40)

The 3 π− and 2 π+ contribute 3! = 6 and 2 possible permutations, respectively, leading to a total of 12
permutations which are indexed by B. The arguments τB are the kinematic variables for permutation
B applied.

Similarly, if there is a constellation where permuting pions of opposite charge only changes the
sign of the charge of an isobar, an additional symmetrization has to be introduced, because the
respective decay chains are indistinguishable. However, in this case, the isospin coupling in the form
of Clebsch-Gordan coefficients may lead to relative signs ς

I
in the sum of symmetrization terms.

Analogously to equation (3.40), the isospin symmetry is introduced by writing the decay amplitude
as

Ψ ε
i (τ) =

1√
N
I

∑

I

ς
I
Ψ ε

i (τI) (3.41)

To determine ς
I
, the sign of the total isospin Clebsch-Gordan coefficient is taken

ς
I

= sgn
[∏

k

(I
Dk1 I

Dk1
I 3 I

Dk2 I
Dk2

I 3 | IP
k

IP
k

I 3 )
]

(3.42)

The index k runs over the two-body decay vertices, including the decay vertex of X. The product
includes all the Clebsch-Gordan coefficients for the coupling of the total isospins I and their third
component I3 of the decaying particles Pk and the daughters Dk1 and Dk2. The permutations I swap
pions of opposite charge, which means the third components of the isospin depend on the given
permutation.

As is evident from figure 3.2c, there is only one constellation in the decay into five pions where this
situation may arise and there are only two symmetrization terms which have to be considered. In
these cases, both Bose and isospin symmetrization have to be respected, leading to a total of 24 terms
in the symmetrization.

3.3.3 Parameterizing the Mass Dependence of Isobars

In this analysis, the mass dependence of the amplitude of the parent particle ∆P
D1D2

(mP,m1,m2) in
equation (3.34) is in most cases parameterized by a relativistic Breit-Wigner form [26]

∆(mP,m1,m2; m0,P, Γ0,P) =
m0,P Γ0,P

m2
0,P − m2

P − i m0,P ΓP(mP,m1,m2; m0,P, Γ0,P)
(3.43)
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with the mass-dependent width

ΓP(mP,m1,m2; m0,P, Γ0,P) = Γ0,P
m0,P

mP

∑

i

αi

qi︷             ︸︸             ︷
q(mP,m1,i,m2,i)

q(m0,P,m1,i,m2,i)︸               ︷︷               ︸
q0,i

F2
L(qi)

F2
L(q0,i)

(3.44)

where m0,P and Γ0,P are the nominal mass and width of the parent particle, respectively, and
q(mP,m1,m2) is the two-body breakup momentum. The Breit-Wigner form is a good approxi-
mation only for narrow resonances far away from thresholds. The sum in equation (3.44) runs over
all possible decay channels i, but, because the branching ratios αi are not known for many of the
isobars used in this analysis, all the summands except the one for the decay into D1 +D2 are dropped.
This approximation is only valid if the decay channel in question is the dominant one for the parent
particle, which may not always be the case.

The breakup momentum is calculated by taking the square root of

q2(mP,m1,m2) =

[
m2

P − (m1 + m2)2
]
·
[
m2

P − (m1 − m2)2
]

4 · m2
P

(3.45)

Equation (3.44) is only valid if the particles D1 and D2 are stable, i.e. mi ≡ m0,i for i = 1, 2. If this is
not the case, it is easy to see that q2 can become smaller than zero if the measured masses are such
that either m1 + m2 > mP or m1 − m2 > mP. While the latter case is unlikely from a kinematic point
of view, the former may very easily occur. In the past [10, 27], the workaround

q(mP,m1,m2) =

√
|q2(mP,m1,m2)| (3.46)

was applied. Subsequently, q0 was calculated using the nominal parent mass m0,P, but the measured
daughter masses m1 and m2, as it is written in equation (3.44). Unfortunately, this makes the Breit-
Wigner function multivariate, even though it should only depend on one variable, mP. Furthermore, if
the measured masses fulfill the condition m1 + m2 = mP or |m1 − m2| = mP, q0 will be zero leading to
∆P
D1D2

being zero.

Assuming one of the daughter particles to be stable, it is possible to visualize the effect of equa-
tion (3.46). As a showcase, the decay a2(1320)→ π + ρ(770) is shown in figure 3.4. The two bands
where the intensity goes to zero are easily visible.

To have a parameterization of ΓP(mP,m1,m2; m0,P, Γ0,P) which correctly takes into account the case
where one or both daughter particles have finite width, equation (3.44) is rewritten as

ΓP(mP;Γ0,P) = Γ0,P

∫
dφn′(τ) |Ψ (τ; mP)|2

∫
dφn′(τ) |Ψ (τ; m0,P)|2 (3.47)

The n′-particle decay amplitudes Ψ (τ; mP) for the respective decay subtree are integrated over the
phase space dφn′(τ) of the final-state particles originating from the parent particle where the mass
of the parent particle mP is fixed. The integrals can be calculated in the same way as the ones from

29



Chapter 3 Analysis Technique

0.5 1.0 1.5 2.0 2.5
Mass of π−π+π− Isobar [GeV/c2]

0.5

1.0

1.5

2.0

M
as

s
of
π
− π

+
Is

ob
ar

[G
eV
/c

2 ]

10−5

10−4

10−3

10−2

10−1

100

B
re

it-
W

ig
ne

rI
nt

en
si

ty
[a

.u
.]

a2(1320)→ π−
[
2
1

]
ρ(770)

Figure 3.4: Effects of equation (3.46) on the Breit-Wigner intensity.
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Figure 3.5: Breit-Wigner intensity when using equation (3.47).
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equation (3.23), i.e. by using the Monte Carlo integration method as written in equation (3.24). To
calculate the decay amplitudes, equation (3.33) is applied to the decay subtree. Note that the same
sum over the decay channels as in equation (3.44) should appear here, but has been dropped with the
same argumentation as before.

The Breit-Wigner function ∆P
D1D2

(mP,m1,m2) and therefore ΓP(mP;Γ0,P) from equation (3.47) have
to be evaluated for every isobar decay vertex of every measured event and all the Monte Carlo events
used for calculation of the various integrals. This means that, to keep the computing requirements on
a realistic level, it is necessary to tabulate the integrals from equation (3.47). It is worth to point out
that in the case of five final-state particles, to calculate Ψ (τ; mP) when integrating, unstable decay
products can themselves decay into unstable particles again, meaning that the integration has to be
nested recursively.

Figure 3.5 shows how the Breit-Wigner intensity looks like for an unstable daughter particle if
equation (3.47) is used instead of equation (3.44). As one can see, the bands with zero intensity have
vanished, the function now correctly depends on only one variable and the projections do not feature
discontinuities anymore.

While the prerequisites for treating isobars as Breit-Wigner shaped resonances are not always strictly
met, there usually are no better alternatives available. In two cases relevant to this analysis, however,
superior options exist. One is the two-pion isobar where the pions are in a L = 0, i.e. S -wave,
configuration, which is referred to as the σ isobar in this work. There, a parameterization originating
from a fit to ππ-scattering data is available [28]. Because the relative strengths and the phases of the
broad σ resonance and the f0(980) are source dependent, a modified parameterization is used with
the f0(980) removed, as described in [6].

The parameterization of the f0(980) itself has to be modified as well, as the KK-threshold sits close
to its mass peak. Therefore, a Flatté parameterization is used in the same form as in [6].

3.4 Resonance Extraction

The partial-wave decomposition described in section 3.2 does not make any assumption about the
resonance content in the intermediate state by means of binning in the final-state mass mFS ≡ m,
where we drop the subscript from here on for simplicity. We now describe the m dependence of
ρεαβ(m) with a model [18], using the same decomposition as in equation (3.6):

ρ̂εαβ(m) =
∑

r

T̂r ε
α(m) T̂r ε∗

β (m), where T̂r ε
α,β(m) ≡ 0 if α, β < r

and T̂r ε
α,β(m) ∈ R if α, β = r

(3.48)

The production amplitudes are parameterized as

T̂r ε
α(m) =

[∑

kα

Cr ε
kα α Skα α(m)

] √
Pεαα(m) exp

[
i ϕεr(m)

]
(3.49)
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which takes into account the normalization in equation (3.27)[c]. The sum runs over all the model
components Skα α(m), i.e. all the resonances and non-resonant components, contributing to describe
the production amplitude Tr ε

α(m) of wave with index α. A resonance can contribute to multiple waves,
given that they have the same quantum numbers IG JPC . The shape functions depend neither on rank
index r nor on reflectivity ε because we assume the shape to be independent of both the production
process and the reflectivity. The complex-valued couplings Cr ε

kα α
contain the relative strengths and

phases between the components and are set to zero for wave indices α < r, thereby ensuring that the
first condition in equation (3.48) is fulfilled.

By applying the phase factor exp
[
i ϕεr(m)

]
where

ϕεr(m) = − arg
[∑

kr

Cr ε
kr r Skr r(m)

]
(3.50)

we make sure that T̂r ε
α ∈ R if α = r.

The structure is more obvious if the model predictions T̂r ε
α are written in matrix form:



T̂1 ε
1(m) · · · 0
...

...

T̂1 ε
Nε

s
(m) · · · T̂Nε

s ε

Nε
s
(m)



=



√
Pε11(m)

...√
PεNε

s Nε
s
(m)



·



∑
k1

C1 ε
k1 1 Sk1 1(m) · · · 0

...
...

∑
kNεs

C1 ε
kNεs

Nε
s
SkNεs

Nε
s
(m) · · · ∑

kNεs

CNε
s ε

kNεs
Nε

s
SkNεs

Nε
s
(m)



·



exp
[
i ϕε1(m)

]
· · · 0

...
...

0 · · · exp
[
i ϕεNε

s
(m)

]



(3.51)

Instead of actually applying the phase transformation, we move back to the spin-density matrix

ρ̂εαβ(m) =
∑

r



[∑

kα

Cr ε
kα α Skα α(m)

] √
Pεαα(m) exp

[
i ϕεr(m)

]


·


[∑

kβ

Cr ε
kβ β Skβ β(m)

]∗ √
Pεββ(m) exp

[
−i ϕεr(m)

]


(3.52)

[c] Note that, by the definition in equation (3.28), Pεαα contains the phase-space volume VΩ, which is not easy to calculate.
This will be discussed in detail in section 5.3.
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where the factors exp
[
±i ϕεr(m)

]
cancel each other. If the rank Nε

r was chosen to be smaller than the
number of waves Nε

s , the condition in equation (3.11) applies analogously to Cr ε
kα α

:

Cr ε
kα α = 0, if r > Nε

r (3.53)

Applying this in equation (3.52), the sum over r runs to Nε
r and we obtain

ρ̂εαβ(m) =

Nε
r∑

r=1

[∑

kα

Cr ε
kα α Skα α(m)

√
Pεαα(m)

] [∑

kβ

Cr ε
kβ β Skβ β(m)

√
Pεββ(m)

]∗
(3.54)

There is an additional ambiguity appearing in this formulation of ρ̂εαβ(m): if we multiply all couplings
of a given rank with exp[i ϕε• r], then the spin-density matrix does not change. Note that ϕε• r is different
from ϕεr(m) appearing before, in that it does not depend on m. To remove this ambiguity, we require

Cr ε
1 α ∈ R, if α = r (3.55)

Usually, it is not practical to try to describe the production amplitudes of all partial waves which were
used during the partial-wave decomposition. Fortunately, it is possible to consider just a submatrix of
ραβ, corresponding to a selected subset of partial waves.

Resonances are parameterized using Breit-Wigner amplitudes of the form

Sres(m; m0, Γ0) =
m0 Γ0

m2
0 − m2 − i m0 Γ0

(3.56)

where the parameters m0 and Γ0 of Skα α(m) are determined by the indices α and kα. If two Sres

describe the same resonance, they share one common set of parameters. As mentioned in sec-
tion 3.3.3, the Breit-Wigner amplitude is a good approximation only for narrow resonances far away
from thresholds. In addition, summing Breit-Wigner amplitudes generally violates unitarity. For a
hypothetical resonance with m0 = 1.5 GeV/c2 and Γ0 = 0.1 GeV/c2, the Breit-Wigner amplitude is
shown exemplarily in figure 3.6.

A non-resonant component with the parameterization

Sbkg(m; g,m1,m2) = exp
{
−g

[
q(m,m1,m2) · F2

L
(
q(m,m1,m2)

)]2
}

(3.57)

is added for every wave. In the exponent, the barrier factors FL and the breakup momenta q, as
defined in sections 3.3.1 and 3.3.3, appear.

By writing the differences between the resonance model ρ̂εαβ(m) and the extracted spin-density matrix
ρεαβ(m) as vectors

δεαβ(m) =


Re

[
ρ̂εαβ(m) − ρεαβ(m)

]

Im
[
ρ̂εαβ(m) − ρεαβ(m)

]

 (3.58)
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Figure 3.6: The Breit-Wigner amplitude from equation (3.56) for a hypothetical resonance with
m0 = 1.5 GeV/c2 and Γ0 = 0.1 GeV/c2. The points in (d) are spaced in mass by 10 MeV/c2.
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one can formulate the χ2 function

χ2 =
∑

mi

∑

ε=±1

∑

α, β≤α

[
δεαβ(mi)

]T
E
ε
αβ
−1(mi) δεαβ(mi) (3.59)

with the 2 × 2 covariance matrix Eεαβ for the real and imaginary part of every element of the spin-
density matrix, which is calculated from the covariance matrix of the productions amplitudes Tr ε

α

obtained from the partial-wave decomposition in mass bins. Because the spin-density matrix is a
Hermitian matrix, only the lower triangle of it is included in the sum. The squared Pearson residuals
of all mass bins with masses mi are then summed up.

By minimizing the χ2 function from equation (3.59), the resonance parameters m0,k, Γ0,k, the couplings
Cr ε
αk and the non-resonant parameter gk are then fitted to the production amplitudes.

Several caveats of this method should be mentioned. Because the parameters for many decay modes
are not known, the Breit-Wigner amplitudes from equation (3.56) which are fitted to the spin-density
(sub)matrix do not take into account the growth of the phase space over the width of the resonance,
as shown in equations (3.43) and (3.47). This might slightly change the values of the extracted
parameters. Another simplification is that, in addition to the uncertainties of the real and imaginary
parts themselves, the χ2 function includes only the correlations between the real and imaginary parts
of the same amplitudes. No correlations between the amplitudes of different partial waves are taken
into account, even though this information would be available from the partial-wave decomposition.
The reason for this, apart from increasing complexity, is that for Nε

r < Nε
s , there are more spin-density

matrix elements than production amplitudes, leading to covariance matrices for the spin-density
matrix with zero eigenvalues so that the uncertainties on the fit parameters lose meaning. Additionally,
in the formulation in equation (3.59), Gaussian uncertainties are assumed, which, as is shown in
figure 4.2 on page 47, is not a good approximation. There are efforts underway to improve these
areas [29, 30], but as a precision extraction of resonance parameters is not the goal of this work,
including them in the analysis presented was not deemed warranted.
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CHAPTER 4

Model Selection

“Pouf, cinq!”

Hugh Laurie

In the previous chapter, at the end of section 3.1, the dimension Ns of the spin-density matrix has
been introduced. It is the number of combinations of X quantum numbers and corresponding decay
modes which are considered in the partial-wave decomposition, i.e. the number of waves the cross
section is decomposed into. So far, however, neither the actual value of Ns nor the choice of waves
included in ραβ have been discussed.

In principle, there is an infinite number of possible intermediate states X. However, even if it was
possible to use an infinite number of waves in the partial-wave decomposition, it would not be a sound
approach because the number of measured events is limited. It is possible to describe any measured
distribution perfectly if the number of parameters of the describing model is equal or higher than the
number of measured data points. However, such a description would have no predictive power and
would therefore be without use.

On the other hand, too small a selection of partial waves will also have negative impact. In the
best case, waves which are contributing significantly to the measured data but are omitted in the
decomposition will lead to part of the data not being described well. In the worst case, events will be
wrongly attributed to other waves, a phenomenon called model leakage.

In the end, the task of model selection is to find the best possible description of the data with the
minimal number of parameters, which is what this chapter will explore. For the purpose of this
discussion, let us call a set of waves used for partial-wave decomposition wave set or model.

4.1 The Wave Pool

A model is constructed by selecting waves from a pool of all possible waves to form a wave set. The
wave pool should contain all the waves for which a significant contribution to the data is conceivable.
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Chapter 4 Model Selection

To avoid bias, the wave pool should be constructed systematically from a set of rules which are
motivated by physics considerations. In practice, the rules are also influenced by practical reasons, as
the wave pool size is an important factor in the complexity of the model-selection process.

The rules for constructing the wave pool are (1) limits for the spin J of the states X, its spin projection
M and its reflectivity ε, (2) limits for the spin S of the isobar and the orbital angular momentum L of
the two-body decays and (3) the set of isobars which are included and their allowed decay modes.
Following the argumentation in section 3.1, only states with IG = 1− are allowed.

Limiting J, S and L is motivated by the fact that higher angular momenta require more energy
to produce them, so that they are suppressed at lower masses. For the current analysis, we use
L ≤ 2 while not limiting J and S . Because the spin of the isobars is limited and because of angular
momentum conservation, the highest J than can appear is 6 and the highest S is 4. In diffractive
reactions, there is a kinematic suppression of higher M values, which is why only partial waves
with M ≤ 1 are used. Also, as reflectivity coincides with naturality at COMPASS energies, negative
reflectivity is expected to be suppressed, so we require ε = +1.

Selecting the isobars and their decay modes is a difficult task, because there are a number of mesons
for which their existence, nature and resonance parameters are not well known. This is particularly
problematic for states decaying into four pions. For this analysis, it was decided to use only isobars
for which at least the existence was generally well established. While the decay modes for three-pion
isobars, i.e. isobars decaying into three pions, are generally well known, the four-body isobars are
again problematic. For most of them, the decay modes are not known at all and several judgment
calls had to be made in specifying them. The complete list of isobars used to construct the wave
pool, together with their Breit-Wigner parameters and decay modes is given in table 4.1. Note that
the decay ρ3(1690)→ π+ + π− is allowed according to the table, but is excluded by the L ≤ 2 limit
above.

Using the rules above, a wave pool consisting of 1546 waves is produced.

Table 4.1: Isobars used in the analysis with their Breit-Wigner parameters (if applicable) and decay
modes.

Isobar Mass [MeV/c2] Width [MeV/c2] Decay Products

σ[∗] π π

ρ(770) 769 150.9 π π

f0(980)[∗] π π

b1(1235) 1229.5 142 ρ(770) σ

a1(1260) π

a1(1260) 1230 425 ρ(770) π[†]

σ π

[∗] Not parameterized by a Breit-Wigner function, Continued on next page
see section 3.3.3

[†] Only the decay mode with L = 0 is allowed
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4.1 The Wave Pool

Table 4.1: Isobars used in the analysis with their Breit-Wigner parameters (if applicable) and decay
modes (continued).

Isobar Mass [MeV/c2] Width [MeV/c2] Decay Products

f2(1270) 1275.1 185.1 π π

ρ(770) ρ(770)[†]

σ σ

a1(1260) π

f1(1285) 1282.1 24.2 ρ(770) ρ(770)[†]

a1(1260) π

π(1300) 1300 400 ρ(770) π

σ π

a2(1320) 1318.3 107 ρ(770) π

f0(1370) 1350 350 ρ(770) ρ(770)[†]

σ σ

a1(1260) π

π(1300) π

f1(1420) 1426.4 54.9 a1(1260) π

a2(1320) π

ρ(1450) 1465 400 ρ(770) σ

a1(1260) π

π(1300) π

f0(1500) 1505 109 ρ(770) ρ(770)[†]

σ σ

a1(1260) π

π(1300) π

f2(1565) 1562 134 ρ(770) ρ(770)
σ σ

f2(1270) σ

a1(1260) π

π(1300) π

a2(1320) π

η2(1645) 1617 181 ρ(770) ρ(770)
f2(1270) σ

a1(1260) π

a2(1320) π

[∗] Not parameterized by a Breit-Wigner function, Continued on next page
see section 3.3.3

[†] Only the decay mode with L = 0 is allowed
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Table 4.1: Isobars used in the analysis with their Breit-Wigner parameters (if applicable) and decay
modes (continued).

Isobar Mass [MeV/c2] Width [MeV/c2] Decay Products

π2(1670) 1672.2 260 ρ(770) π

σ π

f2(1270) π

ρ3(1690) 1688.8 161 π π

ρ(770) σ

f2(1270) ρ(770)[†]

a1(1260) π

a2(1320) π

ρ(1700) 1720 250 ρ(770) σ

a1(1260) π

π(1300) π

π(1800) 1812 208 f0(980) π

σ π

[∗] Not parameterized by a Breit-Wigner function,
see section 3.3.3

[†] Only the decay mode with L = 0 is allowed

4.2 Genetic Algorithm

Genetic algorithms, a subset of evolutionary algorithms, are a class of optimization algorithms.
In [10], such an algorithm was applied to COMPASS 5π data measured in 2004. While the results
looked promising, it was decided to thoroughly test the method before applying it to the much larger
data set from 2008. Unfortunately, the result was that such algorithms are not suitable for model
selection in this context.

Having already stated the conclusion, this section will be kept brief. Derivations already explained
in [10] will not be repeated. Instead, the focus will lay on highlighting the adaptations and improve-
ments developed in the course of this work. Rather than detailing all the exhaustive investigations,
only the final results contributing to the conclusion will be given. However, the description of the
algorithms used to arrive at this conclusion will be thorough.

4.2.1 Evidence

In the Bayesian formalism, the quality of two competing models can be compared using the evi-
dence

Ek =

∫
dTkL(Tk) Π(Tk) (4.1)
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4.2 Genetic Algorithm

is used. The likelihood L(T) as defined in equation (3.32) appears, albeit not in logarithmic form.
The vector

Tk =



Re
[

T1 1
1

]

Re
[

T1 1
2

]

Im
[

T1 1
2

]

...

Re
[

T1 1
Nk

s

]

Im
[

T1 1
Nk

s

]

Tflat


k

(4.2)

contains all the free parameters of the model, i.e. the production amplitudes Tr ε
i introduced in the

previous chapter. As discussed after equation (3.11) and in section 4.1, respectively, we limited
ourselves to rank r = 1 and reflectivity ε = 1. From here on, we will therefore drop the rank and
reflectivity indices and only write Ti. Note that in equation (4.2), we jump directly from Re(T1) to
Re(T2) because, according to equation (3.5), Im(T1) = 0 and is therefore not a free parameter. This
means that dim(Tk) = 2Nk

s . The index k denotes the model we are investigating, i.e. the selection
of partial waves in our wave set, and Nk

s is the number of waves in the set. The prior Π(Tk) is the
probability density function for Tk before taking into account the measured data. It provides a means
to include preexisting knowledge into the parameter estimation and as such, there is some freedom in
choosing it. The actual choice of Π(Tk) will be discussed later in this section.

Note that in the derivation of the likelihood in section 3.2, several terms not depending on Ti have
been dropped. This implies that the actual value of Ek does not carry meaning. Instead, only the
Bayes factor

Bkl =
Ek

El
(4.3)

is of significance for the comparison of two models k and l. While there are recipes for interpreting
the value of Bkl [31], the genetic algorithm only uses Bkl to determine if model k or l is preferred.
Therefore, this topic will not be discussed here.

The integral in equation (4.1) is expensive to calculate: it is high-dimensional, with dim(Tk) = O(100),
and, because L appears instead of lnL, numerically challenging. With nested sampling[a] [35], an
algorithm exists that should be able to calculate such evidence integrals. Unfortunately, it turned out
that it was unable to cope with the large number of parameters in typical models and did not converge
within a practical timescale.

Therefore, a different approach was chosen to calculate the evidence. In the limit of a large data set,
we can assume that the likelihood is strongly peaked at the maximum-likelihood estimate T̃k for the
production amplitudes. If we assume that this peak has the form of a multivariate Gaussian and that

[a] Here, the MultiNest implementation [32–34] is used.
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the prior is constant, the integral can be solved analytically[b] [36] and we obtain

Ek ≈ L
(
T̃k

)
Π

(
T̃k

) √
(2π)2Nk

s det(Ek) (4.4)

where we used the covariance matrix Ek at the maximum-likelihood estimate. This approximation is
called Laplace’s method or saddle-point approximation. By taking the logarithm of the evidence, we
can transition from L to lnL, which solves the problem of numerical stability.

For Π(Tk), we choose a minimum-bias prior

Π(Tk) =



1
VTk

, if
∑
i, j

Ti T ∗j Ni j + T 2
flatA = N

0, otherwise
(4.5)

which is constant if the production amplitudes are valid, i.e. if the number N of measured events is
equal to the number N of expected events as expressed in equation (3.22) and using equations (3.23),
(3.27) and (3.31). Note that in the formulation of the condition, we write Ti, j without explicitly
adding the index k for the model. As single production amplitudes of different models never appear
together, we drop the index k for better readability. The volume VTk is chosen such that

∫
dTk Π(Tk) =

1
VTk

∫

Ωk

dTk ≡ 1 (4.6)

⇔
VTk =

∫

Ωk

dTk (4.7)

For now, we define Ωk as the hypersurface in the space of production amplitudes where the condition
in equation (4.5) is true. This is a rather sloppy definition, because dTk ∈ R2Nk

S ⊃ Ωk in equation (4.6),
but Ti ∈ C in equation (4.5). During the calculation of VTk , a better definition will present itself and
we will remedy the situation.

Solving equation (4.7) is equivalent to determining the volume of Ωk. In [10], this was achieved by
assuming

N ≈ A
[∑

i

∣∣∣Ti

∣∣∣2 + T 2
flat

]
(4.8)

[b] Approximating the likelihood function with a Gaussian is equivalent to writing

L(T) ≈ L(T̃) exp
[
(T − T̃)TE (T − T̃)

]

where we used the covariance matrix E. Using this in the integral from equation (4.1) and assuming that the prior is
constant, i.e. Π(T) ≡ Π(T̃), we obtain

E ≈ L(T̃) Π(T̃)
∫

dT exp
[
(T − T̃)TE (T − T̃)

]

= L(T̃) Π(T̃)
√

(2π)2Ns det(E)

where the integral is the inverse of the well-known normalization constant of a multivariate Gaussian distribution. As
pointed out in [36], this is equivalent to approximating lnL by a Taylor series up to the quadratic term.
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Figure 4.1: Histograms of the elements of the integral matrix Ni j for the whole 5π mass region and
the whole wave pool.

which is the equation of the surface of a 2Nk
s -dimensional sphere, the volume of which is easily

calculated. Two assumptions enter in equation (4.8): the off-diagonal elements of the integral matrix
Ni j are assumed to all be zero and the diagonal elements Nii are assumed to all be equal to the total
acceptanceA. Figure 4.1a shows the normalized distribution of Re(Ni j) for all j < i for 40 mass bins
ranging from 1.36 to 2.56 GeV/c2 for the whole wave pool. Most of the off-diagonal elements are
indeed small, however, there is also a small fraction with values significantly different from zero. The
second assumption allows to pullA in front of the sum and then dropped entirely, because it does not
depend on the model and therefore cancels in the Bayes factor. Figure 4.1b shows the normalized
distribution of the diagonal elements Nii. To remove their m5π dependence, the diagonal elements of
every mass bin have been normalized by the acceptance in this bin. One can see that there is a spread
of several percent. In combination, one can expect an effect in the order of several percent of VTk

because of the assumption (4.8). Therefore, improving the calculation of VTk seemed justified.

Let us start by noting that Ni j is as Hermitian matrix by construction. Because all partial-wave decay
amplitudes Ψi are linearly independent and the integration in equation (3.23) is an inner product, Ni j
is a Gram matrix and therefore positive definite. While the condition in equation (4.5) is formulated
in terms of Ni j,k ∈ CNk

s×Nk
s and Ti,k ∈ CNk

s , we are interested in a formulation using Tk ∈ R2Nk
s . To

that end, we first consider a vector V ∈ CN and a Hermitian, positive-definite matrix M ∈ CN×N and
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write them as

V = a + i b =



a1 + i b1
...

aN + i bN



M = m + i n =



m11 + i n11 . . . m1N + i n1N
...

...

mN1 + i nN1 . . . mNN + i nNN



(4.9)

Using Einstein notation for the following part, we can see that

V∗M V = (ak − i bk) (mkl + i nkl) (al + i bl)

= ak mkl al + bk mkl bl − ak nkl bl + bk nkl al

+ i
[
ak nkl al︸  ︷︷  ︸

=0

+ bk nkl bl︸  ︷︷  ︸
=0

+ ak mkl bl − bk mkl al︸                  ︷︷                  ︸
=0

]

=

(
a b

) 
m −n
n m




a
b



≡ V̂T M̂ V̂

(4.10)

The terms ak nkl al and bk nkl bl are zero because nkl = −nlk and nkk = 0 for Hermitian matrices. For
the same reason, mkl = mlk and the two other terms in the imaginary parts cancel each other. Since
V∗MV > 0 for all V , 0[c], the same is true for V̂T M̂ V̂, which is equivalent to M̂ being positive
definite as well. Because m is symmetric and n is antisymmetric, M̂ is symmetric, so that one can
write its Cholesky decomposition

V̂T M̂ V̂ = V̂T D̂T D̂ V̂ =
(
D̂ V̂

)T
D̂ V̂ (4.11)

We now reorder the vector Tk of production amplitudes from equation (4.2), and define N k such
that

Tk =
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k

and N k =
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k

≡ LT
k Lk (4.12)

[c] This is equivalent to M being positive definite.
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Because Im(T1) does not appear in Tk, care has to be taken to remove the corresponding rows and
columns in the construction of N k. To that end, we write − Im(Ni j)

‡, where the column j = 1 has
been removed. In Im(Ni j)

‡, the row i = 1 and in Re(Ni j)
‡, both the row i = 1 and the column j = 1

are dropped. Using equations (4.9) to (4.11), we reformulate the condition from equation (4.5)

N =
∑

i, j

TiT
∗
jNi j + T 2

flatA = TT
N T (4.13)

which also allows us to properly define

Ωk =

{
Tk ∈ R2Nk

s : TT
kN k Tk = N

}
(4.14)

and then finally calculate

VTk =

∫

Ωk

dTk

=

∫
dTk δ

(
TT

kN k Tk − N
)

=

∫
dTk δ

([
LkTk

]T
LkTk − N

)
(4.15)

Performing the variable transformation

Tk → T̂k = L−1
k Tk

dTk → dT̂k = dTk det(Lk)
(4.16)

yields

VTk =

∫
dT̂k

[
det(Lk)

]−1
δ
(
T̂T

k T̂k − N
)

=
[
det(Lk)

]−1
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(
T̂T

k T̂k − N
)

=
[
det(Lk)

]−1 · Ssphere
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√
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(4.17)

Because

det
(
N k

)
= det

(
LT

k Lk

)

= det
(
LT

k

)
det

(
Lk

)

=
[
det

(
Lk

)]2

(4.18)

we arrive at the final expression

VTk =
[
det(N k)

]−1/2 · Ssphere

(
R =

√
N; d = 2Nk

s

)
(4.19)
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where

Ssphere (R; d) =
2π d/2

Γ
(

d
2

) R d−1 (4.20)

is the surface of the d-dimensional sphere.

In [10], another factor

si =

∞∫

5
√
Eii

dx
1√
2π

exp

−
x −

∣∣∣Ti

∣∣∣2

2Eii

 (4.21)

was added to the evidence for every wave, in order to introduce a penalty for waves which have
intensities compatible with zero. This included the flat wave, leading to the situation that a larger
background component in the description of the data led to a better evidence, which is not the desired
behavior. While the si factors were kept in this analysis, it was not included for the flat wave, i.e.
sflat ≡ 1.

Putting equations (4.4), (4.5), (4.19) and (4.21) together, the log-evidence is

lnEk = lnL
(
T̃k

)
+

1
2

ln
[
det

(
N k

)]
− ln S k

sphere + ln
√

(2π)2Nk
s det(Ek) +

∑

i

ln si (4.22)

This formula was derived under the assumption that the shape of the likelihood is approximately
Gaussian. This assumption can be tested: first, one diagonalizes the covariance matrix, which
results in a basis where the eigenvalues of Ek are locally uncorrelated variances in the direction of
the eigenvectors. Then, one can calculate the values of the likelihood along the direction of the
eigenvectors and compare them to a Gaussian with the corresponding variance. Figure 4.2 shows such
a comparison, for the biggest and second-biggest eigenvalue. For the second-biggest eigenvalue, the
Gaussian approximation works very well and the same is true for all smaller eigenvalues. However,
for the biggest eigenvalue, the likelihood shows a bathtub-like shape, which is not well described
by a Gaussian. In the example shown, this leads to an overestimation of the evidence. Even though
only one eigenvalue is affected, because it is the biggest one, the effect will not be negligible. It is not
easy to estimate to what extend this invalidates the conclusions drawn from the comparison of the
evidences of two different models, but it seems likely that, if the models have similar evidence, their
ranking could be swapped. In this light, the evidence as written in equation (4.22) should only be
used with caution.

Independent of this, there is an additional problem of different nature: in the implementation of the
improved formula for the parameter volume VT from equation (4.19), det(Ni j) was used instead of
det(N ), i.e. the determinant of the matrix Ni j with complex entries instead of the matrix N with
real entries without the column and row corresponding to Im(T1). Assuming that the off-diagonal
elements of Ni j are small, the inclusion of this row and column leads to an additional factor in the
determinant which has the same spread as shown in figure 4.1b, i.e. an error of a few percent is
introduced. In addition[d], det(N ) = det(Ni j)

2 meaning a factor 1/2 was omitted in equation (4.22).

[d] This relation is only valid if the row and column corresponding to Im(T1) are included in N . The derivation of this
relation is rather lengthy and has been moved to appendix A.
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Figure 4.2: Slice through the likelihood surface along the direction of the eigenvector of the covariance
matrix Ek corresponding to the biggest (a) and second-biggest (b) eigenvalue at the likelihood
maximum. The likelihood values are shown as blue crosses, the Gaussian approximation is shown in
red and its standard deviation is indicated by the orange lines.

As the effect of the parameter volume on the evidence is a penalty on models with bigger number of
parameters, i.e. larger wave sets, this tends to penalize bigger wave sets more than appropriate.

This mistake was only noticed after all tests with the genetic algorithm were already completed. While
it might influence which model is found by the algorithm, the problems described in section 4.2.3,
which lead to the transition to the better model selection method presented in section 4.3, are inde-
pendent of the exact formulation of the evidence. Because the advantages of the new method would
warrant its use even if the genetic algorithm had not exhibited problems, investing resources to rerun
the latter was not deemed justified. Therefore, all results presented here have been obtained using the
slightly incorrect formulation of the evidence, with det(Ni j) instead of det(N ) in equation (4.22).

4.2.2 Implementation

The genetic algorithm has evolved considerably during testing with respect to the one described
in [10]. It has been reimplemented from scratch with only the basic principles remaining the same.
Therefore, we will give an in depth description of the algorithm. All results presented here have been
obtained with this version.

The most important change is the departure from an algorithm which tries to produce a common
model for all mass bins. The algorithm described here is applied to every mass bin independently.

The central element of the genetic algorithm is the breeding pool. It is a list of the models with
the highest evidence encountered by the algorithm. New models are produced from models in the
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Quantity Variable Value

Number of models Nmodels

Number of cluster jobs Njobs 350

Breeding pool size NBP 5000
Initial wave sets size mean µWS 40
Initial wave sets size sigma σWS 10
Ratio crossover/mutation ρ 0.5
Maximum mutation fraction l 0.5
Slope parameter for breeding selection ε 10

Table 4.2: Parameters of the genetic algorithm.

breeding pool by either combining (“mating”) two models or by altering (“mutating”) a model. For
this, models are selected from the breeding pool according to a probability distribution which depends
on their evidence. The parameters of the genetic algorithm are listed in table 4.2.

At the start, the algorithm fills the breeding pool by randomly selecting waves from the wave pool
to form wave sets whose sizes follow a normal distribution with mean µWS and standard deviation
σWS. Then, the evidence as written in equation (4.22) is calculated. For this, the maximum-likelihood
estimate has to be determined for every model, which is the most (computing-)time intensive part of
the algorithm. To keep the runtime within practical limits, the maximum-likelihood estimation for the
various models is run in parallel on a computing cluster. To use the cluster in an efficient way, the
number of jobs being run is kept constant at Njobs. As soon as the evidence has been determined for
all models in the initial breeding pool, the algorithm starts breeding new models and calculates the
evidence for them. The number of new models is determined by the requirement that Njobs jobs are
always being run.

To breed new models, the models in the breeding pool are sorted by their evidence and two models
are randomly drawn according to the probability distribution

P(i; ε, NBP) =


1

i + ε
− 1

NBP + ε

 ·


NBP∑

k=1


1

k + ε
− 1

NBP + ε





−1

(4.23)

which is a function of the position i of the models in the sorted breeding pool, with i = 1 designating
the best model. The probability distribution is shown in figure 4.3. The form of the distribution was
chosen such that models with higher evidences are preferred considerably while still allowing for
the selection of models from the remainder of the breeding pool. Note that the actual value of the
evidence does not enter into the selection process.

Once two models are selected for reproduction, they are either mated with each other or mutated
separately. Which of these two actions is performed is used is chosen at random, such that on average,
the ratio of mating to mutation is equal to ρ.
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Mating two models is done by crossover, more precisely with the cut and splice method. The waves
in both models are shuffled randomly and one crossover point is selected at random for each model.
The distribution of the crossover points is uniform. The models are then cut at the crossover point,
the resulting parts are swapped and merged to form two new models. The process is illustrated in
figure 4.4. This method for mating models can change their size drastically: if the crossover points
happen to lie near the end of both models, one of the new models will contain almost all waves of
both parents, while the other will contain only a small number.

When mutating a model, two random numbers Nadd and Ndrop are drawn uniformly from [0, l · Ns],
where Ns is the number of waves in the model. Then, Ndrop randomly chosen waves are removed
from the model and Nadd waves are randomly chosen from the wave pool and added to the model.
When adding waves, it is ensured that no wave can appear twice in a model. Mutation is performed
independently for the two chosen models. Mutation can also change the size of the resulting models,
but typically less drastically.

The evidence for the newly created models is then calculated on the computing cluster. If the evidence
for a new model turns out to be better than the worst evidence present in the breeding pool, it enters
the pool while the worst model in the pool is dropped. It is not forbidden that a newly bred model is
identical to one which is already in the breeding pool. If such a situation arises, the evidence for the
model is calculated again. If a maximum-likelihood estimate is found which yields a better evidence,
which can happen if the likelihood function is multimodal, the pool is updated. It is not possible that
the same model appears more than once in the breeding pool.

One can see from equation (3.5) that, for rank 1, there is one wave for which the production amplitude
is purely real. This wave is called anchor wave. While in principle, it should not matter which
of the waves of the model exhibits this property, it is a practical observation that the result of the
maximum-likelihood estimation can be influenced by this choice[e]. To reduce this influence as much
as possible, the waves of the newly bred model are sorted by the intensity these waves had in the
maximum-likelihood estimation of the model they originated from. If they were added from the wave
pool during mutation, the intensity is set to zero in the context of this sorting process. The wave with
maximum intensity is then chosen as anchor wave. This ensures a well-defined phase reference.

The genetic algorithm stops after Nmodels have been generated and their evidence calculated. This
number differs for the different runs of the genetic algorithm which were performed, but is typically
of the order of 105 to 106.

There are three reasons for departing from the form of the algorithm as used in [10]. First, because
resonances are by their nature appearing and disappearing as mass changes, having varying models
from mass bin to mass bin was introduced. Second, having the algorithm keep a certain number of
jobs running on the computing cluster greatly increases throughput, which allows for longer runs
of the algorithm. Third, the change in the reproduction processes was implemented to reduce local
convergence, i.e. the situation where the genetic algorithm would get stuck with a breeding pool with
low genetic diversity. In this situation, all the models in the pool differ only by insignificant waves

[e] This is connected to the fact that, if the maximum-likelihood estimate for the production amplitude of the anchor wave is
very small, the complex phase is not well-determined. This leads to an ambiguity in the likelihood, where a rotation
in the complex plane around zero does not change the value of the likelihood, which can influence the result of the
estimation.
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Figure 4.3: Breeding selection probability distribution for ε = 10 in regular (a) and logarithmic scale
(b).
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Figure 4.4: Cut and splice crossover mechanism for mating two models.
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and have very similar evidence. The more radical crossover mating and higher mutation rate were
introduced to make an escape from such a situation more likely. Unfortunately, as we will see in the
next section, this did not prove successful.

4.2.3 Verification of Method

To assess the performance of the genetic algorithm, an event sample following a known model was
required. Such a test sample was produced by using the intensity from equation (3.13) to weight
generated phase-space events using a sample-and-reject procedure. The amplitude normalization
given in equation (3.27) was applied. As the intensity itself is not normalized, the weights are
normalized to the biggest weight found in the generated event sample. The 65 waves making up
the wave set and the corresponding production amplitudes used for generating the event sample are
given in appendix B. This is called the input model, which originated from a preliminary run of
the algorithm on measured data. The Monte Carlo data sample contains 12 688 events, which is
the typical sample size of a single m5π bin in the COMPASS 2004 five-pion data set. To facilitate
visualization of the model-selection process, every wave has been given an index, with the lowest
index designating the wave with the highest intensity and vice versa.

Figure 4.5 shows a run of the genetic algorithm generating 2 · 106 models on the test sample[f]. To
plot the progression of the algorithm in time, all the models which were created during the run were
ordered by their time of creation. For consistency, always fifty newly created models are combined
into one time unit, which is then an analogy to one generation from [10].

As expected, the evidence distribution of newly created models moves towards larger values of the
evidence with the passage of in-algorithm time. This is shown in figure 4.5a. However, a considerable
amount of new models have evidence values significantly worse than those of the best models. This
behavior is a consequence of the procreation mechanisms described in the previous sections and
shows that the algorithm does a good job of exploring the model space. The red line in figure 4.5a
represents the evidence calculated for the input model on the generated data sample. One can see that
the genetic algorithm does not succeed in finding a model that reaches the input model’s evidence.

The evolution of the wave set sizes of new models is shown in figure 4.5b. After producing many
large models in the early stages of the run, the algorithm settles for wave sets with the appropriate
size, i.e. close to 65 waves. The spread of model sizes is considerable, which is expected due to the
procreation mechanisms. The transients which are visible are correlated with new waves permeating
the breeding pool.

Correlating evidences and wave set sizes of all the models in the run, one obtains at figure 4.5c. It is
evident that the maximum evidence is reached if the wave set contains around 60 − 70 waves, which
is the desired and expected behavior.

The degree to which the input model has been found by the algorithm is illustrated by figure 4.5d. The
wave index on the y-axis corresponds to the one in table B.1. The linear color scale shows how often a

[f] This corresponds to several 105 CPU hours.
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Figure 4.5: Visualization of the genetic algorithm for a Nmodels = 2 · 106MLE-long run on Monte
Carlo events. See text for details.
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wave with a given index appears in one of the models at a given time. A yellow horizontal band means
that the corresponding wave is pervasive in the models in the breeding pool, appearing consistently in
newly created models and only occasionally being dropped in the procreation processes. In contrast,
a violet band indicates that the models in the breeding pool do not contain the wave consistently, so it
appears in new models only at random by mutation. Note that this plot only shows the presence of
waves which were used in the input model: every model plotted can contain any number of additional
waves. Unfortunately, the algorithm fails to pick up several of the larger waves in the input model.

The behavior seen in figure 4.5 points to local convergence: the genetic algorithm has reached a state
where the models in the breeding pool are very similar and significant improvements of the evidence
are only seen on very long time scales.

To investigate the convergence behavior of the algorithm in more detail, it was started on the same
event sample four times, but with different seeds for the random number generator. This means that
the initial breeding pool is different in every run. The algorithms were then run until each accumulated
0.4 · 106 models.

Figures 4.6 and 4.7 show how the algorithm picks up waves of the input model and how evidence and
wave set size correlate for the four runs[g]. It is evident that the genetic algorithm has a significant
dependence on the starting point. This lends further support to the hypothesis of local convergence.

In summary, there is strong evidence that the genetic algorithm exhibits local convergence behavior
to such an extent that the input model is not found even when increasing the run time to the practical
limit. This leads to the conclusion that the genetic algorithm as presented here is not a suitable tool
for model selection in the context of this analysis.

4.3 Biggest-Conceivable-Model Method

The partial-wave decomposition formalism exhibits two interesting properties in the context of model
selection.

First, models are built from components, the partial waves. Instead of a number of fixed models, there
are a number of fixed model components, i.e. the waves in the wave pool, from which models can
be built at will. The genetic algorithm exploited this property already by treating waves similar to
genes.

Second, the absolute value of the production amplitude of a wave being zero is equivalent to the wave
not being present in the model. This also holds asymptotically, i.e. the smaller the value, the less
important the wave. There is an easy way to define a scale for what “small” means in this context:
owing to the normalization in equation (3.16), the intensity of a wave, i.e. the absolute square of its
production amplitude, is expressed in terms of number of events corrected for acceptance. Therefore,
considering waves with intensities of the order of 1 to 10 events and below to be small suggests
itself.

[g] The corresponding plots for the evidence and wave set size evolution can be found in appendix C.
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Figure 4.6: Comparison of the wave pickup for four different runs of the genetic algorithm on the
same generated data set. See text for details.
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Figure 4.7: Comparison of the evidence vs. wave set size distributions for four different runs of the
genetic algorithm on the same generated data set. See text for details.

55



Chapter 4 Model Selection

Together, these two properties can be exploited for model selection. If we treat the whole wave
pool as a model, this would be the biggest conceivable model and would, by design, contain all
possible models we are able to consider in the selection procedure. Using this model to perform a
maximum-likelihood estimation for the production amplitudes, we could then identify the waves in
the pool with small intensities, remove them and keep the remaining waves as our selected model.

Apart from the technical considerations of performing maximum-likelihood estimation with over
3000 parameters[h] and assuming that the likelihood function is such that the maximum can be reliably
determined, which turns out to be a good assumption, a more fundamental problem remains: due
to the large number of free parameters, the point in the parameter space where the likelihood is
maximal will invariably be such that not only the underlying distributions present in the event sample
are described but also the statistical fluctuations. The problem is exacerbated by the fact that two
or more waves with large amplitudes can destructively interfere with each other to describe small
features in the data. This is particularly critical as one might not be able to distinguish between
waves describing distributions and waves describing fluctuations, because both might exhibit similar
intensities. Therefore, a mechanism has to be introduced to counteract this tendency.

One way to accomplish this is to increase the preference for amplitudes which are small, or formulated
differently, introduce a penalty for every wave which has significant intensity [44]. This would cause
the maximum likelihood estimate to be a compromise between optimal description of the data,
including statistical fluctuations, and reducing the number of waves with large intensities. Using a
prior function of the form

Π(T;Γ = 0.5) =

Ns∑

i

1 +
|Ti|2
Γ2


−1

(4.24)

which is called half-Cauchy prior and is shown in figure 4.8, to extend the likelihood from equa-
tion (3.32)

ln L̂(T;E) = lnL(T;E) + ln Π(T) (4.25)

does exactly that. Note that in this formulation of the prior, the width parameter Γ is measured in
units of absolute value of the production amplitude and not in units of intensity. Like before, we
limited ourselves to rank r = 1 and reflectivity ε = 1 and therefore do not write the indices for rank
and reflectivity.

The half-Cauchy prior has several advantageous properties: it has a peak at zero where its derivative
is zero, which is important because it is used within a gradient-following algorithm. It falls rather
sharply around Γ but has a very long tail beyond that. This means that it will shift the position of the
likelihood maximum towards zero production amplitude for waves for which the maximum would
have been around or below Γ, while it has little to no effect on waves for which the maximum is at
|T | � Γ.

Setting Γ = 0.5 is motivated by defining an intensity of 1 to 10 as small, as was discussed above. A
limited study has been performed with different values of Γ and 0.5 has been found to be an adequate
value.

[h] At the suggestion of [37], we have moved from ROOT’s MINUIT2/MIGRAD minimizer implementation [38, 39] to
NLopt’s [40] low-storage BFGS [41–43], which is able to cope with the large number of parameters with reasonable
runtime: one MLE for a typical event sample size of about 4 · 104 takes O(1 h).
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Figure 4.8: Half-Cauchy prior with Γ = 0.5 for one production amplitude.

4.3.1 Verification of Method

The event sample for testing the genetic algorithm, described in section 4.2.3, is also used to test the
biggest-conceivable-model (BCM) selection procedure. The maximum-likelihood estimation (MLE)
was performed 1000 times with different random start values for the gradient-following algorithm.
The results are shown in figures 4.9 to 4.11.

Figure 4.9 shows the distribution of the likelihood values of all 1000 MLEs. As the absolute likelihood
value does not carry meaning in itself, the difference with respect to the best found likelihood is
shown. Ideally, this distribution should have only entries at zero, indicating that every MLE found
the same likelihood which would mean that the result is independent of the randomly chosen start
values of the gradient following. The structure which is obtained instead is markedly different: The
best likelihood is only found a small number of times and most of the MLE results are rather evenly
distributed over a large range of likelihood. This points to a multimodal likelihood function.

In figure 4.10, the intensities for all waves and all MLEs are synthesized. The waves are numbered
and shown on the x-axis. They are ordered roughly by intensity, which will be discussed below. To
visualize the intensities found in different MLEs, all results have been ordered by their likelihood
and divided into ten sets with equal size, shown in figure 4.9 as areas of different color. The range
from the minimum to the maximum intensity found in each set is shown in figure 4.10 as a bar of the
corresponding color, e.g. the dark violet bar shows the minimal intensity range required to comprise
all intensities found in the 10 % best MLEs.

There are two steps visible in the intensity distribution, the first one around wave 90, which is
comparable to the size of the input model, and the second one around wave 160. These steps
distinguish between the waves which should be included in the final model and those which can be
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Figure 4.9: Likelihood distribution for all MLEs on a Monte Carlo data sample with 12 688 events.

discarded. The decision were exactly to apply the cut is difficult to make with the given intensity
distribution. However, as we will see, the situation is unambiguous when the method is applied to
measured data, so we do not discuss this problem further here.

To investigate the waves with large intensities, figure 4.11 shows a zoomed-in view of figure 4.10. In
addition to the intensity bars, gray points have been added showing the intensities of the MLE with
the highest likelihood. In red, the results of an MLE with the input model performed on the Monte
Carlo data sample is shown. The red points are in the same order as in table B.1. There are waves
in the best result which have large intensities but were not present in the input model, i.e. they do
not have a corresponding red point. These waves have been moved to the left so that a rough order
by intensity is established. To identify a wave from the reference fit result, the red points have to be
counted starting with wave zero at the very left. To facilitate counting, every fifth reference intensity
has been marked with a cross.

One can see that there are several waves which have a remarkably small intensity spread over all 1000
MLEs. Further, a large number of waves from the input model are found in the best MLE, but exhibit
large variations throughout all MLEs. There are eight waves which either have large intensities, even
though they were not present in the input model, or have a small intensity, even though the intensity
in the input model was large. These have been marked with arrows and are listed in table 4.3, ordered
as they appear on the plot from left to right.

The normalization given in equation (3.16) and the likelihood formula (3.17) ensure that the likelihood
maximum always lies at a place where the total intensity and the acceptance-corrected number of
measured events will be compatible considering the Poisson distribution. This means that one cannot
remove one wave from the model without one or more other waves compensating. Indeed, except for
waves 6 and 8 in table 4.3, the misidentified waves can be arranged in pairs with one wave of the pair
being in the input model but missed in the selected model and the other wave being in the selected
model but not in the input model. The waves in these pairs are strikingly similar, with waves 1 and 2
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# Wave

1 1−0−+0+ → f0(980)
[
0
0

] (
π(1800)→ σ

[
0
0

]
π−

)

2 1−0−+0+ → f0(980)
[
0
0

] (
π(1300)→ σ

[
0
0

]
π−

)

3 1−0−+0+ → σ

[
0
0

] (
π(1300)→ σ

[
0
0

]
π−

)

4 1−0−+0+ → σ

[
0
0

] (
π(1800)→ f0(980)

[
0
0

]
π−

)

5 1−1++0+ → σ

[
1
0

] (
π(1800)→ σ

[
0
0

]
π−

)

6 1−1++0+ →
(
ρ(1450)→ ρ(770)

[
0
1

]
σ
) [

0
1

]
π−

7 1−1++0+ → σ

[
1
0

] (
π(1300)→ σ

[
0
0

]
π−

)

8 1−1++0+ → f2(1270)
[
0
1

] (
a1(1260)→ σ

[
1
0

]
π−

)

Table 4.3: Misidentified waves on a Monte Carlo data sample with 12 688 events. See text for details.

as well as 5 and 7 only differing in the mass dependence of one of the isobars. The pair with waves
3 and 4 also differs only in mass shape, but of two isobars. Misidentifications of this kind are not
surprising, as the model components feature the same angular distribution and only differ in one or
two of the mass distributions, giving little distinctive power. The picture that there are pairs of waves
where one wave is replaced by another is too simple however, because the intensities of all waves are
related and waves cannot necessarily just be swapped pairwise and still yield a good description of
the data. Waves 6 and 8 are superfluous, meaning they are picked up without missing a wave from the
input model at the same time.

There is a very important observation to make here: all waves with large intensity and small intensity
spread are correctly identified. Waves with large spreads are identified correctly more often than not
and waves which are not correctly found always have a large spread. This means that the variation of
the partial-wave intensities found in the MLEs is a useful tool to identify reliably selected waves.

The method was also tested on a larger Monte Carlo data sample containing 42 334 events, generated
with the same input model. This sample size is typical for a single m5π bin in the COMPASS 2008
five-pion data set. The results are shown in figures 4.12 to 4.14.

The likelihood, shown in figure 4.12, is also broadly distributed and extends to higher values (cf.
figure 4.9). In the overall intensity distribution in figure 4.13, it is evident that the spread of the
intensities is smaller on average (cf. figure 4.10), which is to be expected with a larger event sample.
It is interesting to see that the first intensity step stays at the same position while the second one
moves to the right. The zoomed view in figure 4.14 shows the same tendency, with smaller spreads in
general and more waves with very small spread. The number of misidentified waves has decreased to
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Figure 4.12: Likelihood distribution for all MLEs on a Monte Carlo data sample with 42 334 events.

# Wave

1 1−0−+0+ → f0(980)
[
0
0

] (
π(1800)→ σ

[
0
0

]
π−

)

2 1−0−+0+ → f0(980)
[
0
0

] (
π(1300)→ σ

[
0
0

]
π−

)

3 1−0−+0+ → σ

[
0
0

] (
π(1300)→ σ

[
0
0

]
π−

)

4 1−0−+0+ → σ

[
0
0

] (
π(1800)→ f0(980)

[
0
0

]
π−

)

Table 4.4: Misidentified waves on a Monte Carlo data sample with 42 334 events. See text for details.

four, listed in table 4.4. The four larger misidentified waves have stayed the same, while the smaller
waves are now being picked up correctly.

To investigate the variations in partial-wave intensities in different MLEs in more detail, waves with
an intensity of more than 1000 counts in at least one of the MLEs and a large fluctuation of their
intensity (ratio between the maximum and minimum found intensity larger than 5) were examined. In
order to study the correlations of the intensities of these 15 waves, they are plotted in an Andrews
plot [45] in figure 4.15a, where every MLE result is represented by one curve. If all 15 intensities
of two different MLEs are similar, then the corresponding curves will end up lying close together.
Several classes of intensity patterns are visible around which the results from the MLEs are clustering.
A clustering algorithm[i] is able to identify these classes and assign them to the different results.
Figure 4.15b shows the same as figure 4.15a, but colored differently based on the cluster assignment
found. In total, 17 clusters are found. In light red in the background are the results which were

[i] Here, the DBSCAN algorithm [46] implemented in the scikit-learn package [47, 48] is used.
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4.3 Biggest-Conceivable-Model Method

assigned to the “noise” class by the algorithm, which means they are not classified as fitting with any
of the clusters but do not form one of their own. The noise class contains 4.9 % of the total MLEs.

For every found cluster (except the one containing the overall best MLE), figure 4.16 shows in dark
blue the intensities of the 15 waves under investigation from the best MLE within the respective
cluster. In order to provide context to these intensities, in the background, the intensity variation plot
from figure 4.13 is shown, where the colors have been desaturated. The reference result using the input
model and the MLE with the overall best likelihood are drawn as faint red and gray lines, respectively.
The arrows from figure 4.14 are also present in the background, pointing out misidentified waves. In
the regions highlighted in gray, the x-axis has been contracted by a factor of 50 to better show the
intensities of interest.

Even though figure 4.16 shows a wealth of information, the important message is that there is
a complex pattern of intensities, where different combinations of waves with large intensities all
describe the data reasonably well. This illustrates that the simple pattern found in the pairwise
misidentification of waves is part of a more complex correlation structure which manifests itself as
the observed intensity variations. While it is not directly evident from the figure, the third cluster,
the best result of which is shown third from the top, correctly identifies all the waves from the input
model without adding superfluous ones. However, the log-likelihood of the best result of this cluster
is still 8.2 units worse, meaning the overall best result does describe the data better.

The likelihood distributions for the individual clusters, this time including the one with the best
MLE, are shown in figure 4.17. The cluster containing the best MLE is shown on the top left, then
left-to-right, top-to-bottom, the likelihood difference increases. At the bottom right, the likelihood
distribution for the noise class is shown. The size of the cluster in percent of the total number of MLE
is shown in the plots. One can see that also in likelihood, the clusters are rather well localized. It is
noteworthy that the best cluster is also the biggest one. As expected, the noise class is distributed
evenly across the whole range.

To study the effect that an imperfect partial-wave model has on the result, the same Monte Carlo
data sample with 42 334 events was analyzed again, but instead of parameterizing the propagator
of the isobars with relativistic Breit-Wigner amplitudes with mass-dependent widths as given by
equation (3.43), they were parameterized with relativistic Breit-Wigner amplitudes with constant
widths, as given by equation (3.56). The values for m0 and Γ0 remained the same. This means that the
isobar parameterizations differ from those used to generate the event sample. A similar situation is
expected when analyzing measured data, because many of the isobar parameters are not well known.
The results are shown in figures 4.18 to 4.20.

The likelihood distribution in figure 4.18 shows much broader structures. The intensity variations in
figure 4.19 are bigger, the two intensity steps are washed out and in the zoomed view in figure 4.20,
one can see that a much larger number of waves are misidentified. However, the finding that waves
which have a small intensity spread are reliably and correctly identified is still valid.

As a final study, 1000 MLEs without using the prior function were performed on the same Monte
Carlo data sample containing 42 334 events. The results are shown in figures 4.21 and 4.22. As
all the MLEs have likelihoods that lie within 1.2 units of each other, the likelihood distribution is
not shown. The intensity variations also shrink drastically, but there is no step in the intensities in
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−π −π/2 0 π/2 π

(a)

−π −π/2 0 π/2 π

(b)

Figure 4.15: Andrews plots for the partial-wave intensities of selected waves (a) without and (b) with
coloring based on cluster classification.
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Figure 4.16: Partial-wave intensities of the best MLE from different clusters. See text for details.
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Figure 4.18: Likelihood distribution for all MLEs with constant-width Breit-Wigner isobars on a
Monte Carlo data sample with 42 334 events.

figure 4.21. In the zoomed view, the arrows for misidentified waves are not shown because of their
large number. It is evident that a great number of waves exhibit deceptively large intensities, leading
to the conclusion that even though the likelihood distribution and the intensity variations look more
stable, this approach is not suited for model selection.

To conclude, it was demonstrated that the biggest-conceivable-model method is able to identify many
of the model components which are present in the Monte Carlo data sample. Furthermore, performing
multiple runs of the MLE provides valuable information on the confidence to be placed in selected
waves, with large intensity variations indicating that the corresponding wave is not unambiguously
identified. The intensity variations and likelihood distributions are consequences of ambiguities in the
description of the data and studies of the clustering of different results for the intensities of a subset of
waves show that there are multiple models describing the data similarly well. However, despite these
ambiguities, there are waves not exhibiting large intensity variations so their extraction is not affected.
It is this kind of waves that will be in the focus of the discussion of the results of this method when it
is applied to measured data.
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4.3.2 Results on Measured Data (2008)

The BCM method has been applied to the measured event sample resulting from the selection
described in section 2.2. The data have been subdivided into 40 bins with a width of 30 MeV/c2

ranging from 1.36 to 2.56 GeV/c2. Since this is a proof-of-principle study, only the t′ region from
0.1 to 0.15 (GeV/c)2 has been used. For every mass bin independently, 1000 maximum-likelihood
estimations have been performed.

Figure 4.23 shows the likelihoods for all MLE as a function of m5π. The qualitative behavior from
mass bin to mass bin is very similar. If we look at the likelihood distribution of all MLE for a single
bin at around 2 GeV/c2 in figure 4.24, we can compare directly to the corresponding distributions
obtained on a Monte Carlo generated event sample in the previous section (cf. figures 4.12 and 4.18).
With the two samples being about equal in size, the likelihood structure should be similar, assuming
that the Monte Carlo sample is indeed similar to the data. However, the distributions in figure 4.24
and figure 4.12 differ significantly in structure, with a very broad bump in the former versus several
rather sharp features in the latter. Interestingly, figure 4.24 exhibits much more similarities with the
likelihood distribution from the study using detuned amplitudes to parameterize the propagator of the
isobars, shown in figure 4.18. This is not surprising, as the masses, widths and shapes of many of the
isobars used in the model are not well known.

A feature of the likelihood distribution obtained from measured events, which is not reproduced in any
of the studies on generated events, is the fact that the best MLE is an outlier. Possible explanations are
that exclusive and non-exclusive backgrounds as well as imperfections in the detector simulation are
absent in the Monte Carlo data set. It is entirely possible that the global maximum of the likelihood
is not found. This might cause concern that this hypothetical undiscovered MLE might exhibit an
entirely different set of production amplitudes. As we will see, there are a number of waves which
have very similar amplitudes in a large fraction of the MLEs, so one can be reasonably certain that,
for these waves, the results would not differ significantly in any undiscovered solution with higher
likelihood.

When discussing the intensity distributions in the previous chapter, no prescription for actually
selecting a model was given. The reason for this is that the intensity pattern observed when analyzing
Monte Carlo data does not exhibit a very clear point where one could cut the wave set (see figures 4.10,
4.13 and 4.19). This problem is not present in measured data, which can be seen in the intensity
distribution for the best MLE for one mass bin shown in figure 4.25. A clear step is visible with a
drop in intensity of almost two orders of magnitude between two waves. Such a step is present in the
intensity distributions of the best MLE for every mass bin in measured data, making the selection a
wave set straightforward.

Figure 4.26 shows the size of the wave sets resulting from the model selection as a function of m5π
together with the number of events in the corresponding mass bins. One can see that the wave-set
size roughly follows the data-sample size. This is expected as an increasing number of small waves
can be resolved when increasing the number of events. Since the MLE on different mass bins are
independent from each other, no bin-to-bin continuity of the selected wave sets is enforced. Many
waves are only present in the selected wave sets of a few bins, so that in the end, 1517 waves out of
the 1546 waves in the pool appear in at least one selected set.
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Figure 4.23: Likelihood distribution of all MLEs for all mass bins of the COMPASS 2008 event
sample. In (b), the same plot is shown with a zoom on the y-axis.
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Figure 4.24: Likelihood distribution for all MLEs for the bin 1.99 ≤ m5π < 2.02 GeV/c2, containing
43043 events, of the COMPASS 2008 event sample.
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Figure 4.25: Ordered partial-wave intensity distribution for all waves for the best MLE for the bin
1.99 ≤ m5π < 2.02 GeV/c2, containing 43043 events, of the COMPASS 2008 event sample.

76



4.3 Biggest-Conceivable-Model Method

1.4 1.6 1.8 2.0 2.2 2.4
m5π [GeV/c2]

0

10

20

30

40

50

E
ve

nt
s

/
(3

0
M

eV
/c

2 )

×103

Accepted Flat-Wave Intensity

COMPASS 2008

0

100

200

300

400

500

600

W
av

e
Se

tS
iz

e

Figure 4.26: Selected wave set size (red), number of events (blue) and accepted flat-wave intensity
(yellow) for the COMPASS 2008 event sample. The accepted flat-wave intensity is discussed in
section 5.4.
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Figure 4.27: Partial-wave intensities for two unstable waves for all MLEs for the COMPASS 2008
event sample.
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As discussed in the previous section, the intensity variations from all MLEs on a given event sample
allow to determine which waves are reliably identified in the data. The visualization technique
introduced for the Monte Carlo studies in section 4.3.1 is employed here in a modified form. While
the gray points still show the intensity from the best MLE and the colored bars show the range of the
intensities for the corresponding fraction of MLEs, the intensities are now shown as a function of
m5π and for every wave separately. For practical reasons, not all 1517 waves can be shown. In the
following, we focus only on those waves which we consider stable. A wave is considered stable if the
intensity found in all 1000 MLEs is different from zero in more than one consecutive mass bin. With
this criterion, one ends up with approximately 60 stable waves. As an example, two waves which do
not meet the stability criterion are shown in figure 4.27. Starting from the ∼ 60 stable waves, a further
selection was done by using combinations of the following conditions: (1) the intensity evolution over
m5π is continuous, (2) the intensity variation over all 1000 MLE is comparably small, (3) the intensity
is large, (4) the quantum numbers of the wave in question are those of well-known resonances, i.e.
JPC ∈ {0−+, 1++, 2−+} and (5) the narrow f1(1285) isobar is present in the decay. Note that conditions
(1)-(3) are only defined qualitatively and for a wave to be selected, not all of the conditions above
had to be met. As an example, the 4−+ wave shown in figure 4.33a does not fulfill conditions (4)
and (5), but this is outweighed by conditions (1)-(3). Applying these conditions reduces the ∼ 60
waves from above to 18 waves, which are shown in figures 4.28 to 4.33. The existence of waves with
such stable intensity is remarkable: even when taking into account all the MLEs, no matter how bad
the likelihood, the fluctuation of the intensity of these waves is small and the variation with m5π is
sensible. Throughout all Monte Carlo studies presented in section 4.3.1, waves with small intensity
variations were correctly extracted, giving us good reason to trust such waves also here. However, it
must be stressed that the stability is only useful to determine the reliability of the model-selection
procedure within the context of the partial-wave decomposition formalism and the wave pool which
was used. It is not useful to identify artifacts resulting from processes present in the event sample but
not accounted for by the basic model assumptions, which include diffractive production and isobaric
decay as discussed in chapter 3, or from too small a wave pool. This will be discussed in more detail
in section 5.5.

It is important to note that the 18 waves which are presented here are not the wave sets which have
been selected by the BCM method. They are just the waves which are reliably extracted, while all
the other waves present in the selected models exhibit large intensity fluctuations and are therefore
not considered to be reliable enough for a physical interpretation. However, they are still used in the
next step, which is to perform a partial-wave decomposition without the prior using the selected wave
sets. This is a shift from the usual point of view in this type of analysis: instead of compiling a model,
used for all mass bins[j], with components interpreted in terms of their physical properties, here, most
of the model components are just seen as pieces to describe the data and no physical interpretation is
attributed to the extracted production amplitudes. Only waves which the model-selection procedure
finds reliably are looked at further. It is hoped that by this, the signals in the stable waves are as free
as possible from model leakage. However, signals which are affected by the ambiguities discussed in
section 4.3.1 are lost, with their intensity distributed over two or more waves. With this approach,
one does not get the complete physical picture which is present in the measured distributions, instead,
one aims for maximal confidence in the extracted information.

[j] Actually, it is customary to remove certain waves from the wave set in mass bins where the the final-state mass mX is too
low for the wave to contribute, meaning waves are added to the model with increasing mX .
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Figure 4.28: Partial-wave intensities for selected waves for all MLEs for the COMPASS 2008 event
sample.
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Figure 4.29: Partial-wave intensities for selected waves for all MLEs for the COMPASS 2008 event
sample.

Due to the small width of the f1(1285) isobar, waves decaying into it can be extracted most reliably,
even when their intensity is small. Out of the 16 waves containing the f1(1285), 6 have been found
to be stable. They are shown in figures 4.31 and 4.32. The other 10 waves show either small or no
intensity, with intensity spreads which are also comparably small.

Finally, figure 4.33b shows the flat-wave intensity and its fluctuation over all MLEs. It exhibits very
little spread, indicating that the size of the background component is rather independent of the wave
set. For higher masses, where the spread increases, the best MLE is generally on the lower end,
meaning that lower background seems to yield a better description.

Having selected the wave sets and identified a number of waves which show promise, the next step
is to use the selected waves sets in an MLE. The extracted production amplitudes of the interesting
waves from this MLE will be discussed in chapter 5.
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Figure 4.30: Partial-wave intensities for selected waves for all MLEs for the COMPASS 2008 event
sample.
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Figure 4.31: Partial-wave intensities for selected waves containing the f1(1285) isobar for all MLEs
for the COMPASS 2008 event sample.
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Figure 4.32: Partial-wave intensities for selected waves containing the f1(1285) isobar for all MLEs
for the COMPASS 2008 event sample.
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Figure 4.33: Partial-wave intensities for selected waves for all MLEs for the COMPASS 2008 event
sample.
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Figure 4.34: Likelihood distribution of all MLEs for all mass bins of the COMPASS 2004 event
sample. In (b), the same plot is shown with a zoom on the y-axis.

4.3.3 Results on Measured Data (2004)

The BCM method was also applied to the data set from the COMPASS 2004 campaign, which was
the basis for the analysis in [10]. It contains data from the reaction π− + Pb→ 5π + Pb and covers
the t′ region from 0 to 5 × 10−3 (GeV/c)2. The m5π region from 1.0 to 3.4 GeV/c2 was analyzed in
60 MeV/c2-wide five-pion mass bins. The event selection and the Monte Carlo event samples used
for the normalization integrals were taken over from [10] without changes. These events were then
analyzed in the same way as the 2008 data.
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Figure 4.35: Selected wave set size (red), number of events (blue) and accepted flat-wave intensity
(yellow) for the COMPASS 2004 event sample.

The same wave pool was used as biggest conceivable model. However, when investigating the results,
it was found that the waves with M = 1 did not contribute significant intensity. This is expected
because of the small t′ of the COMPASS 2004 sample. Therefore, M = 1 waves were removed from
the pool to reduce intensity variations. The pool with only M = 0 waves with has a size of 626. All
results shown here have been obtained with the smaller pool.

Figure 4.34 shows the likelihood distribution for all mass bins. The picture is qualitatively very
similar to the one shown in figure 4.23, with the exception of the low m5π region, where the fluctuation
is very small. The probable cause for this is the small number of events there, with each of the first
four bins having less than 200 entries.

In figure 4.35, the wave set size as a function of m5π is shown together with the number of events
in the corresponding bins. Due to the smaller data set, less waves are needed to describe the data
compared to 2008 (cf. figure 4.35). The wave set size follows the number of events also here, but at
higher masses, wave sets are generally bigger.

Naturally, because of the smaller data set, the criteria for stable waves had to be loosened. This is
true even for the considerably smaller pool with only M = 0 waves. Instead of demanding that the
intensity found in all 1000 MLEs is different from zero, only the intensities from the best 10 % of
MLEs had to be different from zero to select a wave. In the end, with the relaxed condition, 10 stable
waves remain, which are shown in figures 4.36 to 4.38.

All stable waves found in the 2004 data sample are also among the 18 stable waves from the 2008
sample, except the 0−+ → ρ(770) a1(1260) wave shown in figure 4.36c. This wave also exhibits
similar intensity rather stably in 2008, but did not meet the stricter stability criterion. When comparing
the intensities from 2004 and 2008, note the different range of the x-axis. As far as the large intensity
fluctuations allow to tell, the evolution of the intensity with m5π is compatible between the two data
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Figure 4.36: Partial-wave intensities for selected waves for all MLEs for the COMPASS 2004 event
sample.
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Figure 4.37: Partial-wave intensities for selected waves for all MLEs for the COMPASS 2004 event
sample.
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Figure 4.38: Partial-wave intensities for selected waves for all MLEs for the COMPASS 2004 event
sample.

sets. The 1++0+ wave decaying into f1(1285) π− shown in figure 4.37a exhibits a remarkable stability
compared to the other 9 waves. Similar behavior was already observed in the 2008 data.

As before, the flat wave in figure 4.38b shows reliable extraction with the best MLEs typically
exhibiting intensities on the lower end of the spread. In relation to the number of events, the flat wave
has similar intensity in 2004 and 2008.

Comparing these results to the ones in [10], which were obtained using the genetic algorithm, one
finds that the wave set size is generally larger, 20-140 versus 31, while the number of stable waves is
smaller when using the BCM method. While there are several waves exhibiting similar intensities, the
overall picture could not be reproduced. In light of the conclusion of section 4.2.3, which found that
the genetic algorithm is prone to local convergence behavior, we may hypothesize that the solution
found in [10] is a local one and that the model-selection uncertainties are severely underestimated.
This means one cannot distinguish between reliable signals and unreliable ones. A nice example of
this is the 2−+ → ρ(770) a1(1260) wave shown in figure 4.37c. While the wave set found by the
genetic algorithm finds two peaks there, the BCM method reveals that the peak at lower masses is
actually not stable and its interpretation as a physical signal is potentially doubtful.

Due to the reduced stability because of the smaller 2004 event sample and because there are no
features showing up which are not present in the 2008 data set already, the 2004 data set has not been
considered for further analysis.
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CHAPTER 5

Results and Discussion

“That’s one fine-looking barbecue pit.”

Homer Jay Simpson

In the biggest-conceivable-model method, wave sets are selected by performing an MLE with an
additional prior term and the full wave pool as model. The effect of the prior on waves which
exhibit significant intensity is small by construction, so in principle, one could discuss the extracted
amplitudes from the model selection directly. However, to exclude any bias on the results, the selected
models were used in a maximum-likelihood estimate with the unmodified likelihood function from
equation (3.32).

As mentioned at the end of the previous chapter, we will only discuss the results from the 2008 data
set, which has been described at the beginning of section 4.3.2. In total, fifty maximum-likelihood
estimations with random start values were performed for every mass bin, with all finding the same
maximum likelihood estimate. This means that the partial-wave decomposition is remarkably stable
despite the large number of waves in the selected model, if compared to e.g. the wave pool or the
three-pion analysis, where a maximum of 88 waves is used [6].

5.1 Acceptance

The acceptance η(τ) was introduced when the partial-wave decomposition procedure was derived in
section 3.2, more specifically in equation (3.14) on page 20. It is an important factor when judging
the quality of the description of the data by the model, especially the comparison between the model
prediction and the data. While the acceptance is included in the model in the form of normalization
integrals, it is useful to project it to the set of variables which are used by the likelihood function.
As described in section 3.3.1, these are eight angles in the Gottfried-Jackson and helicity frames
and the three masses of the isobars. As there are three topologies for the isobaric decay into five
pions, as shown in figure 3.2, there are three different possibilities to construct the reference frames
and therefore three sets of eight angles to examine. Obviously, theses three sets of angles are not
independent from each other, because the number of independent variables is still eleven. But, as
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Chapter 5 Results and Discussion

we are looking at one-dimensional projections of an eleven-dimensional distribution, there might
be features visible in one projections which are hidden in another. Some angles are shared between
different topologies and the isobar mass distributions are the same in every topology as well. When
the redundancies are removed, twenty-three different projections remain, twenty angles and three
masses.

The acceptance is determined by generating Monte Carlo events which are distributed isotropically in
the five-pion phase space and then processing the events with a detector simulation and performing
the event selection like on measured data. Because all the angular distributions are flat in phase space,
the events accepted after the detector simulation directly show the shape of the acceptance. The
dependence of the acceptance on the various angles is shown in figures 5.1 to 5.5. The distributions
are arranged vertically for all bins in five-pion mass, with the mass increasing from bottom to top.
The diagram on the top gives the topology, where the subsystem corresponding to the angle shown
is highlighted in orange. Due to the symmetrizations discussed in section 3.3.2, there are multiple
entries per event. As only those permutations are applied which lead to a change in the respective
variable, this number is different for every angle. It is labeled “⊗” and given at the bottom of the
distributions. Because the generated events are not uniformly distributed in the three isobar masses,
the accepted events cannot be used directly to show the acceptance. Instead, in figure 5.5, the number
of accepted events has been divided by the number of generated events for every isobar-mass bin. If
there are only a small number of generated events, the statistical fluctuations get very large. For this
reason, isobar-mass bins which have less than 50 events are not shown at all.

In general, the acceptance is rather flat in the projections onto the angles. Some of the distributions
in cos(ϑ) show a decreasing acceptance at the extremal values. Another departure from the flat
distribution occurs in one of the ϕ12 angles shown in figure 5.4 on the far left, where there is a dip
at ϕ12 = 0. Correlating the reference frames, which are different in every event, with the laboratory
frame is very difficult, so that it was not possible to identify the origin of these features.

It should be pointed out that the flatness of the one-dimensional projections of the acceptance
distribution does not necessarily mean that the eleven-dimensional acceptance distribution is flat, as
modulations can be averaged out by projecting. However, as such acceptance modulations are taken
into account by the ansatz for the likelihood function, see equation (3.14), they are not expected to
distort the results.
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Figure 5.1: Acceptance distributions for all m5π bins. See text for details.
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Figure 5.2: Acceptance distributions for all m5π bins. See text for details.
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Figure 5.4: Acceptance distributions for all m5π bins. See text for details.
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5.2 Comparison of the MLE Result with Data

The Monte Carlo event sample used to study the acceptance distributions can also be used to compare
the MLE result with the measured data set. Approximating the integral in equation (3.16), that yields
the expected number of events N, with a sum, as shown in equation (3.24), taking the intensity from
equation (3.20) and the transformation from equation (3.27), one obtains

N =
VΩ

NMC

NAcc∑

k=1


∑

ε=±1

Nε
r∑

r=1

∣∣∣∣∣∣∣
∑

i

Tr ε
i√Pii

Ψ ε
i (τAcc
k

)

∣∣∣∣∣∣∣

2

+
T 2

flat

VΩ

 (5.1)

We can cancel VΩ and interpret every term in the sum over k as the weight for the corresponding
event

wk =
1

NMC


∑

ε=±1

Nε
r∑

r=1

∣∣∣∣∣∣∣
∑

i

Tr ε
i√

V−1
Ω
Pii

Ψ ε
i (τAcc
k

)

∣∣∣∣∣∣∣

2

+ T 2
flat

 (5.2)

Note that by the definition of Pi j in equation (3.28), VΩ cancels also there. The distribution of
the accepted Monte Carlo events weighed by wk can then be directly compared with the measured
distributions.

Figures 5.6 to 5.10 show such a comparison for the angular and isobar-mass distributions in the
same fashion as the acceptance plots explained in the previous section. Generally, the agreement
is very good, however, there are several instances where at large polar angles and high five-pion
masses, MLE result and data diverge. In the two-pion mass distributions, the peak of the ρ(770) is
not described well at higher m5π. Considering the large pool of waves which was used in the model
selection procedure, the appearance of such deviations is rather surprising. It leads to the conclusion
that one or more waves needed to describe the given data set are missing from the wave pool. One
possible explanation is that rules used for constructing the wave pool, given in section 4.1, where too
restrictive. In particular the limit L ≤ 2 might be too small, but due to the combinatorics of the decay
topologies, increasing it would increase the wave pool dramatically. With the other construction rules
staying the same, L ≤ 3 or L ≤ 4 would yield a wave pool with 3635 and 5711 waves, respectively.
Also, even if all the required waves were present in the wave pool, imperfect isobar parameterizations
might lead to discrepancies. Another possible reason for the deviations are features present in the
data which are not compatible with the model assumptions altogether. We will explore this issue in
section 5.5.
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Figure 5.6: Comparison between model (red) and measured data (black). See text for details.
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Figure 5.7: Comparison between model (red) and measured data (black). See text for details.
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Figure 5.8: Comparison between model (red) and measured data (black). See text for details.
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Figure 5.9: Comparison between model (red) and measured data (black). See text for details.
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Figure 5.10: Comparison between model (red) and measured data (black). See text for details.
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5.3 Quantity of Interest and Comparison with other Channels

The extracted parameters in the partial-wave decomposition described in section 3.2 are the production
amplitudes Ti = Ti ·

√Pii. For this discussion, we introduce

P† i j =
1

NMC

NMC∑

k=1

Ψi
∗(τMC
k

)Ψ j(τ
MC
k

) (5.3)

and use this definition in equation (3.28) to write

Pi j = VΩ P† i j (5.4)

For simplicity, the index ε for the reflectivity has been omitted. In section 3.2, the quantity VΩ has
been introduced as VΩ =

∫
dφn(τ), which is the total volume of the n-body, or in this case five-body,

phase space. By construction, VΩ does not explicitly appear in the partial-wave decomposition,
but to interpret the five-pion mass dependence of Ti, the five-pion mass dependence of VΩ has to
be understood. This can best be seen in equation (3.54), which gives the parameterization of the
spin-density matrix used in the resonance extraction described in section 3.4 and which contains
Pii and thereby also VΩ. As

∫
dφn(τ) is a strictly increasing function of the n-body mass, one

or more additional factors are required to dampen the growth of VΩ so that the parameterization
reproduces the measured m5π spectrum. Strictly speaking, these are separate from VΩ and belong to
the parameterization of Ti, however, it simplifies the notation to change the definition of VΩ so that it
includes all additional factors and the remaining Ti can be parameterized by a Breit-Wigner function
as given in equations (3.43) and (3.56). Therefore, we redefine

VΩ(m5π) = V5π(m5π) ξ(m5π) (5.5)

now writing the dependence on the five-pion mass explicitly. The term V5π(m5π) =
∫

dφ5(τ; m5π) is
the total volume of the five-pion phase space and the term ξ(m5π) represents the damping factors.

To interpret the mass dependence of the extracted Ti, we need both V5π(m5π) and ξ(m5π). The
quantity V5π was directly extracted from binned Monte Carlo events. For ξ(m5π), the situation is more
complicated. In [10], a single exponential

ξff(m5π) = exp
[
−cff (m5π − mts)2

]
(5.6)

was used in a form-factor approach[a], assuming that all produced resonances have the same form
factor. The slope parameter cff was a free parameter in the resonance extraction and the value obtained
was cff = 1.742 (GeV/c2)−2. For the 2008 data set, the same procedure yielded a similar value of
1.635 (GeV/c2)−2. In the analysis of the π− + p→ π−π+π− + p and π− + p→ π−π0π0 + p reactions,
point-like resonances are assumed so that ξff = 1. However, the distortion of the production phase

[a] In [10], the mass term in the exponential is linear in m5π, however, the source code of the framework from that time uses
a squared mass term as given here.
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Figure 5.11: The five-pion mass dependence of P† ii (gray), [V5π ξpps P† ii] (red) and [V5π ξff P† ii]
(blue) for two waves. All three curves have been normalized such that their maximum is one.

space by Pomeron exchange is taken into account [8, 9][b] by using

ξpps(m5π) =

∣∣∣∣∣∣∣
250720
m2.4749

5π

− 172190
m2.8420

5π

∣∣∣∣∣∣∣
1

m5π
(5.7)

As ξ does not depend on the decay process, at least approximately, it should not depend on the final
state under study. Because the form factor and the production-phase-space factor are not mutually
exclusive, it is possible that neither parameterization given above is sufficient and a new approach
combining both needs to be found. The consequences of choosing one or the other parameterization
for ξ(m5π) will be discussed below. For now, let us note that the quantity in which one would expect
to see resonances in the form of the familiar Breit-Wigner amplitude is

Ti(m5π) =Ti(m5π) /
√

VΩ(m5π) P† ii(m5π)

=Ti(m5π) /
√

V5π(m5π) ξ(m5π) P† ii(m5π)
(5.8)

It is worth pointing out that the square root in equation (5.8) is real-valued, meaning the phase
differences between waves do not depend on it.

To illustrate the effect of the different parameterizations for ξ, figure 5.11 shows the five-pion mass
dependence of P† ii, [V5π ξpps P† ii] and [V5π ξff P† ii] for two different waves. The extent of the effect
is more visible when the extracted intensities are actually divided by these terms. A particularly
instructive example is the JPC = 4−+ wave shown in figure 5.12, which shows a clear peak in intensity.
In |T |2 however, the peak is shifted but still present if ξpss is used, while it all but vanishes when

[b] Note that [8] and [9] disagree on the factor 1/m5π, which originates in different conventions regarding the determination
of V5π. The parameterization of ξpps as given by equation (5.7) is the one which is consistent with V5π used here.
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using ξff. Note that in figure 5.12, the vertical bars indicate the bin width and the horizontal bars the
statistical uncertainties. Even though this is a worst-case example, it illustrates how dramatically the
interpretation of the results may change with the choice of ξ. As stated above, it is not obvious which
parameterization is more appropriate and it might very well be that neither is applicable in this case.
Therefore, a different approach is chosen here: the quantities which will be shown are

T† i(m5π) = Ti(m5π) /
√
P† ii(m5π) (5.9)

or rather, the intensities ∣∣∣∣ T† i(m5π)
∣∣∣∣
2

=
∣∣∣∣Ti(m5π)

∣∣∣∣
2
/ P† ii(m5π) (5.10)

While they are very difficult to interpret by eye, they are as model-independent as possible, making
comparison with future research straightforward.

While the model-selection procedure already provides a measure for the stability of the extraction
of the production amplitudes, there is another independent way to cross-check some of the results.
Several of the isobars used in the analysis of the five-pion channel have been observed to decay not
only into charged pions, but also into a combination of η and pions. Two notable examples are

f1(1285)→ 2π+ + 2π− and f1(1285)→ η + π+ + π−

as well as
a2(1320)→ 2π± + π∓ and a2(1320)→ η + π±

This means that a partial-wave decomposition of the reaction π− + p → η π−π+π− + p will have a
number of waves in common with the five-pion channel, i.e. they only differ in the decay of one of the
isobars. For simplicity, we use the abbreviations “η(3π)” and “5π” from here on. Similarly, there are
related waves also in the π− + p→ π−π+π− + p channel, abbreviated to “3π” from here on, namely

f0(1500)→ 2π+ + 2π− and f0(1500)→ π+ + π−

as well as
f2(1270)→ 2π+ + 2π− and f2(1270)→ π+ + π−

For related waves, the production amplitudes Ti should be identical between the two channels. If we
assume this to be true, we can deduce the quantities which can be directly compared to each other

∣∣∣∣T 5π
i

∣∣∣∣
2

=
∣∣∣∣T η(3π)

i

∣∣∣∣
2

⇔
∣∣∣∣T 5π

i

∣∣∣∣
2

V5π · P† 5π
ii · ξ

=

∣∣∣∣T η(3π)
i

∣∣∣∣
2

Vη(3π) · P† η(3π)
ii · ξ

⇔
∣∣∣∣T 5π

i

∣∣∣∣
2

P† 5π
ii

=

∣∣∣∣T η(3π)
i

∣∣∣∣
2

P† η(3π)
ii

· V5π

Vη(3π)

⇔
∣∣∣∣ T† 5π

i

∣∣∣∣
2

=
∣∣∣∣ T† η(3π)

i

∣∣∣∣
2 · V5π

Vη(3π)

(5.11)
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Figure 5.12: The extracted partial-wave intensity (a), divided by P† ii (b), by [V5π ξpps P† ii] (c) and by
[V5π ξff P† ii] (d) for one wave.
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where we assumed that ξ is indeed channel-independent. The same argument can be applied analo-
gously to the 3π channel. However, as discussed after equation (3.34), in the partial-wave decomposi-
tion formalism used here, the couplings of isobars to their decay modes are included in the production
amplitude. Therefore, a scaling factor should appear when comparing results from the two channels,
which corresponds to the branching-fraction ratio of the different isobar decays.

Unfortunately, in the analysis of the η(3π) and 3π channels, the factors [ P† x
ii Vx], with x ∈ { η(3π), 3π },

are not normalized from wave to wave. To keep the scale meaningful despite this property, the
normalizations

N5π
bins∑

k=1

1

P† 5π
ii (m5π,k)

!
= N5π

bins

Nx
bins∑

k=1

V5π(m5π,k)

P† x
ii(mx,k) Vx(mx,k)

!
= N x

bins x ∈ {
η(3π), 3π

}
(5.12)

were applied for every wave. The number of final-state mass bins Nbins is used to compensate for
different bin widths in the different channels. The introduction of this normalization ensures that the
scale of | T† i|2 is on average the same as the scale of |Ti|2, which, by construction, is measured in
number of events. The different shapes of the corresponding P† x

ii and Vx with x ∈ { 5π, η(3π), 3π } are
corrected for, while the ratios of their total integrals over mFS are lost. As a consequence, the shapes of
intensity distributions should be comparable but it should not be possible to extract branching-fraction
ratios from the results as they are presented here. Because at small mFS, P† ii can become very small,
the normalization in equation (5.12) is very sensitive to small differences in the decay-amplitude
calculation in different channels and fluctuations due to the numerical precision of the Monte Carlo
integration. Therefore, the summation is only performed in the mFS interval from 1.60 to 2.56 GeV/c2

with N x
bins set accordingly.

5.4 Results

In section 4.3.2, eighteen 5π waves where identified as stably and reliably extracted. For these waves,
the intensities | T† i|2 as defined in equation (5.10) and the corresponding phase differences are shown
in figures 5.13 to 5.15 and 5.17 to 5.19. For the η(3π) channel, a partial-wave decomposition based
on the same 2008 data set and the same t′ bin is available [30], using a hand-picked model consisting
of 88 waves. The acceptance correction which was applied only takes into account the geometrical
acceptance without using the full detector simulation [49]. The partial-wave decomposition of the 3π
channel presented in [6] has been repeated for the t′ bin also used in the five-pion analysis, including a
full acceptance correction [30]. Where related waves from the η(3π) or 3π channels exist, their | T† i|2
have been included in the corresponding figures, with the scaling given by equation (5.11) applied.

As discussed in the previous section, the phase differences are not affected by the transformations
given by equations (5.10) and (5.11). Where applicable, the corresponding phase differences for the
η(3π) channel are also included in in the figures. The wave with JPC = 1++ decaying into f1(1285) π−,
which is used as a reference for all phase differences, is not present in the 3π channel. Therefore,
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the phase differences for that channel cannot be included in the same way and will be shown and
discussed separately.

Towards the lower and higher mass limits, P† ii can get very small, so that points with small intensity
and errors compatible with zero are scaled up to dominate the intensity plots. For the 5π channel,
such points have been removed from the plots if they lay far above all other points and their position
has been marked with an arrow at the top edge. For the η(3π) and 3π channels, points have been
removed for which the scaling factor due to the application of equation (5.11) was exceptionally large,
which removes also low-lying points with very large error bars. To emphasize the subtly different
procedures, the position of points removed due to scaling have been marked with a gray cross at the
top edge.

To make the comparison of the intensity shapes easier, the remaining points for both η(3π) and 3π
have been scaled such that their integral over mX is equal to the integral of the points from the 5π
channel. This scaling factor is given in the plots.

As stated in the previous section, the shown intensity | T† i|2 cannot be easily interpreted without
dividing it by V5π ξ. For this reason, we refrain from discussing the shapes of the intensity distributions
shown here, focusing instead on the comparison with the η(3π) and 3π channels and the phase
differences.

Figures 5.13a to 5.13c show three different 0−+0+ → f0(1500) π−, L = S = 0 waves with different
decays of the f0(1500). All three 5π waves are compared with the same wave from the 3π channel,
where the f0(1500) decays only into π+π−. As per the discussion above, the three 5π waves should
look the same, which is the case on a qualitative level. However, it is evident that the two waves
with f0(1500)→ π(1300) π− exhibit a broader distribution than the f0(1500)→ σσ mode. The mass
and width of the π(1300) are not very well known [4], so that an inadequate isobar parameterization
is one possible explanation for this discrepancy. In 3π, the structure is slightly narrower than
in the f0(1500) → σσ wave, although the agreement in figure 5.13c is generally good. For all
three 5π waves, the phase differences with respect to the 1++ → f1(1285) π− wave are rather flat
and therefore markedly different from what one would expect from a Breit-Wigner resonance (see
figure 3.6b). For the reasons discussed at the end of the previous section, branching fractions cannot
be extracted from the scaling factors shown in the plots. Nevertheless, one can attempt to verify
that the order of magnitude of the scaling factors are plausible by comparing them to previously
measured branching fractions. As only the branching fraction B[ f0(1500) → 4π] is listed in [4],
the three 0−+0+ → f0(1500) π− waves need to be combined for a meaningful comparison. This
has been implemented using the formalism discussed in appendix D and is shown in figure 5.13d,
again together with the 3π results. It is worth to note that the phase for the combined intensity is not
defined. One can see that the agreement with the 3π channel is better than for any of the single waves,
at least in the peak region. The large error bars can be attributed to the correlations between the
production amplitudes, a residual feature of the ambiguities already observed in the model selection
and discussed in section 4.3.2. The branching-fraction ratio B[ f0(1500)→ 4π]/B[ f0(1500)→ 2π] is
1.42 ± 0.13, so that the scaling factor of 6 is compatible, considering the systematic effects: apart
from the effect of the normalization mentioned above, the branching-fraction ratio from [4] includes
all charge combinations in the decay final states, whereas we are only investigating the fully-charged
decay modes. Also, there are other 0−+0+ → f0(1500) π− waves in the wave set which are not looked
at because they are not considered stable after the model-selection procedure, but might contain a
significant amount of intensity, skewing the scaling factor.
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Figure 5.13: Intensities and phase differences for 0−+0+ → f0(1500) π− waves (a)-(c) and their
combined intensity (d). The phase difference is calculated by subtracting the phase of the 1−1++0+ →
f1(1285) π− wave shown in figure 5.17a.
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Figure 5.14: Intensities and phase differences for selected waves of the partial-wave decomposition.
The phase difference is calculated by subtracting the phase of the 1−1++0+ → f1(1285) π− wave
shown in figure 5.17a.
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In figure 5.14a, a 0−+ → ρ(770) a1(1260) wave is shown which does not have any corresponding
waves in the η(3π) or 3π channels. It exhibits intensities at higher masses and does feature a phase
motion, albeit a rather shallow one. Figures 5.14b and 5.14c show a 0−+ and 1++ wave, respectively,
both decaying to ρ(770) a2(1320). Both waves are in agreement with the results from η(3π), although
the statistical fluctuations are large in the η(3π) channel because of the relatively lower branching
fraction of a2(1320)→ η π±. The scaling factors for the η(3π) waves will be discussed separately in
the next section. The phase motion of the 0−+ wave in figure 5.14b is interesting, rising by ∼ π over a
mass range of about 300 MeV/c2, which could be indicative of a resonant structure in this wave.

Figure 5.15 shows all the stable 5π JPC = 2−+ waves without the f1(1285) in the decay. The 2−+0+ →
f2(1270) π− wave in figure 5.15a has a related wave in the 3π channel. Using the isospin Clebsch-
Gordan coefficients to account for the fact that the branching fraction ratio given by [4] includes both
the π−π+ and π0π0 decay modes, one arrives at a value of B[ f2(1270) → 2π+2π−]/B[ f2(1270) →
π+π−] = 0.05±0.007. Indeed, the scaling factor found is very small, although also here, a quantitative
comparison is not possible due to the normalization from equation (5.12). As far as one can tell given
the large statistical fluctuations, the two channels are in agreement. The phase difference in the 5π
channel is constant and does not show a resonance signature. For the 2−+0+ → f2(1565) π− wave
shown in figure 5.15b, the agreement between the five-pion and η(3π) channels is very good, both in
intensity and in phase. Also here, the phase difference are does not show any motion and is not what
would be expected from a resonance.

For the 2−+0+ → ρ(770) a1(1260) wave shown in figure 5.15c, there is a very interesting phase
motion of about π. Unfortunately, this motion occurs at a place where the intensity is very small,
making it difficult to ascertain whether this is actually a physical signature or an artifact from the
ill-determined phase at this point. For the η(3π) channel, the 2−+0+ → ρ(770) a2(1320) wave shown
in figure 5.15d seems to have only very small intensity and does not follow the clear and substantial
peak seen in five pions. The scaling factor is unusually large. One hypothesis to explain this behavior
is the presence of model artifacts affecting the ρ(770) a2(1320) waves of the η(3π) channel. While
the model-selection procedure shows very stable extraction of this wave in the five-pion channel
(see figure 4.30d on page page 81), this does not necessarily have to be the case for η(3π). In fact, a
number of ρ(770) a2(1320) waves have been added to the η(3π) partial-wave model because of their
stability in the model selection of the five-pion channel, which might have introduced ambiguities
in the MLE, leading to the observed discrepancies. Another possible explanation is that there are
differences in the parameterizations of the decay amplitudes in the 5π and η(3π) channels.

Having discussed now two waves which have related partners in the 3π channel, it is possible to
compare phase differences for these waves between the 5π and 3π results. Figure 5.16 shows the
phase difference of the three 0−+0+ → f0(1500) π− waves discussed above and shown in figure 5.13,
with respect to to the 2−+0+ → f2(1270) π− wave shown in figure 5.15a. Because the couplings
of the isobar decays can be complex-valued and are inseparable from the production amplitudes,
different isobar decays can have a phase shift, which should be constant over mFS. For this reason,
the 5π phase differences have been shifted so that they match best. The phase shift applied is given
in the plots. One can see that the phases of the three waves in the 5π channel have a very similar
shape, which is expected. However, while the initial rise of the phase at lower masses is in good
agreement between the 5π and 3π channels, the phase motion levels off at about 1.9 GeV/c2 in 5π,
while it nicely continues to rise to complete almost 180° in 3π, indicating the presence of the π(1800)
in the 0−+0+ → f0(1500) π− wave in the 3π channel. The reason for this is unclear, but possible

110



5.4 Results

0

100

200

300

400

500

∣ ∣ ∣ T†
∣ ∣ ∣2

/
(3

0
M

eV
/c

2 )

COMPASS 2008

1−2−+0+→
(

f2(1270)→ σ
[
2
0

]
σ
) [

0
2

]
π−

5π
3π×0.0084

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
m5π [GeV/c2]

−π

0

π

∆
ϕ

[r
ad

]
−2
π

+
2π

(a)

0.0

0.5

1.0

1.5

2.0

∣ ∣ ∣ T†
∣ ∣ ∣2

/
(3

0
M

eV
/c

2 )

×103 COMPASS 2008

1−2−+0+→
(

f2(1565)→
(
a2(1320)→ ρ(770)

[
2
1

]
π−

) [
1
2

]
π+

) [
0
2

]
π−

5π
η(3π)×45.2

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
m5π [GeV/c2]

−π

0

π

∆
ϕ

[r
ad

]
−2
π

+
2π

(b)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

∣ ∣ ∣ T†
∣ ∣ ∣2

/
(3

0
M

eV
/c

2 )

×104 COMPASS 2008

1−2−+0+→ ρ(770)
[
0
2

] (
a1(1260)→ ρ(770)

[
0
1

]
π−

)

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
m5π [GeV/c2]

−π

0

π

∆
ϕ

[r
ad

]
−2
π

+
2π

(c)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

∣ ∣ ∣ T†
∣ ∣ ∣2

/
(3

0
M

eV
/c

2 )

×104 COMPASS 2008

1−2−+0+→ ρ(770)
[
0
2

] (
a2(1320)→ ρ(770)

[
2
1

]
π−

)

5π
η(3π)×444

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
m5π [GeV/c2]

−π

0

π

∆
ϕ

[r
ad

]
−2
π

+
2π

(d)

Figure 5.15: Intensities and phase differences for selected waves of the partial-wave decomposition.
The phase difference is calculated by subtracting the phase of the 1++0+ → f1(1285) π− wave shown
in figure 5.17a.
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Figure 5.16: Phase differences of the 0−+0+ → f0(1500) π− waves with respect to the 2−+0+ →
f2(1270) π− wave shown in figure 5.15a, with the latter subtracted.
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Figure 5.17: Intensities and phase differences for selected waves containing f1(1285) isobar of the
partial-wave decomposition. The phase difference is calculated by subtracting the phase of the
1−1++0+ → f1(1285) π− wave shown in (a).
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Figure 5.18: Intensities and phase differences for selected waves containing f1(1285) isobar of the
partial-wave decomposition. The phase difference is calculated by subtracting the phase of the
1−1++0+ → f1(1285) π− wave shown in figure 5.17a.

explanations will be discussed in the next section. It is worth pointing out that for the η(3π) channel,
shifting the phase is not necessary to come to an agreement with the phases of the 5π channel. Also
here, such phase shifts are only needed for the two waves with a π(1300) in the decay, lending further
support to the hypothesis that the isobar parameterization of this resonance is not adequate.

The stable 5π waves decaying into f1(1285) π− are shown in figures 5.17 and 5.18. Figure 5.17a shows
the JPC = 1++1+ wave. The agreement is not as good between the 5π and η(3π) channels, where there
is an enhancement in the low-mass region in the 5π channel. Around 2.1 GeV/c2, the η(3π) channel
exhibits higher intensity. For the 1++1+, 1−+1+ and 2++1+ waves shown in figures 5.17b to 5.17d,
the agreement both in intensity and in the phase difference are very good. In the 1++1+ wave, there
is a shallow phase motion. This is somewhat surprising as it is measured against the M = 0 variant
of the same wave, so that any resonance showing up in one of the waves should also appear in the
other and the phase difference between them is expected to be flat. For the 1−+1+ and 2++1+ waves,
the phase difference is flat in mFS, both for the 5π and η(3π) channel. In figures 5.18a and 5.18b, the
2−+ → f1(1285) π− waves are shown for M = 0 and M = 1, respectively. In the M = 1 wave, the 5π
channel shows somewhat higher intensity at low masses, similar to what has been observed for the
1++0+ wave. Apart from that, the agreement between the two channels is very good both in intensity
and phase. The phase motions are similar for the two waves, with a slow rise over a very large mFS
range, which does not appear to conform to an interpretation as a resonance.
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Figure 5.19: Intensities and phase differences for selected waves of the partial-wave decomposition.
The phase difference is calculated by subtracting the phase of the 1−1++0+ → f1(1285) π− wave
shown in figure 5.17a.

Finally, figure 5.19a shows a JPC = 4−+ wave, which exhibits considerable intensity, but with little
phase motion. The flat wave in figure 5.19b grows with mass. The behavior in η(3π) differs somewhat,
however, considering the different background processes and different wave sets in the two channels,
this is expected. When the flat-wave intensity is multiplied by the acceptance bin by bin, it can be
compared directly to the measured m5π spectrum. This “accepted flat-wave intensity” is shown in
figure 4.26 on page page 77. One can see that despite the large number of waves present in the wave
pool during the model selection, the intensity of the flat wave accounts for a substantial fraction of the
measured events. This means that a significant portion of the data are compatible with an isotropic
background.

5.5 Discussion

When looking at the results from the five-pion channel presented in the previous section, the most
striking feature is the absence of clear, resonance-like phase motions. One benign reason for the lack
of such phase motions is the phenomenon called phase locking, which appears when there is the same
resonance appearing in two different waves. When two waves are phase-locked, their phase motions
are the same and the phase difference between the two does not show any motion. The situation in
the 5π data, however, is different as the majority of waves do not exhibit significant phase motion.
This could only be explained by phase-locking if the resonances in the different waves would have
very similar masses and widths. This seems rather unlikely.
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Figure 5.20: Exclusive five-pion production by multiperipheral processes.

Another reason for the lack of phase motions are background processes which produce an exclusive
five-pion system without the formation of an intermediate five-pion state X. A prominent candidate
for such a production mechanism is multiperipheral production, three examples of which are shown
in figure 5.20. As one can see, there is no five-pion resonance in these diagrams, which is why these
kinds of backgrounds are also called non-resonant backgrounds. Even though there is no five-pion
resonant present, resonances will still appear in the four-, three- and two-pion subsystems and the
angular distribution will not be flat. If multiperipheral production is present in the measured data set
but not in the model, it will be decomposed into partial waves in the MLE so that the data is described
and therefore distort the intensities and phases. The fraction of multiperipheral events present in the
data set presented here is unknown. However, there are several indications that it may be substantial.
The wave sets required to describe the data are very big, and most of the waves do not show stable
behavior in the model selection. The reason for this could be that a combination of many waves
is required to describe the multiperipheral processes. In this situation, the optimal description can
change drastically in between m5π bins, leading to the unstable waves seen in the model selection[c].
Even though the wave sets are large, the flat wave is still very big and, as was shown in section 5.2,
the comparison of model and and measured data show discrepancies in several places. Taken together,
these findings suggest that there is something missing from the model, and multiperipheral processes
are an obvious candidate.

To interpret the results of the partial-wave decomposition in terms of resonances, the mass dependence
of the spin-density matrix needs to be parameterized by a model, as described in section 3.4. However,
[c] An alternative explanation for the large wave sets is that the form of the prior given by equation (4.24) is not restrictive

enough for the problem at hand. The unstable waves might be caused by ambiguities or the uncertainties in the isobar
mass shape parameterizations.
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there are two prerequisites for this procedure to be meaningful: (1) the functions with which the
intensities and phases should be described have to be known and (2) the m5π dependence of Pii
needs to be known for all waves which should be parameterized. Concerning (1), as discussed in
section 3.4, Breit-Wigner amplitudes are usually employed together with a function accounting for
background events. However, the lack of Breit-Wigner-like signatures in the phases presented here
makes it difficult to motivate such an approach. In section 5.3, a number of issues with (2) have been
discussed. In principle, it would be possible to learn about the m5π dependence of Pii from the data
during the resonance extraction, as was attempted in [10]. However, with the lack of clear resonance
signals, it would be very difficult to interpret the results of such a study. Conversely, if there was
exact knowledge about (2), it might be possible to better understand the phase motions and intensity
signatures observed in the data. With the unclear situation in both areas, resonance extraction does
not yield reliable and trustworthy results.

The comparison with the η(3π) and 3π channels, however, is very encouraging. The intensities and
phases for most of the waves in common with the η(3π) channel are in very good agreement. This
means that the lack of phase motions is not an artifact of the model selection or any systematic effects
in the measurement of 5π, but is a feature of the measured production process. With both partial-wave
decompositions using the same model assumptions, multiperipheral processes present in the data
seem to affect both channels similarly. The comparison with the 3π channel shows good agreement in
the intensities, but the phase motions seem to be damped in 5π. This implies that the effect causing
the lack of phase motions affects the 5π and η(3π) channels, but is not present or significantly reduced
in 3π. This might provide some clues as to its origin.

Despite the normalization of the phase-space correction factors discussed at the end of section 5.3,
it is worth checking whether the intensity scaling factors are plausible for the η(3π) channel. All
the waves with the same decay should end up with the same scaling factor, which is realized to a
reasonable degree in the waves with the f1(1285) π− decay. Averaging over these scaling factors gives
S [X → f1(1285) π−] = 7 ± 0.6. Because the acceptance correction in η(3π) only takes into account
geometrical acceptance, an overall correction factor r is needed. Using the branching-fraction ratio
for the decay of the f1(1285) [4] and the average scaling factor S for that wave as calculated above,
one obtains

r =
B [

f1(1285)→ ηπ+π−
]

B [
f1(1285)→ 2π+ 2π−

] · S
[
X → f1(1285) π−

]
=

0.35 ± 0.15
0.11

· 7 ± 0.6 = 22 ± 10 (5.13)

Only the uncertainties on B[ f1(1285)→ ηπ+π−] and S [X → f1(1285) π−)] have been included in the
error propagation, as they are far bigger than the uncertainty on B[ f1(1285)→ 2π+ 2π−]. Now, we
can use this to predict the scale factor for other waves, in particular

S
[
2−+0+ f2(1565) π−

]
= r · B

[
a2(1320)→ ρ(770) π±

]

B [
a2(1320)→ η π±

]

= 22 ± 10 · 0.35
0.145

= 53 ± 24

(5.14)

Where we have taken into account the isospin Clebsch-Gordan coefficient for the decay of a2(1320)→
ρ(770)0π±. Compared to the value from figure 5.15b, which is 45.2, this matches reasonably well
and indicates that the results are consistent. As only the branching ratio of the a2(1320) enters in this
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calculation, the same scaling factor should appear also in the waves decaying to ρ(770) a2(1320).
The unusually large scaling factor shown in figure 5.15d was already pointed out and discussed in the
previous section. For the two waves in figure 5.14, the scaling factor lies somewhat lower at S ≈ 20,
which is still consistent with the result above. It is surprising that this calculation agrees this well
with the data, as an effect of the normalization of the phase-space correction factors is expected.
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CHAPTER 6

Conclusions and Outlook

“No lang, a sälbem Sunntig, het är gwartet
a der Schtell. . . ”

Dr. Hans-Peter “Mani” Matter

The reaction π−+ p→ π−π+π−π+π−+ p is very challenging to analyze in the context of a partial-wave
decomposition, which makes it an ideal channel to enhance and refine the analysis techniques. The
high number of final-state particles gives rise to a large number of possible contributing partial waves
without much hierarchy, making an automated model-selection procedure a necessity.

An exclusive sample of five-pion events has been selected from the data set measured by the COM-
PASS experiment during the 2008 data-taking campaign. An automated model-selection procedure,
developed by [10] in the form of a genetic algorithm, was subjected to a series of tests before finding it
unsuitable. Therefore, a novel method, the biggest-conceivable-model (BCM) method, was developed
and studied extensively on Monte Carlo and measured data. During these studies, it was found that
this method not only allows to find a partial-wave model, but is also capable of identifying correlation
patterns of the different waves in the model. This was used to judge the stability of the extracted
waves. While the BCM method was studied in depth, there is room for refinement in the choice of the
prior function and its parameters. Also the correlations between the waves are an interesting avenue
for further research. Finding a possibility to resolve the correlations and thereby increase the number
of stable waves has the potential of greatly improving the understanding of the five-pion data set.

With only a minimal change required in the likelihood function, the BCM method can easily be
implemented in partial-wave decompositions of other final states. Indeed, it was already applied
successfully to the π− + p→ π−η η + p channel [9] and, in a pilot study, to the π− + p→ π−π+π− + p
channel [50]. Together with the techniques to investigate and visualize the stability of waves, the
BCM method has the potential to introduce an easy-to-use automated model-selection procedure to
partial-wave decompositions in general, which can reduce bias, improve the reliability of the results
and the understanding of the structure of the data and the possible models.

The BCM model-selection method was applied to the measured five-pion data, where it provided
a wave set and identified 18 stable waves. With a model selected, a partial-wave decomposition
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was performed and the stable waves were studied in more detail. Unfortunately, due to the way
the phase-space and damping factors are included in the formalism, it was not possible to interpret
the intensity distributions resulting from the partial-wave decomposition. The phases, which are
not affected by this problem, do not show any clear resonance signatures. Nevertheless, where
possible, the results of the partial-wave decomposition were compared to similar analyses of the
π− + p → π−π+π− + p and π− + p → η π−π+π− + p reactions and the stable five-pion waves were
found to be in good agreement. Due to the lack of resonance signatures and the unclear situation
concerning the parameterization of the damping factors ξ, an extraction of resonance parameters was
not attempted.

The two problems preventing an extraction of resonance parameters at this point also pose an
compelling opportunity. The exact nature of the modulation of the phase space with the final-state
mass is not well understood, especially the way the phase space is damped towards higher masses.
The five-pion channel is an interesting place to study this, because the modulation is very strong
there. Similarly, there are indications that multiperipheral background plays an important role in the
measured data set. There is progress in understanding such backgrounds and implementing them into
partial-wave decompositions for channels with three-particle final states [30]. If such an approach
can be generalized and applied to the five-pion channel, it would be possible to test and refine it in a
largely independent environment.
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APPENDIX A

Calculation of det(N )

Any complex number ẑ ∈ C can be written in matrix form

z =


Re(ẑ) − Im(ẑ)
Im(ẑ) Re(ẑ)

 , with z ∈ R2×2 (A.1)

It is easy to see that this representation is isomorph to the complex numbers. Now, consider a
positive-definite, Hermitian, complex matrix M̂ ∈ Cn×n. We write the real matrix

R2n×2n 3 N =


Re(M̂) − Im(M̂)
Im(M̂) Re(M̂)

 (A.2)

with the n × n block matrices Re(M̂) and Im(M̂) obtained by taking the real and imaginary part of
every element of M̂, respectively. We are now interested in the relation between det(M̂) and det(N).
First, we transition the elements of M̂ from complex numbers to matrices using equation (A.1) and
get a matrix of matrices M ∈

(
R2×2

)n×n
, for which all the usual matrix operations work as expected.

Obviously, det(M) and det(M̂) are different notations for the same value, with det(M) ∈ C and
det(M̂) ∈ R2×2. Then, let us note that, without changing det(N), we can reorder the rows and columns
of N so that it has the same structure as M, only without having the entries grouped in submatrices:

M =




Re (M11) − Im (M11)
Im (M11) Re (M11)

 . . .


Re (M1n) − Im (M1n)
Im (M1n) Re (M1n)


...

...
Re (Mn1) − Im (Mn1)
Im (Mn1) Re (Mn1)

 . . .


Re (Mnn) − Im (Mnn)
Im (Mnn) Re (Mnn)





N =



Re (M11) − Im (M11) · · · Re (M1n) − Im (M1n)
Im (M11) Re (M11) Im (M1n) Re (M1n)

...
...

Re (Mn1) − Im (Mn1) · · · Re (Mnn) − Im (Mnn)
Im (Mn1) Re (Mn1) Im (Mnn) Re (Mnn)



(A.3)
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We diagonalize M, which is possible because M̂ is positive definite and Hermitian. The eigenvalues
λi of a Hermitian matrix are real, which translates to a diagonal matrix when written in the notation
defined in equation (A.1). Therefore the result of the diagonalization can be written as

DM = diag




λ1 0
0 λ1

 , · · · ,

λn 0
0 λn



 ∈
(
R2×2

)n×n
(A.4)

and we get for

det (M) = det (DM) =



n∏
i=1
λi 0

0
n∏

i=1
λi


⇔ det(M̂) =

n∏

i=1

λi (A.5)

which is not surprising.

To calculate the determinant of N, we first note that block matrices can be multiplied blockwise,
i.e. the blocks are treated as entries in the multiplication and then resulting products of blocks
are expanded. This means, we can use the same diagonalization we used for M, but treating the
submatrices as blocks, which yields,

DN = diag (λ1, λ1, λ2, λ2, . . . , λn, λn) ∈ R2n×2n (A.6)

and therefore

det (N) = det (DN) =

n∏

i=1

λ2
i = det(M̂)2 (A.7)
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APPENDIX B

Test-Model Parameters

Table B.1 gives the model parameters used to generate events for model selection testing, discussed
in sections 4.2.3 and 4.3.1. The production amplitudes are shown in the complex plane in figure B.1.
As event samples of different size have been generated with this model, its parameters are scaled such
that the total intensity equals 1000 events. In the table, the “Percent” column gives the fraction of the
intensity of a single wave to the (incoherent) sum of intensities, which, in this case, is 1462.576.
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Appendix B Test-Model Parameters
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Figure B.1: Production amplitudes used for model-selection testing. The numbers give the wave
index as defined in table B.1.
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Table B.1: Wave set and production amplitudes used for model-selection testing.

Wave Index Wave Re(T ) Im(T ) Intensity Percent

0 1−1++0+ → σ

[
0
1

] (
a1(1260)→ ρ(770)

[
0
1

]
π−

)
−12.606 0.0 158.906 10.86

1 1−1++0+ →
(
ρ(1700)→

(
a1(1260)→ ρ(770)

[
0
1

]
π−

) [
0
1

]
π+

) [
0
1

]
π− 5.26 10.713 142.435 9.74

2 1−0−+0+ → σ

[
0
0

] (
π(1800)→ σ

[
0
0

]
π−

)
10.765 4.336 134.696 9.21

3 1−0−+0+ → f0(980)
[
0
0

] (
π(1800)→ σ

[
0
0

]
π−

)
−7.343 −8.039 118.545 8.11

4 1−1++0+ →
(
ρ(1700)→ ρ(770)

[
0
1

]
σ
) [

0
1

]
π− 2.229 8.448 76.342 5.22

5 1−1++0+ → σ

[
2
2

] (
a2(1320)→ ρ(770)

[
2
1

]
π−

)
1.852 −7.72 63.034 4.31

6 1−1++0+ →
(

f0(1500)→
(
π(1300)→ σ

[
0
0

]
π−

) [
0
0

]
π+

) [
1
0

]
π− 1.091 −7.508 57.559 3.94

7 1−1++0+ →
(

f0(1500)→ σ

[
0
0

]
σ
) [

1
0

]
π− −0.321 6.501 42.369 2.9

8 1−0−+0+ → σ

[
0
0

] (
π(1300)→ σ

[
0
0

]
π−

)
−6.26 1.361 41.038 2.81

9 1−1++0+ →
(

f1(1285)→
(
a1(1260)→ ρ(770)

[
0
1

]
π−

) [
1
1

]
π+

) [
1
1

]
π− −3.342 5.01 36.273 2.48

10 1−1++0+ → f0(980)
[
2
2

] (
a2(1320)→ ρ(770)

[
2
1

]
π−

)
−4.596 3.366 32.458 2.22

11 1−0−+0+ → f0(980)
[
1
1

] (
a1(1260)→ σ

[
1
0

]
π−

)
−5.613 −0.132 31.52 2.16

Continued on next page125
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Table B.1: Wave set and production amplitudes used for model-selection testing (continued).

Wave Index Wave Re(T ) Im(T ) Intensity Percent

12 1−2−+0+ →
(

f2(1565)→
(
a1(1260)→ ρ(770)

[
0
1

]
π−

) [
1
1

]
π+

) [
0
2

]
π− 0.175 −5.425 29.461 2.01

13 1−1++0+ → f0(980)
[
0
1

] (
a1(1260)→ ρ(770)

[
0
1

]
π−

)
4.51 −2.945 29.014 1.98

14 1−2−+0+ → f2(1270)
[
0
2

] (
π(1800)→ σ

[
0
0

]
π−

)
−3.597 3.868 27.902 1.91

15 1−0−+0+ → σ

[
1
1

] (
a1(1260)→ σ

[
1
0

]
π−

)
4.372 −2.634 26.055 1.78

16 1−1++0+ → ρ(770)
[
0
1

] (
π2(1670)→ ρ(770)

[
1
1

]
π−

)
4.942 −1.267 26.029 1.78

17 1−1++0+ →
(
ρ(1450)→

(
a1(1260)→ ρ(770)

[
0
1

]
π−

) [
0
1

]
π+

) [
0
1

]
π− −2.137 4.559 25.357 1.73

18 1−2−+0+ → f2(1270)
[
0
2

] (
π(1300)→ σ

[
0
0

]
π−

)
−2.17 −4.504 24.997 1.71

19 1−1++0+ →
(

f0(1500)→ ρ(770)
[
0
0

]
ρ(770)

) [
1
0

]
π− −4.661 −1.619 24.342 1.66

20 1−2−+0+ → ρ(770)
[
0
2

] (
a2(1320)→ ρ(770)

[
2
1

]
π−

)
4.815 −0.501 23.437 1.6

21 1−1++0+ →
(
ρ(1700)→

(
a1(1260)→ σ

[
1
0

]
π−

) [
0
1

]
π+

) [
0
1

]
π− −1.756 −3.65 16.407 1.12

22 1−1++0+ → ρ(770)
[
2
1

] (
π(1300)→ σ

[
0
0

]
π−

)
−0.693 −3.928 15.908 1.09

23 1−0−+0+ →
(

f0(1500)→
(
π(1300)→ σ

[
0
0

]
π−

) [
0
0

]
π+

) [
0
0

]
π− 2.996 −2.622 15.855 1.08

Continued on next page

126



Table B.1: Wave set and production amplitudes used for model-selection testing (continued).

Wave Index Wave Re(T ) Im(T ) Intensity Percent

24 1−1++0+ → σ

[
1
0

] (
π(1300)→ ρ(770)

[
1
1

]
π−

)
1.648 −3.512 15.055 1.03

25 1−2−+0+ → f0(980)
[
0
2

] (
π2(1670)→ ρ(770)

[
1
1

]
π−

)
2.832 2.554 14.542 0.99

26 1−2−+0+ →
(

f2(1565)→ ρ(770)
[
0
2

]
ρ(770)

) [
0
2

]
π− 0.246 3.757 14.173 0.97

27 1−1++0+ →
(
ρ(1700)→

(
π(1300)→ σ

[
0
0

]
π−

) [
1
0

]
π+

) [
0
1

]
π− −3.258 1.526 12.945 0.89

28 1−1++0+ →
(
ρ(1700)→ ρ(770)

[
0
1

]
σ
) [

2
1

]
π− 0.791 −3.422 12.339 0.84

29 1−2−+0+ →
(

f2(1565)→
(
a2(1320)→ ρ(770)

[
2
1

]
π−

) [
1
2

]
π+

) [
0
2

]
π− 0.382 3.258 10.759 0.74

30 1−0−+0+ →
(

f0(1500)→
(
a1(1260)→ σ

[
1
0

]
π−

) [
1
1

]
π+

) [
0
0

]
π− −0.356 −3.201 10.374 0.71

31 1−1++0+ →
(

f1(1420)→
(
a1(1260)→ ρ(770)

[
0
1

]
π−

) [
1
1

]
π+

) [
1
1

]
π− −0.126 3.113 9.704 0.66

32 1−2−+0+ → ρ(770)
[
2
0

] (
a1(1260)→ ρ(770)

[
0
1

]
π−

)
−2.59 1.654 9.442 0.65

33 1−1++0+ → ρ(770)
[
1
1

] (
a1(1260)→ ρ(770)

[
0
1

]
π−

)
0.195 −2.953 8.761 0.6

34 1−2−+0+ → ρ(770)
[
0
2

] (
a1(1260)→ ρ(770)

[
0
1

]
π−

)
−1.148 2.678 8.487 0.58

35 1−0−+0+ → ρ(770)
[
2
2

] (
a1(1260)→ ρ(770)

[
0
1

]
π−

)
1.118 −2.55 7.751 0.53

Continued on next page127
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Table B.1: Wave set and production amplitudes used for model-selection testing (continued).

Wave Index Wave Re(T ) Im(T ) Intensity Percent

36 1−0−+0+ →
(
ρ(1700)→

(
a1(1260)→ ρ(770)

[
0
1

]
π−

) [
0
1

]
π+

) [
1
1

]
π− −1.604 −2.057 6.803 0.47

37 1−1++0+ → σ

[
1
0

] (
π(1800)→ σ

[
0
0

]
π−

)
−2.094 1.343 6.19 0.42

38 1−1++0+ → f2(1270)
[
2
1

] (
a1(1260)→ σ

[
1
0

]
π−

)
1.787 1.561 5.628 0.38

39 1−1++0+ →
(

f0(1370)→
(
π(1300)→ ρ(770)

[
1
1

]
π−

) [
0
0

]
π+

) [
1
0

]
π− 1.144 −2.033 5.441 0.37

40 1−2−+0+ → σ

[
1
1

] (
a1(1260)→ ρ(770)

[
0
1

]
π−

)
−2.266 −0.498 5.382 0.37

41 1−0−+0+ → ρ(770)
[
0
0

] (
a1(1260)→ σ

[
1
0

]
π−

)
−2.235 −0.603 5.357 0.37

42 1−2−+0+ →
(

f0(1370)→
(
π(1300)→ σ

[
0
0

]
π−

) [
0
0

]
π+

) [
2
0

]
π− −2.222 0.387 5.086 0.35

43 1−1++0+ →
(

f0(1500)→
(
π(1300)→ ρ(770)

[
1
1

]
π−

) [
0
0

]
π+

) [
1
0

]
π− −2.134 0.672 5.005 0.34

44 1−2−+0+ →
(

f1(1285)→
(
a1(1260)→ ρ(770)

[
0
1

]
π−

) [
1
1

]
π+

) [
2
1

]
π− −1.68 −1.286 4.477 0.31

45 1−2−+0+ →
(

f2(1270)→ ρ(770)
[
0
2

]
ρ(770)

) [
2
2

]
π− 1.646 −1.265 4.311 0.29

46 1−1++0+ →
(

f2(1270)→
(
a1(1260)→ ρ(770)

[
0
1

]
π−

) [
1
1

]
π+

) [
1
2

]
π− 1.981 −0.612 4.301 0.29

47 1−0−+0+ →
(

f0(1370)→
(
a1(1260)→ ρ(770)

[
0
1

]
π−

) [
1
1

]
π+

) [
0
0

]
π− 1.077 1.772 4.3 0.29

Continued on next page
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Table B.1: Wave set and production amplitudes used for model-selection testing (continued).

Wave Index Wave Re(T ) Im(T ) Intensity Percent

48 1−0−+0+ → f2(1270)
[
0
0

] (
π2(1670)→ ρ(770)

[
1
1

]
π−

)
1.431 1.369 3.921 0.27

49 1−1++0+ →
(

f0(1370)→
(
π(1300)→ σ

[
0
0

]
π−

) [
0
0

]
π+

) [
1
0

]
π− −1.618 0.991 3.598 0.25

50 1−2−+0+ →
(
η2(1645)→

(
a2(1320)→ ρ(770)

[
2
1

]
π−

) [
0
2

]
π+

) [
1
2

]
π− 0.223 1.852 3.48 0.24

51 1−0−+0+ →
(

f0(1500)→
(
π(1300)→ ρ(770)

[
1
1

]
π−

) [
0
0

]
π+

) [
0
0

]
π− −0.468 1.8 3.459 0.24

52 1−1++0+ → ρ(770)
[
2
1

] (
π(1300)→ ρ(770)

[
1
1

]
π−

)
−0.844 1.634 3.382 0.23

53 1−4−+0+ → ρ(770)
[
2
2

] (
a1(1260)→ ρ(770)

[
0
1

]
π−

)
1.013 1.5 3.276 0.22

54 1−1++0+ →
(
ρ(1450)→

(
π(1300)→ σ

[
0
0

]
π−

) [
1
0

]
π+

) [
2
1

]
π− 0.66 −1.665 3.209 0.22

55 1−2−+0+ →
(

f0(1500)→
(
a1(1260)→ σ

[
1
0

]
π−

) [
1
1

]
π+

) [
2
0

]
π− −0.347 −1.733 3.125 0.21

56 1−1++0+ →
(

f2(1565)→
(
π(1300)→ ρ(770)

[
1
1

]
π−

) [
2
0

]
π+

) [
1
2

]
π− 0.419 1.691 3.035 0.21

57 1−3++0+ →
(
ρ(1450)→ ρ(770)

[
0
1

]
σ
) [

2
1

]
π− −0.567 1.579 2.814 0.19

58 1−3++0+ → σ

[
2
1

] (
a1(1260)→ ρ(770)

[
0
1

]
π−

)
1.617 −0.343 2.734 0.19

59 1−3++0+ → ρ(770)
[
2
3

] (
π2(1670)→ f2(1270)

[
0
2

]
π−

)
−1.406 −0.69 2.452 0.17

Continued on next page129
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Table B.1: Wave set and production amplitudes used for model-selection testing (continued).

Wave Index Wave Re(T ) Im(T ) Intensity Percent

60 1−2−+0+ →
(

f2(1565)→
(
π(1300)→ ρ(770)

[
1
1

]
π−

) [
2
0

]
π+

) [
0
2

]
π− 0.258 −1.455 2.184 0.15

61 1−2−+0+ →
(
ρ3(1690)→

(
a2(1320)→ ρ(770)

[
2
1

]
π−

) [
2
2

]
π+

) [
1
3

]
π− −0.232 −1.274 1.677 0.11

62 1−2−+1+ →
(

f1(1285)→
(
a1(1260)→ ρ(770)

[
0
1

]
π−

) [
1
1

]
π+

) [
2
1

]
π− −0.057 1.147 1.318 0.09

63 1−3++1+ →
(
ρ(1700)→

(
a1(1260)→ ρ(770)

[
0
1

]
π−

) [
0
1

]
π+

) [
2
1

]
π− 0.967 −0.543 1.229 0.08

64 1−1++1+ →
(
ρ(1450)→

(
π(1300)→ σ

[
0
0

]
π−

) [
1
0

]
π+

) [
0
1

]
π− −1.063 0.047 1.132 0.08

130



APPENDIX C

Additional Plots from the Genetic Algorithm
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Appendix C Additional Plots from the Genetic Algorithm
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Figure C.1: Comparison of the evidence evolution comparison for four different runs of the genetic
algorithm on the same generated data set.
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Figure C.2: Comparison of the wave set size evolution comparison for four different runs of the
genetic algorithm on the same generated data set.
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APPENDIX D

Intensity of a Subset of Waves

To calculate the intensity for a subset W of waves in the partial-wave decomposition, where we
will exclude the flat wave for simplicity, we start from equation (3.16). As we are interested in the
acceptance-corrected intensity, we do not include the acceptance in the integral and write

IW ≡ NW =

∫
dφn(τ)IW(τ) (D.1)

=

∫
dφn(τ)

∑

ε=±1

Nε
r∑

r=1

∣∣∣∣∣∣∣
∑

i ∈Wε

Tr ε
i Ψ

ε
i (τ)

∣∣∣∣∣∣∣

2

(D.2)

≈ VΩ
NMC

NMC∑

k=1

∑

ε=±1

Nε
r∑

r=1

∣∣∣∣∣∣∣
∑

i ∈Wε

Tr ε
i Ψ

ε
i (τk)

∣∣∣∣∣∣∣

2

(D.3)

=
VΩ

NMC

NMC∑

k=1

∑

ε=±1

Nε
r∑

r=1

∑

i, j ∈Wε

Tr ε
i√
Pεii

Tr ε
j
∗

√
Pεj j

Ψ ε
i (τk)Ψ ε

j
∗(τk) (D.4)

=
∑

ε=±1

Nε
r∑

r=1

∑

i, j ∈Wε

Tr ε
i√
Pεii

Tr ε
j
∗

√
Pεj j

VΩ
NMC

NMC∑

k=1

Ψ ε
i (τk)Ψ ε

j
∗(τk) (D.5)

=
∑

ε=±1

Nε
r∑

r=1

∑

i, j ∈Wε

Tr ε
i Tr ε

j
∗ Pεi j√
Pεii Pεj j

(D.6)

We used the definition of the intensity from equation (3.13), approximated the integral with a Monte
Carlo sum as shown in equation (3.24), used the definition of Pεi j from equation (3.28) and the
normalization given by equation (3.27). The indices i and j run over all the waves in the subset
Wε=±1.

By construction, the intensity IW is measured in number of acceptance-corrected events. To compare
with other channels and to arrive at a less model-dependent formulation, it is useful to construct the
analogue quantity to | T† i|2 given by equation (5.10). For simplicity and to be consistent with the
formulas in section 5.3, we are assuming ε = +1 and Nr = 1 for this discussion and are therefore
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Appendix D Intensity of a Subset of Waves

omitting the indices for the reflectivity ε and the rank r. Let us first define an effective amplitude TW
and a set of coefficients Ci ∈ C such that

Ti = Ci TW ∀ i ∈ W (D.7)

Using this in equation (D.3) yields

IW =
VΩ

NMC

NMC∑

k=1

∣∣∣∣∣∣∣
∑

i ∈W
TiΨi(τk)

∣∣∣∣∣∣∣

2

=
VΩ

NMC

NMC∑

k=1

∣∣∣∣∣∣∣
∑

i ∈W
CiTWΨi(τk)

∣∣∣∣∣∣∣

2

= TWT ∗W
∑

i, j ∈W
Ci


VΩ

NMC

NMC∑

k=1

Ψi(τk)Ψ j
∗(τk)

 C j
∗

= TWT ∗W
∑

i, j ∈W
CiPi jC j

∗

(D.8)

If we now define
PW ≡

∑

i, j ∈W
CiPi jC j

∗ and TW ≡ TW
√
PW (D.9)

we can see that
IW =

∣∣∣∣TW
∣∣∣∣
2

(D.10)

as for every individual wave. Analog to the definition of P† i j given by equation (5.3) we can define

P† W =
PW
VΩ

=
∑

i, j ∈W
Ci P† i jC j

∗ (D.11)

Now, we have all the ingredients to write the quantity of interest
∣∣∣∣ T† W

∣∣∣∣
2

=
∣∣∣∣TW

∣∣∣∣
2
/ P† W (D.12)

provided we know the coefficients Ci. By construction, PW ∈ R does not change if all Ci are shifted
by an arbitrary phase ϕ. Therefore, we can assume C1 ∈ R. If we now rewrite the conditions in
equation (D.7) using the definition in equation (D.9), we obtain

Ti√
Pii

= Ci

TW√
PW

∀ i ∈ W (D.13)

Because we know that |TW |2 = IW, which can be calculated using equation (D.6), we square both
sides and in addition, multiply them by VΩ and are left with

∣∣∣Ti

∣∣∣2

P† ii IW
=

∣∣∣Ci

∣∣∣2

P† W
∀ i ∈ W (D.14)
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One can see that multiplying all Ci by an arbitrary real factor, one can scale P† W at will while
equation (D.14) is still valid. This means for every P† W > 0, a set of Ci can be found such that all
the conditions above are fulfilled. However, to be able to investigate the mFS dependence of T† W, the
mFS dependence of P† W needs to be known, at least up to a common real factor for all mFS bins. It is
unclear how to obtain this mFS dependence, however one approach which proved to yield sensible
results is to define another set of coefficients C‡ i ∈ C such that

Ti = C‡ i TW ∀ i ∈ W (D.15)

With C‡ 1 ∈ R as before and the fact that |TW |2 = IW, the C‡ i are fully determined. We can use them
to write

P† W =
∑

i, j ∈W
C‡ i P† i j C‡ j

∗ (D.16)

With equation (D.12), it is now possible to calculate | T† W |2. Such an intensity distribution is shown
in figure 5.13d. While the P† W and | T† W |2 obtained by introducing equations (D.15) and (D.16) are
valid and consistent, the motivation for its use is based on the empirical observation that the resulting
mFS dependence of T† W looks reasonable. Therefore, due caution is appropriate when interpreting
the results of this approach.

For illustration, we determine the relation between Ci and C‡ i by using equation (D.13), and obtain

C‡ i

Ci

=

√√√ P† ii

P† W
∀ i ∈ W (D.17)
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