PHYSIK-DEPARTMENT

Model Selection for and Partial-Wave Analysis of
a Five-Pion Final State at the COMPASS Experiment at CERN

Dissertation von Karl Alexander Bicker

LT

TECHNISCHE UNIVERSITAT M UNCHEN






TecHNISCHE UNIVERSITAT MUNCHEN
Physik-Department E18

Model Selection for and Partial-Wave Analysis of
a Five-Pion Final State at the COMPASS Experiment at CERN

Karl Alexander Bicker

Vollstindiger Abdruck der von der Fakultit fiir Physik der Technischen Universitit Miinchen
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigten Dissertation.
Vorsitzende(r): Univ.-Prof. Dr. Andreas Weiler

Priifer der Dissertation:
1. Univ.-Prof. Dr. Stephan Paul

2. Hon.-Prof. Allen C. Caldwell, Ph.D.

Die Dissertation wurde am 19.04.2016 bei der Technischen Universitidt Miinchen eingereicht
und durch die Fakultit fiir Physik am 08.08.2016 angenommen.






Abstract

The light-meson spectrum is an important ingredient to understand
quantum chromodynamics, the theory of strong interaction at low ener-
gies, where quarks and gluons are confined into hadrons. However, mea-
suring this spectrum experimentally is very challenging, due to the large
number of overlapping resonances it contains. To disentangle this com-
plicated spectrum, partial-wave techniques are used. At the COMPASS
experiment at CERN, the light-meson spectrum is studied in diffractive
dissociation reactions. One such reaction, 7~ + p — n n*n ntn™ + p,
puts the analysis methodology to the test, because the large number
of final-state particles requires a dedicated model-selection procedure
and introduces a complicated background situation. In this thesis, such
a model-selection procedure is developed and verified on simulated
events. In addition to finding a suitable model, it can be used to assess
the reliability of the results. The model-selection procedure is then
successfully applied to data from the COMPASS 2008 data-taking cam-
paign. A partial-wave decomposition is performed using the selected
model. The results are compared to partial-wave decompositions of
other final states and good agreement is found.



Kurzfassung

Das Spektrum der leichten Mesonen ist wichtig um die Quantenchro-
modynamik, das heifit die Theorie der starken Wechselwirkung, bei
niedrigen Energien zu verstehen, wo Quarks und Gluonen in Hadro-
nen gebunden sind. Durch die grofle Zahl iiberlappender Resonanzen
ist die Messung dieses Spektrums experimentell sehr anspruchsvoll.
Partialwellenzerlegungen werden verwendet, um dieses komplizier-
te Spektrum zu entflechten. Das COMPASS Experiment am CERN
untersucht das Spektrum der leichten Mesonen in diffraktiver Dissozia-
tion. Eine dieser Reaktionen, 7~ + p — n ntn a*ta™ + p, stellt hohe
Anforderung an die Analysemethoden, da wegen der grolen Zahl an
Endzustandsteilchen sowohl der Untergrund kompliziert also auch eine
dedizierte Prozedur zur Selektion eines Modells nétig ist. In dieser
Arbeit wird eine solche Modellauswahlprozedur entwickelt und auf
simulierten Ereignissen getestet. Sie findet nicht nur ein geeignetes
Modell, sondern kann auch benutzt werden, um die Zuverlissigkeit
der Resultate zu beurteilen. Die Modellauswahl wird erfolgreich fiir
die Daten aus der COMPASS Messkampagne von 2008 eingesetzt.
Die Resultate der Partialwellenzerlegung mit dem gefundenen Modell
werden mit Partialwellenzerlegungen anderer Endzustédnde verglichen,
wobei eine gute Ubereinstimmung festgestellt werden kann.
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CHAPTER 1

Introduction

“[...] you will not go to space today.”

Randall Munroe,
http://xkcd.com/1133/

Hadron spectroscopy is the study of the excitation spectrum of bound states of the strong interaction,
i.e. the measurement of the masses and decays of hadrons. A branch of hadron spectroscopy, the
light-meson spectroscopy, focuses on states made up by quark-antiquark pairs containing u, d and s
quarks.

Quantum chromodynamics, abbreviated QCD, is the theory of strong interaction. As such, it should
in principle be able to predict the spectrum of hadronic states which can be compared to experimental
results. However, the running of the coupling constant @, of QCD prevents expansions in @, from
converging at the energy scales probed by light-meson spectroscopy. One ab-initio approach to
solving QCD, which is not hampered by this problem, is lattice QCD. It uses a discretized grid in
space and time to make predictions with numerical Monte Carlo methods. Although in lattice QCD,
quark masses are typically chosen heavier than those observed in nature and bound states are assumed
to be quasi-stable, it is still possible to make qualitative predictions of the light-meson spectrum from
first principles [1]]. The main limiting factor are the extraordinary computational resources which are
required to perform the calculations. Considering Moore’s law [2]], it is reasonable to assume that the
prediction of a quantitative spectrum of light mesons from first principles is achievable in the near
future with lattice QCD.

While the light-meson sector has been under study experimentally for a long time [3]], due to the
comparatively low energy scales involved, the situation remains challenging to this day. The spectrum
is characterized by a large number of broad strongly-overlapping resonances and, in addition, the
systems under study are quantum-mechanical in nature, which means interference effects have to be
taken into account. Advanced analysis techniques are required to extract the light-meson spectrum
from the kinematic distributions measured experimentally. In most cases, some sort of model and
prior knowledge are needed for the analysis. In addition, the large data sets required for precise
measurements demand considerable computing resources. In this light, it is not surprising that the
light-meson spectrum is in parts still heavily debated, with many resonances needing confirmation, in
particular in the mass region of 2.0 GeV/ ¢2 and above [4].


http://xkcd.com/1133/

Chapter 1 Introduction

Diffractive dissociation reactions, described in more detail in section [3.1] are one possible way to
study the light-meson spectrum. These reactions, among others, have been measured in the 2004 and
2008 data-taking campaigns of the COMPASS experiment, during which large data samples were
collected. Due to the large cross section and the very good acceptance for charged particle tracks,
the dominant channel is 7~ + p — n~n*n~ + p. From this reaction, resonance parameters can be
extracted with high precision and several recent publications based on the 2008 data set focused on
it [5H9].

Using the same 2008 data set, the topic of this work is the related reaction 7~ + p — n~n*n n"n™ + p.
It allows to access areas of the spectrum which lie at higher masses, where a number of higher
excitations of light mesons are expected. These are particularly challenging to measure, because
many reactions are not able to access these masses with large cross sections. The reactions that do
probe the high-mass region generally involve complex multi-body final states, which, as will be
shown below, pose a number of problems on their own. At the same time, heavier mesons generally
have a larger width, aggravating the problem of overlapping resonances, putting the analysis methods
currently available to the test and requiring large data samples. Additional insight can be gained
by combining the measurements of different decay modes. In this context, the five-pion reaction
can make an important contribution to the understanding of the high-mass part of the light-meson
iso-vector spectrum.

However, the analysis of final states with many particles poses a challenge in itself. The final-state
particles are usually arranged into subsystems, which is described in section[3.3.1] Large numbers
of final-state particles lead to large numbers of possible subsystems. For many of the subsystems,
imposing constraints is difficult because there is only little knowledge about them. Due to the
combinatorics of the many possible subsystems and the lack of constraints on them, data-driven
model selection is a prerequisite for extracting resonances and their parameters. Such a model-
selection procedure was part of an earlier analysis of the five-pion channel, based on the COMPASS
data set from 2004 [10]. However, several open questions remained in that work and for the analysis
of the significantly larger 2008 data set, it was deemed important to revisit and thoroughly test the
model-selection procedure. As a consequence, this work focuses heavily on the development and
verification of analysis methodology.

After a short overview of the experimental setup, chapter 2] will discuss the selection of an exclusive
five-pion sample from the 2008 COMPASS data set and present kinematic distributions. In chapter 3]
the basic principles of the analysis method are laid out. Chapter 4] deals with the model-selection
procedure. It is split into two main parts, the first one showing Monte Carlo studies of the model-
selection procedure suggested in [[10] and the second one introducing an alternative approach to
model selection. For the latter, a number of studies are presented. The chapter concludes with a
discussion of the model which has been selected for the description of the measured data set. With a
model selected, chapter [5]discusses the results of the analysis in terms of their physical interpretation.
Finally, chapter [6] summarizes the results and presents the conclusions and the outlook.



CHAPTER 2

Experimental Setup and Event Selection

“How about instead of epigraphs you just
put a bunch of emoticons?”

Dr. Daniel Greenwald

This work is based on data measured by the COmmon Muon and Proton Apparatus for Structure
and Spectroscopy, abbreviated to COMPASS, which is a fixed-target experiment located at CERN.
A brief overview of its experimental setup is given in the first part of this chapter. The second part
discusses the selection of exclusive events with 5 charged pions in the final state.

2.1 The COMPASS Experiment

The COMPASS experiment has been described in great detail in [[11] and [12]. Therefore, only a very
brief description of the components relevant to this analysis will be included here. A schematic view
of the spectrometer setup is shown in figure 2.1

2.1.1 Beam and Target

For the dataset analyzed here, COMPASS was supplied with a negatively-charged secondary hadron
beam with an energy of 190 GeV from CERN’s Super Proton Synchrotron, SPS. The beam consists
mainly of pions (96.8 %) with a small admixture of kaons (2.4 %) and anti-protons (0.8 %). The beam
impinges on a liquid-hydrogen target with a length of 40 cm, corresponding to 5.5 % of one nuclear
interaction length. The target is surrounded by a recoil-proton detector, RPD, which consists of two
concentric barrels of scintillator slabs.
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Tracking detectors

Dipole magnet (SM2) J'

RPD with Muon tracking

target

Calorimeters
(ECAL2 + HCAL2)
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Dipole magnet (SM1)
Beam telescope

Figure 2.1: Schematic view of the COMPASS spectrometer setup in 2008.
2.1.2 Tracking System and Particle Identification

For beam definition, a combination of silicon-microstrip and scintillating-fiber detectors are used.
Behind the target, four silicon-microstrip detector modules constitute the vertex detector. After the
target region, a two-stage magnetic spectrometer measures charged final-state particles. Apart from
two spectrometer magnets, it is made up from several types of gas detectors. GEM and Micromega
detectors measure small angles while multi-wire proportional and drift chambers cover medium and
large-angle tracking. In the first stage of the spectrometer, a ring-imaging Cherenkov detector, RICH,
provides pion and kaon separation in the momentum range of about 9 to 40 GeV/c.

2.1.3 Trigger

A schematic view of the trigger system used for this analysis is shown in figure 2.2} Two detectors,
the scintillating-fiber detector SciFi 1 and the Beam Counter scintillator define the incoming beam.
Both scintillator rings of the RPD are required to register a recoiling proton, ensuring an interaction
in the target volume. To clean up the event sample, several veto detectors in front of the target
prevent the recording of events with beam particles not passing the target volume, while the Beam
Killer scintillators placed at the end of the spectrometer filter out events with a non-interacting beam
particle. The Sandwich calorimeter ensures that all outgoing particle tracks lie within the geometrical
acceptance of the spectrometer.
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Sandw@
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Figure 2.2: Elements of the trigger used in this analysis (not to scale). The target is shown in blue,
trigger components in green and the veto system in red. The spectrometers magnets are drawn in

gray.
2.1.4 Detector Simulation

The COMGEANT software package, which is based on GEANT-3.21, is used to simulate the passage
of particles through the COMPASS experimental setup. To achieve this, it comes with a detailed
geometrical description of the material distribution within the spectrometer and uses precise magnetic
field maps of the bending magnets. Events from an event generator, i.e. the particle momenta resulting
from a physics interaction, are passed to COMGEANT, which will then simulate the trajectories
of the particles and their interaction with the spectrometer material and detectors. The resulting
pseudo data are then analyzed like the measured data and are used to estimate the acceptance and the
resolution of the spectrometer.

2.2 Event Selection

For both technical and practical reasons, the even selection is split into two parts. In the first part,
called preselection, the events are filtered by requiring (1) exactly one primary vertex, (2) the position
of this primary vertex in z, i.e. along the beam axis, roughly in the target area and (3) five tracks with
total charge of —1 measured by the spectrometer. This reduces the size of the event sample by a factor
of ~35.

For the second part of the event selection, the trigger described in section [2.1.3]is selected. Because
of condition (1) from above, only events with exactly one RPD track are allowed. The distribution of
the primary vertex position and the corresponding cuts are shown in figures[2.3|to[2.5]



Chapter 2 Experimental Setup and Event Selection

107 . . . COIMPASIS 2008 107 . . . COIMPASIS 2008
100} - 1 100} — ]
100} ] 1051
5 104 i 5 10t
N N
<10 S 103} i
5 102 1 510l !
> >
m m
10! ] 10! F ]
10° 1 100} 1
10—1 I I I I 1 10—1 1 1 1 1 1
-200 —140 -80 -20 40 100 160 -80 -70 -60 -50 -40 -30 -20
Primary Vertex z Position [cm] Primary Vertex z Position [cm]
(a) (b)

Figure 2.3: Distribution of the primary vertex position along the beam axis. Shown in blue are all
events after the preselection, in yellow after all cuts.
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Figure 2.4: Distribution of the primary vertex position perpendicular to the beam axis. In (a), all
events after the preselection are shown while (b) shows the distribution after all cuts.
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Figure 2.5: Distribution of the primary vertex position in the (r, z) plane. The bin content has been
corrected for the area element of the cylindrical coordinates. In (a), all events after the preselection
are shown while (b) shows the distribution after all cuts.

With the four-momentum ppeam Of the beam, the total four-momentum py of the outgoing five-pion
system and the scattering angle 6 in the center-of-mass frame, the four-momentum transfer squared

= (pbeam - pX)2

2 2 > >
= Mpeam T My = 2 (Ebeam Ey - |pbeam| |pX| L 9)

is defined. One can see that |f| is minimal for 6 = O if every other variable is kept constant. This
yields
|tlmin = — mgeam - m?( +2 (Ebeam Ey - |pbeam| |pX|) (2.2)

which we use to define the reduced four-momentum transfer squared
t = It = Ilmin 2.3)

This removes the kinematic effect due to the creation of an intermediate object with mass my >
Mbeam-

The measured ¢’ distribution is shown in figure[2.6] Because the recoiling proton needs a minimal
amount of momentum to be able to leave the target cell and produce a signal in both rings of the RPD,
the RPD trigger is only fully efficient for # > 0.1 (GeV/c)?. Events below 0.1 (GeV/c)? are not used.
Since this analysis aims at a proof of principle, only a narrow bin in # from 0.1 to 0.15 (GeV/c)?,
indicated in the figure, is used for the partial-wave decomposition. Within the bin, the " dependences
are neglected. The #’ region was chosen because it has the lowest non-exclusive background.
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Figure 2.6: Distribution of #' in logarithmic scale and linear scale Shown in blue are all events
after the preselection, in yellow after all cuts and in brown the #’ bin used for the partial-wave analysis.
The yellow and brown distributions have been scaled by a factor of 6 in[@}

The selection of exclusive events is complicated by the fact that the COMPASS apparatus does not
measure the magnitude of the beam momentum, but only its direction. However, with the scattering
angle 6 and the four-momentum py of the five-pion system, it is possible to calculate the beam energy
by solving the quadratic equation [|13]]

2a,E o 2a,E,

— _ 2 -
beam a, =0, where ay=m,, |Pxlcosd

eam
1

_ 2 2
Ay = Migrget EX - 5 (mX + mbeam) 24)

Ay = Mygroer — Ex + |Px| cos 6

The distribution of the calculated beam energy is shown in figure together with the cut applied.
One can see a clear peak at the nominal beam energy already in the preselection sample. The
non-exclusive background is reduced considerably after all cuts are applied.

Because of momentum conservation, the momenta of the beam pion, the recoiling proton and the
five-pion system have to be coplanar. It is advantageous to define the angular difference

A¢ =180° -« (J_p—)X’ Lﬁrecoil) (2.5)

where py and p__ . are the projections of the five-pion momentum and the recoil-proton mo-
mentum, respectively, onto the plane perpendicular to the beam momentum. For an exclusive event,
A¢ should be zero. The geometrical angular resolution of the RPD depends on the combinations
of scintillator segments which are hit and can either be +7.5° or +3.75°, as is shown in figure [2.§]
To take into account multiple scattering of the recoiling protons in the scintillator material, the cut
windows have been opened to +8.432° and +5.377°. The 4¢ distribution is shown in figure [2.9a
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Figure 2.7: Distribution of the calculated beam energy. Shown in blue are all events after the
preselection, in yellow after all cuts and in brown the ¢’ bin used for the partial-wave analysis.

I

Ring A

Ring B

Figure 2.8: Geometry of the RPD showing the two possible combinations of scintillator segments

with their opening angles (to scale).
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Figure 2.9:|(a)|distribution of 4¢. In blue are all events after the preselection, in yellow after all cuts
and in brown the ¢’ bin used for the partial-wave analysis. The narrow peak visible at /2 in the blue
distribution is due to errors in the reconstruction and is removed in the event selection. In[(b) 4¢ is
shown against the calculated beam energy with all cuts applied. In both plots, the width of the blue
lines correspond to the difference between the two cuts applied to 4¢.

The cut on the calculated beam energy and on 4¢ heavily influence each other. In fact, the drop in
non-exclusive background which can be seen in figure [2.7a] when going from the preselection events
to the ones with all cuts applied comes almost entirely from the cut on 4¢ and the converse is true for
the A4¢ distribution. This can also be seen when the two quantities are plotted against each other in

figure 2.9b]

After applying all cuts, the size of the preselected event sample is reduced further by a factor of
~ 19, giving a total reduction factor of the event selection of ~660 and leaving a data set containing
11243 496 events. The ¢’ bin which is subsequently used in the partial-wave decomposition contains
2914914 events.

2.3 Kinematic Distributions

The invariant mass distribution of the five-pion system after all cuts is shown in figure[2.10a] Apart
from a small peak-like structure with the maximum at about 1.9 GeV/c?, the distribution is rather
featureless. In ﬁgure the mass range from 1.36 GeV/c? to 2.56 GeV/c? used for the partial-
wave analysis is highlighted, containing 1345 046 events .

Shown in figure [2.11] are the distributions of the mass of the neutral two- and charged three-pion
subsystems for the full ms, range. The peaks from p(770) and f,(1270) are visible in the my,

10
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Figure 2.10: The five-pion mass distribution in blue after all cuts and in yellow the ¢’ bin used for
the partial-wave analysis scaled up by a factor of 2. The yellow distribution from [(a)]is shown again
in with the hatched region indicating the range studied in the partial-wave analysis, which uses
the same 30 MeV/c? mass binning.

distribution, as well as a shoulder from f;(980). The relative strength of the p(770) peak decreases
in the lower ¢’ region. The small enhancement at ~ 0.5 GeV/c? comes from K? and K0 — 77~
originating from 7~ p — 7~ K°KY. In the m3, distribution, all combinations forming a positively or
negatively charged three-pion system have been included. A peak at ~ 1.3 GeV/c? is visible which
most likely corresponds to the a;(1320). Its relative strength also decreases in the lower ¢’ region.

In the mass distribution of the neutral four-pion subsystem shown in figure [2.12a] a very sharp peak
is visible from £;(1285), owed to its small width of ~ 24 MeV/c?. Two more peak-like structure are
visible around 1.5 GeV/c?, which cannot be clearly attributed to established resonances. Possible
candidates are f1(1420), fyp(1500), f>(1565) or p-like states. When the mass distribution of the
two-pion subsystem originating from a four-pion system is plotted against the mass of that four-pion
system, as shown in figure [2.12b] one can see rich structure. The sharp vertical line comes from the
f1(1285), which does not seem to favor p(770) as a decay mode. The peaks at higher m4, have strong
p(770) contribution and a small f,(1270) shadow is visible.

In similar fashion, figure [2.13|shows the masses of the two two-pion subsystems from a four-pion
system against each other, for different regions of four-pion mass. As soon as the four-pion mass is
large enough, double-p(770) contribution is clearly visible, followed by p(770)- f>(1270) and even
double- f>(1270) modes.

Because the five-pion final state prefers high masses, a great number of states are contributing to the
spectra discussed above. Combined with the large combinatorial background for the subsystems, only
very limited conclusions can be drawn from these purely kinematic distributions. Most importantly,
there are structures appearing in the mass distributions of all three subsystems, which hints at the
appearance of resonances. To infer physical meaning from the measured data, they have to be
decomposed into partial waves, which will be discussed in the following chapters.

11
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Figure 2.11: Distribution of|(a)| m2, andm3,,, in blue after all cuts and in yellow the ' bin used for
partial-wave analysis. The latter is scaled by a factor of 2. In[(b)] both the positively and negatively
charged three-pion systems have been included.
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Figure 2.12: The mass distribution of the four-pion system in in blue after all cuts and in yellow
the ¢’ bin used for partial-wave analysis. In the mass distribution of two pions from a four-pion
system is shown against the mass distribution of the four-pion system, after all cuts, with 12 entries
per event.
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Figure 2.13: Distribution of two-pion masses from a four-pion system for different mass regions of
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CHAPTER 3

Analysis Technique

“error: ‘long long long’ is too long for
GCC”

GCC 4.8.2 error message

The ultimate goal of the analysis technique described in this chapter is the identification of resonances
in a given set of events and the extraction of their resonance parameters. For conceptual as well as
technical reasons, the analysis is conducted in two steps. In the first step, a decomposition of the
data set in terms of partial waves is performed. This means, one extracts the complex production
amplitudes for given quantum states. In the second step, a resonance model is fitted to the extracted
amplitudes to extract resonance parameters.

Several names exist for the individual steps of the analysis as well as the analysis as a whole. The
analysis is often called “partial-wave analysis” or, more generally, “amplitude analysis™ although this
name technically only applies to the first step of the analysis. The first step is sometimes distinguished
by using the suffix “...in mass bins” or by calling it “mass-independent fit”, while the second step is
often called “mass-dependent fit”. Here, for clarity, the first step of the analysis will be referred to as
“partial-wave decomposition” and the second step will be called “resonance extraction”.

As this analysis technique is a crucial part of this work, it will be described here in detail, even though
it can be traced back to the 1960s and 1970s [[14] and is well-covered in literature [|615-18]].

3.1 Production of Excited Mesons in Diffractive Reactions

Consider the scattering process
1+2—-3+4 3.D

i.e. particles 1 and 2 react in some way and the result of this reaction are the particles 3 and 4. The
four-momentum of particle i is denoted by p; and the corresponding invariant mass by m;. The
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Figure 3.1: Diffractive dissociation of a 7~ beam impinging on a proton target into n final-state
hadrons #;.

reaction can now be characterized by the three Mandelstam variables [[19]

s =(p1 + p2)*
t=(p1—p3)’ (3.2)
u=(p1 — pa)*
Note that because
s+t+uzzm,? (3.3)
i

one of the three can be expressed by the other two. The sum is running over all four particles in

equation (3.1).

In the process which is the focus of this work, there are two incoming and six outgoing hadrons. This
can be understood in the framework of equation if one assumes an intermediate state which
decays into 57. At COMPASS, the center-of-mass energy +/s is 18.9 GeV and thereby far above
the resonance region, while the typical squared four-momentum transfer ¢ is O[1 (GeV/ ¢)*]. In this
constellation, which is commonly referred to as diffraction, one expects ¢t-channel exchange to be
dominant, i.e. the dominant event topology is expected to look like shown in figure [3.1]

As every measured event has the same initial and the same final state, the intermediate state X is
actually a superposition of all possible resonances which are allowed by energy and momentum
conservation laws. Unfortunately, in the mass region of interest, the resonances in question are

plentiful and overlapping due to their finite width. Therefore, the simple practice of identifying
resonances as peaks in the final-state mass distribution

2
mlg = (Z pl-) (3.4)

is usually impossible. The summation index i here runs over the decay products of X.
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However, fortunately, the measured event carries more information than just this mass: the actual
three-momenta of all decay products are measured. This means one has access to the kinematic
distribution of the decay products, which is crucial in decomposing the data in terms of partial
waves.

Every intermediate state X is characterized by its isospin /, the G and C parities, its spin J, parity P,
the spin projection M and reflectivity e. This set of quantum numbers is usually written as 1¢ JC M€,
e.g. 171770".

As charge-exchange reactions are strongly suppressed at COMPASS energies, the particle X has to
carry the charge of the incoming beam particle, i.e. —1, which implies / > 0. Furthermore, since there
are no known mesons with isospin / > 2, only / = 1 is considered for X~. In addition, assuming that
the exchange particle is a Pomeron P with / =0 and G = P = C = +1, X~ can only have G = -1
because of the G-parity of the incoming pion. The reflectivity quantum number € results from a
transformation to the reflectivity basis, where states with positive and negative spin projections M
are combined, leading to M always being positive and the appearance of € = +1 as a new quantum
number [[17,|18]]. While charged particles are not eigenstates of the C-parity operator, it is customary
to give the C eigenvalue of the corresponding neutral partner state.

The superposition of X states is described by a spin-density matrix Oup [17]. It is a Hermitian and
positive-definite N, X N matrix, with N being the number of contributing states. Therefore, one can
write its Cholesky decomposition

N.Y
Qup = Z To'Tg, where 'T,,=0 if apf<r
r

[e

(3.5)
and "T,z,€R if af=r
meaning that "7, is a lower triangular matrix. The unusual index placement and nomenclature is

chosen to be consistent with the following sections. The structure of "7, is more easily visible in
matrix notation:

17-1 0 - 0 17~1* 1(/'; e 17';{,_
€11 O1n, : : 0 2 ... 27~*5
Cl L : . L] 2 .N_y (3.6)
T, o My o0 : :
On,1 On,N, ! ' N, N+
17~N ZTNS .. TNS 0 ce 0 TN

s

Decomposing Oup has the advantage that the matrix "7, is a minimal representation of Oup i.e. all
entries are linearly independent.
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3.2 Partial-Wave Decomposition

According to Fermi’s golden rule [20]], the differential cross-section for scattering reactions can be

written as
do— ’ o ’ ’ 2
S (T s, 1',8) = Tolmes, O, 5) - | M(zs mps, 1, 5) 3.7)

where mgg is the invariant mass of the final state, i.e. the mass of X in the picture of diffractive
reactions. As COMPASS typically runs at a fixed beam energy, s is constant and will be dropped
from here on. The dependence on #, which is as defined in equation (2.3)), will be discussed below.
The kinematic variables 7 describe the final state, i.e. they are the four-momenta of the n final-state
particles. Because (1) three-momentum conversation holds, (2) the final-state mass mgg is explicitly
separated from 7 and (3) the masses of the final-state particles are assumed to be known, the number
of linearly independent degrees of freedom in 7 is

dimtr=4-n-3-1-n

Cau (3.8)

The actual choice of the variables in 7 will be discussed in section[3.3.1] Coming back to equation (3.7)),
M(t; mpg) is the scattering-matrix element for the process in question. As COMPASS does not
measure absolute cross-sections in the relevant channels, all the normalization constants are absorbed
in oo (mgs).

The reason for the explicit separation of the mps dependence is one of the pillars of the analysis

method: in the partial-wave decomposition, the data are subdivided into narrow bins of the final-state
. L ~ 2 .

mass, meaning that over the bin width, oy and |M' can be assumed constant with respect to mgs.

Due to this, the first step of the analysis is sometimes labeled to be “model-independent”, but it must

be stressed that this only applies to the resonance content of the intermediate state, while indeed a

number of model assumptions still have to be made, as we will see in section [3.3]

There are two approaches to resolve the dependency on #'. While the older approach parameterized
the ¢ dependence [16, 21]], larger data sets allowed to subdivide the data not only in mps, but
simultaneously also in # [6]]. The latter approach is assumed in this discussion.

We now proceed to write the cross section as

do

= (t;mgs, ') = oo(mgs) - I(T; mgs, 1) (3.9)
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with the intensit
I(ymes,t')= Y 3" %" e (Times, 1) ,05p0mes, 1) Wei (T mes, 1)

e=+1 a8 k

= 3 NN s, () Y [T g ) TS (s, )] P (xims. )
e=xl af k r (310)

2

= Z Z Z :Té(mFs,f')Z o i (Timps, 1)

e=x1 r | « k

where the spin-density matrix .QQA:H from equation has been used and split into two separate
parts .925 for the reflectivities € = +1. This is possible because different reflectivities do not interfere,
leading to a block diagonal form of Qup with respect to to €. The determination of the complex-
valued production amplitudes |7 ¢ (mgs) for the states X, and thereby also of .Qgﬁ, is the goal of the
partial-wave decomposition. The f&”lgﬂ(f) € C are amplitudes that describe the decay of the states X
into the final state. They can be calculated and will be discussed in section[3.3] The indices @ and 8
run over the possible quantum numbers J©¢ M (but not the reflectivity €), while the index k runs over
all possibilities in the parameterization of the decay of X into the final state (which always stays the
same). At this point, it is not obvious why there should be more than one possibility for &, but as will
become clear in section[3.3] different intermediate states in the decay cause this to happen. All three
indices have to be summed coherently, while the sum over the two reflectivity states +1 and —1 is
incoherent.

The incoherent sum running over r takes into account different non-interfering production processes,
e.g. spin-flip or non-flip processes at the proton vertex or the integration over a large ¢ range. It is
important to note that the conditions on |7 5 from equation still apply here, i.e. certain production
amplitudes are either real or zero. For reactions where the number of non-interfering production
processes Ny is smaller than N, one usually imposes

TE€=0, if r>N¢ (3.11)

as an additional condition. Because this lowers the rank of the spin-density matrix _ g;ﬁ from N¢
to Ny, the quantity N; is also called the rank of the partial-wave decomposition. Note that due to
the block-diagonal nature of Qup with respect to €, the two ranks N!' and N-! need not be the
same. The analysis presented in the following chapters will always use N;'' = N-! = 1; however, the
description in this chapter will remain without any assumptions on N;.

In the intensity given in equation (3.10), the coupling of the X states to the decay modes is included
in the decay amplitudes, which is a problem as these couplings are generally unknown. However,
because they are assumed to only depend on mgs and not on 7, the couplings can be easily moved

[al While the conclusion that 7 = |/\/(|2 might be easily drawn from the given formulas, it would be wrong, because 7 and

|M|2 are normalized differently, which will become clear in equation (3.16). This difference of normalization is also
reflected in the transition oy(mgs) — oo(mgs).

1 There is no difference between 0, from equation and o, from equation : the “,” has been introduced to
facilitate the notation after the upcoming transformation in equation @
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from the decay amplitudes to the production amplitudes giving new variables

.Té’k(‘r; mEgs, t/) - Tie(‘l'; mFs, t')
Talmes,t')  —  "Tf(mgs, 1) (3.12)

.Q(Eyﬁ(mFS, t/) - ij(mFS, t/)

The new index i now includes both the quantum numbers @ of X and the specific decay mode k into
the final state. With this, one obtains a slightly simpler form of the intensity

2

Ne
I(rsmes, ()= ) > 1> T mes, ) ¥y (v mgs, 1) (3.13)

e=x1r=11 i

with which we can write the probability to observe an event &, from the set of measured events E
with coordinates T

1 (tg; ms, 1)
[du(0) I (v mps, ) (s mps, ')

The integral in the denominator runs over the whole n-body phase space of the final-state particles,
while 7(7) is the product of the acceptance of the measuring device and the reconstruction efficiency
for the final state, abbreviated in the following to “acceptance”. In the numerator, the acceptance does
not appear because for measured events, it has already been applied by the measurement itself. With
this probability, we are now able to formulate an extended likelihood function we can maximize in
order to find the maximum-likelihood estimate for "7

P(@@mps) =

(3.14)

VN
[ [P (3.15)
t=1

e—N

N!

L(T:B) =

N is the number of measured events and N is the number of expected measured events. The factor
e"VNV /N1 is the Poisson probability to observe N events, which ensures that the maximum of £ is
at a point in parameter space where the condition N = N is fulfilled within the expected Poissonian
fluctuations. To declutter the equations, mps and ¢’ have been dropped and will be omitted from this
point onwards. However, it is important to keep in mind that all the quantities, including N and N, are
given under the assumption that they are constant with respect to the final state mass mgs. Using

N = [du(®) I(0) () (3.16)
imposes a normalization constraint which leads to the intensity 7 being expressed in terms of number
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