
České vysoké učeńı technické v Praze

Fakulta jaderná a fyzikálně inženýrská

Katedra fyzikálńı elektroniky

DIPLOMOVÁ PRÁCE

Bc. Jan Tomsa

Praha – 2016

České vysoké učeńı technické v Praze

Fakulta jaderná a fyzikálně inženýrská

Katedra fyzikálńı elektroniky

Backup processes of data
acquisition control system of
the COMPASS experiment at

CERN.

Diplomová práce

Autor práce: Bc. Jan Tomsa

Vedoućı práce: Ing. Vladimı́r Jarý, Ph.D.

Konzultant: Ing. Josef Nový

Akademický rok: 2015/2016

Poděkováńı

Chtěl bych poděkovat Ing. Vladimı́ru Jarému, Ph.D. za vedeńı mé diplo-
mové práce, podnětné připomı́nky a jazykovou korekturu.

Acknowledgment

I would like thank to my supervisor, Ing. Vladimı́r Jarý, Ph.D., for
leading my diploma thesis, for his incentive notes, and language corrections.

Prohlášeńı

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem
uvedl veškerou použitou literaturu.

Declaration

I declare that I have carried out this research project myself and I have
mentioned all used information sources in bibliography.

V Praze dne 6. 5. 2016 Bc. Jan Tomsa

Název práce:

Záložńı processy ř́ıd́ıćıho systému sběru dat experimentu
COMPASS v CERN

Autor: Bc. Jan Tomsa

Obor: Inženýrská informatika

Druh práce: Diplomová práce

Vedoućı práce: Ing. Vladimı́r Jarý, Ph.D.

Abstrakt

Tato diplomová práce se zabývá vytvořeńım záložńıho ř́ıdićıho systému sběru
dat experimentu COMPASS v laboratoři CERN. Pro běh záložńıho a hlavńıho
ř́ıdićıho systému je využito moderńıho clusterového řešeńı od společnosti Red
Hat. Práce obsahuje detailńı popis implementace a nastaveńı clusteru, po-
drobný postup přestavby ř́ıdićıho procesu pro využit́ı v clusteru a pohled na
můj nově vytvořený monitorovaćı nástroj pro kontrolu stavu těchto proces̊u.
V daľśı sekci jsou dostupné testy vyvinutého řešeńı a v dodatku podrobný
postup instalace.

Kĺıčová slova: CERN, DAQ, RHCL, Cluster, Python, C++, Django, Daemon

Title:

Backup processes of data acquisition control system of the
COMPASS experiment at CERN.

Author: Bc. Jan Tomsa

Abstract

This diploma thesis focuses on creating backup processes of the DAQ system
of the COMPASS experiment at CERN. A modern high-availability cluster
solution from the Red Hat company has been used to implement the backup
processes. The thesis includes a detailed description of the implementation
of the cluster setup, a comprehensive guide to rebuild the control process for
the needs of clustering, and an introduction to my newly developed cluster
monitoring tool. In the end, there are tests of the implemented changes and
an exhaustive installation instructions.

Key words: CERN, DAQ, RHCL, Cluster, Python, C++, Django, Daemon

Contents

1 Cern & COMPASS & DAQ 9
1.1 CERN . 9
1.2 The COMPASS experiment 9
1.3 The DAQ of COMPASS . 10

2 Software technologies 12
2.1 Red Hat Cluster Suite . 12

2.1.1 Concepts and Components 13
2.2 C++ and Qt framework . 17
2.3 Python . 18
2.4 Django . 18
2.5 DIALOG Communication Library 18

3 Implementation 20
3.1 Cluster configuration . 20

3.1.1 Cluster, cman, nodes, fencing, totem 20
3.1.2 Resources, fail-over domains, services 23

3.2 The Master Process . 26
3.2.1 Transformation to a daemon 27
3.2.2 Controlling via start, stop, restart 29
3.2.3 Master and backup, synchronization 33

3.3 Deployment in the cluster . 34
3.3.1 Master control . 34
3.3.2 Master Backup . 36

3.4 Master Cluster Monitor . 37

4 Tests 39
4.1 Normal, uninterrupted operation 39

4.1.1 Syslog output of the cluster software 39
4.1.2 Cluster Monitoring Tool 40
4.1.3 DIALOG Communication GUI 40

6

4.2 Two nodes service crash . 40
4.3 Network Failure . 44
4.4 Single node service crash . 45

A Installation Guide I
A.1 Virtual Machines . I

A.1.1 VirtualBox . I
A.1.2 Vagrant . I
A.1.3 VirtualBox additions II

A.2 Cluster software and node setup III
A.3 The master process . VI

A.3.1 The master . VI
A.3.2 Cluster wrappers for the master VII

A.4 Cluster Monitoring Tool . VIII

7

Introduction

During the CERN shutdown during the years 2013 and 2014, both hardware
and software parts of the Data Acquisition System of the COMPASS experi-
ment has been upgraded. The new COMPASS Experiment data taking setup
has been now running nearly two years. During this time a need to polish
and to improve the new system has arisen.

The assignment of this diploma thesis is to increase the availability and to
create a backup process of the core control process of the Data Acquisition
System of the COMPASS experiment. This is achieved by deploying the
control application in a high-availability cluster. The task requires some non-
trivial changes to the starting sequence of the program, including a conversion
to a UNIX daemon.

The first chapter shortly introduces the CERN laboratory and the COM-
PASS experiment in more details.

The next part of this project focuses on the introduction of the main
software tools that are used to accomplish the goal of this thesis. It introduces
mainly the Red Hat Cluster Suite.

The Implementation chapter includes an exhaustive description of all key
parts of the newly developed software. It covers cluster setup, the trans-
formation of the control process to a daemon, and an insight into a newly
developed Cluster Monitoring Tool.

The following chapter provides the results of various tests of the newly
developed software.

For those, who are interested in deploying a similar setup themselves,
there is a thorough installation guide in the Appendix.

8

Chapter 1

Cern & COMPASS & DAQ

1.1 CERN

CERN, the European Organization for Nuclear Research, is an international
physics laboratory, operating one of the largest and most complex instru-
ments to study the basics of matter - fundamental particles. It is located
north-west of Geneva (Switzerland) in the Swiss-French borderland, with
the main site in Meyrin. CERN was established in 1954 by 12 European
countries.

CERN provides an infrastructure and set of 6 accelerators, a decelerator,
and many detectors for high-energy particle physics experiments. The largest
accelerator (LHC - Large Hadron Collider) is designed to produce particle
collisions with energy up to 14 TeV. Particles gain energy in the cascade of
accelerators and collide at speed close to the speed of light either with fixed
targets or with each other. Surrounding detectors record the results of these
collisions. [1, 2]

1.2 The COMPASS experiment

COMPASS (COmmon Muon Proton Apparatus for Structure and Spec-
troscopy) is a high-energy particle physics experiment with fixed target sit-
uated on the M2 beamline of the Super Proton Synchrotron (SPS) particle
accelerator at CERN laboratory in Geneva, Switzerland. The scientific pro-
gram of the COMPASS experiment was approved in 1997. It’s goal was to
study the structure of gluons and quarks and the spectroscopy of hadrons us-

9

ing high intensity muon and hadron beams. By the year 2010 the experiment
entered it’s second phase COMPASS-II [3] focusing on the Drell-Yan effect,
the Primakoff scattering, and the Deeply Virtual Compton Scattering. [4]

1.3 The DAQ of COMPASS

The hardware of the Data Acquisition System consists of several layers of
different electronics. The layer closest to the detector is called frontend
electronics. It’s task is to capture signals directly from the detectors and
convert them to digital values. There are approximately 300 000 of data
channels coming from the first layer. This data is readout by roughly 250
of CATCH, GeSiCA, and Gandalf concentrator modules based on VME
standard and grouped into subevents (i.e. partial information about the
progress of particle in the detector). The readout of subevents and assembly
and buffering of events is carried out by modern FPGA cards (Field Pro-
grammable Gate Array) which replaced original and nowadays performance-
wise obsolete hardware. Data taking process is synchronized by the TCS
(Trigger Control System). Full events are stored locally on hard disks and
afterwards transferred to the central CERN storage facility CASTOR. [5]

The new software of DAQ is conceptually inspired by the ALICE software
[6], however it is more lightweight and thus easier to use and to maintain.
According to [7,8], the new software consists of five main types of processes:

A) Master process - a Qt console application. It is the most important
part, almost all application logic is concentrated here. It serves as a
mediator between Slaves and GUI. This is the main control process.

B) Slave process - an application that controls and monitors a custom
hardware (e.g FPGA, . . .). It is controlled and configured by the Mas-
ter, it informs the Master process about the state of the hardware it is
deployed on.

C) GUI - a Qt GUI application designed for controlling and monitoring of
the whole DAQ. It sends commands to the Master. Master sends back
monitoring data about hardware controlled by Slaves. GUI can run in
many instances, only one has the rights to change configuration and to
execute control commands, the others are only allowed to monitor the
status of DAQ.

10

D) Message Logger - a console application that receives informative and
error messages and stores them into the MySQL database. It is directly
connected to the Master and to the Slave processes via the DIALOG
Communication Library services

E) Message Browser - a GUI application that provides an intuitive access
to messages from system (stored in the database) with an addition of on-
line mode (displaying new messages in realtime). Equipped with filtering
and sorting capabilities, it is able to run independently from the whole
system in case of emergency.

11

Chapter 2

Software technologies

2.1 Red Hat Cluster Suite

This section will be focused on detailed description of Red Hat Cluster
Suite (RHCS) used to deploy the master process in the highly-available
mode.

High-availability cluster (also known as HA cluster or fail-over cluster) is
a formation of two or more computers working together to perform a task or
to provide an uninterrupted (with minimal down-time) run of core services
or server applications. It is operated by so called High-availability software,
which manages server groups (clusters) and utilises redundant resources when
any system components fail. Should such failure of a server running a par-
ticular application occur without cluster setup, the application will be un-
available until the problem is identified and fixed and server restarted. The
high-availability cluster overcomes this issue by detecting both software and
hardware faults and instantly relocating afflicted services and applications
to redundant, healthy nodes 1 without any required interference from sys-
tem administrator. This process is called failover. The target node may be
automatically configured prior to starting the service (e.g. mounting filesys-
tems, starting additional supportive services and applications, . . .). The HA
cluster is also trying to eliminate single points of failure. [9, 11]

Red Hat Cluster Suite is a set of software tools that can be set up in a
variety of configurations including high performance, high availability, load

1In the context of this thesis, a node is a single computer (server) within the cluster
formation.

12

Figure 2.1: An ideal two-node cluster. [10]

balancing, etc. Following main parts comprise the RHCS: [11]

• Cluster infrastructure - fundamental tools for nodes to build a clus-
ter; configuration files management; cluster membership management;
fencing

• High-availability Service Management - failover of services

• Cluster administration tools - configuration of management tools used
to set up, configure, and manage Red Hat cluster.

2.1.1 Concepts and Components

We could dive right into cluster configuration, it isn’t that difficult, but
without fully understanding how all the parts work together, it would be
near to impossible to set up this fairly complex system correctly.

13

Quorum

In the context of clusters, quorum is a synonym for majority. In simplicity,
it is defined as the minimum number of nodes required to provide clustered
services. However all nodes are assigned a number of votes and the cluster is
told how many votes to expect in total. The default algorithm of RHCS for
determining quorum is called Simple Majority Quorum which demands
that more than half of the expected votes must be put together by the online
nodes to gain quorum and form a cluster.

Sometimes a device with assigned number of votes (so called quorum
disk) can be added to the cluster. In that case, the expected votes is the
sum of all node’s votes plus the votes of the quorum disk. During a split,
each part adds up votes of itself plus the votes of the quorum devices it can
communicate with.

In the case the nodes spit into two or more parts (for example due to net-
work failure), the quorum comes to play. Which ever part has the quorum
(majority) can form a new cluster and safely start providing clustered ser-
vices, because the other parts know that they don’t have quorum and won’t
do anything. The winner part then fences the lost nodes.

The requirement for the majority of votes is crucial. If the exact half of
votes sufficed and the cluster split into equally sized groups, it would lead to
a split-brain situation. For example, a cluster of four nodes could split into
two groups by two. In this case, both groups would gain quorum (2 votes)
and might try to take over the cluster and start providing services. It would
lead into disastrous scenario.

However, as always, there is an exception to the rule. In the case of
two node cluster, any failure results into equal split 1+1 and no node gains
quorum, thus there is no high availability. Considering this, we don’t want
to enforce quorum. The downside is that the consistency of the cluster is
now only assured by fencing.

Nevertheless, a proper quorum can be achieved even in the two node
cluster by using a quorum disk. But we will not be using the quorum disk in
this project, it is not necessary and it would increase the overall complexity.

14

CMAN

CMAN is an abbreviation for Cluster MANager. It is a distributed cluster
manager and runs on each node (as a service) and acts as a quorum provider.
It sums up the member votes of the cluster and decides if it has the majority.
If if does, the cluster is ”quorate” and is allowed to provide cluster services.
CMAN also stars and stops all required services needed for cluster operation.

Corosync and Totem

Corosync is the core of the cluster. It mediates communication between
nodes. It takes care of cluster membership, message passing and quorum.
It uses a totem protocol for ”heartbeat” monitoring of the other nodes. It
passes token around the nodes. Once a node receives a token, it can send and
receive messages, and when it finishes, it passes the token to the next node.
If the token is not passed in time (∼ 238ms by default), an error counter is
increased and a new token is generated. If too many tokens are lost in a row,
a node is marked as dead and the rest of the cluster is informed about the
new topology. The totem protocol supports also so called ”rpp” (Redundant
Ring Protocol). It can be used to add a backup ring for passing token on a
separate network in case of the failure of the primary ring.

Fencing

Fencing is a critical part of clustering. It is a way of bringing (lost/dead)
node to a known state, to a state where it can not affect cluster resources
and provide services. When a node stops responding, the node is declared
dead approximately after one second (the default timeout is roughly 238ms,
the error count limit is 4 by default). The cluster checks if it still has the
quorum. If it does, the cluster software freezes, the dead node withdraws
from the cluster and the corosync calls fenced to fence the dead node.

A fence device is a device that is able to fence a particular node. Fencing
can be accomplished in a variety of ways:

• Power fencing - disconnecting power via remotely controlled power
switch

• Fabric fencing - disconnecting network and storage via network switch

• HP iLO and similar management interfaces

15

Figure 2.2: A fencing process diagram.

• Fencing virtualized machines - via virtualization host; KVM, virtual-
box, VMware . . .

A fence agent is a script that can controll related fence device. The
fenced daemon fetches information about all fence devices assigned to the
dead node. It then iterates through them and calls appropriate fence agents
with parameters valid for the dead node. It does so until one of the fence
agents reports success. During this time the cluster is effectively hung.
The figure 2.2 summarizes the fencing process.

The normal cluster operation is restored. The rgmanager relocates avail-
able services from the dead node to the rest of the nodes that formed a new
cluster.

In the scenario of two node cluster, the cluster may split into two sepa-
rated nodes. Both can be still alive but can’t see each other. In that case
they will start fencing each other, the faster one winning and forming a new
cluster.

It is important to note that the fence devices must be properly configured,
otherwise the cluster might never fence the dead node and thus remain in a
blocked state.

RGManager

The RGManager (Resource Group Manager) is a service (daemon) that takes
care of cluster resources and services. It controls their starting, stopping,
migrating, relocating, and recovering. The RGManager is based on three
concepts: Failover Domains, Resources and Services. [12, 13]:

• Failover Domain is a set of nodes which a service can run at. It allows

16

to configure a set of rules defining service migration policy, preferred
nodes for services, etc.

• Resources are building blocks of services. They can be used to create
resource trees. Resources are of various types, for example:

– File system

– IP address

– service, script

– virtual machine

• Services group resources together. They can be hierarchically depen-
dent on each other, or scheduled to start simultaneously. They can
be assigned to failover domains. Services are what is being started,
stopped, migrated, . . .

The rgmanager daemon is started separately from the cman. It implies
that to start a cluster to the fully operational state both cman and rgmanager
daemons (in that order) need to be started.

The main configuration for the cluster is the cluster.conf file located
at /etc/cluster/. It uses XML language to configure the topology and prop-
erties of the cluster. It can contain tags for configuration of all cluster com-
ponents (cman, rgmanager, fencing, . . .).

2.2 C++ and Qt framework

C++ is a general-purpose programming language. It is compiled and strongly
typed, it offers object oriented, imperative, and multi-paradigm programming
features. It’s popularity is supported by huge library support and backward
compatibility with C. It first appeared in 1983, written by Bjarne Stroustrup.
The current C++ standard is C++14. [14, 15]

The Qt is a C++ framework for developing applications for a wide spec-
trum of platforms including Windows, linux, OS X, Android, etc. The first
version has been released in 1995 under the patronage of a Norwegian com-
pany Trolltech. It offers a straightforward way of creating GUI (Graphical
User Interface) applications with the help of QtCreator, QtDesigner, and
other useful tools. Also command line applications can be developed with
the same ease. Qt enriched the C++ language with many classes for creating

17

graphical user interface (QWidget), for using network, databases, . . . The key
feature it also added was a signals & slots mechanism for an independent
inter-object communication between Qt objects. Although the Qt is written
in C++, bindings for many languages are available (Python, Java, . . .) [16]

2.3 Python

Python is a high-level, object-oriented, general-purpose, interpreted, dy-
namic programming language. It supports many programming paradigms
- imperative, function, procedural, object-oriented. It is strongly and dy-
namically typed. It utilises a garbage collector. It is highly readable, using
whitespace indentation to delimit blocks. It’s usage scenario ranges from
simple scripts, through scientific programs to backends of websites.

Python has been designed by Guido van Rossum and first released in
1991. Currently, there are two stable releases - versions 2.7.11 and 3.5.1
(December 2015). [17]

2.4 Django

Django is a python framework for web development. It is safe to say that
django uses MVC (Model-View-Controlled) design pattern. Django includes
ORM (objec-relational mapper) for database-driven web applications, a stan-
dalone development web server, a support for internationalization and much
more. Django was first released in July 2005. [18]

2.5 DIALOG Communication Library

As the name suggest, the DIALOG Communication Library is a library that
mediates communication between all parts of the COMPASS DAQ setup.
It has been developed by Ing. Ondřej Šubrt during the spring of the year
2016. It replaced previously used DIM library (Distributed Information Man-
agement, [19]). It is written in Qt, allowing easier integration into our DAQ
system. It is conceptually based around the same paradigms as the DIM. It
uses the similar concept of a publisher-subscriber communication with the
addition of a Control server which stores information about all published
services and available commands (Figure 2.3).

18

Similarly to DIM’s DID (DIM Information Display), the DCL provides
an inspection tool called DIALOG Communication GUI which can be used to
browse all registered processed and look through the services they provide
and they are subscribed to.

Figure 2.3: The DIALOG Communication Library concept.

19

Chapter 3

Implementation

3.1 Cluster configuration

The main cluster configuration [20] file is located at /etc/cluster/cluster.conf.
It is an XML file.

3.1.1 Cluster, cman, nodes, fencing, totem

Everyting is enclosed in a <cluster> tag. The tag has a name property
which defines the cluster name, it must be unique in our network. The
second compulsory parameter we use is a config version parametr which
stores the current version of the configuration file. It is required to increment
the number of version upon every change, otherwise the cluster would not
know the file needs to be reloaded. We can start from the number one.

CMAN

Next we must configure the cman. Because we are creating a special kind
of cluster - a two node cluster - we must use an appropriate two node pa-
rameter of the <cman> tag. Usually the expected votes parameter is set
automatically (the quorum requires 50% + 1 votes), but in this special case
scenario it must be set manually to 1. This effectively disables quorum.

20

Nodes

Cluster nodes are defined by <clusternode> tags inside a <clusternodes>

wrapper. Each node has it’s name attribute. It specifies the name. It is advis-
able to set the node name to match the fully qualified domain name (FQDN)
which is resolved to the IP address the node will have. The bond between
the FQDN and the IP address can be for example set in /etc/hosts. The
node names should be chosen such that they fit into the naming convention
of the place the cluster is deployed at. The second attribute, nodeid, is a
number and it should be unique within the cluster. The current form of the
configuration file is as follows:

1 <?xml version="1.0"?>
<cluster name=”master cl” config version=”1”>

3 <cman expected votes=”1” two node=”1”/>
<clusternodes>

5 <clusternode name=”vm1.dp.jt” nodeid=”1”/>
<clusternode name=”vm1.dp.jt” nodeid=”1”/>

7 </clusternodes>
</cluster>

Listing 3.1: cluster.conf with nodes defined.

Fencing

Fencing is a process of removing a node from cluster, putting it into a known
(turned off) state, using fence devices. There are many fencing devices, as
mentioned earlier in the section 2.1.1. As this project has been developed
and is intended to be deployed using virtual machines, the only fence device
we need has to be able to connect to the virtual host and kill the particular
virtual machine. Fence agents are scripts located in /usr/sbin/. They
serve as a mediator between the fenced daemon and the fence hardware. For
virtual fencing there are scripts already prepared for virsh (fence virsh) and
VMware (fence vmware). The script for VirtualBox (fence vbox) should be
also a part of the fence-agents package. It’s copy is on the enclosed DVD, just
for sure. Other custom fence agents can be created using provided python
fencing module that uses the FenceAgentAPI (for more see [21])

Fence devices are defined using <fencedevice> tags wrapped by
<fendedevices> parent. Each fence device expects following attributes to
be defined:

• name: a custom name

21

• agent: a name of the script that should be used, located in /usr/sbin/

The fence vbox agent additionally requires login credentials to the vir-
tual host machine

• ipaddr: a hostname or an equivalent IP address of the physical device
that the script will connect to

• login: a name of user allowed to control VirtualBox (root or an user
in the vboxusers group)

• passwd or identity file or passwd cript: depending on preferred
SSH authentication method, one of these options should be used and
appropriate values inserted (password, path to identity file, path to a
script to retrieve password)

The usage of previously defined fence devices is declared within each
cluster node. In the <clusternode> tags a <fence> section is created. It
contains a list of fence methods to use when fencing a node. Each fence
method consists of one or more <device> tags that link (via the name at-
tribute) <fencedevice> with additional attributes. These attributes tell the
fence daemon how to use the particular fence device to kill an appropriate
node. The port corresponds with the virtual machine name defined withing
the VirtualBox, action tells the fence device whether to power off or restart
the machine when being fenced.

The delay parameter should be noticed. It is a critical option within
the two node cluster setup. It specifies, how many seconds to wait before
fencing the node. In the case of network failure, both nodes will be alive and
if they don’t see each other, they will try to fence each other. With the delay
set, it is assured, that one node will have a head-start in fencing. Without
the delay, both could be fenced simultaneously, which obviously would be an
undesired result.

The <fence daemon> tag and it’s attribute post join delay configures
the fence daemon to wait specified amount of seconds for other nodes when
the cluster is starting. It can happen that the nodes are not powered on at
the same time, or that for one the booting takes longer than for the rest.
Without this delay, the slower nodes could be fenced before they are even
able to boot up and start cluster daemons. For development purposes it is
better to set the delay to larger value (like 30s).

22

Totem

The <totem> tag configures the Totem protocol. Setting rpp mode to ”none”
turns off the redundant ring protocol and setting the secauth to ”off” turns
off encription of the cluster communication, which is not required in closed
private network and it is simpler to setup and faster.

The code snipped bellow (3.2) shows the current status of the cluster.conf
file. (Notice the config version number incremented)

<?xml version="1.0"?>
2 <cluster name=”master cl” config version=”2”>

<cman expected votes=”1” two node=”1”/>
4 <clusternodes>

<clusternode name=”vm1.dp.jt” nodeid=”1”>
6 <fence>

<method name=”vbox”>
8 <device name=”VBoxMan” port=”vm1 dp” action=”reboot”/>

</method>
10 </fence>

</clusternode>
12 <clusternode name=”vm2.dp.jt” nodeid=”2”>

<fence>
14 <method name=”vbox”>

<device name=”VBoxMan” port=”vm2 dp” action=”reboot” delay=”10”/>
16 </method>

</fence>
18 </clusternode>

</clusternodes>
20 <fencedevices>

<fencedevice name=”VBoxMan” agent=”fence vbox” login=”user”
22 ipaddr=”vboxhost.dp.jt” passwd=”pass”/>

</fencedevices>
24 <fence daemon post join delay=”6”/>

<totem rrp mode=”none” secauth=”off”/>
26 </cluster>

Listing 3.2: cluster.conf with fencing defined.

3.1.2 Resources, fail-over domains, services

There is a <rm> tag (a shortcut for resource-manager) in the cluster.conf

which contains resources, fail-over domains and services.

23

Resources

All available resources are defined within the <resources> element. Re-
sources are used in Services and referenced back to their definition here.
Within this cluster, two resource types are used:

• <ip>: This represents an IP address. When a service uses this resource,
the node which the service runs at is accessible via the specified IP
address.

• <script>: This is a shortcut to a executable file representing (usually)
a daemon. The file attribute sets the path to the script; the name

attribute is there for referencing this resource

We use one IP resource, this will always be used together with the main
master process so it is accessible on the same address whichever node it
is currently deployed on. Two custom scripts, master control.py and
master backup.py are used. The first runs master in the normal mode,
the second runs master in the backup mode.

Fail-over Domains

Fail-over domains control which nodes and under which circumstances ser-
vices may run at. Each fail-over domain contains a list of nodes they are a
member of. Fail-over domains have following parameters:

• name: an unique name of the domain, used by services to choose which
domain they are a part of

• nofailback: this tells the cluster not to fail back any services. If
turned on, services won’t migrate back to their previous node should
the node return to the cluster.

• ordered: allows to set preferences between nodes within the domain.

• restricted: if turned on, it allows to run services only within the
domain. With no nodes alive in this domain, services cannot be started.
If the domain is unrestricted, services are allowed to run outside of the
domain if no domain members are alive.

24

In this project, three fail-over domains are used. One is for the mas-
ter process and for the IP address. This domain called master ip domain,
operates on both nodes, nofailback is turned on, and it is ordered and unre-
stricted. Services in this domain therefore start on the node with the higher
priority, they are allowed to migrate to other nodes when the main node dies,
but the services will not migrate back to the first node when it rejoins the
cluster.

There are additional two domains, backup domain 1 and 2. They are
ordered, restricted, and with no failback. Each of them is only on one node.
They are for the master backup.

Services

The <service> element contains references to the resources. They can be
both parallel and serialized. When in parallel, they start simultaneously,
when in series they are dependent, the nested are started only after the
parents are running. Services are assigned to domain. The exclusive tag
set to zero (0) specifies that a given node is allowed to run also other services
next to this one. The recovery attribute tells what to do when service fails.

The master ip service deserves attention. It is defined as a resource
tree, IP being parent, and a script controlling the master as child. This
configuration ensures that the master process will be always accessible via
the same IP address. This makes the master process look like it still runs on
one computer although it can migrate between the two cluster nodes.

Rgmanager regularly checks the status of resources, the default value
being 30s. If we want to change this interval, a value in the script resource
executable located in /usr/share/cluster/script.sh needs to be adjusted.
The minimal value is 10s.

The resource part of the cluster.conf can be seen in listing 3.3.

<?xml version="1.0"?>
2 <cluster name=”master cl” config version=”2”>

...
4 <rm>

<resources>
6 <ip address=”10.0.0.10” monitor link=”on” sleeptime=”10”/>

<script file=”/path/to/master backup.py” name=”master backup”/>
8 <script file=”/path/to/master control.py” name=”master control”/>

</resources>
10 <failoverdomains>

<failoverdomain name=”master ip domain” nofailback=”1”

25

12 ordered=”1” restricted=”0”>
<failoverdomainnode name=”vm1.dp.jt” priority=”1”/>

14 <failoverdomainnode name=”vm2.dp.jt” priority=”2”/>
</failoverdomain>

16 <failoverdomain name=”backup domain 1” nofailback=”1”
ordered=”1” restricted=”1”>

18 <failoverdomainnode name=”vm1.dp.jt” priority=”1”/>
</failoverdomain>

20 <failoverdomain name=”backup domain 2” nofailback=”1”
ordered=”1” restricted=”1”>

22 <failoverdomainnode name=”vm2.dp.jt” priority=”1”/>
</failoverdomain>

24 </failoverdomains>
<service name=”master ip” autostart=”1” domain=”master ip domain”

26 exclusive=”0” priority=”1” recovery=”restart”>
<ip ref=”10.0.0.10”>

28 <script ref=”master control”/>
</ip>

30 </service>
<service name=”master backup 1” autostart=”1” domain=”backup domain 1”

32 exclusive=”0” priority=”2” recovery=”restart”>
<script ref=”master backup”/>

34 </service>
<service name=”master backup 2” autostart=”1” domain=”backup domain 2”

36 exclusive=”0” priority=”2” recovery=”restart”>
<script ref=”master backup”/>

38 </service>
</rm>

40 </cluster>

Listing 3.3: cluster.conf resources.

3.2 The Master Process

The master process has always been running as a regular console application.
As the result of this project, the master needs to transformed. Master must
be able to

• run in background - daemon

• be controlled via start, stop, restart, status commands

• determine it’s status when running in background

• run as a master

26

• run as a backup

• synchronize master to backup

• run both standalone and in cluster

3.2.1 Transformation to a daemon 1

A daemon is a process that runs in the background, without interacting with
user and that doesn’t belong to any terminal session. [22, 23] Daemons are
usually controlled via scripts that can start, stop, or check the status of the
daemon.

A function called daemonize with following definition (the input param-
eters specifies the name of the daemon, a working directory and files where
to redirect standard input, output, and error output) has been added to the
master:

int daemonize(QString name, QString path, QString outfile,
2 QString errfile, QString infile);

The daemonization process starts with forking. The fork() function,
when executed, spawns a child process. The child process is the exact copy
of the parent process. In code, the child and the parent process can be dis-
tinguished by the return code of the fork(). The parent process receives the
PID (Process ID) of the new child process, whereas the child process receives
zero. If the fork failed, a negative number is returned. When successful, the
parent process is allowed to end. This returns control to the shell invoking
the program. This guarantees that the child process will not become a pro-
cess group leader. setsit() would fail if the process was a process group
leader.

The next step is to call setsid(). The child process becomes a process
group and session group leader. A controlling terminal is associated with a
session and this new session doesn’t have any terminals assigned, which is a
desired state.

Then a second fork() is called. The parent process that is a session
leader exits and the new child, a non-session group leader, can never regain
a controlling terminal.

1Please note that this is not a tutorial for joining the dark side. A daemon should be
distinguished from a demon, which is an evil spirit or a devil in some religions.

27

pid t child pid;
2 //FIRST FORK

child pid = fork();
4 if (child pid < 0){ //fork failed

std::cerr << ”Failed to fork” << std::endl;
6 exit(EXIT FAILURE);

}
8 if (child pid > 0) { //only parent

exit(EXIT SUCCESS);
10 }

if (setsid() < 0) { //failed to become session leader

12 std::cerr << ”Failed to become session leader” << std::endl;
}

14 //SECOND FORK

child pid = fork();
16 if (child pid < 0){ //fork failed

std::cerr << ”Failed to fork” << std::endl;
18 exit(EXIT FAILURE);

}
20 if (child pid > 0) { //only parent

exit(EXIT SUCCESS);
22 }

Listing 3.4: A code snippet of the double-fork (magic).

The next step is to call chdir(path), where the path is the working
directory we want the daemon to run in. It is a good practise to set it to ”/”
so that it doesn’t keep any directory (which for example an administrator
would like to unmount) in use.

umask(0) is called in order to have all permission for anything the pro-
gram writes.

The next thing to do is to close the standard input, output, and error out-
put file descriptors. Optionally, we can then open new outputs and redirect
them to some logging files, for example.

//CLOSING ALL FILE DESCRIPTORS

2 fclose(stdin);
fclose(stdout);

4 fclose(stderr);

6 //REOPEN stdin, stdout, stderr

∗stdin = ∗fopen(infile.toStdString().data(), ”r”);
8 ∗stdout = ∗fopen(outfile.toStdString().data(), ”w+”);
∗stderr = ∗fopen(errfile.toStdString().data(), ”w+”);

10

//OPEN SYSLOG

28

12 openlog(name.toStdString().data(),LOG PID,LOG DAEMON);

Listing 3.5: A code snippet of closing and reopening filedescriptors.

3.2.2 Controlling via start, stop, restart

A proper daemon can be controlled via a script using additional parameters
like start or stop. To implement this functionality, we must be able to send
signals to the running background process. For such a task, the daemon’s
PID needs to be known. Therefore the daemon must write it’s PID into a
file once it is in the daemonized state. [listing 3.6]

int writePidFile(){
2 QFile file(pidFile);

if (file.open(QIODevice::ReadWrite)) {
4 QTextStream stream(&file);

stream << getpid() << endl;
6 } else {

std::cerr << ”PID file ” << pidFile.toStdString().data()
8 << ” can’t be opened. Exiting.” << std::endl;

file.close();
10 return 1;

}
12 file.close();

return 0;
14 }

Listing 3.6: Writing a PID

The controlling part of the master process checks for input command line
arguments (start, stop, status, etc) and calls appropriate functions to handle
the desired task. We can take a look at the daemon start() function in
listing 3.7.

void daemon start(){
2 pid t pid = readPidFile();

if (pid > 0){ //pidfile exists and contains valid PID

4 if (isPidAlive(pid)){ //if process is with pid is running

std::cout << ”Daemon currently running with pid ” << pid << std::endl;
6 exit(EXIT SUCCESS); //

} else {
8 std::cout << ”Daemon not running, but pidfile present.

Non−graceful shutdown.” << std::endl;
10 delPidFile();

}
12 }

29

int res = daemonize(”master daemon”, ”/”, ”/dev/null”, ”/dev/null”, ”/dev/null”);
14 if (res == 0){

daemon run();
16 } else {

std::cerr << ”Daemonization failed.” << std::endl;
18 exit(EXIT FAILURE);

}
20 }

Listing 3.7: A function starting the daemon.

This function first checks if the daemon is running by checking the exis-
tence of PID. If the process is running, it does nothing and returns success.
If the daemon is not running, it starts the daemonization process and then
starts the event loop of the master process. The readPidFile() function is
similar to the writePidFile(), but reads from the pidfile, returning greater-
than-zero number (PID) if the pidfile exists and contains valid PID number.

The existence of a valid pid number doesn’t mean that the process is still
running. The process could exit abruptly without cleaning the pidfile. For
this case, there is a function called isPidAlive(pit t pid) [3.8] that tries
to determine if a process with given pid number exists. It uses a system
function kill(pid, signal) that can send signals to a process with given
pid. Signal 0 does nothing, but error checking is still performed. This allows
for determining whether the process is alive or not. If the return code of the
kill is zero, the signal was delivered and the process is alive. Otherwise the
signal could not be delivered and a variable errno is set depending on the
error. If the error is ESRCH, the process doesn’t exist. If the error is EPERM,
the process is alive, but our program does not have permission to send the
signal to this process. If the error is something else, the most-used technique
is to assume that the process does not exist.

bool isPidAlive(pid t pid){
2 if (pid > 0){

//signal 0; does nothing

4 //but allows to check if process with pid is alive

int res = kill(pid, 0);
6 if (res == 0){

return true;
8 } else {

if (errno == ESRCH){
10 //no process with pid pid

return false;
12 } else if (errno == EPERM) {

//process alive, but we don’t have permission

14 return true;

30

} else {
16 //we have a problem :D

return false;
18 }

}
20 }
}

Listing 3.8: A function determining if a process with PID pid exists.

The function daemon stop (listing 3.9) is used to stop the running dae-
mon. Similarly to the daemon start it first checks whether the daemon is
running. If not, it’s job is done. If it is running, it tries to gracefully shut-
down the daemon. The daemon catches SIGTERM signals to do a clean up
(free memory up, delete pidfile, etc). There is a timeout of 10s in which the
daemon is periodically sent a SIGTERM until it exists or timeout passes. If
the timeout passes and the daemon is still running, an uncatchable sginal
SIGKILL is send. SIGKILL should kill the process immediately (if we have
permission to do so). The figure 3.1 summarizes the procedure.

1 void daemon stop(){
pid t pid = readPidFile();

3 if (pid > 0){ //pidfile exists and contains valid PID

if (!isPidAlive(pid)){ //if process is with pid is running

5 //success, process not running, no need to stop it

delPidFile();
7 return;

} else {
9 //killing

float timeout = 10; //keep trying to kill only for 10s

11 int ret = 0;
while (timeout > 0){

13 timeout −= 0.1;
//SIGTERM is catched and allows for graceful shutdown.

15 ret = kill(pid, timeout > 0 ? SIGTERM : SIGKILL);
if (ret == −1 && errno == ESRCH){

17 //process is dead

delPidFile();
19 return;

}
21 usleep(100000);

if (timeout <= 0){
23 usleep(200000); //additional time for the last kill

if (isPidAlive(pid)) {
25 exit(EXIT FAILURE);

} else {
27 delPidFile();

return;

31

29 }
}

31 }
}

33 } else {
std::cout << ”No pid file. Is daemon already stopped?” << std::endl;

35 return;
}

37 }

Listing 3.9: daemon stop function.

Figure 3.1: A diagram of the daemon stop function.

A function to detect the daemon status, daemon status [3.10] is very
simple, it detects whether the daemon is running. It exists with correct exist
codes, depending on the state of the daemon.

1 void daemon status(){
pid t pid = readPidFile();

3 if (pid > 0){ //pidfile exists and contains valid PID

if (isPidAlive(pid)){ //if process with pid is running

5 std::cout << ”Daemon currently running with pid ” << pid << std::endl;
exit(EXIT SUCCESS); //

7 } else {
std::cout << ”Daemon not running, but pidfile present.” << std::endl;

9 exit(1);
}

11 } else {
std::cout << ”Daemon not running. No pid file” << std::endl;

13 exit(3);
}

15 }

Listing 3.10: daemon status function.

32

All return codes from the master process (and from the daemon control part)
are LSB compliant [24], as the rgmanager of the cluster requires.

3.2.3 Master and backup, synchronization

One of the requirements on the master process is to able to run in two modes.
One mode is the active and fully working master, the second mode is a waiting
backup mode which is always ready to switch to the full version. When the
master is started, it automatically starts to the backup mode. In this mode
it waits for the SIGUSR1 signal, which switches the daemon to the master
mode. The signal is emitted when the control part of the master is called
with parameter master. When the signal is catched, a handler maste mode

is called. It finishes threads in the backup mode and starts the master mode.

1 void master mode(qint32 sig){ // switch to master mode

if(!masterMode) {
3 syslog(LOG NOTICE,”Switching to master mode. SIGUSR1 received.”);

finish backup();
5 masterMode = true;

init master();
7 } else {

syslog(LOG NOTICE,”SIGUSR1 received. Already in master mode.”);
9 }
}

Listing 3.11: A function that switches the daemon to master mode.

The synchronization of the master and the backup master is resolved by
using the DIALOG Communication Library. The full master mode already
uses this library for coordinating the DAQ system. To send synchronization
information, a new service MASTER SYNC has to be registered. It is done by
calling

server−>registerServiceSlot(”MASTER SYNC”);

inside the run() function of a SenderProcessorThread instance. Then we
need to setup a timer which regularly triggers a function that updates the
synchronization data and pushes that through the service. This (listing 3.12)
is just an example, a presentation of a framework allowing to send arbitrary
data to the backup process.

1 void SenderProcessorThread::MSyncServiceSlot(){
QString curr time = QDateTime::currentDateTime().toString(”hh:mm:ss”);

3 QByteArray mess;

33

mess.append(QString(”Syncing master at: ”));
5 mess.append(curr time);

emit sendServiceMessageSignal(”MASTER SYNC”, mess);
7 }

Listing 3.12: Sending synchronization data.

The backup process needs to subscribe the MASTER SYNC service to receive
the synchronization data. The function init backup initializes all compo-
nents required to connect to the DIALOG Control Server. A new class
MSyncReceiverProcessorThread has been created. It handles subscribing
of the service and receiving of messages.

1 server−>requestServiceSlot(”MASTER SYNC”);

When new message arrives, a message handler messageReceivedSlot is
called which (in this synchronization example) prints the received message
to the redirected stderr.

1 std::cerr << ”SYNC: ” << QString(message).toStdString().data() << std::endl;

This synchronization framework opens up a possibility for future devel-
opment of master-backup synchronization.

3.3 Deployment in the cluster

The master process, as is, is capable to run standalone without any cluster.
To deploy it in the cluster setup, we need to make two wrapper scripts
that allow the master to run correctly in two instances, one master and one
backup. These scripts are written in Python. They are directly called by the
cluster’s rgmanager and mediate it’s requests to the master process.

3.3.1 Master control

This script runs the master in the master mode. It is a part of the master ip

service (listing 3.3). This scripts detects the commands from the rgmanager
(start, stop, status) and redirects them to the master. The start command
is enriched by the command master which switches the master to the fully
working state. The status command is more interesting. Rgmanager reg-
ularly call status on all scripts it manages. It is it’s way how to detect

34

failed service. It checks the status of the master daemon. If the master
daemon is running, no action is required. However if the master crashed for
any reason, the master control checks for the number of living nodes in the
cluster. If there are more than one node alive, it hangs the current node and
lets the cluster to switch the master to the second, backup node and fence
the local node. If there is only one node available, it exists with failure re-
turn code and lets the rgmanager to handle the restart of the master process
on the current node. The hanging of the node is issued by a system call:
subprocess.call(’echo c > /proc/sysrq-trigger’, shell=True)

1 def status():
ret = subprocess.call([master path, ’status’])

3 if ret == 0:
sys.exit(ret)

5 else:
if two nodes():

7 kill node()
else:

9 sys.exit(ret) # let the rgmanager handle the restart

Listing 3.13: Master control script; status check.

The detection of how many nodes are alive uses an utility called clustat.
It is an utility that displays current cluster status. It has an option to print
the status in the XML format, which is easier for computers to process. An
example of clustat -x output is in the listing 3.15. We use xpath language
to navigate through the XML. We take an advantage of this in the function
two nodes:

1 from subprocess import Popen, PIPE
def two nodes():

3 try:
p = subprocess.Popen([’clustat’, ’−x’])

5 p = Popen([’clustat’, ’−x’], stdout=PIPE, stderr=PIPE)
output, err = p.communicate()

7 except:
output = None

9 if output:
try:

11 root = etree.fromstring(output)
at least two nodes are alive

13 return len(root.xpath(’//node[@state=”1”]’)) >= 2
except:

15 return False
else:

17 return False

35

Listing 3.14: Two nodes function. It determines if there are two or more
nodes alive in the cluster.

1 <?xml version="1.0"?>
<clustat version=”4.1.1”>

3 <cluster name=”master cl” id=”18870” generation=”424”/>
<quorum quorate=”1” groupmember=”1”/>

5 <nodes>
<node name=”vm1.dp.jt” state=”1” local=”1” estranged=”0”

7 rgmanager=”1” rgmanager master=”0” qdisk=”0” nodeid=”0x00000001”/>
<node name=”vm2.dp.jt” state=”0” local=”0” estranged=”0”

9 rgmanager=”0” rgmanager master=”0” qdisk=”0” nodeid=”0x00000002”/>
</nodes>

11 <groups>
<group name=”service:cludaemon service 1” state=”112” state str=”started”

13 flags=”0” flags str=”” owner=”vm1.dp.jt” last owner=”none”/>
<group name=”service:cludaemon service 2” state=”110” state str=”stopped”

15 flags=”0” flags str=”” owner=”none” last owner=”none”/>
<group name=”service:ip service” state=”112” state str=”started”

17 flags=”0” flags str=”” owner=”vm1.dp.jt” last owner=”none”/>
</groups>

19 </clustat>

Listing 3.15: An example output of clustat -x.

3.3.2 Master Backup

This script is similar to the previous one, but it handles the backup mode
of the master. It takes care of the master daemon only on the node that
the Master control script is not running, otherwise they would interfere.
The detection of the location uses again the clustat (listing 3.15). The
function master is local (listing 3.16) parses the XML output and finds the
owner (the node name) of the service master ip that controls the Master
control script. Then it checks whether the node is local or not. If the master
control currently runs on local node, the master backup scripts does nothing
and reports to the rgmanager that everything is working. If the master
control runs on the other node, the master backup manages the backup
master daemon as the rgmanager desires (redirects start, stop, status calls).

1 def master is local():
try:

3 p = Popen([’clustat’, ’−x’], stdout=PIPE, stderr=PIPE)
output, err = p.communicate()

36

5 except:
output = None

7 if output:
try:

9 root = etree.fromstring(output)
get master node name (mnn)

11 mnn = root.xpath(’//group[@name=”service:master ip”]’)[0].attrib[’owner’]
return int(root.xpath(’//node[@name=”%s”]’ % mnn)[0].attrib[’local’]) == 1

13 except:
return False

15 else:
return False

Listing 3.16: A function that detects whether the master ip service is local
or not.

3.4 Master Cluster Monitor

Master Cluster Monitor is a web-based tool that I have custom-made for this
cluster. It is able to display the current status of the cluster. It shows an
overview of nodes and services. It informs about the state of nodes, about
the state of services and where the services are currently located. The layout
is a simple table (figure 3.2). It is also able to inform about various error it
encountered during obtaining the cluster info. It is written in Django using
Python. The web server should run somewhere outside the cluster. It uses
SSH (listing 3.17) to connect to the nodes of the cluster to get the output of
the clustat -x command. It first tries the first node, if it fails, it tries the
second. If the cluster is running, at least one should be accessible.

def ssh return output(user, host, cmd):
2 command = ’ssh %s@%s %s’ % (user, host, cmd)

p = Popen(command.split(), stdout=PIPE, stderr=PIPE)
4 output, err = p.communicate()

returncode = p.returncode
6 return returncode, output, err

Listing 3.17: A function that connects to remote hosts. It executes a com-
mand and returns it’s output.

It utilises functions get services (listing 3.18) and get nodes to parse
the XML output obtained from the nodes. Based on this informations, an
HTML template is rendered and presented to the user.

def get services(xml):

37

Figure 3.2: A user interface of the Cluster Monitoring Tool.

2 try:
root = etree.fromstring(xml)

4 groups = root.xpath(’//group’)
services list = []

6 for g in groups:
service = Service()

8 service.name = remove prefix(g.attrib[’name’], ’service:’)
service.state = g.attrib[’state str’]

10 service.owner = g.attrib[’owner’]
service.attention = None if service.state == ’started’ else True

12 services list.append(service)
return services list

14 except:
return None

Listing 3.18: This parses the output of clustat -x command and extracts
service info

38

Chapter 4

Tests

The aim of this chapter is to verify the correct behaviour of the newly de-
veloped cluster system. Three possible software or hardware failure sce-
narios will be explored and tested. We will be watching log outputs of
the cluster software, the output of the Cluster Monitoring Tool, and an
overview of services detected by the DIALOG Communication GUI. The test
setup is such that the host computer is running the software for monitor-
ing (CMT), communication (DIALOG Communication Control Server and
DIALOG Communication GUI), and VirtualBox. There are two virtualized
SLC 6.7 nodes which are running the cluster software.

4.1 Normal, uninterrupted operation

Starting with both nodes running and providing all services, we can check
all tools to see how normal operation looks like.

4.1.1 Syslog output of the cluster software

When everything works as it should be, the rgmanager periodically checks
the status of services. In this case, the master ip cluster service runs on the
first node. Currently the status check interval is set to 10s on both nodes.
The rgmanager logs into the syslog. A short snippet of syslog located at
/var/log/messages is shown in listings bellow.

1 May 8 19:29:46 vm1 rgmanager[5312]: [script] Executing /tmp/master backup.py status
May 8 19:29:46 vm1 rgmanager[5450]: [script] Executing /tmp/master control.py status

3 May 8 19:29:56 vm1 rgmanager[5516]: [script] Executing /tmp/master backup.py status

39

May 8 19:29:57 vm1 rgmanager[5683]: [script] Executing /tmp/master control.py status

Listing 4.1: Syslog of node one.

May 8 19:33:31 vm2 rgmanager[25273]: [script] Executing /tmp/master backup.py status
2 May 8 19:33:41 vm2 rgmanager[25321]: [script] Executing /tmp/master backup.py status

Listing 4.2: Syslog of node two.

4.1.2 Cluster Monitoring Tool

The Cluster Monitoring Tool (CMT) reports that both cluster nodes are
up and running and that all clustered services are provided.

Figure 4.1: A normal operation of the cluster displayed in the CMT.

4.1.3 DIALOG Communication GUI

The DIALOG Communication GUI shows two processes running, the DAQ
Master on the first node and the backup on the second node. (Figure 4.2).
We can further check that the processes are providing all services and that
the backup process is subscribed to the MASTER SYNC service and that SYNC
data is being sent (Figure 4.3).

4.2 Test Case One - Two nodes service crash

The first test simulates a crash of the master process. We can manually
issue /tmp/master control.py stop (in the future, change the path to the

40

Figure 4.2: A normal operation of the cluster displayed in the DIALOG
Communication GUI.

Figure 4.3: A backup process is subscribed to the MASTER SYNC service. The
output of the service is shown in the lower part of the image.

current valid path to the control script). An alternative is to call killall
master which sends a kill signal to all processed with the name master. Both
ways are equal, it stops the master process. Within 10 seconds (shortest
possible status check interval), the rgmanager checks for the status of the
master process. It will return a non-zero return code as the master is not
running anymore.

As mentioned earlier (listing 3.13), the master control.py script decides
what to do by determining how many nodes are alive. In this setup both are
alive and therefore it decides to kill the current (the first) node. The last
status check is below (4.3).

May 8 08:05:58 vm1 rgmanager[8494]: [script] Executing /tmp/master control.py status

Listing 4.3: The first status check after the master has been crashed.

The second node detected that the first node is unresponsive in 9 seconds,
when the Totem declared the first node dead. The next phase, fencing, starts
two seconds after that. The fence agent successfully fences the first node,
it took around three seconds. The survived node takes over the clustered

41

master ip service. This process requires first to add a specified IP address
to a network interface (it consumes four seconds) and then starting the full
master process. Because the backup process has already been running on
the second node, the switching to the master mode is only done by sending a
SIGUSR1 signal. The time it took from the moment the first node crashed to
the successful switch to the master mode on the second node, was roughly 19
seconds. If this happened in the real deployment it would mean only roughly
one or two spills would be lost. The output from the syslog of the second
node is in the listing 4.4.

1 May 8 08:06:07 vm2 corosync[1322]: [TOTEM] A processor failed, forming new configuration.
May 8 08:06:09 vm2 corosync[1322]: [QUORUM] Members[1]: 2

3 May 8 08:06:09 vm2 corosync[1322]: [TOTEM] A processor joined or left the membership
and a new membership was formed.

5 May 8 08:06:09 vm2 kernel: dlm: closing connection to node 1
May 8 08:06:09 vm2 corosync[1322]: [CPG] chosen downlist: sender r(0) ip(10.0.0.102) ;

7 members(old:2 left:1)
May 8 08:06:09 vm2 corosync[1322]: [MAIN] Completed service synchronization, ready to

9 provide service.
May 8 08:06:09 vm2 rgmanager[1946]: State change: vm1.dp.jt DOWN

11 May 8 08:06:09 vm2 fenced[1386]: fencing node vm1.dp.jt
May 8 08:06:12 vm2 fenced[1386]: fence vm1.dp.jt success

13 May 8 08:06:12 vm2 rgmanager[4135]: [script] Executing /tmp/master backup.py status
May 8 08:06:12 vm2 rgmanager[1946]: Marking service:master backup 1 as stopped:

15 Restricted domain unavailable
May 8 08:06:12 vm2 rgmanager[1946]: Taking over service service:master ip from down

17 member vm1.dp.jt
May 8 08:06:12 vm2 rgmanager[4225]: [ip] Adding IPv4 address 10.0.0.10/24 to eth1

19 May 8 08:06:16 vm2 rgmanager[4314]: [script] Executing /tmp/master control.py start
May 8 08:06:17 vm2 [3163]: Switching to master mode. SIGUSR1 received.

21 May 8 08:06:17 vm2 rgmanager[1946]: Service service:master ip started

Listing 4.4: The syslog output of the second node. Service relocation.

The fencing agent rebooted the first node. The node then rejoined the
cluster and started providing master backup 1 service approximately after
34 seconds after being successfully fenced, see listing from the second node
4.5.

1 May 8 08:06:34 vm2 corosync[1322]: [TOTEM] A processor joined or left the membership
and a new membership was formed.

3 May 8 08:06:34 vm2 corosync[1322]: [QUORUM] Members[2]: 1 2
May 8 08:06:34 vm2 corosync[1322]: [QUORUM] Members[2]: 1 2

5 May 8 08:06:34 vm2 corosync[1322]: [CPG] chosen downlist: sender r(0) ip(10.0.0.101) ;
members(old:1 left:0)

7 May 8 08:06:34 vm2 corosync[1322]: [MAIN] Completed service synchronization,
ready to provide service.

9 May 8 08:06:35 vm2 rgmanager[4402]: [script] Executing /tmp/master control.py status
May 8 08:06:41 vm2 kernel: dlm: got connection from 1

11 May 8 08:06:45 vm2 rgmanager[4530]: [script] Executing /tmp/master backup.py status
May 8 08:06:46 vm2 rgmanager[4672]: [script] Executing /tmp/master control.py status

13 May 8 08:06:46 vm2 rgmanager[1946]: State change: vm1.dp.jt UP

Listing 4.5: The syslog output of the second node. The first node joining
back.

42

The DIALOG Communication GUI follows the progress of the cluster. At
first the Master process disappears from the first node. When the second
node takes over the clustered master ip service, the Backup master process
on the second node is replaced by the new Master process on the new host.
This state is shown on the figure 4.4. When the first node rejoins the cluster,
a new Backup master process appears with the address of the first node.
The two processes effectively switched their owners.

Figure 4.4: The Master process has been relocated to the second node.

The output of the Cluster Monitoring Tool from the moment before the
first node rejoins the cluster shows (Figure 4.5) the correct state and displays
errors it encountered during retrieving the cluster status information.

Figure 4.5: The first node is rebooting.

One thing should be mentioned. According to the cluster.conf (list-
ing 3.2), the first node is always fenced immediately while the fence agent

43

always waits 10 seconds before fencing the second node. In a reversed case
scenario (if the two nodes swapped their roles), the whole process would take
10 more seconds because of the fencing delay.

4.3 Test Case Two - Network Failure

This test is trying to simulate a network failure. It should test whether the
current cluster setup is resilient to the split-brain and fence-races situation.
Fence-race situation is a situation in which both nodes try to fence each other
in order to bring the second node to the known state. It could end-up with
both nodes fenced - turning the cluster off. In the real world deployment,
nodes should have multiple network interfaces, each for different type of com-
munication (inter-cluster communication - TOTEM, corosync, connection to
fence devices, and more).

However in this testing setup we have only one network interface that
is used for both tasks. In order to block communication between the nodes
without breaking communication to the fence device, iptables comes in
handy. The task is to block the corosync communication which listens by
default on ports 5404 and 5405. It can be found using netstat command
(listing 4.6):

1 [root@vm1 ∼]$ netstat −lptnu | grep corosync
udp 0 0 10.0.0.101:5404 0.0.0.0:∗ 1727/corosync

3 udp 0 0 10.0.0.101:5405 0.0.0.0:∗ 1727/corosync
udp 0 0 239.192.73.0:5405 0.0.0.0:∗ 1727/corosync

Listing 4.6: The output of the netstat utility. Detecting the ports corosync
uses.

The default iptables configuration blocks this kind of connection. So
turning the iptables on (service iptables start) on both simultane-
ously creates exactly the kind of situation we want to test. Both nodes are
alive, they can’t communicate with each other, and they can communicate
with the fence device (the communication is done over the ssh). The only
thing they can do is to assure that they know the other node is in a known
state, i.e. fenced. Let’s take a look at the output from the syslog on the first
(listing 4.7) and the second node (listing 4.8).

May 8 23:16:31 vm1 kernel: ip tables: (C) 2000−2006 Netfilter Core Team
2 May 8 23:16:39 vm1 rgmanager[23947]: [script] Executing /tmp/master backup.py status

May 8 23:16:41 vm1 corosync[1312]: [TOTEM] A processor failed, forming new configuration.
4 May 8 23:16:43 vm1 corosync[1312]: [QUORUM] Members[1]: 1

May 8 23:16:43 vm1 corosync[1312]: [TOTEM] A processor joined or left the membership
6 and a new membership was formed.

44

May 8 23:16:43 vm1 kernel: dlm: closing connection to node 2
8 May 8 23:16:43 vm1 corosync[1312]: [CPG] chosen downlist: sender r(0) ip(10.0.0.101) ;

members(old:2 left:1)
10 May 8 23:16:43 vm1 corosync[1312]: [MAIN] Completed service synchronization,

ready to provide service.
12 May 8 23:16:43 vm1 rgmanager[22326]: State change: vm2.dp.jt DOWN

May 8 23:16:43 vm1 fenced[1379]: fencing node vm2.dp.jt

Listing 4.7: Syslog of the first node after turning iptables on.

1 May 8 23:16:31 vm2 kernel: ip tables: (C) 2000−2006 Netfilter Core Team
May 8 23:16:38 vm2 rgmanager[18398]: [script] Executing /tmp/master control.py status

3 May 8 23:16:41 vm2 corosync[1323]: [TOTEM] A processor failed, forming new configuration.
May 8 23:16:43 vm2 corosync[1323]: [QUORUM] Members[1]: 2

5 May 8 23:16:43 vm2 corosync[1323]: [TOTEM] A processor joined or left the membership
and a new membership was formed.

7 May 8 23:16:43 vm2 kernel: dlm: closing connection to node 1
May 8 23:16:43 vm2 corosync[1323]: [CPG] chosen downlist: sender r(0) ip(10.0.0.102) ;

9 members(old:2 left:1)
May 8 23:16:43 vm2 corosync[1323]: [MAIN] Completed service synchronization,

11 ready to provide service.
May 8 23:16:43 vm2 rgmanager[15917]: State change: vm1.dp.jt DOWN

13 May 8 23:16:43 vm2 fenced[1382]: fencing node vm1.dp.jt
May 8 23:16:46 vm2 fenced[1382]: fence vm1.dp.jt success

15 May 8 23:16:46 vm2 rgmanager[15917]: Marking service:master backup 1 as stopped:
Restricted domain unavailable

17 May 8 23:16:48 vm2 rgmanager[18467]: [script] Executing /tmp/master backup.py status

Listing 4.8: Syslog of the first node after turning iptables on.

We can clearly see that 10 seconds after turning the iptables on, both
nodes declared the other node dead. Then they started fencing the (from
their own perspective) lost node at exactly the same time. The second node
survived and successfully fenced the first node. No fence-race nor split-brain
has occurred. It was caused by the delay attribute in the fence device
definition in cluster.conf file. It told the first node to wait before fencing.
Without the delay, the result would be undetermined, it could have finished
with both nodes dead, with one alive, or with both alive.

4.4 Test Case Three - Single node service crash

The last from the series of tests will look into the behaviour of the cluster
when only one node is alive. The setup of fail-over domains ensures that
the clustered master ip service will always run on the node that is alive. It
means that the master process will be running as well. We can now test how
long it takes to restart the master process should it crash. To create this
situation, we manually turn off the first node. The resulting (initial) setup
will be the same as described by the figure 4.5.

45

Now we can crash the master process. To do so, we can issue following
command, which immediately kills the process and loggs it into the syslog
for better track of time.

1 kill −9 ‘cat /tmp/master daemon.pid‘ && logger Master manually killed.

Figure 4.6: The recovery of the master ip service.

The cluster found out that the master process is dead during the first sta-
tus check after it was killed. We can now clearly see that the master control.py

script behaves differently from the first Test Case. Now it correctly detected
that there is only one node alive and therefore it did not stop this node and
it passed the control to the rgmanager. Rgmanager is set to try to restart
this failed service. The master ip service is defined as a resource tree with
the IP resource as the parent and the master control.py script as the child.
This ensures that the master process is started only and only in the case that
the predefined IP address is active on the node. The listing 4.9 contains this
whole process, removing and adding IP address is recorded as the whole ser-
vice is begin restarted. The whole process of recovery takes approximately 26
seconds. The figure 4.6 catches the moment of the recovery of the master ip

service.

1 May 9 01:07:50 vm2 rgmanager[5212]: [script] Executing /tmp/master control.py status
May 9 01:07:52 vm2 root: Master manually killed.

3 May 9 01:08:00 vm2 rgmanager[5308]: [script] Executing /tmp/master backup.py status
May 9 01:08:00 vm2 rgmanager[5451]: [script] Executing /tmp/master control.py status

5 May 9 01:08:01 vm2 rgmanager[5484]: [script] script:master control:
status of /tmp/master control.py failed (returned 1)

7 May 9 01:08:01 vm2 rgmanager[3471]: status on script ”master control” returned 1 (generic err)
May 9 01:08:01 vm2 rgmanager[3471]: Stopping service service:master ip

9 May 9 01:08:01 vm2 rgmanager[5524]: [script] Executing /tmp/master control.py stop

46

May 9 01:08:01 vm2 rgmanager[5585]: [ip] Removing IPv4 address 10.0.0.10/24 from eth1
11 May 9 01:08:10 vm2 rgmanager[5628]: [script] Executing /tmp/master backup.py status

May 9 01:08:11 vm2 rgmanager[3471]: Service service:master ip is recovering
13 May 9 01:08:11 vm2 rgmanager[3471]: Recovering failed service service:master ip

May 9 01:08:12 vm2 rgmanager[5721]: [ip] Adding IPv4 address 10.0.0.10/24 to eth1
15 May 9 01:08:15 vm2 rgmanager[5804]: [script] Executing /tmp/master control.py start

May 9 01:08:16 vm2 V[5829]: Switching to master mode. Signal SIGUSR1 received.
17 May 9 01:08:16 vm2 rgmanager[3471]: Service service:master ip started

Listing 4.9: A single node service recovery test.

47

Conclusion

This diploma thesis was focused on increasing the availability of the main
process of the DAQ system (the master process), creating a backup system,
and on finding a way of synchronization of the main and the backup processes.

The higher availability and the backup process have been implemented
using a high-availability cluster software. It produced a system that is both
hardware and software fault tolerant. With the deployment of the master
process in the cluster, new requirements to this process have arisen. All of
them have been successfully satisfied and implemented.

During the development process a need for a cluster monitoring tool ap-
peared. As a result, a new web-based tool for cluster monitoring has been
created. It can now be deployed in the control room to help the crew to ac-
cess up-to-date information about the cluster status and services it provides.

A draft of how to synchronize arbitrary data between the main master
process and it’s backup sibling has been presented. It is up to the future
projects to fully utilise the suggested way of synchronization.

The goal of this diploma thesis has been fully fulfilled.

48

Bibliography

[1] J. Tomsa: Monitoring tools for the data acquisition system of the COM-
PASS experiment at CERN
Prague, Czech Technical University in Prague, June 2014

[2] http://cern.ch/
European Organization for Nuclear Research
[online] cited in May 2016

[3] Adolph Ch. et al. (The COMPASS Collaboration): COMPASS-
II Proposal
CERN-SPSC-2010-014; SPSC-P-340, May 2010.

[4] M Bodlak, V Frolov, S Huber, V Jary, I Konorov, D Levit,
J Novy, R Salac, J Tomsa and M Virius

Monitoring tools of COMPASS experiment at CERN
Int. Conf. Proc. CHEP2015

[5] M. Bodlak, V. Frolov, V. Jary, S. Hube,r I. Konorov, D. Levit, A. Mann,
J. Novy, S. Paul, and M. Virius:
New data acquisition system for the COMPASS experiment
Topical Workshop on Electronic for Particle Physics, September 2012

[6] Anticic T. et al.: (ALICE DAQ Project): ALICE DAQ and ECS
User’s Guide)
CERN, EDMS 616039, January 2006

[7] M. Bodlák: COMPASS DAQ – Database architecture and support util-
ities.
Prague, Czech Technical University in Prague, June 2012

[8] J. Nový: COMPASS DAQ - Basic Control System.
Prague, Czech Technical University in Prague, June 2012

49

[9] en.wikipedia.org/wiki/High-availability cluster
High-availability, Wikipedia
[online] cited in April 2016

[10] https://access.redhat.com/documentation/en-
US/Red Hat Enterprise Linux/5/html/ Configura-
tion Example - Oracle HA on Cluster Suite/images/2-node-
oracle.png
Red Hat Documentation
[online] cited in April 2016

[11] https://access.redhat.com/documentation/en-
US/Red Hat Enterprise Linux/5/html/Cluster Suite Overview/
Red Hat Cluster Suite, documentation
[online] cited in April 2016

[12] https://fedorahosted.org/cluster/wiki/RGManager
Resource Group Manager, documentation
[online] cited in April 2016

[13] https://alteeve.ca/w/Rgmanager
Resource Group Manager, wiki
[online] cited in April 2016

[14] http://www.cplusplus.com/info/description/
About C++
[online] cited in May 2016

[15] https://en.wikipedia.org/wiki/C++
About C++, wiki
[online] cited in May 2016

[16] https://wiki.qt.io/About Qt
About Qt, Qt wiki
[online] cited in May 2016

[17] https://en.wikipedia.org/wiki/Python (programming language)
Python programming language, wiki
[online] cited in May 2016

[18] https://en.wikipedia.org/wiki/Django (web framework))
Django, wiki
[online] cited in May 2016

50

[19] http://dim.web.cern.ch/
The DIM website
[online] cited in May 2016

[20] https://access.redhat.com/documentation/en-
US/Red Hat Enterprise Linux/6/html/Cluster Administration/ch-
config-cli-CA.html
RHCS configuration, documentation
[online] cited in May 2016

[21] https://fedorahosted.org/cluster/wiki/FenceAgentAPI
Fence agent API
[online] cited in May 2016

[22] http://www.linfo.org/daemon.html
Unix Daemon definition
[online] cited in May 2016

[23] http://lib.ru/UNIXFAQ/unixprogrfaq.txt
Unix Programming FAQ
[online] cited in May 2016

[24] http://refspecs.linuxbase.org/LSB 3.1.0/LSB-Core-
generic/LSB-Core-generic/iniscrptact.html
LSB Compliant return codes for daemon.
[online] cited in May 2016

51

Appendix A

Installation Guide

This appendix is meant to be a guide to install and deploy the software
solution presented in this thesis. It can also be used as a quick reference for
useful commands and various observations.

The PDF version of this thesis and all source codes are available on the
enclosed DVD on the back cover of this thesis.

A.1 Virtual Machines

The software in this thesis has been developed with help of virtual machines.
The final product is also meant to be deployed on virtual machines.

A.1.1 VirtualBox

VirtualBox is one of many tools for virtualization. It can downloaded either
from the virtualbox site (https://www.virtualbox.org/wiki/Downloads)
or from repositories.

1 sudo apt−get install virtualbox #debian based distributions

sudo yum install virtualbox #RHEL based distributions

A.1.2 Vagrant

Vagrant (https://www.vagrantup.com/) is a very useful tool for managing
development environments. It is downloadable from the webpage or from

I

repositories. It provides automatized creating of virtual machines, working
on top of virtualbox and other providers of virtual machines. It is able to
obtain a machine image (so called box), provision the machine (install various
packages, setup network, etc.), setup ssh access, mount shared folders
It is not necessary to use, but once properly configured speeds up the initial
development. Starting is simple:

cd path/to/working/dir
2 vagrant init [box name] #for example vagrant init indatus/sl65

The box used in this thesis was indatus/sl65, downloaded from the box repos-
itory https://atlas.hashicorp.com. I slightly upgraded it and repacked it and
it is available on the DVD.

Vagrant init creates a new vagrant environment, within which there is
a Vagrantfile. It is the main configuration file for vagrant. It defines which
boxes to download, how many machines to manage, setup their names, RAM,
CPU, ip addreses, ssh access, etc. See the enclosed DVD for an example of
the Vagrantfile. The table below shows some daily used commands.

Start all machines vagrant up

Start specific machine vagrant up vm1

Stop machines vagrant halt

SSH connection to machine vagrant ssh vm1

A.1.3 VirtualBox additions

Once the machines are running, I recommend to install VirtualBox additions,
which make the work with virtual machines more pleasant. Go to the menu
of the running machine - section Devices/Insert guest addition CD.

Then head to the virtual machine. Create a directory to mount the CD
to. Try to install the guest additions. It might be possible that it would
require to have gcc and kernel headers installed.

mkdir /mnt/cdrom
2 mount −t iso9660 −o ro /dev/sr0 /mnt/cdrom

yum install gcc kernel−devel−2.6.32−573
4 sudo /mnt/cdrom/VBoxLinuxAdditions.run −−nox11 #nox11 if you are not using X

II

A.2 Cluster software and node setup

There is a list of software that is required to run the cluster. This is the basics.
NTP should be installed in order to have the time of all nodes synchronized.
Run the following commands.

sudo yum update
2 sudo yum install cman corosync rgmanager ricci pcs fence−agents ntp

There is another list of programs that I find very useful during development,
but it is optional.

sudo yum install rsync vim screen man

Ricci and modclusterd daemons

These two daemons take care of propagating modifications to the cluster and
of distributing the cluster.conf file. Now setup a password for ricci, the
same on all nodes.

1 passwd ricci

Now setup the ricci and modclusterd daemon to start automatically on
each start of the system:

1 chkconfig ricci on
chkconfig modclusterd on

SSH access

Setup a password-less ssh access between cluster nodes and to other comput-
ers, if required (for example to the virtual machine host).

ssh−keygen #creates a new key pair

2 ssh−copy−id user@address.of.target #this copies public key for passwordless access

IPTables

IPTables is a linux firewall. The network is a key resource for cluster. There-
fore we need to configure iptables in such a way that it does not block the
cluster communication. Configuring iptables is a difficult and large topic on
it’s own, so there is only an example of how to allow communication for cman
(totem, corosync) which uses UDP/multicast on ports 5404 and 5405.

III

iptables −I INPUT −m state −−state NEW −m multiport −p udp −s 10.20.0.0/16
2 −d 10.20.0.0/16 −−dports 5404,5405 −j ACCEPT

iptables −I INPUT −m addrtype −−dst−type MULTICAST −m state −−state NEW
4 −m multiport −p udp −s 10.20.0.0/16 −−dports 5404,5405 −j ACCEPT

However I would recommend to temporarily turn iptables off and set them
up only when needed and when everything else works properly.

chkconfig iptables off

SELinux

SELinux is a Security-Enhanced Linux, a kernel security module which pro-
vides support for access control. We need to configure SELinux so it allows
fenced daemon to use network and ssh to connect to fence devices.

1 setsebool −P fenced can network connect 1
setsebool −P fenced can ssh 1

But again, as with IPTables, unless you need SELinux, you might want to
turn it off for development and turn it on afterwards.

vim /etc/sysconfig/selinux #set it to disabled

Now is time to restart your virtual machines.

Cluster configuration

The cluster is configured via the cluster.conf XML file. Once a first version
of the configuration file is ready, copy it to /etc/cluster/cluster.conf.
Remember to always increment the config version attribute when push-
ing the new configuration. Validate the configuration. If the configuration
validates, sync the changes to other nodes (or you can copy it manually).

1 ccs config validate #validates configuration

ccs sync #synchronizes configuration accross the cluster

If you have any custom fence agents, those (executable) scripts should be
place into the /usr/sbin/ folder. The naming convention is to prefix the
script with fence , for example fence virtualbox.

IV

Hosts

Configure hosts file. It is located in /etc/hosts. This file serves for translat-
ing address strings to actual ip addresses. When configured properly, verbose
names (like vm1.dp.jt) can be used system-wide instead of plain ip addresses
(10.0.0.101). Even in cluster configuration files. Below there is a sample
configuration of the /etc/hosts file.

127.0.0.1 vm1 localhost
2 #NODE 1

10.0.0.101 vm1 vm1.dp vm1.dp.jt
4 #NODE 2

10.0.0.102 vm2 vm2.dp vm2.dp.jt
6 #VBOXHOST

10.0.0.1 vboxhost vboxhost.dp vboxhost.dp.jt
8 #MASTER ADDRESS

10.0.0.10 master master.dp master.dp.jt

CMAN, Rgmanager

When the configuration file is ready and verified, it is time to start the cluster
software.

1 #on every node

service cman start

This groups all nodes together to form a cluster. The status of the cluster
can be checked with the clustat command. It produces an output similar
to this:

Cluster Status for master cl @ Mon May 9 05:22:47 2016
2 Member Status: Quorate

4 Member Name ID Status
−−−−−− −−−− −−− −−−−−−

6 vm1.dp.jt 1 Online, Local
vm2.dp.jt 2 Online

The cman only creates a skeleton on which resources can be deployed. In
order to start providing resources, rgmanages must be started:

1 service rgmanager start

This starts services according to the cluster.conf file. The output of the
clustat is enriched by the info about services:

1 Service Name Owner (Last) State
−−−−−−− −−−− −−−−− −−−−−− −−−−−

3 service:master backup 1 vm1.dp.jt started
service:master backup 2 vm2.dp.jt started

V

5 service:master ip vm2.dp.jt started

It is very useful to watch the syslog. It helps a lot during development. The
cluster software uses it extensively to inform about everything it does.

1 tail −n50 −f /var/log/messages

For development purposes it is advisable to start cman and rgmanager

manually. But when it comes to deployment, it is necessary to make these
services autostart on boot.

1 chkconfig cman on
chkconfig rgmanager on

A.3 The master process

A.3.1 The master

Full source codes for the master process are available on the enclosed DVD
or on an online git repository (after requesting for access). The git address
is https://gitlab.cern.ch/COMPASS RCCARS/compass-rccars-daq.

Because the project is written using Qt, it is therefore necessary to install
Qt libraries. Installing QtCreator from repositories should be sufficient, but
if the node is not going to be used for development, the qt core should suffice:

yum install qt5−qtbase−devel qt5−qtbase−gui qt5−qtbase−mysql

For building the applications, load the project into the QtCreator, configure,
and build. There are several components of the DAQ Software that are
required to compile the master process.

• DIM library - the package is on the enclosed DVD; it is downloadable
from https://dim.web.cern.ch/dim/

• TransportProtocol - a part of the DAQ Software package; handles cod-
ing and decoding of internal messages

• DIALOG Communication library

• Database library - a custom made library for the DAQ Software

VI

The DIM and DIALOG Communication libraries are used as shared ob-
jects. When deploying the master, it is necessary to make symbolic links
to /usr/lib64 or to setup correctly the LD LIBRARY PATH environment vari-
able. The master requires also these additional environment variables to be
set:

• MasterAdress

• MasterPort

• DIALOG CONTROL SERVER ADDRESS

• DIALOG CONTROL SERVER PORT

• DP USER

• DB PASSWD

This is valid for starting the master manually. However when deploying the
master as a clustered service, it is unable to read any user defined environ-
ment variables (setting them to /etc/environment or /etc/profile does
not work either). The only way is to hardcode these values or to create con-
figuration file which the master is going to read from. The default location
of the master pidfile is /tmp/master daemon.pid. This can be also adjusted.
The master location should be /online/compass-rccars-daq/compass-rccars-
daq-master/master.

A.3.2 Cluster wrappers for the master

The master backup.py and master control.py scripts don’t have any spe-
cial dependences. They are simple python scripts, so the only requirements
are python 2 and a lxml python library. This library can be obtained using
pip:

1 pip install lxml

The location of these scripts is up to the user, but their current location
must reflect in the cluster.conf file. Before using, they should be edited
to adjust the master path.

VII

A.4 Cluster Monitoring Tool

This monitoring tool is developed in Django using Python. It is recommended
to install this application into a virtualenv.

1 cd /path/to/cmt
virtualenv clu mon

3 cd clu mon
source bin/activate

5 pip install django==1.9
pip install lxml

7 cp /path/to/cmt−source /path/to/cmt/clu mon/
cd clu mon

9 ./manage.py runserver 0.0.0.0:[port]

After this sequence, a web server should be running and the application
should be available at port [port] on the machine it started on. It is however
recommended not to use this django development webserver for deployment,
apache2 or nginx should be used instead.

VIII

	Cern & COMPASS & DAQ
	CERN
	The COMPASS experiment
	The DAQ of COMPASS

	Software technologies
	Red Hat Cluster Suite
	Concepts and Components

	C++ and Qt framework
	Python
	Django
	DIALOG Communication Library

	Implementation
	Cluster configuration
	Cluster, cman, nodes, fencing, totem
	Resources, fail-over domains, services

	The Master Process
	Transformation to a daemon
	Controlling via start, stop, restart
	Master and backup, synchronization

	Deployment in the cluster
	Master control
	Master Backup

	Master Cluster Monitor

	Tests
	Normal, uninterrupted operation
	Syslog output of the cluster software
	Cluster Monitoring Tool
	DIALOG Communication GUI

	Two nodes service crash
	Network Failure
	Single node service crash

	Installation Guide
	Virtual Machines
	VirtualBox
	Vagrant
	VirtualBox additions

	Cluster software and node setup
	The master process
	The master
	Cluster wrappers for the master

	Cluster Monitoring Tool

