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CHAPTER 1

Introduction

Ever since the discovery that atomic nuclei are positively charged, scientists wondered what counter-
acts the electrostatic repulsion and holds them together. In an article from 1934, Yukawa predicted
that the nuclear force is carried by a particle of approximately 200 times the mass of an electron. This
particle was first observed in 1947 in cosmic-ray experiments using photo-emulsion plates and was
called the pion. Soon after this initial breakthrough, the usage of particle accelerators became com-
mon and many other short-lived, strongly-interacting particles were discovered in inelastic scattering
experiments and were named hadrons. It was now up to the theorists to classify these new particles in
a conclusive model.

The first attempt at such a theoretical model was made independently by Gell-Mann and Ne’eman
called the Eightfold Way. It organized the hadrons into octets (see figure 1.1), using a new quantum
number, the Strangeness S , in addition to the charge, to differentiate between the hadrons. The
additional symmetry connected to S directly led to the proposition of the Constituent Quark Model
(CQM) by Gell-Mann and Zweig, suggesting that hadrons are comprised of spin-1/2 constituents
called quarks.

Figure 1.1: The meson octet for spinless mesons with negative parity. Particles on the same horizontal line
have the same strangeness, the meson charge is constant on diagonal lines.
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Chapter 1 Introduction

The discovery of the ∆++ baryon, which consists of three up-quarks with parallel spins, posed a
challenge for the quark model: Since quarks are fermions, the ∆++ seemed to violate the Pauli
principle. Therefore, in 1965 an additional SU(3) degree of freedom for quarks, called color charge,
was proposed alongside gauge-bosons, the gluons, that were responsible for the interaction between
quarks. This lead to the development of the quantum field theory of the strong interaction which
is called quantum chromodynamics. The name already hints that it was constructed in analogy to
quantum electrodynamics, but there are important differences between the two theories. Gluons,
unlike their electromagnetic counterparts, the photons, which carry no electric charge, do carry color
charge and can therefore interact with one another. This has large consequences for the way hadrons
behave.

One phenomenon of the strong force is called confinement, which describes the effect that the
attracting force between two quarks does not decrease when they are separated. Therefore, when a
quark is pulled out of a hadron, the creation of a new quark-antiquark pair is energetically favourable.
Confinement is the reason that there has never been an observation of a free quark. Another property
of the strong force is the asymptotic freedom, which means that quarks interact only weakly at high
energy scales. At the energy scale of hadrons, the coupling is in the order of 1. Therefore perturbation
theory, called perturbative QCD (pQCD), does not converge at low energies.

In the following text, the two most important theoretical concepts, the constituent quark model and
quantum chromodynamics, are looked at closer in the context of light mesons1. Thereafter, the
experimental side of light-meson spectroscopy is addressed. This is followed by a chapter on the
COMPASS experiment, which provided the data for this analysis and finally the structure for the
remainder of the thesis is explained.

1.1 Light Mesons

1.1.1 Constituent Quark Model

In the constituent quark model, mesons are the simplest hadron. They represent a bound quark and
antiquark system. The spins of the two quarks can couple to the total spin S in two different ways:

|↑↓〉 : S = 0

|↑↑〉 : S = 1
(1.1)

A relative orbital angular momentum L between the two quarks couples with the spin S to the total
angular momentum J, which is equal to the spin of the meson:

|L − S | ≤ J ≤ L + S (1.2)

1 Mesons that contain only u,d and s quarks.
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1.1 Light Mesons

The combination of the intrinsic parities of the quark (= +1), the antiquark (= −1) and the spatial
wave function with the angular momentum L (= −1L) results in the total parity P of the meson:

P = (+1)(−1)(−1)L = (−1)L+1 (1.3)

If the meson satisfies the equation P = (−1)J , it is defined to have the positive naturality η = +1. In
case of P = (−1)J+1 the naturality is negative with η = −1. Therefore the naturality is defined as

η = P(−1)J (1.4)

The C-parity is another multiplicative quantum number that describes the symmetry of the particle
under charge conjugation. A neutral meson, which consists of a quark and the respective antiquark, is
a C-parity eigenstate with eigenvalue

C = (−1)L+S . (1.5)

Charged mesons with the z component of the isospin I3 , 0 are not eigenstates, but by convention the
C-parity of the neutral isospin partner state is assigned to them. To extend the C-parity to charged
states, one can introduce the G-parity, which is a multiplicative quantum number defined for all
non-strange mesons. It is defined as the charge conjugation, followed by a 180° rotation around the
y-axis in isospin space. The latter corresponds to a charge reversal.

G = CeıπI2 = C(−1)I (1.6)

The G-parity is a good quantum number for all non-strange, light mesons. Based on the definitions of
the quantum numbers, the mesons listed in table 1.2 can be constructed in the CQM. The rules forbid
certain JPC combinations, which is why they are called spin-exotic:

JPC = 0−−, even+−, odd−+ (1.7)

1.1.2 Quantum Chromodynamics

The constituent quark model is quite successful in classifying hadrons and, considering its simplicity,
it predicts the masses of many hadrons reasonably well. However, exact calculations using potential
models fail, because on this energy scale the quarks in the meson can not be regarded as quasi-free
and the perturbation approximation breaks down. The mass is then dominated by self-interaction of
quarks and gluons that cannot be calculated by current models.

Even today it is impossible to calculate the light-meson spectrum from first principles. One approach
that is most promising in this respect is called lattice QCD. It performs a numeric simulation of QCD
on a grid in space and time using the grid spacing a. Since the computations are dimensionless, a
physical scale has to be established, which is done by fixing the mass of the pion. The challenge
of lattice QCD is that it is computationally very expensive. The computing costs scale with a−6

and m−2
π [1]. The reason for the rising costs with smaller pion masses is the amount of vacuum

loops that have to be calculated. An example for a state-of-the-art calculation in the field of meson
spectroscopy is shown in figure 1.2, which was calculated using a lattice spacing of a = 0.12 fm
and an unphysically large pion mass of mπ = 396 MeV/c2. Although the mesons are shifted to
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Chapter 1 Introduction

J L S I IG J PC Mesons Type

0 0 0 0 0+0−+ η, η′(958), ...
Pseudo-scalar

0 0 0 1 1−0−+ π, π(1300), π(1800), ...

0 1 1 0 0+0++ σ, f0(980), ...
Scalar

0 1 1 1 1−0++ a0(980)

1 0 1 0 0−1−− ω(782), φ(1020), ...
Vector

1 0 1 1 1+1−− ρ(770), ...

1 1 0 0 0−1+− h1(1170), ...
Pseudo-vector

1 1 0 1 1+1+− b1(1235), ...

1 1 1 0 0+1++ f1(1285), ...
Axial-vector

1 1 1 1 1−1++ a1(1260), ...

2 2 1 0 0+2−+ η2(1645), ...
Tensor

2 2 0 1 1−2−+ π2(1670), π2(1880), ...

2 1 1 0 0+2++ f2(1270), ...
Tensor

2 1 1 1 1−2++ a2(1320), ...

Table 1.2: Overview of the allowed meson states with J ≤ 2 within the constituent quark model.

Figure 1.2: Light-meson spectrum derived from lattice QCD calculations.
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1.1 Light Mesons

higher masses, most experimentally confirmed resonances can be identified. Additionally, in the right
column, some resonances are predicted in the spin-exotic sector, which do not exist in the constituent
quark model. This includes resonances that are not predicted by the quark model including resonances
in the spin-exotic regime.

The continuing technological progress will undoubtedly lead to better predictions of the light-meson
spectrum, as the pion mass will be reduced to realistic values.

1.1.3 Light-Meson Spectroscopy Experiments

As always in physics, the theories have to be experimentally confirmed or invalidated. With the
discovery of many light mesons in the 60s and 70s, it was presumed that most of their spectrum
was discovered. With the increasing center-of-mass energies accelerators could achieve, high-energy
experiments were focused, which showed good success within the approximation of perturbative
QCD.

But for the last 20 years, a revival of light-meson spectroscopy could be observed. Several experiments
around the world put their efforts into exploring the physics of non-perturbative QCD, hunting for
exotic states. The analysis in this thesis is performed with data from the COMPASS experiment at
CERN; other experiments researching light mesons include the GlueX and CLAS at JLab (US) and
the VES collaboration (RUS).

There are different types of experiments to perform hadron spectroscopy, the two most common
being formation and production experiments. In formation experiments, two colliding particles form
a resonance. When this happens the cross section of the reaction peaks at a certain center-of-mass
energy. The downside of this method is, that the possible quantum numbers of the resonance are
limited by the colliding particles and their energy. In production experiments, which the COMPASS
experiments belongs to, a constant high-energy beam collides with a target. A resonance is not
identified by changes in the cross section at certain center-of-mass energies, but rather by peaks
in the final-state invariant mass spectrum. This makes finding resonances harder than in formation
experiments, because one has to first consider all accessible final states. But the advantage is that
more resonances are accessible with this method.

1.1.4 Meson Production in Diffractive Dissociation

The production mechanism, meaning the physical process that creates the resonance, exploited at the
COMPASS experiment is called diffractive dissociation. It describes a scattering reaction mediated by
the strong force, where an incoming beam hadron collides with a target. Through strong interaction
with the target, the beam particle is excited into an intermediate state X, which dissociates into the
final state. The reaction explored in this thesis is that of a negatively charged 190 GeV/c beam pion
interacting with a proton target. The produced excited intermediate state then decays into a final state
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Chapter 1 Introduction

X−

π−

ptarget

π−

π+

π−

precoil

P

Figure 1.3: Diffractive dissociation of a beam pion on a target proton into the three charged pion final state.

comprised of two negatively and one positively charged pion. The target proton stays intact:

π− p→ π− π+ π− p (1.8)

Figure 1.3 visualizes this reaction. The exchange particle P that excites the beam pion is the pomeron.
It is a hypothetical, strongly-interacting quasi-particle that carries vacuum quantum numbers. This
allows us to calculate the possible quantum numbers of the resonances X−. Since the strong interaction
conserves isospin and G-parity, the X− has to obey G = −1:

G(X−) = G(π) ·G(P) = G(π)3 = −1 (1.9)

Because the final-state pions carry a charge of −1, the resonance has to have at least an isospin of 1
(I ≥ 1). Isospin I = 1 is assumed, because no flavour-exotic mesons with isospin I = 2 have been
observed so far. With equation (1.6) we can immediately conclude, that C = +1. This leaves us only
with the possible JP combinations. We can immediately rule out the combination of JP = 0+. This
is because a spinless state with positive parity cannot decay π−π+π−. All other JP combinations are
accessible.

The invariant mass of the X− is the most important kinematic variable of the reaction. It can be
calculated from the four-momenta pπ,i of the final state pions:

m2
X = m2

3π =
p2

X

c2 =

(∑3
i=1 pπ,i

)2

c2 (1.10)

Another important kinematic variable is the Mandelstam variable t, which is the squared four-
momentum transfer between the beam and the target:

t = −(pbeam − pX)2 = (ptarget − precoil)2 < 0 (1.11)

A downside of using t as a kinematic variable is, that its spectrum does not start at t = 0, since even at
forward scattering angles there is a small momentum transfer required in order to excite the pion to X.
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1.1 Light Mesons

π−

ptarget

π−

π+

π−

precoil

P

P

Figure 1.4: Central production reaction leading to a three-charged-pion final state.

Therefore, in this analysis, we will subtract this minimum momentum transfer and define the reduced
four-momentum transfer squared t′:

t′ = |t| − |t|min ≥ 0 (1.12)

1.1.5 Other Production Mechanisms

Besides diffractive dissociation, the π−π+π− final state can also be obtained by other production
mechanisms, which enter the data set as potential backgrounds. This section will cover the two
mechanisms that have the largest effect on the data.

Central Production

The first alternative production mechanism is central production. The process is shown in figure 1.4.
The initial and final state are the same as in diffractive dissociation, but here the final state is produced
by double-pomeron exchange. The two pomerons create an intermediate state that decays into
two charged pions. Since there is no three-pion intermediate state, the kinematic signature of both
processes is different. Therefore, it can be partially separated from diffractive dissociation in the event
selection process, as described in section 1.2.3.

Deck-Effect

Another production mechanism is the Deck effect [2], which is a reaction that also ends in the π−π+π−

final state, but has no three-pion intermediate state (see figure 1.5). In this process, the pion beam
decays into a two-pion resonance and a pion, which softly scatters off the proton via a pomeron. This
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Chapter 1 Introduction

π−

ptarget

π−

π+

precoil

P

π−

π−

Figure 1.5: One possible diagram for the Deck effect resulting in the three-charged-pion final state.

process is hard to distinguish from diffractive dissociation and therefore enters as background into the
data.

1.2 The COMPASS Experiment

The Common Muon Proton Apparatus for Structure and Spectroscopy is a high-energy fixed-target
experiment at CERN in Geneva, Switzerland. The scientific goal of the experiment is to learn more
about the structure and spectrum of hadrons in the region of non-perturbative QCD. COMPASS is
located in the North Area of CERN and uses the M2 beam line which is fed by the Super Proton
Synchrotron (SPS). The experiment is operating since 2002 and has undergone several modifications
to accommodate different scientific goals. The flexible experiment layout and the M2 beam line,
which is able to deliver different particle beams, make COMPASS a true multi-purpose experiment.
The wide physics program includes muon scattering to measure i.e. the gluon polarization in the
nucleon and spectroscopy in the light-meson sector.

1.2.1 The M2 Beam Line

Primary protons with a momentum of 400 GeV/c are extracted from the SPS and are then guided
onto a 50 cm long beryllium production target called T6. The thickness of the target is adjustable
which modifies the beam intensity as well as the composition of the secondary beam. Reactions in the
production target create secondary hadrons. For the data analyzed in this thesis, a negatively-charged
hadronic beam with 190 GeV/c momentum with the composition listed in table 1.3 was used. Particle
identification of the different beam particles takes place in front of the COMPASS target in two
Cherenkov detectors (CEDARs).

8



1.2 The COMPASS Experiment

Particle Fraction at T6 Target Fraction at COMPASS Target

π− 0.947 0.968
K− 0.046 0.028
p 0.007 0.008

Table 1.3: Main components of the negative hadron beam at the 50 cm T6 production target and the COMPASS
target. [3]

Beam Telescope

Target RPD

SM1 RICH1

ECAL1
HCAL1

SM2

Muon Filter 1

ECAL1
HCAL1

Muon Filter 2

Beam

Figure 1.6: Schematic view of the COMPASS setup for the 2008 hadron-beam run.

1.2.2 Spectrometer Layout

In this section, the layout of the COMPASS experiment as of 2008, the year the data for this thesis
was taken, will be described. A more detailed description of the spectrometer during the 2008 hadron
run can be found in [4]. Figure 1.6 shows a schematic view of the spectrometer and its detectors. The
layout can be intuitively divided into three parts: the target region, the large-angle spectrometer and
the small-angle spectrometer (SAS).

9



Chapter 1 Introduction

Target Region

The target region consists of the target and its surrounding detectors. For the 2008 run a liquid-
hydrogen target was used. The Recoil-Proton Detector (RPD), which is comprised of two cylindric
barrels of scintillators, surrounds the target. It measures the recoil protons that are produced in
diffractive reactions down to reduced four-momentum squared transfers t′ = 0.07 (GeV/c)2. To
measure the beam trajectory, a beam telescope consisting of three silicon micro-strip detectors (Beam
Telescope) is installed upstream of the target. Together with the information from two additional
silicon detectors immediately downstream of the target, which measures the outgoing particles, the
vertices can be reconstructed with high precision.

Large-Angle Spectrometer and Small-Angle Spectrometer

One of the requirements when designing the COMPASS experiment was to provide a wide angular
acceptance while simultaneously maintaining a high tracking precision at small angles. To enable this,
the detector uses a two-stage design with a weaker dipole magnet in the Large Angle Spectrometer
(LAS) to measure low-momentum particles and a stronger magnet in the Small Angle Spectrometer
(SAS) for high-momentum particles. Both stages are practically identical in their setup and use a
multitude of tracking detectors. One difference is a ring-imaging Cherenkov detector (RICH), which
is used for final state particle identification in the LAS.

1.2.3 Event Selection

As a first step of the analysis, the relevant data has to be filtered from the huge dataset that COMPASS
provided during the 2008 hadron run. For this thesis, the same data as in [3] was used and therefore
only a short summary of the event selection will be given. Cuts were applied to the data to eliminate
unwanted events. The final data sample should be as pure as possible consisting of diffractively
produced π−π+π− events.

The first cut was the one that selects diffractive dissociation events. For this task, a dedicated trigger
system called DT0 trigger was installed at COMPASS, which is visualized in figure 1.7. It was a
combination of three different triggers. The first trigger was a combination of the beam counter and
the scintillating fiber SciFi and ensures that a single beam particle hit the target. Next in order was
the recoil-proton trigger. In diffractive dissociation events, a slow recoil proton was expected to leave
the target. The trigger required only one charged particle to pass through both rings of the RPD in
a way as indicated in figure 1.8. The last component of the DT0 trigger was a combination of veto
signals. The so-called Sandwich Veto eliminated events with particles that left the target outside
of the geometrical acceptance of the spectrometer. The Beam Killers, two scintillating counters
located downstream of SM2, discarded events that had non-interacting beam particles. Lastly, the
Veto hodoscopes rejected beam particles with unfamiliar trajectories.

Additional cuts were derived from the event topology. It was required that there is only one primary
vertex within the target, where the incoming beam and outgoing particles’ trajectories intersect. There

10



1.2 The COMPASS Experiment

π−

π−
π−

π+
precoil

Non-interacting
beam

Veto
hodoscopes

SciFi and
beam counter

`H2 Target

RPD
barrels

Sandwich
veto

Dipole 1 Dipole 2 Beam
veto

Figure 1.7: Trigger scheme of the DT0 Trigger. [5]

Figure 1.8: Schematic of the principle of the proton trigger. The outbound proton has to hit a segment of the
inner ring (green) and one of the three adjacent segments of the outer ring (red).[6]

should be exactly three outgoing charged particles. These particles may only have a net charge of −1.
To prohibit additional beam interactions outside of the event time window (a phenomenon called pile
up), a cut was made around the trigger time (time a beam particle arrived at the beam telescope).

The next cut demanded momentum conservation. Since in the laboratory system the recoil proton
and the X− were released back-to-back, a cut was made on the relative angle ∆φ between the two.
The angle should be ∆Φ = 180°, but was limited by the resolution of the RPD. The next step was to
require energy conservation. Since the energy is not measured for single beam particles, the beam
energy has to be calculated from energy and momentum of the final-state particles. All events that lay
outside of 2σ of the peak of the nominal beam energy were eliminated.

Next up was the suppression of central-production events (see section 1.1.5). In central production
events, most of the time a fast final-state π− and a slower π+π− pair from the resonance decay was
encountered. The kinematic variable to differentiate this process from diffractive dissociation was the
rapidity y of a pion:

y =
1
2

ln
E + pz

E − pz
(1.13)

where E was the energy of the pion and pz the momentum in beam direction. Another important
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Chapter 1 Introduction

variable was Feynman’s x, which in the center-of-mass frame was:

xF ≈ 2pz,com√
s

(1.14)

To eliminate a large part of central production events, events with a rapidity gap between the fast π−

and the π+π− of ∆y > 4.5 were removed, while the xF of the fast pion had to be larger than 0.9.

The analysis is performed in the m3π range from 0.5 to 2.5 GeV/c2 and for reduced four-momentum
squared transfers t′ between 0.1 and 1.0 (GeV/c)2.

1.3 Structure and Goal of this Thesis

This thesis is based on diffractive-dissociation data of a 190 GeV/c π− into the π−π+π− final state using
a proton target. The data were recorded during the 2008 hadron run of the COMPASS experiment at
CERN. The analysis method employed here is called Partial Wave Analysis (PWA) and is performed
with the goal to disentangle the contributions of the different three-pion resonances to the data. To
accomplish this, a physical model is constructed and fitted to the data. This model is comprised of a
set of partial waves which describe the formation of different 3π intermediate states and their decay.
The analysis procedure is explained in detail in the next chapter.

The PWA is inherently model dependent, meaning the results of the analysis may differ vastly
depending on the employed set of partial waves. In previous analyses [3, 5], which are the starting
point of this thesis, the model was selected by hand and a lot of time had to be invested to study
the systematic effects of adding and removing model parameters (i.e. partial waves). The goal of
this thesis is to perform a proof-of-concept study of an automatized model-selection procedure that
returns a sensible model based on the given data, without introducing observer bias by hand-selecting
the model. This novel procedure is introduced in chapter 3.

In Chapter 4, the results of the model-selection procedure performed on the COMPASS π−π+π− data
will be presented. Since the scope of this thesis is limited to a proof-of-concept, only on subset of the
existing COMPASS data is used. The extension of the analysis to the complete data set is straight
forward. The last chapter will present the conclusions and an outlook.
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CHAPTER 2

Partial-Wave Analysis Method

Partial-wave analysis (PWA) is an analysis method in particle physics that makes it possible to
measure short-lived resonances and their properties (mass, width and quantum numbers) by using the
observed kinematic distributions of the final-state particles, into which the resonances are decaying.
Figure 1.3 shows the reaction

π− + p→ π−π+π− + p, (2.1)

which is the main focus of this analysis. A negative beam pion interacts with a target proton via strong
interaction, which results in the formation of a negatively charged, short-lived intermediate state X−.
This excited state quickly decays into a final state consisting of three charged pions π−π+π−. Since the
target proton stays intact the target vertex is neglected. This process is called diffractive dissociation.
The main assumption of the PWA is that the intermediate state is dominated by resonances so that
the production of the X− is independent of their decay. Therefore, we can factorize the scattering
amplitude into a production amplitude, which is the probability amplitude for the creation of X−, and
a decay amplitude, quantifying the dissociation of X−. Extracting the production amplitudes will be
the ultimate goal of the partial-wave analysis. For a specific decay channel, the kinematic distributions
of the scattering amplitude depends on the center-of-mass energy s, the final-state invariant mass m3π,
the reduced squared four-momentum transfer t′ and a set of additional kinematic variables τ.

At this point it is important to mention that the partial-wave decomposition, as it is performed in this
thesis, is only the first part of a two-stage analysis. In this thesis, only the partial-wave decomposition,
also called mass-independent fit, is performed. During this step, the production amplitudes are
extracted in narrow bins of the final-state mass m3π, but no assumptions about the 3π-resonance
content are being made. To extract the resonances, one has to perform the second stage of the analysis,
the mass-dependent fit, where the m3π dependence of the production amplitudes is fit by a resonance
model. Further details on the partial-wave analysis technique can be found in [7], [5] and [3].

13



Chapter 2 Partial-Wave Analysis Method

2.1 Parameterization of the Cross Section

We start by expressing the differential cross section for reaction 2.1 in terms of the set τ of the
variables, that describe the kinematic distribution of the final-state particles:

dσ
dτ

= σ0 · I(τ) (2.2)

Because the COMPASS detector is not optimized to detect absolute cross sections, the normalization
factor σ0 is unknown. It was mentioned in the chapter’s introduction that the kinematic distributions,
in addition to τ, depend on the center-of-mass energy s, squared four-momentum transfer t′ and the
final state invariant mass m3π. Since COMPASS measures at fixed beam energy the center-of-mass
energy is constant. In order to get rid of the latter two dependences the analysis is performed in
narrow bins of both t′ and m3π. Within these bins the amplitudes are considered to be independent of
m3π and t′. How the kinematic variables τ are chosen is subject of section 2.2.2. The intensity

I(τ) =
∑
ε=±1

∣∣∣∣∣∣∣∣
∑

i

T̃ ε
i

∑
j

Ψ̃ ε
i, j(τ)

∣∣∣∣∣∣∣∣
2

+ T 2
flat (2.3)

is proportional to the number of events measured by the experiment in the respective bin.

For convenience, the quantum numbers of the X− are written in the reflectivity basis. In it, positive
and negative values of the spin projection M are united to the absolute value of M. Additionally, a
new quantum number, the reflectivity ε, is introduced, which can take on the values of +1 and −1.
In the context of this thesis, it denotes the naturality [see equation (1.4)] of the exchange particle1

between the target and the beam. A thorough explanation of the reflectivity basis is found in [5].
Therefore, the relevant quantum numbers to describe the state X− are JPC Mε.

In the equation for the intensity, the index ε sums over the reflectivity, i sums over the quantum
numbers IG JPC M of the intermediate state X, while the index j indicates the different decay modes2.
Since we have the same initial and final state for different intermediate states that are characterized
by the i and j-indices, the sums over these indeces have to be coherent to include interference terms.
The terms in the sum are the products of the production amplitudes T̃ ε

i and the decay amplitudes
Ψ̃ ε

i, j(τ). The partial-wave analysis hinges on the fact that we can calculate the decay amplitudes so
that the unknown production amplitudes can be estimated by a maximum likelihood fit of the I(τ) to
the observed τ distribution. How the decay amplitudes are calculated will be described in section 2.2.
Finally, the term T 2

flat is called the flat wave. It describes isotropic 3π background reactions, which
is why it is added incoherently. In the further text, the t′ dependence will be omitted to improve
readability.

1 In this reaction and energy range, pomeron exchange is dominant.
2 As we will see in section 2.2.1, the intermediate state X does not decay directly into three pions, but rather via a single

pion and a two-pion resonance. This resonance then decays into two more pions resulting in the three pion final state.
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Figure 2.1: Dalitz plots of the 3π mass regions close to resonances (a) a1(1260)/a2(1320) and (b) π2(1670). [5]

2.2 Decay Amplitudes

We now turn to the calculation of the decay amplitudesΨ , which describe the decay of the intermediate
state X into the 3π final state and are calculated using the isobar model.

2.2.1 The Isobar Model

Figure 2.1 shows Dalitz plots of two 3π mass ranges around m3π = 1318 MeV/c2 and 1672 MeV/c2.
The figure illustrates, that the decay of X− into three pions is dominated by π+π− intermediate
states, like e.g. the ρ(770). The second plot shows the contribution of several two-pion resonances.
Consequently, we can split up the three-body decay into two subsequent two-body decays. This
approximation is called the isobar model, the intermediate two-pion resonance is called the isobar ξ.
The model change can be seen by comparing figure 2.2 and figure 1.3.

Before we can calculate the decay amplitudes, we have to define the reference frames for the two
two-body decays in order to choose the kinematic variables τ. Figure 2.3 shows the relevant reference
frames for the decay. We start with the reference frame for the decay of the X− intermediate state,
which is the so-called Gottfried-Jackson frame (GF). It is a the rest frame of X− with the beam
axis serving as the z-axis zGJ. The y-axis yGJ is the normal to the plane spanned by the momenta
of beam and recoil particle (yGJ ∝ pbeam × precoil). Finally the x-axis xGJ is chosen such that the
Gottfried-Jackson frame right-handed. Because it is a rest frame of X−, the reaction products, π− and
the isobar ξ, are emitted in opposite directions, thus the decay can be described by two angles: the
polar angle ϑGJ and the azimuthal Treiman-Yang angle φTY of the isobar.

This brings us to the system used to describe the isobar decay. For this process the helicity frame
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X−

ξ

π−

ptarget

π−

π+
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precoil

P

Figure 2.2: Diffractive dissociation in the picture of the isobar model. The intermediate state X− decays into a
bachelor π− and a 2π resonance ξ called isobar. This isobar subsequently decays into π+ and π−.
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Figure 2.3: The definition of the axes of the Gottfried-Jackson (GJ) and helicity frame (HF). [7]
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2.2 Decay Amplitudes

(HF) is used. In this reference frame the isobar is at rest. The z-axis zHF is defined by the momentum
vector of the isobar in the Gottfried-Jackson frame while the y-axis yHF is orthogonal to the plane
spanned by zGF and zHF. Similarly to the Gottfried-Jackson frame, the x-axis xHF is defined by the
right-handedness of the system. Again the decay particles – in this case two charged pions – are
emitted in opposite directions and the decay is described by a polar angle ϑHF and an azimuthal angle
φHF of the π−.

At this point, we can define the kinematic variables τ:

τ ≡ (ϑGJ, φTY,mξ, ϑHF, φHF) (2.4)

The polar and azimuthal angles of the two reference frames and additionally the invariant mass of
the isobar uniquely describe the four-vectors of the final-state pions for given m3π and t′. These five
variables will be the τ we use for the partial-wave analysis of the 3π system.

2.2.2 Parameterization of the Decay Amplitudes

We begin by writing down the decay amplitudeAP1,2 for the decay of a parent particle P with mass
mP, spin JP and spin projection MP into two daughter particles 1 and 2 with masses m1,2, spins J1,2
and helicities λ1,2:

AP1,2(φ, ϑ,mP,m1,m2) =
∑
λ1,λ2

DJP
MP λ(φ, ϑ, 0) fP1,2(mP,m1,m2)A1A2 ; λ = λ2 − λ1 (2.5)

The decay amplitude is factorized into two parts – the angular dependence DJP
MP λ and the dynamic

part fP1,2. The amplitudes of the daughter particlesA1,2 are 1, if it is stable.

The angular part is described by the Wigner D-function DJ
M λ which depends on the polar coordinates

ϑ and φ. The third angle of the function is set to 0, because the decay momenta of the daughters form
a line, thus removing a degree of freedom. If the parent particle is an isobar, MP is replaced by the
helicity of the isobar λP.

The dynamic part

fP1,2(mP,m1,m2) =
√

2L + 1︸    ︷︷    ︸
normalization

(J1 λ1 J2 −λ2 | S λ) (L 0 S λ | JP λ)︸                                      ︷︷                                      ︸
Clebsch-Gordan coefficients

αP1,2 FL(mP,m1,m2)∆P1,2(mP,m1,m2)︸                                          ︷︷                                          ︸
dynamics

,

(2.6)
with the angular momentum L between the two daughter particles, consists of a normalization term,
the Clebsch-Gordan coefficients for the spin-spin and spin-orbit coupling and dynamics. In the latter,
the FL are the Blatt-Weisskopf angular momentum barrier factors [8] in the parameterization by
von Hippel and Quigg [9] while ∆P1,2 is the mass dependence of the amplitude. The complex-valued
constant αP1,2 describes the coupling of P to 1 and 2 and is generally unknown.
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Chapter 2 Partial-Wave Analysis Method

The total decay amplitude results from a recursive application of equation (2.5):

ψi, j(ϑGJ , φTY ,mξ, ϑHF , φHF︸                        ︷︷                        ︸
τ

; m3π) = AX
ξ,π(φTY , ϑGJ ,m3π,mξ; mπ)Aξ

π,π(ϑHF , φHF ,mξ; mπ,mπ) (2.7)

Applying equation (2.5) to the decay of the X−, we use the fact that one decay particle is a final-state
pion with helicity λ = 0, which means that the sum in equation (2.5) runs over the possible helicities
of the isobar. In the dynamic part, the mass dependency ∆X

ξ,π is set to unity, because the narrow bins
in m3π allow us to assume that the amplitude is constant over an m3π bin. This m3π dependence is
actually the result of the analysis, if we combine the results of multiple m3π bins. The resulting
amplitude for X− → π− ξ0 and the associated dynamic part look as follows:

AX
ξ,π(ϑGJ , φTY ,m3π,mξ) =

∑
λ

DJ
MX λ

(φTY , ϑGJ , 0) f J
λ 0(m3π,mξ,mπ) (2.8)

f J
λ 0(m3π,mξ,mπ) =

√
2L + 1 (L 0 Jξ λ | J λ) αX FL(m3π,mξ,mπ) (2.9)

Moving on to the decay of the isobar, we now have two pions with helicity λ = 0 in the final state.
Hence the sum in equation (2.5) disappears. Similarly the Clebsch-Gordan coefficients result to 1 in
the dynamic part. The orbital angular momentum L is equal to the spin Jξ of the isobar. The shape of
the isobar mass dependence ∆ξπ,π is a property of the isobar and will be discussed in more detail in
section 2.2.3. The resulting amplitude is

Aξ
π,π(ϑHF , φHF ,mξ) = DJξ

λ 0(φHF , ϑHF , 0) f Jξ
π π(mξ,mπ,mπ) (2.10)

with the dynamic part

f Jξ
π π(mξ,mπ) =

√
2Jξ + 1 αξFJξ (mξ; mπ,mπ) ∆ξ(mξ; mπ,mπ). (2.11)

One last aspect we have to consider when calculating the decay amplitudes is the fact that pions are
bosons and are thus indistinguishable if they carry the same charge. The decay amplitude has to be
symmetric under permutations of indistinguishable pions. Since we have two negatively charged
pions, to achieve the correct Bose symmetry, we have to sum up two amplitude terms, where we
exchange the two π− in the final state to account for self interference:

Ψi, j(τ13, τ23,m3π) =
1√
2

(
ψi, j(τ13; m3π) + ψi, j(τ23; m3π)

)
(2.12)

Here, τ13 and τ23 are the kinematic variables of the two permutations of the π+π− system of the
π−1π

−
2π

+
3 final state.

2.2.3 Isobar Parameterization

The previous section showed how to calculate the decay amplitudes for different X−. One thing
that was omitted was the mass dependence ∆ξ of the isobar decay [see equation (2.11)]. Because
∆
ξ
π π is characteristic for each isobar we first have to determine which isobars are included in our

analysis. Since there are no known π−π− resonances, only isobars decaying to π−π+ are considered.
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2.2 Decay Amplitudes

In this analysis, the isobars [ππ]S , ρ(770), f0(980), f2(1270), f0(1500) and ρ3(1690) are included.
The choice was motivated by the features of the Dalitz plots (see figure 2.1), the π+π− mass spectrum
(see figure 2.5) and the findings of previous analyses [3, 5].

We now have to parameterize the mass dependence of these isobars. For most isobars, a relativistic
Breit-Wigner amplitude [10]

∆BW(m; m0, Γ0) =
m0 Γ0

m2
0 − m2 − i m0 Γ(m)

(2.13)

is used, where m0 and Γ0 are the mass and width of the isobar, respectively. The formula for the
mass-dependent width Γ(m) varies for the isobars. The simplest case is the f0(1500), where it is
constant:

Γ(m) = Γ0 (2.14)

For the f2(1270) the following Γ mass dependence is used:

Γ(m) = Γ0
m0

m
q(m)
q0

F2
` (q)

F2
`
(q0)

(2.15)

In this equation, q(m) is the momentum of the outgoing pions in the helicity frame (see section 2.2.1),
while q0 is the breakup momentum at the nominal mass m0 of the resonance. The F` terms are (see
section 2.2.2) the Blatt-Weisskopf angular momentum barrier factors[8].

For the ρ(770) and the ρ3(1690) we use a slight variation of equation (2.15):

Γ(m) = Γ0
q(m)
q0

F2
` (q)

F2
`
(q0)

(2.16)

This leaves the [ππ]S and f0(980). They are both scalar isobars (JPC = 0++) and have overlapping
intensity. The narrow f0(980) cannot be described by a Breit-Wigner amplitude, because the resonance
is close to the KK threshold. As a result we use the Flatté parameterization [11]

∆Flatté(m; m0, gππ, gKK) =
1

m2
0 − m2 − i

(
φππ2 gππ + φKK

2 gKK

) , (2.17)

which takes into account the additional coupling to the KK decay channel. In this equation the g
terms are the couplings for ππ and KK respectively and φ2 = 2q/m the two-body phase space for the
respective decay channel with the break-up momentum q of the two daughter particles. The values
for these parameters, including the mass m0, were determined by the BES experiment [12].

Finally the [ππ]S isobar is described with a modified parameterization based on the “M-solution” in
[13]. The modification removes the f0(980) component of the amplitude [5], because we treat the
f0(980) as a separate isobar. Figure 2.4 depicts the amplitude of the [ππ]S isobar as it is used in this
analysis.
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Figure 2.4: (a) Intensity and (b) phase of the [ππ]S isobar as used in this analysis. [5]
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2.3 Normalization

Isobar Parameterization Parameters

[ππ]S see [5]

ρ(770) Relativistic Breit-Wigner with eq. 2.16 m0 = 770 MeV/c2

Γ0 = 161 MeV/c2

f0(980) Flatté parameterization[12] m0 = 965 MeV/c2

gππ = 0.165 (GeV/c2)2

gππ/gKK = 4.21

f2(1270) Relativistic Breit-Wigner with eq. 2.15 m0 = 1275 MeV/c2

Γ0 = 185 MeV/c2

f0(1500) Relativistic Breit-Wigner with eq. 2.14 m0 = 1507 MeV/c2

Γ0 = 109 MeV/c2

ρ3(1690) Relativistic Breit-Wigner with eq. 2.16 m0 = 1688 MeV/c2

Γ0 = 161 MeV/c2

Table 2.2: Overview of the isobar parameterizations.

The parameterizations of all isobars, including the values of the parameters used, are summarized in
table 2.2.

2.3 Normalization

Because the coupling constants αX and αξ appearing in equations (2.9) and (2.11) are usually unknown,
they can be absorbed into the production amplitudes by the following redefenition:

Ψ
ε

i, j(τ) ≡
Ψ̃ ε

i, j(τ)

αX αξ
(2.18)

T ε

i, j ≡ T̃ ε
i αX αξ (2.19)

Since with this change the production amplitudes will not only describe the production of the interme-
diate state X, but also its coupling to a specific decay channel, we will call the T s transition amplitudes
from this point on. We can now combine the indices i (quantum numbers of the intermediate state
X) and j (X decay channel) into a single index α. Together with the reflectivity, the unique index α
represents a partial wave:

α = (i, j) (2.20)

Finally, we normalize the decay amplitudes using phase-space integrals. This requires another set of
substitions. For this we need to introduce the phase-space volume VΩ and the phase-space integrals
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Pεαβ:

VΩ ≡
∫

dφ3(τ)

Pεαβ ≡
∫

dφ3(τ)Ψ
ε

α(τ)Ψ
ε

β(τ),
(2.21)

where dφ3(τ) is the differential three-body phase-space element. This forms the following normaliza-
tion substitutions:

Ψ ε
α(τ) ≡ Ψ

ε

α(τ)
√

VΩ√Pεαα
T ε
α ≡ T

ε

α

√
Pεαα

Tflat ≡ Tflat
√

VΩ

(2.22)

This ensures that the partial-wave intensities
∣∣∣T ε
α

∣∣∣2 are equal to the number of events a detector with a
perfect acceptance would measure. After these substitutions the intensity reads:

I(τ) =
∑
ε=±1

∣∣∣∣∣∣∣∣
∑
α

T ε
α Ψ

ε
α(τ)√

VΩ

∣∣∣∣∣∣∣∣
2

+
T 2

flat

VΩ
(2.23)

2.4 Extended Log-Likelihood Function

With expression 2.23 for the intensity, the probability to observe an event E with the kinematic
coordinates τE in all measured events E can be written as:

P(E) =
I(τE)∫

dφ3(τ)I(τ)η(τ)
;E ∈ E, (2.24)

The expression in the denominator is the integral over the whole available kinematic phase space of
the decay, with η(τ) being the acceptance of the detector setup.

The next step is to use the probability in equation (2.24) to formulate an extended likelihood function

L(T ;E) =
e−N N

N

N!

N∏
n=1

P(En) (2.25)

where N is the number of measured events and N the number of expected measured events. The
factor in front of the product is the Poisson probability to observe N events.

To ensure that the intensity has units of number of events we require that

N =

∫
dφ3(τ)I(τ) η(τ), (2.26)

22



2.4 Extended Log-Likelihood Function

This term also appears as the denominator in equation (2.24). Inserting equation (2.23) into equa-
tion (2.26) yields

N =

∫
dφ3(τ)


∑
ε=±1

∣∣∣∣∣∣∣∣
∑
α

T ε
α Ψ

ε
α(τ)√

VΩ

∣∣∣∣∣∣∣∣
2

+
T 2

f lat

VΩ

 η(τ)

=

∫
dφ3(τ)

∑
ε=±1

∑
α, β

1
VΩ

T ε
α T ε∗

β Ψ ε
α(τ)Ψ ε∗

β (τ) +
T 2

f lat

VΩ

 η(τ)

=
∑
ε=±1

∑
α, β

T ε
α T ε∗

β

∫
dφ3(τ) η(τ)Ψ ε

α(τ)Ψ ε∗
β (τ)

VΩ︸                             ︷︷                             ︸
≡N ε

αβ

+T 2
f lat

∫
dφ3(τ) η(τ)

VΩ︸           ︷︷           ︸
≡A

(2.27)

with the integral matrix N ε
αβ and the total acceptanceA.

Using equation (2.27) the likelihood can be simplified to

L(T ;E) =
e−N

N!

N∏
n=1

I(τn). (2.28)

For reasons of numerical stability, we will use the logarithm of the likelihood:

lnL(T ;E) =

N∑
n=1

lnI(τn) − N (2.29)

In the above expression, the term − ln N! was dropped because it is constant with respect to the transi-
tion amplitudes T and therefore does not change the shape of the likelihood. Inserting equation (2.27)
into equation (2.29) results in:

lnL(T ;E) =

N∑
n=1

ln


∑
ε=±1

∣∣∣∣∣∣∣∣
∑
α

T ε
α Ψ

ε
α(τn)

∣∣∣∣∣∣∣∣
2

+ T 2
flat

 − N ln(VΩ)

−
∑
ε=±1

∑
α, β

T ε
α T ε∗

β N ε
αβ − T 2

flatA
(2.30)

Again, we can omit the N ln(VΩ)-term, because it does not depend on the transition amplitudes and
thus does not move the maximum of the likelihood function. The final likelihood function reads as
follows:

lnL(T ;E) =

N∑
n=1

ln


∑
ε=±1

∣∣∣∣∣∣∣∣
∑
α

T ε
α Ψ

ε
α(τn)

∣∣∣∣∣∣∣∣
2

+ T 2
flat

 −
∑
ε=±1

∑
α, β

T ε
α T ε∗

β N ε
αβ − T 2

flatA (2.31)

In the partial-wave decomposition the likelihood function is maximized with respect to the transition
amplitudes. This corresponds to a fit of equation (2.23) to the measured τ distribution. The maximum-
likelihood transition amplitudes are then used in a second analysis step to extract their resonance
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parameters [14, 15], which, however, is not within the scope of this thesis.

2.5 Uncertainties

An important part of every analysis is the estimation of the uncertainties. The systematic uncertainties
of a partial-wave analysis are unfortunately hard to gauge, but one can at least estimate the statistical
uncertainty of the resulting transition amplitudes.

In previous analyses, the covariance matrix was calculated numerically. However, this is computa-
tionally expensive. Since the analysis performed in this thesis uses many more free parameters than
before, the computing time for the error calculation would rise to unacceptable levels. The solution is
to calculate covariance matrix analytically. This has the additional advantage that the uncertainties
are calculated exactly, instead of being estimated numerically.

In this thesis, statistical uncertainties are calculated using the first-order Gaussian error propaga-
tion which uses the covariance matrix of the fit parameters of the log-likelihood function [see
equation (2.31)]. The covariance matrix is calculated by inverting the Hessian matrix H of the
log-likelihood function, which is a square matrix of the second partial derivatives of the log-likelihood
function with respect to the fit parameters:

Cov = H−1 =


∂ lnL
∂p1 ∂p1

. . . ∂ lnL
∂p1 ∂pNp

...
. . .

...
∂ lnL

∂pNp ∂p1
· · · ∂ lnL

∂pNp ∂pNp


−1

(2.32)

The variables pi represent the Np free parameters of the likelihood function, which are the real and
imaginary parts of the transition amplitudes. The uncertainty in each parameter is defined by the
square root of the respective value on the diagonal of the covariance matrix. It is important to note,
that equation (2.32) is only valid if the uncertainties are Gaussian.

2.5.1 Analytical Calculation of the Hessian Matrix

The first step in deriving the Hessian matrix is, of course, to write down the gradient of the log-
likelihood function. This is complicated by the fact that the free parameters, the transition amplitudes
T , are complex numbers. It is simpler to regard the real and imaginary parts of the amplitudes as
independent free parameters and to take the derivative of the function with respect to them. It can be
shown, that the gradient of the log-likelihood function with repect to the the real and imaginary parts
of the transition amplitude

T ε
α = xεα + ıyεα (2.33)
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Therefore, the second derivative with respect to the real parts of the transition amplitudes is:
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The other permutations of the second derivatives have very similar terms, where only the Re and Im
functions change and will not be written down explicitly. A thorough derivation of the Hessian matrix
of the likelihood function is found in appendix D. With the second derivatives it is possible to write
down the Hessian matrix. Inverting this matrix results in the covariance matrix for the log-likelihood
function [see equation (2.32)].

In addition to the increased computation speed, which the analytic calculation of the covariance
matrix brings, it enables the usage of maximizers that do not have the functionality to numerically
calculate the covariance matrix. Therefore, it was possible to use a maximizer that is specialized for
high-dimensional functions called the Low-storage BFGS algorithm [16, 17] instead of the previously
used Minuit2 library, which reduced the computing time needed for fitting even further.

2.5.2 Comparison of Uncertainties from Analytically and Numerically Calculated
Covariance Matrix

To verify that the analytic calculation is implemented correctly, a comparison study is performed,
which also includes the newly implemented maximizer. The study compares fit results obtained
with the Minuit2 library, which calculates the uncertainties numerically, with fit results using the
BFGS algorithm, where the uncertainties are calculated analytically. In detail, 30 fit attempts are
performed using the known and well-understood reference wave set (see section 3.1) in one mass bin
(2000–2020 MeV/c2) using both methods. In the end, the results with the largest found likelihood for
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Figure 2.6: Comparison of the partial-wave amplitudes. The result in red is obtained using the Minuit2 library
with a numerically calculated covariance matrix, while the blue color indicates the result of the BFGS algorithm
with an analytically calculated covariance matrix. (a) shows all transition amplitudes, while (b) is a zoom into
the region of smaller amplitudes.

each method are compared to another. As mentioned earlier, the numerically calculated covariance
matrix is only an estimate of the real covariance matrix of the parameters of the log-likelihood
function. Therefore, it cannot be expected that the analytic and numeric covariance matrix match
exactly. This procedure, running several fit attempts and using only the best one, is used in real
analyses as well, because the maximizer does not find the global maximum in every attempt.

Figure 2.6 presents the results of the study. The result of the Minuit2 library with the numerically cal-
culated covariance matrix is red, whereas the BFGS result with an analytically calculated covariance
matrix is blue. Each partial-wave amplitude is represented as a data point in the complex plane. The
overview in figure 2.6a shows, that the results of the transition amplitudes are essentially equivalent.
The red and blue data points are right on top of each other for every single transition amplitude
with no visible discrepancy, even for smaller amplitudes (see figure 2.6b). Consequently, the two
optimizers find the same likelihood maximum, which was the expected result.

A somewhat surprising result of this study is the deviation in the statistical uncertainties given by the
two methods. Differences of the errors of up to 10% are observed. A possible explanation would
be, that the numerically calculated covariance matrix is not precise. This would lead to statistical
fluctuations around the real uncertainty values of the analytically calculated uncertainties. Closer
inspection shows however, that the analytically calculated uncertainties are almost always larger than
their numeric counterparts, which rules out this explanation. Repeating this study in multiple mass
bins leads to similar results, but in some of the bins the numeric uncertainties are larger. This suggests,
that the uncertainty estimates fo the two methods are somehow influenced differently by the data.
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2.5 Uncertainties

2.5.3 Study of the Likelihood Function Close to the Maximum

It is clear that the puzzling results of the uncertainty comparison in the previous section require further
analysis. In this section, the region around the likelihood maximum is studied to reveal which of
the two methods, numeric or analytic, better approximates the uncertainties of the parameters of the
likelihood function.

Therefore, a Taylor expansion of the likelihood function around the likelihood maximum ~m is
performed:

lnL(~m + d~m) = lnL(~m) + d~mT grad
[
lnL(~x)

]∣∣∣∣
~x=~m︸                       ︷︷                       ︸

=0

+
1
2

d~mT H
[
lnL(~x)

]∣∣∣∣
~x=~m

d~m (2.38)

At the maximum, the second term vanishes. According to equation (2.32), the Hessian H of the
log-likelihood function is the inverse of the covariance matrix. The eigenvectors ~v and eigenvalues λ
of the covariance matrix are defined as follows:

Cov ·~v = λ~v (2.39)

With
Cov−1 · Cov ·~v = λCov−1 ·~v

Cov−1 ·~v =
1
λ
~v

(2.40)

it is obvious, that the Hessian and the covariance matrix have the same eigenvectors, but the eigenval-
ues of the Hessian are inverted.

We can now write down the Taylor expansion of the likelihood function at its maximum in the
direction of a (normalized) eigenvector with the distance r to the maximum

lnL(~m + r~v) = lnL(~m) +
r2

2λ
, (2.41)

which describes a parabola with the curvature 1
2λ . The standard deviation σ of a Gaussian likelihood

function is defined at r = ±√λ.

It is now possible to analyze the region around the maximum likelihood, by calculating the eigenvalues
and eigenvectors for both, the analytic and numeric covariance matrix and overlaying the resulting
parabolas on top of the actual likelihood function in a 1σ confidence interval. There are as many
eigenvector/eigenvalue pairs as there are parameters of the likelihood function. Therefore, to analyze
the many different plots systematically, the pairs are ordered according to increasing eigenvalues,
which corresponds to increasing uncertainties.

Figure 2.7 shows 4 examples that demonstrate the behaviour of the likelihood function along the
direction of the respective eigenvector. The numerically calculated Gaussian parabolas are drawn in
blue, the analytic ones are red. The evaluated likelihood function values are indicated by the black
data points. In figure 2.7a, the smallest eigenvalue, which corresponds to the smallest uncertainty
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is shown. The two approximations underestimate the error of the evaluated likelihood function. At
intermediate eigenvalues (see figures 2.7b to 2.7d) the approximations are in good agreement with
the evaluated likelihood function. With increasing uncertainties a trend is observed, that the Gaussian
approximations deviate increasingly from the actual likelihood function (see figure 2.7e). Therefore,
with increasing uncertainties, the likelihood function becomes increasingly non-Gaussian. For the
largest eigenvalue in figure 2.7f, this becomes evident. The likelihood function has a trough-like
shape, which the parabolas fail to reproduce. Only for this eigenvalue, a notable deviation between
the numeric and analytic method is observed.

The impact on the uncertainties of the parameter values are large. Since the analysis described above
was performed in the eigensystem of the covariance matrix, all uncertainties were uncorrelated. If we
go back to the space of the real and imaginary parts of the transition amplitudes, the uncertainties
are linear combinations of the uncertainties in the eigensystem. Therefore, the largest uncertainties
in the eigensystem, which are non-Gaussian, have the largest effect on the parameter uncertainties.
This also explains why the study in section 2.5.2 showed that either the numerically or analytically
calculated uncertainties were larger for most parameters. Since the only notable difference between
the two approximations is in the uncertainty for the largest eigenvalue, this deviation can be seen in
many parameter uncertainties through linear combination.

Concluding, it is safe to say, that the Gaussian approximation for the uncertainties is not a good one.
The same study in the π−π0π0 final state confirmed the results. Therefore, this issue is relevant not
only in the charged three-pion final state. Finding a better approximation for the uncertainties is not
in the scope of this thesis and thus the Gaussian approximation will be used for the analysis in thesis.
A possible solution would be to use Markov chain Monte Carlo (MCMC) methods to sample the
likelihood function. This would provide the probability density function of the likelihood function in
the form of a point cloud, which includes all information about the uncertainties and correlations of
all parameters.
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Figure 2.7: Comparison of the numeric (blue) and analytic (red) Gaussian parabolas with the values of the
likelihood function (black) along the direction of the eigenvectors of the covariance matrix for increasing
eigenvalues.
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CHAPTER 3

Model Selection

The goal of model selection in general is to choose the model that best describes the data. This is not
a trivial process, because there are typically many ways to describe the measured data and thus a large
model space to choose from. The log-likelihood function used in this analysis [see equation (2.31)]
includes theoretically infinite sums over the partial waves. In practice, the series of partial waves has
to be truncated at some point. In this context, after maximizing the likelihood, a model is a collection
of waves, also called wave set, that will describe the measured data with varying success. Therefore,
the goal of model selection in this thesis is to find the wave set that best describes the data while
keeping the number of free parameters to a minimum.

Until now, model selection in the three-pion channel was based on performing systematic studies
that investigate changes in the maximum likelihood when waves are eliminated or added to the wave
set. The inherent problem with this method is, that adding free parameters, which is basically what
adding waves is, will always increase the likelihood. This may lead to a point where the model
will describe statistical fluctuations of the data, which, of course, have no physical meaning. The
conclusion is that the likelihood cannot be used as a quantity to determine the goodness-of-fit of a
model. Another problem appears when we omit a significant wave from the wave set. Either the
model will not describe parts of the data well or some of the data will be wrongfully attributed to
other partial waves, which is a phenomenon called model leakage. The latter is considerably worse
because it may easily result in wrong models. There are other effects, where waves missing from
the wave set are compensated for by a combination of other waves. It is also observed that a certain
subset of waves is important to describe the data, but individually they are not important.

The basis of the model-selection procedure used in this thesis is to first determine all the waves that
could conceivably contribute to the measured data. This large set of waves will from now on be called
the wave pool. Neglecting possible detector effects and assuming that the model in principle is able
to describe the data, if we perform a partial-wave decomposition with the whole wave pool, no model
leakage should occur. The only thing one has to worry about is the possibly too large number of free
parameters. Therefore, to derive a smaller wave set that describes the data equally well, we have to
eliminate those waves from the wave pool that are not essential to describe the data. The procedure
described in this chapter is an elegant way to do just that, while avoiding the selection bias of the
manual approach used in previous analyses.
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Figure 3.1: Correlation of m3π and t′ in the analyzed
final-state mass and reduced four-momentum transfer
squared range. [5]

Bin Lower Boundary Upper Boundary
[(GeV/c)2] [(GeV/c)2]

1 0.100 0.113
2 0.113 0.127
3 0.127 0.144
4 0.144 0.164
5 0.164 0.189
6 0.189 0.220
7 0.220 0.262
8 0.262 0.326
9 0.326 0.449
10 0.449 0.724
11 0.724 1.000

Table 3.1: Boundaries of the squared four-momentum
transfer bins.

3.1 Reference Wave Set

Before explaining the model selection performed in this thesis, a model previously used in the
three-pion channel [3, 5] is reviewed. It consists of 88 waves, of which 80 have positive and only
7 negative reflectivity. An incoherently added isotropic (“flat”) wave completes the wave set. To
stabilize the fit it was necessary to omit some waves in the low-mass region. They are included into
the wave set only above certain m3π thresholds. This 88-wave model was derived by performing
extensive systematic studies and will serve as a benchmark for the model selection throughout the
thesis. From now on it will be referred to as the reference wave set. The complete wave set including
thresholds is listed in appendix A.

3.1.1 Division in Narrow Bins of Final-State Mass and Reduced Four-Momentum
Transfer Squared

As already mentioned in section 2.1, the analysis is performed in narrow bins of the invariant three-
pion mass m3π and the squared four-momentum transfer t′. This is done to remove the dependence on
these two variables in the transition amplitudes. Using narrow bins, we can assume m3π and t′ to be
constant over the range covered by the respective bin.

The analyzed mass range from 0.5 to 2.5 GeV/c2 is divided into 100 bins with 20 MeV width. The t′

bins are not equidistant. They are rather chosen such that each bin contains approximately the same
number of events. The only exception is the t′ range from 0.449 to 1.000 (GeV/c)2. This range is
too wide to satisfy the condition of an almost constant t′. Therefore it is split into two bins, resulting
in 11 t′ bins overall. Figure 3.1 shows the correlation of m3π and t′ in the analyzed range with the t′

bin boundary indicated by dashed horizontal lines. Table 3.1 shows the numeric values of the t′ bin
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Figure 3.2: Intensity plot of the 1++0+ρ(770)πS wave, showing the a1(1260) resonance.

boundaries.

Because this thesis serves only as a proof of principle, only the lowest t′ bin from 0.100 to 0.113
(GeV/c)2 is analyzed here. The methods and results are easily transferable to the remaining t′ bins.

3.1.2 Fits with the Reference Wave Set

To get a sense for the expected outcome of the mass-independent fit in the three-pion channel, fit
results with the reference wave set will be presented in this section. The data are taken from the 2008
COMPASS hadron run with the applied event selection outlined in 1.2.3.

The partial wave with the largest intensity, the 1++0+ρ(770)πS wave, is shown in figure 3.2. It
contains the a1(1260) resonance. The notation of the wave names reads as follows: The first part
defines the quantum numbers JPC Mε of the X−. The rest of the name is determined by the decay
channel, starting with the isobar and followed by the bachelor pion (π). The last letter represents the
orbital angular momentum between the isobar and the pion, where the letters S , P,D, etc. refer to the
angular momenta L = 0, 1, 2, etc.

The graph in figure 3.2 shows the intensity of the wave over the analyzed mass range. The integrated
intensity over the whole mass range divided by the total number of events will from now on be
called the relative intensity of a wave and is written in the corner of the graph as an indicator for the
significance of a wave.

The length of the vertical lines in figure 3.2 represent the statistical errors while the length of the
horizontal lines indicate the m3π bin width. Since the 1++0+ρ(770)πS wave is stable with many
events, the statistical errors are very small.
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Figure 3.3: Intensity plots of waves that were well studied in previous analyses.
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3.2 Wave Pool

Figure 3.3 shows a collection of waves, that are important for this analysis for various reasons. The
first row (figures 3.3a and 3.3b) are two very stable waves which in previous analyses have always
been found and showed no real change in the shape of the peaks, independent of the model. The
model selection is expected to produce a very similar result in these two waves. In the middle row
(figures 3.3c and 3.3d), two waves with JPC = 0−+ are presented. In low to intermediate regions of
m3π, unphysically large destructive interference terms that result in fluctuating intensity were observed.
Thresholds on certain waves (see figure 3.3c at 1.2 GeV/c2) had to be introduced to stabilize the fit
results. Therefore, similar artifacts are also expected to appear in the low-mass region in the results
of the model selection, which will require the introduction of thresholds in some waves. The lower
row in figure 3.3 shows of two waves that contain resonances that have been in the scientific spotlight
recently. The 1++0+ f0(980)πP wave in figure 3.3e contains the newly found a1(1420) resonance
[5] while figure 3.3f shows the spin-exotic 1−+0 + f0(980)πP wave, the resonance content of which
is discussed controversially. It will be interesting to see, whether these waves show any model
dependence with in the comparison of the result from the model selection to these reference results.

3.1.3 Fit Stability

With the high dimensionality of the likelihood function, it is valid to question whether the fit always
finds the global maximum of the likelihood function. For this reason, 30 fit attempts with random
starting values are performed in each bin of m3π.

Figure 3.4 shows the likelihood spread of the fit results for every attempt over the whole analyzed
mass range. The y-axis shows the difference in likelihood of the fit results to the best likelihood value
found in the respective bin of m3π. If the fit were perfectly stable, the same maximum likelihood
value would be found in every fit result. Aside from a few outliers, this is the case for the mass
range above 1 GeV/c2 and one can conclude that the fit is stable in this range. The zoomed view in
figure 3.4b shows that below 1 GeV/c2, there is more instability due to some local maxima close to
the largest found maximum likelihood. This phenomenon is the reason why the reference wave set
has thresholds in some waves and is discussed in depth in section 4.2.

3.2 Wave Pool

As mentioned above, the wave pool is the set of all possibly contributing waves, from which we
choose the wave set. The composition of the wave pool depends on several factors, which can be
divided into the partial-wave properties of the production and decay of the intermediate state X−.
On the production side we have the allowed quantum numbers IG JPC Mε of the X−. As it was
already derived in section 1.1.4, we will assume IG = 1−. The maximum allowed spin J and the
corresponding spin-projection M are the components that determine the size of the wave pool. In
this analysis, the upper limit of J is set to 6. Waves with large spin-projections are suppressed and
thus the maximum M is set to 2. Each wave exists with positive and negative reflectivity. On the
decay side the important parameteres for the wave-pool size are the number of isobars, which was
already discussed in section 2.2.3, and the maximum angular momentum L between the isobar and
the bachelor pion, which has an upper limit of 6 as well.
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(a)

(b)

Figure 3.4: Scatter plots of the distance to the likelihood maximum for each fit attemt over the analyzed mass
range. In (a) all fit attempts are shown, while (b) shows a zoomed view of the range of up to 100 likelihood
difference.
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Figure 3.5: Intensity histogram of a result of a fit with the full wave pool. The waves on the x-axis are ordered
by decreasing intensity.

Permuting all of the possible quantum numbers and the possible decay channels amounts to a wave
pool consisting of 432 partial waves. The complete wave pool is listed in appendix B.

3.3 Partial-Wave Decomposition Using the Whole Wave Pool

The basic idea of the model selection procedure is to perform a partial-wave decomposition using the
whole wave pool. The quantity that determines how important a partial wave is to describe the data,
is the intensity of the wave. Therefore, we define a wave with a small intensity to be insignificant to
the description of the data. This is valid only when all waves that contribute to the data are in the
wave pool, which is given since every conceivably contributing wave was included.

Figure 3.5 shows an example of a result of a PWA fit with the wave pool, where the waves are ordered
by intensity in decreasing order. Since not every wave from the wave pool can contribute to the total
intensity, one can conclude that too many free parameters are used in this fit and therefore the wave
set needs to be reduced. On the one hand, one could use a arbitrary fixed wave-set size and omit all
waves after the size is reached, on the other hand one could choose an arbitrary intensity value after
which a wave is deemed non-essential and remove all smaller waves from the wave set. Figure 3.5
reveals why cutting off the wave set with either method is not optimal: the intensity distribution is
continuous and as a consequence it would be hard to make an argument for one cut-off point over the
other. The choice would be arbitrary and would therefore result in a biased analysis.
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Figure 3.6: The half-Cauchy prior function (a) and its logarithm (b).

3.4 Half-Cauchy Priors

From the standpoint of Bayes’ theorem the analysis looks as follows:

P(Mk|E) =
P(E|Mk) P(Mk)∑

k′ P(E|Mk′) P(Mk′)
(3.1)

Let Mk be a PWA model with k enumerating the possible sets of partial waves while E represents the
set of measured events with their kinematic distributions.

The denominator in equation (3.1) represents the evidence, which is the probability to measure the
data independent of a specific model. The evidence is difficult to calculate, because the sum over all
possible models is hard to compute. But since we compare models by always using the same data,
we can assume this term to be constant. The posterior probability P(Mk|E) is therefore proportional
to the product of the likelihood P(E|Mk) and the prior probability P(Mk). The former represents the
conditional probability of the model given the data, whereas the likelihood is the probability of the
data given the model. Until now, the prior was assumed to be flat, P(Mk) = const, and in conclusion
the posterior is proportional to the likelihood. If we ignore normalization, we can formulate the
equation

P = L p (3.2)

with the unnormalized posterior P, the likelihood L and the prior p.

According to Bayes’ theorem, the prior is a way to incorporate previous knowledge into the analysis.
By maximizing equation (3.2) instead of the likelihood, one can include additional constraints.
Applied to this analysis, this means that the best model should consist only of important waves and
that insignificant waves should not be included in the model, even if they increase the likelihood. The
prior should therefore prefer small intensities, which effectively eliminate the insignificant waves,
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without preventing high intensity waves to appear.

We write down the half-Cauchy prior function:

p(|Tα|;w = 0.5) =
1

1 +
|Tα |2
w2

, (3.3)

with the variable |Tα|, which is the absolute value of the transition amplitude of the partial wave α, and
the width of the prior w. For this analysis, w is set to 0.5. The function has the shape of a Breit-Wigner
distribution, but is defined only for positive values. With this prior, the posterior probability changes
to:

P(T ;E) = L(T ;E)
∏
α

p(|Tα|) (3.4)

L(T ;E) is the likelihood as in equation (2.31). Since we used the logarithm of the likelihood function
for the maximum likelihood fit, the same principle applies to the posterior probability:

ln
[P(T ;E)

]
= ln

[L(T ;E)
]
+

∑
α

ln
[
p(|Tα|)] (3.5)

Figure 3.6 shows the prior function and, most importantly, the effect of the prior on a logarithmic
scale. We can see that for transition amplitudes |Tα| = 0 the log prior is also zero. Therefore, the
posterior is just the likelihood. For larger transition amplitudes the prior acts as a penalty factor that
lowers the posterior. Consequently, when we use this posterior function, the transition amplitudes
have an incentive to be zero, in particular when they are already of the order of 10 or smaller. The
long tail of the log prior ensures that high-intensity partial waves are not distorted considerably by
the prior.

3.5 Selecting the Wave Set

Figure 3.7 demonstrates the effect of the prior on the fitted intensities of the partial waves. Due to
its long tail, the prior has practically no effect on the waves with the highest intensities. For smaller
waves, the difference to the posterior with half-Cauchy priors grows with decreasing intensity. The
most important feature is a very steep drop of about 2 orders of magnitude at an intensity of about 10.
This is where the half-Cauchy prior’s incentive for the transition amplitudes to be zero dominates
the posterior. The shape of the posterior function is changed by the half-Cauchy prior in such a
way, that many small amplitudes are shifted close to zero. After the drop, the two curves are almost
parallel. The reason for this behaviour lies again in the shape of the half-Cauchy prior. As can
seen in figure 3.6, the prior has a maximum at |T | = 0. This has the effect that very small transition
amplitudes are not penalized heavily and thus the transition amplitudes are not shifted to exactly zero
but rather to very small values. Since all waves retain some intensity, the result of the model selection
procedure, i.e. the wave set, has to be dependent of the position of the intensity drop.

Selecting the wave set is straight forward in most cases: all of the waves left of the drop, and thus all
the high-intensity waves, are included in the wave set while the waves on the right side are excluded
from the wave set. Figure 3.8 shows a rare case where selecting the wave set is not as clear as it
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Figure 3.7: Intensity plot of a fit result with the whole wave pool, but applying the half-Cauchy prior to modify
the posterior probability (blue). The waves on the x-axis are ordered by decreasing intensity. For reference, the
result of a fit of the same data with the flat prior from figure 3.5 is overlaid in gray.
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Figure 3.8: Intensity plot of a fit result with the whole wave pool, but applying the half-Cauchy prior to modify
the posterior probability (blue). The biggest intensity drop in this example occurs at approximately the 230th

wave at and intensity of about 10−4 events. The physically reasonable cut is at about the 30th wave at an
intensity of 10 events, as indicated by the dashed line.

might appear. Due to the normalization in section 2.4 the unit of the intensity is in number of events.
Obviously physical meaning can only be extracted if a wave contributes more than one event.

Therefore, the exact method of finding the correct cut-off for the wave set is by finding the biggest
drop in relative intensity from one wave to the next, but only in a region between 1 and 100 events.
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3.5.1 Fit Stability

This section will study the stability of the fits using the wave pool with the half-Cauchy prior and will
try to answer the question, whether the fits are stable enough to consistently extract the same wave
sets. Compared to the fits with the reference wave set described in section 3.1.2, the number of free
parameters increases by a factor of five (88 compared to 432 waves). Additionally, the introduction
of the half-Cauchy priors is expected to create many local maxima in the likelihood function. A local
maximum may occur, when the prior forces a wave towards zero, making it harder for the optimizer
to find the global maximum. Both factors destabilize the fit, making it necessary to use 100 instead of
only 30 fit attempts. This amounts to a total of 10,000 fit attempts for the 100 mass bins.

Figure 3.9 shows likelihood scatter plots of all fit attempts over the analyzed mass range. Again,
the y-axis shows the difference in likelihood of a fit result with respect to the best likelihood value
found in the respective bin of m3π. Compared to the almost perfect fit stability of the reference fit
above 1 GeV/c2) (see figure 3.4), the stability of the model-selection fit is worse. In the overview
in figure 3.9a, an accumulation of fit results approximately 50 units of likelihood above the best
found likelihood is observed. In most attempts, the fit does not converge to the best found maximum
likelihood, but to a local maximum instead. The zoomed view in figure 3.9b shows that the best
likelihood value is found only once in most bins. The largest instabilities seem to be in the region
around 1 GeV/c2 and at high masses. In these regions the accumulation is not as pronounced and the
results scatter more to higher likelihood values. However, the difference to the next best fit result is
often large, meaning that the found maximum is well-distinguishable.

Since the goal of these fits is only to select wave sets, it still has to be determined whether the unstable
fits lead to different wave sets. To gauge the influence of the local maxima on the intensities of the
partial-waves, intensity plots similar to the ones in section 3.1.2 are created, but using all fit attempts
instead of just the best one in each bin. In figure 3.10 the 1++0+ρ(770)πS wave, which is the largest
wave, is shown. The red points indicate the best fit result. Each colored bar represents the range,
in which the fit results fluctuate for a certain percentile of all fit attempts. The color scale in the
upper-right corner defines what color corresponds to which percentile of fit results. Therefore, the
blue bars define the range, in which the best 10% of fit results fluctuate. As expected, when looking
at the scatter plots in figure 3.9, the fluctuations at lower masses are bigger than at higher masses,
where the results are essentially stable (at least in this wave). Since a wave enters the wave set as
soon as it has non-zero intensity, one can assume that this happens consistently, when the blue bar
does not touch the x-axis. For the wave in figure 3.10, this is the case at approximately 800 MeV/c2.
This obviously only applies for this wave, which is likely one of the most stable waves in the wave
pool. It still has to be confirmed for the other waves.

Figure 3.11 shows a wave with one of the smallest relative intensities (< 0.01%) in the whole wave
pool. Despite the small relative intensity, the red points show that the wave has non-zero intensity in
the best fit attempt in a few bins and therefore enters the wave set in the respective bins. This is due
to statistical fluctuations in the data. If the study were repeated, it is likely that other bins will have
non-zero intensity.

A different effect is seen in figure 3.12. It should be highlighted, that this is the only plot that features
a log scale on the y axis. Above 1.2 GeV/c2, the fit is perfectly stable, demonstrated by the small
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(a)

(b)

Figure 3.9: Distance to the likelihood maximum of each fit attempt with respect to the largest found likelihood
over the analyzed mass range. In (a) all fit attempts are shown, while (b) shows a zoomed view with a maximum
likelihood difference of 200.
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Figure 3.10: Intensity plot to study the fit stability of the largest wave. The red points indicate the best fit result.
Each colored bar represents the range, in which the intensity fluctuates for a certain percentile of all fit attempts.

blue bars. Below this mass, in the region around 1 GeV/c2, the intensity fluctuates wildly. These
fluctuations have already plagued previous partial-wave analyses [3, 18] of the three-pion final state
and are still not entirely resolved. The source for this behavior is assumed to be related to ambiguities
between different partial waves in the model. At low m3π, only the low-mass tails of isobars contribute,
their shape is less distinct and thus harder to distinguish for the fit. Therefore, an unneeded additional
freedom is introduced to the likelihood. The fit cannot determine a unique likelihood maximum,
because two (or more) waves are so similar, that events can be attributed to both. This happens
mostly with waves that have the same quantum numbers, especially in the 0−+ sector. The result are
unphysically large fluctuations of intensity that are often magnitudes larger than the actual, physical
intensity of the respective wave. When calculating the total intensity, these fluctuations cancel each
other out by interfering destructively with one another. Since they tend to have large intensities, these
ambiguous waves will remain in the wave set in the problematic region. An approach to exclude
these waves will be presented in section 4.3.

To summarize, the fit stability of the fits using the wave pool with the half-Cauchy priors is sufficient
for selecting the wave set in most cases. Although the likelihood scatter plots show that the fits do not
reliably retrieve the global maximum of the likelihood function, the intensity plots reveal that this
does not impact the selected wave sets in most cases. One exception to this are waves with very small
intensity, which can drop in and out of the wave set, but the biggest challenge will be to manage the
ambiguous waves in the low-mass region, which are not filtered out by the model selection.
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Figure 3.11: Intensity plot to study the fit stability of a small wave.
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Figure 3.12: Intensity plot to study the fit stability of a wave with fluctuating intensity in the low-mass region.
To show the stability of the fit above 1.2 GeV/c2 a log scale is used for the y axis.
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CHAPTER 4

Model-Selection Results

In this chapter, the model-selection procedure described in chapter 3 is applied to the data at hand.
For this analysis, data from the 2008 COMPASS hadron run were used, based on the event selection
described in section 1.2.3 to select diffractive dissociation events in the charged three-pion channel.
The data are divided in narrow bins of the 3-pion mass m3π and reduced four-momentum transfer
squared t′ according to section 3.1.1.

The analysis is not done after we complete the model-selection process. Just comparing the resulting
wave sets with the reference wave set is not sufficient, since altering the wave set slightly can have
large effects on the fit results. Therefore, to inspect the effects of the different models, the wave
sets from the model selection procedure have to be fitted to the data. These fit results, from now on
referred to as final fits, can then be compared to the reference fits. This is done by comparing the
intensity and the phase differences of the transition amplitude of every partial wave. For an agreement
between the compared models, only the general shapes of the intensity and phase difference have to
be matched. For an exact comparison the analysis has too large systematics and, as we learned in
section 2.5, the approximation of the statistical uncertainty is not precise as well.

In the analysis, the model-selection wave sets are fitted to the data in 30 fit attempts in every m3π bin.
The fit result is very stable. The outcome of the fit stability study is equivalent to the one presented in
section 3.1.3 and is therefore not be written down explicitly.

Since the model selection procedure is executed independently in every bin of m3π and t′, it results
in different wave sets for each bin. Therefore, the size of the model-selection wave sets is studied
in the first section. Next, the intensity and phase plots of final and reference fits of several selected
waves are compared. The final analysis goal of this thesis will be to unify the different wave sets of
the kinematic bins into one continuous wave set that can be used over the whole analyzed final-state
mass range.

To verify the validity of the model-selection procedure, a study using Monte Carlo data should
be performed. This was not within the scope of this thesis, but was successfully performed in
the π−π+π−π+π− final state [7]. Because the π−π+π− final state is well explored from previous
analyses [3, 5, 14, 15], the model-selection procedure can also be verified by comparison with these
well-established results.
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Figure 4.1: Wave set size (blue) and number of events (red) plotted for every mass bin in the lowest t′ bin (from
0.100 to 0.113 (GeV/c)2.

4.1 Wave Set Size

The focus of this section will be the first step of the analysis — the fits with the whole wave pool and
the half-Cauchy prior. Since we do the model selection procedure independently in each of the 100
m3π bins (using only the lowest t′ bin), the resulting wave sets differ in each mass bin. Figure 4.1
shows that the wave set size varies between approximately 10 and 180 waves. This range is larger
than that of the reference wave set, where the thresholds cause the wave set to vary between around 60
and 88 waves. Up to about 1.3 GeV/c2 the wave-set size loosely follows the number of events. This
is expected because with larger data samples smaller waves can be resolved and thus enter the wave
set. Applying the same reasoning to high masses, one would expect the wave-set size to decrease, but
this is not the case. The probable explanation for the wave sets staying larger than anticipated is the
expected contribution of background processes1 at higher masses influencing high-spin waves.

4.2 Comparison of Selected Waves

The main part of the analysis is to compare the transition amplitudes of partial waves obtained from
reference and final fits. One would expect the most significant waves2 to behave similarly, assuming
that the analysis method works and that the reference wave set is reasonable. Deviations due to the
different wave sets are to appear mostly in the smaller, low-intensity waves. Important aspects that
have to be tracked are if there are waves from the reference wave set that become insignificant in the
final fits and if there is notable intensity redistribution between waves. This will tell us something

1 e.g. central production or Deck effect[2]
2 In this context the significance of a wave is measured by its intensity.
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Figure 4.2: Intensity plot of an unstable wave obtained by executing the model selection on data in every mass
bin. The wave is part of the model in only 7 of 100 mass bins.

about the systematic effect of the models on waves. The goal is to inspect if the fit results of the
two methods are compatible – especially in significant waves – and analyze the reasons for eventual
differences.

At this point, the expectations of the final fits have to be discussed. Since the model selection
procedure selects different wave sets for every bin while removing insignificant waves, some waves
will move in and out of the selected wave sets. Because continuity over multiple bins is not rewarded
in the model selection, many waves will show discontinuous behaviour. This is highlighted by the
fact, that every wave from the wave pool (which consists of 432 waves) is part of the selected wave
set in one of the 100 bins of m3π. Not a single wave from the pool is eliminated completely. This is a
direct result of the chosen model selection procedure and is to be expected. An example for one of
these partial waves is shown in figure 4.2.

By implication, this strengthens the argument, if continuous structures appear in the intensity of
partial waves over a large mass range, that the wave is firmly part of the model. It is important
to mention, that systematic errors far outweigh the statistical errors in the fit results. Therefore,
compatibility between the reference and final fits is assumed when the general shape of the intensity
and phase curve is conserved.

When comparing reference with final fits, the behavior of the partial wave amplitudes can be classified
in four categories:

• similar waves, that share all important features over the whole mass range in the intensity and
phase of the transition amplitudes

• waves with differences, where the behavior of the amplitudes has distinctly different features
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Wave Name Relative Intensity Appearance

1++0+ ρ(770) π S 24.20 % Figure 4.3

1−+1+ ρ(770) π P 0.44 % Figure 4.4a
2++1+ ρ(770) π D 2.00 % Figure 4.4b
2++2+ ρ(770) π D 0.05 % Figure 4.4c
2++1+ f2(1270) π P 0.13 % Figure 4.4d

2−+0+ f2(1270) π S 3.40 % Figure 4.5a
2−+0+ f2(1270) π D 0.41 % Figure 4.5b
2−+0+ ρ(770) π F 0.96 % Figure 4.5c
2−+1+ f2(1270) π S 0.21 % Figure 4.5d

4++1+ f2(1270) π F 0.05 % Figure 4.6a
4++1+ ρ(770) π G 0.26 % Figure 4.6b

0−+0+ f0(980) π S 6.48 % Figure 4.7a
0−+0+ [ππ]S π S 18.00 % Figure 4.7b

2++0− ρ(770) π D 0.04 % Figure 4.8a
2++0− f2(1270) π P 0.02 % Figure 4.8b
2++2+ f2(1270) π P >0.01 % Figure 4.8c
3++0+ ρ3(1690) π I >0.01 % Figure 4.8d

1++1+ f2(1270) π F 0.04 % Figure 4.9a
4−+0+ ρ(770) π H 0.06 % Figure 4.9b
5++1+ ρ(770) π G 0.14 % Figure 4.9c
5++1+ ρ(770) π I 0.02 % Figure 4.9c

flat 0.14% Figure 4.10

Table 4.1: Overview of the waves presented in this section with their relative intensity.

• zero waves, where the partial waves were included in the reference wave set, but are removed
by the model selection procedure in most m3π bins

• newly found waves, that have continuous intensities in the final fits, but are not included in the
reference wave set

Table 4.1 shows the notable waves that are presented in this thesis with their relative intensity
(calculated with the final fits) and where they appear in the text.

4.2.1 Similar Waves

The majority of the waves show very similar behavior in both their intensity and phases. This section
will cover a selection of such waves. For later analysis, the waves that exhibit resonant behavior
are most important. From the m3π dependence of their intensity and phase plots one can extract the
masses and widths of resonances. The phase motion of a wave can have implications on the physics
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Figure 4.3: 1++0+ ρ(770) π S wave with the largest relative intensity.

behind the intensity curve. For example, a phase motion in the mass range of an intensity peak usually
implies resonant behavior. Because we have to rely on a reference wave to show the phase motion,
optimally this reference wave should have a constant phase, so that the resulting relative phase curve
is caused by the phase motion of the examined wave and not the reference wave. A resonance should
result in a 180 degree phase motion, but in practice this is hard to achieve. Usually, the reference
wave does not retain a constant phase throughout the relevant mass region, or the examined wave
contains more than one resonance. This makes the phase motion information an important input for
the subsequent analysis, the mass-dependent fit, which has been performed in previous theses [14,
15] for several partial waves using the reference wave set. Most of the waves that are used to extract
resonance parameters will be discussed in this thesis.

The wave with the, by far, highest intensity is the 1++0+ ρ(770) π S . It is shown in figure 4.3, which
contains two plots. Both plots share the same m3π axis. The top graph shows the intensity distribution.
The bottom one shows the phase motion of the partial-wave amplitude with respect to the reference
wave. In this case, the 2++1+ ρ(770) π D wave (see figure 4.4b) was used to generate said plot. In all
figures the blue color will correspond to fits with the model selection wave sets, while the gray color
indicates fits with the reference wave set. The relative intensity in the top right corner is calculated
with the final fit.

The intensity maximum corresponds to the a1(1260) resonance. Since it has non-vanishing intensity
over almost the whole analyzed mass spectrum, it is used as reference wave for the following phase
angle plots, unless mentioned otherwise. Both fit results show the same general shape in both the
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intensity as well as the relative phase angle. The bump in intensity at 1.1 GeV/c2 can probably be
attributed to model instability in the the low mass region (details in next section about different
waves).

Figure 4.4 shows the spin-exotic 1−+1+ρ(770)πS wave (figure 4.4a) and three waves (figures 4.4b-d)
in the JPC = 2++ sector that show the a2(1320) resonance. For all waves, the phases, as well as
intensities for both methods match well, except for two data points in figure 4.4c, which show
deviations from the reference wave set.

Figure 4.5 shows waves in the JPC = 2−+ sector. The peaks in figures 4.5a, 4.5c and 4.5d can be
identified as the resonance π2(1670) and the intensity maximum in figure 4.5b wave as the π2(1880).
All plots show good agreement between the two different analysis methods. In the intensity plots in
figures 4.5b and 4.5c a smaller intensity in the high mass region with the model selection method
is notable. These reduced tails of the resonances are a notable difference to the reference fits. In
the same region, the phase motion is flat with the model selection procedure, instead of going back
down with the reference wave set. Another interesting effect of the model selection procedure can be
observed best in the phase angle diagrams. In the majority of the low-mass bins, the phase angle is
zero, meaning that the respective wave is not part of the wave set. The intensity in these bins was low
enough for the half-Cauchy prior to eliminate the wave, effectively introducing a threshold on that
wave.

A similar picture is seen in the JPC = 4++ sector. Both waves in figure 4.6 have a peak attributed
to the a4(2040). Again, the fit results between the model selection and the reference wave set are
in good agreement. The only notable difference is in the high-mass tail in figure 4.6a, where the
intensity with the model selection method is a bit reduced. Again, in the low mass region the waves
are left out of the wave set in most bins.

4.2.2 Waves with Differences

In figure 4.7 we see two examples of waves with notable differences in their behavior with the different
models. The discrepancies occur almost exclusively in regions that are thresholded in the reference
wave set (below 1 GeV/c2 in figure 4.7a below approximately 1.5 GeV/c2 in figure 4.7b) and can
best be seen in the top plots of each column. These unphysically large fluctuations are attributed to
destructive interference between ambiguous waves (see section 3.5.1). The intensities of the two 0−+

waves with the two methods are still in good agreement above the kinematic threshold. This shows
that the problems are located only in lower mass bins in figure 4.7.

Taming the fluctuations is not a trivial task and was thus far handled by applying thresholds to certain
waves, effectively eliminating them from the wave set in the low-mass region, where they should be
small. This removes the additional freedom in the likelihood caused by the ambiguity and stabilizes
the fit results. In the reference wave set, this is done for the 0−+0+ f0(980) π S wave in figure 4.7a and
leads to the sudden disappearance of the gray data points at 1.2 GeV/c2. Since this phenomenon is
caused by interference with other waves, setting a threshold for one wave may cause other problematic
waves to stabilize. This explains why figure 4.7b does not need a threshold in the reference wave
set.

50



4.2 Comparison of Selected Waves

0

1

2

3

4

5

6
N

um
be

ro
fE

ve
nt

s
/(

20
M

eV
/c

2 )
×103

0.44%

1−+1+ ρ(770)π P

0.5 1.0 1.5 2.0 2.5
Mass of π−π+π− System [GeV/c2]

−300

−250

−200

−150

−100

−50

0

50

R
el

at
iv

e
Ph

as
e

A
ng

le

w.r.t. 1++0+ ρ(770)π S

(a)

0

1

2

3

4

5

N
um

be
ro

fE
ve

nt
s

/(
20

M
eV
/c

2 )

×104

2.0%

2++1+ ρ(770)π D

0.5 1.0 1.5 2.0 2.5
Mass of π−π+π− System [GeV/c2]

−150

−100

−50

0

50

100

150

R
el

at
iv

e
Ph

as
e

A
ng

le

w.r.t. 1++0+ ρ(770)π S

(b)

0.0

0.5

1.0

1.5

2.0

N
um

be
ro

fE
ve

nt
s

/(
20

M
eV
/c

2 )

×103

0.05%

2++2+ ρ(770)π D

0.5 1.0 1.5 2.0 2.5
Mass of π−π+π− System [GeV/c2]

−150

−100

−50

0

50

100

150

R
el

at
iv

e
Ph

as
e

A
ng

le

w.r.t. 1++0+ ρ(770)π S

(c)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
um

be
ro

fE
ve

nt
s

/(
20

M
eV
/

c2 )

×103

0.13%

2++1+ f2(1270)π P

0.5 1.0 1.5 2.0 2.5
Mass of π−π+π− System [GeV/c2]

−50

0

50

100

150

200

250

300

R
el

at
iv

e
Ph

as
e

A
ng

le

w.r.t. 1++0+ ρ(770)π S

(d)

Figure 4.4: The spin-exotic 1−+1+ ρ(770) π P wave (a) and three waves with JPC = 2++ (b-d).
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Figure 4.5: Four waves with JPC = 2−+.
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Figure 4.6: Two waves with JPC = 4++.

This section shows where the method to have an analysis that is as bias-free as possible seems to
be limited, because continuity is not required. It is apparent, that the introduction of thresholds is
unavoidable in the charged three-pion channel. This is the main motivation to implement a continuity
requirement and introduce thresholds in a later analysis step (see section 4.3).

4.2.3 Zero Waves

One goal for using the model selection procedure is to examine, whether the reference wave set is the
optimal model choice or at least close to it. An optimal wave set should not contain partial waves
with vanishing intensities. This section will cover waves that are removed by the model selection
procedure, but are included in the reference wave set.

Since the model selection procedure uses all waves of the wave pool at least once accross the analyzed
mass range, strictly speaking no wave is completely eliminated from the overall wave set (see
figure 3.11). But when the intensity of a wave resulting from the final fits shows no continuity in
any part of the mass range, but shows continuity in the reference fits, it can be said with confidence
that this wave is model dependent and has to be examined with care. Therefore, the waves that are
discussed in this section are the waves, that have intensity over a large mass range in the reference
fits, but lose all structure in the final fits. The most probable cause for the structures in the reference
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Figure 4.7: Two waves with JPC = 0−+ with discrepancies between the reference and final fits. The plots in the
middle row are zoomed versions of the intensity plots in the top row.
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Figure 4.8: Examples for waves, that show intensity over a wide mass range in the reference fits, but lose these
structures in the fits with the applied model-selection procedure.
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fits is model leakage and non-resonant contributions.

Figure 4.8 shows four example waves, with negative and positive reflectivity, that demonstrate this
behavior. The first thing that needs to be noted is that all of these waves have a very small relative
intensity and thus do not contribute much to the total intensity. If this were not the case, the validity
of either the model selection procedure or the reference wave set would need to be questioned. In
figure 4.8 the blue data points appear sparsely over the whole mass range. In these plots only 10 to 20
data points out of 100 are present. Additionally, most points have large errors, making some of them
compatible with zero. Some more zero waves are listed in table 4.3.

4.2.4 Newly Found Waves

The goal of using a large and systematically constructed wave pool was to study, whether some
waves were overlooked in the hand-selected reference wave set. These waves should then be added
in order to get an improved wave set. The results show, that, indeed, there are several waves, which
were not included in the reference wave set that show continuous intensity and phase behavior. The
classification of when a wave shows structure is of course subjective, but the number of newly found
waves is of the order of ten, four of which are presented in figure 4.9.

The probably most noteworthy newly found wave is the 1++1+ f2(1270)πF wave shown in figure 4.9a.
Despite its smallness of only 0.04% of the total intensity, one can identify a peak structure in the
intensity plot at approximately 2.2 GeV/c2. Additionally, there is a clear phase motion in that region,
which might hint at a resonance. Most of these newly found waves have high spin, which is not
surprising, since the low-spin region was already well explored in the reference wave set. It is
probable that most of the high-spin waves that entered the wave pool were never considered. This
demonstrates the advantage of the model selection procedure. The high-spin waves are candidates
for the Deck effect (see section 1.1.5), which is predicted to contribute at higher spins. Figures 4.9c
and 4.9d show two 5++1+ waves, the former with L = 4 and the latter with L = 6. Even though the
signals are small, the plots show similar behavior in both, intensity and the phase. Additional newly
found waves can be found in table 4.5.

4.3 Finding a Combined Wave Set

The results of the final fits are promising, but as mentioned in the beginning of section 4.2, there are
many unstable waves that drop in and out of the wave set seemingly at random. This is best illustrated
by comparing the incoherent isotropic (“flat”) wave of the final and the reference fits (see figure 4.10).
Especially above 1 GeV/c2, there is almost no intensity in the final fit compared to the reference fit,
because the fit has the freedom to choose from the whole wave pool.

The goal of this section is to combine the knowledge from the results of the final fit (large destructive
interference in the low-mass region, zero waves and newly found waves) to create a new wave set,
that is continuous in m3π. From here on such a wave set will be called combined wave set. It should
resemble the reference wave set, where we have basically one wave set for all bins with some waves
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Figure 4.9: Four examples of newly found waves by the model selection procedure.
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Figure 4.10: Intensity plot of the incoherent isotropic wave in the final fits (blue) and the reference fits (gray).

omitted below certain m3π thresholds. This raises the question how to select such a combined wave
set. Having the results of the final fits would make it rather simple to hand select, but, since the
premise of this thesis is to require the least human intervention possible, an algorithmic approach is
used.

The basic idea to create the combined wave set is to select those waves, that have continuous intensity
in the final fits. Since the model selection procedure does not demand continuity of waves in
neighbouring bins, a strong argument can be made that a wave is required by the data, when it is
found over a wide continuous mass range. This is certainly not the optimal approach3, but as a proof
of concept it shall suffice. To quantify the continuity of a wave, the biggest number of consecutive
bins with non-zero intensity is used. The minimum number of connected bins to show structure was
chosen to be 10. This is almost4 the only user input of the analysis. 10 bins correspond to 10% of
the analyzed mass range and are about the smallest number expected to potentially reveal peak-like
structures. All waves that accomplish this criteria are accepted in the combined wave set. If a wave
does not have intensity in 10 consecutive bins anywhere in the analyzed mass range it is left out of
the combined wave set.

3 Other arguments, like relative intensity or degree of intensity fluctuation are completely left out.
4 Some thresholds had to be entered manually, more on that later.
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2−+2+ f2(1270) π S 2++2+ f2(1270) π P 2++1+ ρ3(1690) π D 3++0+ ρ3(1690) π I

4++2+ ρ(770) π G 4++2+ f2(1270) π F 5++0+ [ππ]S π H 5++0+ f2(1270) π H

5++0+ ρ3(1690) π D 1−+0− ρ(770) π P 1−+1− ρ(770) π P 1++1− ρ(770) π S

2++0− f2(1270) π P 2++0− ρ(770) π D 2−+1− f2(1270) π S 2++1− f2(1270) π P

Table 4.3: List of zero waves that are part of the reference wave set, but not of the combined wave set.

0−+0+ ρ3(1690) π F 1++1+ f2(1270) π F 1−+1+ f2(1270) π D 1++0+ f0(1500) π P

1++1+ f0(1500) π P 2−+0+ f0(1500) π D 2−+0+ ρ3(1690) π F 2−+1+ f0(980) π D

2−+1+ f2(1270) π G 2++1+ f2(1270) π F 3−+1+ f2(1270) π G 3++0+ ρ3(1690) π D

3++1+ f0(980) π F 3++1+ f2(1270) π F 3++1+ f0(1500) π F 4−+0+ ρ3(1690) π P

4−+0+ f0(980) π G 4−+0+ f0(1500) π G 4−+0+ f2(1270) π I 4−+0+ ρ(770) π H

4−+1+ [ππ]S π G 4−+1+ f2(1270) π I 4−+1+ ρ(770) π H 4−+1+ ρ3(1690) π P

4−+1+ f0(1500) π G 5++1+ f0(1500) π H 5++0+ f0(1500) π H 5++0+ ρ3(1690) π G

5++1+ ρ(770) π G 5++1+ ρ(770) π I 5++1+ f2(1270) π H 5++1+ f0(980) π H

5++0+ ρ(770) π I 5++1+ ρ3(1690) π D 6−+1+ f0(1500) π I 6−+1+ f2(1270) π G

6−+0+ f0(1500) π I 1++1− [ππ]S π P 2++1− ρ(770) π D 2−+1− [ππ]S π D

3++1− ρ3(1690) π S 3++1− f2(1270) π P 4++1− ρ(770) π G 4−+1− [ππ]S π G

5++1− ρ(770) π I 6++1− ρ(770) π I

Table 4.5: List of newly found waves that are part of the combined wave set, but not of the reference wave set.

Performing this selection changes the wave set from 88 waves in the reference wave set to now
118 in the combined wave set. Table 4.3 lists the 16 waves that are not part of the combined wave
set, even though they were in the reference wave set. Interestingly, all seven waves with negative
reflectivity fall into this category. Conversely, this means that 72 of the 88 waves in the reference
wave set were found by the model selection procedure and the subsequent filtering by continuity.
Additionally, 46 new waves (see table 4.5) were found using this method. The complete wave set is
listed in appendix C.

It was already mentioned when the reference wave set was introduced in section 3.1, that some waves
have to be thresholded, because otherwise the fit results would exhibit unphysically large destructive
interference at low masses. Obviously, the same is true for the combined wave set. Therefore, a
rule to threshold critical waves has to be found. Since we used the continuity argument for creating
the combined wave set, the thresholds can be derived in a similar manner. Let us assume, that
an important wave can be identified by having intensity in ten consecutive bins. Conversely this
means, that bins below the continuous region are not as important to describe the data. Therefore, the
threshold for each wave is set at the 3π mass, which marks the low-mass border of the consecutive
region. If a wave has multiple regions with 10 consecutive bins of non-zero intensity, the threshold
will be imposed on the lowest-mass region, as to not eliminate regions with continuous intensity.
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Figure 4.11: Intensity plot of the 1++0+ρ(770)πS wave, showing the a1(1260) resonance. The fits with the
combined wave set are added in red. Final fits are indicated in blue, while the reference fits are gray.

Additionally, the thresholds from the reference wave set are applied to the combined wave set,
overwriting the algorithmically found ones. This was done, because in some difficult regions (see
figure 4.7a) this simple algorithm does not work well5. Since the thresholds from the reference wave
set were worked out very thoroughly, they fix the few waves the algorithm had problems with.

4.4 Fits with the Combined Wave Set

Using the combined wave set another fit is performed. As with the reference and final fit, 30 fit
attempts are used. The conclusion of the fit-stability analysis in section 3.1.3 applies to this fit as well.
First off, it will be examined how the combined wave set behaves in the important waves with more
or less known resonance content that are discussed in the introduction of the reference wave set in
section 3.1.2. Next some of the newly found waves are analyzed.

The wave with the largest intensity, the 1++0+ ρ(770) π S wave, is shown in figure 4.11. The gray
points mark the reference fit while the blue points represent the final fit. The red data points indicate
the fit results with the combined wave set. The relative intensity of each wave is calculated based on
the fits with the combined wave set. The peak-like structure at 1.1 GeV/c2 observed in the final fit
vanishes in the fit with the combined wave set, which exhibits a much smoother intensity distribution
much closer to that of the reference fit.

Figure 4.12 shows four waves that already had similar behaviour with the final fit compared to the
reference fit. In the fits with the combined wave set, not much has changed. A notable observation
is, that in these four waves the automatic thresholding of the waves seems to work as intended.

5 The algorithm fails, when the destructive interference takes place in 10 consecutive bins.
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Figure 4.12: Intensity plots for four waves that were well studied in previous analyses.
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Figure 4.13: Intensity of the incoherent isotropic wave.

Especially in figures 4.12b and 4.12c, some fluctuations below threshold are removed. In figure 4.12d,
an artificial structure in intensity is observed below 1 GeV/c2 with the combined wave set. This
behaviour is probably caused by the low-mass fluctuations, which cannot completely be diminished
with the threshold algorithm.

Figure 4.14 highlights the improvement in the low-mass region caused by the introduction of thresh-
olds. It shows two 0−+ waves, that exhibit large differences of the final fit compared to the reference
fit. In figure 4.14a, the fluctuations below 1.2 GeV/c2 are removed by imposing a threshold on the
wave. Figure 4.14b is a more interesting case. Since there is intensity over almost the whole analyzed
mass range, the wave is practically not thresholded6. But through the interplay with all other waves
in interference, the fluctuations below 1.5 GeV/c2 vanish in the fits with the combined wave set and
are now much closer to the reference fits. However, we have only limited indirect proof, that the
observed behaviour is physically correct.

In addition to the established waves that are part of the reference wave set, the combined wave set
yields some newly found waves. In figure 4.15, the effect of using the combined wave set in the four
waves that were presented in figure 4.9 is shown. As we can see, the results remain largely unchanged.
While the automated thresholds work very well in figures 4.15a and 4.15b, removing single bins of
non-zero intensity in lower masses, they could probably be moved to lower masses in figures 4.15c
and 4.15d. Nevertheless, the results of the fit with the combined wave set emphasizes the findings of
the final fit, in that these new waves are stable with changing models and are needed to describe the
data.

Finally, the intensity of the incoherent isotropic wave is shown in figure 4.13. With the combined
wave set, the freedom of the fit is more restricted than with the final fit and therefore the fit result
resembles more that of the reference fit. Interestingly, there is more intensity in the low-mass region,

6 The required ten consecutive bins with intensity start at approximately 0.6 GeV/c2

62



4.4 Fits with the Combined Wave Set

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
um

be
ro

fE
ve

nt
s

/(
20

M
eV
/c

2 )

×105

1.7%1.7%

0−+0+ f0(980)π S

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
um

be
ro

fE
ve

nt
s

/(
20

M
eV
/

c2 )

×104

0.5 1.0 1.5 2.0 2.5
Mass of π−π+π− System [GeV/c2]

0

50

100

150

200

250

300

350

R
el

at
iv

e
Ph

as
e

A
ng

le

w.r.t. 1++0+ ρ(770)π S

(a)

0

1

2

3

4

5

N
um

be
ro

fE
ve

nt
s

/(
20

M
eV
/c

2 )

×105

7.26%7.26%

0−+0+ [ππ]S π S

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
N

um
be

ro
fE

ve
nt

s
/(

20
M

eV
/

c2 )

×104

0.5 1.0 1.5 2.0 2.5
Mass of π−π+π− System [GeV/c2]

−150

−100

−50

0

50

100

150

R
el

at
iv

e
Ph

as
e

A
ng

le

w.r.t. 1++0+ ρ(770)π S

(b)

Figure 4.14: The two 0−+ waves. The plots in the middle row are zoomed versions of the intensity plots in the
top row.
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Figure 4.15: Four examples of newly found waves by the model selection procedure.
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4.4 Fits with the Combined Wave Set

while in the high-mass region less intensity is observed for the combined wave set than for the
reference wave set. The increased intensity in the low-mass region is likely explained by the threshold
algorithm, which tends to implement higher thresholds than needed, leading to very small wave sets
at low masses. At high masses some of the newly found high-spin waves take up some intensity that
was part of the incoherent isotropic wave in the reference fit.
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CHAPTER 5

Conclusions and Outlook

Past partial-wave analyses of the charged three-pion channel have used complicated and extensive
systematic studies to find a stable wave set that describes the data well. The goal of this analysis
was to determine if it were possible to retrieve a wave set suitable to the data based on an algorithm,
without the effort of hand-selecting it, therefore removing the observer bias. This algorithm can also
be used to assess the validity of the reference wave set used in previous analyses of this channel [3,
5]. As these studies only serve as a proof-of-concept, the analysis was limited to the lowest t′ bin.

Before discussing the conclusions of the model selection, this thesis revealed that the approximation
of Gaussianity close to the likelihood maximum is poor. A method that better approximates the
uncertainties of the fit parameters has to be found. A possible solution would be to use Markov chain
Monte Carlo methods to approximate the probability density function of the likelihood function.
This would provide the information needed to calculate the uncertainties and correlations of fit
parameters.

In order to achieve the set goals of this thesis, a new model-selection procedure was studied. It is
based on a large wave set called wave pool, which contains possible quantum numbers of resonances
and their decay modes for this reaction up to conservatively chosen cut-off parameters. Since the wave
pool includes all conceivably contributing waves, not much prior knowledge is needed to construct
it. The procedure fits the wave pool to the data, while forcing small waves to have no intensity by
implementing a half-Cauchy prior function, thus eliminating unneeded waves. The fits of the wave
pool were performed independently in each bin of final-state mass and based on their result a different
wave set was found for each mass bin.

These new wave sets were then fit to the data to produce the first set of results. Because the model
selection did not include a continuity constraint, the wave sets were different in each bin and some
fluctuations from one bin to the next were observed. Still, the shapes of both, intensity distributions
and phase differences of all important waves were reasonably reproduced compared to fits with the
reference wave set. Additionally, some new waves, that have never been investigated previously,
showed structures. In turn, some low-intensity waves from the reference wave set could not be
confirmed in the results of the model selection. A caveat of the model-selection procedure is that
it produces fluctuations in the form of unphysically large destructive interference in the lower parts
of the mass spectrum, deviating from the reference fits. These problems were observed in previous
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analyses as well, and were resolved by including certain waves to the wave set only above an m3π
threshold.

Since having a different wave set in every bin was unphysical, the goal of the second part of the
analysis was to create a combined wave set that, apart from thresholds, is continuous in mass. It
should be able to replicate the structures from the model-selection results, while simultaneously
removing the artifacts caused by the differences of the wave sets in each bin. This analysis step applies
physical constraints similar to those used when hand-picking the wave set. Continuity in the intensity
distribution was used as an indicator that a wave actually is required by the data, because continuity
was not explicitly required by the model selection, but was rather the product of it. Therefore, the
condition for a wave to be accepted into the combined wave set was to have non-zero intensity in at
least ten consecutive bins.

By enforcing this simple rule a wave set of 118 waves was formed. It included 72 of the 88 waves
from the reference wave set. The 16 waves that were not found included all seven waves of the
reference wave set with negative reflectivity. For those the model selection found better alternatives.
Since the negative-reflectivity sector was not well explored in previous analyses, this was not a
surprising result and should be studied in more detail in the future. Furthermore, 46 additional waves,
which were not in the reference wave set, were found in the combined wave set, some of which seem
to have interesting features. Most of them are high-spin waves, which indicates that the low-spin
waves have been thoroughly explored in the selection of the reference wave set.

Due to the unphysically large destructive interference effects in the low-mass region of many waves,
a way to threshold critical waves had to be implemented. Since doing this by hand was not an
option, a rule to threshold each wave had to be constructed. The threshold for each wave was set
below the bin that marked the start of the first ten consecutive bins with non-zero intensity in that
wave. This ensured that the important features of the waves were still present in the fits with the
combined wave set, while the low-mass region was stabilized as well. Naturally, this automatic
approach is not perfect, but as a proof-of-concept it worked sufficiently well for most waves. The
few thresholds that were implemented in the reference wave set were transferred to the combined
wave set. This was done particularly to fix the 0−+0+ f0(980)πS wave, which was the only wave that
showed continuous intensity (thus fulfilling the ten consecutive bins requirement), even though its
erratic intensity behaviour was obviously unphysical. Through interference, this one wave caused
several other waves to fluctuate.

Overall, with this systematic approach to model selection the observer bias of previous analyses could
be largely removed. The reference wave set used in [3, 5] could be validated, since the features of all
important waves could be reproduced with this new model selection method. The differences that
were found have no impact on the other waves, since they are small in relative intensity. However, the
waves that were discovered by the model selection procedure that are not part of the reference wave
set are worth investigating. This is true particularly for the 1++1+ f2(1270)πF wave, which features a
notable peak around 2.2 GeV/c2 with a clear phase motion in that same region. This would be an
interesting candidate to analyze in different bins of t′ and maybe even a resonance-model fit could be
performed.

Improvements to the analysis procedure have been discussed, but were not in the scope of this thesis.
The first obvious step would be to verify the method using Monte-Carlo data. This has already been
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realized with success in the π−π+π−π+π− final state [7], but should be repeated in the π−π+π− channel.
The analysis should also be extended to the full t′ range. The biggest challenge in the 3π channel
were the fluctuations in the low-mass region, which may be tamed by introducing a second prior
that penalizes unphysically large interferences between waves. Another facet that would be worth
examining is the effect of the prior width [see equation (3.3)] on the model selection. In this thesis,
this parameter was set to w = 0.5 based on a simple study in the charged five-pion channel [19],
but an in-depth study is advised. The algorithm used to select the combined wave set as well as the
method to choose thresholds for waves are very simple. Additional criteria could further improve the
results.

A long term goal would be to create an algorithm that performs model selection fully automated. One
could also expand the analysis to other, unfamiliar final states (i.e. π−ηη), where it could facilitate the
model selection immensely. It has already been applied to the π−π+π−π+π− final state [7].
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APPENDIX A

Partial Waves of the 88 Wave Set

J PC Mε Isobar L Threshold J PC Mε Isobar L Threshold
[MeV/c2] [MeV/c2]

0−+0+ [ππ]S S – 0−+0+ ρ(770) P –
0−+0+ f0(1500) S 1700 0−+0+ f0(980) S 1200
0−+0+ f2(1270) D –

1++0+ [ππ]S P – 1++0+ ρ(770) D –
1++0+ ρ(770) S – 1++0+ ρ3(1690) D –
1++0+ ρ3(1690) G – 1++0+ f0(980) P 1180
1++0+ f2(1270) F – 1++0+ f2(1270) P 1220
1++1+ [ππ]S P 1100 1++1+ ρ(770) D –
1++1+ ρ(770) S – 1++1+ f0(980) P 1140
1++1+ f2(1270) P –

1−+1+ ρ(770) P –

2++1+ ρ(770) D – 2++1+ ρ3(1690) D 800
2++1+ f2(1270) P 1000 2++2+ ρ(770) D –
2++2+ f2(1270) P 1400

2−+0+ [ππ]S D – 2−+0+ ρ(770) F –
2−+0+ ρ(770) P – 2−+0+ ρ3(1690) P 1000
2−+0+ f0(980) D 1160 2−+0+ f2(1270) D –
2−+0+ f2(1270) G – 2−+0+ f2(1270) S –
2−+1+ [ππ]S D – 2−+1+ ρ(770) F –
2−+1+ ρ(770) P – 2−+1+ ρ3(1690) P 1300
2−+1+ f2(1270) D – 2−+1+ f2(1270) S 1100
2−+2+ ρ(770) P – 2−+2+ f2(1270) D –
2−+2+ f2(1270) S –

3++0+ [ππ]S F – 3++0+ ρ(770) D –
3++0+ ρ(770) G – 3++0+ ρ3(1690) I –
3++0+ ρ3(1690) S 1380 3++0+ f2(1270) P 960
3++1+ [ππ]S F – 3++1+ ρ(770) D –
3++1+ ρ(770) G – 3++1+ ρ3(1690) S 1380
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J PC Mε Isobar L Threshold J PC Mε Isobar L Threshold
[MeV/c2] [MeV/c2]

3++1+ f2(1270) P 1140

3−+1+ ρ(770) F – 3−+1+ f2(1270) D 1340

4++1+ ρ(770) G – 4++1+ ρ3(1690) D 1700
4++1+ f2(1270) F – 4++2+ ρ(770) G –
4++2+ f2(1270) F –

4−+0+ [ππ]S G 1400 4−+0+ ρ(770) F –
4−+0+ f2(1270) D – 4−+0+ f2(1270) G 1600
4−+1+ ρ(770) F – 4−+1+ f2(1270) D –

5++0+ [ππ]S H – 5++0+ ρ(770) G –
5++0+ ρ3(1690) D 1360 5++0+ f2(1270) F 980
5++0+ f2(1270) H – 5++1+ [ππ]S H –
5++1+ f2(1270) F –

6++1+ ρ(770) I – 6++1+ f2(1270) H –

6−+0+ [ππ]S I – 6−+0+ ρ(770) H –
6−+0+ ρ3(1690) F – 6−+0+ f2(1270) G –
6−+1+ [ππ]S I – 6−+1+ ρ(770) H –

1++1− ρ(770) S –

1−+0− ρ(770) P – 1−+1− ρ(770) P –

2++0− ρ(770) D – 2++0− f2(1270) P 1180
2++1− f2(1270) P 1300

2−+1− f2(1270) S –
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Partial Waves of the Wave Pool

J PC Mε Isobar L J PC Mε Isobar L

0−+0+ [ππ]S S 0−+0+ ρ(770) P
0−+0+ ρ3(1690) F 0−+0+ f0(1500) S
0−+0+ f0(980) S 0−+0+ f2(1270) D

1++0+ [ππ]S P 1++0+ ρ(770) D
1++0+ ρ(770) S 1++0+ ρ3(1690) D
1++0+ ρ3(1690) G 1++0+ f0(1500) P
1++0+ f0(980) P 1++0+ f2(1270) F
1++0+ f2(1270) P 1++1+ [ππ]S P
1++1+ ρ(770) D 1++1+ ρ(770) S
1++1+ ρ3(1690) D 1++1+ ρ3(1690) G
1++1+ f0(1500) P 1++1+ f0(980) P
1++1+ f2(1270) F 1++1+ f2(1270) P

1−+1+ ρ(770) P 1−+1+ ρ3(1690) F
1−+1+ f2(1270) D

2++1+ ρ(770) D 2++1+ ρ3(1690) D
2++1+ ρ3(1690) G 2++1+ f2(1270) F
2++1+ f2(1270) P 2++2+ ρ(770) D
2++2+ ρ3(1690) D 2++2+ ρ3(1690) G
2++2+ f2(1270) F 2++2+ f2(1270) P

2−+0+ [ππ]S D 2−+0+ ρ(770) F
2−+0+ ρ(770) P 2−+0+ ρ3(1690) F
2−+0+ ρ3(1690) H 2−+0+ ρ3(1690) P
2−+0+ f0(1500) D 2−+0+ f0(980) D
2−+0+ f2(1270) D 2−+0+ f2(1270) G
2−+0+ f2(1270) S 2−+1+ [ππ]S D
2−+1+ ρ(770) F 2−+1+ ρ(770) P
2−+1+ ρ3(1690) F 2−+1+ ρ3(1690) H
2−+1+ ρ3(1690) P 2−+1+ f0(1500) D
2−+1+ f0(980) D 2−+1+ f2(1270) D
2−+1+ f2(1270) G 2−+1+ f2(1270) S
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J PC Mε Isobar L J PC Mε Isobar L

2−+2+ [ππ]S D 2−+2+ ρ(770) F
2−+2+ ρ(770) P 2−+2+ ρ3(1690) F
2−+2+ ρ3(1690) H 2−+2+ ρ3(1690) P
2−+2+ f0(1500) D 2−+2+ f0(980) D
2−+2+ f2(1270) D 2−+2+ f2(1270) G
2−+2+ f2(1270) S

3++0+ [ππ]S F 3++0+ ρ(770) D
3++0+ ρ(770) G 3++0+ ρ3(1690) D
3++0+ ρ3(1690) G 3++0+ ρ3(1690) I
3++0+ ρ3(1690) S 3++0+ f0(1500) F
3++0+ f0(980) F 3++0+ f2(1270) F
3++0+ f2(1270) H 3++0+ f2(1270) P
3++1+ [ππ]S F 3++1+ ρ(770) D
3++1+ ρ(770) G 3++1+ ρ3(1690) D
3++1+ ρ3(1690) G 3++1+ ρ3(1690) I
3++1+ ρ3(1690) S 3++1+ f0(1500) F
3++1+ f0(980) F 3++1+ f2(1270) F
3++1+ f2(1270) H 3++1+ f2(1270) P
3++2+ [ππ]S F 3++2+ ρ(770) D
3++2+ ρ(770) G 3++2+ ρ3(1690) D
3++2+ ρ3(1690) G 3++2+ ρ3(1690) I
3++2+ ρ3(1690) S 3++2+ f0(1500) F
3++2+ f0(980) F 3++2+ f2(1270) F
3++2+ f2(1270) H 3++2+ f2(1270) P

3−+1+ ρ(770) F 3−+1+ ρ3(1690) F
3−+1+ ρ3(1690) H 3−+1+ ρ3(1690) P
3−+1+ f2(1270) D 3−+1+ f2(1270) G
3−+2+ ρ(770) F 3−+2+ ρ3(1690) F
3−+2+ ρ3(1690) H 3−+2+ ρ3(1690) P
3−+2+ f2(1270) D 3−+2+ f2(1270) G

4++1+ ρ(770) G 4++1+ ρ3(1690) D
4++1+ ρ3(1690) G 4++1+ ρ3(1690) I
4++1+ f2(1270) F 4++1+ f2(1270) H
4++2+ ρ(770) G 4++2+ ρ3(1690) D
4++2+ ρ3(1690) G 4++2+ ρ3(1690) I
4++2+ f2(1270) F 4++2+ f2(1270) H

4−+0+ [ππ]S G 4−+0+ ρ(770) F
4−+0+ ρ(770) H 4−+0+ ρ3(1690) F
4−+0+ ρ3(1690) H 4−+0+ ρ3(1690) P
4−+0+ f0(1500) G 4−+0+ f0(980) G
4−+0+ f2(1270) D 4−+0+ f2(1270) G
4−+0+ f2(1270) I 4−+1+ [ππ]S G
4−+1+ ρ(770) F 4−+1+ ρ(770) H
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J PC Mε Isobar L J PC Mε Isobar L

4−+1+ ρ3(1690) F 4−+1+ ρ3(1690) H
4−+1+ ρ3(1690) P 4−+1+ f0(1500) G
4−+1+ f0(980) G 4−+1+ f2(1270) D
4−+1+ f2(1270) G 4−+1+ f2(1270) I
4−+2+ [ππ]S G 4−+2+ ρ(770) F
4−+2+ ρ(770) H 4−+2+ ρ3(1690) F
4−+2+ ρ3(1690) H 4−+2+ ρ3(1690) P
4−+2+ f0(1500) G 4−+2+ f0(980) G
4−+2+ f2(1270) D 4−+2+ f2(1270) G
4−+2+ f2(1270) I

5++0+ [ππ]S H 5++0+ ρ(770) G
5++0+ ρ(770) I 5++0+ ρ3(1690) D
5++0+ ρ3(1690) G 5++0+ ρ3(1690) I
5++0+ f0(1500) H 5++0+ f0(980) H
5++0+ f2(1270) F 5++0+ f2(1270) H
5++1+ [ππ]S H 5++1+ ρ(770) G
5++1+ ρ(770) I 5++1+ ρ3(1690) D
5++1+ ρ3(1690) G 5++1+ ρ3(1690) I
5++1+ f0(1500) H 5++1+ f0(980) H
5++1+ f2(1270) F 5++1+ f2(1270) H
5++2+ [ππ]S H 5++2+ ρ(770) G
5++2+ ρ(770) I 5++2+ ρ3(1690) D
5++2+ ρ3(1690) G 5++2+ ρ3(1690) I
5++2+ f0(1500) H 5++2+ f0(980) H
5++2+ f2(1270) F 5++2+ f2(1270) H

5−+1+ ρ(770) H 5−+1+ ρ3(1690) F
5−+1+ ρ3(1690) H 5−+1+ f2(1270) G
5−+1+ f2(1270) I 5−+2+ ρ(770) H
5−+2+ ρ3(1690) F 5−+2+ ρ3(1690) H
5−+2+ f2(1270) G 5−+2+ f2(1270) I

6++1+ ρ(770) I 6++1+ ρ3(1690) G
6++1+ ρ3(1690) I 6++1+ f2(1270) H
6++2+ ρ(770) I 6++2+ ρ3(1690) G
6++2+ ρ3(1690) I 6++2+ f2(1270) H

6−+0+ [ππ]S I 6−+0+ ρ(770) H
6−+0+ ρ3(1690) F 6−+0+ ρ3(1690) H
6−+0+ f0(1500) I 6−+0+ f0(980) I
6−+0+ f2(1270) G 6−+0+ f2(1270) I
6−+1+ [ππ]S I 6−+1+ ρ(770) H
6−+1+ ρ3(1690) F 6−+1+ ρ3(1690) H
6−+1+ f0(1500) I 6−+1+ f0(980) I
6−+1+ f2(1270) G 6−+1+ f2(1270) I
6−+2+ [ππ]S I 6−+2+ ρ(770) H
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J PC Mε Isobar L J PC Mε Isobar L

6−+2+ ρ3(1690) F 6−+2+ ρ3(1690) H
6−+2+ f0(1500) I 6−+2+ f0(980) I
6−+2+ f2(1270) G 6−+2+ f2(1270) I

1++1− [ππ]S P 1++1− ρ(770) D
1++1− ρ(770) S 1++1− ρ3(1690) D
1++1− ρ3(1690) G 1++1− f0(1500) P
1++1− f0(980) P 1++1− f2(1270) F
1++1− f2(1270) P

1−+0− ρ(770) P 1−+0− ρ3(1690) F
1−+0− f2(1270) D 1−+1− ρ(770) P
1−+1− ρ3(1690) F 1−+1− f2(1270) D

2++0− ρ(770) D 2++0− ρ3(1690) D
2++0− ρ3(1690) G 2++0− f2(1270) F
2++0− f2(1270) P 2++1− ρ(770) D
2++1− ρ3(1690) D 2++1− ρ3(1690) G
2++1− f2(1270) F 2++1− f2(1270) P
2++2− ρ(770) D 2++2− ρ3(1690) D
2++2− ρ3(1690) G 2++2− f2(1270) F
2++2− f2(1270) P

2−+1− [ππ]S D 2−+1− ρ(770) F
2−+1− ρ(770) P 2−+1− ρ3(1690) F
2−+1− ρ3(1690) H 2−+1− ρ3(1690) P
2−+1− f0(1500) D 2−+1− f0(980) D
2−+1− f2(1270) D 2−+1− f2(1270) G
2−+1− f2(1270) S 2−+2− [ππ]S D
2−+2− ρ(770) F 2−+2− ρ(770) P
2−+2− ρ3(1690) F 2−+2− ρ3(1690) H
2−+2− ρ3(1690) P 2−+2− f0(1500) D
2−+2− f0(980) D 2−+2− f2(1270) D
2−+2− f2(1270) G 2−+2− f2(1270) S

3++1− [ππ]S F 3++1− ρ(770) D
3++1− ρ(770) G 3++1− ρ3(1690) D
3++1− ρ3(1690) G 3++1− ρ3(1690) I
3++1− ρ3(1690) S 3++1− f0(1500) F
3++1− f0(980) F 3++1− f2(1270) F
3++1− f2(1270) H 3++1− f2(1270) P
3++2− [ππ]S F 3++2− ρ(770) D
3++2− ρ(770) G 3++2− ρ3(1690) D
3++2− ρ3(1690) G 3++2− ρ3(1690) I
3++2− ρ3(1690) S 3++2− f0(1500) F
3++2− f0(980) F 3++2− f2(1270) F
3++2− f2(1270) H 3++2− f2(1270) P
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J PC Mε Isobar L J PC Mε Isobar L

3−+0− ρ(770) F 3−+0− ρ3(1690) F
3−+0− ρ3(1690) H 3−+0− ρ3(1690) P
3−+0− f2(1270) D 3−+0− f2(1270) G
3−+1− ρ(770) F 3−+1− ρ3(1690) F
3−+1− ρ3(1690) H 3−+1− ρ3(1690) P
3−+1− f2(1270) D 3−+1− f2(1270) G
3−+2− ρ(770) F 3−+2− ρ3(1690) F
3−+2− ρ3(1690) H 3−+2− ρ3(1690) P
3−+2− f2(1270) D 3−+2− f2(1270) G

4++0− ρ(770) G 4++0− ρ3(1690) D
4++0− ρ3(1690) G 4++0− ρ3(1690) I
4++0− f2(1270) F 4++0− f2(1270) H
4++1− ρ(770) G 4++1− ρ3(1690) D
4++1− ρ3(1690) G 4++1− ρ3(1690) I
4++1− f2(1270) F 4++1− f2(1270) H
4++2− ρ(770) G 4++2− ρ3(1690) D
4++2− ρ3(1690) G 4++2− ρ3(1690) I
4++2− f2(1270) F 4++2− f2(1270) H

4−+1− [ππ]S G 4−+1− ρ(770) F
4−+1− ρ(770) H 4−+1− ρ3(1690) F
4−+1− ρ3(1690) H 4−+1− ρ3(1690) P
4−+1− f0(1500) G 4−+1− f0(980) G
4−+1− f2(1270) D 4−+1− f2(1270) G
4−+1− f2(1270) I 4−+2− [ππ]S G
4−+2− ρ(770) F 4−+2− ρ(770) H
4−+2− ρ3(1690) F 4−+2− ρ3(1690) H
4−+2− ρ3(1690) P 4−+2− f0(1500) G
4−+2− f0(980) G 4−+2− f2(1270) D
4−+2− f2(1270) G 4−+2− f2(1270) I

5++1− [ππ]S H 5++1− ρ(770) G
5++1− ρ(770) I 5++1− ρ3(1690) D
5++1− ρ3(1690) G 5++1− ρ3(1690) I
5++1− f0(1500) H 5++1− f0(980) H
5++1− f2(1270) F 5++1− f2(1270) H
5++2− [ππ]S H 5++2− ρ(770) G
5++2− ρ(770) I 5++2− ρ3(1690) D
5++2− ρ3(1690) G 5++2− ρ3(1690) I
5++2− f0(1500) H 5++2− f0(980) H
5++2− f2(1270) F 5++2− f2(1270) H

5−+0− ρ(770) H 5−+0− ρ3(1690) F
5−+0− ρ3(1690) H 5−+0− f2(1270) G
5−+0− f2(1270) I 5−+1− ρ(770) H
5−+1− ρ3(1690) F 5−+1− ρ3(1690) H
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Appendix B Partial Waves of the Wave Pool

J PC Mε Isobar L J PC Mε Isobar L

5−+1− f2(1270) G 5−+1− f2(1270) I
5−+2− ρ(770) H 5−+2− ρ3(1690) F
5−+2− ρ3(1690) H 5−+2− f2(1270) G
5−+2− f2(1270) I

6++0− ρ(770) I 6++0− ρ3(1690) G
6++0− ρ3(1690) I 6++0− f2(1270) H
6++1− ρ(770) I 6++1− ρ3(1690) G
6++1− ρ3(1690) I 6++1− f2(1270) H
6++2− ρ(770) I 6++2− ρ3(1690) G
6++2− ρ3(1690) I 6++2− f2(1270) H

6−+1− [ππ]S I 6−+1− ρ(770) H
6−+1− ρ3(1690) F 6−+1− ρ3(1690) H
6−+1− f0(1500) I 6−+1− f0(980) I
6−+1− f2(1270) G 6−+1− f2(1270) I
6−+2− [ππ]S I 6−+2− ρ(770) H
6−+2− ρ3(1690) F 6−+2− ρ3(1690) H
6−+2− f0(1500) I 6−+2− f0(980) I
6−+2− f2(1270) G 6−+2− f2(1270) I
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APPENDIX C

Partial Waves of the Combined Wave Set

J PC Mε Isobar L Threshold J PC Mε Isobar L Threshold
[MeV/c2] [MeV/c2]

0−+0+ [ππ]S S 600 0−+0+ ρ(770) P 860
0−+0+ ρ3(1690) F 1980 0−+0+ f0(1500) S 1700
0−+0+ f0(980) S 1200 0−+0+ f2(1270) D 1300

1++0+ [ππ]S P 900 1++0+ ρ(770) D 840
1++0+ ρ(770) S 740 1++0+ ρ3(1690) D 1020
1++0+ ρ3(1690) G 1020 1++0+ f0(1500) P 920
1++0+ f0(980) P 1180 1++0+ f2(1270) F 1020
1++0+ f2(1270) P 1220 1++1+ [ππ]S P 1100
1++1+ ρ(770) D 1020 1++1+ ρ(770) S 940
1++1+ f0(1500) P 1020 1++1+ f0(980) P 1140
1++1+ f2(1270) F 1740 1++1+ f2(1270) P 1260

1−+1+ ρ(770) P 840 1−+1+ f2(1270) D 1980

2++1+ ρ(770) D 760 2++1+ f2(1270) F 1740
2++1+ f2(1270) P 1000 2++2+ ρ(770) D 1040

2−+0+ [ππ]S D 1200 2−+0+ ρ(770) F 1200
2−+0+ ρ(770) P 800 2−+0+ ρ3(1690) F 1600
2−+0+ ρ3(1690) P 1000 2−+0+ f0(1500) D 1180
2−+0+ f0(980) D 1160 2−+0+ f2(1270) D 1540
2−+0+ f2(1270) G 1740 2−+0+ f2(1270) S 1240
2−+1+ [ππ]S D 1640 2−+1+ ρ(770) F 1100
2−+1+ ρ(770) P 760 2−+1+ ρ3(1690) P 1300
2−+1+ f0(980) D 1320 2−+1+ f2(1270) D 1560
2−+1+ f2(1270) G 1800 2−+1+ f2(1270) S 1100
2−+2+ ρ(770) P 1540 2−+2+ f2(1270) D 1580

3++0+ [ππ]S F 1820 3++0+ ρ(770) D 920
3++0+ ρ(770) G 940 3++0+ ρ3(1690) D 1680
3++0+ ρ3(1690) S 1380 3++0+ f2(1270) P 960
3++1+ [ππ]S F 1500 3++1+ ρ(770) D 1060
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Appendix C Partial Waves of the Combined Wave Set

J PC Mε Isobar L Threshold J PC Mε Isobar L Threshold
[MeV/c2] [MeV/c2]

3++1+ ρ(770) G 1200 3++1+ ρ3(1690) S 1380
3++1+ f0(1500) F 2260 3++1+ f0(980) F 1900
3++1+ f2(1270) F 2120 3++1+ f2(1270) P 1140

3−+1+ ρ(770) F 1280 3−+1+ f2(1270) D 1340
3−+1+ f2(1270) G 1700

4++1+ ρ(770) G 1140 4++1+ ρ3(1690) D 1700
4++1+ f2(1270) F 1520

4−+0+ [ππ]S G 1400 4−+0+ ρ(770) F 900
4−+0+ ρ(770) H 1800 4−+0+ ρ3(1690) P 1780
4−+0+ f0(1500) G 1780 4−+0+ f0(980) G 1820
4−+0+ f2(1270) D 1500 4−+0+ f2(1270) G 1600
4−+0+ f2(1270) I 2280 4−+1+ [ππ]S G 1500
4−+1+ ρ(770) F 860 4−+1+ ρ(770) H 1780
4−+1+ ρ3(1690) P 1720 4−+1+ f0(1500) G 1440
4−+1+ f2(1270) D 1340 4−+1+ f2(1270) I 2120

5++0+ ρ(770) G 1100 5++0+ ρ(770) I 1680
5++0+ ρ3(1690) G 1780 5++0+ f0(1500) H 1400
5++0+ f2(1270) F 980 5++1+ [ππ]S H 1540
5++1+ ρ(770) G 1240 5++1+ ρ(770) I 1380
5++1+ ρ3(1690) D 2140 5++1+ f0(1500) H 1300
5++1+ f0(980) H 1800 5++1+ f2(1270) F 1520
5++1+ f2(1270) H 2019

6++1+ ρ(770) I 1820 6++1+ f2(1270) H 2040

6−+0+ [ππ]S I 1360 6−+0+ ρ(770) H 1260
6−+0+ ρ3(1690) F 2019 6−+0+ f0(1500) I 1660
6−+0+ f2(1270) G 1760 6−+1+ [ππ]S I 1980
6−+1+ ρ(770) H 1280 6−+1+ f0(1500) I 1720
6−+1+ f2(1270) G 1660

1++1− [ππ]S P 2100

2++1− ρ(770) D 1140

2−+1− [ππ]S D 1580

3++1− ρ3(1690) S 1740 3++1− f2(1270) P 1580

4++1− ρ(770) G 2060

4−+1− [ππ]S G 2160

5++1− ρ(770) I 1960

6++1− ρ(770) I 2000
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APPENDIX D

Derivation of the Hessian Matrix of the
Likelihood Function

D.1 Gradient of the Likelihood Function

In order to calculate the first partial derivatives of the log-likelihood function equation (2.31) with
respect to its arguments T ε

α it is advantageous to expand the absolute squares terms:

lnL =

N∑
i=1

ln

∑
ε=±1

Nε
waves∑
α,β

T ε
α T ε∗

β Ψε
α(τi)Ψε∗

β (τi)︸           ︷︷           ︸
≡Dε

αβ,i

+T 2
flat


−

∑
ε=±1

Nε
waves∑
α,β

T ε
α T ε∗

β N ε
αβ + T 2

flatA
 (D.1)

where the Dε
αβ,i stand just for some complex numbers calculated from the decay amplitudes for every

event.

In equation (D.1) we have two terms of the form

Az ≡
∑
ε=±1

Nε
waves∑
α,β

T ε
α T ε∗

β zεαβ + T 2
flat zflat (D.2)

The gradient of the likelihood function contains two kinds of elements: partial derivatives with respect
to the real and the imaginary parts of the

{
T ε
α

}
. Defining

T ε
α ≡ xεα + ıyεα and zεαβ ≡ uεαβ + ıvεαβ (D.3)

with all x, y, u, and v being real numbers, we can calculate the derivative of Az with respect to the real
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Appendix D Derivation of the Hessian Matrix of the Likelihood Function

part of T ε̃
α̃ is

∂Az

∂xε̃α̃
=

∂

∂xε̃α̃

 ∑
ε=±1

Nε
waves∑
α,β

[
(xεα xεβ + yεα y

ε
β) uεαβ − (yεα xεβ − xεα y

ε
β) v

ε
αβ

]
+ı

[
(yεα xεβ − xεα y

ε
β) uεαβ + (xεα xεβ + yεα y

ε
β) v

ε
αβ

]
︸                                                ︷︷                                                ︸

≡Bεαβ

+T 2
flat

 (D.4)

One can show that
∑Nε

waves
α,β Bεαβ = 0 1 so that

∂Az

∂xε̃α̃
=

∑
ε=±1

Nε
waves∑
α,β

[
∂xεα
∂xε̃α̃

xεβ + xεα
∂xεβ
∂xε̃α̃

]
uεαβ −

[
yεα

∂xεβ
∂xε̃α̃
− ∂xεα
∂xε̃α̃

yεβ

]
vεαβ (D.6)

Since
∂xεα
∂xε̃α̃

= δεε̃ δαα̃ (D.7)

the sum over ε collapses as do some of the sums over the waves

∂Az

∂xε̃α̃
=

N ε̃
waves∑
α,β

[
δαα̃ xε̃β + xε̃α δβα̃

]
uε̃αβ −

[
yε̃α δβα̃ − δαα̃ yε̃β

]
vε̃αβ (D.8)

=

N ε̃
waves∑
β

xε̃β uε̃α̃β +

N ε̃
waves∑
α

xε̃α uε̃αα̃ −
N ε̃

waves∑
α

yε̃α v
ε̃
αα̃ +

N ε̃
waves∑
β

yε̃β v
ε̃
α̃β (D.9)

Using the fact that the matrix zεαβ is hermitian [cf. equation (D.5)], we can combine the sums and

1 We use the fact that zεαβ is a hermitian matrix with real diagonal elements so that

uεαβ = uεβα, vεαβ = −vεβα and vεαα = 0 (D.5)

Therefore

Nε
waves∑
α,β

Bε
αβ =

Nε
waves∑
α,β

[
(yεα xεβ − xεα y

ε
β) uεαβ + (xεα xεβ + yεα y

ε
β) v

ε
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]

=

Nε
waves∑
α,β

yεα xεβ uεαβ −
Nε

waves∑
β,α

yεβ xεα uεβα︸                                 ︷︷                                 ︸
=0

+

Nε
waves∑
α,β
β>α

(xεα xεβ + yεα y
ε
β) v

ε
αβ +

Nε
waves∑
α,β
β<α

(xεα xεβ + yεα y
ε
β) v

ε
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=

Nε
waves∑
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β>α
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ε
β) v

ε
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Nε
waves∑
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α>β

(xεβ xεα + yεβ y
ε
α) vεβα

= 0
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D.1 Gradient of the Likelihood Function

finally arrive at

∂Az

∂xε̃α̃
=

N ε̃
waves∑
β

xε̃β uε̃βα̃ +

N ε̃
waves∑
α

xε̃α uε̃αα̃ −
N ε̃

waves∑
α

yε̃α v
ε̃
αα̃ −

N ε̃
waves∑
β

yε̃β v
ε̃
βα̃ (D.10)

= 2
N ε̃

waves∑
β

[
xε̃β uε̃βα̃ − yε̃β vε̃βα̃

]
= 2

N ε̃
waves∑
β

Re
[
T ε̃
β zε̃βα̃

]
(D.11)

Note that the sum runs only over the waves with the same reflectivity.

The corresponding derivative with respect to the imaginary part of the transition amplitude can be
derived in an analogous way. However, from equation (D.4) one sees that one just needs to exchange
the roles of the x and y:

∂Az

∂yε̃α̃
= 2

N ε̃
waves∑
β

[
yε̃β uε̃βα̃ + xε̃β v

ε̃
βα̃

]
= 2

N ε̃
waves∑
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[
T ε̃
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]
(D.12)

Using equations (D.11) and (D.12) we can calculate the derivatives of lnL with respect to the real
and imaginary parts of T ε̃

α̃:

∂ lnL
∂xε̃α̃

=
∂

∂xε̃α̃
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=
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1
ADi
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(D.14)

=
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i=1

2
ADi

N ε̃
waves∑
β

[
xε̃β uε̃βα̃,i − yε̃β vε̃βα̃,i

]︸                 ︷︷                 ︸
=Re

[
T ε̃
β Dε̃

βα̃,i

] −2
N ε̃

waves∑
β

[
xε̃β U ε̃

βα̃ − yε̃β V ε̃
βα̃

]︸                ︷︷                ︸
=Re

[
T ε̃
β N ε̃

βα̃

] (D.15)

Analogously one gets

∂ lnL
∂yε̃α̃

=
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i=1

2
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[
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] (D.16)

In both equations we used the definitions

Dε
αβ,i ≡ uεαb,i + ıvεαb,i and Nε

αβ ≡ Uε
αβ + ıVε

αβ (D.17)
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Appendix D Derivation of the Hessian Matrix of the Likelihood Function

D.2 Hessian Matrix of the Likelihood Function

In order to calculate the matrix of second partial derivatives of the likelihood function with respect to
the real and imaginary parts of the transition amplitudes we start from the first partial derivatives as
given in equations (D.15) and (D.16).

The second partial derivatives with respect to to the real parts of the transition amplitudes T ε̃
α̃ and T ε

α

are

∂2 lnL
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=
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(D.19)

Using equation (D.11) we know the first-derivative terms in the equation above and can calculate the
second derivatives with equation (D.7):
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= 2δε̃ε uε̃αα̃ (D.21)

Therefore
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D.2 Hessian Matrix of the Likelihood Function
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APPENDIX E

Intensity Plots for All Waves of the Combined
Wave Set
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Appendix E Intensity Plots for All Waves of the Combined Wave Set
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