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1. Introduction

The first experiment to understand the internal structure of matter was performed
in 1911 by Ernest Rutherford, who explored atoms by scattering « particles on a
gold foil [1]. He proposed that the positive charge is concentrated in the center
of the atom, nowadays recognised as the nucleus, and surrounded by a cloud of
electrons. The nucleus consists of protons and neutrons (nucleons), which are bound
together by the strong nuclear force. At a fundamental level, this interaction is
described by Quantum Chromodynamics (QCD). In particular, QCD characterises
the interactions between partons, all of them being particles that carry colour charges
and build up colourless hadrons (baryons and mesons).

Since protons and neutrons are the only stable baryons and build up all atomic
nuclei, their decoding and detailed description is of particular importance. Our
current understanding of the structure of protons and neutrons, and the cohesive
forces, is mainly the result of measurements using particle accelerators during the
last decades. In particular, lepton nucleon scattering is a powerful tool to investigate
the internal structure of the nucleons. The reason is the point-like nature of leptons
and the fact that they interact mainly through the electromagnetic force, which is
described by an extremely precise theory, the Quantum Electro-Dynamics (QED).
A large body of experimental data could be explained with QCD, despite the fact
that the fundamental particles — quarks and gluons — were so far never observed as
isolated states.

The strength of an interaction is determined by the corresponding coupling constant.
An important property of QCD is the dependence of the strength of the strong cou-
pling constant o, on the space-time distance of quarks and gluons. It gets smaller
for shorter distances which can be probed, for example, in high-energy experiments.
This observation is known as asymptotic freedom and allows the usage of pertur-
bation theory (pQCD) in high energy experiments. In the low-energy range, the
coupling constant is large and no exact analytical tool is available.

Nucleons are such non-perturbative objects. They are complex systems, which con-
sists of three valence quarks as well as sea quarks and gluons. A considerable un-
derstanding of nucleons has already been achieved by combining the experimental
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results with powerful theoretical models. However, the question how the spin of the
nucleon is made up by the angular momenta of its constituents still has not been
solved entirely.

Experimental information about the spin structure of the nucleon is obtained by
scattering polarised high-energy charged leptons on targets containing polarised pro-
tons or light nuclei containing neutrons. In 1987, the European Muon Collaboration
(EMC) carried out an experiment at the Conseil Européen pour la Recherche Nu-
cléaire (CERN) and found out that only a marginal part of the proton spin is carried
by its valence quarks. This finding is known as the "Spin crisis” [2] and was the start-
ing point of several experiments. The years which followed were dedicated to the
study of the nucleon spin carried by gluons and sea quarks. One possible decompo-
sition of the nucleon spin was derived by Jaffe and Manohar [3]. Characteristic is
the fact that all terms of this decomposition have a probabilistic interpretation as
parton densities in the helicity basis. It can be written as:

1 1
Sh=J.= SAS+AG+L (1.1)

Here, J, is the z component of the total angular momentum J, the contribution of the
quarks and anti-quarks to the spin of the nucleon is denoted by %AE and AG is the
intrinsic gluon spin contribution. The total orbital angular momentum of all partons
is denoted L. A full understanding of the nucleon spin is only possible if the orbital
angular momenta of quarks, anti-quarks and gluons are included. Unfortunately,
such angular momenta are not directly accessible in experiments.

A comprehensive theoretical picture of the nucleon might be given by a phase-space
distribution of quarks and gluons. In classical physics this is given by the position
and momentum information of the particle. In quantum mechanics the Heisenberg
uncertainty principle is valid. Hence, position and momentum of a particle can
not be determined simultaneously. Nonetheless, it is possible to introduce quantum
phase space distributions, i.e. the Wigner distribution. They are not experimentally
accessible. Nevertheless, Wigner distributions reduce to distributions which are
accessible in experiments, for instance, Generalized Parton Distributions (GPDs).

In the decomposition of Ji [4], the total angular momentum of the nucleon is written
as the sum of the total angular momenta of the quarks/anti-quarks ¢, denoted by
Jg, and the total angular momenta of the gluons J, and can be obtained through
the equation

1
> Jptdy=1J. = S (1.2)
q

where both quantities, J, and J,, are connected to GPDs via Ji’s sum rule.

These GPDs can be constrained via the measurement of Hard Exclusive Meson
Production (HEMP), as well as Deep Virtual Compton Scattering (DVCS). For
exclusive production of mesons by longitudinally polarised photons the factorisation
theorem is valid [5, 6] and allows for a separation of the amplitude into a hard
part, described by perturbative QCD, and a soft part. This non-perturbative part
consist of two long-distance parts: the structure of the nucleon which is parametrised
by the GPDs, and the structure of the produced meson which is described by the
distribution amplitude (DA).



This thesis is dedicated to the analysis of the transverse target spin azimuthal asym-
metries in hard exclusive production of p® mesons. Such asymmetries are physical
observables, which are sensitive to GPDs. The measurement was performed at the
COmmon Muon Proton Apparatus for Structure and Spectroscopy (COMPASS) by
scattering 160 GeV /c muons off transversely polarised deuterons and protons. The
COMPASS experiment is a fixed-target experiment situated at the Super Proton
Synchrotron (SPS) M2 beam line at CERN. In the years 2002-2004 data was col-
lected with a transversely polarised °LiD target and in the years 2007 and 2010 with
a transversely polarised NHj target, where the scattering centers are protons and
deuterons, respectively. The experimental setup allows the evaluation of single-spin
and double-spin asymmetries.

In this thesis the data of the year 2010, taken during the PhD phase, is analysed. Ad-
ditionally, the data taken in the years 2003, 2004 and 2007 are analysed /reanalysed.
For the first time, all five single-spin and three double-spin asymmetries accessible
with a longitudinally polarised beam and a transversely polarised NH3 target are
extracted. For the low statistic °LiD data the leading-twist asymmetry A?}r}(d)_qﬁs ) is
extracted. Altogether, this thesis is the first complete analysis of exclusive p® mesons
of all available data taken with transversely polarised SLiD and NHj targets at
COMPASS. In the near future, there will be no more data available for such pro-

cesses in the kinematic domain of COMPASS.

The thesis is organised as follows: The second chapter is dedicated to the theoret-
ical background of the field of study, starting with a brief overview of the general
formulation of deep inelastic scattering, followed by a summary of the study of the
nucleon spin structure. In Sec. the focus is on exclusive meson production and
the relevant cross section is introduced. The theory chapter is closed with an intro-
duction to GPDs. Chapter 3| contains an overview of the COMPASS spectrometer,
with emphasis on the detector elements needed for this analysis. Chapter |4|describes
the selection of exclusive p° mesons, whereas Chapter |5 is dedicated to the discus-
sion of the background estimation method. Finally, in Chapter [6] the evaluation of
asymmetries is explained. It starts with introducing the basic concept of asymmetry
extraction followed by a presentation of the applied fit methods. In Chapter |7| the
asymmetries for the NH3 target are discussed. Sec. focuses on the extraction of
background uncorrected asymmetries. The background corrected asymmetries are
presented after the discussion of the influence of non-exclusive events. The chapter
closes with studies of the systematic uncertainties and a comparison of Ai}r}(d)_%)
extracted with one-dimensional and two-dimensional methods. In Chapter || the
asymmetries for the SLiD target are discussed. Finally, Chapter [9] provides a sum-
mary of the results and a comparison with theoretical model calculations. The thesis
finishes with Chapter [10| where a conclusion and an outlook is given.
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2. Theory

This chapter starts with introducing the main concepts of deep inelastic scattering
as it is the basis of the field of study. This is followed by a historical description of
the understanding of the spin structure of the nucleon in Sec. 2.2] Recent reviews,
addressing the measurements as well as the theoretical concepts to decode the spin
structure of the nucleon can be found in Refs. 7, 8]. Section|2.3|is dedicated to the
formal derivation of the cross section, which is mainly based on what is presented
in Refs. [9, 10]. Additional details can be found in Refs. [11], [12]. In Sec.[2.4] the
concept of Generalized Parton Distributions (GPDs) is introduced and their main
properties are discussed. Finally, experimental constraints for GPDs are summarised
in Sec. and concepts for modelling GPDs are introduced in Sec. [2.5]

2.1 Deep Inelastic Scattering

At first, the relevant kinematic variables to describe deep inelastic scattering will
be introduced. A summary of the most important kinematic variables used in this
thesis is listed in Tab. 2.1l In this chapter A = ¢ =1 is used.

Deep (Q% > M?) inelastic (W? > M?) scattering is an extensively studied process.
It allows us to learn about the structure of nucleons, as well as testing underlying
theories. The most up-to-date knowledge about the high-energy spin structure of
the nucleon comes from polarised deep inelastic scattering (DIS) experiments, where
a high-energy charged lepton beam is scattered on a nucleon target. In polarised
deep inelastic scattering the lepton beam is usually longitudinally polarised and the
nucleon target may be either longitudinally or transversely polarised. The analysis
presented in this thesis is done on a data sample taken with a transversely polarised
target, so the emphasis is placed on the theory related to transversely polarised fixed
targets.
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Table 2.1: Important variables.

k= (E,k)

K= (E,K)

g=k—F

El/

W =+/(p+q)?
=22 4 oMy - Q?

Sem = (k + p)?

y=212p_F

yz%h:b%

s = g = A

S

S

A

H

Four-momentum-vector of the incident muon

Four-momentum-vector of the scattered muon

Four-momentum-vector of the target nucleon

Four-momentum-vector of the virtual photon

Energy of the incident lepton
Energy of the scattered lepton
Mass of the target nucleon
Mass of the incoming lepton

Scattering angle of the scattered lepton

Invariant negative mass squared of the virtual photon

Total energy in the v* — N system

Squared invariant center of mass energy
Energy of the virtual photon

Fractional energy of the virtual photon
Bjorken scaling variable

Spin of the lepton

Spin of the target nucleon

Helicity of the lepton

Helicity of the target nucleon
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First, the most generic process:
IN - 1I'X, (2.1)

will be discussed. Here, [ is the incoming lepton which scatters off the target nucleon
N. The scattered lepton is denoted by I’. In inclusive deep inelastic scattering, only
the energy and direction of the scattered lepton are measured with a detector. The
undetected hadronic system is denoted by X. The incoming lepton interacts with
the nucleon in the target through the exchange of a virtual photon. In Fig. a
schematic picture of the process of Eq. is shown, where one-photon exchange
is assurne The effects beyond one-photon exchange are suppressed with at least

L The weak interaction can be neglected because the center-of-mass energy at
COMPASS V8 & 17.4 GeV is much smaller than the Z° mass. Under the assumption
of the validity of the Bjorken limit:

. Q?
v, Q) — oo, with xg; = —— fixed 2.2
P Q 3 Bj My ) ( )
the total cross section can be written in terms of the leptonic tensor L, and the
hadronic tensor WH":
ODpIS LWWW> (2-3)

where Q% xp;, v and M are introduced in Tab. . The leptonic tensor contains
the information on the emission of the virtual photon by the incoming lepton and
can be calculated explicitly in QED. It is composed of a spin-independent part
ij,gj)(k, k') that is symmetric in pv and a spin-dependent part L%)(k:, s, k') that is
antisymmetric in pv [18]:

Ly = L) (kK + 1L (k, 5,K'), (2.4)
where the spin of the incoming lepton is denoted by s.

The hadronic tensor includes the description of the structure of the nucleon. In
contrast to L*, the hadronic tensor W cannot be calculated from first principles
as it contains crucial information involving non-perturbative effects of QCD (see
Sec. . Still, it is possible to specify the tensor structure, allowed by the under-
lying principles, for instances Lorentz symmetry, parity invariance and time reversal.
Usually in experiments spin—% targets are used. In this case W*” depends on the
nucleon spin in the initial and final state denoted by S and S’. Like the leptonic ten-
sor, the hadronic tensor can be separated into a symmetric and an anti-symmetric
part [18]:

W = WHrE(P q) + W (P, S, q), (2.5)

where only the anti-symmetric part depends on the spin of the initial nucleon S.
Since the contraction of a symmetric and an antisymmetric tensor cancels, the cross

Multi-photon exchange might explain (some) inconsistencies in measurements of electric and
magnetic form factors in elastic scattering [13]. Beside the beam-charge asymmetry in inclusive
DIS, which arises from the one-photon and two-photon exchange amplitude, a non-zero transverse-
target single-spin asymmetry A%r%qss in inclusive DIS is an indication for the existence of two-photon
exchange [14]. For the former, an earlier measurement of Brookhaven National Laboratory [15]
and a measurement from EMC [16] were consistent with zero. The latter was measured at HER-
MES [17].
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I(k")

— PDFs

Figure 2.1: Schematic picture of deep inelastic scattering. The four-momentum-
vectors of the particles involved are given in parentheses. The Parton Distribu-
tion Functions (PDFs) encode the long-distances physics due to the partonic sub-

structure of the nucleon. They will be introduced later in this section.

section is separated into an unpolarised and a polarised part, where only the latter
depends on the spins of the incoming lepton and the target nucleon. This strict
separation is only true for spin—% targets. The hadronic tensor can be formulated in
terms of four structure functions Fi, Fy, g; and go. They parametrise the structure of
the target as seen by the virtual photon and have to be determined by experiments.

The symmetric part of the hadronic tensor is parametrised by the structure functions
Fy and F; and F; can be measured in experiments using an unpolarised beam and an
unpolarised target. The anti-symmetric part of the hadronic tensor is parametrised
by g1 and go. Their measurement requires both a polarised target and a polarised
beam. The dimensionless structure functions F, Fs, g1 and g, depend on the vari-
ables x Bj and Q?, For brevity this dependence is omitted in the following.

The unpolarised part of the cross section for scattering a lepton on a spin—% target
can be written as [18]%

d*o 4ra? % y? M?
— 5 IB]y2F1+(1_y_]BJ—2
drpjdy  Q*rpjy Q

)Pyl . (2.6)

The structure function F; and F;, have been measured over a wide range of x5, and
Q? using different target material. The present status of the measurement of F} is
shown in Fig. Experimentally it is observed that over a wide range the structure
functions F}, with 7 € {1,2}, do not depend on Q*:

Fi(z gy, QQ) — Fi(zp;). (2.7)

2In theoretical context, often the symbol x rather than x B; is used for the measured quantity.
However, in DIS processes x is identified with the Bjorken variable zp;.

30ften experiments give the cross section, dgﬁ, as a function of the final lepton energy E’
and the solid angle €2 of the scattered lepton. Using the Jacobian matrix the cross section can be

converted to a cross section as a function of xp; and y or zp; and Q.
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Figure 2.2: Results for the proton structure function F¥ versus Q? measured at
different experiments [19]. The data is shown in bins of fixed zg;. Note that F} has
been multiplied by 2%, where i, is the number of the xp; bin, ranging from i, = 1
(xp; = 0.85) to i, = 24 (xp; = 0.00005).
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This is known as Bjorken scaling. It was predicted by James Bjorken in 1968 [20]
and confirmed at SLAC National Accelerator Laboratory (SLAC) [21]. It is a con-
sequence of the point-like nature of the partons (see Sec. [2.1.2)). The Callan-Gross-
relation:

Fy(wp;) = 2xp;Fi(25;), (2.8)

is well-established in experiments, and, as a consequence, gives a hint to the spin—%
nature of quarks.

The structure functions g; and go can be probed either with a longitudinally polarised
target or a transversely polarised target. If the incoming lepton is polarised anti-
parallel the beam direction (-) and the target nucleon is either polarised parallel or
anti-parallel (+ or -) to the beam direction the cross section difference reads [18]:

o=t dBPo—— B 4agm[ 5 QMQxZBij
degdydd — drgidydd — Q Q? !
4M32% .y

The azimuthal angle between the lepton scattering plane and the spin plane defined
by k and the target Spin S is denoted by ¢. In measurements performed with a
longitudinally polarised target, the dominant contribution comes from ¢;, whereas
go is suppressed. In experiments the measured quantity is connected to the double-
spin asymmetry Aj:

2
g1 — 792
A =——= 2.10
=2 210
where 7 is defined as:
2M'TBj
y=—. 2.11
0 (2.11)

The target nucleon can be polarised perpendicular to the beam direction as well
(1, ). Then the cross section difference reads [18]:

Ao Aot 8a? N
L—y—~v"=—

em y :|
- B 5 . 2.12
dl’Bjdyd¢ d:CBjdyckp Q2 v A g1+ go| cos ¢ ( )

2

Here, the whole cross section is suppressed although g¢i(zp;, Q?) and gs(xp;, Q%)
contribute at the same order and appear in combinations. Therefore the measure-
ment with and transversely polarised target can be used to determine ¢o, once g¢;
has been measured with a longitudinally polarised target. A present status of the
measurement of g} can be fount in Ref. [22] and is shown in Fig.[2.3. A recent result
for the proton structure function gh can be found in Ref. [23] and is presented in

Fig.
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Figure 2.3: World data for the proton structure function g7 versus Q? for several
values of zp;. Plot from Ref.[22].
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Figure 2.4: Results for the proton structure function zp;g5 versus Q* measured at
HERMES, E155 and E143 for selected values of xp;. Plot from Ref. [23].
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2.1.1 Polarisation & Helicity

In general, the helicity of a particle is defined as the projection of its spin onto
its momentum direction. If the spin is parallel (anti-parallel) to the momentum
direction the helicity is 1 (-1). In this case the particle is usually called longitudinally
polarised. Whereas if the spin and the momentum vector are perpendicular the
helicity is zero and the particle is called transversely polarised. Note that for the
photon, for historic reasons, the notation is usually contrary. A real photon can
have the three helicity states denoted by -1, 0, or 1, thereby A\ = —1,1 is called
transversely polarised and A = 0 longitudinally polarised.

2.1.2 The Parton Model & Factorisation

The parton model was introduced at the end of the 1960s [24] and could explain
the observed Bjorken scaling. In the infinite-momentum-frame, the nucleon can be
described as an object consisting of almost collinearly moving quasi-real partons
which are point-like spin—% particles. Then the DIS process can be described as
the sum of a scattering from the virtual photon with one parton. Each parton g is
characterised by the momentum distribution ¢(xp;), where, in this context, zp; is
the longitudinal momentum fraction of quark with respect to the nucleon momen-
tum. Therefore, the momentum distribution ¢(zp;) multiplied by the differential
momentum fraction drp; gives the probability to find the parton ¢, which carries
the fractional momentum xp; in the range [zp;; xp; + drp;]. The charged partons
can be identified with the quarks, the constituents of the nucleon.

A polarised spin-% nucleon can be fully described by three fundamental parton dis-
tributions:

q(rp;) = ¢ (v5;) + ¢ (), (2.13)
Aq(zgj) = ¢ (x5;) — ¢ (z5;), (2.14)
Arq(zp;) = ¢ (25;) — ¢*(2;). (2.15)

The quantity Ag(xp;) is known as the helicity distribution, whereas the distributions
¢ (zp;) (¢~ (xp;)) represent the probabilities that the parton helicity is parallel, +,
(anti-parallel, —) to the spin of the nucleon. The transversity distribution Arq(zp;)
describes the number density of partons with parallel polarisation minus the number
density of partons with anti-parallel polarisation, in a transversely polarised nucleon.

In the limit Q% — oo, the coupling constant of the strong interaction denoted by
ag is decreasing. This property of QCD is known as asymptotic freedom and was
observed by Gross & Wilczek and Politzer. In this range perturbative technics
(pQCD) can be applied to compute the interactio. Therefore, the lepton parton
scattering mentioned above can be calculated in pQCD whereas the long-distance
physics describing the parton in the nucleon is encoded in the Parton Distribution
Functions (PDFs).

4In contrast, at low Q? quarks occur only in bound states. This is known as confinement. Then
instead of pQCD phenomenological models have to be used.
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The total cross section of the DIS process is given as a convolution of a hard par-
tonic sub-process, and the parton distribution functions, PDFs. Schematically this
convolution reads:

do = [partonic cross section] ® [PDFs]. (2.16)

In the parton model, the structure functions can be expressed in terms of the PDF's
as:

1

Fi(zp;, Q) = 3 > Gas(esy), (2.17)
f

Fy(xp;, Q%) = xp; Z etar(vs;),
!

1
9(zp;, Q%) = B Z eiAQf(l’Bj),
f
g2(wm5, Q%) = 0.

The sum runs over all quark and anti-quark flavors and ey is the charge of the
quark or anti-quark ¢. Hence, in the parton model, a simple interpretation of the
structure functions exists. Whereas F7 can be interpreted as the probability to
scatter on a quark in the nucleon with momentum fraction xg;, g; is the differences
in probabilities for scattering off a quark in the nucleon with momentum fraction
xp; and parton helicity parallel and anti-parallel to the spin of the nucleon. There is
no such interpretation of g». It is not possible to access the transversity distribution
Apq(zp;) in inclusive DIS. This distribution includes a helicity flip of the struck
quark, which can not be realised in leading-order DIS.

In contrast to structure functions, which are measurable in experiments, PDF's have
to be parametrised using experimental data. Nevertheless, PDFs are universal quan-
tities. Once measured for one process, they can be used to predict the cross sections
for other processes. A typical parametrisation is presented in Fig. 2.5

Note that in the parton model the structure functions scale, i.e. they are inde-
pendent of Q?. Precise measurements confirmed that in QCD this scaling is broken
proportional to ag log Q2. These logarithmic scaling violations occur because quarks
and gluons interact and outgoing quarks can radiate gluons. This behaviour can not
be explained within the simple parton model and requires a QCD-improved par-
ton model. In pQCD the cross sections are expanded in powers of the coupling
constant ag, where the terms are known as leading order (LO), next-to-to leading
order (NLO), etc. At higher orders of pQCD loop corrections corresponding to hard
radiative correction have to be considered. The division between the radiation of
hard gluons, which are included in the partonic cross section, and the soft gluons,
which are absorbed into the parton density, is defined by the factorisation scale p2.
Thus in the QCD-improved parton model the quantities g, Aq and Arg depend
on p%. For brevity this dependence is omitted in the following. Note that in a
QCD-improved parton model the structure function go differs from zero [19].
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Figure 2.5: Left-hand panel: Distributions of x times the unpolarised parton dis-
tributions, here denoted by f(z) (where f = wu,,d,,,d,s,c,g) using the NNLO
MSTW2008 parametrisation [19]. Right-hand panels: Comparison of helicity dis-
tributions rAut = 2(Au + Au), zAdT = 2(Ad + Ad), At and 2Ad for different

parametrisations [25]. Details of the parametrisations are available in the references.

The parton distribution functions can be written in terms of operator on the light-
cond’| [26] 27]:

@) = [ e (0,000 ) )

)
2t=2,=0

Bale) = [ e (801G, 00y 2t (2)S1)

)
zt=z,=0

, (2.18)

zt=2z,=0

dz= ., _
Arq(r) = / :—We“”” Z{(pSrlg(0)y v 510 (2) IpST)

where 1 is the quark field of flavor ¢, p represents the initial and final nucleon mo-
menta, = is the momentum fraction of the quark and Sy (Sr) is the longitudinal
(transverse) nucleon spin projection. The operators in Eq. contains currents
which are constructed as a combination of I' matrices and Dirac fields, i.e. ¥T%.
Depending on the I matrices, where I" € {1, 75, v, 7*vs, 0"}, the constructed cur-
rents are scalar, pseudo-scalar, vector, axial or tensor currents. In Eq. the
space-time coordinates z of the initial and final quarks are different. Thus the oper-
ator is non-local, but the momenta of initial and final nucleon are identical. Hence
the operator is diagonal.

5All operators are defined using the light-cone-gauge.
6Light-cone-coordinates are summarised in Appendix
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Figure 2.6: Hand-bag diagram.

It is possible to expand the operators’] in terms of (1/Q)"~2, where 7 is known as
twist and is connected to the dimension d in mass units minus spin s of the operators.
For 7 = 2 only the In Q? appears. Thus leading twist is twist two.

2.1.3 Optical Theorem
The process v*p — X is described by the cross section [28]:

o7 PX Oé%e"*l/VWe”, (2.19)

where K is the virtual-photon flux factor and €” is the virtual-photon polarisation
vector. The virtual photon has the momentum ¢ = (¢°,0,0,¢*) with the three
possible polarisation states e”: €/, " and efj, which correspond to the helicities +,
-, and 0, respectively. The diagram describing this process is similar to the diagram
of the forvvar Compton scattering amplitude 7}, which describes the reaction
v*p — v*p. Therefore the optical theorem can be derived:

Wy o< Im T, (2.20)

It relates the hadronic tensor that appears in the cross section of inclusive deep
inelastic scattering to the imaginary part of the forward scattering amplitude for the
Compton process which describes the absorption and emission of a virtual photon
by the nucleon. The latter is illustrated with the 'hand-bag’ diagram in Fig. [2.6]
Hence the evaluation of the forward Compton scattering amplitude in pQCD allows
for conclusions regarding the hadronic tensor W,,.

The forward Compton amplitude can be expanded in terms of helicity amplitudes
My g p [28]. Here, h (h') denotes the initial (final) photon helicity and H (H’)
denotes the initial (final) nucleon helicity. For a spin—% target four independent
helicity amplitudes exist. They can be chosen to be:

Mg -, My, Mo+ 0+, Moy, (2.:21)

They are connected to four independent structure functions. Therefore, it is possible
to express the structure functions in terms of combinations of helicity amplitudes.
The single helicity flip amplitude Mo, 1 is suppressed by a factor of M/Q relative
to the diagonal helicity amplitudes.

"Operator Product expansion (OPE)
8The term forward expresses the fact that the initial and the final states are equal.
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2.2 The Spin Structure of the Nucleon

A central question towards a more complete understanding of the structure of nu-
cleons is how the nucleon spin is distributed amongst its constituents. In the early
1980’s, a longitudinally polarised electron beam was scattered of a longitudinally
polarised proton (butanol) target at SLAC [29]. The setup allowed for the mea-
surement of g; down to xp; = 0.1. These measurements were consistent with the
relativistic parton model, which predicts that ~ 60% of the nucleon spin is car-
ried by the quarks. Some years later the European Muon Collaboration (EMC) at
CERN@ extended the measurement down to xp; = 0.01. In this experiment longi-
tudinally polarised muons were scattered of a longitudinally polarised proton (NHj)
target [30]. The measurements lead to the conclusion that the contribution of the
quarks to the spin of the proton is significantly smaller. In the following years, a
variety of experiments were built up to confirm this result. In particular, they were
dedicated to measure the spin contributions separately carried by the valence and
sea quarks and by the gluons.

The experiments can be divided into fixed target experiments with electron or muon
beams and Collider experiments. The muon beam experiments were performed
at CERN. They started with the EMC Collaboration, followed by the Spin Muon
Collaboration (SMC) and, finally, were continued at the COMPASS™ experiment.
They have a high energy beam between 100 GeV and 270 GeV but the beam has a
limited intensity. Therefore, they need a large solid target to achieve a reasonable
luminosity. The electron beam experiments were performed at SLAC, Deutsche
Elektronen-Synchrotron (DESY) and Jefferson Lab (JLAB). They have a higher
beam intensity and, consequently, only need relatively small targets to reach a high
statistical accuracy. Polarised proton-proton collisions were performed at the Rel-
ativistic Heavy Ion Collider (RHIC) in Brookhaven. Mainly the three experiments
— PHENIX!' STAR™| and BRAHMS"| - contribute to the decoding of the spin of

the nucleon.

One possible decomposition of the nucleon spin was derived by Jaffe and Manohar
[3]. Characteristically is the fact that all terms of this decomposition have a prob-
abilistic interpretation as parton densities in the helicity basis, where the spin is
quantised along the axis in the direction of motion of the particle. It can be written

as:
1 1
5 =J.= AT+ Ag+ L. (2.22)

Here, J, is the z component of the total angular momentum J and the total quark
contribution to the nucleon spin is denoted by %AZ, while Ag is the intrinsic gluon
spin contribution. The orbital angular momentum is named £. The measurement

of g7 (zp;, @*) allows for the constraint of:

1
n n 1
0 = [ (o 07) = 15 gy 223
0
f

9Conseil Européen pour la Recherche Nucléaire

10COmmon Muon Proton Apparatus for Structure and Spectroscopy
Pioneering High Energy Nuclear Interaction eXperiment
1280lenoidal TrAcker at RHIC

13Broad RAnge Hadron Magnetic Spectrometers
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Figure 2.7: Experimental results and NLO fits for the gluon polarisation Ag/g in
the nucleon [31]. The experimental results and the model calculations shown in the

figure are explained therein.

where the sum runs over all quark flavors in the proton p or neutron n and the
helicity distribution consists of contributions from quarks ¢ and anti-quarks §:

8oy = [ faf @) = 7 @) + 7 @) = 67 ()] o (224

The precision of 'Y is limited by the fact that it is impossible to measure the
complete range 0 < xp; < 1, therefore the evaluation of I')"™ always includes as-
sumptions for the unmeasured range. Moreover, Q? and z; are strongly correlated
in the experiment. So each measured point ¢} (xp;, @*) corresponds to a different
value of Q2. Note that the expression for I'}"™ in Eq. is only valid in the naive
parton model. Under the assumption of the validity of the naive parton model the
study of ¢""(zp;, @) and, among other results, the evaluation of Eq. enables
the determination of the flavor-singlet combination :

AY = (Au+ Ad) + (Ad + Ad) + (As + A3). (2.25)

The various experimental results lead to the conclusion that AY is approximately
30%, where the contribution from the sea quarks (As 4+ A3) is measured in DIS to
be comparable with zero.

The gluon spin contribution Ag is accessible in experiments. COMPASS has been
designed to measure Ag via the study of the photon-gluon fusion. This process can
be selected by requiring charmed mesons or high p; charged hadron pairs in the final
state. Additionally, Ag was evaluated at HERMES and through polarised proton

collisions at RHIC. The results are presented in Fig. [2.7] The COMPASS (31, 32]
and RHIC [33] 34] measurements suggest that the spin contribution from the gluons
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is not sufficient to resolve the difference between the small value of AY and the
constituent quark model predictions.

The final challenge is the determination of the orbital angular momentum £. Up to
now, it is not known how to direct measure the orbital angular momenta of quarks
and gluons. The formalism of generalized parton distributions (GPDs) allows to
extract certain information about the quark angular momentum since the GPD E
is related to the total angular momentum of the quarks J¢ and gluons JY via Ji’s
sum rule:

1 +1
J9 = 5/ dox [H(z,&, A% =0) + E9(z,§, A% = 0)],
-1

+1
=3 [ de[ee =0+ B2 22 = 0] (2.26)
-1

The used variables are listed in Tab. The total quark contribution to the nucleon
spin can be obtained, in principle, by extrapolating Eq. |2.26/to t = 0. Experimen-
tally, GPDs can be probed via hard exclusive production of mesons (HEMP) or
photons (DVCS) [35,36]. While the HEMP process is discussed in the next section,
GPDs are introduced in Sec. 2.4

2.3 Exclusive Meson Production

Hard exclusive meson production includes the production of vector mesons as p°,
pt, w, ¢ and J /v, as well as pseudo-scalar mesons as 7°,7%, K= and 7. A schematic
picture is presented in Fig.[2.8l This thesis is dedicated to the measurement of the
p® meson. The p® meson is the lightest vector meson and, therefore, has the highest
production cross section depicted in Fig. . The p° meson decays after the mean
lifetime of ¢ = 1.3fm, with a branching ratio of almost 100% into a 7#F7~ pair.
The pions themselves have a mean lifetime of ¢ = 7.8 m and can be detected in
the spectrometer.

2.3.1 Factorisation Theorem

The factorisation of the amplitude of the scattering process into a short-distance and
a long-distance part is not only valid for DIS processes, as introduced in Sec. [2.1.2]
It can be translated into a more general case, where a finite momentum transfer to
the target exists, for instance Deep Virtual Compton Scattering (DVCS) [38]. The
factorisation is proven in the general Bjorken limit where, in addition to Eq. [2.2]
W is large and the invariant momentum transfer ¢ remains fixed. The long-distance
part is then encoded in GPDg"| Schematically, this can be illustrated by:

do = [partonic amplitude] ® [GPD]. (2.27)

For exclusive meson production, the factorisation approach is valid for reactions
induced by longitudinally polarised virtual photons and is illustrated schematically
in Fig. 2.10l In the particular case of the production of longitudinally polarised

4 The properties of GPDs will be discussed in Sec.
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Table 2.2: Important variables in HEMP.

— _A\2
to
t=t—t,
A2
gz
5 = ITBj
2—xBj+TR; o2
~ _TBj
2—zRj
Emiss vV — Epo + oM
_ (ptg—v)*—p?
2 Mp
5 — pvlab o

Four-momentum-vector of p” meson

Energy of the p° meson

Invariant mass of the reconstructed p° meson

Missing mass squared of the undetected system
Transverse momentum squared of the vector meson with
respect to the virtual photon direction

Square of the four-momentum transfer to the target nucleon

Lower bound of the total four-momentum transfer

Measure of the transverse four-momentum transfer

Skewness variable

Missing energy of the undetected system

Fractional energy of the p° meson
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Figure 2.8: Schematic picture of hard exclusive meson production of the meson M.
The four-vectors of the particles involved are given in parentheses. The Generalized
Parton Distribution Functions (GPDs) and the meson Distribution Amplitude (DA)
encode the long-distances physics due to the partonic sub-structure of the nucleon

and the meson, respectively. They will be introduced later in this section.

p® mesons, induced by longitudinal polarised virtual photons the factorisation the-
orem is proven [5, 6]. The cross section for transversely polarised virtual photons
is predicted to be smaller by a factor of 1/Q? compared to that for longitudinally
polarised ones.

The hard exclusive meson production (HEMP) is one possible process to probe
GPDs. According to the quark content of the meson in the final state, the process
is sensitive to different combinations of quark GPDs. Additionally, if the meson
quantum numbers permit, the GPDs for gluons enter at the same order of ag as those
for quarks. However, a second non-perturbative quantity enters the process, which is
known as meson distribution amplitude (DA). The DA describes the coupling of the
meson to the ¢g pairs or gluons in the hard scattering process. As well as the PDFs,
the GPDs and the DA depend on the factorization scale p3.. The transformation of
the virtual photon into the meson requires a finite momentum transfer ¢ from the
initial to the final proton. In an appropriate frame where both protons move fast
this transfer has to be in direction of the initial proton. This is often referred as
longitudinally momentum transfer.
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Figure 2.9: Left-hand panel: The ratio of longitudinal and transverse cross sections
for p* production. Predictions for HERA (blue solid line), COMPASS (red dashed-
dotted line) and Hermes (black dashed line) [37]. Right-hand panel: Model calcu-
lations of the integrated cross sections for vector meson production at W=10 GeV.
Predictions for p° (red dotted-dashed line), w (black solid line), p* (blue dotted line)
and K*° (green dashed line) [37].

2.3.2 Cross Section

In this section the cross section for the exclusive production of p° mesons is discussed.
In this process a lepton [ is scattered on a nucleon N, where in the final state the
recoiled nucleon N’, the scattered lepton I’ and the p° meson are present:

IN = U'p°N'. (2.28)

The p° meson is detected via its decay particles 7+ and 7~. The reaction of Eq.[2.28|
can be described in terms of the virtual photoproduction process:

YN — p°N'. (2.29)

The angles ¢ and ¢g are defined according to the Trento conventions [40]. The az-
imuthal angle between the lepton scattering plane and the production plane defined
by the virtual photon and the produced meson is denoted by ¢, whereas ¢g is the
azimuthal angle of the target spin vector around the direction of the virtual photon
with respect to the lepton scattering plane (see Fig. . The target spin vector S
is defined as:

(Sreos(o— o)

S = | Srsin(¢ — ¢g) | - (2.30)

St

where S; and St indicates the longitudinal and transverse polarisation component
of the target nucleon relative to the virtual photon direction.
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Figure 2.10: Schematic picture of the factorisation of hard exclusive meson produc-
tion [39].

The cross section is derived in the target rest frame, according to Ref. [9]. As in
DIS, the differential cross section for polarised scattering via a virtual photon can
be expressed in terms of L"* and W, the leptonic and hadronic tensors:

kK d3v

do(IN = 10°X) < L""W,, — —— 2.31
O(UN = 10°X) o LW S 5 (2.31)

with a proportionality factor depending on zp;, y and Q? which is not explicitly
shown here. As mentioned above the leptonic tensor can be calculated in QED. As
shown in Ref. [10], the leptonic tensor L"* can be expressed as a linear combination
in terms of e/ ch*:

L = kK k" + KK — (K- k) g + i Py e P g kg, (2.32)

with:
gt = ("€, (2.33)
gvhof = det(e”, e e, ). (2.34)

and ¢ denotes the ratio of longitudinal and transverse photon-flux and is defined as:

L—y—1y*

I o U
with 7 defined in Eq. m Here, terms depending on m’,/Q* are neglected, where

m,, denotes the mass of the incoming lepton. In Eq. [2.32, the convention €p93 = 1
is used.

(2.35)

The polarisation of the exchanged virtual photon is fully described by the leptonic
tensor. The polarisation vector e* for a virtual photon is defined according to Ref. [9)]
in a right-handed coordinate system as:

wo_ Q2

e = Q\/m< p> (2.36)
1 :

€x1 = :FMZE(OFFLLO)- (2.37)
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s

Figure 2.11: Definition of the angles ¢ and ¢,. Here k, k', ¢ and v represent three-
momentum vectors of the incident and the scattered muon, the virtual photon and
the meson. The symbol S7 denotes the component of the target spin vector perpen-

dicular to the virtual-photon direction.

The polarisation vector for positive and negative helicity is obtained as a combination
of transversely polarised virtual photons, denoted by:

0 0
1 0

€1 = 0 €y = 1 (238)
0 0

Eq. describes longitudinally polarised virtual photons whereas Eq. is valid
for transversely polarised virtual photons.

The hadronic tensor is given by:

W, = Zpﬁ YW@ ro—p—a) Y (N@)IL0)|°X) (" X[L(O)IN(5)), (2:39)

spins

where J, is the electromagnetic current and p;; the spin density matrix. In general
the spin orientation of an ensemble with particles with spin j can be characterised
by a (25 + 1) x (2j + 1) matrix, known as the spin density matrix; for a spin-1/2
nucleon, the matrix can be written as:

(2.40)

1 o 1 1+S, Spei¢=9s)

5 STei(¢_¢S) 1-5;

where @ contains the three Pauli matrices and S is the nucleon spin vector. In
Eq. the > denotes the integral over the momenta of all hadrons in the final
state X. There are further sums Zij over target spin states i, j = :I:% and

spins
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over all polarisations in the hadronic final state p°X. The contraction L"*W,, can
then be written in terms of the following quantities:

T = D, Pji T X / dM5 (e W, €,), (2.41)
ij

where the proportionality factor, depending on zp; and Q?, is chosen such that o,
is the v* N cross section for photon helicity m. In Eq. we have integrated over
the invariant mass M% of the system X.

Finally, the cross section for exclusive p® muoproduction, u N — u'p° N’, on a
transversely polarised target reads [9]'°)

Q| drp;dQ?de dpsdt

1
Qem Y2 1—uap; 1 do
8m3 1 —¢ TBj Q2

1
= 3 (aii + 0;;) + eogy” —ecos(2¢) Reot™ — \/e(1+¢) cospRe (old +0.y)

— Py/e(1—¢) singIm (off + 05y)

— S 5

+ve(l+¢e) singsImoly +/e(1+¢) sin(2¢ — ¢s) Im era“]

+ SrPy | V1 —¢e? cos(¢p — ¢s)Reo

— Vel —¢) cospsReoly — /e(l —¢) cos(2¢ — ¢ps) Reor

The symbols JZ?, in Eq. stand for polarised photoabsorption cross sections or
interference terms, which are given as products of helicity amplitudes M:

O-Zg = Z M:L/U/’/,LZ/M,U/U/,G'AJ (243)

where the sum runs over i/ = 0,£1 and v/ = +1/2. The helicity amplitude labels
appear in the following order: vector meson ('), final state proton (), photon (u
or o), initial state proton (v or A). For brevity, the helicities -1, -1/2, 0, 1/2, 1
are labelled by only their signs or zero. In general, o2 depends on the kinematic
variables zp; and Q?, whereas the dependence on € and ¢ is contained in L* and
the dependence on S, S, and ¢g in pj;. From hermiticity and parity invariance the
following relations can be derived: o,,, = o}, and

ol = (0)", o, = (1) o (2.44)

I5Note that the ¢t-dependence of the cross section is indicated explicitly here and the definition
of a,‘jf; given by Eq. slightly differs from that in Ref. [9].

sin(¢ — ¢s) Im (07 +eogy ) + c sin(¢ + ¢s) Imot~ + %sin(?)gb — ¢s)Imo*

(2.42)
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They imply that ody , 01~ and 0" are purely imaginary, whereas other interference
terms have both real and imaginary parts. The structure functions can be obtained
as combinations of the photoabsorption cross sections and interference terms as
shown in Appendix B] The unpolarised cross section reads:

0o =01 + 0y, = %(O’ii +0,1) +eog - (2.45)
The St dependent part of Eq. contains eight different azimuthal modulations:
five sine modulations for the case of an unpolarised beam and three cosine modu-
lations for the case of a longitudinally polarised beam. Each of the eight azimuthal
modulations of the cross section in Eq. give rise to a cross section asymmetry.
It is defined as the ratio of the respective cross section or interference term to the
unpolarised cross section oy:

4 +— +—
ASin(¢—¢s) _ Im(g++ +E€0g ) Acos(qﬁ—qbs) . Re O,y
uT - o0 LT — —00
J— +_
A?}n(¢+¢s) _ _Im U-—::— A(Iios(gbs) - _Re 0o
T - T - -
0o (s}
- —+
Ai}r%§3¢—¢s) _ _Im o " Afﬁf(%_%) _ _Re T
0o 0o
Asin(qbs) _ _Im 0-_—::0_
uT o0
in(20— Imo
AP0 = 20 (2.46)
g0

Here, the unpolarised (longitudinally polarised) beam is denoted by U (L) and the
transverse target polarisation by T. The asymmetries in Eq. are accessible in
experiments where a longitudinally polarised lepton beam is scattered of a trans-
versely polarised target, and the dependence on ¢ and ¢g is measured. Usually, in
an experiment, the target is transversely polarised with respect to the direction of
the lepton beam and the polarisation value is denoted by Pr. However, in Eq. [2.42]
the target polarisation is transversely with respect to the direction of the virtual
photon, which is denoted by Sr. In the kinematic region of COMPASS the effect
due to the transition from Sy to Pr is small and Eq. is used. A more detailed
discussion of the transition is given in Sec.

The factorization theorem shows that the leading transitions in the large Q? limit
have both the virtual photon and the produced meson longitudinally polarised, all
other transitions being suppressed by at least one power of 1/Q. The only leading-

twist observables are the longitudinal cross section og;" and the interference term
o4y - The only asymmetry containing a leading-twist term is Af}r%(d)*%)where the

leading-twist (higher-twist) term oy~ (017) describes longitudinal p° production by

longitudinal (transverse) photons [9]:

t *
— (1= @)l = (€4 1175 ) 160 - 26 Re (5,0
p

2 +t
Q6 11— TBj dt

2 +— / /
I = — /1 —¢2 I . 2.47
Q5 1—ap,  dt ¢ M, m (€7 y0) (247)
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The skewness variable £ will be introduced in the next section, as well as t' =t — tg
which will be discussed therein. The quantity £, can be decomposed in [41]:

1,2

Ep = —=(3
pO \/§ ( 3
The decomposition in Eq. dependence on the measured meson in the final state.

For instance for the ¢ meson it changes to:

1 1., 1.,
E(—8 +ZE ). (2.49)

3
The quantities £7, £9 are integrals over the GPDs E?, E9 in convolution with hard
scattering kernels. Similar equations are valid for H. The GPDs will be discussed
in the next section.

u 1 d 3 g
&'+ 3E1+ 289). (2.48)

&y =

2.4 Generalized Parton Distribution

The concept of Generalized Parton Distribution is introduced in Ref. [42]. Several
reviews exist, see for instance Refs. [43]/44]. Here, we will mainly follow the extensive
reviews in Refs. [45] 27, (36].

2.4.1 Properties of GPDs

In addition to the logarithmic Q? dependence, the GPDs depend on the three kine-
matic variable x, £ and ¢, respectively, which are discussed individually in the fol-
lowing. An important difference, in comparison to ordinary PDFs; is the presence of
a non-vanishing four-momentum transfer between the initial and final state proton,
which is denoted with ¢. This includes that the momentum fraction carried by the
struck parton in the nucleon differs between the initial and final states. The lon-
gitudinal momentum fraction, with respect to the average momentum of the initial
and final state nucleon (x + &)P* and (z — &) P* is:

x4+ _x=¢
1+¢ 1€

Here, = represents the average of the momentum fraction of the struck parton and
the so-called skewness parameter & quantifies the deviation from the average of the
momentum fraction before and after the hard scattering process. In DIS processes,
the momentum fraction x carried by the struck parton is identified with the Bjorken
variable xp;. This is not the case in exclusive processes, where x is an internal
variable that is integrated over in a convolution of the given GPD with a kernel, that
describes the hard virtual-photon quark interaction, and can assume values between
—1 and 1. Therefore only & and t are experimentally accessible. For Q% > M? the
relation [9]:

(z+€)P =

(z—&P

. (2.50)

xBj
2—33'Bj

¢~ > 0, (2.51)

is valid. Hence the £ coverage of a measurement is related to the coverage in xp; via
Eq.[2.51] Additionally, non-vanishing values of ¢ imply a lower bound of the total
momentum transfer [9]:

462 M2

t| > |to]| = .
1> ol = T

(2.52)
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Figure 2.12: Schematic picture of the parton interpretation in different x ranges
(Figure adapted from Ref. [45]).

Depending on the sign of the quantity x +¢&, the corresponding parton is interpreted
as quark or anti-quark. As illustrated in Fig.[2.12] three different ranges have to be
distinguished. For z > £ (z < §), the GPD is the amplitude to take a (anti-)quark
of momentum (—)z + £ out of the proton and reinsert a (anti-)quark of momentum
(—)z — £ into the proton to reform the recoiling proton. In this range, the GPD is a
generalisation of the usual PDFs, defined in Eq. 2.18] and can be studied in DIS or
SIDIS. In the remaining range —¢§ < x < £, the GPD depicts taking out or inserting
a qq pair with momentum +x + £.

As mentioned above and illustrated in Fig. and Eq. [2.50, the momenta of the
parton and the proton in the initial and the final state are not the same anymore.
Therefore, GPDs do not correspond to squared amplitudes and can not be inter-
preted as probabilities. Instead, they parametrise the interference between ampli-
tudes. The finite momentum transfer between the proton in the initial and final state
is a very important attribute of GPDs. It leads to further interesting consequences
in the interpretation of these objects. On the one hand, the momentum transfer can
have a small transverse component. This encodes information about the transverse
structure of the target and will be discussed in Sec. in further detail. On
the other hand, the finite momentum transfer allows for a change of the angular
momentum of the corresponding parton. We will return to this aspect in Sec. [2.4.2]
The exclusive meson production can be described by four parton helicity conserving
CGPDs, called H(z,&,t), E(z,&,t), H(z,&,t) and E(z,€,t) and four parton helicity
flip GPDs, denoted by Hr(z, &, t), Er(x, &, t), Hr(x, &, t) and Ep(z, €, t). The GPDs
can be defined through non-forward matrix elements of quark and gluon operators
with the general structure (p/S'[¢(—12)O0y(32)[pS), with O € {yF,yt% ic""}.
The spatial coordinate z of the quark and the momentum coordinates p of the nu-
cleon are written in terms of light-cone-coordinates (Appendix . The complete
parametrisation can be found in Ref. [45]. Other parametrisations of GPDs exist,
for instance see Refs. [46, 5, 47].

The parton helicity conserving GPDs have been studied for several years. The GPDs
H and H describe nucleon helicity non-flip matrix elements, while £ and E descrlbe
nucleon helicity flip matrix elements. Their properties are summarised in Fig. [2.13]
For illustration, a model parametrisation for H"(x, ¢, 0) is presented in Fig. 2.14.

The parton helicity flip GPDs, also called transversity GPDs, have been discussed
recently [49, 50]. They were introduced in Refs. [51, 52]. Again, we have four
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Figure 2.13: Interpretation of the GPDs H, F, H and E at the nucleon level.

different GPDs: Hp, Er, FIT and ET. These distributions are off-diagonal in the
parton helicity basis. But, they become diagonal if one changes the basis from
eigenstates of helicity to eigenstates of transversity [5345]. For many processes, the
quark transversity GPDs only play a minor role. The reason is that they require
a helicity flip between the emitted and reabsorbed quark. The interaction of light
quarks with gluons or photons conserve helicity. Hence the helicity flip has to be
compensated by the utilisation of a higher-twist meson wave function [54].

2.4.1.1 Limiting Cases

In the forward limit, where { = ¢ = 0,and p = p/, the hadrons have equal helicities in
the initial and final state, The quark GPDs H? and HY, are related to the common
parton distributions for quarks in unpolarised or polarised DIS [45]:

g B q(z), forz >0
H%2,0,0) = { 3, fern<0 (2.53)

~ Aq(x) forx >0
q — )
H(2,0,0) = { —AG(—z), forx<0 (2.54)
Arq(x), forx >0
q _ Tq )
Hy(z,0,0) = { —Arq(—x), forx <O0. (2.55)
A similar equality can be derived for the gluon GPDs HY and HY:
H9%(x,0,0) = zg(z), forz >0 (2.56)
H9(2,0,0) = zAg(x), forz > 0, (2.57)

and the relations for x < 0. In this limit,  — zp; also applies. The GPDs E and E
do not have such analogues. The definition of these GPDs includes a multiplicative
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Figure 2.14: Model calculation for H%(x, &, 0) [48]. The red line at £ = 0 corresponds
to the normal PDFs (Picture form Ref. [7]).

factor A = y/—t. Therefore, they are only accessible in exclusive reactions, with a
finite momentum transverse to the target, and they vanish in the forward limit.

The Dirac and Pauli form factors, F; and F5, of the proton are defined as matrix
elements of the local electromagnetic current:

> ey (S [9,(0)7,1,(0)[pS) , (258
R (®)a, S )ulp, ) + BBy, 822

Wu(p, S).

These operators are local because the initial and final quarks are created or annihi-
lated at the same space-time point and they are non-diagonal since the initial and
final nucleons have different momenta. Form factors provide a static two-dimensional
picture of the nucleon although they do not contain information about the dynamical
motion of the constituents as this would require knowledge of the momentum space
distribution. The first moments of the GPDs, which are obtained by integrating
over x, lead to the same matrix elements. Therefore, the parton helicity conserving
GPDs are related to the nucleon form-factors by:

/ 11 ol (z,6,1) = Fi(1), (2.59)
/ 11 e Bz, €.1) = Fy(b), (2.60)
/ 11 ol (2, 6.1) = Ga(h), (2.61)
/ 11 o Bz, €.4) = Gp(t), (2.62)
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where the dependence on & drops out after integration over x. Here, F; and Fj
are again the Dirac and Pauli form-factors of the nucleon, and G4 and Gp are the
axial and pseudo-scalar form-factors, respectively. They only depend on the four-
momentum transfer ¢t. Furthermore, the elastic form factors do not depend on the
factorisation scale anymore as the local electromagnetic current is conserved and the
elastic form factors are physical observables, in contrast to GPDs or PDF's.

2.4.1.2 Impact Parameter Interpretation

The fact that the ordinary PDFs, as well as the form factors, can be derived from
GPDs as limiting cases, points to the situation that both, momentum and space
position of the quarks, are encoded in GPDs. First, we introduce the transverse
locations of partons denoted with b. Then, a Fourier transform of GPDs with respect
to the momentum transfer in the transverse direction is built, which is known as
impact parameter distribution [55] (56, 57]:

2
q(z, b)) = / éﬂ?ﬁmrb[{q(x,f =0,t = —A?). (2.63)
Here, the case, £ = 0 is discussed although a generalisation to & # 0 is possible.
In this representation, the parton has a definite longitudinal momentum fraction
x; and a definite transverse location b;. It can be shown that ¢(z,b) has a density
interpretation in the infinite momentum frame [55]. Often GPDs are said to provide
a three-dimensional picture of the nucleon. This interpretation can be traced back
to the fact that the impact parameter b represents the two-dimensional coordinate
in transverse space of the probed parton relative to the center-of-momentum B*:

B =Y b, (2.64)

where z; contains the longitudinally momentum fraction of the parton. In Fig.
the impact-parameter representation for three different values of x is illustrated.

Also for the other GPDs a Fourier transformation, as shown in Eq. is possible.
Whereas HY is related to the impact parameter distribution of unpolarised quarks in
an unpolarised nucleon, H? is related to the distribution of longitudinally polarised
quarks in a longitudinally polarised nucleon and E? is related to the distortion of
the unpolarised quark distribution in the transverse plane when the nucleon has
transverse polarisation.

2.4.2 GPDs and Spin

As already mentioned above, the GPDs E(x, £,t) and E9(z, €, t) describe reactions
with nucleon helicity flip; while the quark helicity is conserved. This can happen
only if quarks carry orbital angular momentum. Thus these GPDs also contain
information about the orbital angular momenta carried by quarks. The total angular
momentum .J is the sum of the total angular momenta of the quarks ¢, denoted by
J4, and the total angular momentum of the gluons, J9, and can be obtained through
the equation: .

It =0 = : (2.65)
q
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Figure 2.15: Schematic picture of the nucleon tomography. The Fourier transform
of the GPD describes the simultaneous distribution of quarks with respect to longi-
tudinal momentum, z P, and transverse position, b, in the infinite momentum frame
(a). It produces a 1 + 2 dimensional tomographic picture of the quark structure of

the nucleon. Here, shown exemplarily for three different x values [58].

The total angular momentum J is uniquely defined. However, this is not the case
if the total angular momentum of an interacting multi-constituent system is decom-
posed into the contributions from its constituents. Furthermore, the decomposition
depends on the gauge used. Therefore, several possible spin decompositions of the
nucleon spin exist, each of them having its advantages and disadvantages. Beside
the decomposition proposed by Jaffe and Manohar presented in Eq. [I.1] another
well known decomposition was introduced by Ji [4] and results in:

7=y (5‘1 + EQ> + s, (2.66)
q

This decomposition is gauge invariant and all three terms can be calculated in the
lattice gauge theory. The expectation values 54 and .J¢ can be accessed experimen-
tally, and J can, at least in principle, be accessed in HEMP. The main drawback
of this decomposition is that only the term S has, for the z-quantization axis, an
interpretation as number densities. In contrast, in Eq.[1.1} each of the terms have
such a partonic interpretation. A summary of several decompositions, including the
Jaffe-Manohar decomposition and Ji decomposition and the decompositions from
Belinfante, Chen et al. and Wakamatsu can be found in Ref. [59].

It is possible to calculate moments of GPDs on the lattice. For instance, this can
be used to evaluate J* and J¢. A recent lattice calculation [60] gives:

J% =0.2240.02, (2.67)
J% = 0.00 4 0.02, (2.68)

at m, ~ 350MeV, with L, ~ —Ly ~ 20 — 30% of the protons spin 3. These
values of the total angular momentum contributions are close to the asymptotic
values predicted by QCD evolution. A model-dependent constraints on wu-quark

total angular momentum J* vs. d-quark total angular momentum J¢ is shown in

Fig.[2.16]
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Figure 2.16: Model-dependent constraints on u-quark total angular momentum J"
vs. d-quark total angular momentum J¢ [61].

2.5 Experimental Constraints for GPDs

GPDs are only accessible in exclusive reactions with a finite momentum transverse
to the target. Experimentally, the measurement of exclusive processes is very chal-
lenging. The reasons are that the cross sections are rather small and the verification
of the exclusivity of the reaction is required. Therefore, especially for those GPDs
without a forward limit measurable in unpolarised or polarised DIS (see Sec. ,
only a limited number of experimental data is available to provide constraints for
GPDs. A summary of the current status can be found in Tab. An additional
difficulty arises because the GPDs typically appear in the physical observables, for
example A%r%(d)—% ) , in a convolution with hard scattering amplitudes, and can not
be extracted directly from the measured data.

2.6 From Asymmetries to GPDs

This work is dedicated to the evaluation of transverse single-spin and double-spin
asymmetries in exclusive p° production on a NHs and SLiD target. These asymme-
tries can be used to constrain GPDs. Presently only model-dependent extractions
of GPDs are known. After a short introduction to the principles of GPD modelling
in Sec. the model from Goloskokov and Kroll (GK model) is presented in
Sec. [2.6.2,
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Table 2.3: Summary of experimental and theoretical constraints for different
GPDs [62].
GPDs constraints for valence quarks | constraints for gluons and sea quarks
experimental theoretical experimental theoretical
H p°, ¢ cross sec- | PDFs, Dirac | p°, ¢ cross sec- | PDFs
tion form factor tions
H 7t data Polarised Arp(p®) Polarised
PDFs, Axial PDFs
form factor
E ATO=9s) ()0 6)| Pauli form fac- | - Sum rule of
tor 2nd moments
E 7t data Pseudo-scalar | - -
form factor
Hp, Ep | ot data, | transversity - -
AT (1) PDFs

2.6.1 Modelling GPDs

There are several reviews on GPDs available which also address the modelling of
GPDs (see, for instance, Ref. [27]) and provide a good overview of the different
concepts. GPD models are based on the ordinary parton densities that are used as
input or as a boundary condition. Additionally, an ansatz for the ¢ and £ depen-
dence is required. Finally, the modelled GPDs have to satisfy the positivity bounds,
the polynomiality and the limiting cases which are summarised in Sec. Polyno-
miality implies that the n-th moment of one GPD F(z,¢,t), f_ll dxx"F(x,&,t)) is
described by polynom of order n or n + 1 in £&. Mainly there are two approaches,
the double-distribution (DD) [63] and the dual representation [64, [65].

The DD representation is widely used and is based on a factorisation of the GPD
into a GPD in the forward limit, a £ dependent term and a factor that generates the
t-dependence. However, since this factorisation assumption is not strictly valid, al-
ternative approaches also exist. One of these alternatives is the dual representation,
based on a partial wave expansion of the GPDs in the ¢ channel.

2.6.2 The Model from Goloskokov and Kroll

This model is based on a phenomenological ’handbag’ approach. The handbag
approach is based on factorization of the process amplitudes in the hard sub-process,
and soft hadronic matrix elements parametrised in terms of GPDs. Here, GPDs are
parametrised using the DD factorisation [66].

Recently the transversity GPDs were included in the model [49], which was moti-
vated by measurements of the HERMES Collaboration. The HERMES Collabora-
tion extracted single-spin asymmetries as a function of ¢, zp; and Q? for exclusive
produced 7" mesons. The measurement was performed by scattering positrons or
electrons with 27.6 GeV/c on a transversely polarised hydrogen target. Most of the
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asymmetries were found to be small, except A%h}qss which was found to be large and

positive [67]. It was observed that the asymmetry Aj ¢S does not vanish for t — 0.
These findings could not be explained, in terms of the model of Goloskokov and
Kroll, with the GPDs H and E alone. But the extension of the model by including
the transversity GPDs has shown promising results [49, 50] in explaining this obser-
vation. This phenomenological approach can also be applied in a very similar way
to p® production.

The model of Goloskokov and Kroll includes both longitudinally-photon contri-
butions as well as transverse-photon contributions, which are expressed in terms
of helicity amplitudes as introduced in Sec. Up to now no rigorous treat-
ment is available in pQCD to calculate the moments from helicity amplitudes if
transverse-photon contributions are involved. The presently best suited ansatz to
include these contributions is the phenomenological ‘handbag’ approach, based on
k-factorisation. In this model, the meson distribution amplitude introduced in
Sec. is replaced by twist-3 meson wave functions parametrised according to
Ref. [54]. Therefore, this approach allows to go beyond leading twist and includes
the transversity GPDs mentioned in Sec.

The GPDs are parametrised via [66, (68, [62]:
1—|ul
(x.&,1) / du/ dvd(u+ v — x) fi(u,n, t) + D;O(E% — 2?), (2.69)
14 |ul

where the last part in the equation is the D-term [69], which arises from the polyno-
miality conditions. Here, the GPD is written as a convolution of the zero-skewness
GPD and a weight function:

filu,n,t) = F'(u, & = 0, t)w;(u, n), (2.70)
The weight function generates the ¢ dependence and is written as:

P(2ni+2)  [(1—Ju])® —v*)]"
22”Z+1F2(n + 1) (1 _ |u|)2n¢+1

w;(u,v,t) = (2.71)
Here, n = 1 is valid for valence quarks, whereas n = 2 is used for sea quarks and
gluons. The zero-skewness GPD consists of the quark GPD in the forward limit
multiplied with a term which generates the ¢ dependence:

Fi(u, & =0,t) = Fi(u,& = 0,t = 0)ePrit, (2.72)

where py;(u) is the profile function [62]. For the forward limits F*(u,§ = 0,t = 0)
of the quark GPDs H, H and Hy the parton distributions, helicity distributions
and transversity distributions, respectively, determined in DIS and SIDIS measure-
ments, are used. The parametrisation of the forward limits of the other GPDs is
much more involved since limits from measurements are not existing. Thus they are
parametrised via:

Fi(u, & =0,t =0) = cu™(1 — u)”, (2.73)

and the parameters ¢;, o; and ; are constrained by lattice calculations and from
fits to data. A description of the parametrisation of the gluon GPDs can be found
in Ref. [66].
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Table 2.4: Summary of possible transitions in exclusive p° production. The helicity

amplitudes and the corresponding GPDs are given [62].

transition  helicity GPDs chiral
amplitudes
Vi — pY Mot o+ H even dominant
Mo— o+ E even dominant
Vi = p% Moy oy H even suppressed
Y E even suppressed
) Mo 1+ Hr odd
Mog 4+ Er odd
Vi = pY suppressed,
neglected
Vi — g suppressed,
neglected

The possible transitions from the virtual-photon to the p” meson are listed in
Tab. 2.4f A given transition can be written as a suitable combination of helicity
amplitudes. Note that in the GK model all terms which are suppressed by at least
V—t/Q?* are neglected. The dominant v; — p? transitions are described by the
helicity amplitudes Moy o and Mo_o;. The suppressed v — pj transitions are
described by the helicity amplitudes My, . and M,_ .. Both amplitudes are
related to H and E. The 75 — p? transitions are described by the amplitude
Mo_ 1+ and Mo; 1. The first amplitude is related to the transversity GPD Hr,
whereas the latter is related to combinations of transversity GPDs denoted by Er
[54], where:

Er =2Hr + Er. (2.74)

These transitions can only be described if transversity GPDs are included in the
model. The transitions v; — p% and 74 — p°  are suppressed in the model calcula-
tions [70] and therefore neglected. This treatment is in agreement with experimental
results. The helicity amplitudes describing the transitions are reappearing in some
Spin Density Matrix Elements (SDMEs) that have been measured at HERMES [71]
and H1 [72] and found to be small. The connection of the helicity amplitudes and the
GPDs with the measured asymmetries in terms of the GK model will be discussed

in Sec.[9.2]
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3. The COMPASS Experiment

The COMPASS experiment is situated at the high intensity M2 beam line of the
CERN SPS!| The main focus is on the investigation of the nucleon spin structure and
the hadron spectroscopy. It is a fixed target experiment with a very flexible setup,
which allows measurements with muon as well as hadron beams on unpolarised,
longitudinally polarised or transverse polarised targets. The scattered muons and
the produced particles are detected in the 50 m long two-stage spectrometer set-up
downstream of the target. An artistic view of the COMPASS detector is shown in
Fig. A detailed description can be found in [73].

Figure 3.1: Artistic view of the COMPASS spectrometer. Picture adapted from
Ref. [73]. The marking of the detector components can be found in Fig.

!Super Proton Synchrotron
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In this chapter mainly the setup of the year 2010 is described. Even so several
years were used in the analysis, only significant differences are highlighted. Beside
of the description of the beam line and the COMPASS spectrometer layout, the data
acquisition and the trigger system as well as the data analysis chain are introduced.

3.1 The Beam Line

At COMPASS the hadron structure can be studied using muon as well as different
hadron beams. A high intense primary proton beam is provided from the SPS at
CERN. The protons are extracted during the so-called on-spill phase to the M2
beam line with an energy up to 450 GeV/c. The duration of each spill primarily
depends on the number of experiments served by the SPS. The flux on the primary
target is limited to 1.45 -10'3 protons during a 4.8 s extraction period and rises to
2.40 -10'3 protons if a 9.6 s long extraction is provided [75].

The measurements analysed in this thesis are performed using a tertiary u* beam.
The beam is produced by scattering the high intense primary proton beam on a
Beryllium target (T6) with 500 mm thickness (Fig. [3.2). The secondary hadrons
created in the interaction are mainly pions with a contamination of kaons of about
3.6%. A sizable fraction of these particles decay in a 650 m long tunnel in muons and
neutrinos. The muons are selected by absorbing the remaining hadrons at the end of
the decay tunnel with a hadron absorber. The momentum selection of the muons is
done by magnetic collimation, with alternating focusing and defocusing quadrupole
magnets. The remaining muons are focused and transported via a 400 m long beam
line to the COMPASS experiment.

The muons produced in the decay process and used for the experiments can have
a momentum from 60 GeV/c up to 190 GeV/c. They are naturally longitudinally
polarised due to the parity violating nature of the weak decay. In the pion rest frame
100% of the muons are polarised. In the laboratory frame the average polarisation
of the beam is a function of the pion and muon energy, given by E, and E:

m2 + (1 — 2%)7712
P~ F— p B 3.1
,U,i :F m72_‘_ —mi b ( )

where the sign of the polarisation is depending on the muon charge and is chosen to
be negative for positive muons. The average muon polarisation as a function of the

L
.\ A + Hadron N K
T K¥— Absorber

T6

\ | Decay | | |

“som 650m | 400m " som

Splitter1

Figure 3.2: Generation of the u™ beam for the COMPASS experiment. The splitter
magnets allow the sharing of the proton beam between different experimental halls.
Picture adapted from Ref. [74].
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muon momentum is presented on the left-hand side of Fig. The selected muon
momentum is a compromise between the reachable polarisation and total muon flux
depicted on the right-hand side of Fig.[3.3] The used beam has a nominal momentum
of 160 GeV /¢ with a spread of 5% and a longitudinal polarisation of P, ~ —0.8. As
mentioned above the spill length and the muon flux depend on the year. Up to 2007
the complete cycle lasts 16.8s and the muons were extracted during a 4.8s long
spill with an intensity up to 2 - 10® u/spill. In 2010 the data were taken at a mean
intensity of 3.5 - 108 u/spill, for an extraction length of about 9.6 s every 40 s.

On account of the considerable momentum spread and the broad diameter of the
secondary beam it is very important to measure the momentum and the trajectory
of every incoming muon. This is done with the Beam Momentum Station (BMS)
which is situated around 100 m in front of the target. It consists of two scintillating
fibre stations (BM05, BM06) and four scintillating hodoscopes (BM01-BMO04) placed
upstream and downstream of three bending dipole magnets (B6) and four quadruples
(Q29-Q32). A schematic drawing of the BMS and the magnets is shown in Fig. .
The measured precision is about dp/p = 0.5%. Finally the beam is focused on the
target, where the beam spot has the RMS width of about 0.8-0.8 cm?.

3.2 The Polarised Target

The goal of the muon program of COMPASS is the measurement of cross section
asymmetries. The corresponding observable is the asymmetry A o< PrfAoc where
Ao is the cross section difference between two different spin configurations for the
given process and Pr is the target polarisation. The measurement of such an observ-
able is feasible if the selected target material is polarised to a high degree and both
factors, Pr and f, are as large as possible to optimise the statistical significance of
the measurements. The dilution factor f is calculated as the fraction of polarisable
material weighted by the corresponding cross sections and depends on the analysed
process. In the presented analysis the dilution factor is evaluated for incoherent
exclusive p° production using the measured material composition and the nuclear
dependence of the cross section.

While at a low enough temperature, the electron spin can be aligned in a strong
magnetic field, only a negligible nuclear spin polarisation can be reached with the
same conditions. At COMPASS the method of dynamic nuclear polarisation (DNP)
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Figure 3.3: Muon momentum versus polarisation (left-hand side) and muon momen-
tum versus total muon flux for a 4.8 s long spill (right-hand side) [73].
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Figure 3.4: Layout of the BMS station [73].

is used to polarise the solid state targets [76]. This method demands for a material
containing ~ 107° of paramagnetic centres created by irradiation, a temperature
below 1K and a strong and homogeneous magnetic field. These requirements are
fulfilled by deuterated lithium (°LiD) and the ammonia (NHj), which have been
chosen as target materials for polarised deuterons and protons, respectively. The
polarisation of the unpaired electrons in the paramagnetic centres is almost 100% and
is transferred to the nuclear spins of protons or deuterons by means of a microwave

field.

The ammonia is contained in three cylindrical target cells with a diameter of 4 cm,
placed one after another along the beam. The central cell is 60 cm long and the two
outer ones are 30 cm long and 5cm apart. The deuterated lithium target consist of
only two cells, again placed one after another along the beam. Each of the cells has
a diameter of 3cm and a length of 60 cm with a 10cm long gap in between. The
spin directions in neighbouring cells are opposite. The target configuration allows
for a simultaneous measurement of azimuthal asymmetries for the two opposite
target spin directions in order to become independent of beam flux measurements.
Systematic effects due to acceptance are reduced by reversing the spin directions
on a weekly basis. With the three-cell configuration the acceptance for cells with
opposite polarisation is more balanced, leading to a further reduction of systematic
effects. From 2002 to 2004 the angular acceptance was 70mrad at the upstream
edge of the target. From 2006 onwards an upgraded target magnet with a new
large-aperture solenoid was used. It provides an angular acceptance of 180 mrad for
the upstream target edge resulting in an increased hadron acceptance.

A schematic picture of the target structure is presented in Fig.|3.5l The chosen tar-
get is located within a large aperture magnet with a dipole holding field of 0.5 T. A
strong longitudinal magnetic solenoidal field of 2.5 T is generated by a superconduct-
ing magnet. It is used when polarising the target material. With a mixture of liquid
SHe and “He the target is cooled down to 50 mK. Ten NMR coils surrounding the
target allow for a measurement of the target polarisation Pr, which typical amounts
to Pr =~ 80% or Pr ==~ 50% with an uncertainty of 3% and 5% for protons and
deuterons, respectively. The dilutions factors are f ~ 0.25 and f = 0.45 for protons
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Figure 3.5: Side view of the COMPASS NHj polarised target (picture from Ref. [77]).

and deuterons [78]. A summary of the target compositions for the different years of
data taking is presented in Tab. and Tab. [3.2] The target cells are denoted, in
the direction of the muon beam, with U (UP), C (CENTRAL) and D (DOWN). A
schematic view of the naming scheme for the target cells is presented in Fig. [6.1]

3.3 The Spectrometer

3.3.1 Overview

The spectrometer consists of two stages. This allows the reconstruction of scattered
muons and produced hadrons in a wide kinematic range. The Large Angle Spec-
trometer (LAS) starts directly behind the target region. It is built around a dipole
magnet (SM1) with a field strength of 1.0 T and is designed to detect particles
emitted under a large polar angle and particles with a low momentum. The Small
Angle Spectrometer (SAS) is built around a second dipole magnet (SM2) with a field
strength of 4.4 T. The SAS is used to measure high momentum particles emitted at
angles smaller then 30 mrad with respect to the beam axis. The setup provides an
excellent polar angle acceptance. Each stage has tracking detectors before and after
the dipole magnet, hadronic and electromagnetic calorimeters and muon identifica-
tion. In the first stage the RICH-1P detector allows to identify charged particles,

2RIng Imaging CHerenkov
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Table 3.1: Target composition for 2007 [79] (upper part) and 2010 [80] (lower part).

U [mol] C [mol] D [mol]
proton 25.903£0.141 | 55.663£0.282 | 28.439+0.141
deuteron 0.003+0.001 | 0.006£0.001 | 0.003£0.001
helium-3 0.547+0.070 | 1.026+£0.120 | 0.502+£0.070
helium-4 | 6.716+0.370 | 12.58940.690 | 6.16240.340
nitrogen-14 | 8.604+0.047 | 18.488+0.094 | 9.446+0.047
nitrogen-15 | 0.032+0.001 | 0.068+0.001 | 0.035+0.001
proton 27.32+0.282 | 54.374£0.564 | 33.16+0.282
deuteron 0.003+0.001 | 0.006£0.001 | 0.004=£0.001
helium-3 0.308+0.038 | 0.619+0.077 | 0.247£0.030
helium-4 6.663£0.377 | 13.385+0.762 | 5.333+0.294
nitrogen-14 | 9.07£0.094 18.06+0.188 | 11.01£0.094
nitrogen-15 | 0.034+0.001 | 0.067+0.001 | 0.041£0.001

Table 3.2: Target composition for 2003 [81] (left-hand side) and 2004 [82] (right-hand

side). The errors are presented if available in the publications.

U [mol] | D [mol] U [mol] D [mol]
proton 0.11 0.11 0.105£0.010 | 0.108+£0.010
deuteron | 21.23 21.97 20.84440.280 | 21.574£0.255
helium-3 | 0.940.3 | 0.9£0.3 || 0.6694+0.171 | 0.647£0.163
helium-4 | 9.1£0.4 | 8.9+0.4 || 7.12840.812 | 6.89240.763
lithium-6 | 20.44 21.15 20.027£0.282 | 20.729£0.259
lithium-7 0.90 0.93 0.922£0.033 | 0.954+£0.033

i.e. to separate between pions, kaons and protons. The top view of the COMPASS
spectrometer is shown in Fig. [3.6]

The detector components will be described in the following section. For further
information references to the publications of the different detector components will
be given.

3.3.2 Tracking Detectors

A variety of types of tracking detectors are installed in the COMPASS spectrometer
to handle best the expected particle flux, the needed spatial or time resolution and
the required active region over the whole spectrometer. Additional the amount of
material along the beam path has to remain a minimum in order to minimise multiple
scattering and secondary interactions. The particle flux per unit transverse surface
decreases by five orders of magnitude going from the region closest to the beam
to the largest angles accepted by the spectrometer. Therefore the different types
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Figure 3.6: Top view of the COMPASS spectrometer in 2010 [83].

of tracking detectors used can be grouped in three classes: The Very Small Area
Trackers (VSAT), which cover the beam region up to a radial distance of 2.5cm
- 3cm, the Small Area Trackers (SAT), which cover the intermediate region at a
radial distance of 2.5cm to 40 cm and the Large Area Trackers (LAT) which cover
the outermost regions.

Near the beam axis high particle rates up to 10° mm=2s~! occur [73]. The VSAT
detectors have to be radiation hard and need to have a very good spatial resolu-
tion of 100-200 ym or a time resolution of up to 3ns. This allows a precise vertex
reconstruction and a good spatial resolution of the reconstructed tracks. Here, Scin-
tillating fibres (SciF1i) and Silicon micro-strip detectors (SI) are used. The
SciFis are placed upstream and downstream of the target. They have an enormous
rate capability of up to 5 MHz per fibre. They provide the tracking of the incoming
and scattered muon as well as of all other charged reaction products very near of
the centre of the primary beam. The SIs complement the tracking of the incoming
beam trajectories.

Further from the centre as SAT detectors two types of gaseous detectors, the micro-
mesh (MicroMega) detectors (MM) and the Gaseous Electron Multiplier
(GEM/GM) [87], are installed. The detectors have a region of about 3cm in the
central part which can be electrically deactivated, so that high momentum particles
emitted under a small polar angle can fly to the SAS. The MMs have a typical space
resolution of 70 um and a time resolution better than 10 ns, where for the GEMs
the space resolution is &~ 50 pum and the time resolution ~ 12 ns.

The LAT consist of three different designs: the planar drift chambers (DC)
and the large drift chambers W4-5 [73], the Straw Tube detectors (ST) and
the Multi-Wire Proportional Chambers (MWPC) [73,/89]. All detectors have active

areas of several m2.
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3.3.3 Particle Identification

Muon Identification

The scattered muons are identified with the Muon Wall 1/2 (MW1/MW?2) [73]. Both
detector systems are located at the end of each spectrometer stage and consist of a
hadron absorber called Muon Filter 1/2 (MF1/MF2) and several tracking detectors
in front and behind the muon filters. Additionally the Muon Filter 3 (MF3) is placed
in front of the hodoscope H5. The muon filters absorb all particles except the weak
interacting muons. Therefore a particle is identified as a muon if its track can be
reconstructed before and after the absorber. The Muon Wall MW1 is located at the
end of LAS in front of SM2 and consist of a 60 cm thick iron absorber surrounded
by gaseous wire detector called Mini Drift Tube (MDT). The MW2 consist of a
2.4 m thick concrete absorber followed by two Drift Tube stations and three MWPC
stations.

Calorimeters

In each of the spectrometer stages an electromagnetic (ECAL1/ECALZ2) followed by
a hadronic calorimeter (HCAL1/HCALZ2) are installed [90].

The aim of the ECALs is to measure the energy of electrons and photons. An
electromagnetic shower is initiated if an electron or photon pass through the mate-
rial. The electrons and positrons of the occurred shower emit Cherenkov radiation,
where the intensity is proportional to the energy of the initial particle. Initially both
ECALS consisted of lead glass modules. The ECALI1 has a size of 3.97x2.86m? and
is operational since 2006. The ECAL2 covers an area of 2.44x1.83m?2. Before the
run in 2008 it was partially upgraded. Near the beam axis, the lead glass GAMS
modules were replaced by Shashlik sampling modules as they cope with a higher
irradiation dose and provide an improved energy resolution.

Each hadron calorimeter is placed after the electromagnetic calorimeter and in front
of the muon filter to measure the energy of the hadrons produced in the target and
to participate in the triggering of inelastic muon scattering events. Additionally they
can be used to identify muons which only deposit a characteristic small amount of
energy in few detector cells. Both HCALs are sampling calorimeters with alternating
iron converters and plastic scintillator plates. If a strong interacting particle passes
through the iron it initiates a hadronic shower which produces a light signal in the
scintillators. As for the ECALs, the sum of the signals is then proportional to the
energy deposited by the hadron in the calorimeter.

The RICH-1 Detector

The LAS is equipped with a Ring Imaging CHerenkov detector (RICH-1) [91] [92]
which allows for hadron identification. The RICH-1 is filled with the radiator gas
CyFip. The index of refraction is n = 1.0015, at a temperature of 25°C and 1013
mbar pressure. If particles pass through this dielectric medium with a velocity fc
larger as the speed of light ¢/n in this medium Cherenkov light is emitted under the

characteristic angle:
1 1
cos O¢ = = ) (3.2)

p2
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with respect to the direction of motion. Here, m and p denote the mass and the
momentum of the particle. Therefore, if ©¢ is measured the velocity of the particle
can be determined. Additionally, if the momentum of the particle is known the
corresponding mass can be calculated and thus the particle type can be identified.

The emitted Cherenkov photons are reflected and focused by two spherical mirror
surfaces to the photo-detection areas outside the LAS spectrometer acceptance. The
minimum momentum p,;, for which Cherenkov photons get emitted depends on n
and is received if Eq. is evaluated for the limiting case cos O¢ = 1:

m

T (3.3)

Pptr =

The RICH-1 enables the identification of pions 7, kaons K and protons P in a mo-
mentum range between ppinr = 2.5GeV/c, pmink = 9GeV/c, Dminp = 17GeV/c
and P =~ 50GeV/c. The RICH Wall, a large size tracking detector, is installed
between the RICH-1 and the first electromagnetic calorimeter. It consists of eight
alternating layers of Mini Drift Tubes (MDT) and converter layers made of stacks
of steel and lead plates.

During the COMPASS upgrade in 2005 the RICH-1 detector was equipped with
multi anode photo-multipliers in the central region and with new frontend readout
electronics for the outer part to improve the particle identification.

3.4 The Trigger System

The aim of the trigger system is to select an interesting event candidate and activate
the data recording. This has to happen with a decision time below 500ns and a
minimum dead time in a high rate environment. The trigger system [93] consists of
different fast hodoscopes and two scintillating veto stations upstream of the target,
mainly to select the scattered muon. To increase the trigger purity, in particular in
the small Q? domain, the energy deposits in calorimeters complemented the trigger
system. Three different classes of triggers exists:

e Inclusive triggers only require a scattered muon.

e Semi-inclusive triggers require a scattered muon and in addition a certain
deposited amount of energy in at least one of the calorimeters ECAL1, HCAL1
or HCAL2.

e Calorimeter trigger only require a certain deposited energy in one of the
calorimeters ECAL1, HCAL1 and HCAL2 where the required minimal de-
posited energy is higher as for the semi-inclusive trigger.

The triggering on muons which interact with the target is performed by demanding
timed and spacial correlations of hits in pairs of hodoscopes. Two different trigger
concepts are used, the so-called target pointing trigger and the so-called energy loss
trigger. The target pointing trigger measures the scattering angle of the muon in a
direction perpendicular to the bending plane of the dipole magnets SM1 and SM2.
This is done by demanding a hit pattern in the hodoscopes which corresponds to
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a track pointing towards the target. Thus requires horizontal scintillator strips.
The energy loss triggers have vertical strips and use the fact that the muons which
transferred some energy to the target nucleon get more deflected in the bending
plane.

The setup allows to trigger on muons in two different kinematic ranges: the regime
of deep inelastic scattering and the production of quasi-real photons. In the deep
inelastic scattering range with Q* > 0.5 (GeV/c)? the information from the scat-
tered muon is sufficient for triggering. It is extracted using the hodoscopes and the
target pointing method. The quasi-real photon events with smaller four-momentum
transfer occur under a very small scattering angle. Here the energy loss method is
used. Additional also background events e.g. radiative events or low energy halo
tracks have a small scattering angle. Therefore, the limited position accuracy of the
track measurements of the incoming and outgoing muon will not allow to determine
the vertex position with a satisfying precision. These events require additionally
the information from the hadronic calorimeter. The elements of the muon trigger
for the 2010 setup are distributed over the whole spectrometer as shown schemati-
cally in Fig. They consist of four stations, the three semi-inclusive called inner
(IT) (H4I, H5I), middle (MT) (H4M, H5M), ladder (LT) (H4L, H5L) and the inclu-
sive outer (OT) (H30, H40), where each station is built up out of two scintillating
hodoscopes. The kinematical coverage in y and Q? for the four hodoscope trigger
subsystems and the calorimetric trigger is shown in Fig.

In 2010 a new Large Angle Spectrometer Trigger (LAST) was set up. It consist of
two additional hodoscopes H1 and H2, where H2 is composed of two halves (H2J
and H2S). The H1 is situated in front of the RICH-1 where as H2 is located after the
MF1 and MW1 modules. The goal of the LAST is the extension of the kinematic
range towards higher Q?. The trigger concept is similar to the OT the vertical target
pointing. It replaces the pure calorimeter trigger (CT) in 2007. Additionally in 2007
the large Q? trigger was used. An analysis of the trigger performance in 2007 and
2010 can be found in Ref. [94].

Furthermore a veto system is installed. It prohibits muons not interacting with
the target, so-called halo muons, from activating the data taking. It consist of two
segmented scintillating counters in front of the target. They have a central hole
of about 4 cm so it is not disturbing the beam. A third counter is installed 30 cm
upstream of the target. It rejects the halo muons with a smaller slope.

3.5 Data Acquisition and Reconstruction

The data acquisition of the COMPASS experiment has to handle more than 250 000
detector channels with high trigger rates up to 100 kHz. The data is constantly digi-
tised and buffered, where possible directly at the detector front-end electronics, in
either dedicated ASIC and /or sampling analog-to-digital (ADC) or time-to-digital
(TDC) modules. The amplitudes or time information is transferred to the read-out
modules named CATCH? and GeSiCAP| From 2010 onwards also GANDALHF? [95]

3 Application Specific Integrated Circuit

4Compass Accumulate, Transfer and Control Hardware

5Gem and Silicon Control and Acquisition

6Generic Advanced Numerical Device for Analytic and Logic Functions
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Figure 3.7: The trigger setup in 2010 [83].

modules are used. The synchronisation of the digitising and readout units is per-
formed by the trigger control system (TCS). From the readout modules the data is
transferred via optical S-LINK to the readout buffers and afterwards to the event
builder. Schematically, the data flow is shown in Fig. [3.9]

The raw data contains all information about the recorded events and is stored on
the Cern Advanced STORage manager (CASTOR). For data analysis it is processed
by the reconstruction program CORAI[| In the first step the stored data are de-
coded, i.e. the information on the fired detector channel, either wire, pad, or cell,
is extracted from the data and afterwards clustered, i.e. detector channels that are
fired by the same particle are grouped together. Next, the tracks and vertices are re-
constructed using a Kalman filter [96]. The information on tracks, vertices, clusters
in the calorimeters and particle types (RICH likelihoods) are stored for every event
in mDSTH, A schematic view of the data reconstruction is presented in Fig.[3.10]

The data analysis is done with the PHysics Analysis Software Tools, PHAST It
provides a summary of often used functions to access the information stored for every
event and an environment for the development of physics analysis codes. It allows
the analysis of COMPASS data on the level of mDST. The ROOT framework
can be used therein.

Additional in this thesis Monte-Carlo (MC) data generated by LEPTO and
PYTHIA is used. After the generation the MC events are processed though
COMGEANT, a program based on GEANT3 [101]. The GEANT@ package is a
collection of functions which allow to simulate the COMPASS spectrometer with
predefined geometrical shapes. Also the response of the different detector types is
simulated. It takes care of transporting the particles through the geometry and the

"COmpass Reconstruction and AnaLysis
8mini Data Summary Trees
9GEometry ANd TRacking
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Figure 3.8: The kinematical coverage in y and Q? for the four hodoscope trigger

subsystems and the calorimetric trigger [73].

varying material of the detectors, performing the different interaction of electromag-
netic particles, hadrons and charged leptons. The MC events are also reconstructed

with CORAL and can be analysed with PHAST.
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4. Data Selection

In this thesis COMPASS data taken with transversely polarised targets is analysed.
The measurements were performed during the years 2002-2004 (SLiD target) and
2007 & 2010 (NH; target). In this section the reconstruction and selection of exclu-
sive p° muoproduction events are described. Unless otherwise noted, identical cuts
are used for the data taken with °LiD and NH; target. Before the various cuts are
introduced, the underlying data sample is presented and the data quality checks at
COMPASS are summarised.

4.1 Used Data

The data taking in COMPASS is organised in runs, where every run has a length
of up to 200 spills. The length of the spills varies from year to year (Sec. . After
processing the data, the important information of every event is stored in mDST files
and can be analysed individually with PHAST and ROOT (Sec.[3.5)). Before apply-
ing the user-defined cuts a pre-selection is done requiring a primary Verte with at
least one reconstructed outgoing muon and a photon virtuality @* > 1 (GeV/c)? for
2007 and Q? > 0.7 (GeV/c)? for 2010 data. These cuts are mandatory for selecting
deep inelastic scattering events and reduce the amount of data significantly. For
2003 and 2004 the analysis was started from a Q* > 1(GeV/c)? sample.

Transversely Polarised NHj;

In 2007 the data taking at COMPASS was equally shared between a transversely
polarised and a longitudinally polarised NHj target. With a transverse spin config-
uration 12 sub-periods were recorded, named with period 25-31 and 39-43, while in
between data taking with a longitudinal target polarisation was performed. Each of
the sub-periods has a length of about 5 days. The spin is reversed regularly, mostly
after one or two sub-periods. In Tab. the production slots of 2007 data, employed
in this analysis, are listed. For the analysis the third production is used, which has
the same alignment as the second production and the CORAL version 08-7-30-slc4.

!The primary vertex is defined as a vertex which contains a beam particle.
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The used runs are summarised in Tab. [4.2] The three runs 62769, 62861 and 63807
could not be used in the analysis, since at the time of the analysis they were not
accessible due to CASTOR problems. In 2007 a total number of 3-10'® protons were
delivered to the experimental hall, which corresponds to 440 TByte of data written
to tape.

Table 4.1: Production slots used for 2007.

W25 | W26 | W27 | W28 | W30 | W3l
slot | 2-7 | 2-7 | 4-7 3-7 0-7 0-7
W39 | W40 | W41 | W42a | W42b | W43
slot | 4-7 | 3-7 | 4-7 o-7 5-7 4-7

In 2010 the COMPASS data taking, which started in June and finished in November,
was dedicated to the measurement with a transversely polarised NHj target. The
data is split in 12 different periods, each consisting of two sub-periods with a length
of about 5 days. Again, about every second sub-period the target polarisation is
reversed. The periods are summarised in Tab. The data is produced with the
CORAL version 20101213. For nearly all periods slot 1 is used, except period W27.
Here, slot 2 is used. In 2010 a total number of 36.6-10° events were collected and
written on tape which corresponds to 1815.3 TByte of data.

Transversely Polarised ‘LiD

In total eight periods of data were collected with a deuterated lithium target (°LiD),
two periods in 2003 and four periods in 2004. They are summarised in 4.3

Data taking was started at COMPASS in 2002. Already in the first year data with
a transversely polarised deuterated °LiD target was recorded. This data has been
analysed as well. The selection of exclusive p” events is based on a cut on the
missing energy distribution Eys as it will be introduced in Sec. [4.3.4.20 In the
analyses of the 2002 data a significant shift in the El,; distribution was observed.
The E,;s shape is sensitive to the spectrometer setup as well as the alignment. A
shift in this distribution might reflect instabilities in the data taking. Furthermore
a not adequate E,,;s shape leads to the selection of wrong p° candidates. Hence the
2002 measurement is excluded from the analysis, which leads to a reduction of the
available deuteron data of 15%.

Combined Analysis of Several Years

The measurement with a SLiD target and NHj target were both done in two differ-
ent years and additionally subdivided in several periods. Although the changes in
the spectrometer setup between the periods are kept as small as possible, changes
could not completely be prevented. In previous analyses at COMPASS the asym-
metries were extracted on a period-wise basis, combining two sub-periods in which
the data taking was performed under comparable conditions. The final asymmetries
are calculated as the weighted sum of the period-wise extracted asymmetries.
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Table 4.2: Overview of periods in 2007 and 2010. The left half of the table is
dedicated to sub-periods where the target cells are polarised + — +, in the direction
of the muon beam. For every sub-period the first and the last run is given. The
right half of the table is dedicated to sub-periods where the target cells are polarised
— + —, in the direction of the muon beam. Again, for every sub-period the first and

the last run is given.

+ —+ | first run | last run -+ - first run last run
07W26 58267 58580 07TW25 57992 58191
07W28 59225 59396 0TW27 58844 59034
07TW30 59966 60085 07W31 60147 60328
07W39 62747 62898 07W40 63013 63122
07W42a | 63496 63608 07TW41 63226 63354
07W42b | 63610 63671 07W43 63754 63805
10W23b | 85093 85164 10W23a 85026 85070
10W24a | 85197 85301 10W24b 85362 85445
10W26b | 85569 85638 10W26a 85468 85512
10W27a | 85669 85713 10W27b 85771 85850
10W29a | 86202 86323 10W29b 86355 86446
10W31b | 86641 86703 10W3la 86462 86600
10W33a | 86784 86945 10W33b 87024 87135
10W35b | 87518 87619 10W3ba 87354 87468
10W37a | 87633 87711 10W37b 87780 87871
10W39b | 88055 88204 | 10W39a/c | 87902/88245 | 88013/88255
10W42b | 88651 88767 10W42a 88512 88590
10W44a | 88805 88933 10W44b 89046 89209

This thesis deals with the analysis of exclusive processes which are characterised
by a small cross section and lower statistics. Additionally a subtraction of events
from semi-inclusive processes is necessary, whereas the applied methods require a
reasonable amount of statistics (Sec.[5). Thus the possibility of a combined analysis
is studied, where all data of a certain target and spectrometer configuration enter
the asymmetry calculation at once. Since the comparison of several distributions
have shown a reasonable agreement of the various years a global analysis of the years
2003&2004 and 2007&2010 is performed. The differences on the level of asymmetries
between the periods/years are studied in Sec. and Sec. . Some differences
are discussed in Sec. [4.3.6]
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Table 4.3: Overview of periods in 2003 and 2004. The left half of the table is
dedicated to sub-periods where the target cells are polarised +—, in the direction of
the muon beam. For every sub-period the first and the last run is given. The right
half of the table is dedicated to sub-periods where the target cells are polarised —+,
in the direction of the muon beam. Again, for every sub-period the first and the last

run is given.

+— first run | last run —+ first run | last run
03P1H | 31192 31524 03P1G | 30773 31123

04W33 | 38991 39168 || 04W34 | 39283 39545
04W36 | 39850 39987 || 04W35 | 39548 39780

4.2 Data Quality

After processing the data with CORAL (Sec. quality checks are performed on
the mDST level. They can be divided in bad spill analysis and bad run analysis.
The bad spill analysis is performed by studying important variables like the average
number of beam particles, the number of tracks per primary vertex, the number of
primary vertices per event and the number of clusters in the hadronic calorimeter,
normalised to the proton flux on the primary target, as a function of the spill number.
Crucial for the decision if a spill is a bad spill is the number of neighbours within
a box of x-RMS, where the required number of neighbours and x are depending on
the studied variable and the year of data taking [102, 103| 104]. Additionally, if a
single run has more than 80% bad spills, it is removed from the analysis.

The K° stability is checked on a run-by-run basis after applying the bad spill lists.
The mean of the Gaussian distribution m,+,--mg j;, its width and the number of
reconstructed K per primary vertex is plotted as function of the run number. If a
run deviates more than 3 - o from the mean this run is rejected. For the kinematic
stability several kinematic variables are plotted as a function of the run number and
their derivation from the mean is studied [102} 103, 104].

For the 2010 data taking the data quality checks are based on a two step process.
In the first step the detector planes are monitored on a run-by-run basis to identify
possible instabilities in the performance of the detectors [105]. Detector planes with
varying efficiencies are excluded from the processing with CORAL. In a second step
the above explained quality checks on the mDST level are applied.

The official badrun/badspill lists of 2010 [106] and 2007 [107] are applied to the
event sample. In 2010 around 9% of the data is rejected. In 2007 the amount of
runs removed from the analysis depends highly on the period and varies from 15%
up to 50%. In total about 34% of the data is rejected. The higher fraction of rejected
data in 2007 indicates a less stable operation of the experiment during data taking.
Note that for the production of the 2007 data all runs with more than 10 spills have
been produced. In contrast, in 2010 a two-step process is applied where unstable
runs are already excluded from processing.
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For the years 2003 and 2004 the mDSTs (Sec. already include the quality checks.
For 2004 data the momenta of all particles which crossed SM2 are rescaled using the
PHAST function RescaleMom() to account for the lack of rescaling the magnetic field
of SM2 in CORAL [108]. In 2007 events triggered by the pure ECALI trigger are
rejected for the periods W27, W28, W39, W40, W41 and W42a due to instabilities

of this pure calorimeter trigger.

4.3 Event Selection

4.3.1 Primary Vertex

The goal is the selection of exclusive produced p° mesons (Eq. . The initial state
of the studied events is defined by one incoming muon which scatters off the target
nucleon. The final state is build by the scattered muon, the recoiled proton, and the
produced p® meson. The p® meson is a resonance with a lifetime of ¢r ~ 1.3fm and
decays with a branching ratio of almost 100% in 7+7~. The p° particle itself can not
be detected with the COMPASS spectrometer, same as the recoiled nucleon, which
can not be detected due to the lack of a proton recoil detector. Hence the detected
final state in the spectrometer consists of three reconstructed particles, the scattered
muon and two hadrons with opposite charge, which are directly originating from the
primary vertex.

If more then one primary vertex is reconstructed in one event the best primary
vertex is defined as the one with the largest number of outgoing tracks. If several
primary vertices have the same number of outgoing tracks the one with the best 2
of the vertex fit is tagged as best primary vertex. This definition seems to be not
well adapted for exclusive events. Therefore the possible increase of p° candidates
when including the additional primary vertices was tested and found to be negligible
(~ 0.5 %). Therefore only the best primary vertices of the events are selected for the
analysis. To ensure their position inside one of the target cells the PHAST routine
PaAlgo::InTarget() is used.

The z-positions of the target for 2007 and 2010 as well as for 2003 and 2004 agree
exactly. In the xy-plane perpendicular to the beam axis the maximum difference is
smaller than 0.4 cm for 2007 and 2010 and 0.2 cm for 2003 and 2004, respectively.
The maximum allowed radial distance of the vertex from the target center is 1.3 cm
for 2003&2004 data and 1.9cm for 2007&2010 data. The values were chosen by
taking into account the actual target position. The spatial distributions of the
primary vertex are shown in Fig. and Fig. . Clearly visible is the three (2007,
2010) and two (2003, 2004) cell structure of the COMPASS targets as introduced in
Sec.[3.2] The uncertainties of the z-position determinations are presented in Fig.[4.3]
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Figure 4.1: The spatial distributions of the primary vertex in z-direction for the

2003&2004 sample (left) and 2007&2010 sample (right).
Tab. are applied, except the cut on zy.
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Figure 4.2: The spatial distributions of the primary vertex in the plane perpendicular
to the beam axis for the 2003&2004 sample (left) and 2007&2010 sample (right).
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4.3.2 Beam and Scattered Muon

In order to ensure a good fit quality of the track for both beam muon and outgoing
muon, the reduced x?2,, has to be smaller than 10. Moreover the beam momentum
has to be in the range 140 GeV/c < p, < 180 GeV/c. Additionally the extrapolated
track of the beam particle has to go through all existing target cells to equalise the
flux through the target.

In the first and second production of 2007 data a large fraction of events (=~ 20%)
is observed, for which the assignment of momentum to the beam track is wrong.
This leads for example to negative, kinematically forbidden, values of missing en-
ergy (see Sec. [4.3.4.2), visible as a tail with negative values in the distributions of
this variable. The quality of the beam momentum reconstruction can be estimated
using the likelihood of the back propagation algorithm L H,q [109], presented in
Fig. [4.4. In this analysis events with bad beam tracks are suppressed by requiring
LHy,q > 0.005. Additionally, in the 2010 data sample, L Hy,q assumes not defined
numbers and non-physical values > 1. These values correspond to events where
only two BMS planes have fired?| (Fig. and hence the likelihood is not well
defined. The amount of such events is estimated to 1.4% of the 2007&2010 event
sample. Those events have been rejected from the analysis requiring LHpa < 1
and Npprg > 2 [110]. The fraction of remaining events with bad beam momentum
is estimated to be ~ 5%. In 2003 and 2004 data the information from the back
propagation algorithm is not available due to the old CORAL version used in the
production (version 2004-08-05 for 2003 data and version 2004-11-17-slc3 for 2004
data). The fraction of events with bad beam tracks is estimated to be ~ 7 %.
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Figure 4.4: The distributions of the likelihood of the back propagation algorithm
for the 2007&2010 sample. On the left-hand side the range 0.0 < LHp.q < 1.0 is
shown, where on the right-hand side a zoom in 0.0 < LHg,q < 0.01 is presented.

All cuts indicated in Tab. are applied, except the cut on LHpgau.

O‘ | \\\HH‘

2Note that in the here used algorithm of the beam momentum determination two of the six
BMS stations (Sec.[3.4) are utilised as "rescue planes”. Therefore the maximum number of activated
BMS planes is four.
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The scattered muon is selected via the PHAST routine PaParticle::IsMuPrimCoral(),
while the calculated penetration length of the p’ track, expressed in units of radiation
lengths, has to exceed a minimum value, i.e. X/Xy > 30. Recently the possibility
to lower the cut to X/X, > 15 is discussed [111]. It incorporates muon candidates
which traverse significantly less material. This change results in a gain < 1% of
exclusive p° candidates and was not applied in this analysis. Events with more
than one identified ' are rejected. Also events with so called “recovered” muons are
rejected. The recovering procedure is based on the hit information from the Muon
Wall detectors. If one of the outgoing particles connected to the primary vertex
causes more than four hits in MAO1 and more than six hits in MA02, it is considered
as a scattered muon. If the particle additionally fulfills the same requirements for
X2 and X/ X, as the “tagged” 1/, the particle is marked as a "recovered” muon and
the event is rejected. Moreover, the event is rejected if the p’ track crosses the SM2
yoke, because then a correct reconstruction of the particle momentum is impossible.
The distributions of the momentum of the incoming and scattered muon can be

found in Fig. [4.6| and Fig. [4.7]

4.3.3 Kinematic Variables for Inclusive Scattering

The following kinematic cuts are employed to obtain a final data sample consisting
of events in the deep inelastic scattering range. The variables for describing the in-
clusive scattering are calculated, using only the incoming and outgoing muon tracks.
The negative square of the four-momentum of the virtual photon is restricted to
> 1.0 (GeV/c)? while the range of hadron resonances is excluded by applying a cut on
the invariant mass of the final hadronic state W > 5.0 GeV/c?. Additionally y, the
fractional energy of the virtual photon, is chosen in the range 0.1 < y < 0.9, in order
to remove events with large radiative corrections (large y) or poorly reconstructed

kinematics (low y) (Fig. [4.8).
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Figure 4.6: The beam momentum distributions for the 2003&2004 sample (left) and
2007&2010 sample (right). All cuts indicated in Tab. are applied.
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Figure 4.7: The scattered muon momentum distributions for the 2003&2004 sample
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Figure 4.8: Difference of reconstructed and generated xp; as a function of the recon-
structed y. The events are generated with PYTHIA. All cuts indicated in Tab.

are applied, except the cuts on y and W. To have a higher statistical precision the

whole semi-inclusive sample is used.
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Moreover the Bjorken scaling variable is limited to 0.003 < 2p; < 0.35. Some of the
scattering variables are strongly correlated (Appendix|C.1). The application of cuts
even for correlated variables allows for the asymmetries extraction in a defined range
(Sec.[6). The kinematic distributions are presented in Figs. 4.10} [4.11) and 4.12]
The shape of the distributions depends on the applied cuts, on the geometrical
acceptance as well as the trigger system of the COMPASS experiment.

4.3.4 Meson Selection

The p" meson is reconstructed out of two oppositely charged hadrons. Similar to
the requirements on the muon tracks, the tracks of the hadron candidates have
to satisfy the condition x?,;, < 10. Moreover, hadron tracks have to start before
2z=350cm and to stop after z=350 cm, which is the center of the SM1 and ensures
that the momentum of the track can be measured precisely. Additionally the hadron
track has to stop before the muon filter 2, which is situated at Z=3300 cm to prevent
that muons are misidentified as hadrons. On the other hand, hadron tracks should
not pass more than 10 radiation lengths. Finally the event is rejected if one of
the hadron tracks crosses the yoke of SM2 or if the positive hadron could be a
misidentified muon which goes through the hole of the absorber system.

4.3.4.1 Cut on Invariant Mass

A particle identification using the information from the RICH-1 detector (Sec.
is not done in the present analysis (see Sec. and the invariant mass, M, of
the two hadrons is calculated always assuming pion masses for both particles. The
cut on the two pion invariant mass is optimised in order to suppress non-resonant

ntn~ production by applying the Ross-Stodolsky or Séding parametrisation [112].
The final invariant mass range is:

0.5 Ge\//c2 < M. <1.1 GeV/C2 )

As mentioned above all hadrons are considered as pions. The production of exclusive
¢ — K™K~ mesons is visible in the lower part of the invariant mass spectrum
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Figure 4.9: The Q? distributions for the 2003&2004 sample (left) and 2007&2010

sample (right). All cuts indicated in Tab. are applied.
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at around 0.35GeV/c?.  The resonance is suppressed by a cut on the invariant
mass Mg > 1.04GeV/ ¢®, where My is calculated assuming kaon masses for the
two final state hadrons. The cut is chosen this way, that the reflection of Mkxk
disappears, although no p° candidate is rejected additionally. The K*(892) and
K*(1430) resonances are much wider. They are located partially in the p® mass
range. In the kinematic domain of COMPASS their cross sections are two orders
of magnitude smaller than the cross section of the p° production [113], thus their
contributions are negligible. The distributions of the invariant mass for 2003&2004
data (left) and 2007& 2010 data (right) are shown in Fig. [4.13|

4.3.4.2 Exclusivity and Incoherence

Exclusivity can be estimated using the missing energy variable defined as follows

(Tab. [2.1):

Fuiss = E,— By —Ep+ Ep— Ep (4.1)
)2 — 2
_ @jz‘g_ p (4.2)
MM
= o (43)
:y—%+ﬁf (4.4)

where M is the proton mass, M x the mass of the undetected recoiling system and p,

q and v are the four-momentum vectors of the proton, the photon and the p° meson.

The latter is reconstructed via its decay particles. The term Ep — Eps tab ﬁ on the

RHS of Eq. is equal to the kinetic energy of the recoiled proton. It is assumed
to be small since the proton stays intact.

For scattering events where the recoiled proton stays intact and no additional parti-
cle is produced Eq. should be equal to zero. Hence the non-exclusive background
events can be suppressed requiring F,,;ss & 0. Due to the experimental resolution, the
reconstructed values of F,,;ss are smeared to a Gaussian distribution with a width of
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Figure 4.13: Invariant mass spectra M, +,- for the 2003&2004 sample (left) and
2007&2010 sample (right). All restrictions indicated in Tab. are applied except
the cut on M +,-.
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about 1.24 GeV in 2003&2004, about 1.35 GeV in 2007 and about 1.25 GeV in 2010.
Furthermore, the exclusive peak of the ;s distributions is expected to be centred
around zero. However, the analysis performed separately for each period indicates
small changes of the position of the exclusive peak. The determination of these
period-wise shifts in ;s is done by fitting the signal and the background as de-
scribed in Sec. [5.2.1] for each period individually. The procedure is done iteratively,
since after each iteration the Monte-Carlo sample to estimate the semi-inclusive
background has to be reweighted according to the shifted FE,.; distribution. The
procedure is repeated until the mean value of the signal Gaussian is within the er-
rors well compatible with zero. The comparison of the extracted shift values of the
2007 and 2010 data taking shows a smaller and throughout negative shift for 2010,
indicating a more stable data taking. This observation is in line with the results of
the data quality checks presented in Sec. 4.2, In Tab. the final shifts of F,; for
each period are listed. Using the period P1H as an example, the effect is illustrated,
in Fig. [4.14] where the distributions before (left) and after (right) the shift of the

FEiss values are shown.

Table 4.4: Applied shift to the missing energy F,, distribution for each period

separately.
+— /+ —+ | shift [GeV] || —+ / — +— | shift [GeV]

P1H —0.29 P1G —0.13
04W33 —0.21 04W34 —0.04
04W 36 —0.09 04W35 —0.07
07W26 0.13 07TW25 0.10
07TW28 0.05 07TW27 0.04
07W30 —0.01 07W31 —0.07
07W39 —0.35 07W40 —0.29
07W42a 0.07 07TW41 —0.22
07W42b 0.09 07W43 0.00
10W23b —0.11 10W23a —0.02
10W24a —0.06 10W24b 0.00
10W26b —0.12 10W26a —0.09
10W27a —0.11 10W27b —0.15
10W29a —0.13 10W29b —0.16
10W31b —0.16 10W3la —0.12
10W33a —0.12 10W33b —0.13
10W35b —0.10 10W35a —0.08
10W37a —0.10 10W37b —0.15
10W39b —0.06 10W39a/c —0.06
10W42b —0.05 10W42a —0.13
10W44a —0.14 10W44b —0.14
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Figure 4.14: Fit of signal and background to the missing energy F\ss for P1H before
shifting Foss (left) and after (right). The vertical dashed line indicates the centre
of the Gaussian. All cuts indicated in Tab. are applied except the cut on Fjs.

Distributions of missing energy after corrections for the shifts and after all selections,
except the cut on F,;, are shown in Fig. for 200342004 data (left) and for
2007&2010 data (right). For the final sample Ep; is limited to a range of 2 - o

-2.5GeV < Eis < 2.5GeV,

where o is the width of the signal Gaussian. For further reduction of semi-inclusive
background a cut on the energy of the p® meson, the cut p2. < 0.5(GeV/c)? (see
below) and the cut @* < 10GeV/c? is used. The latter takes into account the
different Q*—dependences of semi-inclusive and exclusive cross sections. In Fig.
the correlation between the reconstructed p° energy E, and missing energy Fpis 1S
presented. The semi-inclusive background is significantly reduced with the cut:

E, > 15GeV.

The fraction of incoherent p° production can be enhanced by a cut on the transverse
momentum of the exclusively produced p® meson. In this analysis, the variable p2
is used rather than ' for experimental reasons [114]. The p2 variable is defined as
the transverse component of the p° meson momentum vector with respect to the
virtual photon direction. Distributions of p2. are shown in Fig. In order to
reject events from coherent production on nuclei of the target material, a lower cut
on p% is applied. Also an upper limit for this variable is chosen to further minimise
non-exclusive background. The selected range for the 2003&2004 data is:

0.1(GeV/c)? < p2 < 0.5 (GeV/c)?,
and for the 2007&2010 data it is:
0.05 (GeV/c)* < p2 < 0.5(GeV/c)%

The fits which constrain the used p3 range can be found in [115, 114].
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Figure 4.15: Distributions of the missing energy FE.ss for the 2003&2004 sample

(left) and 2007&2010 sample (right). All cuts indicated in Tab. are applied
except the cut on F .

5 % : 160 >
S a0 : 3 2500
O, 40, oS 140 O,
E 30",_ 120 '+|: 2000
T : : 100 m 1500
20" 80 ,
S— 60 LN 1000
10- 40
g 20 500
07 I I I I I 0 0 I I I I I 0
-10 -5 0 5 10 15 20 -10 -5 0 5 10 15 20
Emiss [GeV] Emiss [GeV]

Figure 4.16: Correlation between E s and E, for the 2003&2004 sample (left) and

2007&2010 sample (right). All restrictions indicated in Tab. are applied except
the cut on E, and Elg.
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4.3.5 Particle Identification

The RICH detector allows for particle identification and is included in the first stage
of the COMPASS spectrometer as described in Sec. In Fig. the measured
Cherenkov angle as a function of the particle momentum of the positive hadron pj+
for all p° candidates is presented. Clearly visible are the contributions from pions,
kaons and protons. In principle it is possible to restrict the used data sample to p°
mesons, where both hadrons in the final state are identified as pions. However, the
particle identification is limited to particle momenta smaller than p,,.. < 50 GeV/c.
The minimal momentum threshold is calculated according to Eq. individually
for every event using the refractive index of the central RICH part. This limitation
significantly reduces the available kinematic range and therefore also the statistics.
Hence the possibility of using only p" candidates reconstructed out of two identified
pions is discarded. However, the option of using the RICH detector as a veto is
tested for the 2007&2010 data sample.

The particle identification algorithm relies on a likelihood function built for all pho-
tons associated to the particle in the region below 70 mrad. For each hadron the
likelihood is computed for 5 hypothesis: pion, kaon, proton, electron and back-
ground. The latter corresponds to the hypothesis of the absence of a signal. The
test on the electron hypothesis is only included if £, > 1.8+ L. One track is identi-
fied with a mass hypothesis if the corresponding likelihood is the highest. Moreover,
the mis-identification probabilities are decreased adding a cut on the comparison
to the second highest likelihood. The conditions of the RICH detector in 2007 and
2010 are the same, except that in 2010 the MWPC HV was lowered of 20 V in order
to have a more stable behaviour. As the purity and efficiency in both years are
compatible with each other the same likelihood cuts are used [116]. With these like-
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Figure 4.18: Left-hand side: The measured Cherenkov angle as a function of the
particle momentum of the positive hadron py+ for the 2007&2010 sample. All cuts
indicated in Tab. are applied. Visible are contributions from pions (top band),
kaons (middle band) and protons (bottom band). right-hand side: invariant mass
distribution for all p° candidates recorded in 2007&2010 (yellow filled) and after
applying RICH as a veto (red line). In blue the ratio is given where the corresponding

scale is presented on the left-hand side of each histogram.
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lihood cuts the purity of the pion identification is around 99% whereas the efficiency
is depending on the hadron momentum and is > 90% for p, < 30 GeV/c [117].
The following likelihood cuts are used [116]: ﬁ > 1.02, CK > 1.08 and the
electron hypothesis is used if e > 1.8 and p, < 8GeV/c. The RICH is used as
a veto. Therefore all events are rejected where at least one of the hadrons in the
final state is identified as a kaon, a proton or an electron. On the right-hand side
of Fig. the invariant mass distribution and in Fig. the missing energy
distribution for all p° candidates recorded in 2007&2010 (yellow filled) and after
applying RICH as a veto (red line) are presented. The veto cut leads to a reduction
of statistics of 9%, in detail:

one hadron is identified as
kaon 7%
proton 1%
electron 1%
veto 9%

The shape of neither the ¢ distribution nor the ¢g distribution is changing due
to the application of the veto cut. In Fig. a reduction in the whole FE
range is visible, with an expected increase at higher F ;. values. Still, the major
part of semi-inclusive background is present. Therefore a semi-inclusive background
estimation method, as it will be presented in Sec. [5 has to be applied. The usage
of the RICH information brings the additional drawback that the outgoing hadrons
are handled differently depending on their momenta. Hence the RICH was not used
in the standard analysis. The RICH information is solely used for the study of
systematic effects in Sec.[7.1.5
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Figure 4.19: Missing energy distribution for all p° candidates recorded in 2007&2010
(yellow filled) and after applying RICH as a veto (red line). All cuts indicated in
Tab. are applied, except the cut on E (left-hand side). In blue the ratio
is given where the corresponding scale is presented on the right-hand side of each
histogram.
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4.3.6 Comparison of Data Taking Periods

In this thesis a combined analysis of the data taken in 2003&2004 and 2007&2010
is performed. This implies a fair agreement of the measured data taken in the
different years. Various kinematic variables, the azimuthal angles ¢ and ¢g, the
vertex position, M+, Emiss, P, the beam momentum p,, and the momentum of the
scattered muon p,, measured in 2003, 2004, 2007 and 2010 were compared. Although
a different beam profile in 2007 and 2010 is observed, all other distributions are in a
fair agreement. Especially the F,s distribution in the background dominated range
is very well compatible. Therefore the same Monte-Carlo as for the 2007 analysis is
usable for the parametrisation of semi-inclusive background shape in 2010 (Sec. [5).
In addition, a combined analysis may become possible.

During the first 5 periods in 2010 (W23-W29) the data was collected with Inner,
Middle, Ladder, Outer and Calorimeter triggers. For the last 7 periods (W31-W44)
the LAST trigger was included. The effect has been studied. The Q? and s
distribution is shown for W23-W29 (yellow histogram) and W31-W44 (blue line) in
Fig. The distributions agree well. The LAST trigger leads to an increase of

high Q? events. This events are suppressed in the selected sample due to the cut
Q* < 10(GeV/c)?.
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allow for a better comparison.



4.4. Final Data Sample

69

4.4 Final Data Sample

In Tab. all applied cuts are summarised. After the presented event selection
we have in total 96646 p" candidates for 2003&2004 and 797134 for 2007&2010.
(Tabs. and . The mean values for the kinematic variables Q?, zp;, y, W and

p% are given in Tab. .

Table 4.5: Summary of all cuts.

topology

Best Primary Vertex reconstructed with
1 incident muon: p
1 scattered muon:

2 charged tracks with opposite charge: h*, h~

vertex in the target

PHAST routine PaAlgo::InTarget()

muon identification

hadron identification

X/Xo(u') > 30
X/Xo(ht,h™) < 10

quality of the tracks

X2 < 10 for p, i/, h*, h™

Zpanst(hT ) < 350 em

350 < zpast(hT,h7) < 3300 cm

h*, h~ and p' do not cross SM2 yoke (PHAST routine)
h* cannot be a muon (PHAST routine)

p flux through all target cells
beam momentum

beam back propagation likelihood
number of fired BMS planes

PHAST routine

140GeV/ec < p, < 180GeV/c

0.005 < LHypaa < 1 (for 2007 and 2010)
Npps > 2 (for 2007 and 2010)

domain of analysis

1(GeV/e)? < Q% < 10(GeV/c)?
W > 5GeV/c?

0.1<y<09

0.003 < 2p; < 0.35

production of p° meson

0.5GeV/c? < Mpir- < 1.1GeV/c?
Mg > 1.04 GGV/C2

exclusivity

-25GeV< B < 2.5GeV

suppression of background

E - > 15GeV
pa < 0.5 (GeV/c)?

suppression of coherent production

P2 > 0.1(GeV/c)2 (for 2003&2004)
pa > 0.05 (GeV/c)? (for 2007 and 2010)

quality of data

Pure ECALL trigger rejected for periods in 2007:
W27, W28, W39, W40, W41, W42a
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Table 4.6: Number of exclusive p° candidates for 2003&2004 after all cuts applied.

The periods are sorted by the orientation of target polarisation.

+— # Events —+ # Events
03P1H 15861 03P1G 17725
04W33 14862 04W34 12648
04W36 13461 04W35 22089

all 44184 52462

Table 4.7: Number of exclusive p° candidates for 2007&2010 after all cuts applied.

The periods are sorted by the orientation of target polarisation.

+ —+ | # Events —+— # Events
07W26 20473 07TW25 17495
07TW28 21319 07TW27 11560
07W30 22204 07TW31 29826
07W39 33041 07W40 19552
07W42a 18788 07W41 23113
07W42b 9036 07TW43 11285
10W23b 13293 10W23a 14751
10W24a 16853 10W24b 8049

10W26b 13702 10W26a 13872
10W27a 11809 10W27b 14668
10W29a 20151 10W29b 18357
10W31b 24554 10W3la 24053
10W33a 27374 10W33b 22333
10W35b 27683 10W35a 32364
10W37a 30034 10W37b 28186
10W39b 51212 10W39a/c 35948
10W42b 31881 10W42a 26309
10W44a 26122 10W44b 25884
419529 377605

Table 4.8: Mean values for the most important kinematic variables.

Year | (@) [(GeV/c)?] | (wg;) | (w) | (W) [GeV/e?] | (p7) [(GeV/c)’]
200342004 1.99 0.032 | 0.27 8.56 0.23
200742010 2.15 0.039 | 0.24 8.13 0.18




5. Background Estimation

In this chapter the estimation of non-exclusive events in the used sample is discussed.
First the data in a non-exclusive range as well as semi-inclusive samples generated
with Monte-Carlo (MC) are studied and compared to the exclusive p° candidates.
Afterwards the used background estimation is introduced. The main focus is on
the estimation of the semi-inclusive fraction of the background since this part is the
most sizable. The chapter is closed with a discussion of additional contributions to
the background.

5.1 Parametrisation of Semi-inclusive Background

The goal is to detect exclusively produced p° mesons. This implies that there
are no additional particles in the final state except the produced p° meson and
the proton. The exclusivity of the studied process is ensured by choosing a so-
called exclusive range in the missing energy (Sec. , which was chosen to be
—2.5GeV < Fhis < 2.5GeV. This corresponds to 2 - o, where o is the resolution of
the missing energy determination.

Due to the wide range, a large amount of p° mesons are produced in a semi-inclusive
process where additional particles are generated in the final state. If, because of
the limited acceptance of the spectrometer, these additional particles escape the
detection, the corresponding event is detected by mistake as an exclusive event.
The shape of the missing energy distribution shown in Fig. indicates a sizable
non-exclusive background in the selected range —2.5 < FE,is < 2.5, which rises with
increasing Fss values.

Due to the conservation of momentum the transition of the virtual photon into the
vector meson leads to a sizable recoil of the proton. Therefore the detection of
the recoiled proton helps significantly to clean up the sample. The measurement of
exclusive processes with an unpolarised liquid hydrogen target and such a recoiled
proton detector is planned at COMPASS-II [83]. Pilot runs were performed in the
years 2008, 2009 and 2012. In the past such a measurement was done, for instance
at HERMES [118]. The measurement of the exclusive processes with a solid-state
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transversely polarised target surrounded by a recoil proton detector at COMPASS
is being discussed recently and is planned for the future (after 2018).

The presented data was recorded during the years 2003, 2004, 2007 and 2010. In
these years the measurement was performed with a transversely polarised target,
without the detection of the recoiled proton. Since we do not have the possibility
to distinguish between pure exclusive events and misidentified non-exclusive events,
a method to estimate the number of background events in the exclusive sample
is needed. The estimation of the semi-inclusive background can be either based
on measured data or on Monte-Carlo simulations. The goal is to have a precise
estimation of the number of such events in the exclusive range as a function of
important kinematic variables. This enables the correction of the ¢, ¢g distributions
which are used to extract the asymmetries.

A non-zero asymmetry of the semi-inclusive events could introduce a bias to the ex-
clusive asymmetries. Hence, it is crucial for the analysis to study the asymmetries for
non-exclusive produced p” mesons. This is done in Sec. . Furthermore, it is pos-
sible to correct the extracted values on the level of asymmetries. Here, background
asymmetries are extracted from the data, for example applying all cuts except the
cut on the missing energy and choosing a range in E,;s where only non-exclusive
produced p° mesons are present. This approach is discussed in Sec. .

5.1.1 Exclusive Data vs. Semi-inclusive Data

At first, the possibility for a data-based estimation of the semi-inclusive background
contribution is tested. The measured data sample includes semi-inclusive data from
two sources: On the one hand, the high F, s range; on the other hand, the like-sign
sample.

Of particular interest are the events with a higher E; value. Their energy loss
is so big that additional particles are certainly produced but escape the detection
in the COMPASS spectrometer. These events are selected by applying the same
restrictions as for the standard p° selection, but a different cut on Ey. Here the
missing energy range 7.0 GeV < Fis < 20.0 GeV was chosen, with about the same
amount of p° mesons as in the exclusive range. This range is well above the exclusive
range, as well as the area where a further background contribution is present, known
as diffractive dissociation, which is discussed in Sec. [5.4 As a consequence, the
sample covers a different kinematic range, characterised by higher Q* and W with
mean values (Q?) = 2.7(GeV/c)* and (W) ~ 8.5GeV/c?, respectively, for the
data sample of the years 2007&2010. Also the ¢ distributions of p° candidates with
—2.5GeV < Fhis < 2.5GeV and 7.0 GeV < Eiss < 20.0 GeV differ from each other
as shown on the left-hand side of Fig.[5.1} But, the ¢ distributions presented on the
right-hand side of Fig. is not depending on F,,;ss. This observation also holds for
the azimuthal modulations defined in Eq. We will come back to this observation
when estimating the amount of semi-inclusive background in Sec. [5.2.1]l|

Another semi-inclusive sample is a sample with like-sign hadrons, h*™h™ or h™h~,
in the final state. Due to the charge conservation of the strong interaction, further

IEven though the studies in this section are only presented for the 2007&2010 data sample,
the conclusion is valid for the 200342004 sample too.
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Figure 5.1: Correlation between E and the angle ¢ (left-hand side) and the angle
¢s (right-hand side) for the 2007&2010 sample. All cuts indicated in Tab. [4.5] are
applied, except the cut on Fj.

particles are required to be produced in the formation process. Again the same
restrictions are applied as for the standard p° selection, except the cut on the charge
of the outgoing hadrons and an increase of the mass range:

0.475GeV/c? < My+p,- < 1.775 GeV /2,

to gain more statistics. As expected, the kinematic distributions of the exclusive and
the like-sign sample differ significantly. The like-sign sample can be characterised
by a flat decrease of the Q? distribution as shown in Fig. and a steeper decrease
of W. Unfortunately a direct parametrisation of the semi-inclusive background
with the like-sign sample is not possible due to the different shape of the missing
energy distribution for large F,,;ss values. A comparison of the missing energy of the
standard p° sample and the like-sign sample is presented in Fig. [5.2l

5.1.2 Monte-Carlo vs. Data

For the determination of the background shapes, semi-inclusive Monte-Carlo samples
are produced using the transverse setups of the spectrometer of the years 2004 and
2007. The generators LEPTO and PYTHIA were used with COMPASS
tuning [31]. LEPTO is a pure semi-inclusive generator, whereas PYTHIA contains
a large variety of processes, both semi-inclusive and exclusive ones. For the study
of the background shape, the exclusive processes are rejected. The p° samples are
selected applying the same cuts as for the real data. The cuts are summarised in

Tab. [4.5]

However, as can be seen exemplary in Fig. [5.3] the shapes determined from Monte-
Carlo do not agree well with the data. Moreover, the shapes of the E,; distribution
for the events generated with PYTHIA and LEPTO differ from each other. But, in
general they raise and fall too steeply compared to the shape of the F,,;s distribution
of the real data. Furthermore, the more background is present, the less is the
agreement between data and Monte-Carlo samples. This observation prevents us
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Figure 5.2: Comparison of the Q? distribution (left-hand side) and the Fy dis-
tribution (right-hand side) for the exclusive p° sample (yellow histogram) and the
like-sign two-hadron sample (blue line) for 2007&2010. All cuts indicated in Tab.
are applied, except the cut on F .

from directly using the generated sample for a parametrisation of semi-inclusive
background.

Therefore, neither the like-sign data sample nor the Monte-Carlo sample can be
used to parametrised the semi-inclusive background directly. But the comparison of
several kinematic distributions of the like-sign data sample, and a like-sign sample
generated with LEPTO or PYTHIA Monte-Carlo shows a reasonable agreement.
Hence, the like-sign samples are used to weight the unlike-sign Monte-Carlo sample
as it will be described in the next section.

5.1.3 Weighting the Monte-Carlo

In order to improve the agreement between the Monte-Carlo and the measured data,
the Monte-Carlo is weighted using the like-sign sample. The procedure is based on
the observation that the comparison of the missing energy shape of the like-sign
data sample and the like-sign Monte-Carlo sample shown in Fig. results in the
same trend, as well as observed for the p” sample presented in Fig.|5.3| For the years
2007&2010 a LEPTO as well as a PYTHIA Monte-Carlo sample is used, whereas for
the years 2003&2004 only a LEPTO Monte-Carlo sample is utilised. The weights
are calculated as a ratio out of the like-sign Monte-Carlo sample and the like-sign
data sample. Firstly, a two-dimensional weighting in z and y is used. The variable z
is chosen because it correlates with E,; but avoids a direct weighting of the missing
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Figure 5.3: Comparison of the missing energy distribution from data (yellow his-
togram) and Monte-Carlo (blue line). On the left-hand side the Monte-Carlo sample
generated with PYTHIA is shown whereas on the right-hand side the LEPTO sample
is presented.

5 40000 5 40000F
> : > r
30000 300001
20000 ; 20000 ;*
10000F 10000
-10 0 10 20 -10 0 10 20
E_. [GeV] E_.. [GeV]

Figure 5.4: Missing energy distribution of the like-sign data for 2007&2010 (yellow
filled histogram) and the like-sign LEPTO Monte-Carlo sample (left-hand side) and
PYTHIA Monte-Carlo sample (right-hand side).

energy. Also y is taken because of its strong correlation with Q2. The weights are
calculated in every bin ¢ as:

+1+ o
'lU'(Z y) — Ni}vlda}tla (Z’ y) + Ni}}dalga (’Zv y)
, Ni”‘ﬁ’g(z’ y) + Ni?l\}}(l; (z,v)

(5.1)
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Figure 5.5: Two dimensional weights as a function of y and z (left-hand side) and y
and Fps (right-hand side) calculated from the like-sign sample of data and LEPTO
Monte-Carlo for the 2007&2010 sample.

The result is shown on the left-hand side of Fig. and can be compared to the
two-dimensional weighting in F,,;s and y where the weights are calculated in every
bin ¢ according to:

w(E . y) _ Ni},gaftl;— (Emiss> y) + Nif,Ld_ai;L; (Em1557 y) (5 2)
i\ Lmiss Nilfl\'*/‘[fé*' (EmiSS7 y) -+ Nifll\_/lfcl_ (Emissv y)

These weights are presented on the right-hand side of Fig.

A nice feature of the like-sign sample is that, due to charge conservation, it contains
only pure background events. Hence the p° sample generated with Monte-Carlo
can be weighted in the full F, range. Therefore a direct weighting of the F
distribution is possible. Finally a one-dimensional weighting is tested. The weights
are simply calculated in every F, bin ¢ as the ratio of numbers of like-sign events
from data and Monte-Carlo as:

Nh+h+ (Emiss) + Nh7 h (Emiss)

w(E . ): i,data ,data
Amiss NI (Eriss) + Nty (Briss)

(5.3)

They are presented in Fig. [5.6] All weighting procedures improve the agreement
between the p° data and MC significantly. It was checked that the parametrisation of
the shape of the missing energy distributions (Sec. weighted with the different
weights are well compatible with each other. The same observation applies on the
level of asymmetries. As a standard method the weights calculated in Eq. are
used. What is remarkable is the linear increase of the weights calculated with the
LEPTO sample. The approach is supported by the observation that the weights
calculated for the p° sample and for the like-sign sample are comparable for large
Emiss'

Note that all Monte-Carlo pictures in this thesis includes a smearing of the beam
momenta. At first, it was observed that the weights for F s < 2.5 GeV are largely
fluctuating between 2 and 5. This observation is cured by assigning false beam
momenta randomly to 7% of the Monte-Carlo events [119]. The beam momenta
are drawn randomly from a Gaussian distribution with a mean of 159.4 GeV/c and
a 0 = 5.2GeV/c, representing the beam momentum distribution of Monte-Carlo.
The reason might be that in real data false beam momenta are measured for a small
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Figure 5.7: One dimensional weights as a function of F, calculated from the
like-sign sample of data and LEPTO Monte-Carlo for the 2003&2004 sample.

fraction of events. In the Monte-Carlo simulation this uncertainty of the beam
momentum reconstruction is not taken into account enough. The smearing is done
for the deuteron as well as for the proton data. In Fig. and Fig. the weights
obtained with this smeared Monte-Carlo are shown. As can be seen, they are now
quite stable also for i < 2.5 GeV.

For the deuteron setup only a LEPTO MC sample was available. The weights are
shown in Fig.[5.7] The trend is comparable with the proton sample, although for a
small fraction of events the statistical fluctuations are significantly higher.

5.1.4 Parametrisation of F,,;;s Shape

In order to estimate the number of semi-inclusive events in the exclusive range,
the shape of the missing energy distribution of the weighted semi-inclusive LEPTO
Monte-Carlo sample is parametrised. For the 2007&2010 setup the parametrisa-
tion of the semi-inclusive F,; shape is also done with the PYTHIA Monte-Carlo.
The Fhiss shapes of the samples generated with PYTHIA and LEPTO differ from
each other as discussed in Sec. [5.1.2] Event though, this results in a slightly higher
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Figure 5.8: Correlation between FE,s and the angle ¢ (left-hand side) and the
angle ¢g (right-hand side) for semi-inclusive events generated with LEPTO. All
cuts indicated in Tab. are applied, except the cut on F .

amount of semi-inclusive events estimated with the LEPTO Monte-Carlo, the ex-
tracted asymmetries are well compatible. We will come back to this observation
when we estimate the systematic uncertainty due to the background parametrisa-

tion in Sec. |7.5.4.1

The Monte-Carlo sample is binned, as the real data, in zp;, @* and p% for each
target cell (Eq. . Based on the observation that the ¢ and ¢g distributions as
well as the azimuthal modulations do not depend on the missing energy, as shown
in Fig. . Therefore no binning in the angles ¢ and ¢g is performed.

For each of the bins the Monte-Carlo E,,; distribution is fitted with the empirical
function:

F(@)back = Aback - (1 + e(%?)) - (1 - (1 + e(%?)) _0'25> , (5.4)

and the parameters p; to ps are evaluated. In principle the superscripts —0.25 and
—0.2 can be take as an additional fit parameters. The fit results are compatible,
although the fits get more unstable. Both the proton and the deuteron setup are
fitted with the same function. Despite the different missing energy shapes of the
setups this gives satisfying results. The results of the fits are presented in Fig.
for the proton setup and in Fig. for the deuteron setup. The fit parameters for
each bin as well as the reduced 2 of the fits, are given.
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Figure 5.9: The E,;s distribution from LEPTO Monte-Carlo parametrised with
Eq. for the 2007&2010 sample. The four bins in Q? and xp; and the five bins in
p3 for the up plus down target cells are shown. The bins according to Eq. are
indicated by the first number in the histogram titles. The corresponding fits for the
central target cell are presented in the Appendix .
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Figure 5.10: The FE,; distribution from LEPTO Monte-Carlo parametrised with
Eq. for the 2003&2004 sample. The four bins in Q? and xp; and the five bins in
p2 for the up target cell are shown. The bins according to Eq. are indicated by
the first number in the histogram titles. The corresponding fits for the down target
cell are presented in the Appendix .
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5.2 Estimation of Semi-inclusive Background

5.2.1 Fit to Data

In order to correct for the remaining semi-inclusive background in the signal range,
the F.is shape of the background events is normalised to the data. This is done by
performing a signal plus background fit, with a Gaussian function for the signal part
and the semi-inclusive background shape fixed by Monte-Carlo as described above.
Two different estimation methods are implemented.

For the first method the fits are done in every bin required for the asymmetry
extraction, i.e the kinematic bins @Q?, xp;, and p3, individually for each target cell
and additionally for the two different spin orientations and will be denoted with
ky in the following. For the second method, in addition, the Monte-Carlo data is
binned in each azimuthal bin®l This is denoted with ;.

Lets start with the discussion of the first approach. The fits are presented in Fig.
for the + — 4+ configuration in 2007&2010 and in Fig. for the +— configura-
tion in 2003&2004. The corresponding fits for the — + — and —+ configurations
are shown in the Appendix [C.2| Here, the normalisation constant A, in Eq.
is denoted by p3, where mean and o of the Gaussian function are denoted by po
and p;. The number of semi-inclusive events in bin k; is given by the integral of
the background function, presented with a blue dashed line, in the exclusive range

—2.5GeV < E i < 2.5GeV.

In order to arrive at background corrected (¢, ¢g) distributions, N,iilg(qb, ¢s), we

consider the distributions measured in the signal range, NV, ,jilg’raw(qﬁ, ¢s), and the ones
in the background range 7GeV < F i < 20GeV, N, ,?ka(¢>, ¢s). These background
distributions are extracted using the same binning i.e. for each kinematic bin in
xpj, Q2, and p% respectively, and for each target cell and each polarisation state
individually. The distributions NP**(¢, ¢s) is normalised to the number of p° events

in the signal distribution N, Zilg’raw(<b, ¢s). After that it is rescaled with the estimated
amount of background events in the signal range and afterwards subtracted from
the N*"(o, ¢g) distributions. The result is the background corrected distribution

N (¢, ds).

In cases the statistics is sufficient the second method is used. The FE,,; distribution
is fitted for each kinematic bin xp;, Q2 and p3., for each target cell, each polarisation
state and each angular bin, respectively and the number of semi-inclusive background
is estimated. Note that the same Monte-Carlo shape is used as for the first method
i.e. the missing energy shape is parametrised for all background events integrating
over the azimuthal distributions. This shape is applied to the data, whereas the
data is binned in the azimuthal distributions. This approach is supported by the
observation that the ¢ and ¢g distributions as well as the azimuthal modulations
do not depend on the missing energy (Sec. [5.1.4). This method has the advantage
that it allows for a direct estimation of the number of background events in each

2Here, the expression “azimuthal bins” summarise different binnings. If a two-dimensional
binning is applied it stands for bins in both ¢ and ¢g. On the other hand, if a one-dimensional
binning is used it describes the binning directly in the azimuthal modulation introduced in Eq.
The different extraction methods of the asymmetries are discussed in Sec.
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bin. Therefore the azimuthal distribution NZ;g’raW(qb, ¢s) can be corrected bin-by-
bin without further assumptions on the ¢, ¢5 distributions of the background range.
The result is the background corrected distribution N;*(¢, ¢g).

The comparison of the shape of the missing energy distributions for the different
target cells are shown in Fig[5.11] Fig and Appendix [C.2l In the signal range
this results in a visible difference for the deuteron setup while the shapes for the
proton setup are more stable. The observation can be explained with the different
number of target cells. In 2003&2004, a two-cell target is used, where the cells
have been polarised oppositely. On the contrary, in 2007&2010 a three cell target
is used, where the outer cells are polarised in the same and the middle cell in the
other direction. This setup leads to a more balanced acceptance. Additionally, the
target magnet was renewed in 2006 (Sec.[3), which provides an increase of the angular
acceptance to 180 mrad for the upstream target edge resulting in an increased hadron
acceptance.

The total amount of semi-inclusive background in the signal range is 22% for the
proton setup and 18% for the deuteron setup, where the numbers strongly depend
on the corresponding kinematic bin and vary between 7% and 40% and 7% and
30%, respectively. Finally, the asymmetries are extracted using the N, zilg(qb, ¢g) or

N,iif(gb, ¢g) distribution, optionally obtained with the first or the second correction
method, respectively.

5.3 Influence of Coherently Produced p' Mesons

Coherent production describes processes where the virtual photon interacts with the
proton or the deuteron rather than the individual quarks in the nucleon. Therefore,
for such types of reactions, the theoretical prediction of the total angular momenta
of quarks is not possible with the underlying theory. The highest contribution of
these coherently produced events are present in processes with small values of —t'
i.e. where the momentum transfer to the target is small.

In the analysis p%, rather than —t, is studied [114]. For exclusive events p% = |¢/|.
For non-exclusive events the minimal kinetically allowed |t| denoted by ¢, is poorly
determined, which might distort the —¢" distribution if the background in the studied
sample is not negligible.

Coherent production is suppressed by the cut p2. > 0.05(GeV/c)? for the measure-
ment with a NHj target and by the cut p% > 0.1(GeV/c)? for the measurement
with a °LiD target. At small values of p% the contribution from coherent produc-
tion dominates, whereas at large p% the non-exclusive events contribute significantly
as the slope of the p2. distribution for non-exclusive events is more flat than the
slopes for coherent and for incoherent exclusive production [114]. Therefore a data
based estimation of coherently produced events in the sample is possible via a three-
component fit, one component for the coherent, one for the incoherent and one for
non-exclusive events:

f(p%) — po . e_pl'p% + p2 . e—pggp% _|_ p4 . e—ps'P% (55)

The results are shown in Fig. [5.13| The coherent contribution is shown with the
green dashed line, the non-exclusive contribution with the blue dotted line and
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Figure 5.11: The E;s distribution for the 2007&2010 sample together with the
signal plus background fits (solid curve). The solid red lines and the dashed blue lines
represent the signal and background contributions, respectively. The parameters
po — p3 are explained in the text. Here are shown the fits for the + — 4 configuration

for the up plus down (0) and the central (1) target cells.
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Figure 5.12: The FE,,;s distribution for the 2003&2004 sample together with the
signal plus background fits (solid curve). The solid red lines and the dashed blue lines

represent the signal and background contributions, respectively. The parameters

po — p3 are explained in the text. Here are shown the fits for the +— configuration
for the up (0) and the down (1) target cells. The corresponding fits for the —+

configuration are presented in the Appendix
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Figure 5.13: Distributions of p2 for the 2003&2004 sample (left) and 2007&2010
sample (right). All cuts indicated in Tab. are applied except the cut on p%. The
three-component fit defined in Eq. is shown with coherent contribution (green

dashed line), non-exclusive contribution (blue dotted line) and exclusive contribution
(red line).

the exclusive contribution with the red line. Note: This fit provides only a rough
data-based estimate of the remaining coherent contribution in the sample; also the
background contribution is overestimated.

A model-based estimation is performed in Ref. [115] for the °LiD target. It is done
with a Glauber Model approach and two different mechanisms of meson leptopro-
duction, the VMD model as well as the color dipole model. Having in mind the
outcome of the data-based study as well as the model based study, the remaining
coherently produced events is estimated up to 12% for the final proton sample and
up to 8% for the final deuteron sample. The influence of the remaining coherent
contribution on the extraction of asymmetries is studied in Sec. [7.5.5]

5.4 Additional Contributions to the Background

After the above-mentioned subtraction of semi-inclusive background, the remaining
sample still contains non-exclusive events. Important contributions are beside the
coherently produced p° mesons discussed above, the diffractively produced events
and the non-resonant 7w+ -pairs.

Diffractively produced p° mesons are events in which the target nucleon is excited to
a baryonic resonance N* or A. The resonant state decays into a nucleon and one or
several mesons. In this analysis the cut | Eyiss| < FMI = 2.5GeV is used to ensure
the exclusivity. Hence diffractively produced p mesons can not be distinguished
from exclusive produced p° mesons unless the mass of the baryon resonance My is

larger than:

Mx = \/2ME" 4 M2 = 2.4GeV/c?,
The contribution of diffractive dissociation events can be seen in Fig. alongside
the exclusive peak as a small enhancement over the SIDIS background. In order
to estimate the contribution of this type of background the Monte-Carlo generator
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HEPGEN [120] is used. It allows to simulate together events originating from the
exclusive p® mesons as well as from diffractively produced p° mesons. On the Monte-
Carlo sample the same cuts are applied as for the real data. The contribution of
nucleon-dissociative events to the final sample is found to be 14% [112].

Also non-resonant 77~ production is characterised by FEis ~ 0, but the invariant
mass may not necessarily correspond to the mass of the p° meson. However, these
non-resonant 77~ pairs are indistinguishable from the p° decay products as both
final states are produced coherently and hence interfere which each other. The
contribution is estimated with the S6ding or the Ross-Stodolsky parametrisation to
be smaller than 2% [112]. No correction is applied for this contribution.



6. Extraction of the Asymmetries

In this section, the required steps to arrive at the final asymmetries are explained.
In Sec. the basic concept of asymmetry measurements is introduced, followed by
Sec. in which the applied extraction methods are presented. The utilisation of
these methods result in "raw” asymmetries. The corrections, needed in order to come
from the raw asymmetries to the physical asymmetries are explained in Sec. [6.3]

6.1 How to Build the Asymmetries

The transverse part of the cross section in Eq. can be expressed as a sum of
eight independent transverse spin dependent modulations of ¢ and/or ¢g defined in

Eq.[2.46] The angles are presented in Fig. [2.11]

To disentangle the polarised part of the cross section from the unpolarised one, the
number of p° candidates in the two opposite states of polarization are counted and
compared with each other. Both states are realized at the same time due to the
target structure which consists of multiple cells with alternating target polarisation.
In the following, the target cells introduced in Sec. are denoted, in the direction
of the muon beam, with U (UP), C (CENTRAL), and D (DOWN). To suppress
acceptance effects in the asymmetry measurement, the polarisation in each cell is
changed regularly.

The data taking is organised in periods which are listed for the years 2003&2004 in
Tab.[4.3] and for 2007&2010 in Tab. [4.2. To best profit from the available statistics,

each period with the same configuration is summed up.

Only if the detector is stable, all unpolarised parts of the cross-section cancel each
other out, leaving the spin dependent parts behind. Hence, for this kind of mea-
surement, the stability of the detector is important. It could be shown that changes
in the acceptance, which affect the whole target equally, have only a small impact
on the extracted asymmetries [102]. This observation enables the performance of a
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combined analysis of several periods and year{!, Thus, two different configurations
exist.

For the measurement with the two-cell target, depicted on the left-hand side of
Fig. , the configuration with a positive polarised U cell (negative polarised U
cell) and a negative polarised D cell (positive polarised D cell) is denoted by +—
(—+). Always two configurations, i.e. four different samples are compared with each
other:

200342004 2007&2010
configuration target cell | configuration target cell
+- U D +-+ U+D C
-+ U D -+ U+D C

Here, positive polarisation is depicted in red and negative polarisation in blue. In
2007 and 2010 COMPASS used a transversely polarised three-cell target, depicted
on the right-hand side of Fig.[6.1 The two outer cells are polarised in one, the inner
cell in the opposite direction. In order to best profit from the statistics available,
the events of the two outer cells U and D are summed up.

The number of exclusive p° mesons as a function of ¢ and ¢g can be written for
every target cell n (n € {1,2}) and each polarisation state + as:

N, (9.6s) = a; (1£ A, ¢s)), (6.1)

where a is the product of the spin-averaged cross section og, the muon flux F, the
number of target nucleons N and the acceptance a::

af =F-N-og-aF (6.2)

n-

U D U C D
N, N, N, NN, N,
T 1 T 1 1

Figure 6.1: Definition of target cells. On the left-hand side the two-cell target used
in 2003&2004 is presented whereas on the right-hand side the three-cell target from
2007&2010 is shown.

In SIDIS analysis which do not suffer from limited statistics, it is common to combine the
data sets of two consecutive weeks of data samples, grouped in rows on Tab. [4.2] and Tab.[4.3]and
extract an asymmetry value for each of them. The final asymmetry is built as the weighted mean

of these extractions.
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The angular dependence A(¢, ¢g) reads:

A6, 6s) = At sin(@ — ds) + ATy sin(6 + ¢s)
FATR ) sin(30 — ¢5) + ATe, ) sin(26 — 65)
+ATS, sin s + AT cos(¢ — ¢s)
Ai‘}sfjw cos ¢g + Ai?frzfv_‘bS) cos(2¢ — ¢g). (6.3)

The symbol AZ%T’LT)MW denotes the amplitude for the angular modulation m, and
the term "raw” characterises AE’I}T’LT)MW as the pure fit result, whereas the correction
factor, which will be introduced in Sec. is not yet applied. The final goal is to
extract these eight angular modulations either with unbinned or one-dimensional
and two-dimensional binned fit methods (Sec. from the ¢, ¢g distribution of the
final sample. For the latter, Eq. is evaluated for each of the bins in ¢ and ¢g:

N;ou(9,0s) = aj;, (1 £ A(¢, ¢s)) (6.4)

where the index j denotes the (¢, ¢g) bin. If a one-dimensional binned extraction
method is used every summand in Eq. is extracted separately. The binning is
provided directly in the azimuthal modulation denoted by ©. This can be expressed
with:

NL(©)=a;, (1+Ap(0)), (6.5)
where:
O € {<¢_¢S)7(¢+¢S)7(2¢_¢S)7(3¢_¢S)7¢5}7 (66)
and:

A(O) € {sin(¢ — ¢g),sin(¢ + ¢g),sin(2¢ — ¢g),sin(3¢ — dg),
sin ¢, cos(¢ — ¢s), cos(¢ + ds), cos ps} (6.7)

Here j denotes the © bin.

The angular distributions are presented in Figs. and They are not flat.
Mainly in the ¢g distribution acceptance effects are visible. They arise due to
the positioning of the trigger hodoscopes which prevent us from triggering on the
scattered muons in the whole angular range. The dip in the ¢g distribution decreases
in the 2007&2010 sample compared to the 2003&2004 sample. The reason is the
increase of the angular acceptance to 180 mrad for the upstream target edge due to
the renewed target magnet in 2006 (Sec. [3). The angular resolution is limited by
the ¢ measurement and is estimated with Monte-Carlo to &~ 0.16 mrad. However,
the resolution of the angle ¢g is significantly better with ~ 0.013 mrad.

6.2 Extraction of the Asymmetries

All asymmetries are extracted using four different methods: the double ratio method
(IDDR), the one-dimensional (1DLH) and the two-dimensional binned (2DLH) and
the unbinned (UB) maximum likelihood method. In this section the concepts of the
different extraction methods are introduced. The advantage and the drawbacks of
each of these methods are discussed. A summary of the applied methods and the
abbreviation used is listed in Tab. [6.1]
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Figure 6.2: The distributions of the angle ¢ defined in Fig. [2.11 for the 2003&2004
sample (left) and 200742010 sample (right). All cuts indicated in Tab. are
applied.

For all binned methods, the fit is performed in the center of each bin. A possible
bias effect of the finite bin size has to be considered. A correction of this bias can
be calculated analytically [121], and subsequently applied on the fit result. Based
on the generalised fit functions:

f(@) = Qk, fit sin @(k?) + bk,fz’t COS @(k), (68)
f(9,0s) = ar pirsin(ke £ ¢g) + b yir cos(kd & ¢s), (6.9)
where k& € {0,1,2}, the number of entries in each bin A® = A¢ = A¢gg = 2=

can be calculated, for instance, via % (;9 A0 f(©)dO. where Eq. is used for

one-dimensional and Eq. for two-dimensional extractions, respectively. The cal-
culated corrections =L and Besit are [121]:

b
kit _ b, fit _ 23111% (6.10)
ak,fit Ok fit 4 . kAg . Agg
— = . 6.11
ax b KA¢Agg 2 T (6.11)

The correction factors for a two-dimensional binned extraction with 12 bins in both
¢ and ¢g are listed in Tab. (6.2

Table 6.1: A summary of the applied methods, the abbreviation used and the number

of angular bins. The justification for their choice is given in the text.

method abbreviation | # of angular bins
double ratio 1DDR 12
one-dimensional likelihood | 1DLH 12
two-dimensional likelihood | 2DLH 64

unbinned likelihood UB -
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Figure 6.3: The distributions of the angle ¢ defined in Fig. [2.11] for the 2003&2004
sample (left) and the 2007&2010 sample (right). All cuts indicated in Tab. [4.5] are
applied.

Table 6.2: Finite bin size correction factor for a two-dimensional binned extraction

with 12 x 12 azimuthal bins for the different asymmetries.

S(G=05) Sn(6T65)  cos(d—B3) | s Fs | ASP-33) 4cos26-F3) | 4e0s(35-53)
AUT i ° 7ALT ° A%r%‘ S’ Ai?fs i AUT ° ’ALT i ALT °

0.9774 0.9886 0.9441 0.8901

In order to investigate possible kinematic dependencies of the asymmetries, all asym-
metries are extracted as a function of 25, @* and p3, where the variables are binned
according to:

Tpj 0.003  0.02 0.03 0.05 0.35,
Q% [(GeV/e)? 1.0 1.2 1.6 2.4 10.0,
p> [(GeV/c)}]:  0.05 0.1 015 025 035 0.5. (6.12)

The first bin in p2 is only used in the analysis of the NHj target. The results are
plotted against the arithmetic mean of the corresponding kinematic variable in the
specified bin.

6.2.1 Double Ratio Method

One of the most intuitive methods to extract asymmetries is know as the Double
Ratio Method and is based on:

+ +
por Ny Ny (6.13)
TONG N

where Nrfj is the number of events found in the cell/cells labeled with n in Fig.
in the period + and st ; is the number of events in the corresponding cells found in
the coupled period which has the opposite target polarisation. The periods which
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belong together can be found in the same row in Tab. and Tab. [4.3Pl The one-

dimensional DR is binned in © (Eq.[6.6). Inserting Eq. in Eq. and neglecting
second order terms leads to the fit function:

ait(¢7 gbs) : aét(¢7 ng)
CLT(Qb, gbs) : a;:(qb’ ng)

The extracted values include both the acceptance modulations as well as the pure
asymmetry. Therefore, further assumption for the acceptance terms are needed to
be able to determine the pure asymmetries. The Double Ratio Method is based on
the assumption that the ratio between the acceptance term of the first and that of
the second period has the same azimuthal modulation for all the target cells:

ai (¢, ¢s) - oF (¢, Ps)
af (¢, ¢s) - a5 (9, Ps)

Eq. is known as reasonable assumption. Since the beam flux across the target
cells is equalized by applying appropriate cuts on the phase space of the beam, the
number of events in the different cells of the same period cancel out in Eq. [6.14]
The Eq. is also valid for a. The statistical error of the double ratio is:

£(O) ~ (1+4A4,5(0)). (6.14)

= (' = const. (6.15)

Uf:FDR~ 1 1 1 1

e T T 6.16
J NliJrNQiJFNfFJFN;F (6.16)

6.2.2 Non-linear Least Squares Fit

Between 1912 and 1922, R.A. Fisher developed the method of maximum likeli-
hood [122]. Nowadays, likelihood methods have become standard. This statistical
method allows to estimate unknown model parameters if the underlying data sample
is normally distributed. In principle binned and unbinned methods have to be dis-
tinguished. In COMPASS they were used in the analysis of azimuthal asymmetries
in semi-inclusive deep inelastic scattering off transversely polarised protons [102].
The likelihood method allows fitting the event numbers directly and, hence, makes
the fit of event number ratios redundant. They are based on a set of non-linear
equations.

6.2.2.1 Binned Fit Method

For a binned maximum likelihood fit the equations are set up according to Eq. [6.1]
For four combined samples, it arrives at a system of 4m? of such equations with
4m? + ny free parameters, where j = m x m are the number of bins in ¢ and ¢,,
respectively, and n 4 is the number of fitted physics modulations. The assumption
that the acceptance parameters are independent of ¢ and ¢g defined in Eq.

+

2 . . . . . . . . SR _ N
In principle it is also possible to extract the asymmetries out of the single ratio /7™ = T}
The drawback of this method is that it gives only unbiased results if there is neither a change in

the acceptance nor in the beam flux between the two event samples.
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leads to m? — 1 constraints, so 3m? + n4 + 1 acceptance parameters are needed in
total. The expected number of events in the four samples are described by:

Njy=C¢C “fh (1+ A(¢, 95))
7,2
Nji = a;, (1 £ A9, ¢5)) (6.17)

Ny =aj, (1£ Ao, ¢s)),
Ny =a;,(1+ A9, ¢s)) -

In the following the equations above are labeled with fi(@), Where [ ={1,..,4m?}
and the @ denotes the 3m?+ 1+ ny free parameters. In Eq.|6.17 A(¢, ¢s) is defined
according to Eq.|6.3|and contains the eight asymmetry amphtudes The sign depends
on the Correspondmg target cell and period. The fit is solved by minimising || F(a@)]|2
of [ target functions F;(@), where:

IF@I = 3 Fit@” (6.13)

The structure of the target function depends on the underlying statistics and will be
discussed later on. The minimization problem can be solved using the Levenberg-
Marquardt (LM) algorithm [123] [124]. This algorithm is included in the GNU Sci-
entific Library (GSL) [125] which provides a collection of numerical routines for
scientific computing.

Fit-to-counts Method

If the underlying distribution is not Poisson-like, a direct fit-to-counts method [126]
is used. The set of non-linear equations in Eq. can be translated to the function
F(a): )

F(a) = 1D =N (6.19)

01

which allows a weighted least-squares fit of the nonlinear model f;(@) and the data N,
to be performed, assuming independent Gaussian errors ¢;. This method is applied
for extracting asymmetries using the background corrected ¢, ¢g distribution. The
errors o; are calculated applying the Gaussian law of error propagation and taking
into account the statistical errors on the number of counts and the uncertainties of
the number of background events.

Likelihood Method based on Poisson Statistic

If a likelihood fit based on Poisson statistics is used, a probability function is defined

as:
e—fil@ fl( )

N!

where [V, is the measured number of counts in bin [ and f;(@) is the expected number

of events, as defined in Eq. [6.17] The non-linear system of Eq. can be solved
by maximizing the probabilities in Eq. [6.20] This reads:

max(L) = max <H B(a)) : (6.21)

P(d) = (6.20)
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Normally it is easier to maximize In(£) and this is equivalent to the minimisation

of Eq. with [19]:
Fi(@) = V2y/(fi(@) = N)) + NyIn (N f,(@)). (6.22)

The likelihood fit based on Poisson statistics is used if asymmetries are extracted
on the pure sample, without a background correction.

The two-dimensional likelihood binned method allows for the simultaneously extrac-
tion of all eight modulations as shown in Eq. and, therefore an evaluation of the
covariance matrix:

Cov(l,m) = (J*J)™! (6.23)
is possible. Here, J is the Jacobian matrix, which is defined as:
1 df,(@)
Jim = — 6.24
: ] dam ( )

The covariance matrix includes the statistical errors on the best fit parameters cal-
culated from the statistical errors on the data denoted by ;. The correlation matrix
is:

Cor(l,m) = Couvll,m) . (6.25)

V/Cou(l,1)Cov(m,m)

When using the two-dimensional binned likelihood method, the correlation between
the different modulations is taken into account. Then the bias observed due to
the non-flat ¢g acceptance is not present. The grid used in both ¢ and ¢, avoids
the integration over the non-flat ¢g distribution. However, the data is binned two-
dimensionally and the number of bins have to be chosen with care, in particular for
an analysis with limited statistics.

6.2.2.2 Unbinned Likelihood Method

In this method, each event coming from a cell n period + with angles (¢, ¢g) is as-
sociated with a probability density function pF (¢, ¢s). This function is proportional
to the product of the acceptance of the cell n and the cross section of the physical
modulation is parametrised as product of the generalized acceptance function ar
and the physics modulations:

P (9, 05) = ay (¢, 6s) - (1 £ A, 6s)) - (6.26)

For each target cell n (Fig. , and both polarisation states 4, the functions a
are different. The assumption of Eq. is adapted according to:

Ol _ aii_(gb, ¢S> 02 _ a;(qba ¢S) (627)

ay (¢, ¢s)’ ay (¢, ¢s)’
where the change of acceptance for each target cell can be described by one single
constant. This is less strict than Eq. but leads to more stable fit results [102].
An extended maximum likelihood fit is performed [102]. In such a fit the probability
density function is not normalized to one, but to the theoretically expected number
of events p.

27 27
/0 /0 ApddsPE(6, ds) = it (6.28)
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The likelihood function £(@) to be maximized with respect to the vector of param-
eters a is:

+
Ni

c@ =TT | { e TLarém 65.)(1+ AGm, 65.))

(6.29)

N~

. e“; H Claj_(d)m ¢Sn)(1 - A(¢n7 ¢Sn))

The fit is performed by minimising In £ using the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm from the GNU scientific library.

The advantage of the unbinned method is that it provides stable fit results even with
few overall statistics. Therefore, the unbinned likelihood fit is used when evaluating
the systematic uncertainties on sub-samples, as done in Sec. and Sec. where
background subtraction is no issue. The chosen background estimation method
explained in Sec is performed in bins of ¢, ¢g and, therefore, requires a binned
fit method. The consideration of the background in an unbinned fit assumes a very
good knowledge of the background function.

The result of the estimation methods described above are so called “raw” asym-
metries. The dependence on target dilution f, target polarisation Pr, the beam
polarisation P, the depolarisation factor Dyy is applied afterwards. This will be
described in the next section.
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6.3 From Raw to Physical Asymmetries

After the subtraction of semi-inclusive background, the “raw” asymmetries Afjp .,
and Af%r ., are extracted from the final sample using a two-dimensional binned
maximum likelihood fit in ¢ and ¢g. They are used to obtain the transverse target
single-spin asymmetries A{}; and double-spin asymmetries Aj%. defined in Eq. (2.46)
as:

A%T ra ATT
Ap = Uhraw o qm T LTraw 6.30
uT <FUT> LT <FLT> ( )
with:
FUT:f' |PT‘ DJTGN(E), FLT :f ’PT’ PgDEN(E) (631)

The mean values are calculated as an arithmetic mean. The denominator consists of
the dilution factor f, the target polarisation Pr, the beam polarisation P, and the
depolarisation factor DRty (€) which is specific for the individual asymmetry. Here
Pr is used, which in COMPASS kinematics is a good approximation to S. The
denominator in Eq. is calculated in every kinematic bin for each modulation m.
The depolarisation and the dilution factor and the beam polarisation are individually
quantified for every event, whereas one polarisation value is available for every run
for 2007&2010. In 2003&2004 up to three different target polarisation values for
one sub-period are used. The correction factors as a function of zp;, Q* and p7
are presented in Fig[6.4] Every factor in the denominator of Eq. is discussed
individually in the following, taking the 2007&2010 data sample as an example.
Only the differences which occur for the 2003&2004 data sample are discussed.

Depolarisation Factor

The depolarisation factors D7}, describe the fraction of the spin of the lepton which
is transferred to the virtual photon. They appear in front of each azimuthal modula-
tion in the cross section in Eq. The exact definition is a matter of convention.
In Eq. the cross section from Ref. [9] is used. The depolarisation factors are

given by’

D?\ifl}\(ﬂ’—‘ﬁs) :1
sin(¢+¢ sin(3¢—¢ €
DN]\(f S):DN]\(/ & 9

Dj\III}\([¢S) :D?\i/}}\(f2¢—¢s) — 5(1 + 5)
D;\??\g‘f’—‘ﬁs) — 1 _ 62
DN =D = \/e(1—¢) (6.32)
The quantity € is defined in Eq. The DYy factor as a function of y are
shown in Fig. as well as the mean values (D7) in each kinematic bin, for the
200742010 data sample. The factors do not heavily depend on neither p2 nor Q2.

Due to the strong correlation of xp; and y a dependence on zg;, especially for the
factors associated with the Apr asymmetries, is visible.

3The used approximation will be discussed in Sec. [7.4
“In the past often an approximation as a function of y only e.g. in Ref. [12] was used in

COMPASS analyses. Here the full expression is implemented. The difference between both is

negligible within experimental uncertainties.
5Here the approximation as a function of y only is used.
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Figure 6.4: Correction factors F' € {F{%, F{j;} for the different modulations as a
function of xp;, Q* and p%. Here the correction factors for the 2007&2010 sample

are presented.

Dilution Factor

The dilution factor describes the fraction of polarisable material in the target weighted
with the cross section of the reaction studied. Therefore the value is specific for the
reaction studied. The dilution factor is parametrised as a function of Q2 [127]:

PIA(QR) = oPl— L 6.33
QY = O (6.33)

Ip/d

where the measured cross section for a given reaction scattering of a polarisable
proton/deuteron or a single nucleon from isotope A is denoted by o,/ and o4. In
the denominator, the sum over all isotopes present in the target material is built. The
correction factor CP/? is calculated in Ref. [128]. The parametrisation of the cross
section ratio 04/04/, is based on data taken at NMC, E665 and photoproduction
experiments and is performed in Ref. [129]. The dilution factor for the 2007&2010
as a function of x5;, Q? and p? is presented on the right-hand side of Fig. The
different bands, as seen in the center of this figure, are dedicated to the different
target cells and years in the data sample, and appear due to the varying material
decomposition of each target cell. The uncertainty is estimated up to 0.02 for both
the proton and the deuteron setup [130]. The different target composition is also the
reason for the significantly higher dilution factor for the 2003&2004 sample shown
on the left-hand side of Fig. [6.6]
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Figure 6.5: Depolarisation factors as a function of y and mean depolarisation factor
as a function of zp;, @* and p3 (moving from top left to bottom right). Every
plot includes the factors for the eight different modulations. Here the correction
factors for the 2007&2010 sample are presented. Note that for the calculation of the
correction factor in Eq. the mean of the whole product is used.

Target Polarisation

In the transverse mode, the target polarisation can not be measured. Therefore,
the measurement is performed before and after each sub-period in the longitudinal
mode. In between, the polarisation values are gained by extrapolation. For the
years 2007&2010 the information is available for each run. Here the values stored
in the COMPASS offline database are used. As an example the polarisation in % of
the D cell as a function of the run number is presented in Fig.[6.7F] For 2003&2004
averaged values are taken. They are summarized in Tab. in the appendix. The
error of the polarisation is estimated to be 3% [79,80] for the proton three-cell setup
and 5% [131] for the deuteron two-cell setup.

Beam Polarisation

The beam polarisation depends on the beam momentum as introduced in Sec. [3.1]
It is parametrised using a spline function. The result is presented in Fig. [6.8]

6The dip of the polarisation value around run number 85800 goes ahead with a failure of the

3He pumps.
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Figure 6.6: Correlation between the dilution factor and zp; (upper row), @* (middle
row) and p? (lower row) for the 2003&2004 sample (left) and the 2007&2010 sample
(right). All cuts indicated in Tab. [4.5] are applied.
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Figure 6.7: Target polarisation in % for the D cell as a function of the run number for
the data taking in 2007 (left-hand side) and 2010 (right-hand side). The missing run

numbers in 2007 are dedicated to data taking with a longitudinal polarised target.
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Figure 6.8: Parametrisation of the beam polarisation as a function of the beam

momentum.



7. Asymmetries for the NHj
Target

In Sec. the discussion of asymmetries starts, whereas studies based on the data
sample before the background correction are shown. In Sec. [7.2] possible influences
on the asymmetries due to the presence of non-exclusive events in the final sam-
ple are discussed. Finally, the background corrected asymmetries are studied in
Sec. [7.3l They are evaluated starting from the background corrected ¢, ¢g distri-
butions N ®(¢, ¢s) or N *(¢, ¢s) which were introduced in Sec. . After the
discussion of the influence of the St to Pr transition in Sec. the systematic stud-
ies are presented. The chapter is closed with a comparison of A?}I}(‘z’_(ﬁs ) extracted
with one-dimensional and two-dimensional methods.

7.1 Asymmetries before Background Correction

This section is dedicated to the results of the asymmetry extraction. In Fig.
the physical asymmetries before background correction (background uncorrected
asymmetries) are presented. The results from the different extraction methods, as
a function zp;, Q* and p%, are shown. The top row shows, the only leading-twist
asymmetry Ai}r%(d)_%), followed by the four single-spin asymmetries. In the bottom
of Fig.[7.1] three double-spin asymmetries are shown. The mean values evaluated
in bins of z5;, @? and p? for all extracted asymmetries are given. All asymmetries,

except A%’}‘ﬁs , are compatible with zero within two standard deviations.

7.1.1 Comparison of Extraction Methods

In Fig. the asymmetry values obtained with four different extraction methods
are presented. The physical asymmetries are shown which are obtained from the
pure fit results according to Eq.[6.30.
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Figure 7.1: Comparison of background uncorrected asymmetries ex-
tracted with different methods. The applied methods are listed in Tab.
and are explained in the text. Mean values (A) and their statistical errors

are given.
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7.1.1.1 Double Ratio Method

The result of the 1IDDR method is shown in Fig. with blue diamonds. Ratio
Methods were used by the Collaboration in the past [132] [133]. Therefore it was
also implemented as part of this work and compared to the results of the other fit
methods.

The physical asymmetries in Fig. are obtained by dividing the raw asymmetries
by the mean of the correction factor evaluated in every bin as shown in Eq.[2.46] For
the IDDR method it is also possible to include the mean correction factor evaluated
for every configuration ¢ (¢ € {1,2,3,4}) in the fit function in Eq. by replacing

AlD(gf), ¢5) With:

Aip(, 0s)—=(f - |Pr| - Dyn(€))e - Aip(o, ds), (7.1)
Aip(¢, 05)=(f - |Pr|- Pr- Dyn(€))e - Aip(@, ds), (7.2)

where Eq. is valid for the single spin asymmetries and Eq. has to be used for
the double-spin asymmetries. The fit result is then directly the physical asymmetry.
Inside the available statistical precision both fit results are comparable.

The result marked with 1DDR is obtained by fitting the function in Eq. to
the data. The constant parameter C' in Eq. is a free parameter in every fitted
bin. If the acceptance is fully balanced, the parameter should be exactly 1. In
Fig. the results obtained with a double ratio fit with C' = 1 and a non-fixed C
parameter are compared. The pull distributions contain 13 asymmetry values from
the 13 kinematic bins (four in zp; and Q2 and five in p% ) and are calculated for
every asymmetry separately. The pull value in each bin i is calculated via'}

A — Az

ull, = —————.
P (01 + 024)/2

(7.3)
Here, A; represents the asymmetry with C' = 1 and A, stands for the asymmetry ex-
traction with the additional parameter C'. The statistical uncertainties are denoted
by o1 and o5. For some of the asymmetries a bias is observed. Noticeable is that
this bias is negative for the single-spin asymmetries, whereas it is positive for the
double spin asymmetries. The values for the parameter C' are between 0.998 0.009
and 1.019 % 0.009, where the distributions are slightly shifted towards positive val-
ues but show a comparable shape for all eight asymmetries. The observed bias is
a hint to instabilities of the 1IDDR method due to the non-uniformed acceptance
of the COMPASS spectrometer. Additional drawbacks of the 1IDDR method were
observed connected to general fit instabilities or the observation of a bias for small
statistics or large asymmetries [134] 135, [102]. Hence, today the 1IDDR method is
usually replaced with likelihood methods.

7.1.1.2 Non-Linear Least Squares F'it

The results of the one-dimensional and two-dimensional likelihood fit are presented
in Fig. with the black full circle and the open red circle, respectively. The
advantage of the one-dimensional binned likelihood method is that the binning is
directly performed in the azimuthal modulations © in Eq. [6.6l Therefore, a fine

I'Unless otherwise indicated the Eq. is used if a pull distribution is calculated.
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Figure 7.2: Pull distributions demonstrating the compatibility of the results from
the double ratio fit, where one value is obtained with a double ratio fit with C' =1

and the other with a non-fixed C' parameter.

binning with low statistics are even possible. On the other hand every modulation is
extracted on its own, consequently the correlation between the different modulations
is not taken into account. This is only possible for two-dimensional methods, for
instance the two-dimensional likelihood method or the unbinned likelihood fit. In
principle, the different modulations are orthogonal to each other which allows the
study of each modulation individually by integrating over the others. Although the
non-uniform COMPASS acceptance may introduce some instabilities. A possible
bias on the asymmetry extraction, due to the non-uniformed acceptance, is studied
in Refs. [135,102]. There, a bias is observed for sizable asymmetries extracted with
one-dimensional binned methods, whereas only a negligible effect is observed if two-
dimensional binned methods are used. The asymmetry values extracted with an
unbinned likelihood fit are presented with violet squares.

The results for the single-spin asymmetries Afjp as a function of the kinematic vari-
ables, indicate a reasonable agreement between the different methods. The mean
asymmetries are also in good agreement with each other inside the available statis-
tical precision. For the double-spin A}’ asymmetries the results from the unbinned
fit deviates compared to the results of the other fit methods. In particular, this is
visible if the mean values evaluated in bins of 2 5; are compared with those evaluated
in bins of @Q* and p%. Beside the deviation of the values also the statistical error is
throughout smaller.

The applied background estimation method, explained in Sec. |5 requires a binned
extraction method and only the two-dimensional binned method allows the simulta-
neously extraction of the eight asymmetries. Therefore, in the following, the default
method is the two-dimensional binned likelihood fit with 12 bins in both ¢ and ¢g.
The motivation for using 12 bins will be discussed later. The other methods are
used as internal cross checks and for systematic studies. The difference between the



7.1. Asymmetries before Background Correction 105

results obtained with a UB fit and with a 2DLH fit is quantified in Sec. and is
taken into account in the systematic uncertainty.

In the remaining sections several aspects of the asymmetry extraction are discussed
in detail. Mainly the 2DLH and the UB fit will be used. Some of the performed
tests are done using the physical asymmetry values, others are performed using the
pure fit result, the raw asymmetry. Beside the p° sample a second data sample will
be used for some of the test which has a released cut on . The raw asymmetries
for the p' sample and for the enlarged data sample extracted with 2DLH and UB

are presented in Fig. and Fig. [D.2] respectively.

7.1.2 Direct Fit of the Physical Asymmetry

Using an unbinned maximum likelihood fit the factors (f- D3y ) and (f-P- D}y ) can
be applied as weights on an event-by-event base. Studies done in the past showed, if
the target polarisation Pr is included in the weight for every event and varies in time,
a bias in the asymmetry extraction is introduced even so the spectrometer is perfectly
stable in time [136]. Therefore the mean polarisation (Pr) is still applied after the fit.
In Fig. the comparison of background uncorrected asymmetries extracted with
the standard method and with the event-by-event weighting are shown. In the latter
case the sizable discrepancy between the mean asymmetry values evaluated in bins
of z; and those evaluated in Q? and p% observed for the Ajr asymmetries in Fig.
is significantly reduced. On the level of raw asymmetries this incompatibility is not
present. Detailed studies show that this incompatibility is due to the correction
with the appropriate Dyy factors because these factors depend strongly on xp; for
the Apr asymmetries, as depicted in Fig. [6.5 Using a binned method there is no
possibility to overcome this problem. The difference is taken into account in the
evaluation of the systematic uncertainty in Sec. [7.5.1]

7.1.3 Period-wise vs. Global Analysis

Due to the small cross section of the exclusive p° production this study suffers from
low statistics. Therefore a combined (global) analysis of all data collected by the
collaboration with an NHj target, is preferred. Beside the study of the stability
of the most important variables as a function of time (Sec. also the stability
of the asymmetry values are evaluated as a function of time. A standard normal
distribution with RMS =~ 1 and a mean value = 0 is expected for every modulation.
In total, 12 periods in 2007 and 24 periods in 2010 are available as shown in Tab.[4.2]
Two consecutive periods always have opposite target polarisations. Therefore, 18
independent asymmetries can be extracted for each of the eight modulations. The
extractions are done with the UB, which allows for lower statistics compared to
the extractions with binned methods. The test is performed on the level of raw
asymmetries.

The differences between the asymmetry value of each period A;, and the mean
asymmetry (A) of the entire data taking, are expressed as:

A; — (4A)

(0,241- - O-(QA)>

pull2, = (7.4)
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Figure 7.3: Background uncorrected asymmetries extracted with UB.
Here the usage of the correction factor as introduced in Eq. (black full

circle) is compared with an event-by-event weighting (red open circle).

Mean values (A) and their statistical errors are given.
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These studies are done in two different ranges of Fs: 1. In our signal range
—2.5GeV < FLis < 2.5GeV; 2. in an extended range —10 GeV < E s < 20 GeV,
including the range in which the background asymmetries are determined. The latter
range contains 2.6 times more events, thereby increases the statistical precision of
the performed test. The pull distributions of Eq. contain 13 asymmetry values
A; from 13 kinematic bins for each of the 18 independent measurements. The raw
asymmetries for —10GeV < FELis < 20GeV, extracted with UB and 2DLH, are
depicted in Fig.[D.2| They are compatible with zero inside the statistical uncertainty
over the entire kinematic range.

Signal Range

The mean values of these 18 independent measurements are shown in Fig. [7.4] In
Fig. [7.5, the pull distributions of Eq. are depicted for every modulation respec-
tively. The extracted RMS values are between 0.95 and 1.09, except the sin(2¢ — ¢g)
modulation which has RMS = 1.21. Additionally, the pull distributions are built
every year and for every kinematic dependency separately. The results are found to
be in-line with Fig.

Extended Range

The same studies as in Sec.[7.1.3] are repeated in an extended missing energy range
with —10 GeV < E,i < 20 GeV. Here the statistical precision of the test increases.
The higher RMS value of the sin(2¢ — ¢g) modulation is not reappearing. The
results are depicted in Fig. and Fig. [7.6l The RMS for every modulation is
compatible with one, within the uncertainties, showing the good compatibility of
the data samples.

7.1.4 Test of Different Number of Azimuthal Bins

In Fig. the asymmetry values are extracted with a 2DLH using 12 bins in both
¢ and ¢g. Different numbers of bins for 2DLH are tested and compared with the
results from the UB. The test is performed on the level of raw asymmetries to avoid
an interplay with the above-mentioned effects, which occur after the correction factor

is applied. The results are presented in Fig.[7.7l

For each modulation, the pull distributions defined in Eq. between the two
asymmetry values, A; the result of UB and A, the result of 2DLH, is calculated.
As an example, the scenario with eight or 12 bins in both ¢ and ¢g, are depicted
in Fig. and Fig. [7.9. The pull distributions contain 13 asymmetry values from
the 13 kinematic bins. It is observed that the difference between the UB and the
2DLH results are reduced with higher number of ¢, ¢g bins. This is particularly
the case for modulations (k¢ — ¢g) with & > 1. It can easily be seen that a coarse
binning does not allow a sufficient resolution of the angular modulations. An upper
limit of the number of bins is given by the statistics. Mainly the big dip in the ¢g
distribution in Fig. is due to the asymmetric construction of the trigger system,
which prohibits a finer binning.

In Fig. the number of events before (left) and after (right)?|background subtrac-
tion (see Sec. in each bin appropriate for the asymmetry extraction is shown.

2The plot is shown in anticipation of Sec. where the background-corrected asymmetries

are introduced.
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Figure 7.4: Mean values of asymmetries for each period in 2007 and 2010. Each
the second two digits indicate the corresponding period. The periods of 2010 are

depicted first, followed by 2007. The asymmetry values are extracted for data with

—2.5GeV < E,ss < 2.5 GeV.

abscissa is labeled with four digits, where the first two digits indicate the year and
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Figure 7.5: Pull distributions demonstrating the compatibility of the results from
different periods. The asymmetry values are extracted for data with —2.5 GeV <
Emiss < 2.5 GeV.

Here a ¢, ¢g grid with 12 x 12 bins is used. We do not observe empty bins. The
number of events in each bin is sufficiently large enough to perform the fits. The
final choice of 12 bins in both ¢ and ¢g is a compromise with regard to the statistics
available and the observation that the correlation between 2DLH and UB improves
with increasing number of bins. The difference of the extracted asymmetry values
with UB and 2DLH with 12 bins each in ¢ and ¢g is taken into account in the
evaluation of the systematic uncertainty in Sec. [7.5.2|

7.1.5 Influence of Particle Identification

A full particle identification of both hadrons as pions in the final state reduces the
misidentification of non-pion pairs, but the remaining statistics are not sufficient to
perform an asymmetry extraction. In Sec. [4.3.5] the information from the RICH-1
detector is used to exclude events which are identified as kaons, protons or electrons
(veto). This cut allows a partial clean-up of the sample. But in the spectrome-
ter just one RICH is present which is situated in the first spectrometer part and
allows only the reconstruction of particles in a sub-range of the hadron momen-
tum. Therefore, the kinematic acceptance of the spectrometer and the statistics
are significantly reduced and the usage of the RICH information in the analysis is
disregarded. Also, the extraction of asymmetries for identified pions and the veto
cut allows for systematic studies.

In Fig. the asymmetries extracted with 2DLH for the full p° sample without
a background correction and for the sample after the veto cut is compared. The
veto cut reduces the statistics between 7% and 12% as a function of xp;, Q* and
p2, equally. For most of the data points the asymmetries remain overall unchanged.
The differences of the mean values is for all asymmetries up to 0.2-0%, with respect
to tl(r1¢e Et?tistical uncertainty of the background uncorrected p® sample, except for
Azplo=ss

, where 0.5 - ot is observed.
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Figure 7.6: Pull distributions demonstrating the compatibility of the results from
different periods. The asymmetry values are extracted for data with —10 GeV <
Emiss < 20 GeV.

7.1.6 Additional Kinematic Dependencies

Beside the binning in the variables z5;, Q? and p%, which were already introduced,
additional kinematic dependencies of the asymmetries are studied. In Fig. the
asymmetries are shown as a function of F;s , M +.- and z. Especially the study
of the F,; dependence is important as we know that the number of semi-inclusive
events is significantly increasing with higher F, ;i values. All asymmetries are small
in the entire kinematic range.

7.2 Background Asymmetries

The p° meson is reconstructed out of two unlike charged hadrons in the final state.
As discussed in Sec. |5, after the application of all cuts a sizable amount of non-
exclusive events, mainly semi-inclusive produced p° mesons are still present in the
sample. Beside the determination of the sources and the estimation of the size of the
non-exclusive contribution, the influence of these contributions on the asymmetry
extraction is crucial. Therefore, first asymmetries extracted for non-exclusive sub-
samples of the measured data are studied before the background correction of the
exclusive asymmetries are discussed in Sec. [7.2]

This section is dedicated to the study of the semi-inclusive background as this is the
biggest and most important contribution. The extraction of the asymmetry values
for the background is done, following the same path as for the p° candidates in
Sec. The same underlying data sample is used although the applied cuts are
changed as it is discussed in detail below. Note that the dilution factor changes.
Depending on the studied reaction different cross section ratios o4 /ad/p have to
be taken into account in Eq. The one for semi-inclusive events is shown in

3In addition the used parametrisation of o4 /0y /p for semi-inclusive reactions depends on Q?

and zp;.
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Figure 7.7: Comparison of background uncorrected asymmetries ex-
tracted with the 2DLH method using different number of (¢, ¢s) bins.

Mean values (A) and their statistical errors are given.
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Figure 7.8: Pull distributions demonstrating the compatibility of the results extracted with

different estimators. Here the comparison of UB and 2DLH with eight bins in ¢ and ¢g is

shown.
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shown.
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Figure 7.10: Number of events in each bin (appropriate for the asymmetry extrac-
tion) before (left) and after (right) subtraction of semi-inclusive background. Note
that the abscissa starts at 10.

Fig. as a function of zp;, @* and p7. and is significantly lower as the exclusive
one in Fig.

The asymmetries extracted in the range 7.0 GeV < s < 20.0 GeV are presented
in Fig. [7.15] This range in Fy, is well above the exclusive range as well as the area
where further background contribution, i.e. diffractive dissociation is present. In this
range the statistics are compatible with the one in the exclusive range —2.5 GeV
< Fniss < 2.5GeV. The plots indicate asymmetries compatible with zero inside
the statistical uncertainty of the measurement. Additionally, the asymmetries as
a function of E,; are presented in Fig. for the signal range and in Fig.
for the background range. While the first contains both the pure exclusive and
the semi-inclusive as well as further contributions with unknown interplay between
them, the latter only includes semi-inclusive events. Both are compatible with zero
within the statistical uncertainty of the measurement.

On the other hand, the measurement of the transverse spin asymmetry A%nWRWS -

in semi-inclusive two-hadron production on a NHj target at COMPASS results in
sizable asymmetry values, rising in strength as a function of zp; [137, [138]"] Here,
the azimuthal angle ¢ is defined as the angle between the two-hadron plane and
the scattering plane measured around the direction of the virtual photon [102].

However, the production of p° mesons is treated as one-single hadron production.
This becomes clear if one compares the SIDIS cross section in [11 10, [12] with
the one for exclusive p° production [9]. They are comparable in contrary to the
cross section for the full two-hadron production [139] 140]. Note, that Ref. [12] and
Ref. [9] use different conventions for the depolarisation factors. In this thesis, the
one of Ref. [9] is consistently applied (see Eq.[6.32). Using the convention of [12],
the calculated depolarisation factor for the di-hadron production is smaller. The
Dy factor scales reciprocally the asymmetries as well as the statistical errors.

The p° meson is reconstructed using the two hadron pairs from its decay. The
integration over the angles of the hadrons do not introduce any significant bias
because the acceptance as a function of these angles is approximately uniform for

4Different is the situation for the measurement with the deuterated SLiD target, where a small
asymmetry is observed (Ref. [137]).
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Figure 7.11: Comparison of background uncorrected asymmetries ex-
tracted with the 2DLH method using the standard p° sample and a p° sample
where a veto cut is applied. Mean values (A) and their statistical errors are

give.
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Figure 7.12: Physical asymmetry without background correction as a function

of Friss; Mr+-— and z. The asymmetry values are extracted with 2DLH. Mean

values (A) and their statistical errors are given.
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Figure 7.13: Correlation between the semi-inclusive dilution factor and zp; (left),
@Q?* (middle) and p% (right) for the 2007&2010 sample. All cuts indicated in Tab.
are applied.

the used sample [141]. The integration over the angles of the hadrons prevents the
separation of longitudinal and transverse p° mesons. The framework of treating
the meson production as a two-hadron production in terms of spin density matrix
elements, including the decay angular distributions is provided in Ref. [142]. It also
allows for a separation of longitudinal and transverse p° meson. The drawback is that
it requires a good knowledge of the experimental acceptance in a multi-dimensional
space, including two additional decay angles.

Also semi-inclusive one-hadron production is measured at COMPASS and transverse
spin azimuthal asymmetries of charged hadrons are studied for the deuterated *LiD
target [132] [133], as well as the NHj target [143, (144, [145]. The Sivers asymme-
try and the Collins asymmetry of the proton have been extracted in the
range 0.003 < zp; < 0.7. The Sivers asymmetry corresponds to the sin(¢ — ¢g)
modulations, while the Collins asymmetry is defined as sin(¢ + ¢s — 7). The Sivers
asymmetry is found to be compatible with zero for negative charged hadrons and
positive for positive charged hadrons, whereas a dependence of the asymmetry val-
ues as a function of xp; is observed. Note, that the kinematic range of the analysis
differs from the one of the exclusive p" analysis.

Based on the measured data sample on a NHj target in 2007&2010, with the pre-
cuts introduced in Sec. [4.1] a pseudo-transversity sample is reconstructed. For this
purpose the cuts on the invariant mass and the missing energy of the p° mesons are
released. Moreover, the charged hadron has at least p2 = 0.1 (GeV/c)?, where p2
is the transverse momentum with respect to the virtual photon direction. Also the
upper limit of Q? is released because it is applied to suppress semi-inclusive produced
events. In the final state two hadrons are requires. No cut is applied on the charge
of these two hadrons. The cuts on the kinematic variables are adapted according
to Ref. [144]. The applied cuts are listed in Tab. 7.1} In total around 8 - 10° events
with a positive charged hadron and 6 - 10° events with a negative charged hadron in
the final states are reconstructed. The asymmetries are extracted for the combined
data sample of the years 2007&2010 using an unbinned maximum likelihood fit.
After adapting the cuts on the kinematic variables an increasing asymmetry value
for A?}I}(d’_‘bs ) as a function of x Bj is observed for positive charged hadrons, as shown

in Fig. as it is also observed for the asymmetry A%I%(qb_%) in semi-inclusive
one-hadron production in Ref. :
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Table 7.1: Summary of all cuts for the pseudo-transversity sample.

topology

Best Primary Vertex reconstructed with
1 incident muon: u

1 scattered muon: p’

vertex in the target

PHAST routine PaAlgo::InTarget()

muon identification

hadron identification

X/ Xo(p') > 30
X/Xo(h) < 10

quality of the tracks

XZoq < 10 for p, p', h

Zrirst(R) < 350 cm

350 < 2y (h) < 3300 cm

h and p’ do not cross SM2 yoke (PHAST routine)

h* cannot be a muon (PHAST routine)

u flux through all target cells
beam momentum

beam back propagation likelihood

PHAST routine
140GeV/c < p, < 180GeV/c
0.005 < LHpa < 1

number of fired BMS planes Npuys > 2

domain of analysis Q* > 1.0(GeV/c)?
W > 5GeV/c?
0.1 <y<09

0.003 < Tp; < 0.7
p2 > 0.1(GeV/c)?

quality of data

Pure ECALLI trigger rejected for periods in 2007:
W27, W28, W39, W40, W41, W42a
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Figure 7.14: Results for background uncorrected asymmetries as a function of F, for
7.0 GeV< E,iss < 20.0 GeV are shown.

7.3 Background Corrected Asymmetries

Now let us proceed with background corrected transverse asymmetries for exclu-
sive produced p? mesons. Three different methods to extract background corrected
asymmetries are implemented and compared. They are listed in Tab. and can
be divided in two different concepts: a correction of the level of the underlying ¢,
¢g or O distributions or a correction on the level of asymmetries.

7.3.1 Background Correction on the Level of Azimuthal Dis-
tributions
If the estimated number of semi-inclusive events are subtracted from the ¢, ¢g

distribution (or © distribution), the distribution is not Poisson like any more and a

Table 7.2: A summary of the applied methods to extract background corrected
asymmetries.

abbreviation | method
int scaling of the ¢, ¢g or © distribution

according to the number of background events

bin correcting the ¢, ¢g or © distribution in
every angular bin

UB back correction on the level of asymmetries
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Figure 7.15: Asymmetry for 7.0 GeV< Epyiss < 20.0 GeV. The asymmetry
values are extracted with 2DLH. Mean values < A > and their statistical

errors are given.



120 7. Asymmetries for the NHs Target

2 e pos *<A>=002Z0,003_[ *pos *<A>=0022F0003. [ *pos *<A>=00210003
T ook 0<AS=-0.0030:003 [ oheg 0<AS=0.0030.003 [ oheg 0<AS = 0.003£0:003
s 005¢ n C
£k i ¢ ¢ - ) o [ ¢
72 [ 4 ) e ¢
< 0 o) o) A n A A
oo T L0 T o v ° v
g g
2 [opos —  ®<AS=0.022®006 [ o pos  ®<AS=001930007 [ spos e <A>=0.02320.006
3 00sk oneg <A>:—0 01780.007 | o neg 0<A>=-0.015+0.007 | oheg o0 <A>=-0.017+0.007
< O L r
=8 F F . +
< ok & roll 4 r |
r T# Y i TI% '+ St b 7 % +
-0.0sf - -
= [opos —  $<A>=00030002[ *pos . ®<AS=-000230002[ pos ®<A>= 000220002
X 00sk oneg 0<A>=0.004+0.003 | oneg 0<A>=0.00310.003 | oneg 0<AS=0.004%0.003
< 0o r r
z r _ C
£5 [ o [ C o
< e . [ e . O O I o Q
I T ¢ T Z v PSR *
-0.05F - -
2 [opos —  S<AS=000820006] *pos  ®<AS=-000050007} epos ®<AS=-0008E0:006
AL 0 <ASZ0.002%0.007 [ oheg 0 SAZZ0:00240.007 [ ohos 0 <AS = 0.00250.007
g T C n
5 | ‘# : o I ) )
Lﬁ: C- l ) d) [ l ) l| [ 4 |
i % $ $ I FE I ¢ I +F ' '
-0.05F - . +
& opos —  S<A>=00030002 [®pos  S<A>=0003F0002 [epos e <A>=000%0002
£5 [ ohes 0<AS=0.000£0.003 [ oheg 0<AS=0.000£0.003 [ oheg 0 <AS = 0.000£0.003
22 0.0sF - -
<< s L C
48 o I ae o [ o ® 4 5
0_ g r o b N o] Q [
: :
2 Fepos —  S<A>=000%00I0 Eepos — ®<A>=00I/F0010 Fepos e <A>=003020010
<€ 02
| 2F oheg 0<A>=0010£0011 [Foheg 0<A>=0.00720011 [ oheg 0<AS = 0.0T030.011
L : : g
z 0.1F - r
N y b oo EPPETY ¢
e o+ . %
-0.1F - o
0.2F - o
@ e pos S<A>=001350013 E*pos “<AS>=001720016 F % pos *<AS=001570015
< 02
| 2F o heg 0<A>=004070.017 Foheg 0<A>= 004050017 Foneg 0<A> = 0.040£0.017
L : : g
z : : g
g oaf L -
25 4 MR 5 ! i
5 F g, b s Fou X
b [4 T E T F T T T
-0.1F - o
0.2F - F
I T e<AS=-000720015 F * pos *<AS=-0000.015 F ¢ pos *<AS= 000750013
25 O02fohe 0<A>=0.023£0.017 [ o heg 0<AS=0.01720.017 F oheg 0<AS=-0.023H0.017
< 0.1F - E
NI S L F ot ) 4 .
2t ? AN R %
-0.1F n C
0.2F - E
0 0.05 0.1 0.15 2 4 05 13
. 2
Xp;j Q° [(GeV/c) 2 [(GeV/c)]

Figure 7.16: Asymmetry for the pseudo-transversity sample. The asym-
metry values are extracted with UB. Mean values (A) and their statistical

errors are given.
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fit method based on Poisson statistics is no longer applicable. In this case we use a
fit-to-counts method and Gauss distributions which has been introduced already in
Sec.[6.2.2.1] Tt has been checked that the statistics is sufficiently large in every (¢,
¢s) bin to perform the asymmetry extraction. To avoid instabilities, the binning
in ¢ and ¢g is chosen in order that at least 10 events are present in every bin’l
The number of entries in each bin for the two-dimensional distribution was already

presented in Fig. [7.10]

Here two different approaches are followed, which were explained in Sec. and
are abbreviated in the following with “int” and “bin”. In the first case ("int”) the
background corrected distribution N;#(¢, ¢s) is used. Whereas, the other approach

results in the background corrected azimuthal distribution /V, Z;g(@ ¢s). The back-
ground corrected raw asymmetries are extracted from the corrected distributions
N 5(¢, ¢s) or N (o, ¢s) applying the methods from Sec.

Whereas the first ap?roach is used in the extraction of the leading-twist single-spin
asymmetry Ai}%(d)qus for NH3 and °LiD target published in Ref. [146], the second
one is used if all eight modulations are studied at once. The attempt to extract the
number of semi-inclusive background events bin-by-bin, for a two-dimensional ¢, ¢g
grid, suffers from high statistical fluctuations and, therefore, is disregarded for the
standard analysis. The results obtained from both methods are shown in Fig. [7.17|
Here, 8 x 8 bins in both ¢ and ¢g are used for the two-dimensional binned fit to
be less sensitive to statistical fluctuations. The results of both methods are well
compatible with each other inside the statistical precision of the measurement. The

comparison of both methods is used to estimate a systematical uncertainty due to

the background subtraction method in Sec. |7.5.4.2

In Fig. the correlation matrix introduced in Eq. is shown. As an example,
the first xp; bin is chosen. All others can be found in the Appendix Finally,
the results for background corrected asymmetries extracted with the standard setup
(2DLH, 12 bins in ¢ and ¢g, "int” background method) are presented in Fig.
as a function of zp;, @* and p%. In the plot two scenarios are shown where the
details will be discussed in Sec. [7.5.4.1] Most of the extracted asymmetries seem to
be compatible with zero inside 2 - ™, Although the A% shows a hint towards a
slightly negative value.

7.3.2 Background Correction on the Level of Asymmetries

Under the assumption that the asymmetries extracted in the non-exclusive missing
energy range 7.0 GeV< FEiss < 20.0 GeV can be extrapolated into the signal range,
they can be used to correct the asymmetries extracted for —2.5 GeV < F ;s < 2.5 GeV.
The "true” asymmetries are estimated via:

A™ b AT

AT =
t 1—-b6

(7.5)

5The choice of 12 bins in both ¢ and ¢g is a compromise with regards to the statistics available

and the observation that the correlation between 2DLH and UB improves with increasing number
of bins and is discussed in Sec.
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Figure 7.17: Comparison of background corrected asymmetries ex-
tracted with the 2DLH method using different methods for the background

correction. Mean values (A) and their statistical errors are given.
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Figure 7.18: Correlation matrix for the 2DLH fit. Here is shown the first bin in zp;
for the 2007&2010 sample.

with A} is the asymmetry m evaluated in the pure background range
7.0GeV < Eis < 20.0 GeV and b is the fractional contribution of the background:

_ Nback
N ;

b N = Nyaer, + Niig, (7.6)

which is evaluated according to Sec. The result is presented in Fig. [7.20/labeled
with black full circles. Additionally the asymmetries evaluated in the exclusive range
and in the semi-inclusive range are shown with red open circles and blue diamonds,
respectively. They are extracted using an unbinned fit. This approach allows the
usage of the unbinned likelihood fit. The advantage is that this overcomes the
difficulties observed due to the correction of the raw asymmetries with the mean
correction factor explained in Sec. However the different dilution factors for
exclusive and semi-inclusive production (see Fig.[6.6/and Fig. lead to a higher
statistical uncertainty of the background asymmetries, even when the exclusive and
the non-exclusive samples are well balanced. Therefore, the true asymmetry might
be disproportionally affected by statistical fluctuations. Nevertheless, a point-by-
point comparison of the background corrected asymmetry values in Fig. and
Fig. indicates a reasonable agreement between both methods. For Asn(3¢—¢s)
the mean asymmetry values extracted with the two different methods differs with
0.8 - o8t with respect to the statistical uncertainty of the binned extraction. For

the other modulations, the differences of the mean asymmetry values are between
0.3 - o' and 0.6 - o5,
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Figure 7.19: Comparison of background corrected asymmetries using
weighted PYTHIA (red open circle) and weighted LEPTO (black full
circle) for background parametrisation. Mean values (A) and their statistical

errors are given.
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Figure 7.20: Comparison of asymmetries extracted with the UB fit. The
asymmetries evaluated in the exclusive range (red open circles), in the in-
clusive range (blue diamonds) and the background-corrected once (black

full circle) are shown.
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7.4 Influence of the S; to Pr Transition

Usually, in an experiment, the target is transversely polarised with respect to the
direction of the lepton beam and the polarisation value is denoted by Pr. However,
in Eq. [2.42 the target polarisation is transversely with respect to the direction of
the virtual photon, which is denoted by Sr. In Fig. both coordinate systems
are shown where the z (z') axis points along ¢ (k). It is possible to transform Sy to
Pr by rotating the coordinate system around the y/(y') axis by the angle 6 between
q and k [9], where:

. 1 —y— 39
sinf = Y \/T’}ﬂ’ (77)
and
& _ cos 6 i _ sin @ cos ¢g (7.8)

Pr /1 —sin®0 sinpg Pr /1 —sinf sin2¢>5.

Applying this transformation to Eq. [2.42|results in [9]:

= terms independent of Pr

Q| drp;dQ? dgdpsdt

A2 1 —¢ zp; @2

—1
[aem y* 1 —uxp, 1] do

P
- L [sin(bg cosf/e(1+¢)Imoly

\/1 — sin?6 sin®¢g
+ sin(¢ — ¢g) (cos@Im (0ff +eogy ) + %sinG e(l+e)Im(off — 0;6))
+ sin(¢ + ¢g) (cos& ° Im of” + % sinfy/e(1 +¢)Im (07§ — 0’;5))
+ sin(2¢ — ¢s) ((:08(9\/174—511][10+ —i——smﬁ&?hnafr)

+ sin(2¢ + ¢g) % sinfelImol™ +sin(3¢ — ¢g) cos 9 —Imo ]

PrP, -
V1-— sir:;; sin®¢g +cos(26 — és) cosf Ve(1 —g) Reorg

+ cosgg (COSQ\/&(l —e)Reofy —sinfv1 —e2 - (a++ — a++))
— cos(¢ — ¢g) <cos 0v1—e2Reol — 3 sin0\/€(1 —e)Re(old — ajro_))

+ Cos(d)—k(;ﬁs)%sin@\/a(l—5)Re(aio+—JIO_) :

(7.9)

The transition from St to Pr introduces the term cos 6 in front of every asymmetry.
The additional asymmetries sin(2¢ + ¢g) and cos(¢ + ¢g) are suppressed by sin 6.
Furthermore some of the Aypir asymmetries are supplemented with additional
terms which can be connected to an admixture with the longitudinal asymmetries

Aurry- In the Bjorken limit, § and v are small and Eq. and Eq. fall
approximately together. The angle 6 between the lepton beam direction and the



7.4. Influence of the St to Pr Transition 127

Figure 7.21: The lepton plane in the target rest frame, where z (2’) points along ¢
(k). The y/(y') axes point out of the paper plane.
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Figure 7.22: On the left-hand side the angle 6 between the lepton beam direction
and the virtual photon direction as defined in Fig. is shown. Additionally, the
ratio of the transverse spin vector Sy (middle) or the longitudinal spin vector Sy,
(right) both with respect to the virtual photon direction and the transverse spin

vector with respect to the lepton direction Pr is presented.

virtual photon direction as defined Fig. is presented in Fig. [7.22l The mean
value is (f)= 0.04rad. Additional the distributions from Eq.[7.8| are shown.

In [147] it was shown that the asymmetry AEOTS‘z’S measured in semi-inclusive deep in-

elastic scattering of polarised muons off a transversely polarised NH3 target is biased
especially for high xp; values due to the contribution of the Ay, amplitude despite
the smallness of sinf. The reason is a strong xp;-dependent Ay, asymmetry [148]
in semi-inclusive measurement. The formula for correcting A$%?S in [147] can be

adapted to:
COoSs y COS . 1
ALT% ~ cos QAR — sin——— Ay (7.10)
e(l—¢)
The study of (sin#) in bins of Eq. indicates an increase as a function of zp;
presented in Fig.[7.23] similar to the situation in semi-inclusive scattering. Therefore,
to estimate the bias of A7y ¢S, the knowledge of A;; measured for exclusive p° mesons

is necessary.

In COMPASS, the Ap;, asymmetry in exclusive p° production is only analysed for
scattering the longitudinally polarised muon beam on a longitudinally polarised ¢LiD
target [127]. Here the extracted asymmetry is comparable with zero over the en-
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Figure 7.23: Mean values of # in bins of Eq.|6.12|for the 2007&2010 sample.

tire kinematic range. Additional measurements exist from the SMC as well as the
HERMES Collaboration, although these measurements are performed in a different
kinematic range compared to COMPASS and suffer from large statistical uncertain-
ties. The measurement of the SMC experiment [129, [149], where a longitudinally
polarised muon beam with 190 GeV /¢ were optionally scattered on an ammonia,
butanol or deuterated butanol target indicates a slightly negative value, although
the statistics are not sufficient. The HERMES experiment measures a slight increase
of Ay, with increasing xp; scattering a 27.5GeV/c electron (positron) beam on a
longitudinally polarised hydrogen or deuterium target [150]. Obviously the present
existing data on Ar;, asymmetry in exclusive p production does not allow for a
well-founded estimation of possible effects on the Ayt v asymmetries.

In Ref. [151] asymmetries for exclusive meson production are related to the corre-
sponding inclusive deep inelastic scattering asymmetries. In this publication the
reaction ep — epp” as well as ep — eX is studied and the model dependent relation
A} = 2. Ainel- i5 derived for forward diffractive p° production. The A< asymmetry
was measured at COMPASS [152] based on data taken during the year 2007 with a
longitudinally polarised NHj target and a longitudinally polarised muon beam with
160 GeV/c. The asymmetry is studied for 3-1072 (GeV/c)? < Q* < 7(GeV/c)? and
5-107° < xp; < 0.05 and found to be compatible with zero in the entire kinematic

range.

The two additional asymmetries sin(2¢ + ¢g) and cos(¢ + ¢g) can be added to the
function in Eq. 6.3 From a theoretical point of view, all summands in Eq. are
orthogonal to each other. However, the non-uniform acceptance of the COMPASS
detector might lead to a change of the results. Therefore, the fits have been per-
formed also adding the asymmetries sin(2¢ + ¢g) and cos(¢ + ¢g). In Fig.
the pulls between both extractions done with 2DLH for the 13 kinematic bins are
shown. Here only the pure fit results, i.e. the raw asymmetries are studied. If the
additional modulations k¢ + ¢g are added, the pulls of the standard modulations
k¢ — ¢s and (k — 1)¢ + ¢5 are more widely distributed. However, the results are
statistically scattered around zero with a RMS of the pulls of up to 0.1. Therefore
no systematics are obtained.

After the detailed study, the influence of the #-related corrections is neglected. For
the extraction of the asymmetries Eq. [2.42] is used. To obtain the physical asym-
metries the fit results have to be divided by the correction factor which includes the
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Figure 7.24: Pulls between results obtained by fitting the eight asymmetries studied and all

10 asymmetries, as explained in the text.

dilution factor, the depolarisation factor, the target polarisation and, for the Apr
asymmetry, the beam polarisation, and, additionally, the sin(#) term. Since this fac-
tor scales the asymmetry value, as well as the statistical uncertainty, the statistics
available are not sufficient to draw conclusions on the asymmetries sin(2¢ + ¢g) and

cos(¢p + ¢g).

7.5 Systematic Studies

Several tests to evaluate the systematic uncertainty of the result are discussed in
the next two sections. According to the approach in Ref. [153], only substantially
contributions which can not be overcome should be included in the final systematic
uncertainty.

The stability of the extracted asymmetries is analysed by performing different sys-
tematic tests, namely the asymmetry values calculated with different extraction
methods are compared (Sec. , the stability of the data sample used over time is
studied (Sec. and the stability of the applied background subtraction method
is tested (Sec . All checks are performed separately for each of the eight mod-
ulations. This sectlon is dedicated to the NHj3 target and it includes an introduction
of the applied checks as well as the results.
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7.5.1 Compatibility of Mean Asymmetries in zp;, @Q* and p>

As already mentioned in Sec. [7.1] the mean asymmetry values for the Apr asymme-
tries evaluated in bins of zp; differ considerably from those for Q* and p#, respec-
tively. This incompatibility is observed equally for the physics asymmetries with and
without background correction; although it is not present on the level of raw asym-
metries. The differences appear, mainly for Ai%f(d)f(bs ) and AlR ¢S after applying the
Dy factor, due to the strong zp; dependence of the Dyy factor as discussed in
Sec. The differences in the mean asymmetry values, evaluated for xz;, Q? and
p%, are taken into account in the systematic uncertainty. Half of the maximum dif-
ferences expressed in terms of the final statistical error of the background corrected

asymmetries are summarized in Tab. [7.3]

Table 7.3: Half of the maximal difference of the mean values of the asymmetries for
rpj, @* and p%, separately for every modulation. The asymmetries in the second
column are evaluated with Dyxy = 1, where in the third column the Dyy factors
according to Eq. are used. If no value is given, no difference is observed.

Asymmetry oY [gstat
assuming Dyy accord-
Dyy =1 ing Eq. [6.32]
ATEE-53) - -
AJR(@+0s) 0.02 0.07
ASn(29=9s) 0.06 -
ARB9=0s) - 0.02
ASn(Os) 0.06 -
Ai()TS(¢_¢S) _ 0.20
AJ9s) - 0.16
AJR(E0=0s) 0.01 0.08

7.5.2 Comparison of Different Estimators

To avoid double counting, the tests presented here are done on the level of raw asym-
metries and before background correction. Systematic effects related to the usage of
the correction factor and the background subtraction are addressed in Sec. and
Sec. [7.5.4. The RMS values and half of the shifted means of the pull distributions in
Fig. correctly expressed in terms of the final statistical errors of the background
corrected asymmetries, are taken into account in the systematic uncertainty and are
summarized in Tab. [7.4

7.5.3 Stability of Data Taking

This section is dedicated to the test of the stability of the asymmetries depending
on the periods of data taking during the run. To avoid double counting of the
systematic uncertainties introduced due to the Dyy factor discussed in Sec. [7.5.1]
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Table 7.4: Systematic uncertainties related to the choice of estimator expressed in
terms of the final statistical error of the background corrected asymmetries, sepa-

rately for every modulation.

Asymmetry oS [ gstat ‘
ASn(0=0s) 0.14
Aii]r'}‘((z)H)S) 0.16

ASnE0=0s) 0.26
A%n(&ﬁ—(f)s) 0.26

ASn(9s) 0.11
ASR(=0s) 0.11
A (0=05) 0.22
AC‘)s (@s) 0.10

raw asymmetries are used’, As these studies are not sensitive to the background,
they are performed before background correction.

7.5.3.1 Experimental False Asymmetries

For the extraction of the so called false asymmetries, the data samples are combined
in such a way that no true asymmetries are present i.e. from the physical point of
view no asymmetry is expected. The goal is to estimate the systematic uncertainties
due to acceptance variations. The asymmetry values are extracted with a UB.

In Eq. [6.1] the number of exclusive p° mesons are expressed as a function of ¢
and gbg, assuming an acceptance term o independent of ¢ and ¢,. In COMPASS
the acceptance in ¢ and ¢g is not flat, as visible in Fig. [6.2] and Fig. [6.3] Each
modulation can be decomposed in its Fourier amplitudes, as shown in Ref. [135].
This study results in the observation that modulations of the acceptance terms
exist, which depend on the same angles as the physical asymmetry [154]. Whereas
the modulation in the ¢ distribution is mainly due to the contribution of the physical
unpolarised asymmetries, the modulation of the ¢g distribution is non-physical and
depends on the trigger system [154].

Therefore, it is assumed that the acceptance a has a ¢, ¢g dependence. Then the
number of exclusive p® mesons as a function of ¢ and ¢g can be written for every
target cell n as:

]n(gb bs) —c]n (1+a 2O™) (L £ €m0, (7.11)

where ®™ denotes one of the eight azimuthal modulations: sin(¢ — ¢g),sin(¢ +
s),sin(2¢ — ¢s), sin(3¢ — Ps), sin s, cos(¢ — Ps), cos(2¢ — ¢s), cos ¢s. The differ-

ent target polarisations are represented by + and ¢ implies the unpolarised cross

6This approach relies on the assumption that the appliance of the correction factor do not
introduce an extra asymmetry. This assumption is supported by the observation that the systematic
uncertainties evaluated in the signal range based on the physical asymmetries A} differs only

within 40.04 - 053" compared to the systematic uncertainties evaluated using raw asymmetries.
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section, the muon flux and the number of target nucleons. The true asymmetry of
modulation ®™ is €. It is assumed that the acceptance has the same dependency
from the azimuthal angle as the asymmetry.

For this test, data with common target polarisation is combined. According to
Fig. this can be realised by combining the two outer cells (U and D) of the
target or dividing the inner cell (C) in two equally large parts (C; and C,), which
are combined with each other. The sub-cells of U, C;, Cy, D are named with Ny to
Ny in the direction of the muon beam. We define:

NN N3 N5
= T2z = -
NFN;E NFN;

14 (7.12)

In addition, it is possible to combine data with opposite target polarisation from the
first half (U and C;) and the second half (Cy and D) of the target:

NiNi N:I:N:I:
o= MENE NIV 71
Ni"N, NN
Inserting Eq. into Eq. and Eq. the asymmetries:
Al ~ et (of —af —aj +af)/4,
AT ~e+ (a5 —af — oy +ai)/4,
A%, m et (of —af —ay +0a3)/4,
A, m et (af —af — a5 +af)/4, (7.14)

can be build, where A7}, and AT’  are false asymmetries so the true asymmetry e

of the underlying scattering process is zero. However A" (A%, ) are true asymme-

tries, extracted from the first (second) half of the target. The true asymmetries are
presented in Fig. whereas the false asymmetries are shown in Fig. [D.5| Out of

Eq. three combinations are built: AE” —rag)r Alristrag)s and A(” gy &l de-
T14 7'?3 7141723 T12—T34 .
pending on the acceptance terms «; only. In Fig. they are shown as a function

of rpj, @* and p%. The mean values for most of the modulations are compatible
with zero. As each asymmetry is extracted out of a combination of % of the statis-
tics available the study is highly effected by statistical fluctuations. Therefore, in
addition, the false asymmetries are evaluated from data in the extended range of
the missing energy to increase the statistical precision of the test. In Figs.
and the results are shown.

The systematic uncertainty is estimated by:

213 ‘Aérm +r23) ’

i=1 o
>
i o

Here we sum up the 13 kinematic bins i. Before this, the quantities are checked for
every kinematic dependency separately, indicating a reasonable agreement. Accord-
ing to Ref. [154] the expected statistical fluctuations can be minimised by subtracting
in quadrature the statistically expected value 0.68 from the deviation before % is

evaluated. If ‘Ai'

1
2
9i

(7.15)

)Al(rmim?,)

(ratrsg) | 15 smaller then 0.68, 0™ is set to zero. The Eq.|7.15/is also

evaluated for Azn

r12—734)"
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The results for A ,_r,,) and for A, ,4,,) give an estimate of the bias of the real
asymmetry e. The quantity A ,_r,;) has the same dependency on the acceptance
terms «; as Ay ,—p,,) Which is half the difference of the real asymmetries measured
with the two upstream and the two downstream cells. Hence, it is a direct measure
of acceptance variations along the target.

The systematic uncertainties are evaluated from the 13 values according to Eq. [7.15|
A summary of the extracted systematic uncertainties in the signal range correctly
expressed in terms of the final statistical error of the background corrected asym-
metries is depicted in Tab. 7.5 Whereas the extracted systematic uncertainties in
the extended range correctly expressed in terms of the final statistical error of the
background corrected asymmetries is depicted in Tab. [7.6]

Table 7.5: Systematic uncertainties from false (column 2 and 3) and true (column
4) asymmetries expressed in terms of the final statistical error of the background
corrected asymmetries separately for every modulation. The asymmetry values are
extracted for data with —2.5 GeV < FEiss < 2.5 GeV.

Asymmetry oSS [ gstat
(r14-T23) ‘ (r14-+r23) ‘ (r12-134)

ASn($=9s) 0.40 0.00 0.40
ASn(F0s) 0.00 0.40 0.00
ASn(20=05) 0.00 0.35 0.00
ASn(30=0s) 0.17 0.00 0.17
ASin(9s) 0.76 0,00 0.74
AeS(@=0s) 0.52 0.16 0.51
A (E0=0s) 0.14 0.54 0.10
A9s) 0.50 0.37 0.48

7.5.4 Stability of Background Subtraction Method

7.5.4.1 Dependence on SIDIS Background Parametrisation

The parametrisation of the background is done with a weighted LEPTO sample,
as explained in Sec. [5.1.4] To test the sensitivity of the asymmetry values on the
LEPTO generator, a second MC sample is created with the PYTHIA generator. The
comparison of the extracted asymmetries, using the background shapes obtained
from weighted PYTHIA or from weighted LEPTO as a function of zp;, @2, and p%,
is shown in Fig. In most of the points the extracted asymmetries are identical
and independent of the event generator used. For some modulations there are small
differences observed, mostly in the highest p2. bin where the experimental acceptance
is limited. On the level of mean asymmetries, no significant deviation between the
two results can be observed.
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Figure 7.25: A2 raw (black full circle), A,s4 raw (red open circle). Mean val-
ues (A; raw) are given. The values are extracted for data with —10.0 GeV <
Fiss < 20.0GeV.
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Figure 7.26: Results of A,14raw (black full circle), Ayasraw (red open cir-

cle).

Mean values (A, aw) and probabilities p of x? test with respect to

Arigraw = 0 or Ayo3,aw = 0 are given. The values are extracted for data with
—10.0 GeV < E s < 20.0GeV.
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Table 7.6: Systematic uncertainties evaluated from false (column 2 and 3) and true
(column 4) asymmetries expressed in terms of the final statistical error of the back-
ground corrected asymmetries separately for every modulation. The values are ex-
tracted for data with —10 GeV < E,s < 20 GeV.

Asymmetry oSS [ gstat
(r14-T23) ‘ (r14-+123) ‘ (r12-T34)

AR(O=0s) 0.17 0.00 0.17
AR@+0s) 0.11 0.16 0.12
AR(o=0s) 0.10 0.00 0.08
ASn(30=05) 0.00 0.11 0.00
ASn(os) 0.22 0.36 0.22
As(#=9s) 0.23 0.00 0.22
A (2905) 0.22 0.00 0.22
AZS(9s) 0.10 0.45 0.09

7.5.4.2 Dependence on SIDIS Background Subtraction Method

We correct for the SIDIS background by subtracting the scaled two-dimensional ¢,
¢s distribution for events in the range 7GeV < Fyiss < 20GeV ('int” method) as
discussed in Sec. [7.3] Using the second method the number of background events
are determined in each of the angular bins separately ('bin’ method). In Fig.
the asymmetries extracted with both background subtraction methods are shown.
Here a 2DLH with eight bins in ¢ and ¢g each is used. A point by point comparison
of the asymmetries indicates a reasonable agreement between the two methods. For
the integrated method a slightly higher statistical error is observed. The systematic
uncertainties related to the choice of the background subtraction method expressed
in terms of the final statistical error of the background corrected asymmetries is
evaluated as o /o5 = ().1 for every asymmetry m.

m

7.5.4.3 Compatibility of Mean Asymmetries in z, Q? and p%

In this section the average of the background corrected asymmetries are compared
for xp;, @* and p%. They are evaluated according to Eq. In Sec. we
already discussed that, before the background subtraction, the mean values and its
errors evaluated from the bins in x; differ from those evaluated from the bins in Q?
and p2, respectively. This observation is enforced after the background subtraction is
done. Half of the maximal differences expressed in terms of the final statistical error
of the background corrected asymmetries are taken into account in the systematic
uncertainties and are listed in Tab.
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Table 7.7: Half of the maximal differences of the mean values of the background

corrected asymmetries for zp;, @* and p%., separately for each modulation.

Asymmetry oY [gstat
AS(O=0s) 0.10
Ai}g«((b—i_%) 0.18
AnEo=0s) 0.19
ASR(B9=0s) 0.13
AS(Os) 0.06
AEOTS(%%) 0.48
AL (©s) 0.26
A;OTS(2¢7¢>5) 0.35

7.5.5 Further Effects

Coherent production is discussed in Sec. [5.3] The amount of the remaining co-
herently produced events is estimated up to 12% of the final sample. In Fig.
background uncorrected asymmetries are studied with the 2DLH fit for the small
p2 range: 0.01(GeV/c)? < p% < 0.05(GeV/c)®. No corrections are applied on the
asymmetries for this contribution which is justified by the observation that, in the
small p% range, the asymmetries are either compatible with zero or at least consis-
tent within statistical uncertainty with the asymmetry values for events from the
small-p% range of the standard p® sample.

Diffractive dissociation of the target nucleon into several particles is another type of
background. The contribution from low-mass diffractive dissociation of the nucleon
is found to be ~ 14 % of the incoherent exclusive p° signal. Supported by HERA
results on p° production where, for unpolarised protons the angular distributions of
proton-dissociative events are found consistent with those of exclusive events [155)
156, [72], this contribution to the background is not removed.

The measurements are performed with a NH; and a °LiD solid state target. Along
with the scattering centers, which are protons in NHs and deuterons in °LiD, addi-
tional nuclei are present. A summary of the target compositions for 2007 and 2010
are given in Tab.[3.1l For the NHj; target the highest admixture comes from the "N
nuclei. The correction to the proton asymmetry A?}IIT((b_(bS ), due to the polarisation
of N nuclei in the ammonia target is estimated according to Refs. [157, 158]. Tt is

proportional to the measured asymmetry for the deuteron and approximately given
by:

in(é— 1 1. 1 o in(é—

in(¢p—¢ d in(¢—¢
AATE=63) _ S (=3)- _'O__'ASUT(,d s (7.16)
The factors account for the fraction of polarisable nitrogen nuclei in ammonia, the
alignment of proton spin vs. N spin, the ratio of *N to 'H polarisations and the

ratio of cross sections, o4 and o, for exclusive p® production by scattering muons
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Figure 7.27: Asymmetries extracted with 2DLH in the range 0.01 (GeV/c)?
< p2 < 0.05(GeV/c)2.
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off unpolarised deuteron and proton targets, respectively. The estimated corrections
are very small, typically about 0.1 %, and are neglected.

Radiative corrections are neglected in the present analysis, in particular in the cal-
culation of f. They are expected to be small, mainly because of the exclusivity cuts
introduced in Sec. |4.3.4.2| that largely suppress the external photon radiation [159].

7.5.6 Summary of Systematics

A summary for the systematic uncertainties for all modulations is given in Tab.[7.8]
For the systematic uncertainties from false asymmetries evaluated over A, _,.)
and Ay ,4r.), the larger contribution is considered. To account for the systematic
uncertainties caused by the background subtraction method and the correction with
the appropriate Dyy factors, we take the values summarized in Tab. into ac-
count. For the systematic uncertainties related to the chosen estimator the bias and
the RMS of the pull distribution between UB and 2DLH summarized in Tab. 7.4/ are
used. Additionally, we take the uncertainty of the target dilution factor (2%), the
target polarisation (3%) and the beam polarisation (5%) into account. Combined in
quadrature, this gives a global systematic normalisation uncertainty of ™" = 3.6%
for the single-spin asymmetries A} and ™™ = 6.2% for the double-spin asymme-
tries Af%.. The systematic uncertainty of the asymmetry A" in bin i is calculated
as the quadratic sum of all components:

O_§ys,total _ \/(O_Syg . O.ftat)Z + (O-norm . |A;n|)2 (717)

2

Table 7.8: Summary of the systematic uncertainties for the results. The values in
parentheses are evaluated for data with —10 GeV < E;s < 20 GeV.

Asymmetry estimator false asymme- | compatibility || sum
tries of mean values
AS(O=0s) 0.14 0.40 (0.17 0.10 0.44 (0.24

AS(OF0s) 0.16 0.40 (0.16 0.18 0.47 (0.29
AS0=05) 0.26 0.35 (0.10 0.19 0.48 (0.34
ASRB9=0s) 0.26 0.17 (0.11 0.13 0.34 (0.31

(0.17) (0.24)
(0.16) (0.29)
(0.10) (0.34)
(0.11) (0.31)
ASn(9s) 0.11 0.76 (0.36) 0.06 0.77 (0.38)
(0.23) (0.54)
(0.22) (0.41)
(0.45) (0.58)

AS@=0s) 0.11 0.52 (0.23 0.48 0.72 (0.54
AL (20=0s) 0.22 0.54 (0.22 0.26 0.64 (0.41
A @) 0.10 0.50 (0.45 0.35 0.62 (0.58
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7.6 Comparison of Asm(¢ ?s) Extracted with 1D
and 2D Methods

During the PhD phase two papers have been published containing the asymmetry
A?}I}((b*d)s ) for exclusive p” production in high energy muon scattering off transversely
polarised protons for the combined 2007 and 2010 COMPASS data [146] 160]. In
Fig. the two results of A% (0=%s) are compared with each other. The differences
in the extracted values can be explained by changes in the analysis technique. In
detail, the estimator used for the extraction and the background subtraction method
are changed. In Ref. [146] the analysis is performed with a one-dimensional max-
imum likelihood fit with 12 bins in ¢ — ¢g. In Ref. [146] [160], the asymmetry is
extracted with a two-dimensional maximum likelihood fit with 12 bins in ¢ and ¢g
each. Additionally, now all eight modulations are extracted at once.

2 [ ®new ®<A>=-0.008+0.010 | ® new ® <A>=-0.009+0.010 | ® new ®<A>=-0.00710.011
| 0.1 E o single 0<A>=-0.002£0.010 F o single 0<A>=-0.002£0.010 F o single o< A>=0.000£0.010
= r 3 F
= 5 0.05F # - # a
TR Y AL |
-0.05F - -
-0.1F - n
0 0.05 0.1 2 4 0 0.2 0.4 )
. 2 2 2
Xgj Q° [(GeV/c)’] Pz [(GeV/ey]

sin ¢ és)

Figure 7.28: Comparison of Ay extracted with one-dimensional (red open

circle) and two-dimensional (black full circle) methods. Mean values (A) and their

statistical errors are given.

In Fig. the raw results obtained from three different scenarios are shown: i.) A
two-dimensional maximum likelihood fit with 12 bins in ¢ and ¢g, where all eight
modulations are extracted at once. This is the default method for the new analysis
(black full circle); ii.) A single two-dimensional likelihood fit with 12 bins in ¢
and ¢g, for every asymmetry (red open circle); iii.) A one-dimensional maximum
likelihood fit with 12 bins in © (blue diamonds). This is the standard method used
in Ref. [146].

The single extraction of the Asm(d’ ?s) asymmetry with a two-dimensional likelihood

fit indicates systematically hlgher values compared to the ones obtained for the com-
plete extraction. This observation is not confirmed for the other seven asymmetries.
The asymmetry values obtained with the different background subtraction methods
are compared in Fig. for all modulations and agree well with each other. In
particular, the differences between both analyses come from the change of the es-

timator, and the studies related to the dependence on the used estimator can be
found in Sec.
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Figure 7.29: Results for background uncorrected raw asymmetries are shown.

Explanation of the different results are given in the text.
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However, as described in Sec. [7.3] the semi-inclusive background is corrected on
the level of the ¢, ¢g distributions. Consequently, this results in different statis-
tical fluctuations after the semi-inclusive background correction and therefore also
in different asymmetry terms, even though the data is fully correlated before the
background subtraction. An additional uncertainty is introduced due to the semi-
inclusive background correction. Thus, comparing both results, for some bins the
differences may be larger than the systematic uncertainty of the applied estimator.



8. Asymmetries for the ‘LiD
Target

This section is dedicated to the extraction of the leading-twist asymmetry Aﬁr}((p—% )

from the measurement with a °LiD target.

. . in(¢—ds)
8.1 The Leading-twist Asymmetry A%I}T s

Due to the limited statistics of the deuteron data and the choice of a binned fit

method, only an extraction of the leading-twist asymmetry A%I%(d)_‘z’s ) is performed.

8.1.1 Asymmetry before Background Correction

8.1.1.1 Comparison of Extraction Methods

The physical asymmetry before the background correction is presented in Fig. [8.1]
The asymmetry values are obtained using three different extraction methods: the
one-dimensional double ratio, the one-dimensional likelihood fit and the unbinned fit.
The different methods are introduced in Sec.[6.2l A point-by-point comparison of the
different values results in a reasonable agreement inside the statistical uncertainty
of the measurements. The results from the one-dimensional methods 1DDR and
1DLH are presented with red open circles and black full circles, respectively. The
result of the unbinned method is shown with blue full diamonds.

The standard method used in this analysis is the one-dimensional likelihood method
(IDLH). If the asymmetry values are extracted with the one-dimensional binned
methods, the mean asymmetry values evaluated in bins of xz; and Q? results in a
0.1-0%% smaller value in terms of the background uncorrected statistical uncertainty,
compared to the results obtained with an unbinned fit. If the asymmetry values are
extracted with the 1DLH in bins of p2 the mean asymmetry value differ with 0.1-g%%
from the results evaluated with the two other methods. The difference of the results
obtained with the one-dimensional likelihood fit and the unbinned fit is taken into
account in the systematic uncertainty. This will be discussed in Sec. [8.2.1]
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Figure 8.1: Comparison of background uncorrected asymmetry extracted with dif-
ferent methods. The applied methods are listed in Tab. and are explained in the
text.

8.1.1.2 Period-wise vs. Global Analysis

The data taking is organised in periods. In total, two periods in 2003 and four pe-
riods in 2004 are available as shown in Tab. Therefore, combining two periods
for one asymmetry calculation three independent asymmetries can be extracted for
the measurement with a deuterated °LiD target. The extractions are done with the
UB, which allows for lower statistics compared to the extractions with binned meth-
ods. The physical asymmetry values for every sub-period are presented in Fig. [D.8§|
whereas the pure fit results, the raw asymmetry values, are shown in Fig. [8.2] They
are compatible with each other inside the statistical uncertainty of the measure-
ment. As the stability of the spectrometer do not depend on the exclusive cuts, the
compatibility of the three different asymmetry values for A?}I}(d’_%) is checked for
an enlarged event sample with —10 GeV < E;s < 20 GeV. This range contains 3.3
times more events, thereby increases the statistical precision of the performed test
almost by a factor of two. The result is presented in Fig. [8.3]

The differences between the asymmetry values of each period A;, and the mean
asymmetry (A) of the entire data taking are expressed in a pull distribution, where
each pull value is evaluated according to Eq. It contains 36 asymmetry values
A; from 12 kinematic bins (four for every kinematic variable) and three periods. The
results are shown in Fig. 8.4} for the exclusive range (left-hand side) and the enlarged
missing energy range (right-hand side). Inside the statistical fluctuations the RMS
value of both distributions is compatible with 1 and the mean is zero. Therefore, it
is not considered in the evaluation of the systematic uncertainty in Sec. [8.2.1]

8.1.1.3 Influence of Additional Asymmetries

The transverse part of the cross section in Eq. can be expressed as a sum of
eight independent transverse spin dependent modulations of ¢ and/or ¢g defined in
Eq.[2.46] From a theoretical point of view, all summands in Eq.[6.3are orthogonal to
each other. However, the non-uniform acceptance of the COMPASS detector might
lead to a change of the result. Therefore, the unbinned fit has been performed
adding the additional seven asymmetries. The result is shown in Fig. [8.5| The
pull distribution between the asymmetry values from both kind of extractions are
presented in Fig. . Here only the pure fit results, i.e. the raw asymmetries are



8.1. The Leading-twist Asymmetry Asm (p—¢s)

145
2 FePIO/PIG ®<A>= ooos+ooos [ePIH/PIG_ *<A>=0.00670.008 E®PIH/PIG_ ®<A>=0.00770.008
T s 0.1FoW33/W34 0o<AS=0005%0,009 FoW33/W34 o<AS>=0.005%0.009 .owwwm 0<A>=0.003+0.009
&8 F e W30/W35 ¢ <A>=-0.000£0.007F ¢ W36/W35 ¢<A>=0.001£0.007 [ ¢ W36/W35 &<A>=0.001£0.007
== 0.05F : t;‘ =
B2 r - 3 +
< I " % ST 4 F by w8
0 5 . !
E i k:j n N (ﬁ *' - o |+ ?+
-0.05F - -
-0.1F - n
0 0.05 0.1 2 4 0 0.2 0.4 .
. 2 2
Xgj Q’ [(GeV/c)] p2 [(GeViey]

Figure 8.2: Comparison of raw asymmetries extracted in every period in 2003 and
2004. The asymmetry values are extracted for data with —2.5 GeV < Ei,iss <

2.5 GeV.
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Figure 8.3: Comparison of raw asymmetries extracted in every period in 2003 and

2004. The asymmetry values are extracted for data with —10 GeV < Fe <
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Figure 8.4: Pull distributions demonstrating the compatibility of the results from
different periods. The asymmetry values are extracted for data with —2.5GeV <
Eiss < 2.5GeV (left-hand side) and —10GeV < Eiss < 20GeV (right-hand

side).
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Figure 8.5: Pure fit result for A?}I}(‘b—‘ﬁs ) fitted alone (black full circle) and together

with the other seven asymmetries (red open circle).

studied. The pull distribution has a RMS of 0.24 + 0.05 and the mean is shifted
by 1.8 - 0. The interplay between the asymmetries is taken into account if two-
dimensional or unbinned methods are used.

A fit of all eight modulations at once using a 2DLH, as it was done for the proton
asymmetries in Sec. [7} is possible if the number of ¢ and ¢g bins is reduced to eight
and no binning in the kinematic variables is performed. Than no empty bins are
observed and the fit is stable. The result of this study is presented in Fig. 8.7l All

eight asymmetries are small.

8.1.2 Background Asymmetry

Before the background correction of the exclusive asymmetry has been performed,
the asymmetry extracted for the non-exclusive sub-sample of the measured data
was studied. Additionally the FE,.; dependence of the asymmetry for the exclusive
data sample as well as the non-exclusive data sample was studied. All asymmetries
are small in the entire studied ranges. The ¢ — ¢g distributions are corrected for
the remaining semi-inclusive background events in the final sample. The procedure
is introduced in Sec. [5.2.1l Both approaches are implemented. The background
corrected asymmetry ATn® %) evaluated with the "bin” method (black full circle)
and the "int” method (red open circle), is shown in Fig.[8.8l In most of the data points
the asymmetries are identical. For the "int” method a marginal higher statistical
uncertainty is observed. The same observation has also been made for the proton
asymmetries in Sec. The final results are evaluated using the "bin” method.

8.2 Systematic Studies

In this section the evaluation of systematic uncertainty for the asymmetries measured
with a deuterated LiD target is presented. Unless otherwise noted identical checks

are applied as for the NHj, hence, the explanation of the studies can be found in
Sec. [7.5]and are not repeated here.
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Figure 8.6: Pull between results ob- Figure 8.7: Asymmetry and the statistical

tained by fitting only Aﬁr}(‘z’_%) and  error for every modulation.

all eight asymmetries, as explained

therein.

8.2.1 Comparison of Different Estimators

First the systematic uncertainty of the used estimator is investigated. This is done
by comparing the results of UB and 1DLH, which are presented in Fig. [8.1. The
estimation is performed on the level of asymmetries extracted from background non-
corrected data. The RMS value and half of the shifted mean of the pull distribution
in Fig. correctly expressed in terms of the statistical errors of the background
corrected asymmetry are taken into account in the systematic uncertainty.

8.2.2 Stability of Data Taking

The stability of the asymmetries depending on the periods of data taking during
the run is checked by studying false asymmetries. Again this is done using raw
asymmetries before background correction. The extraction of asymmetries is done
using an unbinned fit.

For the two-cell target false asymmetries are build by dividing the U and the D cell in
Fig.|6.1]in two equally large parts. The sub-cells of U (D) are named N; and Ny (N,
and N3), in the direction of the muon beam. The systematic uncertainty is evaluated
according to Sec. [7.5.3.1l The event number ratios are build in the same way as
presented in Eq.[7.12] Out of these ratios the two false and two true asymmetries
of Eq. 7.14) are constructed. The true asymmetry A2 (A,34) is build using the
upper half (lower half) of U and D cell in the direction of the muon beam. They
are presented in Fig. whereas the false asymmetries A,14 and A,s3 are shown
in Fig. [D.10, The false asymmetries are highly fluctuating around zero. This is
reflected in poor probabilities of the x? test with respect to zero for the combination
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Figure 8.8: Background corrected asymmetry. The applied methods are listed in

Tab. and are explained Sec.
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Figure 8.9: Pull distribution demonstrating the compatibility of the results extracted
with the methods UB and 2DLH.

A(r1a—ro3) and A12_r34) shown in Fig. [D.11] The systematic uncertainty evaluated
from the results of A(14—r23) (Api2—r3q)) Is quantified to 0.67 - o** (0.68 - o)
in terms of the final statistical error of the background corrected asymmetry. The

!

it is smaller then 0.68 and % is set to zero.
14+723)

quantity ’A’(

To reduce the influence of statistical fluctuations this study is performed addition-
ally in the extended Ep range. The true asymmetries as a function of zp;, Q?
and p2 are shown in Fig. . The false asymmetries are presented in Fig. .
The results for Ag14-r23), Ariatres) and Apia_p3q) are shown in Fig. [D.12] The
results for A144,23) are well compatible with zero. The evaluated systematic uncer-
tainty is 0.09 - 0% in terms of the final statistical error of the background corrected
asymmetry. The systematic uncertainty evaluated from A141,93) and Apio_p34) is
quantified to 0.56 - 5% in terms of the final statistical error of the background
corrected asymmetry.



8.2. Systematic Studies 149

& I 0<A2=000310.006 I & x=r, S<A >=0.00620.006 [ *x=r7, s<A >= 000630006
< 0.05 0 x=r3, o< A >=0.002+£0.007 - 0 X=r3, 0<A S=000240.007 o x= 2 o SR 2200050007
T N A A
0.05f i ]
0 0.05 0.1 2 4 o ) 07
*Bj 0 [(GeV/cY] p2 [(GeVicy]

Figure 8.10: Ayi2,aw (black full circle), A,s4raw (red open circle). Mean values
(Ayraw) are given. The values are extracted for data with —10.0 GeV < Epies <
20.0 GeV.
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Figure 8.11: A,q14raw (black full circle), A2z raw (red open circle). Mean values
(Ayraw) are given. The values are extracted for data with —10. GeV < Eiss <
20. GeV.

8.2.3 Stability of Background Subtraction Method

The parametrisation of the shape of the F, ;s distribution for semi-inclusive back-
ground events is done with a weighted LEPTO Monte-Carlo sample, as explained
in Sec. To test the sensitivity of the asymmetry values on the background
parametrisation the values are extracted using the number of background events re-
ceived from the parametrisation of the non-weighted LEPTO Monte-Carlo. For all
bins the amount of semi-inclusive events evaluated with the non-weighted Monte-
Carlo is higher compared to the evaluation using a weighted Monte-Carlo. An
increase of up to 7% of semi-inclusive events is observed.

The comparison of the extracted asymmetries using the background shapes obtained
from weighted LEPTO and non-weighted LEPTO as a function of zp; , Q* and p%
is shown in Fig.[8.12] The higher statistical uncertainty for the latter can be traced
back to the higher amount of semi-inclusive events. In most of the data points the
asymmetry values are the same. The difference between the mean value of xp; and
(? is not taken into account since it is also present before the background correction
(see Fig.[8.1). On the level of mean asymmetries a deviation of 0.04 - 0" between
the two results can be observed. The same is true if the mean asymmetry evalu-
ated with the two background subtraction methods as a function of p2 is compared

(Fig. [8.8).



150

8. Asymmetries for the °LiD Target

2 0.2 & weight ® <A>=0.014%0.027 | ® weight *<A>=0.01620.027 | ® weight * <A >=0.01620.027
| “Fono weight 0<A>=0.015£0.029 Fonoweight o<A>=0.017£0.029 [ onoweight o<A>=0.017+0.029
R L
et S 0.1 & - % [
@ E s
< ok +|5 H\ I d .U\ # || ||
5 T I IR m
-0.1F - -
-0.2F = F
0 0.05 0.1 2 4 0 0.2 0.4 )
. 2 2
Xp; 0? [(GeV/c)] p2 [(GeV/ey]

Figure 8.12: Background corrected asymmetry. The background parametrisation is
done using the weighted (black full circle) and the non-weighted (red open circle)
LEPTO Monte-Carlo sample.

8.2.4 Summary of Systematics

The summary of the systematic uncertainties is given in Tab. 8.1 Three contribu-
tions are taken into account: (1) estimator, (2) false asymmetries, and (3) back-
ground subtraction method. For the systematic uncertainties related to the chosen
estimator, (1), the RMS value and half of the shifted mean of the pull distribu-
tion between UB and 2DLH are used. For the systematic uncertainties from false
asymmetries, (2), evaluated over A, ., and A, 4r,), the larger contribution is
considered!| Additionally we take into account the uncertainty of the target dilution
factor (2%) and the target polarisation (5%). Combined in quadrature this gives a
global systematic multiplicative uncertainty of 5.4%. The total systematic uncer-

tainty of the asymmetry Af}r%(d’_%) is evaluated in every bin according to Eq. .

Table 8.1: Summary of the systematic uncertainties for the results. The value in
parentheses is evaluated for data with —10 GeV < E,;ss < 20 GeV.

Asymmetry (1) (2) (3) sum
AG% 00 | 0.68 (0.56) | 0.04 | 0.69 (0.57) |

!The procedure to evaluate the systematic uncertainty was updated in Sec. compared to
the one used in Ref. [146]. Here the updated procedure is used.



9. Asymmetry Results

9.1 Transverse Target Spin Asymmetries

In this thesis transverse target spin azimuthal asymmetries in hard exclusive pro-
duction of p° mesons are analysed. The measurement was performed at COMPASS
by scattering 160 GeV /c muons off transversely polarised protons and deuterons.

In total, for the measurement with a transversely polarised NHj3 target, eight asym-
metries are extracted. The results for the five single-spin asymmetries and the three
double-spin asymmetries as a function of zp;, Q* and p3 are shown in Fig. and
Fig.[9.2] respectively. Error bars show statistical uncertainties o***. The systematic
uncertainties o*¥® are represented by the grey shaded bands. Additionally the mean
asymmetry for every modulation is shown in Fig. 9.3 The values are obtained as
the arithmetic mean of the mean values evaluated in bins of zp;, @* and p3. and
the highest statistical uncertainty is take The numerical values are given in in
the Appendix . Note that for A%‘}wﬂﬁs ) as well as for A%l}(w*d)s ) and A0S the
experimental precision is in the order of £0.01. The asymmetries are small in the
entire kinematic range, within experimental uncertainties.

For the measurement with the °LiD target the leading-twist single spin asymmetry
A%‘}(m%) is extracted. The results are presented in Fig.|9.4. The asymmetry is
small in the entire kinematic range. Results for the proton and the deuteron target
are obtained for the first time and are unique up to now.

The results of this thesis have been published. The asymmetry A%I}(qb_d)s ) for protons
and deuterons can be found in Ref. [146], whereas the five single-spin asymmetries
and the three double-spin asymmetries are shown in Ref. [160]. The results have
been presented at the QNP2012 conference [162], the DIS2013 conference [163] and
the PacSpin Symposium.

I Additionally the mean asymmetries were calculated from the complete sample. The results

of both extraction methods were found to be compatible within 0.38 - 653t for the asymmetry

Aff;(,gﬂbs ) and below 0.15 - o°% for the other asymmetries.
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Figure 9.1: Single-spin azimuthal asymmetries for a transversely (T) polarised N Hj
target and unpolarised (U) beam. The error bars (bands) represent the statistical
(systematic) uncertainties. The curves show the predictions of the GPD model [161].
They are calculated for the average W, Q% and p2 of our data set, W = 8.1 GeV/c?
and p% = 0.2(GeV/c)? on the left and middle panels, and at W = 8.1 GeV/c? and
Q? = 2.2(GeV/c)? on the right. The asymmetry ATn**"¢) is assumed to be zero

in this model.
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Figure 9.2: Double-spin azimuthal asymmetries for a transversely (T) polarised NH3
target and a longitudinally (L) polarised beam. The error bars (bands) represent
the statistical (systematic) uncertainties. The curves show the predictions of the
GPD model [161]. They are calculated for the average W, Q? and p2 of our data
set, W = 8.1GeV/c? and p2 = 0.2(GeV/c)? for the left and middle panels, and at
W =81GeV/c* and Q* = 2.2 (GeV/c)? for the right panel.
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Figure 9.3: Mean value < A > and the statistical error for every modulation. The
asymmetries measured with the NH; target and the °LiD target are marked with p
and d, respectively. The systematic uncertainty is represented by the band on the
left side.

9.2 Comparison with Model Calculations

The calculations are based on the model from Goloskokov and Kroll (GK model).
The results for the single spin asymmetries in hard exclusive muoproduction of p°
mesons on transversely polarised protons are given in Fig. 9.1l In Fig the cor-
responding results for the double spin asymmetries are shown. They are presented
as blue curves along with the data points. The model calculations include valence
quark and sea quark contributions and are done for COMPASS kinematics assum-
ing W = 8.1GeV/c?, p% = 0.2(GeV/c)? and Q? = 2.2(GeV/c)?. The theoretical
calculations and the experimental results are well compatible with each other.

Especially the results involving the transversity GPDs have to be understood as
estimates [54]. Hence no uncertainty bands are given in Figs. and [9.2| Presently
the only available estimates for the transversity GPDs are coming from lattice cal-
culations and the available precision merely allows a rough determination of the
transversity GPDs.

The results of the calculations based on the GK model for the single spin asymmetry
A%I}(‘b_d)s ) in hard exclusive muoproduction of p° mesons on transversely polarised
deuterons is shown in Fig. This calculation is based on Ref. [113] and do not

include the transversity GPDs, but it is observed by the authors that the inclusion of
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transversity GPDs have a negligible effect on the asymmetry A%I%(d)*‘ﬁs ) [161]. Again
model calculations and experimental results are well compatible with each other.

Every asymmetry from Eq. can be connected to a combination of helicity am-
plitudes M, defined in Eq. 2.43}

Ai}r’i‘((b_(i’s)o'o = —2Im GME’;_’OJ’_MO_*_’O_A'_ —+ Mi_’++M++7++
1
+ §M37,++M0+,++]7
in(p+ M
Ag" oy = ~Im 0+,++M0—,++],

sin(2¢— A

Aii;}(?“is*d’s)o.o — 0 ,

A%I'}¢50‘0 fy —Im MS_7++MO+,O+ - MS+,++MO_’0+:| )
o c

ALS@98)50 = Re 8,7++M0+,++] ,

Ai(r);(2¢_¢3)0-0 = —Re M8+7++M0—0+i| )

AEOTWSUO = —Re _MS—,++MO+,0+ - M3+,++M0—70+} ) (9~1)

According to Tab.|2.4]each of these helicity amplitude can be expressed in terms of a

convolution of hard scattering kernels with GPDs, which is labeled by H, & (Hr, E):

AiOTS(d’_‘z)S) o Re (H%E),
AS%?5 o Re (HiaH — E¥E), (9.2)

where £ is defined in Eq. . Now we proceed with a discussion of the results. The
asymmetry Ai}r%(d)_‘#s ) can be connected to a combintion of six helicity amplitudes,
where the terms eMg_ o, Moy o and M%_ . M, represent a combination of
H and £. The inclusion of the transversity GPDs by the third term has a negli-
gible impact on the behaviour of Af}r}(d)_‘ﬁs . This is confirmed by comparing the

calculations of Refs. [113] and [161].

For the measurement with a transversely polarised NHj3 target as well as for the
measurement with a transversely polarised °LiD target small values of the asymme-
try AEI%(QS_% ) are observed in the entire kinematic range. This observation might be
explained by an approximate cancellation of two sizable and comparable contribu-
tions of opposite signs for the GPDs E* and E? where u and d indicate the active
valence quarks.
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Figure 9.4: Single-spin azimuthal asymmetry A?}r}w—(ﬁs

) for a transversely (T) po-
larised °LiD target and unpolarised (U) beam as a function of 2.5, @* and p5. Error
bars show statistical uncertainties, while the systematic ones are represented by grey
bands at the bottom. The curves show the predictions of the GPD model [113, [164]
using the set of parameters called ‘variant 1’. They are calculated at W = 8.1 GeV /c?
and p% = 0.2 (GeV/c)? for the left and middle panels, and at W = 8.1 GeV /c? and Q?
= 2.2 (GeV/c)? for the right panels. The theoretical error bands reflect uncertainties

of GPD parametrisations.

agreement with the model calculations. As shown in Eq. the asymmetries Ai}r}d)s

and AiOTsd)S are connected to imaginary and real parts of the same combination:
HiH — EE. In the GK model it is observed that both asymmetries have the same
sign and are similar in size [54]. However, presently the experimental precision

A small non-vanishing value is measured for the asymmetﬁA?}r}d’s . This result is in

of the measurement of A% is not sufficient to draw any conclusions. But a
vanishing value is measured for A?}I}(%*%). This asymmetry is represented by the

same combination £4.€ as the second term in An?S. The small negative value of
A%I#S is caused by the first term H}H and a substantial contribution might come
from Hy. Therefore, the results may imply the first experimental evidence for the
existence of the transverse GPDs Hy in hard exclusive p° leptoproduction.
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This thesis is dedicated to the analysis of the transverse target spin azimuthal asym-
metries in hard exclusive production of p° mesons. The measurement was performed
at the COMPASS experiment at CERN by scattering 160 GeV/c muons off trans-
versely polarised protons and deuterons. For these measurements in the years 2002-
2004 data was collected with a °LiD target, in the years 2007 and 2010 a NH; target
was used. In this thesis, results for five single-spin and three double-spin azimuthal
asymmetries are obtained for protons. Furthermore, the asymmetry Ai}r}((ﬁ_%) is
determined for deuterons.

This thesis is the first complete analysis of exclusive p” mesons of all available data
taken with a transversely polarised target at COMPASS. In total, after all selec-
tion cuts, 797134 p° candidates are detected with the NHj target and 96646 p°
candidates are measured with the °LiD target. Of special importance is the under-
standing of the non-exclusive background, which was studied extensively. The main
focus is on the analysis of the dominant semi-inclusive fraction of the background.
For this purpose, semi-inclusive Monte-Carlo samples and like-sign data samples
are studied. It is found that neither the like-sign data nor the Monte-Carlo events
can be used to parametrise the semi-inclusive background directly. To overcome
this shortfall the Monte-Carlo sample is weighted, whereby the weights are calcu-
lated by comparing the like-sign events from Monte-Carlo and measured data. The
number of semi-inclusive events is estimated via a parametrisation of the shape of
the missing energy distribution of the weighted Monte-Carlo sample. For the final
asymmetries, the subtraction of the semi-inclusive background is done on the level
of the azimuthal distributions and the asymmetries are extracted starting from these
corrected distributions.

The analysis of asymmetries is performed by combining the data taken in the years
2007&2010 and 2003&2004, respectively. The advantage is that the asymmetry ex-
traction is less sensitive to statistical fluctuations, despite the limited statistics of the
measurement. The combined analysis is possible because all important kinematic
variables measured in the different periods and years show reasonable agreement be-
tween each other. Furthermore, the asymmetries extracted for the different periods
and years of data taking are compared with each other and it is checked that no
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systematic uncertainties are obtained due to the combined analysis of two different
years. Moreover, the false asymmetries are well under control.

Different extraction methods are applied to the data, in particular a one-dimensional
double ratio, a one-dimensional likelihood fit, a two-dimensional likelihood fit and
an unbinnend likelihood fit. The fit results from these methods are compared and
found to be compatible within statistical uncertainties. The applied background
estimation method requires a binned extraction method, and it is only the two-
dimensional binned method which allows the simultaneous extraction of the eight
asymmetries. Hence, this method is chosen to be the default one. The other three
methods are used for internal cross checks and to pursue the systematic studies.
Three different background correction methods are implemented. The comparison
of the results shows a reasonable agreement within the statistical uncertainty of the
measurement.

The main asymmetry results are extracted as a function of xp;, @* and p% in the
range:

1.0(GeV/e)? < Q? < 10.0 (GeV/c)?,
0.003 < zp; < 0.035
0.05(GeV/c)? < p2 < 0.5 (GeV/c)? (protons),
0.1(GeV/c)? < p% < 0.5(GeV/c)? (deuterons).

Using a NHj3 target the asymmetry A?%qﬁ_qbs ) as well as A%I}(%_(és ) and A%I%“bs, are

measured within the statistical precision of +0.01. For all other asymmetries the
statistical uncertainties are bigger. Most of the asymmetries are found to be small
and compatible with zero in the entire kinematic range. The sin ¢g asymmetry is
found to be:

ATROS — —0.019 4 0.008(stat.) £ 0.003(syst.).

The extracted asymmetries can be used to constrain GPDs. The results are com-
pared to recent model calculations which are done for COMPASS kinematics. The
model calculations agree well with the present results for both proton and deuteron
data. The results determined on the proton data are interpreted as evidence for
the importance of transverse generalized parton distributions. The small value of
the asymmetry Ai}l}(d)*%) for both protons and deuterons can be interpreted by an
approximate cancellation of the contributions from the GPDs E* and E“.

Next steps in the analysis of exclusive p production might be a full acceptance
correction and the separation of longitudinally and transversely polarised photons.
Varying the photon or meson in the final state will give access to different spin-
flavor combinations of GPDs, even with unpolarised beams and targets. At the
moment the analysis is limited by the available statistics. The present fixed target
experiments do not allow for a sufficient increase of statistics. This might be gained
via polarised Collider experiments in the future.
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At JLAB [165], RHIC [166] and CERN [83] future programs exist, where HEMP as
well as DVCS measurements are planned to be executed. The COMPASS-II program
which has already started, is dedicated to the measurement of DVCS. Proposals
and ideas also exist for studies using a polarised ep Collider (EIC) [167, [168] in
connection with RHIC [169] or JLAB [170], and a high luminosity polarised proton-
antiproton Collider at GSI [171]. Additionally, the design and physics program of
a future Large Hadron electron Collider (LHeC) is discussed recently [172} 173].
The different experimental programs cover various kinematic ranges. Therefore,
future experiments may provide high luminosity measurements over a wide range of
kinematics in Q?, zp; and ¢. The enhanced luminosity will allow for the extraction
of multi-dimensional maps of the distributions of partons in space and momentum.
The enlargement in the kinematic range will also enhance the sensitivity to the gluon
distributions. Hence, it will provide a significant contribution towards a complete
understanding of the spin structure of the nucleon.
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A. Light-Cone-Coordinates

If hadrons and partons move fast in z—direction it is natural to introduce light-cone
coordinates. A four-momentum-vector v* = (v%,v!, v v3) is given by:

vt =otpl 4o n 4o, (A.1)

where the two light-like four-momentum-vectors n, and n_ are:

n, — %(1,0,0, ) on= %(1,0,0, _1), (A.2)
and:
U+:U-n_:i(vo—|—v?’) U*:v-mrziz(vo—v:i)
V2 ’ V2 ’
v = (v} v?), vy = (0,v,0). (A.3)
The invariant product of two four-momentum-vectors is given by:

+

vw=vTw +vwt

— . (A.4)

The light-cone coordinates are defined such that a particle with large momentum in
+v3 direction has large n, and small n_.

Dirac matrices

The Dirac gamma matrices are defined as:

. ( (iau g“ ) 4= ( 61 (1) ) pe{1,2,3} (A.5)

(1) () ee(Ah)

Additionally it is:

with

v Z 12 /Il v 12
o =3 v, 7] = 5 (Y =) (A7)

The v matrices can be formulated in light-cone-coordinates, for instance:

vt = %('yo +7°), (A.8)



B. Structure functions

For completeness the relation of the structure functions with the photoabsorption
cross sections is illustrated (Appendix of Ref. [12]). After defining:

B 2(1—2) 72 1 doi
mn(xag X2 hJ_) 430y T 2x dzdP}?J_ ( )

the well-known structure functions can be obtained as combinations of the photoab-
sorption cross sections and interference terms defined in Eq. |2.43

Fyur = %(Fjj—kF;;) Fyu = Fght

Rt = sl +F) R = —Rert

Fipt = —(FH + Fry) Rt = —(PH = Fi)
F = —ImF Fuu = 5(Fi — F7)

Fiyt = —SRe(Fly — Fry)  Fop ™ = —ImFi;
FIin=99) = Iy Frinte+os) _ _% 4

R = SImEt R = -

RO = —sImFry FRC < B

Fios0s = —iReFjo— Frreos(2¢ — ¢s) = —LReFH

V2 V2

(B.2)
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C.1 Correlation Plots
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Figure C.1: Correlation between zp; and Q? for the 2003&2004 sample (left) and
2007842010 sample (right). All cuts indicated in Tab.[4.5|are applied.
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Figure C.2: Correlation between p.+ and p,- for the 2003&2004 sample (left) and
2007&2010 sample (right). All cuts indicated in Tab. are applied.
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Figure C.3: Correlation between Ep and z for the 2003&2004 sample (left) and
2007&2010 sample (right). All cuts indicated in Tab. are applied, except the cut

on Emiss .
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C.2 Background Fits
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Figure C.4: The E,; distribution from LEPTO Monte-Carlo parametrised with
Eq. for the 2007&2010 sample. The four bins in Q? and xp; and the five bins in
p2 for the central target cell are shown. The bins according to Eq. are indicated
by the first number in the histogram titles. The corresponding fits for the up plus
down target cells are presented in Fig. .
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Figure C.5: The FE, distribution from LEPTO Monte-Carlo parametrised with
Eq. for the 2003&2004 sample. The four bins in Q? and xp; and the five bins in
p2 for the down target cell are shown. The bins according to Eq. are indicated
by the first number in the histogram titles. The corresponding fits for the up target

cell are presented in Fig.
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Figure C.6: The E,; distribution for the 2003&2004 sample together with the signal
plus background fits (solid curve). The solid red lines and the dashed blue lines
represent the signal and background contributions, respectively. The parameters
po — p3 are explained in the text in Sec. [5.2.1l Here are shown the fits for the
—+ configuration for the up plus down (0) and the central (1) target cells. The
corresponding fits for the +— configuration are presented in Fig. -
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Figure C.7: The Fys distribution for the 200742010 sample together with the signal

plus background fits (solid curve).
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D. Asymmetries

D.1 Target Polarisation Values - °LiD target

Table D.1: Target polarisation values for 2003 and 2004.

period | first run | last run | U D

P1G 30773 31123 -0.4970 | 0.5278
P1H 31192 31247 0.4939 | -0.4260
P1H 31277 31524 0.5131 | -0.4463
04W33 | 38991 39168 0.5070 | -0.4352
04W34 | 39283 39289 -0.4480 | 0.4597
04W34 | 39326 39429 -0.3860 | 0.4035
04W34 | 39481 39545 -0.4614 | 0.4741
04W35 | 39548 39780 -0.4644 | 0.4744
04W36 | 39850 39987 0.4989 | -0.4276
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D.2 Asymmetries - NHj target
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Figure D.1: Comparison of raw asymmetries extracted with an unbinned max-
imum likelihood fit (red open cricle) and a two-dimensional binned maximum
likelihood fit (black open circle). Mean values < A > and their statistical

errors are given.
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Figure D.2: Comparison of raw asymmetries extracted with an unbinned
maximum likelihood fit (red open cricle) and a two-dimensional binned max-

imum likelihood fit (black open circle). The asymmetry values are extracted
for data with —10 GeV < E,; < 20GeV.
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Figure D.3: Mean values of asymmetries for each period in 2007 and 2010. Each

abscissa is labeled with four digits, where the first two digits indicate the year and

the second two digits indicate the corresponding period. The periods of 2010 are

depicted first, followed by 2007. The asymmetry values are extracted for data with

—10GeV < Ess < 20 GeV.
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Figure D.4: Results of A1z raw (black full circle) and Ajsqraw (red open
circle). Mean values (A, ay) are given. The values are extracted for data
with —2.5 GeV < E,;s < 2.5 GeV.
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Figure D.5: Results of Ay14raw (black full circle) and Ajasraw (red open
circle). Mean values (A, .} and probabilities p of x? test with respect to
Arigraw = 0 or Ayo3,aw are given. The values are extracted for data with
—2.5GeV < Eiss < 2.5GeV.
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Figure D.6: Results of A(r14—r23),raw (black full circle) and A(r144r23) raw

red open circle), A(;r12—r34).raw (blue diamond).
( )s

and probabilities p of x? test with respect to A, ray

are extracted for data with —2.5 GeV < E,;s < 2.5 GeV.

Mean values < A, jaw >

= 0 are given. The values
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Figure D.7: Results of A(p14—r23),raw (black full circle) and Ar144r23),raw

red open circle), A(;12—r34).aw (blue diamond).
( )

and probabilities p of x? test with respect to A, ray

are extracted for data with —10. GeV < E,;s < 20. GeV.

Mean values < Ay aw >

= 0 are given. The values
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Figure D.8:

Comparison of physical asymmetries extracted in every period

in 2003 and 2004. The asymmetry values are extracted for data with
—2.5GeV < FE i < 2.5GeV.
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Figure D.9: Results of Ay12aw (black full circle) and Aygqraw (red open circle)

Mean values (A, yay) are given. The values are extracted for data with —2.5 GeV <
Emiss < 2.5 GeV.
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Figure D.10: Results of Ay14aw (black full circle) and Ajas . aw (red open circle).
Mean values (A, 93 raw) and probabilities p of x? test with respect to Aoz raw = 0 are
given. The values are extracted for data with —2.5 GeV < E ;s < 2.5 GeV.
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Figure D.11: Results of A(p1a—r23)raw (black full circle) and A1a4r23),raw (red
open circle), A(r12—r34),raw (blue diamond). Mean values (A, ;aw) and probabilities
p of x? test with respect to A, raw = 0 are given. The values are extracted for data
with —2.5 GeV < E,,iss < 2.5 GeV.
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Figure D.12: Results of A(r14—r23)maw (black full circle) and A(r144r23)raw (red
open circle), A(r12—r34)raw (blue diamond). Mean values (A, ;aw) and probabilities

p of x? test with respect to A, aw = 0 are given. The values are extracted for data
with —10. GeV < FE_;s < 20. GeV.
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D.4 Asymmetry Values

Table D.2: Numerical values for the transverse target spin asymmetry A%I%(d)*%)
measured on deuterons in bins of Q% zp; and p7. The systematic uncertainties
are obtained using the values given in Table and a scale uncertainty of 5.4 %
accounts for uncertainties in the determination of the target polarisation and target

dilution factor for deuteron data.

(wp) (Q%) (GeV/c)2 (p2) (GeV/e)?  AJRo )+ gotat 4 govs

xp; bin (GeV/c)?

0.003 — 0.02 0.013 1.4 0.23 0.03 £ 0.05 £ 0.03
0.02 — 0.03 0.025 1.6 0.23 0.01 +£0.06 £ 0.04
0.03 — 0.05 0.038 2.0 0.23 —0.02 £ 0.06 = 0.04
0.05 — 0.35 0.078 3.9 0.24 0.04 £ 0.10 £ 0.06

Q? bin
1.0-1.2 0.018 1.1 0.23 0.09 £ 0.06 = 0.04
1.2—-1.6 0.023 1.4 0.23 0.00 £ 0.05 £ 0.03
1.6 —24 0.031 1.9 0.23 —0.03 £0.06 = 0.04
2.4 —-10.0 0.059 3.9 0.24 0.00 £ 0.07 £ 0.04

p2 bin (GeV/c)?

0.10 — 0.15 0.031 1.9 0.12 0.02 £ 0.05£0.03
0.15—0.25 0.031 2.0 0.19 0.04 £0.05£0.03
0.25—0.35 0.032 2.0 0.30 —0.01 =0.07 £ 0.04

0.35 — 0.50 0.033 2.1 0.42 —0.03 £ 0.08 = 0.05
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D.5 Correlation Matrix
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Figure D.13: Correlation matrix for the 2DLH fit. Here is shown the second bin
(left) and the third bin (right) in zp; for the 2007&2010 sample.
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Figure D.14: Correlation matrix for the 2DLH fit. Here is shown the fourth bin in
xp; (left) and the first bin (right) in @? for the 2007&2010 sample.
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Figure D.15: Correlation matrix for the 2DLH fit. Here is shown the second bin
(left) and the third bin (right) in Q? for the 200742010 sample.
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Figure D.16: Correlation matrix for the 2DLH fit. Here is shown the fourth bin in
2 (left) and the first bin in p2. (right) for the 2007&2010 sample.
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Correlation matrix for the 2DLH fit. Here
third bin (right) in p% for the 200742010 sample.
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Figure D.18: Correlation matrix for the 2DLH fit. Here is shown the fourth bin
(left) and the fifth bin (right) in p% for the 2007&2010 sample.
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