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Abstract

The question of the existence of glueballs is one of the unsolved problems in
modern particle physics and can be regarded as a stringent test for quantum
chromodynamics. Especially the supernumerous states in the light scalar meson
spectrum are candidates for the observation of mixing effects between qq̄ mesons
and pure gluonic bound states. On the other hand, the existence and the proper-
ties of many resonances in this sector are disputed. The COMPASS experiment
was proposed to make significant contributions to this field.

COMPASS is a fixed-target experiment at the CERN SPS which focused on
light-quark hadron spectroscopy during the data taking periods in 2008 and 2009.
A world-leading data set was collected with a 190 GeV/c hadron beam impinging
on a liquid hydrogen target in order to study, inter alia, the central production
of glueball candidates in the light meson sector. Especially the double-Pomeron
exchange mechanism is well suited for the production of mesons without valence-
quark content. To this end, we select events with two protons and two pseudo-
scalar mesons in the final state from the COMPASS data set recorded with an
incident proton beam. Several selection criteria are compared in order to enhance
the double-Pomeron component in the centrally produced sample. The angular
distribution of the decay of these systems into π+π− and K+K− is decomposed
in terms of partial-wave amplitudes, where particular attention is paid to the
inherent mathematical ambiguities. They can be naturally resolved by using
the information from the related π0π0 final state. The resulting distributions
yield unprecedented precision, most notably on the relative phase between the
partial-wave amplitudes. For the first time, an analysis in narrow bins of the
squared four-momentum transfer is possible, which provides information about
the dynamics of the production process.

Furthermore, we show that a mass-dependent fit of the obtained S-wave inten-
sity distribution alone, as it was done in the past, can be achieved by substantially
different models. Only if the intensities of the S- and D-wave amplitudes as well
as their relative phase are fitted simultaneously, resonant states can be distin-
guished from non-resonant background. With this method, we obtain realistic
Breit-Wigner parameters for the scalar mesons above 1 GeV/c2, especially in the
K+K− channel. A combination of the results with precision data from elastic
scattering experiments may be able to elucidate the entire sector of light scalar
mesons.



Zusammenfassung

Die Frage nach der Existenz von Glueballs ist eines der ungelösten Probleme
der modernen Teilchenphysik und kann als eine zwingende Prüfung für Quan-
tenchromodynamik angesehen werden. Vor allem die überzähligen Zustände im
Spektrum leichter skalarer Mesonen sind Kandidaten für die Beobachtung von
Mischeffekten zwischen qq̄-Mesonen und rein-gluonischen gebundenen Zuständen.
Andererseits sind das Vorhandensein und die Eigenschaften vieler Resonanzen in
diesem Sektor umstritten. Das COMPASS-Experiment wurde entworfen, um be-
deutend in diesem Bereich beizutragen.

COMPASS ist ein Fixed-Target-Experiment am CERN SPS, das sich während
der Datennahmeperioden 2008 und 2009 auf Hadronen-Spektroskopie mit le-
ichten Quarks konzentrierte. Ein weltweit führender Datensatz wurde mit einem
190 GeV/c Hadronenstrahl gesammelt, der auf ein Flüssigwasserstoff-Target auf-
traf, um unter anderem die zentrale Produktion von Glueball-Kandidaten im
Sektor leichter Mesonen zu untersuchen. Vor allem der Doppel-Pomeron-
Austauschmechanismus ist bekanntlich für die Produktion von Mesonen ohne
Valenz-Quark-Inhalt geeignet. Zu diesem Zweck wählen wir Ereignisse mit zwei
Protonen und zwei pseudo-skalaren Mesonen im Endzustand aus dem Daten-
satz, der mit einem Protonenstrahl bei COMPASS erfasst wurde. Mehrere
Auswahlkriterien werden verglichen, um die Doppel-Pomeron Komponente in
dem zentral-produzierten Sample anzureichern. Die Winkelverteilung des Zer-
falls dieser Systeme in π+π− und K+K− wird in Partialwellenamplituden zer-
legt, wobei besonderes Augenmerk auf den inhärenten mathematischen Ambi-
guitäten liegt. Diese können durch die Verwendung von Informationen aus dem
verwandten π0π0 Endzustand gelöst werden. Die daraus resultierenden Verteilun-
gen besitzen bisher unerreichte Präzision, vor allem die der relative Phase zwis-
chen den Partialwellenamplituden. Zum ersten Mal ist eine Untersuchung in
schmalen Bereichen des Vierimpulsübertrags möglich, welche Informationen über
die Dynamik des Produktionsprozesses ermöglicht.

Darüber hinaus zeigen wir, dass ein massenabhängiger Fit der erhaltenen
S-Wellenintensitätsverteilung allein, wie es in der Vergangenheit geschehen ist,
durch grundlegend unterschiedliche Modelle erreicht werden kann. Nur wenn
man die Intensitäten der S- und D-Wellenamplituden sowie ihre relative Phase
gleichzeitig betrachtet, werden Resonanzzustände von nicht-resonantem Unter-
grund unterschieden. Mit dieser Methode erhalten wir realistische Breit-Wigner-
Parameter für die skalaren Mesonen über 1 GeV/c2, vor allem im K+K− Endzu-
stand. Eine Kombination der Ergebnisse mit präzisen Daten aus Experimenten
mit elastischer Streuung kann in der Lage sein, den gesamten Sektor der leichten
skalaren Mesonen aufzuklären.
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Chapter 1

Spectroscopy of Light Scalar Mesons

The Standard Model represents the current understanding of the fundamental processes in
nature. It describes the dynamics of particles under the influence of the strong, weak and
electro-magnetic forces. The success of the unified electro-weak theory was crowned in 2012
by the discovery of a particle at the CERN Large Hadron Collider (LHC) which is consistent
with the predicted Higgs boson [1, 2].

Quantum chromodynamics (QCD), the part of the Standard Model responsible for the
strong interaction, was developed 40 years ago [53]. It is formulated in analogy to quantum
electrodynamics (QED), with quarks that carry a colour charge, and gluons which mediate
the force between the quarks, as degrees of freedom. However, two important differences with
respect to QED prevent the deduction of the hadron spectrum from QCD. First of all, it is a
non-abelian gauge theory, which manifests itself in the colour charge of the gluons and their
ability to interact among themselves. In combination with a growing coupling constant for
low energies [27], this leads to the fact that perturbative techniques cannot be applied. In this
domain, the quarks and gluons are confined into colour-neutral hadrons, which are the relevant
degrees of freedom. Precise knowledge of the hadron spectrum is therefore essential in order
to understand the strong interaction at low energies.

This introduction summarises selected topics that are important for this work. Exten-
sive reviews on the methods and results in light scalar meson spectroscopy can be found
in [74] and [81].

1.1 Theoretical Approach

In the following, we will introduce a series of models and concepts which aim at deducing
the spectrum of hadrons. We will focus on spinless mesons with positive parity, the so-called
scalar sector. In addition to that, we will restrict ourselves to light mesons, consisting only
of up, down or strange quarks. This field is still under heavy debate, even though it plays a
fundamental role in QCD and is important for nucleon-nucleon interaction [83]. One of the
consequences of QCD are bound systems of gluons, the so-called glueballs, which ought to exist
due to the before-mentioned self-interaction. Nearly all models predict the lightest glueball to
have scalar quantum numbers, but a unique identification with a physical state has not been
possible to the present day [81]. The existence of glueballs is one of the unsolved problems in
modern particle physics and can be regarded as a stringent test for QCD.

1



2 CHAPTER 1. SPECTROSCOPY OF LIGHT SCALAR MESONS

1.1.1 Multiplets and Constituent Quarks

Light mesons can be grouped into multiplets of the SU(3) flavour symmetry. For this purpose,
the light and nearly mass-degenerate up and down quarks are treated as an isospin I = 1

2
doublet, while the heavier strange quark is an isospin I = 0 singlet with the strangeness
quantum number −1. In addition, the parity quantum number P = +1 describes the behaviour
of the quark wave function under spatial inversion. Anti-quarks have the opposite parity.

These quarks are combined with anti-quarks, for which all quantum numbers are reversed,
in order to form the observable mesons. The total intrinsic spin S can hereby be either 0
or 1, and couples with the relative orbital angular momentum ~L between the quark and the
antiquark to the total spin of the meson ~J .

~J = ~S + ~L, |L− S| ≤ J ≤ |L+ S| (1.1)

The parity of the meson is defined as the product of intrinsic parities of the constituent quarks
multiplied with the parity of the spatial wave function

P = Pq · Pq̄ · (−1)L = (−1)L+1 . (1.2)

Neutral mesons are eigenstates of the charge conjugation operator, which transforms particles
into their anti-particles and vice versa. Their eigenvalue is determined by the product of the
symmetry behaviour of the spatial and spin wave functions and can be expressed as

C = (−1)L+S . (1.3)

Customarily, charged mesons are attributed with the C-parity of their neutral isospin partner.
Finally, it is useful to introduce the generalised G-parity as C-parity followed by a rotation of
180◦ around the I2 axis in isospin space [72], which implies a reversal of the charge sign. The
G-parity is approximately conserved by the strong interaction.

G = (−1)L+S+I (1.4)

Its eigenvalue is multiplicative and −1 for pions. We can therefore use the relation for mesons
decaying into a number nπ of pions

G = (−1)nπ . (1.5)

Within the flavour SU(3) group, a set of states with the same quantum numbers JPC form
a nonet of mesons. Due to the SU(3) symmetry, they can be grouped into an octet and a
singlet state. For example, the nine pseudoscalar mesons in the ground state with JPC = 0−+

can be represented as orthogonal SU(3) eigenstates [72]. In this formalism, the physical states
η and η′ are represented as mixtures of the flavour eigenstates η8 and η1. The nonet is often
illustrated in a plane spanned by the third component of Isospin, I3, and by the strangeness
quantum number (cf. Figure 1.1).

This scheme can be applied in a similar fashion to the vector (JPC = 1−−) and tensor
(JPC = 2++) mesons. Both nonets have a nearly ideal mixing angle of 35.3◦. As a consequence,
one of the physical states is purely ss̄ (φ(1020), f ′2(1525)), while the other (ω(782), f2(1270)) is
composed of u and d quarks only. The observed mass difference between both states of about
250 MeV/c2 supports this scheme experimentally [72].

The success of this model for the description of both mesons and baryons ultimately led
to the establishment of quarks as the building blocks of strongly interacting matter. The
constituent quark model can not only describe the pattern of the experimentally observed
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π0 1√
2
(uū− dd̄)

η8

√
1
6(uū+ dd̄− 2ss̄)

η1

√
1
3(uū+ dd̄+ ss̄)

Figure 1.1: The nonet of pseudoscalar mesons [74]. The upright S on the vertical axis signifies
the strangeness.

states, but can even be used to calculate properties of the hadrons like e.g. magnetic moments
and explain their masses at least qualitatively.

However, the scalar sector is very controversially discussed within the constituent quark
model. Especially the series of established [26] scalar isoscalar (I = 0, JPC = 0++) states

f0(500), f0(980), f0(1370), f0(1500), f0(1710) (1.6)

seems to be impossible to incorporate into conventional quark-model nonets. Even if the
f0(500) is described by elastic ππ scattering and the f0(980) as an eventual KK̄ molecule or
tetra-quark state [72], the remaining three resonances cannot belong to the same qq̄ nonet. For
these super-numerous states, mixing effects with states beyond the constituent quark model,
e.g. scalar isoscalar glueballs, could be important in order to explain the observed spectrum.

If the model is extended to incorporate constituent gluons, at least two of them can form a
bound system with C-parity +1 [81]. Only colour singlet states are considered, as they might
be observable in experiments. If one assumes further that the ground state is formed by gluons
in a relative S-wave, the lightest glueball in this model can have JPC = 0++, 0−+ or 2++. It can
therefore contribute to the mixing scheme in the scalar sector. Several different explanations
are proposed in the literature [81], but a definite consensus could not yet be reached. This is
partly due to the imprecise experimental knowledge about the existence and properties of the
scalar isoscalar resonances.

1.1.2 Effective QCD

Another group of theoretical approaches uses approximate symmetries to transform the QCD
Lagrangian into an effective theory, where the hadrons are the relevant degrees of freedom.
Perturbative calculations can then be used at low energies which is not possible within pure
QCD. In general, these theories are only valid within a limited energy regime and rely on
experimentally determined constants.

The most prominent example is Chiral Perturbation Theory. It identifies the experimen-
tally observed pseudoscalar mesons as the Goldstone-bosons of a spontaneously broken chiral
symmetry [58]. As this symmetry is also explicitly broken through the masses of the light
quarks, the bosons acquire mass as well.

The mechanism of chiral symmetry breaking can be explained within the Linear Sigma
Model1. The light scalar nonet appears here as chiral partner to the pseudoscalar one [26].

1Named after the scalar isoscalar meson σ [55], an old name for the f0(500)
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Hence, the f0(500) is sometimes called the “Higgs boson of strong interaction” in these models,
as its role is similar to the Higgs particle in electro-weak symmetry breaking. Namely, it is
responsible for a large part of the light hadron masses. A reliable picture of the light scalar
mesons is indispensable for these models in order to derive the hadronic manifestations of
QCD.

1.1.3 QCD on the Lattice

A different approach to solve the QCD Lagrangian are numerical simulations, so-called Lat-
tice QCD (LQCD) calculations. These ab initio methods currently provide the most reliable
means [79] to study the hadron spectrum. The quark and gluon fields are simulated on an
Euclidean space-time lattice, which is used to evaluate correlation functions. In imaginary
time, the obtained energy levels quickly converge towards the ground state, but even excited
states can be measured with increasing precision. Yet, most of the methods deal with stable
particles. Exploring dynamical properties like decay widths or phase shifts has only become
possible in the last few years [49].

Systematic errors due to discretisation, finite lattice spacing and periodic boundary condi-
tions can be controlled via extrapolation methods. Most calculations also use heavier u and
d quark masses than those found in nature [47] in order to avoid computationally expensive
vacuum loops. Therefore, an extrapolation towards the physical point is required in addition.
The computed pion mass is usually quoted as a measure for this scaling.

By mapping the continuous symmetries onto discrete transformation properties of the cubic
lattice, even the spin, parity and charge conjugation quantum numbers of the states can be
determined. However, also with this method, the scalar sector with vacuum quantum numbers
JPC = 0++ seems to be the most difficult to handle. It is prone to large fluctuations and
numerical instabilities.

In general, the LQCD efforts towards glueball spectroscopy can be grouped into two fields.
One approach deals with a quark-less Yang-Mills theory in order to determine the pure glueball
spectrum. A prominent example can be found in [79], where the identification of a large variety
of JPC states was achieved. The obtained spectrum is illustrated in Figure 1.2. The lowest
lying resonance has indeed the quantum numbers 0++ and a mass of 1730 MeV/c2 with a
comparatively small error. It therefore supports the conclusion of the constituent quark model
regarding the supernumerous f0 states. However, these (so-called) quenched approximations
cannot clarify mixing effect with conventional qq̄ mesons.

Analyses in the second field try to take the entire dynamics of QCD into account, including
both quarks and gluons on the lattice. Considerable efforts are currently ongoing to understand
the hadron spectrum with these unquenched approaches. In addition to the mass spectrum,
also the relative size of overlaps with certain operators yields information about the internal
structure of the extracted states [47]. Especially operators which are proportional to the
chromo-magnetic part of the QCD field-strength tensor indicate a gluonic component of the
resonances. No definite result has been obtained so far for isoscalar scalar states [48], but a
remarkable precision is reached already for isovector mesons. The current degree of detail is
not matched by experimental results in the field of hadron spectroscopy.

1.2 Central Exclusive Production

Scattering experiments have helped to understand the composition of particles and the struc-
ture of interactions since the very beginning. Without knowledge of the elementary quarks
and gluons, consistent scattering theories were able to describe the experimental observations.
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Figure 1.2: Mass spectrum of glueballs, simulated in a quark-less theory on the lattice [79].

After leading to the establishment of QCD, they still provide an important phenomenological
tool to understand the Strong Interaction in the confined regime.

In this section, we will introduce the basic terms necessary to understand the central
production reaction, which is used in this work to study scalar mesons. We will also present
an overview of central production experiments and discuss their results.

1.2.1 Scattering Theory: Reggeon and Pomeron

The two-body scattering process
1 + 2→ 3 + 4 (1.7)

is completely characterised by the two independent Lorentz-invariant Mandelstam variables

s = (P1 + P2)2

t = (P1 − P3)2
(1.8)

with the particle four-momenta P1,2,3 [43]. The squared four-momentum transfer t is negative.
For equal particles with mass m, the squared centre-of-mass energy s is larger than 4m2.

The analytic amplitude A(s, t) for the reaction relates the s-channel process (1.7) to the
t-channel process

1 + 3̄→ 2̄ + 4 (1.9)

via crossing symmetry. The resonances in the t-channel have an important impact on the
scattering cross section in the s-channel. Regge theory describes these resonances as poles
in the complex angular momentum plane whose locations vary with t. The approximately
linear dependences α(t) in this plane are called Regge trajectories, and they can be associated
with the exchange of quasi-particles, often called Reggeons (R) [43]. For positive integer
values of the angular momentum, particles with squared mass t correspond to experimentally
observable states. The Chew-Frautschi plot in Figure 1.3 shows the degenerate trajectories for
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the combinations of isospin and C-parity corresponding to the ρ, a2 and f2 mesons in pion-pion
scattering. Other meson trajectories (π, b1(1235), etc.) are parallel but cross the vertical axis
at lower values of J . The linearity allows a simple extrapolation to the physical region of the
s-channel where t < 0.

Figure 1.3: Chew-Frautschi plot with
partly degenerate Regge trajectories and the
Pomeron trajectory [34].

Figure 1.4: Total cross section of pp and pp̄
(reproduced with permission from [43]).

With the optical theorem, the total cross section for a hadronic reaction can be directly
calculated from the imaginary part of the elastic scattering amplitude at t = 0. According to
Regge theory, this results in a behaviour of the total cross section as

σ(s) ∝ sα(0)−1 . (1.10)

Since the leading trajectories have an intercept around 0.5, the hadronic cross section should fall
approximately like 1/

√
s. This is in agreement with experimental observations up to energies

of
√
s ≈ 10 GeV. Beyond that, a logarithmic rise of the total cross section was measured by

several hadron scattering experiments (cf. Figure 1.4). This triggered the postulation of a
new trajectory which crosses the vertical axis slightly above 1. This so-called Pomeron (P)
trajectory is parametrised as

αP(t) = 1 + εP + α′Pt , (1.11)

and the data is well described with εP ≈ 0.08 [43]. The apparent violation of unitarity of a
cross section rising with energy is avoided by a slowly decreasing value of εP(s). This effect
can be explained by the exchange of multiple Pomerons at higher energies. In addition, the
Regge contribution becomes insignificant compared to mechanisms described by perturbative
QCD for very large energies and transverse momenta [43].

The slope parameter α′P = 0.25 GeV−2 is determined by fitting the elastic scattering cross
section as a function of t for a fixed energy [43]. Even though the Pomeron trajectory is shal-
lower than the meson trajectories (cf. Figure 1.3), no physical particle could yet be associated
with it. Since it has the quantum numbers of the vacuum (I = 0, C = +), the Pomeron is often
brought into connection with glueball candidates. In QCD terms, it can be modelled as a two-
gluon interaction but the direct derivation of Regge theory from quantum chromodynamics is
so far unresolved.
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1.2.2 Double-Pomeron Exchange

The concept of Regge theory can be generalised for inelastic events, where additional particles
are produced. Pomeron exchange dominates for high energies and t less than about 1 GeV2.
In this domain, we speak of diffractive dissociation if one of the initial particles stays intact
while the other produces a system of hadrons (cf. Figure 1.5).

The main focus of this work are inelastic reactions where both particles stay intact and
almost undisturbed. In these central exclusive reactions, two Reggeons are radiated from the
initial state, collide and form a system of hadrons (cf. Figure 1.6). Especially if the energies
are high enough for the scattering to be dominated by the double-Pomeron contribution, the
reaction is ideal to study the production of glueballs owing to the glue-rich nature of the
Pomeron without valence quarks. Furthermore, the quantum numbers of the central system
are constrained to IG = 0+, JPC = 0++, 2++, 4++,.. and the process therefore selects the
controversially discussed scalar isoscalar sector. However, the energy threshold for double-
Pomeron scattering is much higher than for single diffraction and subject to debates. Central
(exclusive) production and double-Pomeron exchange (DPE) are often used synonymously in
the literature, but we will maintain this important differentiation.

In Figures 1.5 and 1.6, we use the notation pf(ast) and ps(low) to distinguish the scattered
beam and target protons in the final state. In addition, the intermediate statesX are introduces
which decay into hadrons. We chose the production of two pions for this example, since it has
the largest cross section and plays a prominent role in this work. As both processes have the
same particles in the final state, diffractive dissociation will be an important background for
the study of central exclusive production.

p

P

ps

p
X +

pf

π−

π+

Figure 1.5: Diffractive dissociation with
Pomeron exchange.

p

P

P

pf

ps

p

X 0 π−

π+

Figure 1.6: Central exclusive production
with double-Pomeron exchange.

Two kinematic variables can help to distinguish between the two production mechanisms.
The reduced longitudinal momentum x of the final-state particles in the centre-of-mass frame,
often also noted xF because of its introduction by R. Feynman [51], is defined as

xF =
pL

pL(max)
=

2pL√
s
. (1.12)

For double-Pomeron exchange reactions, |xF| should be close to unity for both outgoing pro-
tons. (1− xF) is sometimes called xP [43].

The rapidity y is an alternative kinematic variable [40] to describe high-energy collisions.
It is defined for particles with non-zero transverse momentum with respect to the beam axis z
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as

y =
1

2
ln
E + pz
E − pz

. (1.13)

The rapidity has the advantage that it transforms additively under boosts along the z direction.
Consequently, the rapidity difference between two particles remains invariant under longitudi-
nal boosts. If not specified otherwise, we will evaluate the rapidity in the centre-of-mass frame
of the reaction as well. If the protons loose only a small fraction (1−xF) of their momenta, no
other particle in the reaction can be in the same region of rapidity. Distinctive rapidity gaps
larger than two units therefore characterise double-Pomeron exchange reactions.

1.2.3 Central Production in Experiments

Double-Pomeron Exchange at ISR (CERN)

The first evidence for double-Pomeron exchange processes was observed at the world’s first
hadron collider, the CERN2 Intersecting Storage Rings (ISR). The reaction pp→ pπ+π−p was
studied with five different energies from

√
s = 23.4 GeV to

√
s = 63.4 GeV in order to allow for

two large rapidity gaps ∆y > 2 [46]. Even though single-diffraction processes dominate at all
studied energies, it was possible to enrich the DPE sample by requiring both protons to have
|xF | > 0.9. In addition, both pions had to be detected in the rapidity region |y| < 1. Reso-
nances in the pπ systems could be efficiently suppressed by these requirements. Furthermore,
no obvious correlation was observed between the azimuthal angles of the scattered protons
for this enriched sample. Also the momentum transfers at the two proton vertices showed
an independent behaviour. This lead to the conclusion that the two proton vertices factorise,
which was expected for DPE. Angular distributions of the pions suggested that the central
π+π− system is produced mainly in an S-wave (J = 0). A signal in the mass region of the
f2(1270) could also be discerned in the invariant mass distribution. The lack of data hindered
the precise extraction of resonance parameters at this stage. However, by proving the existence
of DPE, the experiments helped to establish the phenomenological Regge model.

A large sample of 3 million events was later collected at the ISR by a different experimental
setup [78] at the highest available centre-of-mass energy of

√
s = 63.4 GeV. Figure 1.7 shows

the invariant mass spectrum of the central π+π− system in a semi-logarithmic scale. It rises
rapidly from threshold and peaks around 0.5 MeV/c2. A sharp drop of about one order of
magnitude is observed in the region of the f0(980) meson, another one around 1.5 GeV/c2.
The enhancement around 1.3 GeV/c2 could be due to the f2(1270), even though it appears to
be broader.

A partial-wave analysis has been performed in order to disentangle the contributions with
different spins in the di-pion mass spectrum. Following a simple DPE model, only the allowed
JPC = 0++ and 2++ corresponding to S- and D-waves, respectively, and the magnetic quantum
number M = 0 were used. No attempt has been made to extract the J = 4 contribution [78].
The results confirmed the previously observed dominant S-wave. In order to extract the res-
onant contributions, mass-dependent amplitudes were fitted to the S- and D-wave intensities
as well as their interference term. The S-wave could be modelled entirely with a fixed f0(980)
and another broad resonance around 1.4 GeV/c2 interfering with a coherent non-resonant com-
ponent. No conclusive answer could be obtained for the D-wave components.

Nonetheless, the results were combined with elastic ππ scattering data (cf. Section 1.3.3) in
an extensive analysis of the resonant components of the S-wave from threshold to 1.6 GeV/c2 [16].
The data provides significant extra information especially in the region around 1 GeV/c2, where

2European Organisation for Nuclear Research
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Figure 1.7: Invariant mass spectrum of
π+π− events at

√
s = 63.3 GeV [78].

Figure 1.8: ππ S-wave from [78] with
fit [16].

elastic scattering is controlled by interference effects between S- and P -wave. In the unitary
analysis, the double-Pomeron production of the di-pion final state acts as severe constraint
through the crucial KK̄ threshold region. As a result, two broad objects ε(900) and ε′(1430)
and two narrow resonances were claimed, which were called S1(991) and S2(988). This is con-
tradicted by recent studies [83] which confirm only the f0(500) and the f0(980). However, the
occurrence of three states below 1 GeV/c2 was treated as definite evidence for dynamics beyond
the constituent quark model at that time. Even though this involved analysis lacked precision
data, its parametrisation of the ππ S-wave is still widely used in experiments (e.g. [9]).

Double-Pomeron Exchange at CERN SPS

Experiments at the next generation CERN hadron collider Spp̄S3 [67, 29] continued to inves-
tigate double-Pomeron exchange in order to gain insight into scattering processes at

√
s =

630 GeV. However, the accessible mass range far beyond the resonant region for light mesons
did not allow for further input to spectroscopic studies.

On the other hand, the fixed-target experiments carried out with the SPS4 proton beam
at CERN produced a large number of new results. pp and π−p reactions were studied with
beam energies between 85 GeV (

√
s = 12.7 GeV) and 450 GeV (

√
s = 29.1 GeV). The detectors

were able to reconstruct a variety of final states, including charged and neutral particles. In
this short review, we will exemplarily focus on the central production of two pions as it was
studied in great detail and is also an important part of this work.

First of all, the large number of recorded events allowed a detailed comparison of the invari-
ant mass distributions depending on beam type and momentum. After removing the obvious
pπ resonances from the data sample, the same features appeared as described above. In ad-
dition, a dominant peak at the position of the ρ(770) can be discerned for the lowest energies
(cf. Figure 1.9). This isospin I = 1 state is evidence for the importance of other Regge tra-
jectories at these energies as it cannot be produced via double-Pomeron exchange. However,
the relative intensity quickly vanishes with increasing

√
s. It can be explained by the contri-

bution of two pion trajectories to the production of ρ(770) which should scale with 1/s2 [74].
The dominant enhancement at threshold which remains for higher energies was treated as an
indication for s-independent Pomeron-Pomeron scattering. Fits to these invariant mass dis-

3Super Proton Antiproton Synchrotron
4Super Proton Synchrotron
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tributions with interfering Breit-Wigner resonances and non-resonant background terms could
describe the shape and helped to quantify the

√
s-dependence [14].

Figure 1.9: The π+π− mass distribution with (a) 85 GeV/c π+, (b) p, or (c) 300 GeV/c p
beam [74].

A partial-wave analysis in narrow mass bins was used to separate the S-wave from states
with spin 1 and 2. Subsequently, the remaining intensity distribution was interpreted with
interfering Breit-Wigner resonances and an exponential background. Similarly to other final
states, a minimal set of three states (f0(980), f0(1370), f0(1500)) was needed to describe the
π+π− S-wave (cf. Figure 1.10). The inclusion of another Breit-Wigner function further im-
proved the fit and helped to established the f0(1710) meson as a scalar isoscalar resonance [21].
A coupled-channel analysis of the S-wave in π+π− and K+K− final states yielded essentially
the same results with four required poles [19]. The branching fractions of the scalar resonances
were determined which permitted conclusions on their quark content. However, the method
of deriving a complex amplitude from a one-dimensional mass distribution and ignoring the
relative phase with respect to the other components is met with criticism [81].

Figure 1.10: c) and d) The π+π− S-wave with fit using three Breit-Wigner functions plus non-
resonant background, e) using four Breit-Wigner functions plus non-resonant background [21].

In addition to the analysis of the angular distribution of the decay products, the data
gave insights into the production characteristics. In this context, established qq̄ states behave
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differently than the glueball candidates f0(1500) and f2(1900) which lead to the figurative
name “glueball-filter”. It was suggested that the observed effect was driven primarily by the
variable dPT [37], defined as the difference of the transverse momenta of the exchange particles
from the slow and the fast proton vertices with respect to the beam axis in the centre-of-
mass frame (cf. Figure 1.11). Under the assumption that DPE was the leading contribution
in central production, this would imply a vectorial interaction [39]. On the other hand, the
dPT-dependence can be explained by an effect of the angle between the two proton scattering
planes φ in the overall centre-of-mass system. This angle is directly related to the kinematic
properties of the reaction and may select different domains [74]. Some unresolved points will
be addressed in this work.

Figure 1.11: π+π− mass spectrum for dPT < 0.2 GeV/c (c), 0.2 GeV/c < dPT < 0.5 GeV/c (d)
and dPT > 0.5 GeV/c (e) [37].

Double-Pomeron Exchange at RHIC, Tevatron and LHC

Central exclusive production recently regained interest as a clean source for scalar states which
are not necessarily mesons. Already before the start of LHC, the dynamics of Higgs particle
production was studied in this context [68]. The angle between the two scattering planes φ
is considered to be a direct measure for the spin-parity of the produced state. Especially the
combination of Regge theory and perturbative techniques is thereby important [60].

On the other hand, hadron colliders indisputably provide the ideal environment for the
study of double-Pomeron exchange. Experiments with a large coverage in rapidity in combina-
tion with detectors surrounding the beam pipe in the forward region may be able to measure
the exclusive production of mesons down to masses of 1 GeV/c2. However, dedicated low-
intensity runs with defocused beams are needed to avoid background from hard collisions. As
this is not the main focus of the experiments, only very limited data and resources are avail-
able for a meson-spectroscopy analysis. Figure 1.12 shows a π+π− spectrum with and without
the requirement for rapidity gaps measured by the ALICE experiment [93]. As expected, the
ρ(770) signal is indeed completely suppressed in the case of two rapidity gaps. Yet, the out-
going protons cannot be measured with the present setup and the amount of data is far from
sufficient for a dedicated partial-wave analysis.
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Figure 1.12: Invariant mass spectrum of π+π− events at
√
s = 7 TeV [93].

1.3 Further Experimental Access to the Scalar Sector

Apart from the central exclusive production, other so-called glue-rich reactions were suggested,
which should be suited to study glueballs in experiments. In addition to that, elastic ππ
scattering data are used in combined analyses. As they are not subject of this work, we will
only briefly summarise the impact of results from these processes on the current understanding
of scalar mesons.

1.3.1 pp̄ Annihilation

Several experiments (e.g. Crystal Barrel [10] at LEAR5) used proton-antiproton annihilation
in order to produce a system of mesons. If the annihilation happens at rest, only the lowest
angular momentum states contribute to the process which is beneficial for the identification of
resonances. However, many open questions arise from the theoretical basis of this production
process. To this end, the decay branching fractions between nearly all two-meson final states
were measured.

As the quark-antiquark pairs annihilate into gluons, they interact and may form bound
states. In this context, the narrow f0(1500) resonance was extensively studied in pp̄-annihilation
experiments [11]. However, a direct connection to the production of glueballs could not be es-
tablished. The process seems to be dominated by a mere rearrangement of quarks [74], which
is näıvely understandable with the OZI rule [82]. The PANDA6 experiment will hopefully be
able to resolve the open questions in this field within the next decade [50].

1.3.2 Initial-State Radiation in Heavy-Flavour Decays

At electron-positron colliders, charmonium and bottomonium states are produced copiously.
Apart from CP -violation studies, the experiments can also be used to study hadron spec-
troscopy through the decay products. The narrow and therefore unambiguously identifiable
initial states strongly constrain the quantum numbers of the reaction and simplify the analysis.

5Low-Energy Antiproton Ring at CERN
6AntiProton ANnihilation at DArmstadt



1.3. FURTHER EXPERIMENTAL ACCESS TO THE SCALAR SECTOR 13

Especially radiative decays of the J/ψ meson should provide a clean environment for gluonic
excitations in the light-quark sector, as the OZI rule suppresses direct decays of the cc̄ [74]. If
the photon is detected, the remaining two-gluon system should be able to form a glueball. On
the other hand, the dominance of initial-state radiation is experimentally not proven.

1.3.3 ππ Scattering

Pion-pion scattering is experimentally challenging as the initial state does not consist of stable
particles. The topology can, however, be embedded in other processes. The prime example was
explored by the CERN-Munich collaboration [64], whose data are still used for parametrisations
of the ππ S-wave in many analyses (cf. Section 6.1.3). A π− beam is scattered off a proton
target, producing a di-pion system and a recoiling neutron. This charge-exchange reaction is
dominated by one-pion-exchange (cf. Figure 1.13) and is therefore suited for the determination
of ππ amplitudes. Many resonances contribute to the process via the intermediate state X
and can be disentangled by the angular properties of their decay. The method is often called
phase-shift analysis, since especially the interference between the complex-valued amplitudes
for different spins provides a powerful tool.

p

π+

n

π−
X 0 π−

π+

Figure 1.13: One-pion exchange with em-
bedded ππ scattering (here: s-channel).

Figure 1.14: Squared ππ S-wave amplitude
with 6 poles [76].

Supplementary information from K+ → π+π−e+νe decays [88] is used to constrain the
low-energy behaviour of the scattering amplitudes [74]. The limited available phase space for
this reaction combined with the well understood weak decay results in very precise data in the
threshold region.

In contrast to the production experiments mentioned above, elastic scattering has to fulfil
unitarity, i.e. the conservation of probability. As a consequence, the ππ amplitude has to vanish
close to threshold. This effect is often called Adler zero [5], and is well confirmed experimentally.
The obtained amplitudes (cf. Figure 1.14) cannot be directly applied to different processes,
where small di-pion masses are often enhanced. However, the Watson theorem [103] relates
the phase of production processes below the first inelastic threshold to elastic scattering.



Chapter 2

COMPASS with Hadron Beams

COMPASS But an unambiguous answer to the question:
“do glueballs exist and what is their mass spectrum” has not yet been given.

[...]
The proposed experiment will make many significant contributions to this field.

from the COMPASS proposal [25]

The COmmon Muon and Proton Apparatus for Structure and Spectroscopy (COMPASS) [25]
was proposed partly as a continuation of the efforts of the fixed-target experiments at CERN
SPS in the field of light scalar mesons (cf. Section 1.2.3). After focusing on the spin structure
of nucleons [25] with a polarised muon beam in the first years of operation, the collaboration
turned its attention towards light-meson spectroscopy in 2008 and 2009. In the following chap-
ter, we will introduce the experimental setup with emphasis on the newly introduced parts for
the hadron spectroscopy programme. A detailed description of the apparatus can be found in
[3] and [6].

A novel detector type, the PixelGEM detector, was introduced in COMPASS in order to
improve the tracking of hadrons scattered at very small angles and, at the same time, to
reduce the material in the beam. In the second part of this chapter, we will describe the
new beam tracking system and evaluate its performance in the high-intensity hadron beam.
Especially the investigation concerning an observed degradation during operation and the
resulting improvements will be summarised.

Finally, the methods to calibrate tracking detector positions in order to ensure precise
reconstruction of charged particles along the spectrometer will be discussed. It is a vital
prerequisite for the results of this work and refined procedures will positively influence the
accuracy of future analyses.

2.1 Experimental Setup and Upgrades

As a modern hadron spectroscopy experiment, COMPASS was designed to precisely measure
light mesons and baryons with masses up to 3 GeV/c2. Positive and negative hadron beams
impinging on liquid hydrogen or solid-state targets can excite states via several different produc-
tion processes. While reactions mediated by the strong interaction like diffractive dissociation
and central production (cf. Section 1.2.2) dominate the cross section, photo-production in the
Coulomb field of heavy nuclei (Pb, Ni) can also be selected to probe the inner structure of the
produced hadrons [7].

14
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2.1.1 Beam and Target

The CERN SPS can deliver both positively and negatively charged secondary hadron beams
with an intensity of up to 107 particles per second and a momentum of 190 GeV/c to the
experimental zone of COMPASS. The positive hadron beam consists of 74.6% protons, 24.0%
pions and 1.4% kaons at the COMPASS target [6] and is used for the main part of this work.
However, a comparison with the negatively charged beam composed out of 96.8% pions, 2.4%
kaons and 0.8% anti-protons is beneficial for studies of the production process.

Two differential Cherenkov counters (CEDAR) in the beam line are used to identify the
incoming hadrons. A combination of gas pressure and diaphragm settings selects the Cherenkov
rings of one type of particle in each device. The acceptance of the detectors limits the allowed
beam divergence for particle identification.

A 40 cm long cylindrical Mylar cell with a diameter of 35 mm containing liquid hydrogen
at its boiling point is used as a proton target for the presented data set. The thickness of
hydrogen along the beam axis corresponds to 4.5% of a radiation length and 5.5% of a nuclear
interaction length [6]. The target is surrounded by two concentric barrels of scintillator slabs
with radii of 12 cm and 75 cm, respectively. This Recoil Proton Detector (RPD) measures the
slow proton ps with polar angles between 50◦ and 90◦. The energy loss in the target walls
and the inner scintillator barrel limits the lowest detectable momentum of recoil protons to
about 0.3 GeV/c, which translates into a minimal four-momentum transfer to the target of
0.07 GeV2/c2 [6].

2.1.2 Charged Particle Tracking

A set of silicon micro-strip detectors is used for precise vertex reconstruction. 12 planes up-
stream and 8 planes downstream of the target guarantee a spatial resolution below 10µm for
the track position and a resolution for the squared four-momentum transfer to the target of
7 · 10−3 GeV2/c2 [6]. In 2009, all silicon stations were cooled down to about 200 K using liquid
nitrogen in order to reduce radiation damage. As a consequence, a drastic reduction of noise
and a significant improvement in performance was observed.

The final-state particles are mostly emitted in forward direction and detected by a two-
stage magnetic spectrometer. This ensures flat acceptance and high resolution in a broad
kinematic range. The spectrometer is equipped with a variety of gaseous tracking detectors.
Modern micro-pattern gaseous detectors [92] with spatial resolutions below 100µm are able
to measure scattered hadrons close to the beam region. Several different types of medium-
and large-sized multi-wire proportional counters and drift detectors with an active area of up
to 5 × 3 m2 complete the kinematic coverage in both spectrometer parts. Scintillating fibre
detectors improve the time resolution necessary in the high-intensity environment with trigger
rates up to 30 kHz.

2.1.3 Calorimetry and Particle Identification

Both spectrometer parts feature electromagnetic calorimeters (ECAL1+2), which enables the
measurement of photons emitted from the target in an angle between 1 and 100 mrad with
respect to the beam axis. In combination with the segmentation into 4568 modules, neutral
hadrons (e.g. π0, η) in the final state can be reconstructed with almost the same precision as
their charged counterparts.

In order to identify the charged hadrons in the final state, a ring-imaging Cherenkov (RICH)
detector is installed in the first spectrometer stage. It allows the separation of pions, kaons and
protons with a momentum below 50 GeV/c. However, the low momentum threshold of 9 GeV/c
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for the identification of kaons poses a more stringent limitation for the studies presented later
in this work.

The detection of neutral particles emitted in the region of negative rapidities is hampered
by the fact that the first electromagnetic calorimeter is installed 14 m downstream of the
target. Since 2012, this drawback has been cured with the implementation of a new, large-
angle acceptance ECAL0 [54]. For charged particles, the aperture of the first spectrometer
magnet SM1 also restricts the acceptance for negative rapidities.

Figure 2.1 illustrates the experimental setup as it was used during the data taking periods
with hadron beams in 2008 and 2009. It does not show the two CEDAR detectors which are
installed approximately 30 m upstream of the target.

Figure 2.1: Rendered image of the COMPASS spectrometer setup for the hadron spectroscopy
programme [6]. The beam enters from the left.

2.2 The PixelGEM Beam-Tracking System

The gas electron multiplier (GEM) technology [92] combines the detector properties of gas
amplification with photo-lithographic production techniques. Its main advantage arises from
the fact that amplification and detection of the signal are separated in different stages inside the
gas volume. The amplification takes place in a thin insulating polymer foil which is chemically
etched with a high density matrix of holes and metal coated on both sides. By applying a
potential difference of around 500V between the two sides of the foil, a strong electric field
is generated inside the holes. The electrons of the primary ionised gas molecules are guided
by the field lines into a GEM hole where multiplication takes place causing a propagating
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avalanche. Gains of up to 104 can be achieved with single foils, multiple foils are stacked in
order to reach gains of 105 and a stable operation at the same time.

(a) Readout foil (b) Assembled PixelGEM detector

Figure 2.2: PixelGEM detector [6].

COMPASS was the first experiment which used the GEM technology in a large scale. A
system of 22 detectors with an active area of 31×31 cm2 each and a 2-dimensional strip readout
was operated successfully for several years [70]. However, a dead zone with a diameter of 5 cm
had to be implemented in the centres in order to reduce the channel occupancy in the high-
intensity beams. For the hadron programme in 2008 and 2009, the novel PixelGEM detector
was developed with a fully active area of 10 × 10 cm2 and a pixelised readout in the central
part (cf. Figure 2.2). Through charge sharing, 1024 squared pads with a lateral length of
1 mm are able to detect scattered particles in the vicinity of the beam with a spatial resolution
of 120µm [18]. A set of 5 detectors was installed along the spectrometer as a replacement
for more massive scintillating fibre detectors in order to minimise the material budget and
therefore secondary interactions. They play an important role for the precise reconstruction
of the fast proton pf in central production reactions.

We will focus here on the performance observed during the operation of the PixelGEM
detectors in the hadron beam for two years and the following high-intensity muon beam periods.
A detailed description of the PixelGEM setup can be found in [59].

2.2.1 Commissioning and Performance

One PixelGEM detector was installed between the target and the first spectrometer magnet
in order to provide an additional space point between the silicon micro-strip trackers and the
tracking stations in the first spectrometer arm. The 4 remaining detectors were grouped in
pairs, mounted back-to-back and rotated by an angle of 45◦ around the beam axis. One of
these stations was installed up-, the other downstream of the second spectrometer magnet
SM2 (cf. Figure 2.3).
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Figure 2.3: The COMPASS spectrometer setup seen from the top [97]. GP01,2,3 indicate the
locations of the PixelGEM detectors.

An extensive analysis of the performance of the complete PixelGEM tracking system was
presented in [99]. With a spatial resolution of around 90µm and a background-corrected
plateau efficiency above 99%, the detectors exceeded the design specifications in a low-intensity
hadron beam (5 ·105 particles/s). In nominal beam conditions, these performance benchmarks
were slightly worsened by the current necessary to keep the GEM foils on their potential.
Summarising, the PixelGEM detector system was operated successfully during the two years
of hadron beam. It improved the acceptance of the spectrometer for beam tracks and particles
scattered at very small angles, which is an important prerequisite for the analysis presented in
this work.
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Figure 2.4: Aging effects in GP03XY [97].

After the completion of the hadron spectroscopy programme in 2009, the PixelGEM de-
tector stations GP02 and GP03 remained in the spectrometer as a supplement. However,
a decrease in the signal amplitude and thus the detection efficiency developed in a few de-
tectors during the next two year of operation in a beam of up to 2 · 107 muons per second.
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The shape in the centre (cf. Figure 2.4) apparently follows the occupancy distribution in the
hadron beam [97]. In addition, an oval structure with a radius of about 3 cm is clearly ob-
served in all detectors (cf. Figure 2.5). The planes were facing the beam back-to-back with an
angle of 45◦, which proves that the origin of this structure can only be related to something
detector-external.

A decrease in performance of gaseous detectors correlated with radiation is often a sign for
gas impurities in the detector volume [91]. As the gas tightness of the detectors was carefully
tested during construction, the gas distribution system in the experimental zone can be a
possible source for contaminations. With overpressure around 200 mbar, leakages of up to
30 ml/h were found and eliminated [97]. On the other hand, a direct correlation between the
affected detectors and the leaks could not be proven.
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Figure 2.5: Signal amplitude in arbitrary units [97].

2.2.2 Examination of Irradiated Detector

As the degradation of the performance was not recoverable, the detector with the worst signs
was dismounted and examined in the laboratory. The position dependence of the signal ampli-
tude could be directly reproduced with a focused X-ray source. In addition, measurements of
the GEM foil currents showed a decreased amplification capability which indicated a physical
or chemical alteration of the GEM foils themselves. However, a deposit on the readout foil
which hinders the charge collection could not be completely excluded [97].

Opening of the affected detector revealed considerable amounts of a sealant1, which was
applied to the closed detector from the outside and apparently entered through leaking joints.
This silicone based rubber is known to be prone to out-gassing, even though no negative
effect on detector performances has been reported previously when it was used in very small
quantities [32].

1Dow Corning 1-2577 Conformal Coating
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(a) Unused GEM foil (b) Irradiated GEM foil

Figure 2.6: SEM images of a GEM hole [44].

Furthermore, a deposit was found on all GEM foils and the readout plane, with increasing
quantity from top to bottom. Its shape matches exactly the pattern of low efficiency regions
seen in Figure 2.4. Especially the outline of the ring shape is as sharp as the distance between
single GEM holes, a fact that does not find a correspondent in the experimental setup.

Pieces of the affected GEM foils were examined with a scanning electron microscope (SEM)
and energy-dispersive X-ray spectroscopy (EDX) and compared to a sample of an unused
foil. In addition to an enlarged rim around the GEM holes, deposits with sizes in the order
of 1 − 10µm were seen both at the edge of the GEM holes and on the copper surface in
between them (cf. Figure 2.6). Traces of silicon and sulphur could be detected on the irradiated
samples [44]. Large percentages of carbon and oxygen on the previously pure copper surface
indicate an organic coating. The silicone sealant can be responsible for these effects, even
though it has no sulphur component. The crystalline structures (cf. red box in Figure 2.4b)
built up by the sulphur contamination were traced back to the production of the readout plane,
were sulphuric acid is used to remove remnants of glue on the pixel area. The comparison with
SEM images of copper exposed to a high concentration of hydrogen sulphide [98] supports
this conclusion (cf. Figure 2.7). Specifically which deposit is responsible for the performance
deterioration could not be deduced at this stage.

2.2.3 Aging Studies in the Laboratory

In order to establish the effect of single substances on the performance of GEM detectors, the
observed aging effects should be reproduced under controlled conditions in the laboratory. To
this end, a modular detector with replaceable GEM foils was irradiated with X-ray intensities
of up to 5 · 107/s [96] for several days to reach accumulated charges comparable to the detec-
tors in COMPASS. As the ambient air pressure and temperature lead to gain variations, the
environmental conditions are recorded and corrected for. A well defined contamination can be
brought into the gas circuit with a flushed box.

Preliminary measurements (cf. Figure 2.8) showed a successful operation of the system.
However, a substantial decrease of the gain was observed already without additional contami-
nation [96]. The visible alteration of the irradiated GEM foil surface indicates an aging effect,
whose source is still under study.
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(a) Irradiated GEM foil [97] (b) Copper exposed to H2S [98]

Figure 2.7: SEM images of sulphur deposit on copper.

2.2.4 Modification to Production

It was found out that the composition of the used glue2 was changed by its manufacturer after it
was certified for out-gassing [32]. It therefore constituted an additional risk for contamination.
Finally, four entirely new detectors were built with special care concerning impurities in the
gas volume. A different, certified glue3 was applied in predefined portions using a dispenser
robot. The same glue was also used in small quantities to seal the detector from the outside.
Two new detectors replaced the deficient station GP03 for the 2012 run with hadron beam. In
addition, one detector was added to GP01 in order to complete the station. The development
of any deficiency could not be observed so far.

2.3 Spectrometer Alignment

In total, the COMPASS spectrometer uses more than 200 tracking detector planes to recon-
struct charged particle trajectories. A trigonometric survey provides their position within the
experimental setup with a precision down to 1 mm. However, many detectors reach up to two
orders of magnitude better spatial resolutions. In addition, their physical fixations are affected
by their weight, temperature variations and a strong magnetic field. In order to achieve an
optimal track reconstruction performance, corrections to the position and orientation of the
tracking detectors in space are mandatory. In the following section, we will describe the official
software alignment procedure [6], which was applied to the reconstruction of the analysed data
set.

2Araldite AY103-1
3Stycast 1266



22 CHAPTER 2. COMPASS WITH HADRON BEAMS

Accumulated Charge (mC)
0 10 20 30 40 50

G
ai

n 
(n

or
m

al
is

ed
)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

290

292

294

296

298

300

302

304

306

955

960

965

970

975

980

985

990

995
P [hPa] T [K]

corrected Gain

uncorrected Gain

Figure 2.8: Gain measurement corrected for temperature and pressure variations [96].

2.3.1 Alignment Method

The starting point of the software alignment is a sample of tracks reconstructed with prelimi-
nary detector positions. Typically, it consists of 104 to 106 trajectories. For all detector planes,
corrections for a translation along the measured coordinate, a rotation around the beam axis,
and the effective pitch are possible. The effective pitch accounts for a possible inclination of
the detector plane with respect to the beam axis. Only the position along the beam axis is
difficult to determine in the forward spectrometer geometry. It is usually kept fixed unless the
residual distribution of a given plane indicates a large deviation.

The corrections are determined by minimising the weighted sum of squared errors χ2 of
all tracks in the sample. The Millipede program [28] is used to perform this fit, which can
have more than 1000 parameters. In a linear model, the matrix describing the problem is
large but sparsely populated and can therefore be analytically inverted. A new set of tracks is
reconstructed with the obtained corrections and the procedure is iterated until the parameters
converge and become negligible compared to the detector resolution. Four detector planes with
a large lever arm have to be kept at fixed positions to prevent a collective drift of the entire
coordinate system.

The COMPASS alignment is started with special data recorded with the spectrometer
magnets switched off. In this case, straight tracks can be safely assumed in order not to bias
the momentum reconstruction. A widely defocused muon beam and the trigger on the beam
and veto counters reach a broad illumination of all detector planes. Afterwards, additional
corrections are generated for the detector planes downstream of the target in the magnetic
field, which not only shifts the positions of the mechanical support of some detectors, but
also influences the internal processes of charge propagation in gaseous detectors. The effect is
strongest for the small-area trackers in the fringe field of SM1 where the Lorentz-force acting
on drifting and amplified charges results in an apparent translation of the detector planes of
up to 400µm. For these detectors, a correction in form of an effective shift is applied, since
the distortion is approximately uniform over the active area of the respective detector [6].
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As a last step, the detector positions and orientations are finalised on a track sample as
it is used for the analysis. This ensures the right weighting of detector contributions to the
reconstructed data set. The vertex reconstruction in the target is also optimised. For the
hadron-beam data taking period, the entire procedure was repeated approximately every two
weeks, mainly after longer periods of access to the experimental zone when detectors were
moved or replaced.

2.3.2 Time-Dependent Alignment

Displacements of up to 50µm have been observed for the silicon micro-strip detectors during
the course of one day. Since this is a multiple of their spatial resolution, a time-dependent
alignment has been introduced in order to profit from the full vertexing capabilities. Correc-
tions to the positions of the silicon planes are generated for each run, which can span a period
of up to 3 hours. As an example, Figure 2.9 illustrates the movements of the five silicon tracker
stations in the vertical plane as a function of time. A correlation with the ambient temperature
measured nearby in the experimental area is evident. Since the same starting values are used
for all processed runs, the continuity of the curves further supports the validity of these correc-
tions. Especially for final states with only one charged track [7, 100], the precision for vertex
reconstruction is substantially increased. As a result, specially events with scattering angles
below 1 mrad can be reconstructed with considerably reduced background (cf. Figure 2.10).
The different solid targets (Ni, W) can be nicely resolved.
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Figure 2.10: Scattering angle as a function of the reconstructed primary vertex position along
the beam axis [6].



Chapter 3

Data Selection

COMPASS recorded data with a 191 GeV/c proton beam in 2008 and 2009. A two week long
pilot run in 2008 was intended as a test and the trigger composition was changed several times.
In 60% of these data, the same trigger was used as in the eight week long main data taking
campaign in 2009. In addition, the trigger rate could be increased by approximately 50% in
2009. For this reason, the pilot run data amounts to less than 10% of the total sample. Even
though the analysis has been started on this considerably smaller data set, it is neglected for
the final results as it requires a different treatment concerning both selection and simulation.

A rough estimate of the available luminosity can be calculated based on the number of
scattering centres in the target volume per area. The total number of incident beam particles
measured by a counting unit connected to the scintillating fibre detector upstream of the exper-
imental zone is approximately 1013 for the analysed data set. Taking into account the fraction
of protons in the positively charged hadron beam of about 75%, an integrated luminosity of
approximately 12 pb−1 of proton-proton reactions was available in 2009. Due to trigger and
reconstruction efficiencies as well as dead-times, the effective luminosity was reduced by about
a factor of ten [8].

3.1 Event Topology

3.1.1 Trigger

Beam

Beam
Veto

FI01X + Beam Counter

Target

RPD Sandwich
Veto

SM1 SM2 Beam Killer ECAL2

Figure 3.1: DT0 trigger scheme: Trigger (blue) and Veto (purple) components [59]. In the
spectrometer, a non-interacting beam track (red) and an event with three charged tracks
(green) is drawn for illustration.

25
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The principal trigger used to record the data is called DT01. It requires a signal from an
incoming beam proton in a scintillator disc with 3.2 cm radius which was placed approximately
7 m upstream of the target. The horizontal plane of the scintillating fibre detector upstream of
the target (FI01X) is used in coincidence. A signal from a particle recoiling from the target and
hitting both barrels of the recoil proton detector (RPD) system indicates an interaction within
the target volume. Since the recoil proton has to be able to leave the target with enough energy
to penetrate the inner barrel and reach the outer scintillator slabs, this results in a minimum
value for the squared four-momentum transfer to the target proton of about 0.07 GeV2/c2.

Furthermore, a veto system helps to select only clean and reconstructable events. It blocks
events with one or more beam particles outside of the target region or particles traversing the
spectrometer without any interaction. If one or more particles leave the target with a polar
angle of more than 180 mrad with respect to the beam axis, the event is outside of the spec-
trometer acceptance and discarded by the sandwich veto detector [95]. Figure 3.1 illustrates
the trigger scheme with all components and particle trajectories for exemplary events.

During the data taking periods, few other triggers were also recorded for calibration pur-
poses. These include non-interacting beam particles, particles from the halo of the beam and
a random trigger. However, about 95% of the recorded events fulfilled the DT0 criteria and
were used in the analysis presented in this work.

3.1.2 Primary-Vertex Reconstruction
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Figure 3.2: Primary vertex distribution.

For the analysis described in this work, the events are required to have exactly one recon-
structed primary vertex within the physical boundaries of the liquid hydrogen target in order
to avoid ambiguities in the RPD reconstruction (cf. Section 3.1.3). In addition, the vertex has
to have exactly three reconstructed outgoing particle tracks whose charge sum matches the in-
cident positive beam. Figure 3.2 shows the spatial distribution for the accepted vertices along
the beam axis (a) and in the transverse plane (b). A dip can be observed near −50 cm, which
reflects a minor inefficiency of the RPD trigger. At this position, light guides are attached to
the scintillator slabs for calibration. In the transverse plane, the vertex distribution follows

1Diffractive Trigger 0
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the beam profile which is centred on the target. The filling level of liquid hydrogen can be
discerned in the upper part.

3.1.3 Particle Identification

The positive hadron beam with a momentum of 191 GeV/c consists of 74.6% protons, 24.0%
pions and 1.4% kaons [6] at the COMPASS target. The experimental setup includes a set
of two differential Cherenkov detectors (CEDAR) located upstream of the target in order to
distinguish between the different beam components. However, one of the CEDAR detectors
was used to positively identify pions in the beam for a part of the data recording period. Hence,
we require a positive proton signal in only one of the CEDARs for the event selection. The
settings have to be adapted time-dependently, which is realised by means of a data base. The
combination of efficiency and geometrical acceptance of the CEDAR detectors was measured
to be close to 90% [6].

The recoil proton detector represents the most important contribution to the diffractive
reaction trigger DT0. In addition, the specific energy loss spectra in the outer barrel of
the RPD can be used to identify the recoiling protons. With elastic scattering data, it was
verified that the vast majority of the recoil particles are protons [6]. With this information,
the time-of-flight measurement between both barrels allows the reconstruction of the four-
momentum of the recoil proton which is later used in evaluating the energy and momentum
balance (cf. Section 3.1.4). Only events with exactly one charged track in the RPD were
accepted in order to avoid ambiguities.

Of the three tracks leaving the primary vertex, two have positive charge. They have to be
distinguished using the information provided by the ring imaging Cherenkov (RICH) detector
in order to assign the right mass to the particles. However, the present RICH setup only allows
reliable particle identification up to 50 GeV/c. On the other hand, the beam proton is expected
to transfer only a small fraction of its momentum in central production reactions and therefore
remains the most energetic particle in the reaction. Hence, the proton cannot be identified
directly. In exchange, the other positive particle can be identified as either pion or kaon in
about 60% of the events.

As the hadronic cross section for pion production is by more than one order of magnitude
larger than that for kaons [13], misidentification of other particles as π+ does not play a
significant role for the channel studied in this work. A simple comparison of the likelihoods L
for the pion, kaon, proton or background hypotheses of the positive track is enough to select
a clean sample of π+π− events. In Figure 3.3, the momentum distributions of the identified
sample are compared with events for which a mere assignment of the proton mass to the faster
positive particle was used. The low momentum threshold of 2.8 GeV/c for pion identification
is thereby reflected by the suppression of the enhancement at 180 GeV/c in the momentum
distribution of the fast proton pf (cf. Figure 3.3b). In combination with the characteristics of
the central production reaction, this selection criterion will be reconsidered in Section 3.3.

Due to its much smaller cross section [13], the identification of produced kaon pairs requires
more attention. First of all, the lower momentum threshold at 9.5 GeV/c severely limits the
kaon identification capabilities of the RICH detector in the COMPASS setup. In addition, the
probability for the misidentification of a π+ as a K+ can create a large impurity in the sample.
If it is evaluated with the pure particle samples as described in [66], the misidentification prob-
ability rises tremendously for momenta above 40 GeV/c (cf. Figure 3.4). Consequently, the
number of misidentified pions may even exceed the expected number of kaons. This pion back-
ground can be suppressed by applying a threshold on the ratio of the likelihoods LK+/Lother.
The momentum distribution of identified kaons is shown in Figure 3.5 for increasing likelihood
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Figure 3.3: Laboratory momentum distributions for the reaction pp → pfπ
+π−ps with all

selection cuts applied (filled) and without the RICH identification of π+ (open).

thresholds. Only for the final value of 1.30, the unphysical enhancement towards high momenta
owing to misidentified pions is completely suppressed (cf. also Figure 4.9). Even higher values
of this ratio do not improve the purity of the sample, while valid events are lost uniformly
along the K+ momentum. With this identification scheme, the negative particle can be safely
attributed as K− owing to the conservation of strangeness in hadronic reactions.

3.1.4 Four-Momentum Conservation

The beam energy is not measured in the COMPASS hadron beam setup. In order to guarantee
the exclusivity of the measurement, the total energy of all measured final-state particles is
summed up. A clear peak at 192 GeV is obtained (cf. Figure 3.6), which reflects the mass of
the target proton added to the beam energy. Only the events whose energy sum lies within
the boundaries of three standard deviations around the maximum are accepted. The width of
the exclusivity peak of about 1.6 GeV is mainly given by the intrinsic momentum spread of the
beam line and is far larger than the resolution of the spectrometer (cf. Chapter 4).
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In addition, the information provided by the RPD is used to correlate the azimuthal angle
φ of the recoil proton with the one of the forward going three body system pfπ

+π−. As they
should be back-to-back for exclusive reactions, a peak at 180◦ can be observed in the angle
difference (cf. Figure 3.7). The requirement that the angle lies around 3 standard deviations
(σφ ≈ 0.1 rad) around the maximum has a big overlap with the requirement for energy balance.
The combined application of both cuts guarantees an exclusive sample. For the case of di-pion
production, the contribution from additional final-state particles which escape the detection
lies below 5% with these cuts.

In total, approximately 9 · 107 exclusive events with the required topology of four outgoing
charged tracks were recorded in 2009. In more than 5 · 107 events, one positive track can be
identified as a pion. The positive kaon could be identified for about 8 · 105 events. We will
examine these data samples in detail in the following section, before revisiting the particle
identification methods for centrally produced events (cf. Section 3.3).
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3.2 Diffractive Dissociation of Beam Protons

Without further selection criteria, diffractive dissociation of the incident proton dominates the
proton-proton cross section at

√
s = 18.9 GeV. This reaction provides access to the excited

baryon spectrum, which is as important for the understanding of QCD as the meson spectrum.
Baryons as three-quark systems may be sufficiently complex to reveal physics which is hidden
in the meson sector [73]. Complementary to existing photo-production experiments, hadron-
induced reactions can help to complete the knowledge about the baryon spectrum. Poorly
known parameters of excited baryons like their widths and branching ratios can become ac-
cessible. In this case, especially the Nππ decay modes are important to reach high-mass and
high-angular-momentum states.

Since baryon spectroscopy is not the prime focus of this work, only a selection of relevant
kinematic spectra will be presented in the following. All distributions show the data sample
selected with the criteria introduced above, including the identification of the positive meson
by the RICH detector. The data set serves as a starting point for a dedicated partial-wave
analysis [17, 104].

3.2.1 N∗ and ∆ Resonances

At first, we focus on the psπ
+π− final state. The squared four-momentum transfer t from

the beam to the target proton peaks at low values which is characteristic for the dominant
diffractive scattering [43]. The sharp cut at 0.07 GeV2/c2 is created by the acceptance of the
recoil proton detector as the central trigger element (cf. Figures 3.8a-c). Events below this
threshold which passed the selection are presumably triggered by delta electrons or pile-up
events.

On the other hand, the t distribution shows a strong dependence on the invariant mass of
the produced pfπ

+π− system. This is illustrated by fitting the sum of two exponential functions
to the t distributions in mass bins of 10 MeV/c2. Figure 3.8 shows the fitted values for the
exponential slopes (d), their relative contribution (e) and the reduced χ2 as a measure for the
goodness of fit (f) as a function of the three-body mass. Near threshold, the t distribution
is completely dominated by a component with a steep slope. However, the simple model is
clearly not sufficient to describe the data (cf. Figure 3.8a), which is also reflected in the χ2

distribution. For masses above 1.8 GeV/c2, two exponents with slopes around −11 (GeV/c)−2

and −4.5 (GeV/c)−2 fit the data with high accuracy (cf. Figure 3.8c). A similar behaviour was
seen in the diffractive dissociation of a negative pion beam into a three-pion system [59].

In the mass region below 2 GeV/c2, the t distribution is modified by the occurrence of
baryon resonances, which can be seen especially in the relative strength of the two fitted
exponential curves (cf. Figure 3.8e). The invariant mass distribution of the pfπ

+π− system
shows visible enhancements as well (cf. Figure 3.9a). As a partial-wave analysis is needed in
order to determine spin and parity of the resonances, we can only list possible states with
relevant Nππ decay modes which can be found in the Review of Particle Physics [26]. In the
2012 issue, a new naming scheme for baryons was introduced to specify the intrinsic properties
JP and to be independent of the formation reaction. It will be employed in the following.

Since the dominating Pomeron exchange does not transfer isospin [43], only N∗ states with
I = 1

2 are taken into account. Even if we consider only states whose existence is certain
or at least very likely2, the prominent peak around 1.7 GeV/c2 could contain contributions
from N(1700) 3/2−, N(1710) 1/2+ and N(1720) 3/2+. The masses and widths of these states
are only known with an uncertainty of 50 − 100 MeV/c2. The less pronounced peak around

2i.e. these states have **** and *** ratings in the PDG [26]



3.2. DIFFRACTIVE DISSOCIATION OF BEAM PROTONS 31

)2/c2Squared Four-Momentum Transfer t (GeV
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2
/c2

E
ve

nt
s 

/ 0
.0

05
 G

eV

1

10

210

310

410

510
COMPASS 2009

s
 p-π+π 

f
 p→p p 

exp(-31 t) + 0.0077 exp(-2.9 t)

(a) mpfπ
+π− < 1.40 GeV/c2

)2/c2Squared Four-Momentum Transfer t (GeV
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2
/c2

E
ve

nt
s 

/ 0
.0

05
 G

eV

1

10

210

310

410
COMPASS 2009

s
 p-π+π 

f
 p→p p 

exp(-21 t) + 0.062 exp(-4.0 t)

(b) 1.50 GeV/c2 < mpfπ
+π− < 1.51 GeV/c2

)2/c2Squared Four-Momentum Transfer t (GeV
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2
/c2

E
ve

nt
s 

/ 0
.0

05
 G

eV

210

310

410

510

610 COMPASS 2009

s
 p-π+π 

f
 p→p p 

exp(-9.4 t) + 0.27 exp(-3.9 t)

(c) 2.00 GeV/c2 < mpfπ
+π− < 2.01 GeV/c2

)2 System (GeV/c-π+π
f

Invariant Mass of p
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

-2
Sl

op
e 

Pa
ra

m
et

er
 (

G
eV

/c
)

0

5

10

15

20

25

30

35

40 COMPASS 2009

s
 p-π+π 

f
 p→p p 

(d) Slopes parameters b1 (green) and b2 (red)

)2 System (GeV/c-π+π
f

Invariant Mass of p
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

1
/a 2

R
at

io
 a

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
COMPASS 2009

s
 p-π+π 

f
 p→p p 

(e) Ratio a2
a1

)2 System (GeV/c-π+π
f

Invariant Mass of p
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

/N
D

F
2 χ

0

1

2

3

4

5

6

7
COMPASS 2009

s
 p-π+π 

f
 p→p p 

(f) χ2/NDF

Figure 3.8: t distributions with fit of a1e
−b1t+a2e

−b2t (blue) in the range [0.1, 1.0] GeV2/c2 (a-c),
parameters of the fit in 10 MeV/c2 bins of the pfπ

+π− mass (d-f).



32 CHAPTER 3. DATA SELECTION

)2 System (GeV/c-π+π
f

Invariant Mass of p
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

2
E

ve
nt

s 
/ 5

 M
eV

/c

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
610×

COMPASS 2009

s
 p-π+π 

f
 p→p p 

(a) pfπ
+π−

)2 System (GeV/c-π+πInvariant Mass of 
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

2
E

ve
nt

s 
/ 5

 M
eV

/c

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

610×
COMPASS 2009

s
 p-π+π 

f
 p→p p 

(770)0ρ

(980)0f

(1270)2f

(b) π+π−

)2 System (GeV/c-πInvariant Mass of p
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

2
E

ve
nt

s 
/ 5

 M
eV

/c

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

610×
COMPASS 2009

s
 p-π+π 

f
 p→p p 

(1232)0∆

(c) pfπ
− (psπ

− hatched)

)2 System (GeV/c+πInvariant Mass of p
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

2
E

ve
nt

s 
/ 5

 M
eV

/c

0

0.2

0.4

0.6

0.8

1

610×
COMPASS 2009

s
 p-π+π 

f
 p→p p 

(1232)++∆

(d) pfπ
+ (psπ

+ hatched)

Figure 3.9: Invariant mass spectra for the pfπ
+π−ps final state.

1.5 GeV/c2 may include the well explored N(1520) 3/2−, N(1520) 1/2− and even a shoulder to-
wards lower masses stemming from the Roper resonance N(1440) 1/2+ [87]. The enhancement
at 2.2 GeV/c2 could be a sign for the highly excited states N(2190) 7/2−, N(2220) 9/2+ and
N(2250) 9/2− which were mainly studied in Nπ decays so far. Additional baryon resonances
may be hidden beneath these peaking structures. Since nearly all quantum numbers can be
produced in this reaction, a partial-wave analysis of the data sample is very challenging. On
the other hand, it might be the only way to confirm the existence of these states or to determine
their properties precisely.

A common approach to formulate the amplitudes for a partial-wave analysis assumes the
isobar model, which describes the decay of a diffractively produced resonance through a series
of two-body decays. The intermediate states, the eponymous isobars, are either modelled using
knowledge from other experiments [59] or fitted themselves [69]. For the case of an excited
N∗ resonance decaying into three hadrons, both Nπ as well as ππ resonances are possible as
intermediate states (cf. Figure 3.10).

The invariant mass distribution of the π+π− system shows clear signatures for the ρ(770),
f0(980) and f2(1270) mesons (cf. Figure 3.9b). Since these resonances play also an important
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Figure 3.10: Diffractive proton dissociation into pπ+π− in the isobar model.

role in the central-production analysis, we will discuss the influence of diffractive dissociation
as a background later in this work.

The observation of excited baryons in the pπ subsystems is striking. The invariant mass
spectrum of the pfπ

− system (cf. Figure 3.9c) shows a very prominent ∆0(1232) 3/2+ baryon,
but at least two peaks formed by other nucleon excitations like theN(1535) 1/2−, N(1650) 1/2−

and ∆(1700) 3/2− can be discerned. As both I = 1
2 and I = 3

2 (∆) are possible as intermediate
states, the unambiguous identification is even more speculative without a dedicated partial-
wave analysis.

Only I = 3
2 resonances can be formed by the doubly charged pfπ

+ combination (cf. Fig-
ure 3.9d). The invariant mass distribution is dominated by the ∆++(1232) 3/2+ resonance,
even though an enhancement around 1.9 GeV/c2 is evidence for the presence of higher excita-
tions. Since ∆++ production seems to represent a large fraction of the data, [74] suggested
it as a possibility to obtain the Reggeon-exchange contribution to the central production pro-
cess. However, the ∆++ as intermediate state in the decay of an N∗ resonance does not allow
conclusions of this kind.

No resonant structures can be discerned for the psπ
± combinations (cf. hatched histograms

in Figures 3.9c and d). The kinematic limits for the identification of the π+ by the RICH
detector allow only masses above 2.4 GeV/c2 in the psπ

+ system.

3.2.2 Baryon Resonances with Strangeness

If one positive particle is identified as a kaon, strangeness conservation implies the production
of a kaon pair in the reaction. This enables us to study decays of excited N∗ baryons into
intermediate states with strangeness. The narrow Λ0(1520) 3/2+ in the invariant mass spec-
trum of the pf K

− subsystem (cf. Figure 3.11a) can even be treated as a quasi-stable final-state
particle in a two-body analysis. Signs for higher-mass baryon excitations with strangeness are
discernible around 1.7 and 1.8 GeV/c2. No resonances are allowed in the pf K

+ subsystem.
The three-particle invariant mass with a threshold around 2 GeV/c2 neither shows evidence for
resonant components.

The K+K− invariant mass distribution exhibits a very narrow φ(1020) peak with a width
of approximately 5 MeV/c2 (cf. Figure 3.11b). Also this vector meson with hidden strangeness
is an indication for the isobaric decay of N∗ resonances above 2 GeV/c2, which are studied
in [8]. The other structures in the spectrum, which may for example arise from K+K− decays
of f2(1270), f0(1500) and f ′2(1525) mesons, will be discussed in detail in Chapter 7.
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Figure 3.11: Invariant mass spectra for the pfK
+K−ps final state.

3.3 Selection of Central Production

Since the trigger was not sensitive to a specific production mechanism, additional kinematic
cuts are indispensable in order to enrich the central-production component. Various approaches
have been used in the past and were examined with our data. Most of the methods showed
a large overlap, but none was able to successfully single out a pure double-Pomeron exchange
sample for the centre-of-mass energy of

√
s = 18.9 GeV. However, a final choice can only be

reached after effects of the diffraction background component on the partial-wave decomposi-
tion are observed in Chapter 5.

We will focus on the selection of centrally produced di-pion systems for the rest of this
chapter. The discussion of the kaon-pair production will be resumed in Chapter 7.

3.3.1 Invariant-Mass Cut

The invariant mass spectrum of the pfπ
+ subsystem shows a dominant ∆++(1232) peak (cf. Fig-

ure 3.9d). The production of baryon resonances is also obvious in the pfπ
− subsystem (cf. Fig-

ure 3.9c). Similar contributions were also reported for data recorded by the OMEGA spectrom-
eter [21], where an invariant mass of at least 1.5 GeV/c2 was required for the pf,sπ

± (short: pπ)
combinations in order to enrich the centrally produced π+π− system in the sample. Even
though this mass cut cannot suppress the diffractive-dissociation component completely, the
final results do not change significantly when the threshold is increased to 2.0 GeV/c2.

A qualitative comparison of our pfπ
± invariant mass spectra with the ones observed with the

WA102 experiment [21] at
√
s = 29.1 GeV/c2 reveals a considerable suppression of the masses

above 2 GeV/c2 with respect to the peak height of the baryon resonances in the COMPASS
data. It is, however, difficult to judge whether the different

√
s-dependence of the competing

production processes (cf. Section 1.2.2) is responsible for this difference. The requirement for
a fast proton scattered in forward direction, which was used as a part of the trigger in the
OMEGA setup [21], can also have a similar effect.

In order to be able to compare the analyses of both experiments, we decided to adopt the
same kinematic cuts for the selection of the centrally produced system at first. Figure 3.12a
illustrates the momentum distribution of the proton pf for events where the pπ combinations
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Figure 3.12: Momenta in laboratory frame for events with identified π+,
m(pπ) > 1.5 GeV/c2 (filled).

have an invariant mass above 1.5 GeV/c2. As expected for centrally produced events, the
distribution peaks at values near the beam momentum of 191 GeV/c. The momentum of pf is
limited by the minimum momentum required for the other charged particles to reach the first
spectrometer magnet. In addition, the RICH detector has a momentum threshold of 2.8 GeV/c
for the π+ to be identified. On the other hand, the long tail of the momentum distribution
towards low momenta has to be cut at 140 GeV/c in order to suppress events with a fast
π−. The requirement for a large proton momentum alone is not sufficient to select central
production reactions, in contrast it can even accentuate the baryon resonances in the pfπ

−

subsystem (cf. Figure 3.13).
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Figure 3.13: Invariant mass spectrum of pfπ
− with momentum cut for pf .

In Section 3.1.3, we used the RICH detector to distinguish the two forward-going particles pf

and π+ in the final state. After the additional removal of low masses in the pπ subsystems, the
particles are clearly separable by their momentum in the laboratory frame. The momentum
distribution for the proton pf peaks at values close to the beam energy while the majority
of produced positive pions has much lower momenta. The assignment is therefore unique,
the RICH identification can be omitted. By this measure, the data set which satisfies the
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Figure 3.15: Invariant mass spectrum of the
π+π− subsystem with m(pπ) > 1.5 GeV/c2.

requirement of a pπ mass above 1.5 GeV/c2 is enlarged by approximately 40% to about 1.4 ·107

events. Especially the low-momentum threshold of the RICH detector and its non-perfect
efficiency are avoided. Furthermore, a peak is observed in the momentum distribution of the
fast proton pf (cf. Figure 3.3b) without explicit identification of the positive pion. This acts
as a clear sign for a contribution of central production to the data set. Nevertheless, the event
is discarded if one of the tracks is unmistakably identified as a kaon, which happens in around
2.4% of the cases.

The effect of the requirement for a large invariant mass of the pπ systems on the pfπ
+π−

invariant mass spectrum is shown in Figure 3.14. The distribution starts at a mass of about
2 GeV/c2 and no obvious resonant behaviour can be discerned, which is expected for central-
production reactions. The squared four-momentum transfer distribution does not change for
three-body masses above 2 GeV/c2 (cf. Figure 3.8).

Figure 3.15 shows the π+π− invariant mass spectrum of the centrally produced events. The
peaks due to the ρ(770) and the f2(1270) resonances as well as the sharp drop in intensity
near the f0(980) meson due to the KK̄ threshold can be clearly recognised. The spectrum
appears to fit the scaling of the meson production cross sections with

√
s [74] observed at the

OMEGA spectrometer with different beam energies (cf. Figure 1.9). The production of ρ(770)
decreases rapidly with increasing

√
s, which is explained by a Reggeised pion-pion contribution

(≈ 1/s2). On the the other hand, the enhancement at low π+π− masses as well as the f0(980)
remain practically unchanged, a fact that is characteristic for s-independent Pomeron-Pomeron
scattering. A quantitative comparison is, however, not possible at this stage, since the spectra
are not corrected for acceptance.

3.3.2 Alternative Criteria for the Selection of Central Production

The effect of an invariant-mass cut on the pπ subsystems of 1.5 GeV/c2 on the Feynman
xF distributions for the fast and the slow protons as well as the di-pion system is shown
in Figure 3.16. Very similar to the distribution from [21], the π+π− system lies well within
|xF | ≤ 0.25 and can therefore be regarded as centrally produced. The requirement for a
minimal momentum of the fast proton pf of 140 GeV/c alone already kinematically restricts
the central system to this region. On the other hand, it apparently enhances baryon resonances
in the pfπ

± systems (cf. Figure 3.13). An additional selection criterion is absolutely necessary.
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Figure 3.16: Feynman xF distributions,
m(pπ) > 1.5 GeV/c2 (filled).
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Figure 3.17: Rapidity distributions,
m(pπ) > 1.5 GeV/c2 (filled).
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Figure 3.18: Feynman xF distributions,
|y(p)− y(π)| > 2 (filled).
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Figure 3.19: Rapidity distributions,
|y(p)− y(π)| > 2 (filled).
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Figure 3.21: Invariant mass spectrum of the
π+π− subsystem with |y(p)− y(π)| > 2.
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Figure 3.22: Distribution of squared four-momentum transfers t1 and t2 for events with
|y(p)− y(π)| > 2.

In the centre-of-mass frame of the proton-proton reaction, the rapidity interval [−3, 3] is
kinematically accessible in COMPASS. A small rapidity gap between the pf and the π+π−

system is visible for the sample selected by the invariant-mass cut (cf. Figure 3.17). However,
only the occurrence of rapidity gaps ∆y larger than two units between the protons and either
central pion is a clear sign for a dominant double-diffractive contribution [43]. If we explicitly
select events with this requirement, the sample is reduced to 7.5 · 106 events, and the xF-
and y-distributions become almost symmetric (cf. Figure 3.18 and 3.19). The pfπ

± combina-
tions show only very little evidence for baryonic resonances above 1.6 GeV/c2 (cf. Figure 3.20),
and the three-body invariant mass threshold is even increased to about 3 GeV/c2. The ρ(770)
contribution to the π+π− invariant mass spectrum is greatly reduced compared to the enhance-
ment at threshold (cf. Figure 3.21), which is a sign for a dominant double-Pomeron exchange
component. On the other hand, only very little data remain for invariant π+π− masses above
1.6 GeV/c2.

Furthermore, the shape of the squared four-momentum transfer distribution from the beam
to the central system t1 becomes very similar to the one from the target proton t2 for these
events. The only major difference is caused by the trigger threshold at t2 ≈ 0.07 GeV2/c2. Fig-
ure 3.22 shows the two distributions with double-exponential fits in the interval [0.1, 1.0] GeV2/c2.
Both exhibit the typical slopes and ratios for diffractive reactions that are mediated by Pomeron
exchange in Regge theory. The observed reaction is therefore symmetric with respect to beam
and target, which is consistent with central production. In contrast, this symmetry is not
observed for the selection via the pπ invariant mass cut. Additional observations in favour of
requiring explicit rapidity gaps to select central-production events will be presented in Chap-
ter 5.

An equivalent approach to select double-Pomeron exchange events in the analysis of data
from very early central-production experiments at NAL3 was introduced by Chew [33]. With
a 205 GeV/c hadron beam, the experimental conditions were very similar to the ones in COM-
PASS. However, only a rough estimation of the total cross section could be achieved with 191
centrally produced events. The variables ZA,B were introduced as

ZA,B ≡ ln
s

s1,2
(3.1)

3National Accelerator Laboratory, now FNAL or Fermilab
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with the squared invariant masses s1,2 formed by the central system together with one of the
final-state protons. Since qualitative arguments given by Regge theory require xP to be larger
than 0.9 for Pomeron exchange (cf. Section 1.2.2), the DPE region is located in the triangle
between ZA,B ≥ 2.3. The third side of this triangle is given by the phase space constraint, which
depends on the total available energy for the reaction. Figure 3.23a illustrates this limit as a
function of beam momentum in the laboratory frame. The accessible region with the 191 GeV/c
COMPASS beam is substantial. The data set selected by rapidity gaps larger than two units
has a large overlap with the selected region and therefore confirms the postulation of a DPE
contribution (cf. Figure 3.23b). In [33], it is also shown that this requirement approximately
translates into an invariant mass cut on the pπ subsystems of greater than 1.5 GeV/c2. In turn,
the centrally produced di-pion mass can be as large as 2 GeV/c2.

(a) DPE [33], highlighted region accessible
with COMPASS
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(b) Data with |y(p) − y(π)| > 2, DPE region
within dashed lines

Figure 3.23: Triangle plot defining the double-Pomeron exchange region.

A recent theoretical work [75] evaluates differential distributions for the reaction p p →
p π+π−p in a Regge approach. For the double-Regge exchange contribution to the cross sec-
tion, which includes PP, RP and RR scattering processes, detailed predictions for the kinematic
distributions are presented. Especially the rapidity distributions of the produced pions are used
to disentangle the different contributions. While they all overlap at

√
s = 5.5 GeV4 (cf. Fig-

ure 3.24), a component dominated by Pomeron-Pomeron scattering can be selected in the ra-
pidity region |y(π)| < 1 for

√
s = 200 GeV5. This requirement was also tested on the selection

of COMPASS data, which lies in between the two cases with with
√
s = 18.9 GeV. Diffractive

resonance production, which dominates the cross section for low energies (
√
s < 20 GeV), is not

included in the intentionally simplified Regge framework [75]. However, qualitative statements
are made also on the rapidity distributions of the pions produced by this reaction. The contri-
bution from double-Regge exchange processes tends to be along the diagonal y(π+) = y(π−),

4corresponding to PANDA energy
5Relativistic Heavy Ion Collider (RHIC) energy
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Figure 3.24: Rapidity distributions of pions at different centre-of-mass energies [75].

(a) Double-diffraction (DD) and diffractive
single-resonance excitation (DSRE) regions
for the pion rapidities y3,4 [75]
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(b) Data, DD within dashed line

Figure 3.25: Rapidity distribution for both pions in the reaction.

with DPE near the origin (cf. Figure 3.25a). Events with an excited beam proton, so-called
single-diffraction reactions, can be found with pion rapidities close to the beam rapidity and
are thus kinematically separated. In Figure 3.25b, this effect is confirmed with COMPASS
data. Apart from the dominant diffractive dissociation reactions near y3,4 = 3, a second com-
ponent can be clearly discerned around the origin. For backward rapidities, the acceptance at
COMPASS is sharply limited by the aperture of the first spectrometer magnet at y3,4 ≈ −0.7.
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Modern theoretical works on central production, as e.g. discussed in [60] and followed
up in Section 4.1.3, use a combination of constraints on rapidity and Feynman xF to specify
the reaction. For our data, the requirement for both pions to have absolute rapidities below
unity together with the lower limit for xF of the protons of 0.9 is almost equivalent with the
selection of minimal rapidity gaps of two units as discussed above. However, it is often easier
to implement as a trigger in experiments or as a cut in numerical simulations.

In this work, we will study the centrally produced sample selected by an invariant mass
cut on the pπ subsystems in order to maintain the possibility to compare the results to the
experiments at the CERN OMEGA spectrometer. In Chapter 5, we observe effects of the
diffractive dissociation component on the partial-wave analysis which lead to the application
of the stricter criterion, i.e. the requirement for rapidity gaps of at least two units. However,
the selection of a pure double-Pomeron exchange sample without signs of ρ(770) production
could not be achieved with any kinematic cuts.

3.3.3 Glueball Filter

As introduced in Section 1.2.3, Close and Kirk [37] observed a dependency of the produced
states on the transverse momentum difference dPT of the exchange particles in data recorded
by the OMEGA spectrometer at CERN. In particular for small dPT, known qq̄ states like
f2(1270) were claimed to be suppressed relative to the f0(980) meson and the glueball candi-
dates f0(1500) and f2(1950).

If we bin the centrally produced data selected with the identical pπ invariant mass cut in
terms of dPT, we can also observe this effect (cf Figure 3.26). The intensities of the ρ(770) and
f2(1270) signals clearly decrease in the limit dPT → 0, while the enhancement at threshold
and the sharp drop around 1 GeV/c2 remain stable. Only a small fraction of events with
π+π− masses above 1.5 GeV/c2 can be found with dPT < 0.2 GeV/c. However, a quantitative
conclusion can only be drawn after the data are decomposed into partial waves.
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Figure 3.26: mπ+π− for dPT < 0.2 GeV/c (left), 0.2 < dPT < 0.5 GeV/c (centre) and
dPT > 0.5 GeV/c (right).
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The dependence on dPT is kinematically related to the azimuthal angle φ between the
slow- and the fast-proton scattering planes defined in the pp centre-of-mass system by the
relation [71]

cosφ =
dP 2

T − P 2
T

4t1t2
. (3.2)

Figure 3.27 shows this angle as a function of the invariant mass of the centrally produced π+π−

system. The qq̄ mesons ρ(770) and f2(1270) are dominant for small values of φ, while the
enhancement at low masses is produced in reactions with φ = 180◦. The f0(980) meson seems
to show a constant behaviour as a function of φ. [74] explains this discrepancy as a variation
in momentum transfer, which selects different regimes of the production mechanisms. Short-
range quark or gluon exchange between the two Pomerons for large transfers compete with
the exchange of meson trajectories for more peripheral collisions. Similar effects are observed
in the diffractive production of ρ(770)π systems [59], where the peak of the a1(1260) meson is
also considerably altered as a function of the squared four-momentum transfer.
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Figure 3.27: Dependence of azimuthal angle φ on di-pion invariant mass.

The kinematic origin of these dependencies was quantified by Kaidalov et al. [68] using
the tools of Regge phenomenology. Following this, we have constructed an alternative set of
amplitudes and applied the formalism to our data. This new approach will be introduced in
Chapter 8. In the past, however, the amplitudes of the reaction were constructed without
the information of this additional degree of freedom. For the main analysis presented in this
work, we will restrict ourselves to the decay kinematics of the central two-pseudoscalar meson
systems and neglect the production variable φ.
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3.4 Neutral Particles in the Final State

In addition to excellent charged-particle tracking capabilities, COMPASS is also equipped to
detect high energetic photons in a broad kinematic range. This can be used to reconstruct the
decays of centrally produced neutral particles into photons. However, owing to geometrical
acceptance and material in the flight path between the interaction point and the electromag-
netic calorimeters, the reconstruction efficiency is about one order of magnitude lower than
for the corresponding charged particles [6]. Nevertheless, the data serve as an independent
confirmation of the charged-particle analyses since a different part of the apparatus is used
to reconstruct these final-states. In addition, Bose symmetry allows only even orbital angular
momentum states of two identical pseudo-scalar mesons. This limits the quantum numbers of
the produced resonances accordingly.

We use a data selection scheme that was developed and approved by the COMPASS exper-
iment for the analysis of the baryon spectrum [104] in order to support the results of the π+π−

analysis presented in this work. Apart from that, we do not expect a gain in information from
the quantitatively inferior data.

3.4.1 pp→ pf π
0π0 ps

A total number of about 1.6 · 106 events was reconstructed in the pf π
0π0 ps final state. Apart

from effects due to the different acceptance, the kinematic distributions for π0π0 production
show many similarities with the ones of the corresponding π+π− channel. The ∆+(1232) reso-
nance dominates the pfπ

0 invariant mass spectrum (cf. Figure 3.28), where both combinations
are filled into one histogram. At least two peaks for baryon resonances with higher masses
can be discerned around 1.5 GeV/c2 and 1.7 GeV/c2. The π0π0 invariant mass itself exhibits a
striking but expected difference with respect to the π+π− system at the ρ(770) mass, which is
not allowed to decay into two identical particles (cf. Figure 3.29). Apart from that, the shapes
coincide nicely.
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Figure 3.28: Invariant mass of pfπ
0 systems.
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Figure 3.29: Invariant mass of π0π0 system.

The difference in acceptance between charged and neutral pion reconstruction can be ob-
served directly in the xF distribution of the centrally produced subsample (cf. Figure 3.30).
Due to the comparably large distance of 14 m between the target and ECAL1, almost no π0

can be detected if they are emitted backwards relative to the proton-proton centre-of-mass
system (xF < 0). The requirement for the pπ0 masses to be at least 1.5 GeV/c2 is only fulfilled
by about 2 · 105 events, and their invariant mass distribution is heavily distorted. As it can be
seen in Figure 3.31, the enhancement for π0π0 masses below 800 MeV/c2 is almost completely
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suppressed by this acceptance effect. Nonetheless, we will present the results of a partial-wave
analysis of this sample in Chapter 5.
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Figure 3.30: Feynman xF distributions,
m(pπ) > 1.5 GeV/c2 (filled).
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Figure 3.31: Invariant mass of π0π0 system
with m(pπ) > 1.5 GeV/c2.

3.4.2 pp→ pf ηη ps

An additional channel is accessible in COMPASS data if the selected γγ combinations form
two η mesons. However, the total number of exclusive events recorded during the 2009 proton
run is only roughly 4400. The low-momentum threshold for η reconstruction of about 7 GeV/c
is the most important limiting factor. Consequently, a partial-wave analysis of this channel
could not be carried out. On the other hand, the comparison to the data recorded with a
negatively-charged pion beam (cf. Section 3.5) reveals important differences of the production
process.

Even though single-η production with a proton beam in COMPASS reveals signs for res-
onances in the pη system [104], the pfη invariant mass combination with the leading proton
in this channel does not show any structures (cf. Figure 3.32). The η-pair is already kine-
matically confined to the central region without any additional selection cuts. The ηη mass
spectrum in Figure 3.33 shows an enhancement at threshold and a broad structure around
1.5 GeV/c2. Previous experiments with a comparable data set [22] described the data with
resonance parameters fixed to the values obtained by a coupled ππ and KK̄ analysis [21].
A dominant contribution from f0(1500) and a shoulder from the f0(1710) resonance were re-
ported, while the intensities of f2(1270) and f2(2150) play only a minor role. However, in the
quoted publication only the partial-wave decomposed intensity distributions were fitted.

3.5 Beam-Particle Dependence

In addition to the data set with a positive hadron beam, the COMPASS experiment recorded a
competitive data set with a negatively charged pion beam in 2008, which opens the possibility
to study the dependence of the production mechanism on the beam particle species. Since
the experimental setup including the trigger and a great fraction of the detectors did not
change from 2008 to 2009, all final states can be directly compared on the level of kinematic
distributions. Considerable differences can be observed, depending on the studied final-state.

For the following considerations, we use data sets which were selected for the analysis of
diffractively produced π−π+π− [59], π−π0π0 and π−ηη [100] final-states.
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Figure 3.32: Invariant mass of pfη systems.
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Figure 3.33: Invariant mass of ηη system.

3.5.1 π−p→ π−
f (ππ)0 ps

In order to distinguish between the two negatively charged pions in the π−π+π− final state, we
will call the pion with the larger absolute momentum in the laboratory system π−f . Nonethe-
less, a central-production topology is only present after a kinematic selection as introduced in
Section 3.3. For reasons of consistency, we will require an invariant mass of the π−f π

+ subsys-
tem of at least 1.2 GeV/c2 as in [14] and a minimum momentum of 140 GeV/c for the fast pion.
This suppresses a large fraction of diffractively produced resonances, similar to the reaction
induced by a proton beam.

Without this requirement, the momentum distributions for the fastest final-state particle
are already very different depending on the beam type. While the protons have a clear peak at
momenta around 180 GeV/c (cf. Figure 3.3b), the fast pions in Figure 3.34 show a phase-space-
like distribution which has a maximum at intermediate values and only a little enhancement
around 180 GeV/c. Consequently, the requirements for central production select only 10% of
the total events, while more than 15% were selected with a proton beam.
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+) > 1.2 GeV/c2 (filled).
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Similar to pfπ
−, the π−f π

+ subsystem exhibits dominant resonant contributions as illus-
trated in Figure 3.35. As mentioned above, these resonant components can be emphasised
with a momentum limit of 140 GeV/c for the fast particle. An additional enhancement emerg-
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ing near 2 GeV/c2 may even be attributed to the f2(1950) meson. In contrast, the broad
component at threshold is completely suppressed by this kinematic cut.

Finally, the central π+π− system exhibits very similar features whether it is produced by
a pion or a proton beam (cf. Figures 3.15 and 3.36), which strongly supports the hypothesis
that the production mechanism is the same. The larger coupling to the ρ(770) is expected
in the 3π reaction and was also observed in earlier experiments [14]. The central-production
reaction is an important background in the studies of meson spectroscopy through diffractive
production [59].
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Figure 3.36: Invariant mass of π+π− system
with pion beam for m(π−f π

+) > 1.2 GeV/c2.
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Figure 3.37: Invariant mass of π0π0 system
with pion beam for m(π−f π

0) > 1.2 GeV/c2.

The production of two neutral pions with a pion beam shows equivalent kinematic char-
acteristics. Here, the π−f π

0 invariant mass is dominated by a ρ(770) signal. After enriching
the centrally produced events with a mass cut of m(π−f π

0) > 1.2 GeV/c2, the π0π0 spectrum
in Figure 3.37 is almost congruent to the one produced with proton beam (cf. Figure 3.31).
The lack of events in the low-mass region is attributed to the low photon acceptance in the
kinematic region where the neutral pions propagate backwards in the π−p rest frame.

3.5.2 π−p→ π−
f ηη ps

A strong dependence on the beam particle can be observed in ηη production. While it was
shown in Section 3.4.2 that a special central-production selection is not required for proton
beams, the pion couples very strongly to the ηη system. In Figure 3.38, a dominant contribution
from resonances in the π−f η subsystems can be discerned, e.g. the a0(980) and the a2(1320).
Only if they are effectively removed by a minimum pion momentum of 140 GeV/c, the ηη
invariant mass distribution is reduced to a shape similar to the one reconstructed with a
proton beam (cf. Figures 3.33 and 3.39). However, only about 6% of the data satisfy this
requirement compared to more than 40% for an equivalent cut on the data recorded with a
proton beam. The remaining sample of about 1000 events is too small to perform a dedicated
partial-wave analysis. On the other hand, it illustrates nicely the invariance of the central-
production reaction with respect to the beam particle species.
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tral selection (filled and scaled ×5).

3.5.3 Deck Effect

An alternative production mechanism, the so-called Deck effect, was introduced in [42] in or-
der to describe the dynamics of diffraction of a pion beam into three-pion final-states. The
beam particle in this non-resonant reaction presumably dissociates into a di-pion resonance
(e.g. ρ(770), f0(980), f2(1270)) and a pion which is almost on the mass shell. This pion
scatters quasi-elastically off the target proton into a physical final-state pion (cf. Figure 3.40).
A Monte-Carlo (MC) sample has been generated according to the amplitudes developed in [41]
in order to study this background process for the diffractive dissociation of three-pion reso-
nances [59].

p

P\R

π

π−

p

π−
ξ π−

π+

Figure 3.40: Illustration of the Deck process.

About 8% of the 108 generated events have a leading negative pion π−f with a momentum
above 150 GeV/c. As a result, the kinematically allowed region for the remaining di-pion system
lies within |xF| < 0.2 and can therefore be mistaken as centrally produced. On the other hand,
the fast pion seems to stem almost exclusively from the generated di-pion resonance, i.e. the
four implemented resonances stand out nearly background-free in the π−f π

+ invariant mass
spectrum (cf. Figure 3.41). In contrast, the combination of the π+ with the slow π− exhibits
a threshold enhancement which is almost congruent with the central di-pion system observed
with a pion beam (cf. Section 3.5). This appears to be a kinematic artifact of the wrong
di-pion combination rather than a resonant contribution. Figure 3.42 overlays the threshold
enhancement from the Deck MC sample onto the invariant mass distribution of the selected
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sample from pion-beam data. The two curves nicely coincide below 0.6 GeV/c2. For higher
masses, the resonant components in this di-pion system are not included in the model and can
consequently not follow the data. Events with resonances in the central system can account
for the large tail in the π−f π

+ invariant mass distribution above 2 GeV/c2 in Figure 3.41.
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Normalised to the maximum bin.
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Normalised to the maximum bin.

Quantitative conclusions from this observation are difficult to draw. Most notably, the se-
lection of centrally produced events as introduced in Section 3.5.1 has only a small contribution
from visible resonances above 1.5 GeV/c2 in the subsystems including the fast hadron (cf. Fig-
ure 3.35). As a consequence, the low-mass enhancement in the central di-pion system cannot
be entirely a kinematic reflection of Deck-like processes. Small contributions may, however, be
present.

This scenario is probably also applicable to the sample recorded with a proton beam,
given the observed similarities in the central system. We have seen in Section 3.2 that baryon
resonances decaying into pfπ

− can also be enhanced by the requirement of a minimal proton
momentum in the laboratory frame. It might be necessary to study these Deck-like effects with
intermediate baryon resonances in the future in order to understand the data entirely [74]. The
COMPASS data set is unique for this task, as it was recorded with minimal kinematic bias.



Chapter 4

Acceptance Correction

A detailed Monte-Carlo (MC) simulation is needed in order to understand and correct for
the effects of the experimental setup on the reaction under study. At first, the events with
a centrally produced meson system are generated according to a physical model, taking into
account the distributions of the beam momentum and the vertices in the target volume. These
events are propagated through a detailed model of the COMPASS spectrometer, where all
relevant secondary interactions and the responses of the detector planes are simulated. Finally,
these simulated pseudo-data are reconstructed with the software chain used also for real data.
All selection criteria introduced in Chapter 3 are applied in an analogous fashion.

Even though the acceptance correction for the partial-wave analysis is performed via nor-
malisation integrals (cf. Chapter 5), we will present the acceptance projected onto selected
kinematic variables in order to illustrate the effects of the apparatus on the measurement.

4.1 Event Generators

For the main part of this analysis, we use a phase-space generator for central production which
can be integrated into the official COMPASS simulation software. In addition, alternative
approaches that try to model the underlying physical process in more detail are compared to
the data set. A phase-space generator for diffractive dissociation into multi-body final states
is also used to study the impact of this background process on the analysis. The concept of
these generators will be introduced in the following.

4.1.1 Central-Production Event Generator

An event generator for the kinematics of centrally produced systems was developed within the
COMPASS collaboration in the preparation of the hadron run. A detailed description of it can
be found in [101].

The physical process is generated in a two-step procedure. At first, the two squared four-
momentum transfers t1 from the beam proton and t2 from the target proton are chosen ran-
domly according to an exponential function. A single slope of 6 (GeV/c)−2 was used as an
approximation for both distributions. Since the main component of the trigger, the recoil
proton detector, is only sensitive starting from t2 > 0.07 GeV2/c2, this threshold was imple-
mented in the generator in order to maximise the efficiency of the computationally expensive
simulation. The four-momentum transfers form an intermediate state X, which is generated
uniformly in the rapidity interval [−1, 1] (cf. Figure 4.1). As a result, the distribution of Feyn-
man xF of X is centred around zero and within |xF| < 0.25, which is illustrated in Figure 4.2.
The invariant mass of this central system is uniformly distributed in the interval between the
kinematic threshold and a specified maximum mass.
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Figure 4.2: Generated (hatched) and ac-
cepted (filled) Feynman xF distributions.

The generator acts in the proton-proton centre-of-mass frame. As a consequence, a flat
distribution of the angle φ between the two proton scattering planes is generated in this frame.
This does not agree with the measured distribution (cf. Figure 3.27), but since there are
no correlations between the angular decay pattern of the central system and this angle, the
partial-wave analysis is not biased.

In the second step, the decay of the intermediate state X into two pseudo-scalar mesons
is simulated with an isotropic angular distribution in the X rest frame. 5 · 107 events of this
type were generated in order to fill the entire available phase space in a sufficient manner.
Depending on the strictness of the selection of centrally produced systems (cf. Section 3.3),
this sample outnumbers the recorded data set at least by a factor of three.

4.1.2 Alternative Event Generator

An alternative approach for a central-production generator has been suggested in [89]. It is
based on the invariant double-Pomeron cross section formula from [15]

dσpp→p1Xp2 = e−b1t1
(
s

s2

)2αP(t1)−1

e−b2t2
(
s

s1

)2αP(t2)−1

dΓ3(~p1, ~p2, ~pX) σPP→X dm2
X . (4.1)

The established parametrisation αP(t) = 1.2+0.25 (GeV/c)−2 t [43] is used for the Pomeron
trajectory. If the integration variables ~p1,2 are changed into a longitudinal part expressed by
Feynman x1,2 and a transverse part ~q1,2, the two proton vertices can be factorised as long as
m2
X is required to be positive:

dσpp→p1Xp2 = e−b1t1(1− x1)1−2αP(t1)e−b2t2(1− x2)1−2αP(t2) σPP→X dx1 d2~q1 dx2 d2~q2 (4.2)

The approximation
s2,1
s ≈ 1−x1,2 is valid within about 10% for COMPASS centre-of-mass

energies. The approximately chosen slopes for the squared four-momentum transfer distri-
butions b1,2 are re-weighted by this phenomenologically motivated formula. This effectively
produces a slope around 8.5 (GeV/c)−2. An additional re-weighting step is needed in order to
obtain a flat distribution for the invariant mass of the central system X. For the decay itself,
a conventional isotropic phase-space generator is used.

In this approach, the azimuthal angle between the outgoing protons φ is simulated isotropi-
cally in the rest frame of X. After a boost to the proton-proton centre-of-mass system, a strong
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asymmetry is obtained for di-pion masses below 1 GeV/c2 (cf. Figure 4.3.) This strongly contra-
dicts the observed distribution (cf. Figure 3.27). Since this generator is in a preliminary stage
and will have to be optimised in the future, we did not use it for the analysis presented in this
work. It was, however, verified that the results of the partial-wave analysis of the decay process
do not depend on the detailed simulation of the production variables. On the other hand, it
will be important for an analysis that takes the production into account (cf. Chapter 8).
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Figure 4.3: Azimuthal angle φ in pp centre-of-mass system for the alternative CP generator.

4.1.3 Dime MC

With the advent of the LHC, central exclusive production reactions in proton-proton collisions
have regained interest in a larger community. Phenomenological predictions for cross sections
and production characteristics are studied in detail. For example in [60, 62], perturbative
approaches are combined with the tools of Regge theory, which play a dominant role for the
creation of central systems with invariant masses below 2 GeV/c2. The probability for no
additional proton-proton rescattering is implemented into a so-called eikonal survival factor
Seik, which modifies the central production amplitude in addition to other screening effects
(cf. Figure 4.4).

We used the publicly available Dime Monte-Carlo generator [61] and compared the recon-
structed events with our data sample, taking into account the full simulation of the experimen-
tal setup. The default definition of central exclusive production in this generator requires both
pions to lie in the rapidity region |y(π)| < 1.5 and both outgoing protons to have |xF| > 0.9,
which limits the accessible π+π− mass range to below 1.8 GeV/c2. Similar to the comparison
to ISR data in [62], the shape of the π+π− invariant mass distribution can only be used to
estimate the non-resonant contribution (cf. Figure 4.5). On the other hand, the distribution
of t1 in Figure 4.6 shows almost the same behaviour for data and this MC generator. The dif-
ference in the intermediate t1 region between the two dominating slopes is probably an effect
of the resonant contributions. Apart from trigger effects below 0.1 GeV2/c2, this observation
is equally valid for t2. The distribution of φ shows an asymmetry for low π+π− masses, while
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Figure 4.4: Non-perturbative central exclusive production of a meson pair (M3,M4) with an
intermediate off-shell meson M∗ [60]. Eikonal and (an example of) enhanced screening effects
are indicated by the shaded areas.
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|y(π)| < 1.5 and |xF(pf,s)| > 0.9 compared
to Dime MC generator (scaled to maximum).

it becomes uniform above 1 GeV/c2. It therefore follows the general trend of the data (cf. Fig-
ure 4.7). The angular distribution of the decay, which will be introduced in Chapter 5, is on
the other hand highly non-uniform (cf. Figure 4.8). For this reason, the generator was not
used for the acceptance correction of the partial-wave analysis presented later in this work.

4.1.4 Diffractive Phase-Space Generator

Diffractive dissociation of the beam particles, as introduced in Chapter 3, constitutes the
dominant background process in the study of central-production reactions. In order to estimate
the impact, the diffractive phase-space generator used in the analyses of multi-pion final states
produced in π−p reactions (e.g. [80], [100]) was modified to simulate pp interactions where one
proton dissociates into a pfπ

+π− final state. The squared four-momentum transfer t2 to the
target was generated according to a single-exponential slope, which approximates the measured
distribution.
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First of all, the fraction of events which meet the requirements for central production can be
estimated. As the decay of the pfπ

+π− system is generated without intermediate resonances,
the minimal value for a pfπ

± mass of 1.5 GeV/c2 lies below the most probable value of the
distribution and does therefore not impose a strong limitation. More than 70% of the events
pass this selection, even though they do not show any centrally produced characteristics. In
contrast, the combination of this selection criterion with the requirement of a proton momen-
tum above 140 GeV/c is only met by less than 10% of the events. Finally, only a negligible
fraction of below 1% of the generated data features rapidity gaps of at least two units between
the protons and the pions in the final state. The distribution of the four-momentum transfer
t1 from the beam proton to the central di-pion system exhibits only a very shallow slope for
these events. The observed distribution of t1 (cf. Figure 3.22a) can therefore not only be a
kinematic consequence of the selection.

4.2 Reconstruction and Event Selection

In the next step, the generated events are processed by the official COMPASS simulation
framework, where the final-state particles are propagated through the magnetic fields and
the detector material. Monte-Carlo methods are used to simulate hard secondary scattering
processes and soft interactions like energy loss and multiple scattering. The response of most
detectors in the experimental setup is generated by the COMPASS reconstruction software,
which is used for data and pseudo-data alike. Finally, the same requirements on the event
topology have to be applied for both samples. A comparison with the generator output, the
so-called Monte-Carlo truth, enables us to study and correct for geometrical and detector-
related acceptance and resolution effects.

The key features of the simulation of the apparatus used for the hadron beam data-taking
period in 2009 will be described in the following section.

4.2.1 Beam and Vertex Simulation

The magnet system which guides the beam from the production target to the COMPASS
experiment produces strong correlations between energy, position and direction of the incident
beam particles at the target position. In order to take these correlations into account, the
reconstructed beam tracks and their vertex positions were taken directly from the selected
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pfπ
+π− data set. A sample of 107 events, selected by the topological criteria introduced in

Chapter 3, guaranteed a sufficiently dense coverage of the accepted beam phase space. An
independent randomisation in the generator stage avoids event doubling for the generation of
larger Monte-Carlo samples.

The reconstructed beam tracks fulfil all selection criteria. The divergence of the beam
is therefore by definition limited to the geometrical acceptance and efficiency of the CEDAR
detectors (cf. Section 3.1.3). A detailed simulation of the CEDAR detector response is not
necessary.

4.2.2 RPD and Trigger Simulation

An important restriction on the acceptance is imposed by the trigger. All trigger and veto de-
tector elements downstream of the target are implemented in the detailed geometrical model of
the spectrometer. The largest restriction for centrally produced events is given by the geomet-
rical acceptance of the spectrometer, which allows only scattering angles below 180 mrad with
respect to the beam axis. Up to 50% of the generated events produce a signal in the sandwich
veto detector, which translates into a vanishing acceptance for the backward hemisphere in
the proton-proton centre-of-mass system. On the other hand, the veto on non-deflected proton
tracks is only active for about 4% of the generated events. The beam counter condition is
always fulfilled by the triggered beam track sample.

As introduced in Section 3.1.1, the target proton requires a minimal squared four-momentum
transfer of 0.07 GeV2/c2 in order to be able to penetrate the inner scintillator ring of the recoil
proton detector. This sharp limit was already introduced on the generator level for reasons of
efficiency. A detailed detector simulation provides the correct geometrical acceptance for the
recoiling proton track as well as a realistic uncertainty for the reconstruction of its azimuthal
angle.

4.2.3 RICH Matrices

A detailed simulation of the Cherenkov photon creation and propagation in the radiator vessel
including the mirror system of the RICH detector can be arbitrarily complicated. In order to
avoid this problem, the COMPASS analysis groups decided to evaluate the RICH performance
with pure particle samples and tabulate the results as a function of particle momentum and
polar angle θ with respect to the beam axis. A dedicated sample of events containing weak
decays of KS , Λ and Λ acts as a clean source for pions and (anti-)protons. The secondary
decay is easily separated from the primary production vertex by a measurable flight path. The
narrow φ(1020) resonance is used as a source for charged kaons. A detailed description of the
selection can be found in [66].

These particle samples are analysed with the selection criteria motivated in Section 3.1.3
in order to determine the efficiency for particle identification. In addition, the probabilities for
a wrongly attributed particle type play an important role. Figure 4.9 illustrates the relevant
identification probabilities for positive pions and kaons used in this analysis. The square root of
the polar angle θ was used to balance the available data to the spatial acceptance of the RICH
detector. Especially the low misidentification probability for π+ as K+ in Figure 4.9b proves
that the requirement for a 1.3-times larger kaon likelihood efficiently suppresses background
from misidentified pions.

For centrally produced states decaying into charged kaons, the low-momentum threshold
for K± identification at 9.5 GeV/c severely limits the accessible phase space. The kaon sample
does, however, not allow for a fine granularity of the table in the low momentum region. We
therefore introduced this cut explicitly into the simulation.
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Figure 4.9: RICH probability tables used in this analysis.

4.3 Acceptance in Kinematic Variables

The acceptance is studied as a function of the relevant kinematic variables. All selection criteria
are applied on pseudo-data reconstructed with the simulation of the experimental setup. The
MC truth of these accepted events is filled into histograms and divided by the distributions of
the generated sample. This neglects resolution effects, which are studied in Section 4.4. The
homogeneous distribution of the kinematic properties in the available phase space avoids strong
correlations between these quantities and allows to draw conclusions from one-dimensional
projections. On the other hand, these correlations may be relevant in physical processes.
Therefore, we include the multidimensional acceptance in the fit model for the partial-wave
analysis (cf. Chapter 5).

The selection criteria for the central production reaction introduced in Section 3.3 strongly
distort the generated sample. The π+π− invariant mass distribution for events which fulfill
the requirements m(pπ) > 1.5 GeV/c2 and p(pf) > 140 GeV/c is, for example, shown in Fig-
ure 4.10, where the threshold is clearly emphasised. This effect dominates the acceptance as a
function of the invariant mass of the centrally produced π+π− system (cf. Figure 4.11). The
average acceptance of approximately 30% is mainly due to the geometric acceptance of the
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spectrometer, which covers only about 50% of the events completely. The vertex reconstruc-
tion with three outgoing charged tracks is another major source for deficiency. Apart from the
enhancement towards the kinematic threshold, which is created by the selection of a central
production topology, the acceptance is relatively flat as a function of the di-pion mass. Only for
masses above 2 GeV/c2, the acceptance starts to diminish. This is one of the reasons, that the
study of centrally produced charmonium states like the χc0 with a mass of about 3.4 GeV/c2

is not feasible in COMPASS.
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Figure 4.10: MC truth of π+π− in-
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p(pf) > 140 GeV/c (filled).
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π+π− invariant mass.

The rapidity distributions of the respective particle systems (cf. Figure 4.1) illustrate the
effects of the geometrical acceptance. Starting from a uniform distribution in the rapidity
interval [−1, 1], the acceptance suppresses the events at negative rapidities. As a result, the
initially symmetric Feynman xF distribution in Figure 4.2 is also biased towards positive values.
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Figure 4.12: Acceptance as a function of the squared four-momentum transfer.

Figure 4.12 shows the dependence of the acceptance on the squared four-momentum trans-
fer from the beam and the target proton to the central system, respectively. The trigger
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threshold for t2 is visible, but also the acceptance for t1 decreases towards smaller values.
Small discontinuities can further be observed around t2 = 0.7 GeV2/c2, where the recoil proton
momentum is no longer corrected for material effects in the barrels of the RPD [45].

The selection of centrally produced events by a minimal pπ invariant mass of 1.5 GeV/c2

has also a direct effect on the azimuthal angle φ between the proton scattering planes. While
the acceptance is uniform for π+π− masses above 1 GeV/c2, the correlation between φ and the
di-pion mass can be clearly observed near threshold (cf. Figure 4.13), where an asymmetry is
created by this kinematic requirement.
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Figure 4.13: Acceptance as a function of the angle φ between the proton scattering planes and
the π+π− invariant mass.

4.4 Resolution

Monte-Carlo studies are also used to evaluate the reconstruction precision reachable with
the experimental setup. For this purpose, the MC truth is compared to its reconstructed
counterpart. The width of the residual distribution for a kinematic quantity is used as a
measure for its resolution.

The partial-wave analysis is generally performed in bins of the invariant mass of the cen-
tral system in order to guarantee a model-independent analysis without preconception of the
resonant content. It is therefore useful to estimate the reachable mass resolution for the re-
construction of the studied π+π− system, which can be estimated with the distribution of the
relative residuum defined as

∆m =
mtruth −mreconstructed

mtruth
. (4.3)

Figure 4.14a shows this relative residual distribution as a function of the π+π− mass. Apart
from the region at threshold which is dominated by kinematic constraints, the mass resolution
is approximately constant as a function of the di-pion invariant mass. A Gaussian fit to the
projection of the mass range between 0.4 GeV/c2 and 2.0 GeV/c2 has a width of about 1%
(cf. Figure 4.14b), hence a mass binning smaller than 10 MeV/c2 is not reasonable for the
analysis.

Since the experimental setup of the COMPASS experiment is not equipped to measure
the incoming hadron beam momentum pbeam, it is important to estimate the resolution of the
beam-momentum reconstruction via the final-state particles. The residual distribution, defined
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Figure 4.14: Mass resolution for the π+π− system.

in analogy to Equation 4.3 for pbeam, is almost Gaussian, with a width below 0.4% (cf. Fig-
ure 4.15). The beam momentum of 191 GeV/c can thus be reconstructed with a precision
of about 0.7 GeV/c, which is much less than the intrinsic beam momentum spread of about
1.5 GeV/c (cf. Section 3.1.4).
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Figure 4.15: Resolution for beam momentum reconstruction.

The four-momentum transfers t1 from the beam to the central system can be reconstructed
within a resolution of about 3%. t2 has a resolution of 5%, because it has to be reconstructed
combining four-momentum conservation and the three particles measured by the spectrometer.
The reconstruction capabilities of the RPD are considerably worse.



Chapter 5

Partial-Wave Decomposition

An invariant mass spectrum can show signs of resonances in the form of peaks, dips, or other
structures. The properties of the resonances like mass, width, and quantum numbers can,
however, only be determined by a multi-dimensional analysis of the decay process. The an-
gular distribution of the daughter particles in two-body decays is directly related to the spin
and parity quantum numbers of the system. Resonances that are produced with small cross
sections can be traced back through their interference with known states. To this end, the
data is decomposed into a sum of partial-wave amplitudes with complex-valued coefficients
that describes the observed spatial distribution of the decay particles.

In this chapter, we will introduce the partial-wave analysis (PWA) method for centrally
produced two-pseudoscalar meson systems on the example of π+π− in the final state. At
first, we will construct the decay amplitudes in term of angles with respect to the relevant
coordinate system. These amplitudes are used for an extended maximum-likelihood fit to the
data. The quality of the fit is evaluated by comparing differential distributions predicted by
the model with those obtained with real data. Problems with the selection criteria for centrally
produced events (cf. Section 3.3) will be discussed in this context. Finally, the partial-wave
decomposition results in mathematical ambiguities, which are resolved by comparison with the
π0π0 final state.

5.1 Partial-Wave Analysis Method

5.1.1 Coordinate System

The partial-wave analysis is performed assuming that the central π+π− system is produced in
the collision of two space-like particles emitted by the scattered protons [21]. These so-called
exchange particles carry the squared four-momentum transfer t1 from the beam proton and t2
from the target proton to the central system, respectively. A Gottfried-Jackson frame [57] can
be constructed if one of the space-like particles is treated as incoming beam.

In contrast to previous studies which chose the exchange with the greatest four-momentum
transfer [21], we fixed the choice to t1 in order to be able to correct for the different acceptances
created by the trigger (cf. Chapter 4). In the centre-of-mass frame of the π+π− system, the
momentum vector of t1 defines the z-axis for the reaction. The y-axis of the right-handed
coordinate system is defined by the cross product of the two exchange particles in the pp
centre-of-mass frame, which points along the production normal. The boost vector from the
pp centre-of-mass frame to the π+π− rest frame lies in the production plane and leaves the
perpendicular axis unchanged.
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Figure 5.1: π+π− Gottfried-Jackson rest system with definition of decay variables ϑ and ϕ.

Apart from the invariant mass of the π+π− system, its decay is entirely characterised by
two phase-space variables. A common choice [21] uses the polar angle ϑ and the azimuthal
angle ϕ of the π− in the di-pion rest frame relative to the Gottfried-Jackson coordinate system,
specified above. Figure 5.1 illustrates the definition of these angles.

The distribution of the decay variables as a function of the di-pion mass is shown in Fig-
ure 5.2 for the selected centrally produced data sample. In cosϑ, the data show a pronounced
forward-backward symmetry, which is only slightly disturbed below 0.5 GeV/c2. A clearly
distinguishable two-peak pattern can be observed in the mass regions around the f2(1270)
resonance.
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Figure 5.2: Decay variables as a function of the π+π− mass.
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Figure 5.3 shows the acceptance in the decay angles as it was evaluated with the Monte-
Carlo simulation described in Chapter 4. It is mostly uniform, but poor above masses of
1 GeV/c2 for the cases where the central system decays along the z-axis, i.e. cosϑ ≈ ±1. The
correction of this effect is indispensable for the partial-wave decomposition.
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Figure 5.3: Acceptance in the decay angles and the π+π− mass from phase-space MC.

5.1.2 Decay Amplitudes

The measured intensity distributions in ϑ, ϕ and the invariant mass m of the central system
is decomposed into complex partial-wave amplitudes. The spherical harmonics YLM (ϑ, ϕ) are
the natural choice for the decay amplitudes of a system of two spinless mesons with relative
orbital angular momentum L and its projection M with respect to the quantisation axis. In
order to avoid any assumptions on the mass-dependence of the amplitudes, we perform the
decomposition independently in narrow mass bins of 10 MeV/c2. A finer segmentation is not
beneficial due to the mass resolution evaluated in Chapter 4. However, this does not impose
a disadvantage as most resonances in the light-quark sector have widths about an order of
magnitude larger.

The fact that the strong interaction conserves parity is used to limit the number of fit
parameters. We introduce the reflection operator as the parity operator followed by a rotation
by 180◦ around the normal to the production plane [36]. This transformation preserves all rel-
evant momenta. The parity is given by (−1)L for a system of two spinless particles. Therefore,
the eigenstates of the reflection operator can be constructed as

YεLM (ϑ, ϕ) ≡ cM
[
YLM (ϑ, ϕ)− ε(−1)MYL−M (ϑ, ϕ)

]
(5.1)

with the normalisation

cM =


1
2 , if M > 0
1√
2
, if M = 0

0, if M < 0 .

(5.2)

The so-called reflectivity quantum number ε can have the values ±1. The two classes of
eigenstates correspond to different production processes in the asymptotic limit of large s and
low t and can therefore not interfere [57]. The magnetic quantum number M is restricted to
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values between 0 and +L, and decays with M = 0 can only appear for negative reflectivities.
In the original definition, the minus sign between the two terms in Formula 5.1 was chosen
such that the reflectivity coincides with the exchanged naturality for diffractive reactions with
a pion beam which has negative intrinsic parity. In the studied central-production reactions,
only the product of the naturalities of both exchange particles can be identified with the
reflectivity. The dominating process with two natural spin-parity transfers corresponds to
the negative reflectivity ε = −1 and can produce a central system with JP = 0+, 1−, 2+ etc.
Double-Pomeron exchange reactions are a special case in this field, where only even spins can
be produced due to Bose symmetry. The positive-reflectivity domain is expected to be less
important.

Using the properties of the spherical harmonics, the amplitudes can be brought into a
simple form in terms of the associated Legendre polynomials PLM :

YεLM (ϑ, ϕ) = cM
[
YLM (ϑ, ϕ)− εYL∗M (ϑ, ϕ)

]
= cM

[
PLM (cosϑ)eiMϕ − εPLM (cosϑ)e−iMϕ

]
= cMPLM (cosϑ)

{
2i sin(Mϕ), if ε = +1

2 cos(Mϕ), if ε = −1

(5.3)

Since the reflectivity quantum number is conserved in strong interaction processes, the two
reflectivity subsets are added incoherently. The imaginary factor i can thus be omitted as it
does not affect the relative phases of waves with ε = +1 . As a consequence, the decay ampli-
tudes are real-valued functions in this special case. The complex-valued transition amplitudes
TεLM represent the production dynamics. In narrow mass bins, they are approximated by
constants, which are the parameters of the fit. All amplitudes, which have the same initial and
final state, are allowed to quantum-mechanically interfere. Therefore, they have to be summed
coherently. The intensity is expanded in terms of the partial-wave amplitudes as

I(ϑ, ϕ) =
∑
ε=±1

∣∣∣∣∣
∞∑
L=0

L∑
M=0

TεLMYεLM (ϑ, ϕ)

∣∣∣∣∣
2

. (5.4)

The infinite sum over the orbital angular momentum is truncated at L = 2, since contri-
butions from higher spin states were not observed in previous experiments [21]. For the same
reason, the magnetic quantum number is limited to M ≤ 1. In the notation JεM [21], where
J = L for the decay into pseudoscalar mesons, the general wave set is summarised as:

{S−
0 , P

−
0 , P

−
1 , D

−
0 , D

−
1 }, {P

+
1 , D

+
1 } (5.5)

Since the global phase for each reflectivity is indeterminate, one transition amplitude in
each class can be defined as purely real for the purposes of the fit. These so-called anchor
waves are emphasised in bold font. The result does not dependent on this choice, which was
adopted from [21].

Figure 5.4 shows the absolute value squared of the decay amplitudes as a function of the
decay angles cosϑ and ϕ. These intensity distributions are symmetric with respect to the
origin in both variables, hence the only possibility to produce an asymmetric distribution is
through interference between partial waves with odd and even spin. As an example, this is
demonstrated impressively in Figure 5.5 by varying the amplitude ratio between the S−0 - and
P−0 -waves. Even without relative phase, the interference terms produce a strong forward-
backward asymmetry which is observed already with tiny admixtures. This illustrates the
power of amplitude analysis.
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Figure 5.4: Intensity of lowest decay amplitudes as a function of the decay angles.
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5.1.3 Extended Unbinned Maximum-Likelihood Fit

The agreement between measured data and the acceptance-corrected model is optimised by
varying the complex transition amplitudes TεLM in each π+π− mass bin independently. For
this purpose, the extended likelihood function is maximised by a fitting algorithm. For the
construction of this likelihood function, the probability for an event i characterised by ϑi and
ϕi to be observed by the experiment with acceptance η(ϑ, ϕ) is defined by

Pi =
I(ϑi, ϕi)η(ϑi, ϕi)∫
dΩ I(ϑ, ϕ)η(ϑ, ϕ)

. (5.6)
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The total number of observed events N in an experiment of fixed duration follows the Poisson
distribution with an expectation value N̄ . The extended likelihood function

L =
e−N̄ N̄N

N !

N∏
i=1

Pi (5.7)

takes this variation into account. If we identify the expectation value N̄ with the total number
of measured events expressed by the integral in the denominator of Equation 5.6, the likelihood
function simplifies to

L =
e−N̄

N !

N∏
i=1

I(ϑi, ϕi)η(ϑi, ϕi) . (5.8)

As sums are computationally easier to handle than products, the logarithm of the likelihood
function is maximised in order to match the observed angular distribution I(ϑ, ϕ).

lnL =
N∑
i=1

ln I(ϑi, ϕi) +

N∑
i=1

ln η(ϑi, ϕi)− lnN !−
∫
dΩ I(ϑ, ϕ)η(ϑ, ϕ) . (5.9)

The constant terms Σ ln η and lnN ! do not depend on the transition amplitudes TεLM and can
therefore be omitted in the fit. The recorded events only enter in the first sum. The integral
for the experimental acceptance is evaluated with the large phase-space Monte-Carlo sample
introduced in Chapter 4. For this purpose, the sum of the absolute values squared for the
intensity (cf. Equation 5.4) is written as a double sum:

I(ϑ, ϕ) =
∑
ε

∑
L,L′

∑
M,M ′

TεLMT ∗εL′M ′YεLM (ϑ, ϕ)YεL′M ′ (ϑ, ϕ) (5.10)

This permits the separation of the fit parameters from the integral, so that it does not have
to be computed in every iteration of the maximisation procedure.∫

dΩ I(ϑ, ϕ)η(ϑ, ϕ) =
∑
ε

∑
L,L′

∑
M,M ′

TεLMT ∗εL′M ′
∫
dΩYεLM (ϑ, ϕ)YεL′M ′ (ϑ, ϕ)η(ϑ, ϕ)︸ ︷︷ ︸

Iε
LML′M′

(5.11)

The so-called normalisation integral IεLML′M ′ is approximated by the sum over all generated
events Nacc

MC, which passed the reconstruction and selection criteria after the detector simula-
tion:

IεLML′M ′ ≈
4π

NMC

Nacc
MC∑
j=1

YεLM (ϑj , ϕj)YεL
′

M ′ (ϑj , ϕj) (5.12)

NMC is the total number of generated Monte-Carlo events. The factor 4π is the integration vol-
ume and is important in order to obtain the correct normalisation for the transition amplitudes
TεLM [94].

The extended likelihood function is maximised by choosing the parameters TεLM such that
I(ϑ, ϕ) matches the measured data best. This formalism was implemented in a stand-alone
C++ program, employing the Minuit minimiser [65] in the ROOT libraries [31]. A general
description can be found in [94].
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5.2 Evaluation of Fit Quality

If the fit converges, the expectation value N̄ is very close to the measured number of events
N . This can be used in order to evaluate the quality of the model. Using the numerical
approximation of this integral by the sum over the accepted phase space Monte-Carlo events

N̄ =

∫
dΩ I(ϑ, ϕ)η(ϑ, ϕ) ≈ 4π

NMC

∑
Nacc

I(ϑMC, ϕMC) , (5.13)

we can understand the amplitude for each MC event as a weight wi for this particular phase-
space element [94].

wi =
4π

NMC

∑
ε

∣∣∣∣∣∑
L

∑
M

TεLMYεLM (ϑi, ϕi)

∣∣∣∣∣
2

(5.14)

Events rejected by reconstruction and kinematic selection have zero weight. The acceptance
of the apparatus is therefore taken into account by definition. We can use these weights to
compare any kinematic distribution of the fitted model with the data. An agreement within
statistical errors in the angles that enter the decay amplitudes is a confirmation that the
truncated wave set is sufficient to describe the data. The distributions in other kinematic
variables can be used to assess the quality of the simulation.

)2 System (GeV/c-π+πInvariant Mass of 
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ϑ
co

s

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
COMPASS 2009

s
 p-π+π 

f
 p→p p 

(a) cosϑ

)2 System (GeV/c-π+πInvariant Mass of 
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 (
ra

d)
ϕ

-3

-2

-1

0

1

2

3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
COMPASS 2009

s
 p-π+π 

f
 p→p p 

(b) ϕ

Figure 5.6: Ratio between data and weighted phase space Monte-Carlo sample.

After a successful fit, the angular distributions show a reasonable agreement. However, the
ratio between data and the weighted Monte-Carlo sample (cf. Figure 5.6) reveals deviations
of the model in the cosϑ distributions for π+π− masses above 1 GeV/c2, in particular in the
regions around cosϑ = ±1. As an illustration for this, we compare the cosϑ and ϕ distributions
in selected 100 MeV/c2 wide π+π− mass slices in Figure 5.7. The tendency of the data to peak
at forward and backward angles of the pions for high di-pion masses cannot be reproduced by
the limited wave set. The sharp structures would require contributions from higher spins. In
addition, this effect biases the fit also for intermediate polar angles.

In order to prove that the origin for this artifact is only restricted to the kinematic region
near cosϑ = ±1, we performed a partial-wave analysis disregarding the data with | cosϑ | > 0.8,
which is about 20% of the total sample. The improvement can be directly observed in Fig-
ure 5.8, where the fitted region is nicely reproduced up to 2 GeV/c2. Qualitatively, this addi-
tional cut does not influence the results of the analysis.
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Figure 5.7: Real data (blue) and weighted Monte-Carlo (red) for two di-pion mass ranges.

An alternative production process competing with central production can explain this cosϑ
behaviour. If a baryon resonance and a slow pion are produced via Regge-exchange in analogy
to the Deck process (cf. Figure 3.40), and the resonance subsequently decays into pfπ, the two
pions will be kinematically separated. Consequently, their invariant mass is rather high and
the polar angle in the ππ rest frame is close to zero or 180◦, which is exactly the observed
signature. As it was discussed in Section 3.3.1, there is indeed considerable evidence for baryon
resonances above the central production selection criterion m(pπ) > 1.5 GeV/c2.

As a consequence, we decided to abandon the pπ invariant-mass cut suggested by a previous
analysis [21] for this work. In Section 3.3.2, we introduced the central di-pion system, for which
a minimal rapidity gap between the protons and the pions of at least two units is required.
This theoretically motivated selection [43] effectively suppresses the background from baryon
resonance production (cf. Figure 3.19). In fact, the acceptance for the centrally produced di-
pion system imposes a restriction similar to the cosϑ cut on the regions of phase space with
forward or backward angles (cf. Figure 5.9). The occurrence of rapidity gaps is, however, only
indirectly related to the invariant mass of the pπ systems. A cleaner separation of the centrally
produced sample is achieved in rapidity space.
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Figure 5.8: Data and weighted Monte-Carlo for fit restricted to | cosϑ | < 0.8 (dashed lines).

For a fit to the data sample selected with the requirement for rapidity gaps larger than
two units, the angular distributions are reproduced in the entire available phase space without
additional restrictions. Figure 5.10 shows the corresponding ratio between the data and the
Monte-Carlo sample weighted with the fit results. In comparison with Figure 5.8, the difference
for the mass slice from 1.38 GeV/c2 to 1.48 GeV/c2 is striking. Nevertheless, the results for the
transition amplitudes are not substantially different, which proves that the acceptance effects
are properly corrected for.
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Figure 5.9: Acceptance in cosϑ with |y(p)− y(π)| > 2.
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Figure 5.10: Data and weighted Monte-Carlo for sample selected with |y(p)− y(π)| > 2.

5.3 Ambiguities in the PWA of Two-Pseudoscalar Final States

The fitted transition amplitudes TεLM include a phase difference with respect to the anchor
wave, whose choice is essentially arbitrary. Only the products TεLMT ∗εL′M ′ correspond to physi-
cal observables, the components of the so-called spin-density matrix [36]. The diagonal elements
are the real-valued partial-wave intensities, while the off-diagonal elements are complex-valued
interference terms. It is customary to quote the argument of these terms, which specifies the
respective phase difference between the two partial waves.

In the case of a two-pseudoscalar final state, the decomposition of the intensity in Equa-
tion 5.4 is not unique. We will introduce the reasons for this ambiguity in the following section,
before discussing the physically meaningful solution.

5.3.1 Mathematical Basis

In general, the truncated ππ scattering amplitude A(s, t) can be expanded in terms of Legendre
polynomials P` with a maximal orbital angular momentum L,

A(s, t) =
L∑
`=1

(2`+ 1) a`(s)P`(cosϑ) . (5.15)

The fundamental theorem of algebra states that this degree-L polynomial in z ≡ cosϑ has
exactly L complex roots zi. The amplitude can therefore be expressed as a function of the
so-called Barrelet-zeros zi[23]

A(s, t) ∝
L∏
i=1

(z − zi) . (5.16)

The measurable intensity is proportional to the absolute square of this term

I(s, t) = |A(s, t)|2 ∝
L∏
i=1

(z − zi)(z − z∗i ) . (5.17)
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This expression is invariant under complex conjugation of any number of the Barrelet zeros
zi. Hence, the measurement has an intrinsic mathematical ambiguity. The decomposition into
angular momentum states can be done in 2L ways, characterised by the signs of the imaginary
parts of the roots. All solutions reproduce exactly the same angular distribution.

The authors of [56, 90] have extended this method for the case of two-pseudoscalar final
states in scattering experiments. The two incoherent naturalities and the additional magnetic
quantum number M require a rather complicated approach. The Weierstrass substitution
u ≡ tan ϑ

2 is a key ingredient for the analogous construction of the polynomials. The di-
rect transformation between the coefficients, the partial-wave amplitudes and the roots ui are
explicitly worked out for a number of examples in [35].

5.3.2 Application to Data

For the wave-set used in this analysis, it is shown that only the waves with negative reflec-
tivity can give rise to ambiguities. In a system of S-, P - and D-waves with M ≤ 1, eight
mathematically ambiguous solutions are obtained. Experimentally, this can be illustrated by
using different random starting values in every mass bin for several fits. Figure 5.11 shows the
intensities of 30 fit attempts as a function of the π+π− mass, where several different solutions
can be discerned. It is, however, difficult to achieve a separation over the full mass range if
the solutions overlap, and the necessity for a large number of fit attempts is impractical. A
procedure to perform the decomposition mathematically is therefore essential.

)2 System (GeV/c-π+πInvariant Mass of 
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2
In

te
ns

ity
 / 

10
 M

eV
/c

0

0.1

0.2

0.3

0.4

0.5

610×

-
0S

)2 System (GeV/c-π+πInvariant Mass of 
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2
In

te
ns

ity
 / 

10
 M

eV
/c

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
610× -

0P

)2 System (GeV/c-π+πInvariant Mass of 
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2
In

te
ns

ity
 / 

10
 M

eV
/c

0

0.05

0.1

0.15

0.2

0.25
610× -

1P

COMPASS 2009

s
 p-π+π 

f
 p→p p 

)2 System (GeV/c-π+πInvariant Mass of 
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2
In

te
ns

ity
 / 

10
 M

eV
/c

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
610× -

0D

)2 System (GeV/c-π+πInvariant Mass of 
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2
In

te
ns

ity
 / 

10
 M

eV
/c

0

0.05

0.1

0.15

0.2

0.25
610× -

1D

Figure 5.11: Partial-wave intensities for 30 fit attempts with random starting values.

With the method described in [35], the transition amplitudes TεLM obtained by one single
fit attempt can be used to calculate all eight solutions analytically. The formulae for the coeffi-
cients of the forth-order polynomial in terms of the amplitudes can be found in Appendix A.1.
The inverse transformation from Barrelet zeros to partial-wave amplitudes is given as well.

Laguerre’s method [86] is used to find the complex polynomial roots numerically. It starts
from an initial guess and iteratively converges to the polynomial roots. Figure 5.12 shows the
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real and imaginary parts of these four roots for all π+π− mass bins. A sorting depending on
the magnitude of the real part has been performed, where the solutions are well separated from
each other and can be easily linked from mass bin to mass bin. Since the sign of the imaginary
part of the roots can be chosen, we plotted only the positive branches. The imaginary parts
do not approach zero, hence bifurcation of the solutions in the complex plane does not pose a
problem and they can be uniquely identified.
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Figure 5.12: Barrelet zeros as a function of the π+π− mass.

The entire set of eight ambiguous solutions is computed using the transformation in Ap-
pendix A.1. The intensity distributions resulting from one single fit attempt are depicted
as a function of the π+π− mass in Figure 5.13. The solutions exactly reproduce the pic-
ture in Figure 5.11, which was obtained with random starting variables, proving the correct
implementation of the procedure.

As a last step, the calculated transition amplitudes are introduced as starting values to the
extended maximum-likelihood fit. Its convergence proves the equivalence of the solutions. In
addition, the fit routine provides error estimates that cannot be calculated with the method
of the Barrelet zeros.

5.3.3 Choice of Physical Solution

The choice of the physical amplitudes requires additional input. In previous analyses, e.g. [21],
the behaviour at threshold or towards expected resonances was quoted as a justification for
this choice. In contrast, we can use the associated production of a central π0π0 system as a
reference, since only even partial waves are allowed for a decay into these two equal particles.
This reduces the number of mathematical ambiguities to two solutions, the choice is facilitated.
The analogy to the partial-wave decomposition in the case of charged final-state pions can be
used to support the physical solution.

For the analysis, we used the π0π0 sample introduced in Section 3.4. Since the accep-
tance for the successful reconstruction of the centrally produced four-photon final state is only
about 2%, another sample of 5 · 107 Monte-Carlo events was generated for this channel with
the framework described in Chapter 4. The wave set is reduced to only four waves by the
restrictions from Bose symmetry:

{S−
0 , D

−
0 , D

−
1 }, {D

+
1 } (5.18)
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Figure 5.13: Partial-wave intensities of eight ambiguous solutions, computed with the results
of one single fit.

Due to the limited data sample, we perform the partial-wave analysis in π0π0 mass bins of
30 MeV/c2 width. The intensity distribution can now be expressed in a second-order poly-
nomial, which yields only two independent ambiguous solutions. The detailed mathematical
treatment is described in [35], the applied formulae are summarised in Appendix A.2. Fig-
ure 5.14 shows the roots obtained by one fit to the data. A unique identification along all bins
is possible by the sign of the real part, even though the fluctuations are large.

After expressing the transition amplitudes in terms of the obtained Barrelet zeros, we
obtain two different intensity distributions which are shown in Figure 5.15. The most dominant
feature is the peak in the D−0 -wave at the mass of the f2(1270). In one solution, however, the
peak lies on top of another large signal, which describes the majority of the entire intensity
by its interference with the D−1 -wave. The scalar component is comparably small for this
solution (red), an effect that is not physical especially near threshold due to the angular
momentum barrier of the breakup.

In contrast, a clean f2(1270) peak can be discerned in the blue histogram, which represents
the second solution. The S−0 -wave is dominant at threshold, and exhibits the characteristic
shoulder near the f0(980) meson. In addition, the strong suppression of the M = 1 component
is a clear sign for Pomeron-exchange processes. For these reasons, we will call this one the
physical solution from now on.

Figure 5.16 shows the intensities and phases of the physical solution, as they are obtained
after a refit with the calculated starting values. The results are presented in a block-diagonal
matrix form, corresponding to the spin-density matrix according to Chung and Truman [36].
The plots on the diagonal show the intensities of the partial waves, the off-diagonal entries
depict the relative phases between the waves in the rows and columns, respectively. Since the
spin-density matrix is hermitian, it is sufficient to show only the upper triangle. The 3 × 3
matrix represents the negative-reflectivity part, the single field in the bottom left corresponds
to the incoherent positive-reflectivity wave.
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Figure 5.14: Barrelet zeros as a function of the π0π0 mass.
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Figure 5.15: Two ambiguous solutions for the π0π0 system, computed with the results of one
single fit.

In addition to the intensity distributions, we can now observe a distinct phase motion of
about 40◦ near the f2(1270) resonance with respect to the S-wave. For a part of the mass
range, the phases with respect to the D−1 -wave are not well-defined due to its low intensity.
No indication for a resonant behaviour can be observed in this wave.

The insights gained with the π0π0 sample are used to justify the choice of the solution for
the more complicated case with two distinguishable pions. Disregarding the ρ(770) mass region,
the blue curve in Figure 5.13 turns out to be almost congruent with the physical solution of the
neutral pion case. Also here, the largest part of the intensity is in the S-wave, and a prominent
peak for the f2(1270) can be observed in D−0 . The biggest difference is the peak near 0.8 GeV/c2

in the S-wave, a sign for the production of the ρ(770) resonance. Since there is no solution
where the ρ(770) meson is isolated in the correct P -waves, a different production mechanism
has to be responsible for it. Candidates for this behaviour are the diffractive dissociation of
the proton into pρ(770) or Deck-like processes (cf. Section 3.5.3).

We provide the physical solution as starting values for the fit and present the results
in the symmetric, block-diagonal matrix-form in Figure 5.17. The complicated structure of
the phase difference between S−0 - and D−0 -wave is revealed in the fine binning, permitted
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Figure 5.16: Physical solution for π0π0, intensities (blue) and relative phases in degrees (red).

by the large data set. The P−-waves exhibit very little intensity, the phase with respect
to these waves consequently carries no information. Only in P−1 , hints for the ρ(770) can
be discerned. The suppression of odd waves in central production supports the notion of a
dominant contribution from the symmetric double-Pomeron exchange process. Only the P+

1 -
wave seems to be especially important for the description of the angular distributions below
0.6 GeV/c2, where the intensity is even larger than that of the f2(1270) resonance in the D−0 -
wave. We attribute this effect to non-resonant components. An incoherently added, uniform
amplitude was tried to take this component into account. However, it created an instability
due to its similarity to the S-wave.
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Figure 5.17: Physical solution for π+π−, intensities (blue) and relative phases in degrees (red).
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Figure 5.18: Barrelet zeros as a function of the π+π− mass.
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Figure 5.19: Two ambiguous solutions, computed with the results of one single fit.

If we perform the partial-wave analysis also for the π+π− system with even waves only, we
find almost exactly the same picture as for the π0π0 system (cf. Figure 5.16). The comparison
with weighted Monte-Carlo distributions shows, that the angular distributions can be described
already with this limited wave set. The Barrelet zeros can be unmistakably distinguished by
the sign of their real part (cf. Figure 5.18). The physical solution has a dominating S-wave
contribution, while the D−0 -wave has a clear f2(1270) peak (cf. Figure 5.19). However, the
unphysical enhancement below 0.6 GeV/c2 in this wave is a direct consequence of the omitted
but apparently important P+

1 -wave, which is shown in Figure 5.20.
Since we are mainly interested in the scalar component and its interference with theD-wave,

we decided to restrict the decomposition into the following wave-set for this analysis:

{S−
0 , D

−
0 , D

−
1 }, {P

+
1 , D

+
1 } (5.19)

The final result for the partial-wave analysis of the centrally produced π+π− system is depicted
in Figure 5.21.This decomposition into partial waves in narrow mass bins will serve as a starting
point for the studies concerning the dependence on the squared four-momentum transfer to
the central system in the next section and the parametrisation of the mass-dependence in
Chapter 6.
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Figure 5.20: D−0 intensity in the π+π− data with (blue) and without (green) P+
1 -wave.
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Figure 5.21: Physical solution for the π+π− system, intensities (blue) and relative phases in
degrees (red).
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Figure 5.22: Squared four-momentum transfers to the π+π− system t1 vs. t2 with logarithmic
colour-scale and two-dimensional binning (dashed lines).

5.4 Dependence on Squared Four-Momentum Transfers

The central-production reaction is characterised by the two squared four-momentum trans-
fers t1 from the beam proton and t2 from the target proton to the central di-pion system,
respectively. So far, this information was neglected for the decomposition into partial-wave
amplitudes. In this section, we will present observations obtained by binning the data set in
these two dimensions.

In studies by previous experiments, restrictions on the absolute value of the sum |t1+t2| [14]
or the difference in transverse momentum dPT [37] (cf. Section 3.3.3) were claimed to enhance
the DPE component in the analysed sample. In contrast, the size of our data set allows a
differential analysis in two-dimensional bins of the Lorentz-invariant variables t1 and t2. This
way, the experimental acceptance for t2 in COMPASS, which vanishes below 0.7 GeV2/c2, and
could bias the conclusions obtained in a one-dimensional analysis, is taken into account.

In order to balance the number of events in the bins, we split the ranges asymmetrically
in five regions for t1 and t2 between 0 and 2 GeV2/c2. No apparent correlations between the
kinematic variables can be discerned (cf. Figure 5.22), which was quoted as a confirmation of
the factorisation into two proton vertices [46]. The obtained boundaries can be found in the
accompanying table.

Figure 5.23 shows the π+π− invariant mass distribution for all bins. The spectra for the
lowest two bins of t1 and t2 (left top) are dominated by the enhancement at threshold, which
is slightly modulated by the f0(980) resonance near 1 GeV/c. No signs for ρ(770) and f2(1270)
production can be observed for low squared four-momentum transfers to the central system.
By increasing t1 or t2, the peaks for both resonances gradually emerge from the spectrum. Also
the steep drop near the f0(980) mass is becoming more pronounced, especially in the highest
bin in both variables (right bottom).

These qualitative statements are confirmed by a decomposition of the binned samples into
partial-wave amplitudes. About 3 · 105 events in each two-dimensional bin are sufficient to
perform the full partial-wave analysis in mass bins as described in Section 5.3, including the
identification of the physical solution via the Barrelet zeros. Only the width of the mass bins
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Figure 5.23: Invariant Mass of the π+π− System in bins (cf. text) of t1 (horizontal, increasing
from left to right) and t2 (vertical, increasing from top to bottom)

had to be enlarged to 20 MeV/c2. The intensity distributions of the S−0 - and D−0 -waves as well
as their relative phases for all bins can be found in Appendix B.1.

The analysis of the sample with a squared four-momentum transfer t2 from the target to
the central system below 0.1 GeV2/c2 is difficult due to the threshold imposed by the recoil pro-
ton detector. Especially the Monte-Carlo description of this threshold is not realistic enough
at the present stage for a reliable acceptance correction, which results in a wrong absolute
normalisation of the partial-wave amplitudes. For this reason, we discuss the intensity dis-
tributions of the S−0 - and D−0 -wave for the lowest bin in t1 and the second lowest bin in t2
(cf. Figure 5.24). In this bin, the S−0 -wave is largely dominated by the enhancement at thresh-
old, with the f0(980) resonance as a shoulder near the π+π− mass of 1 GeV/c2. The ρ(770)
peak is completely removed from the sample. However, no clear signal for the f2(1270) meson
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Figure 5.24: Intensities from the partial-wave analysis in the region t1 ∈ [0.000, 0.040[ GeV2/c2

and t2 ∈ [0.100, 0.140[ GeV2/c2.
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Figure 5.25: Intensities from the partial-wave analysis in the region t1 ∈ [0.255, 2.000[ GeV2/c2

and t2 ∈ [0.325, 2.000[ GeV2/c2.

can be observed either in the D−0 -wave, which is relatively unstable below 1 GeV/c2. As a
consequence, the f2(1270) cannot be used to interpret the interference with the S−0 -wave.

The partial-wave analysis of the highest bin in both t1 and t2 results in very different
intensity distributions (cf. Figure 5.25). The peak of the f2(1270) meson in the D−0 -wave
is separated almost background-free. The S−0 -wave exhibits a pronounced structure at the
f0(980) mass, and also the intensity caused by the wrongly attributed ρ(770) meson can be
clearly discerned.

In summary, the scalar component of the π+π− spectrum can be selected by restricting
the squared four-momentum transfers to the central system to a minimum. The ρ(770) meson
is suppressed since it cannot be produced via double-Pomeron exchange mechanisms. The
f2(1270) resonance is suppressed in a similar fashion. This can be explained by a dependence
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of the relative contributions from different production mechanisms on t1 and t2 [74]. Since
we want to profit from the phase information with respect to the well-studied D−0 -wave in
order to study the resonant content of the S−0 -wave, we will continue the analysis on the
unbinned sample. However, full coherence between the different production mechanism has to
be assumed.



Chapter 6

Parametrisation of Mass
Dependence

So far, the sample of centrally produced di-pion systems was decomposed into partial-wave
amplitudes, which are assumed to be constant as a function of the π+π− mass across nar-
row bins of 10 MeV/c2 width. Since every mass bin is fitted independently, this so-called
mass-independent analysis does not require any assumption on the resonant behaviour in the
di-meson system. Nevertheless, we observe continuous behaviour of intensity distributions and
phase differences as a function of mass. Especially the peak in the D-wave can be unmistak-
ably identified with the f2(1270) meson. This resonance can be used as a reference for the
complicated scalar contribution.

In this chapter we introduce the components of a model for the mass dependence of the spin-
density matrix elements extracted by the bin-wise decomposition into partial-wave amplitudes.
We will briefly summarise the possibilities for a χ2-minimisation to determine the parameters,
before we focus on the application of this model to the S−0 -wave and its interference with the
D−0 -wave for the centrally produced π+π− system.

6.1 Components

The mass-dependence of the partial-wave amplitudes are parametrised using a coherent sum of
resonant terms and contributions with a constant phase, which account for the non-resonant
production of the central π+π− system.

In its rest frame, the kinematic properties of the two-body decay are given by the invariant
mass m of the central system. The breakup momentum q is often used as the kinematic variable
for the parametrisation of the mass dependence. Its functional form [26] is simplified due to
the decay into pions with equal mass:

q =

√
[m2 − (m1 +m2)2] [m2 − (m1 −m2)2]

2m

m1=m2=mπ=
1

2

√
m2 − 4m2

π . (6.1)

Without the constant factor for the angular integral, the Lorentz-invariant phase space element
ρπ is defined as

ρπ =
2q

m
=

√
1− 4m2

π

m2
. (6.2)

Figure 6.1 illustrates the behaviour of the breakup momentum q and the density of final states
ρπ as a function of the two-body invariant mass m.

81
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Figure 6.1: Breakup momentum q and Lorentz-invariant phase space element ρπ as a function
of the di-pion mass.

6.1.1 Breit-Wigner Resonance

The amplitude for a narrow, isolated resonance in high-energy physics is described by a rela-
tivistic Breit-Wigner function [30].

R(m) =
m0Γ0

m2
0 −m2 − im0Γ0

(6.3)

The nominal mass of the resonance is specified by m0, its nominal total width by Γ0. In the
complex plane, the amplitude follows a circle with radius 0.5 around 0.5i in the anti-clockwise
direction. Figure 6.2a shows this so-called Argand diagram of the complex plane. At the
mass of the resonance, the amplitude is purely imaginary and the intensity, which is defined
as the absolute value squared of the amplitude, is maximal (cf. Figure 6.2b). Going across the
resonance, the phase of the amplitude varies by 180◦ and is 90◦ at m0 (cf. Figure 6.2c).

(a) Argand Diagram (b) Intensity (c) Phase

Figure 6.2: Relativistic Breit-Wigner function [85].
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In order to incorporate the mass dependence of the two-body decay phase space [26], we
introduce the dynamic width as

Γ(m;L) = Γ0
q

m

m0

q0

[
BL((qR)2)

BL((q0R)2)

]2

, (6.4)

with the breakup momentum q0 at the resonance point. The asymptotic behaviour caused by
the orbital angular momentum L of the decay is taken into account by the Blatt-Weisskopf
barrier factors BL [102]. The empirical interaction radius R is usually set to 1 fm. The Breit-
Wigner amplitude is therefore modified to

Rdyn(m) =
m0

√
Γ0

√
Γ(m)

m2
0 −m2 − im0Γ(m)

. (6.5)

If several decay channels contribute to the same resonance, the width in the numerator has to
be replaced by the total width Γtot. It is defined as the sum over all partial widths weighted
by their respective branching fractions. As a consequence, the leading channel determines the
behaviour of the function. Since the decay into ππ is the dominant channel for all resonances
discussed in this chapter, additional partial widths can safely be ignored.

Besides the fit parameters m0 and Γ0, we allow for a free complex coefficient for every
Breit-Wigner function, which are summed up coherently for each partial wave.

6.1.2 Flatté Parametrisation

Unitarity, i.e. the preservation of probability, leads to observable modifications of the resonance
shape if the mass is near the threshold of a second decay channel. Flatté [52] has proposed
a parametrisation to explain the behaviour of the πη and KK̄ systems by a coupled-channel
resonance, which was later called a0(980). Through analytic continuation of the amplitude in
the complex plane, the KK̄ channel affects the mass region even below the KK̄ threshold,
resulting in a very narrow peak, a so-called cusp phenomenon, in the πη mass distribution.

In the case of isospin I = 0, a similar effect has to be taken into account when parametrising
the f0(980) meson, which is also heavily deformed by the opening of the KK̄ channel. The
amplitude is expressed in the form

Fj(m) =
m0

√
Γ0

√
Γj

m2
0 −m2 − im0(Γπ + ΓK)

, j ∈ {π,K}. (6.6)

The partial decay widths are functions of the breakup momentum

Γj = gjqj(m) =
gj
2

√
m2 − 4m2

j , (6.7)

Γ0 = gjqj(m0) . (6.8)

Below the KK̄ threshold, ΓK is analytically continued to

ΓK = i
gK
2

√
4m2

K −m2 , (6.9)

which modifies the line shape drastically. In Figure 6.3, the Argand diagram is shown together
with the intensity and the phase for parameters determined by the BES collaboration [4] in
J/ψ decays (m0 = 965 MeV/c2, gπ = 0.165, gK/gπ = 4.21). A review of several experimental
results can be found in [24], where it is argued that the large discrepancies in the published
parameter values for the f0(980) can be explained by scaling the ratio gπ/gK of the coupling
constants. For a fit to experimental data, this ratio is therefore better suited as a parameter
than the individual values.
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Figure 6.3: Flatté parametrisation of the f0(980)→ π+π− decay with constants from [4].

6.1.3 AMP Parametrisations

The Watson theorem [103] relates the phase of the elastic scattering amplitudes for ππ → ππ
and for ππ → KK̄ to the amplitude of the central production process. Data from both
scattering processes were combined in a multi-channel unitary analysis by Au, Morgan and
Pennington (AMP) [16]. The amplitudes for the different channels are arranged as elements
of the T-matrix

T =

(
Tππ→ππ Tππ→KK̄
TKK̄→ππ TKK̄→KK̄

)
, (6.10)

which is parametrised as

T = K(I− iρK)−1 or T = (M− iρ)−1 with ρ = diag(ρπ, ρK) , (6.11)

where ρK is defined in analogy to Equation 6.2. As described in Section 1.2.3, data from
elastic scattering experiments were combined with those from central production of π+π− in
order to determine the parameters in the matrices K or M, respectively, by a fit. The resulting
intensity has a pronounced dip at the position of the f0(980), which is shown in Figure 6.4b.
The jump in the phase around 1 GeV/c2 (cf. Figure 6.4c) is an effect of the parametrisation
of the amplitude, which has to leave the unitary circle after the opening of the KK̄ channel
(cf. Figure 6.4a). As a consequence, the angle with respect to the real axis does not reach
the origin and can therefore not be analytically continued through 180◦, even though it is
still rising. The falling phase above 1.5 GeV/c2, however, is unphysical [85]. Due to the lack
of precise data from elastic scattering and central production experiments at that time, the
behaviour of the amplitude is not well defined in this region.

The so-called M-solution for the Tππ →ππ amplitude is used in a modified version as a
description of the intermediate ππ S-wave in pion diffraction analyses [59, 100]. In order to be
able to implement the f0(980) as a separate resonance, all coefficients in the amplitude which
are responsible for it are artificially set to zero, as well as the off-diagonal terms. This results
in the simplified mass dependence shown in Figure 6.4.

The elastic scattering amplitude is required to be vanishing close to threshold by the Adler
condition [5]. In the central production process on the other hand, the duality with a one-
pion exchange (cf. Figure 6.5) avoids the Adler zero [16]. In order to remove this process
dependence, the amplitudes are divided by the pole of the elastic channel at s0, which is very
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Figure 6.4: AMP M solution for the ππ → ππ S-wave, original (blue) and simplified (red).
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Figure 6.5: Illustration of central production as one-pion exchange

close to the origin.

Treduced =
T

s− s0
. (6.12)

It is shown that this approximate factor of 1/m4 multiplied to the intensity distribution de-
scribes the general trend of the data [16]. An updated K-matrix parametrisation without the
Adler zero was provided by [84]. This so-called reduced K solution is illustrated in Figure 6.6.
Here, we show also the components of the T-matrix which involve kaons since they will be
important in Chapter 7.
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Figure 6.6: Reduced AMP amplitude for ππ → ππ (red), KK̄ → KK̄ (blue) and
KK̄ → ππ (green) as a function of the two-body mass of the final state [84].

6.1.4 Parametrisation of the Non-Resonant Component

An additional coherent, but non-resonant component has to be introduced in each partial
wave in order to account for the contribution from other production processes which translate
through their angular characteristics into intensity in the S- and D-waves (cf. Section 5.2). We
parametrise the non-resonant terms N by

N (m;L) =
( q
m

)L
·
√

q

m
· exp(−αq2) (6.13)

with the breakup momentum q and the real-valued fit parameter α. The factor qL provides the
correct asymptotic behaviour for the angular-momentum barrier. The two-body phase space
is represented by the square root term [26] and is damped towards large m by the exponential
function.

Alternative parametrisation were tried for this analysis, including the model used in [21],
but the presented results showed no significant dependence on the functional form of the non-
resonant term. These studies are, however, important for the estimation of systematic errors.
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6.2 Definition of χ2

For each wave i, the model Mi includes a coherent sum of resonant and non-resonant terms
as introduced in the previous section. In addition to the parameters for mass m0 and width
Γ0, every resonant contribution Rr has a complex-valued coefficient cr as fit parameter, which
determines its strength and phase. For the same purpose, the non-resonant component N
has a fitted complex coefficient cn. The number of Breit-Wigner functions r is kept to the
minimum required to describe the data reasonably.

Mi =
∑
r

crRr(m0,r,Γ0,r) + cnN (α) (6.14)

All parameters are varied in order to fit the distributions obtained by the decomposition into
partial-wave amplitudes in individual mass bins (cf. Chapter 5). The residual vector ~∆ of the
model with respect to the results of the mass-independent partial-wave analysis Ti in each mass
bin has one component for the real part and one for the imaginary part of each used partial
wave i.

~∆ =


...

Re Ti − ReMi

Im Ti − ImMi
...

 (6.15)

As fit criterion, we use the weighted sum χ2 of the squared errors. The χ2 is computed
using the definition

χ2 =
bins∑
m

~∆T C−1 ~∆ , (6.16)

with the covariance matrix C, obtained by the maximum-likelihood fit. It is composed of two
columns and two rows for each wave describing the uncertainties of the real and the imaginary
parts of the transition amplitudes, respectively. This method has the advantage, that all
covariances provided by the fit in mass bins are used directly.

A second definition has been used in the past (e.g. in [80]), which rather parametrises the
elements of the spin-density matrix [36]. The residual vector is calculated separately for each
of the products TiT ∗j , which correspond to the relevant physical properties intensity and phase
difference. In this formalism, the residual vectors have only two components, the real and the
imaginary part of the product TiT ∗j .

~∆ij =

(
Re TiT ∗j − ReMiM∗j
Im TiT ∗j − ImMiM∗j

)
(6.17)

The χ2 for the fit is summed over all possible combinations of the waves:

χ2 =
bins∑
m

waves∑
ij

~∆T
ij C−1

ij
~∆ij . (6.18)

The covariance matrices Cij have to be constructed using error propagation from the sub-
matrices of C which correspond to the waves i and j via

Cij = J · cov(Ci × Cj) · JT . (6.19)
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J is the Jacobian matrix for this transformation. For a growing number of waves N , this method
puts an increasing weight on the mixed terms. Instead of the 2N variables which are the result
of the partial-wave decomposition in mass bins, N2 distributions are fitted. Nevertheless, both
methods converge to the same results within the statistical uncertainties.

6.3 Results for the π+π− System

6.3.1 Fit to the S-Wave Intensity

At first, we tried to fit only the S-wave intensity distribution with a model similar to the anal-
ysis of ISR data published in [77], but ignoring the mass range between 0.65 and 0.82 GeV/c2

which is contaminated by the ρ(770). The interference between a dominant, non-resonant com-
ponent and two Breit-Wigner functions is able to describe the distribution. The first resonant
contribution has a mass of about 0.99 GeV/c2 and matches the f0(980) meson. Its width of
about 0.1 GeV/c2 is also in agreement with the range given in [26]. The second component
can be identified with the f0(1500) resonance with a mass of precisely 1.5 GeV/c2, even though
the value for the width is exceeded by more than a factor of two. The obtained Breit-Wigner
parameters are summarised and compared to the literature values in Table 6.1.

Resonance Fit result PDG values [26]
Mass (MeV/c2) Width (MeV/c2) Mass (MeV/c2) Width (MeV/c2)

f0(980) 989± 1 102± 1 990± 20 40− 100
f0(1500) 1542± 3 225± 6 1505± 6 109± 7

Table 6.1: Parameters for fit with two Breit-Wigner functions and non-resonant contribution
(10 parameters, χ2/NDF = 128). Only statistical errors are given for the fit results.

In addition to the four Breit-Wigner parameters, three complex amplitudes and the damp-
ing factor α are varied in the fit to about 150 data points. Since the overall phase is arbitrary,
one coefficient is chosen to be real-valued. The final model with ten parameters roughly de-
scribes the one-dimensional mass distribution, which is illustrated in Figure 6.7. The large
value of χ2 divided by the number of degrees of freedom reflects the tiny statistical errors for
each data point, owing to the size of the analysed data set. The simplistic model is not able
to describe the observed distribution entirely. Therefore, the reduced χ2 does not allow an
interpretation in terms of the probability. Nevertheless, it is quoted as a relative goodness of
fit criterion for all results in the following.

The slight deviation in the mass range between the two resonances led to the introduction of
a broad f0(1370) in the past [19]. We could, however, not achieve a stable fit with an additional
Breit-Wigner function at this stage. An asymmetric distribution for the f0(980), e.g. the Flatté
parametrisation introduced above, can also account for this effect. The interference of the S-
wave with the well-known f2(1270) meson in the D-wave enables a more detailed analysis of
the resonant content. We will focus on this technique in the following.

6.3.2 Mass-Dependent Fit to the S- and D-Wave Interference

The simplest extension to the model introduced in the previous section requires only one
Breit-Wigner term for the f2(1270) meson on top of a non-resonant contribution in the D-
wave. With two additional complex coefficients, this results in seven additional fit parameters
for the simultaneous χ2-fit to the S- and D-wave intensity distributions and their relative
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Figure 6.7: Fit to S-wave intensity (red) with Breit-Wigner functions for f0(980) (blue) and
f0(1500) (green). The non-resonant component is drawn in black, the ignored mass range of
[0.65, 0.82] GeV/c2 in grey.

phase. In the fit, the D-wave is ignored below the mass of 0.83 GeV/c2. No resonant behaviour
is expected in this region, which was shown to be prone to fit instabilities in Figure 5.20.

The data are shown together with the fit result in Figure 6.8. The complicated phase
motion is well reproduced by the three resonant components, which are shifted separately to
the interval between 0◦ and 180◦ for illustration. Especially the phase information enlarges
the discrepancy of the intensity distribution in the f0(980) mass region compared to the one-
dimensional approach (cf. Figure 6.7). The Breit-Wigner parameters of the fit result are
presented in Table 6.2. The mass and width of the f2(1270) meson approximately reproduce
the precisely known literature values [26], even though the peak in the intensity distribution is
not fitted correctly. More freedom in the model for the non-resonant component is required to
match the interference with the resonance in the D−0 -wave. The mass parameters of the scalar
resonances f0(980) and f0(1500) are also compatible with previous measurements [21], while
the width of the latter is still estimated to large.

Resonance Fit result PDG values [26]
Mass (MeV/c2) Width (MeV/c2) Mass (MeV/c2) Width (MeV/c2)

f0(980) 993± 1 110± 1 990± 20 40− 100
f0(1500) 1489± 3 247± 5 1505± 6 109± 7
f2(1270) 1300± 2 171± 2 1275± 1 185± 3

Table 6.2: Parameters for fit with three Breit-Wigner functions and non-resonant contributions
(17 parameters, χ2/NDF = 58). Only statistical errors are given for the fit results.

In the next step, the Breit-Wigner function for the f0(980) is replaced with the asymmetric
Flatté parametrisation introduced in Section 6.1.2. The precision of the data in this mass
region does not allow a stable fit of the nominal mass m0 and the coupling parameters g1

and g2, they are thus fixed to the parameters quoted by the BES collaboration [4]. Only the
complex coefficient is able to vary the magnitude and phase. Figure 6.9 shows this fit, which is
not substantially different from the previous one. Nevertheless, the slowly rising phase of the
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Figure 6.8: Fit to S- and D-wave (red) with Breit-Wigner functions for f0(980) (blue), f0(1500)
(green) and f2(1270) (magenta). Non-resonant components are drawn in black.

Flatté function above the KK̄ threshold produces a width of the f0(1500) closer to the value
given in the PDF (cf. Table 6.3).

Resonance Fit result PDG values [26]
Mass (MeV/c2) Width (MeV/c2) Mass (MeV/c2) Width (MeV/c2)

f0(1500) 1478± 2 182± 3 1505± 6 109± 7
f2(1270) 1301± 1 165± 2 1275± 1 185± 3

Table 6.3: Parameters for fit with two Breit-Wigner functions, the fixed Flatté parametrisation
for the f0(980) and non-resonant contributions (15 parameters, χ2/NDF = 72). Only statistical
errors are given for the fit results.

The reduced χ2 of both fits can be improved by the implementation of a broad Breit-Wigner
component for the f0(1370) in the S-wave, overlapping with the f0(980) and the f0(1500) states.
However, the small visible improvements in the distributions do not necessarily justify four
additional fit parameters. The fit becomes unstable and only converges if the mass parameters
of the Breit-Wigner functions in the scalar sector are restricted to narrow ranges around the
minimum. An objective result is difficult to achieve in this case.
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Figure 6.9: Fit to S- and D-wave (red) with fixed Flatté parametrisation for f0(980) (blue),
and Breit-Wigner functions for f0(1500) (green) and f2(1270) (magenta). Non-resonant com-
ponents are drawn in black.

6.3.3 Fixed Parametrisation

The sum of overlapping Breit-Wigner functions can only serve as an approximation to the
scattering amplitude. As it is impressively demonstrated by K. Peters [85], the intensity
distribution as well as the phase can be considerably altered by this simplification.

The ππ scattering amplitude was extensively studied in the past. As a prominent example,
we apply the widely-used M-matrix parametrisation from Au, Morgan and Pennington [16]
in this analysis. Even though the amplitude was mostly determined by elastic ππ scattering,
the Watson theorem [103] relates its phase to other hadronic processes. The ππ amplitude
is divided by the Adler zero (cf. Equation 6.12) in order to accommodate the characteristics
of central production. Since knowledge of the exact nature of the production mechanism is
inessential [16], we multiply the amplitude with a second-order polynomial in the breakup
momentum in order to match the kinematic dependence.

With only three real-valued polynomial coefficients, a fit to the S-wave intensity distribution
below 0.65 GeV/c2 yields a remarkably close match far beyond the fitted mass range (cf. Fig-
ure 6.10). Particularly, the original amplitude describes the sharp drop at the position of
the f0(980) meson as well as the kink near the f0(1500) mass. The fact that the measured
distribution does not vanish completely at the f0(980) resonance is a definite sign that the
pure ππ scattering amplitude is not enough to describe the dynamics of the central-production
reaction.
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Figure 6.10: Fit to S-wave intensity below 0.65 GeV/c2 with AMP M solution.
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(b) AMP M + Flatté + Breit-Wigner

Figure 6.11: Fit to S-wave intensity with Flatté parametrisation (green) added to simplified
AMP M solution (blue).

In order to describe production reactions, it might be necessary to vary the phase of the
f0(980) meson with respect to the broad f0(500) resonance, such that the interference is no
longer completely destructive as it was observed in elastic scattering experiments [64]. In the
two-pion subsystem of a diffractively produced three-pion system [59], the f0(980) can be even
observed as a peaking structure. A model with a Flatté function for the f0(980) state added
coherently to the simplified AMP M parametrisation provides this freedom. Figure 6.11a
illustrates a fit to the intensity spectrum of the S−0 -wave with this model. The shape of the
distribution is reproduced up to π+π− masses of 1.5 GeV/c2. For Figure 6.11b, an effective
Breit-Wigner function is added in order to accommodate the observed intensity at higher
masses. It has an unphysical width of more than 0.5 GeV/c2 and should not be associated with
an actual state.

This approach is also applied to a simultaneous fit of S- and D-wave intensities and their
relative phase. The D-wave is modelled with a Breit-Wigner function for the f2(1270) and
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Figure 6.12: Fit to S- and D-wave (red) with simplified AMP M solution (blue), Flatté
parametrisation for the f0(980) (green) and an effective Breit-Wigner function (magenta) in
the S-wave, f2(1270) (cyan) and non-resonant component (black) in the D-wave.

a non-resonant component. The result is depicted in Figure 6.12. Similar to the fit with a
non-resonant component in the S-wave (cf. Figure 6.9), all features of the distributions are
described. The effective Breit-Wigner function is obtained with a large magnitude in order to
fit the relative phase with respect to the D-wave.

Interference of the ππ → ππ scattering amplitude with the coherent process KK̄ → ππ can
also change the appearance of the observed intensity. In order to take the KK̄ → ππ amplitude
correctly into account, we used the reduced K-matrix parametrisation [84] as introduced in
Section 6.1.3. The coherent sum of the relevant components is multiplied with the fitted
second-order polynomial in the breakup momentum. The result of the fit to the intensity
distribution is illustrated in Figure 6.13, where the characteristic shape near the f0(980) meson
is qualitatively reproduced. The amplitude vanishes at a mass of 1.6 GeV/c2, an additional
component is required to describe this region.

With an effective Breit-Wigner function in the mass region of 1.5 GeV/c2, we can use these
results to fit the interference with the D-wave. The unphysical behaviour of the parametrised
amplitude for high masses, however, prevents quantitative statements about the resonant con-
tent in this interesting region. We show one exemplary fit in Figure 6.14, which follows the
intensity distribution of both waves. The general trend of the phase difference is reproduced
as well, even though the f0(980) meson is observed with a larger width.
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Figure 6.13: Fit to S-wave intensity with coherent sum (red) of the ππ → ππ (blue) and
KK̄ → ππ (green) components of the Kred amplitudes.
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Figure 6.14: Fit to S- and D-wave (red) with Kred (dashed) and f0(1500) (magenta) in the
S-wave, f2(1270) (cyan) and non-resonant component (black) in the D-wave.
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6.3.4 Discussion

We fitted the S- and D-wave amplitudes obtained by a partial-wave decomposition in nar-
row mass bins with a series of models. Even though it can violate unitarity constraints, the
coherent sum of Breit-Wigner functions and non-resonant terms is able to describe the mass-
dependence qualitatively. The results for mass and width parameters of the states f0(980),
f0(1500) and f2(1270) are roughly consistent with the summary tables provided by the Particle
Data Group [26].

A published parametrisation [16] of the scattering amplitude which satisfies the physical
boundaries from unitarity and analyticity is able to fit the gross features of the S-wave intensity
distribution with only few parameters. However, the amplitudes are not well defined for di-
pion masses above 1.5 GeV/c2 and do not follow the data. On the other hand, the coherent
sum with additional components loses the physical properties.

The internal parameters of such a parametrisation should rather be released in a fit. This
can, however, not be done with our analysis alone. Elastic scattering and especially semi-
leptonic kaon decays provide very precise information of the hadronic amplitude of the ππ
system for masses near the f0(980). In contrast, fewer information is available about the
amplitudes above 1.5 GeV/c2. A combined fit of the different production processes including the
large data set measured by COMPASS may improve the understanding of the super-numerous
scalar ππ resonances. We are not able to continue the analytic function in a reasonable way
without knowledge of the inherent uncertainties.



Chapter 7

Partial-Wave Analysis of the KK̄
System

Due to its good particle identification capabilities, the COMPASS experiment is able to measure
the decay of centrally produced systems into charged kaons. The reconstruction of neutral kaon
decays is also possible, the efficiency for their identification by a displaced vertex is, however,
about one order of magnitude worse [94]. We will therefore focus on the K+K− system in this
chapter.

At first, we will revisit the kinematic selection of the centrally produced sample. The
momentum limits for particle identification as well as the nature of the production process
allow an easier separation from diffractive dissociation reactions. We will then perform the
model-independent decomposition into partial waves in narrow K+K− mass bins completely
equivalent to the analysis of the ππ systems in Chapter 5. Finally, the mass-dependence of the
intensities of S- and D-waves and the interference between them will be fitted with different
models.

7.1 Selection of a Centrally Produced K+K− Sample

The production of a kaon pair with a proton beam at COMPASS was already introduced
in Section 3.2.2. A narrow peak corresponding to the Λ0(1520) 3/2+ state and other baryon
resonances with masses around 1.7 GeV/c2 are an unmistakable sign for a diffractive component
besides the centrally produced sample. The magnitude of this contamination seems to be
considerably smaller than for the ππ case, owing to the negligible strangeness content of the
initial state. In addition, the RICH particle identification system is limited to momenta below
50 GeV/c, which favours the central production topology with a fast outgoing proton.

If we require the proton to have a momentum larger than 140 GeV/c, both other particles
must be slower than 50 GeV/c and are hence able to leave a signal in the RICH detector.
For these event, the identification of either one of the particles as a kaon is sufficient, which
increases the number of events by about 50% compared to the method introduced in 3.2.2. A
minimal proton momentum is, however, not sufficient to suppress the diffractive background
completely, as established in Section 3.3.1. Small signs of baryon resonances around 1.8 GeV/c2

in the invariant mass spectrum of the pfK
− subsystem remain (cf. Figure 7.1).

In order to justify the final choice of the kinematic selection criteria for the centrally
produced K+K− system, we applied the decomposition into partial waves and compared
the angular distributions from the measured data with weighted Monte-Carlo events as ex-
plained in Section 5.2. For this study, we used the most general wave set with L ≤ 2 and

96
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Figure 7.2: Ratio between data and weighted
MC with p(pf) > 140 GeV/c.
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Figure 7.3: Invariant mass of subsystems, |y(p)− y(K)| > 1.5 (filled).

M ≤ 1 (cf. Equation 5.5). Figure 7.2 illustrates the obtained ratio of real data over weighted
MC for the events selected by requiring a minimal proton momentum of 140 GeV/c. The
peaks near cosϑ = ±1 which are characteristic for a diffractive contribution can be discerned
for K+K− masses above 1.8 GeV/c2. This artifact also influences the fit result for lower values
of | cosϑ |, which may alter the conclusions from the analysis significantly. For this reason, we
decided to apply different selection criteria.

In contrast, the requirement of a rapidity gap between protons and kaons of at least 1.5
units suppresses any signs of diffractively produced baryon resonances with strangeness. The
threshold for the invariant mass of the pfK

− subsystem in Figure 7.3a is above 1.8 GeV/c2, and
the remaining pfK

− mass spectrum is compatible with a pure phase-space distribution. The
prominent peak of the φ(1020) resonance in the selected K+K− sample, which is not expected
for double-Pomeron exchange processes, is also considerably reduced (cf. Figure 3.11b and
Figure 7.3b). The comparison of data with a Monte-Carlo sample weighted by the final fit
result will be discussed in Section 7.2.1.
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Figure 7.6: Decay variables as a function of the K+K− mass.

About 4·105 events are selected by this rapidity gap requirement, at least one order of mag-
nitude more than available at previous experiments [20]. The xF distribution (cf. Figure 7.4)
shows the expected behaviour, with the central system concentrated in the xF region below 0.2.
Analogous to the ππ decay, the experimental setup has a poor acceptance for central systems
produced in the backward hemisphere in the pp centre-of-mass frame. For the majority of the
events, the rapidity of the K+K− system lies between zero and one (cf. Figure 7.5).

The partial-wave analysis is performed in the angles ϑ and ϕ of the K− with respect to
the reference frame defined in Section 5.1.1. Figure 7.6 shows the angular distributions as
a function of the invariant mass of the central K+K− system. Except near the mass of the
vector meson φ(1020), the distribution of the polar angle cosϑ is symmetric. This effect is
characteristic for the likewise symmetric central-production process, and limits the required
partial-wave contributions to even spins. In order to prove this, we start the analysis with the
general wave set (cf. Equation 5.5).
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Figure 7.7: Acceptance for the central K+K− system with |y(p)− y(K)| > 1.5.

7.2 Mass-Independent Partial-Wave Analysis

The partial-wave decomposition in K+K− mass bins was performed in a fashion completely
equivalent to the analysis of the central di-pion system as explained in Chapter 5. The data set
allowed to use 10 MeV/c2 mass bins, which is four times finer than a previous analysis [20]. A
Monte-Carlo data sample of 5 ·107 events was generated and reconstructed, using the efficiency
tables for particle identification that were introduced in Section 4.2.3. The average acceptance
for the fully reconstructed central production of a charged kaon pair with rapidity gaps larger
than 1.5 units is about 15%, if one kaon is required to be identified by the RICH detector.
Figure 7.7a depicts the acceptance as a function of the invariant mass of the central system. The
decrease towards low K+K− masses is a direct consequence of the low-momentum threshold
of 9.5 GeV/c for particle identification with the RICH detector. The effect of the requirement
of a large rapidity gap between protons and kaons can be observed in Figure 7.7b, where the
regions of cosϑ = ±1 are suppressed for K+K− masses above 2 GeV/c2.

7.2.1 Evaluation of Goodness of Fit with Weighted MC

As a first step, we evaluate the fitting model by comparing the angular distributions of a
weighted Monte-Carlo sample with the measured ones. For this purpose, we use all allowed
partial waves up to the orbital angular momentum L = 2 with M ≤ 1. They are grouped into
two independent blocks by their reflectivity quantum number and the phase of the lowest-spin
wave is fixed to zero in each block. These anchor waves are highlighted in bold font:

{S−
0 , P

−
0 , P

−
1 , D

−
0 , D

−
1 }, {P

+
1 , D

+
1 } (7.1)

The result of a fit in mass bins is used to weight the phase-space Monte-Carlo sample, and
the obtained angular distributions are compared with the measured ones. Figure 7.8 shows
the ratio of real data over weighted MC, which is uniform in both decay angles as a function
of the K+K− invariant mass. The decay can be perfectly described by the employed wave set,
which confirms the suppression of diffractively produced events. Projections onto 100 MeV/c2

wide mass ranges illustrate the correctly found variations of the angular distributions with
mass (cf. Figure 7.9).
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Figure 7.8: Ratio between data and weighted phase-space Monte-Carlo sample.
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Figure 7.9: Real data (blue) and weighted Monte-Carlo (red) for two K+K− mass ranges.



7.2. MASS-INDEPENDENT PARTIAL-WAVE ANALYSIS 101

)2 System (GeV/c-K+Invariant Mass of K
1 1.2 1.4 1.6 1.8 2 2.2 2.4

) i
R

e(
u

-3

-2

-1

0

1

2

3
COMPASS 2009

s
 p-K+ K

f
 p→p p 

(a) Real part

)2 System (GeV/c-K+Invariant Mass of K
1 1.2 1.4 1.6 1.8 2 2.2 2.4

) i
Im

(u

0

0.5

1

1.5

2

2.5

3
COMPASS 2009

s
 p-K+ K

f
 p→p p 

(b) Imaginary part

Figure 7.10: Barrelet-zeros as a function of the K+K− mass.

7.2.2 Ambiguities

Eight mathematically equivalent sets of production amplitudes can be derived from the fitted
amplitudes when considering the angular momentum L ≤ 2 and its projections on the quanti-
sation axis M ≤ 1 [35]. As explained in Section 5.3, they can be calculated analytically from
the complex roots of a forth-order polynomial in the angular variable u = tan ϑ

2 . Figure 7.10
illustrates these so-called Barrelet-zeros [23] as they are obtained from the results of one fit.
A clean separation of the roots and therefore a continuous identification of the eight solutions
is possible by sorting them by their real part. Only in the region below 1.2 GeV/c2 and near
1.8 GeV/c2, the imaginary part has to be used to distinguish the cases for a few mass bins.

The eight complex-valued amplitudes for each wave can be directly derived from these
four Barrelet zeros. Figure 7.11 shows the intensities for all waves with negative reflectivity.
Analogous to the analysis of the ππ system (cf. Chapter 5), one particular solution is dominated
by the S−0 -wave intensity. This solution also exhibits a clean peak in theD−0 -wave at the mass of
the f ′2(1525), and the P -waves are almost completely suppressed for masses above 1.1 GeV/c2.
This supports the assumption of a symmetric production process.

Using the calculated physical solution as starting values for the transition amplitudes, the
partial-wave fit in mass bins gives Figure 7.12. The peak in the D−0 wave can be unmistakably
identified as the f ′2(1525) resonance. The f2(1270) plays a role as well. Traces for both mesons
can also be identified in the D−1 -wave with magnetic quantum number M = 1. However, the
enhancement at threshold in the latter wave is not physical due to the angular momentum
barrier. The broad structures in the S−0 -wave remain difficult to interpret at this stage, but
the distinct phase motion with respect to the D-wave provides an important constraint.

The φ(1020) can be found in both P−0 - and P−1 -waves, but the identification of the physical
solution is very unstable in this region. Above masses of 1.1 GeV/c2, the P -waves do not
contribute to the intensity. Hence, the relative phases with respect to these waves are not
well-defined. In the positive-reflectivity sector, a signal for the a2(1320) meson may even be
discernible in the D+

1 -wave. However, the phase against the P+
1 wave does not allow a definite

statement.
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Figure 7.11: Intensities for the mathematically ambiguous solutions, calculated from the results
of one fit. The physical solution (dark blue) was chosen as explained in the text.

7.2.3 Reduction of the Wave Set

Since the P -wave amplitudes are not necessary to describe the data apart from the narrow
mass region near the φ(1020) meson, we studied the decomposition into scalar and tensor
contributions only. For this simplified case, the mathematical ambiguities are decreased, as
described in Section 5.3. The problem is reduced to a second-order polynomial, which yields
only two independent solutions. Figure 7.13 illustrates the roots obtained by one fit to the
data. Combining the information from the real parts for masses above 1.2 GeV/c2 with the
imaginary parts below, a unique identification along all bins is achieved. Recalculating the in-
tensity distributions for the two solutions (cf. Figure 7.14), one of the cases yields the expected
dominance of the S-wave at threshold similar to Figure 7.11. The intensity distributions gen-
erally have the same appearance as the physical solution for the full wave set (cf. Figure 7.12).
Only the peak of the φ(1020) resonance is wrongly attributed to the S-wave.

Figure 7.15 shows the final result for the acceptance-corrected partial-wave analysis of the
centrally produced K+K− system in 10 MeV/c2 mass bins. The intensity distributions show
all features observed already in the analysis with the P -waves included, while the fit seems to
be much more stable. The intensities form smooth curves as a function of mass. A clear phase
motion is visible between the S−0 - and D−0 -wave, which will be an important ingredient for the
interpretation in terms of resonant contributions in the Section 7.4. Before that, we will study
the dependence of the observed spectra on the squared four-momentum transfer to the central
K+K− system.
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Figure 7.12: Physical solution, intensities (blue) and relative phases (red).
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Figure 7.13: Barrelet-zeros as a function of the K+K− mass.
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Figure 7.14: Two mathematically ambiguous intensity distributions, computed from the results
of one fit. The physical solution (blue) was chosen for its S-wave dominance.
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Figure 7.15: Physical solution for the reduced wave set without P -waves; intensities (blue) and
phases (red).
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Figure 7.16: Squared four-momentum transfers t1 vs. t2 to the K+K− system with logarithmic
colour-scale and two-dimensional binning (dashed lines).

7.3 Momentum-Transfer Dependence

In analogy to the analysis in two-dimensional bins of the squared four-momentum transfers t1
and t2 to the π+π− system in Section 5.4, we split the data sample of about 4 · 105 centrally
produced K+K− events into regions with approximately the same number of events. The divi-
sion into nine sets allows a partial-wave analysis in 20 MeV/c2 wide mass bins. The boundaries
for t1 and t2 are displayed in Figure 7.16.

Variations can already be discerned when comparing the invariant mass distributions for
individual bins (cf. Figure 7.17). For the set with the lowest t1 and t2, the spectrum appears
almost congruent with the S−0 intensity extracted from the full sample (cf. Figure 7.12). Apart
from the expected shift of the weight towards higher K+K− masses for increasing t1 and t2, the
structures near 1.5 GeV/c2 and 1.7 GeV/c2 remain approximately stable. The narrow peak at
the φ(1020) mass is becoming more pronounced, which is a sign for the onset of contributions
from single- or double-Regge exchange processes. The broad enhancement below the φ(1020)
peak, which turns out to be partly caused by the f0(980) in the next section, is suppressed
relative to the other peaks for large t1,2.

The partial-wave analysis of the nine data sets confirms the results obtained with the π+π−

system in Section 5.4. The obtained intensity distributions of the S−0 - and D−0 -waves as well
as their relative phases for all bins can be found in Appendix B.2. An almost background-
free peak in the D−0 -wave at the mass of the f ′2(1525) meson can be observed only for large
t1,2. However, the majority of the centrally produced K+K− events seems to be produced
in a relative S−0 -wave. The results of all nine bins exhibit a clear phase motion between the
S−0 - and D−0 -waves, which is slightly modified from bin to bin. Full coherence between the
different kinematic regions can therefore be safely assumed for the following analysis of the
mass dependence.
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Figure 7.17: Invariant Mass of the K+K− System in bins (cf. text) of t1 (horizontal, increasing
from left to right) and t2 (vertical, increasing from top to bottom)
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7.4 Parametrisation of the Mass Dependence

The mass dependence of the S−0 -wave of the centrally produced K+K− system has to be
described by a model in order to extract the resonant content. The basic ingredients for this
model are Breit-Wigner functions and non-resonant contributions as introduced in Section 6.1,
which are added coherently. The parameters are determined with a χ2-fit to the results of the
partial-wave decomposition in mass bins.

The mass of the f0(980) meson lies below threshold in the K+K− final-state, but it can
have considerable influence on this channel through unitarity constraints. We will therefore
demonstrate the effect of various parametrisations on the final result.

7.4.1 Fit to the S-Wave Intensity

Owing to their limited data sets, previous experiments (e.g. [20]) were only able to perform
a fit to the intensity distributions, neglecting the interference between S- and D-wave ampli-
tudes. Figure 7.18 illustrates such a χ2-fit to the obtained S−0 -wave intensity with a simple
model, adding three Breit-Wigner functions for the f0(1370), the f0(1500) and the f0(1710)
coherently to a non-resonant component. The curve matches the data points accurately with
the parameters specified in Table 7.1. We herein quote only the statistical errors provided
by Minuit [65] and the weighted sum of squared errors divided by the number of degrees of
freedom (χ2/NDF) as the relative fit criterion. Analogous to the results on the central π+π−

system, the reduced χ2 should not be interpreted as an absolute probability for the model.
The mass and width parameters of the established states f0(1500) and f0(1710) are in

fairly good agreement with the precisely measured resonance parameters provided by the Par-
ticle Data Group [26]. For the f0(1370), only wide ranges are available for mass and width
due to many contradicting analyses and the dispute about its existence [83, 81]. Neverthe-
less, our presented results are consistent with previous determinations with a similar analysis
technique [20].
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Figure 7.18: Fit to S-wave intensity (red) with a non-resonant component (black) and three
Breit-Wigner functions (other colours).

In order to illustrate the dependence of the Breit-Wigner parameters and especially of their
relative magnitudes on the composition of the model, Figure 7.19 shows the results of a fit
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Resonance Fit result PDG values [26]
Mass (MeV/c2) Width (MeV/c2) Mass (MeV/c2) Width (MeV/c2)

f0(1370) 1271± 7 385± 8 1200− 1500 200− 500
f0(1500) 1487± 5 132± 5 1505± 6 109± 7
f0(1710) 1737± 5 180± 7 1720± 6 135± 8

Table 7.1: Parameters for the fit with three Breit-Wigner functions and a non-resonant con-
tribution (χ2/NDF = 5.45). Only statistical errors are given for the fit result.
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Figure 7.19: Fit to S-wave intensity (red) with four Breit-Wigner functions (other colours).

Resonance Fit result PDG values [26]
Mass (MeV/c2) Width (MeV/c2) Mass (MeV/c2) Width (MeV/c2)

f0(980) 1044± 2 204± 8 990± 20 40− 100
f0(1370) 1330± 10 257± 26 1200− 1500 200− 500
f0(1500) 1498± 5 105± 9 1505± 6 109± 7
f0(1710) 1718± 5 199± 11 1720± 6 135± 8

Table 7.2: Parameters for the fit with four Breit-Wigner functions and no non-resonant com-
ponent (χ2/NDF = 4.96). Only statistical errors are given for the fit result.

where the non-resonant component was replaced by an additional Breit-Wigner for the f0(980)
meson. With one additional parameter, the minimised χ2 is decreased and the contributions
of the resonant components fundamentally altered. The magnitude of the previously dominant
f0(1370) is substantially reduced, and its Breit-Wigner parameters changed far beyond the
statistical errors. On the other hand, the parameters of the f0(1500) and f0(1710) states are
relatively stable and in even better agreement with the literature (cf. Table 7.2).

The mass and width of the Breit-Wigner function for the f0(980) at threshold are not well
reproduced, possibly requiring an additional non-resonant contribution. However, the fit is not
able to distinguish between both components on the basis of the one-dimensional intensities
alone. Replacing the Breit-Wigner function for the f0(980) with the Flatté parametrisation
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introduced in Section 6.1.2 does not substantially change these conclusions.
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Figure 7.20: Fit to the S-wave intensity (red) with five Breit-Wigner functions (other colours).

Resonance Fit result PDG values [26]
Mass (MeV/c2) Width (MeV/c2) Mass (MeV/c2) Width (MeV/c2)

f0(980) 1049± 3 226± 13 990± 20 40− 100
f0(1370) 1303± 13 193± 18 1200− 1500 200− 500
f0(1500) 1498± 4 122± 7 1505± 6 109± 7
f0(1710) 1750± 7 229± 18 1720± 6 135± 8
f0(2100) 2099± 43 358± 59 2103± 8 209± 19

Table 7.3: Parameters for a fit with five Breit-Wigner functions (χ2/NDF = 3.74). Only
statistical errors are given for the fit result.

The χ2 can be further improved by adding an additional Breit-Wigner function in order to
describe the mass region above 2 GeV more accurately (cf. Figure 7.20). Mass and width of
this additional state are listed in Table 7.3 and match the properties of the f0(2100) resonance
within the large statistical uncertainties. This state needs further confirmation and is therefore
omitted in the summary table of the Review of Particle Physics [26]. It was last reported in a
combined analysis of ππ and ηη final states in pp̄ annihilation [12], but has never been observed
in KK̄ systems.

All extracted resonance parameters bear systematic uncertainties, caused by the large
model dependence. Especially since the fit to the intensity distribution neglects the phase
information of the partial-wave amplitudes, both resonant and non-resonant components can
be used to model the one-dimensional shape. The interference with the well defined states in
the D-wave is used in the next section in order to reduce these ambiguities.

7.4.2 Simultaneous Fit to the S- and D-Wave

The visible peak in the D−0 -wave is formed by the narrow f ′2(1525) resonance, which has a
branching fraction of 88.7% for the decay into KK̄ [26]. The decay probability of the f2(1270)
into this final state is much lower (4.6%), but may also play a role for the enhancement near
1.3 GeV/c2 in the D−0 -wave of Figure 7.15. Furthermore, a previous analysis of the same final
state recorded at the OMEGA spectrometer [20] suggested a f2(2150) meson in this wave in
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order to account for the broad peak at masses near 2 GeV/c2. On the other hand, only an
incoherent sum of Breit-Wigner functions was fitted to the D−0 -wave intensity distribution in
their analysis. The obtained parameters are therefore ignored for the official averages in the
Review of Particle Physics [26], and the state is omitted from the summary table.

The simplest mass-dependent fit which describes the intensity distributions of the S−0 - and
D−0 -wave as well as the relative phase between them reasonably well requires five states. Similar
to the fit of the S−0 intensity alone (cf. Figure 7.18), at least three Breit-Wigner functions and
a non-resonant component at threshold are needed in the S-wave. Two spin-two Breit-Wigner
functions are used in the D-wave for the f2(1270) and the f ′2(1525), which are added coherently
to a non-resonant component. For this, we had to extend the parametrisation introduced in
Section 6.1.4 with one additional parameter β in order to allow for more freedom in the shape.
The non-resonant component in the D−0 -wave is parametrised by

N ′(m,L) =
( q
m

)L
·
√

q

m
· exp(−αq2 − βq) . (7.2)

Since the χ2-minimisation is susceptible to local minima, the fit had to be performed in
several steps. At first, only the complex amplitude coefficients and the parameters of the
non-resonant components were determined, leaving the masses and widths at the literature
values [26]. In a second step, the mass parameters of the scalar resonances were released using
the set of previously determined complex coefficients as the starting point. As the masses of
the spin-two states f2(1270) and f ′2(1525) are extremely well known, they are kept fixed to the
literature values in order to stabilise the procedure. Finally, also the width parameters of all
Breit-Wigner functions were determined by the fit. During all steps, the parameters m0 and
Γ0 were limited to large but non-overlapping ranges of the order of several hundred MeV/c2.
An illustration of the final result expressed in intensities and relative phase is displayed in
Figure 7.21. The estimated Breit-Wigner parameters are summarised in Table 7.4.

Resonance Fit result PDG values [26]
Mass (MeV/c2) Width (MeV/c2) Mass (MeV/c2) Width (MeV/c2)

f2(1270) 1275 (fixed) 311± 13 1275± 1 185± 3
f ′2(1525) 1525 (fixed) 102± 7 1525± 5 73± 6
f0(1370) 1269± 2 259± 5 1200− 1500 200− 500
f0(1500) 1500± 2 141± 6 1505± 6 109± 7
f0(1710) 1734± 5 190± 7 1720± 6 135± 8

Table 7.4: Parameters for a simultaneous fit of the S−0 - and D−0 -amplitudes with five Breit-
Wigner functions and two non-resonant contributions (χ2/NDF = 4.90). Only statistical errors
are given for the fit result.

Even though this solution describes both intensity distributions and the relative phase
between the waves quite well, its interpretation is difficult. The large contribution from the
f0(1370) is not expected from the results of previous experiments. Analogous to the one-
dimensional fit in the previous section, the relative intensities of the contributions change
drastically if the influence of the f0(980) meson is taken into account. In addition, the pa-
rameters of the f0(1370) and the f2(1270) Breit-Wigner functions are strongly correlated.
Consequently, the f2(1270) is reproduced far too broad. If the width is fixed to the nominal
value [26], the model cannot reproduce the phase between the S−0 - and the D−0 -wave.

As an illustration of this problem, we present a fit with the similar number of free parame-
ters and a comparable χ2/NDF in Figure 7.22. In this model, we use a Breit-Wigner function
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Figure 7.21: Mass-dependent parametrisation of intensities and phases (red) with non-resonant
components (black) and Breit-Wigner functions (other colours)

for the f0(980) contribution at threshold in the S-wave. Two additional resonant terms are
used for the f0(1500) and the f0(1710) mesons in the S-wave. A non-resonant component of
the standard form (cf. Section 6.1.4) is added coherently. In the D-wave, two different non-
resonant components describe the intensity distribution phenomenologically. The first one
follows the shape of the angular momentum barrier (cf. Equation 6.13) and is responsible for
the enhancement at threshold. For the term describing the broad peak above 2 GeV/c2, an
additional parameter allows for more freedom (cf. Equation 7.2).

The Breit-Wigner parameters of this fit and their statistical errors are presented in Ta-
ble 7.5. The masses and widths match the literature values reasonably well [26]. In particular,
the relative phase between the S- and the D-wave is reproduced without the disputed f0(1370)
resonance in this model (cf. Figure 7.22), even though a small overshoot of the data can be
observed in the intensity distribution of the S-wave near 1.3 GeV/c2. The origin of this excess
has to be studied in detail before a definite statement can be made. Leakage from the D-wave
due to an insufficient description of the apparatus effects may be responsible for it. The rel-
ative phase with respect to the D-wave does not require the introduction of a Breit-Wigner
term for the f0(2100) resonance. On the other hand, detailed knowledge about the resonant
contributions in the D-wave above 2 GeV/c2 are indispensable for this claim.

In principle, the phase information between the S- and D-waves is a powerful tool to
study the resonant content of the produced meson systems. However, the D-wave has to be
exactly understood before it can be used as a reference. Moreover, systematic studies are
needed in order to be able to judge the model dependence. Especially the dependence of the
fit convergence on the choice of the starting values complicates an objective result.
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Figure 7.22: Mass-dependent parametrisation of intensities and phases (red) with non-resonant
components (black) and Breit-Wigner functions (other colours)

Resonance Fit result PDG values [26]
Mass (MeV/c2) Width (MeV/c2) Mass (MeV/c2) Width (MeV/c2)

f2(1270) 1265± 4 140± 12 1275± 1 185± 3
f ′2(1525) 1508± 5 99± 7 1525± 5 73± 6
f0(980) 1020± 1 126± 6 990± 20 40− 100
f0(1500) 1483± 4 106± 4 1505± 6 109± 7
f0(1710) 1772± 5 173± 8 1720± 6 135± 8

Table 7.5: Parameters for a simultaneous fit of the S−0 - and D−0 -amplitudes with five Breit-
Wigner functions and three non-resonant contributions (χ2/NDF = 4.92). Only statistical
errors are given for the fit result.



Chapter 8

Discussion and Conclusions

We have studied the central production of systems decaying into two pseudoscalar mesons with
the data set recorded with a 190 GeV/c proton beam at COMPASS in 2009. In this chapter, we
will summarise the different steps of the analysis and discuss the results in a broader context.
We will also present suggestions for further studies with this unique data set. Finally, an
outlook on first results of a partial-wave analysis using a novel representation of the process
amplitudes will be given, taking into account the relative orientation of both proton scattering
planes.

8.1 Conclusions from the Data Selection

Nearly 108 exclusive events with three charged tracks leaving a primary vertex located in the
liquid hydrogen target were successfully reconstructed from the COMPASS data recorded with
a 190 GeV/c proton beam. Prominent structures in the pfπ

+π− invariant mass distributions
indicate that the diffractive dissociation of the beam proton is the dominating reaction in the
triggered data sample. A number of known baryon resonances are also observed in the decay
of the diffractively produced system. A partial-wave analysis of the data in terms of baryonic
amplitudes may provide access to high-mass and high-angular momentum states that are not
reachable for traditional baryon spectroscopy experiments [73].

We studied various kinematic criteria in order to enrich central-production reactions in
the data. Only the theoretically motivated requirement for rapidity gaps larger than two
units between all possible proton-pion combinations successfully suppresses evidence for baryon
resonances in the remaining sample. This selection condition is fulfilled by approximately
7.5 · 106 π+π− events in the mass range between threshold and 2 GeV/c2, which is about a
factor of three more than the samples available in any previous experiment [21]. Even though
double-Pomeron exchange is considerably enhanced by this cut, the remaining ρ(770) peak
in the π+π− mass spectrum is a sign for contamination by single- or double-Regge exchange
processes, which cannot be discriminated at the centre-of-mass energy of

√
s = 18.9 GeV.

Baryons with strangeness can also be observed when kaons are identified in the final state.
These baryon resonances are already efficiently suppressed by requiring a rapidity gap larger
than 1.5 units between outgoing protons and kaons. With 4 · 105 centrally produced K+K−

events, the COMPASS data set surpasses those acquired by previous experiments even by one
order of magnitude [20].

A comparison with the data recorded with a pion beam may provide additional information
about the production process. We showed in Section 3.5.3, that non-resonant contributions
like the Deck effect can be responsible for parts of the enhancement at low masses in the
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π+π− invariant mass spectrum. Partial-wave amplitudes which include these processes may
be formulated and applied in the analysis in the future.

In the hadron spectroscopy data recorded by the COMPASS experiment in 2008 and 2009,
nearly all light two-pseudoscalar final states are reconstructed. The combination of (ππ)0,
(KK̄)0 and ηη systems will allow to draw conclusions on the quark content of the observed
scalar mesons. This work describes an analysis method which is applicable to all these final
states and provides the foundation for such a combined analysis.

8.2 Conclusions from the Partial-Wave Analysis in Mass Bins

Using conservative assumptions on the production process, the angular distribution of the
pseudoscalar decay products of the central systems is described by partial-wave amplitudes
estimated by independent fits to the data in 10 MeV/c2 wide mass bins. The inherent mathe-
matical ambiguities of the decomposition of the measured intensity distribution into complex-
valued amplitudes are determined with the help of the Barrelet zeros. The comparison of the
π+π− system with the analysis of the decays into π0π0 supports the choice of the physical
solution.

For the case of the π+π− final state, the partial-wave analysis isolates the f2(1270) meson
in the D−0 -wave. A continuous phase motion with respect to the S−0 -wave is also observed
with unprecedented precision. Apart from the dominant enhancement at threshold in the S−0 -
wave which is characteristic for centrally produced systems [16], the f0(980) resonance can be
discerned as a shoulder near 1 GeV/c2. On the other hand, the single- or double-Regge exchange
production of the ρ(770) meson cannot be cleanly separated with these amplitudes. A large
fraction of the ρ(770) intensity is wrongly attributed to the S−0 wave, but the phase behaviour
is not disturbed by this leakage effect. Since we are focusing on the resonant content of the
scalar sector above 1 GeV/c2, the affected mass region is omitted from attempts to interpret
the spectrum. Odd partial waves play only a subordinate role, as they are not allowed for
double-Pomeron exchange reactions due to Bose symmetry constraints.

Despite the apparent shortcomings of the model to describe the entire data set, the partial-
wave analyses of the centrally produced π+π− and K+K− systems are more precise than any
previous experimental result obtained with similar methods. The observed intensity distribu-
tions are consistent with established results [21, 20]. However, an interpretation including the
relative phase between S−0 - and D−0 -wave amplitudes allows a more differentiated interpreta-
tion of the centrally produced scalar resonances. In addition, the analysis in two-dimensional
bins of the four-momentum transfers to the central system reveals dynamic dependencies which
were previously neglected.

The evaluation of the fit quality with weighted Monte-Carlo data allows systematic studies
about the dependence of the result on different kinematic selection criteria and Monte-Carlo
generators for centrally produced systems. As an example, the simple cut on the invariant mass
of the pπ combinations, as it was used in the past [21, 20], is found to produce considerable
bias especially for π+π− (K+K−) masses above 1.5 GeV/c2 (2.0 GeV/c2). The cut is therefore
not sufficient to select centrally produced systems efficiently.

8.3 Conclusions from Studies of the Mass Dependence

In order to extract the resonant content, physically motivated models with Breit-Wigner func-
tions and non-resonant terms are fitted to the results of the amplitude analysis in mass bins.
The intensity distribution of the S−0 -wave alone, which was mainly studied in the past, can be
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described by substantially different models with arguable justification. We present a selection
of different fits of mass-dependent amplitudes to the one-dimensional spectra, which illustrate
this lack of uniqueness.

Since the phase of the S−0 -wave with respect to the D−0 -wave is determined with high
precision in the partial-wave decomposition in mass bins, we exploit the interference with the
well-known resonances f2(1270) and f ′2(1525) in order to better pin down the resonant content
in the scalar sector. For the π+π− final state, the interpretation is, however, strongly dependent
on the parametrisation of the f0(500), which cannot be modelled with a Breit-Wigner function.
Due to its slow phase motion, it can be approximated by a non-resonant component for a rough
estimate. A combined fit to the results of the partial-wave analysis in bins of t1 and t2 with
stable Breit-Wigner parameters, but freedom in the non-resonant contributions and the relative
phase between the components will provide an additional handle on the reaction dynamics.

The fit of the centrally producedK+K− system is also strongly dependent on the parametri-
sation of the enhancement at threshold, which may be formed by the tail of the f0(980), a
non-resonant contribution or the combination of both. Since the D−0 -wave is suppressed by
the angular-momentum barrier at threshold, we cannot use the relative phase to resolve this
ambiguity. Consequently, we can neither prove nor disprove the existence of the disputed
f0(1370) [81] in this work.

Simple parametrisations, that use the sum of Breit-Wigner functions and additional phe-
nomenological backgrounds, are often met with criticism [83]. Especially if the states are broad
and overlapping, the approximation with a Breit-Wigner function is no longer valid in order to
determine the pole positions of physical resonances in the complex scattering plane. Models
starting from the fundamental properties of analyticity and unitarity of the scattering ampli-
tude are better suited to extract the resonance properties in this case (cf. D. Asner et al. in [26]).

A well-established parametrisation of this kind, which was determined by the combina-
tion of elastic scattering events, semi-leptonic kaon decays and data from production experi-
ments [16], is fitted to our mass-independent results with only limited success. The interplay
between ππ → ππ and KK̄ → ππ amplitudes reproduces the gross features of the intensity
and phase distributions. However, the parametrisation is only well-defined below 1.5 GeV/c2

and cannot easily be extended towards higher di-pion masses. In addition, it does not provide
enough freedom to describe non-resonant contributions or resolution effects in the f0(980) mass
region. On the other hand, the analysed COMPASS data may provide a valuable input for a
combined fit to the results of various experiments with a dispersive approach, as it was recently
summarised by J. R. Pelaez in [83]. Only the combination of rigorous theoretical models with
new precision data can clarify the reigning confusion in the scalar meson spectrum. Otherwise,
a satisfying answer to the question whether glueballs have a manifestation in nature cannot be
achieved.

8.4 Outlook: Alternative Amplitude Representation

A different amplitude representation for the central-production reaction was proposed by
D. Ryabchikov [89], following the works of F. E. Close et al. [38] and Kaidalov et al. [68]. It
only assumes parity conservation in the production and decay processes, while all other phys-
ical properties are deduced from symmetry considerations. The amplitudes are constructed
using the z-axis ~nz, defined by the two exchanged Reggeons in the rest frame of the central
system, and the momentum vector ~p of one of the decay products of the central system. In
contrast to the decay amplitudes introduced in Chapter 5, the normals ~n1 and ~n2 of the proton
scattering planes defined in the rest frame of the central system are taken into account in this
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approach as well. Formulated using non-relativistic Zemach tensors [85], the amplitudes for
the lowest spin states are proportional to the expressions in Table 8.1. η specifies the product
of the naturalities of the spin-parity transfers to the central system in the reaction.

Symbol JPCMη Zemach tensor

S0 0++0+ 1
S′0 0++0+ ~n1 · ~n2

P0 1−−0+ ~p · ~nz
P1 1−−1+ ~p · (~n1 + ~n2)
D0 2++0+ (pipj − 1

3p
2δij) nz,i nz,j

D′0 2++0+ (pipj − 1
3p

2δij) nz,i nz,j (~n1 · ~n2)
D1 2++1+ (pipj − 1

3p
2δij) (n1,i nz,j − n2,i nz,j)

D2 2++2+ (pipj − 1
3p

2δij) ~n1 · ~n2

D′2 2++2+ (pipj − 1
3p

2δij) (n1,i n1,j + n2,i n2,j)

0++0− (~n1 × ~n2) · ~nz
1−−1− [(~n1 × ~nz)− (~n2 × ~nz)] · ~p

Table 8.1: Alterative process amplitudes in Zemach tensor formalism [89].

These amplitudes were implemented in the COMPASSPWA framework also used for the
analysis of diffractively produced three-pion systems [59]. An extended likelihood fit in 10 MeV/c2

mass bins was performed on the centrally-produced π+π− data, selected by a rapidity gap of
at least two units between all proton-pion combinations. For the correction of acceptance ef-
fects, the Monte-Carlo data sample that was generated for the main analysis was used, even
though the generator did not produce a uniform distribution of the angle φ between the proton
scattering planes in the π+π− centre-of-mass frame (cf. Section 4.1.1).

A stable fit could only be achieved by excluding the waves with η = −1. On the other
hand, the inherent ambiguities of the two-pseudoscalar system are apparently resolved by the
additional dependence on the normals to the proton scattering planes. The different solutions
can still be seen as local maxima with several fit attempts with random starting values, but
the solution with the highest likelihood is unique and continuous from mass bin to mass bin.
Figure 8.1 shows the intensities of the best fit for all partial-wave amplitudes with η = +1.
Compared to the physical solution of the fit described in Chapter 5, the S-wave is split into a
part S0 which is uniform in all angles, and a part S′0 which can describe the observed modulation
of the angle φ for low values of the π+π− mass (cf. Figure 3.27). As a consequence, this partial-
wave exhibits only intensity for di-pion masses below 1 GeV/c2. Above this mass, the S0-wave
in this approach is very similar to the physical solution presented in Figure 5.17.

A clear peak at the mass of the f2(1270) meson is seen in the D0-wave, which is independent
of the angle between the two proton scattering planes φ. Signs for the resonance can also be
seen in the D′0-wave which is modulated by φ, and both partial-wave amplitudes with M = 2.
The P1-wave with the quantum numbers 1−−1+ exhibits a peak consistent with the ρ(770)
meson. However, a similar peak is also found in the S0-wave, while no intensity is attributed
to the P0-wave. Analogous to the analysis described in Chapter 5, also these amplitudes are
not able to separate the ρ(770) entirely. This is an independent confirmation that a different
production is probably responsible for it.

Even though this novel method was not yet studied in detail, the obtained results seem
very promising. Especially the central-production generator has to be tuned in order to obtain
the correct behaviour of the angle φ in the rest frame of the central system.
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Figure 8.1: Partial-wave intensities obtained by a fit with the tensor amplitudes of Table 8.1.
The best fit out of 20 attempts is shown. The data sample was selected requiring
|y(p)− y(π)| > 2.
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Appendix A

Mathematical Ambiguities

A.1 Formulae for S-, P - and D-waves

The coefficients of the forth-order polynomial

G(u) = a4u
4 − a3u

3 + a2u
2 − a1u+ a0 (A.1)

for a system with S-, P - and D-waves and M ≤ 1 may be written [35] as

a0 = S0 +
√

3P0 +
√

5D0

a1 = 2
√

3(P− −
√

5D−)

a2 = 2S0 − 4
√

5D0

a3 = 2
√

3(P− −
√

5D−)

a4 = S0 −
√

3P0 +
√

5D0

(A.2)

Reciprocally, the partial waves are expressed in terms of the roots uk:

6S0 = a4(2u1u2u3u4 + u1u2 + u1u3 + u1u4 + u2u3 + u2u4 + u3u4 + 2)

2
√

3P0 = a4(u1u2u3u4 − 1.)

4
√

3P− = a4(u1u2u3 + u2u3u4 + u3u4u1 + u4u1u2 + u1 + u2 + u3 + u4)

6
√

5D0 = a4(u1u2u3u4 − u1u2 − u1u3 − u1u4 − u2u3 − u2u4 − u3u4 + 1)

4
√

15D− = a4(u1u2u3 + u2u3u4 + u3u4u1 + u4u1u2 − u1 − u2 − u3 − u4)

(A.3)

The set of eight ambiguous solutions may be obtained using the following system:

{u1, u2, u3, u4}
{u1, u2, u3, u

∗
4}

{u1, u2, u
∗
3, u4}

{u1, u2, u
∗
3, u
∗
4}

{u1, u
∗
2, u3, u4}

{u1, u
∗
2, u3, u

∗
4}

{u1, u
∗
2, u
∗
3, u4}

{u1, u
∗
2, u
∗
3, u
∗
4}

(A.4)
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A.2 Formulae for S- and D-waves

The coefficients of the second-order polynomial

G(u) = a2u
2 − a1u+ a0 (A.5)

for a system with S- and D-waves and M ≤ 1 may be written [35] as

a0 = 4S0 − 2
√

5D0

a1 = 2
√

15D−)

a2 = S0 +
√

5D0

(A.6)

Reciprocally, the partial waves are expressed in terms of the roots uk (k = 1, 2):

6S0 = a2(u1u2 + 2)

6
√

5D0 = a2(4− u1u2)

2
√

15D− = a2(u1 + u2)

(A.7)

The two ambiguous solutions may be obtained using the following system:

{u1, u2}
{u1, u

∗
2}

(A.8)



Appendix B

Momentum-Transfer Dependent
Results

B.1 Centrally Produced π+π− System

Bins in t1 (GeV2/c2) Bins in t2 (GeV2/c2)

[0.000, 0.040[ [0.000, 0.100[
[0.040, 0.080[ [0.100, 0.140[
[0.080, 0.140[ [0.140, 0.200[
[0.140, 0.255[ [0.200, 0.325[
[0.255, 2.000[ [0.325, 2.000[

Table B.1: Binning in squared four-momentum transfers to the π+π− system.
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Figure B.1: Fitted S−0 -intensity of the π+π− system in bins of t1 (horizontal, increasing from
left to right) and t2 (vertical, increasing from top to bottom)
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Figure B.2: Fitted D−0 -intensity of the π+π− system in bins of t1 (horizontal, increasing from
left to right) and t2 (vertical, increasing from top to bottom)
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Figure B.3: Relative phase between S−0 - and D−0 -amplitudes of the π+π− system in bins of t1
(horizontal, increasing from left to right) and t2 (vertical, increasing from top to bottom)
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B.2 Centrally Produced K+K− System

Bins in t1 (GeV2/c2) Bins in t2 (GeV2/c2)

[0.000, 0.105[ [0.000, 0.155[
[0.105, 0.265[ [0.155, 0.325[
[0.265, 2.000[ [0.325, 2.000[

Table B.2: Binning in squared four-momentum transfers to the K+K− system.
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Figure B.4: Fitted S−0 -intensity of the K+K− system in bins of t1 (horizontal, increasing from
left to right) and t2 (vertical, increasing from top to bottom)
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Figure B.5: Fitted D−0 -intensity of the K+K− system in bins of t1 (horizontal, increasing from
left to right) and t2 (vertical, increasing from top to bottom)
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Figure B.6: Relative phase between S−0 - and D−0 -amplitudes of the K+K− system in bins of
t1 (horizontal, increasing from left to right) and t2 (vertical, increasing from top to bottom)
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