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Introduction

In 1922, the Stern-Gerlach experiment, built to test the Bohr-Sommerfeld hypothesis, high-
lighted a surprising result concerning the space of states of the electron. Electrons behave as if
they had an intrinsic angular-momentum. In 1926, Goudsmit and Uhlenbeck introduced a new
quantum number to describe those states: the concept of spin was born. Nucleons (proton and
neutron), like the electrons, are spin-1/2 particles and considered to be elementary particles.

As time went by, numerous “elementary” particles sensitive to the strong force (hadrons)
were discovered (∼ 100), while the number of leptons (particles insensitive to the strong force)
remained very small (nowadays, only 6 are known). This fact suggested an underlying layer
of more fundamental particles. Gell-Mann evoked the idea in 1964 that the hadrons were
composite particles made out of quarks. However, the existence of gluons as vector bosons of the
strong interaction had to be postulated to explain the apparent violation of the Pauli exclusion
principle in the ∆++ hadron. That was the emergence of the Quantum ChromoDynamics
(QCD).

The quarks are spin 1/2 particles of different flavours. Currently, six flavours are known:
up (u), down (d), strange (s), charm (c), top (t) and bottom (b). They are electrically charged
and the u, c and t quarks carry a +2/3 ·e charge whereas the d, s and b quarks carry a −1/3 ·e.

In the quark model, all the hadrons are described by either a three-quark combination (the
baryons) or a quark-antiquark combination (the mesons). The proton in this case is written as
a uud state that gives a +1 ·e electrical charge and a spin 1/2 using the SU(2)spin algebra. Thus
the quark polarisation, ∆Σ (fraction of the proton spin carried by the quarks), is expected in
this model to be 1 or 0.75 if relativistic effects are taken into account.

The experimental study of nucleon spin structure was initialised by E130 at SLAC (Stan-
ford Linear Accelerator Center) in the early 1980’s and followed by EMC (European Muon
Collaboration) at CERN (Centre Européen de Recherche Nucléaire) in the mid 1980’s, via mea-
surements of polarised deep inelastic scattering. The latter derived ∆Σ = 0.12 ± 0.09 ± 0.14
from an estimation of the first moment of the proton spin structure function Γp1. Such a small
value of ∆Σ, compatible with zero, was completely unexpected. The smallest prediction, de-
rived from the Ellis-Jaffe sum rule, gives ∆ΣE-J = 0.58. This was at the origin of the so-called
“spin crisis”. It opened a new era of spin physics and an enthusiasm to find out what the
nucleon spin is made up of. The EMC results have been confirmed with a better accuracy by
several other experiments using different facilities and experimental techniques. However, one
of the limitations in this derivation is the evaluation of the integral contribution to Γp1 outside
the measured range, especially at low x values.

In a more general approach, the spin of the nucleon can also be carried by gluons and
angular momenta of quarks and gluons:

1
2 = 1

2∆Σ + ∆G+ Lq + Lg.

Currently, experimental efforts are put on all terms but the present analysis concentrates on
the first two terms, ∆Σ and ∆G (fraction of the proton spin carried by the gluons). COMPASS



2 Introduction

contributes to these efforts and had a specific data taking campaign in 2011 with a polarised
muon beam at 200 GeV. With the world’s highest energy polarised muon beam, COMPASS
extends the measured range in addition to contributing to improving statistical precision. The
results obtained with these new data are presented in this thesis as follows.

Chapter 1: The physics framework and motivations for this work are introduced. This
includes a brief description of the neutral current deep inelastic scattering reaction (DIS) as
well as definitions of the physical variables used in this manuscript. Structure functions, which
describe the internal content of the proton, are also introduced in this chapter along with their
physical interpretation in theoretical models. The Ellis-Jaffe SU(3) and Bjorken SU(2) sum
rules and their role in highlighting the “spin crisis” are also discussed in detail.

Chapter 2. An overview of the experimental setup used to collect the data related to the
measurement presented in this manuscript is provided. Special consideration is taken in the
description of the longitudinally polarised muon beam and proton target, as these are the
defining attributes of the analysed experiment. Brief descriptions and relevant characteristics
of the COMPASS detectors used in particle tracking are also provided.

Chapter 3. The extraction of the spin dependent structure function of the proton, gp1 ,
from the data is presented. This includes studies of the quality of data taking and target
position determination, the selection of physical events, and the experimental technique of the
asymmetry measurement. An extensive investigation of the sources of systematic uncertainties
is also provided. Finally, the results for the gp1 measurement and the comparison with previous
experimental measurements are given.

Chapter 4. A Next to Leading Order (NLO) QCD fit of g1 world data including the present
results is performed. The fitting procedure is described and polarised PDFs are extracted.
Several sources of uncertainties in the extraction method are investigated, including sources
related to the data themselves as well as to the analysis method. The results of the fit are
compared to other polarised PDF extractions achieved by other authors.
An experimental evaluation of the first moment of the spin dependent structure function of
the proton, deuteron and neutron based on the COMPASS data alone evolved using the global
world QCD fit results is also presented. Finally, a dedicated QCD fit based solely on the
combined results of this analysis with the previous COMPASS measurements (proton and
deuteron) is performed to check the Bjorken sum rule. The result is compared to previous
COMPASS evaluation and to a recent similar analysis.



Chapter 1

Nucleon spin structure

The nucleon spin structure can be accessed experimentally by several channels including po-
larised neutral or charged current deep inelastic scattering and polarised proton-proton col-
lision. COMPASS uses the neutral current deep inelastic scattering with muon as scattered
lepton. This channel is particularly clean, because it is dominantly an electromagnetic interac-
tion, calculable using perturbation theory in QED. An advantage though, that vanishes when
it comes to probe the gluons inside the nucleon. This chapter starts with the description of the
neutral current deep inelastic scattering of charged leptons and the definition of the nucleon
structure functions including spin dependent structure functions. The physical interpretation
of those functions is then given in two models and spin sum rules, derived from the operator
product expansion formalism, are introduced.

1.1 Deep inelastic scattering

In the basic deep inelastic scattering (DIS) experiment, a beam of leptons scatters off a nucleon
target, l+N → l′ +X. The momenta of the incident and scattered leptons are measured, but
the final hadronic state (denoted by X) is disregarded. We then talk of an inclusive DIS reac-
tion, as opposed to the semi-inclusive case which we will mention later. The interaction results
from the exchange of a virtual photon γ∗1 between the lepton and one of the constituents of
the nucleon. The Feynman diagram of the reaction is shown in Fig. 1.1. Two independent
kinematic variables describe the process. They are usually taken from the Lorentz invariant
variables which are computed from the four-momenta of the incident lepton k = (E,~k), the
scattered lepton k′ = (E′,~k′) and the target nucleon P = (M,~0) at rest for fixed target experi-
ments. The most commonly used are:

1Z0 exchange is neglected in the following because it is suppressed by a factor of Q2

Q2+M2
Z0

, where Q2 and
MZ0 are respectively the virtuality of the boson and the mass of the boson. This factor is always below 1% in
the COMPASS kinematics.



4 Chapter 1 : Nucleon spin structure

k
k′

P

q = k − k′

Figure 1.1: Diagram of the inclusive deep in-
elastic scattering of a lepton off a nucleon:
lN → l′X.

Q2 = −q2 = −(k − k′)2 (1.1)

ν = P · q
M

lab.= E − E′ (1.2)

y = P · q
P · k

lab.= E − E′

E
(1.3)

x = Q2

2P · q
lab.= Q2

2Mν
(1.4)

W 2 = (P + q)2 lab.= M2 + Q2(1− x)
x

(1.5)

The virtuality of the photon, Q2, defined in Eq. (1.1) is the squared invariant mass of the virtual
photon. It represents the resolution of the probe and gives the scale of the interaction. The
virtual photon energy, ν, is defined in Eq. (1.2) and the dimensionless variable y in Eq. (1.3),
is the fraction of the lepton energy transferred to the virtual photon. The Bjorken scaling
variable, x in Eq. (1.4), varying within [0;1] measures the elasticity of the events. It can be
interpreted in the parton model (section 1.2.1) as the fraction of the nucleon momentum carried
by the struck constituent. Finally, W 2 is the squared invariant mass of the hadronic final state
(see Eq. (1.5)). One usually exclude the low W 2 region by an appropriate cut on this quantity,
typically a few (GeV/c)2, to avoid subdominant effects (so-called higher twist terms, see [1]).
This can be view as excluding the region of baryon resonances. From the theoretical point of
view, the DIS regime corresponds to the limit Q2 →∞ at fixed x values and in practice Q2 is
required1 to be larger than 1 (GeV/c)2. The variables used in this manuscript and describing
DIS are summarised in Table 1.1.

Table 1.1: Definition of the kinematic variables used in the deep inelastic scattering.

Kinematic
variable

Definition

E Energy of the incident lepton
E′ Energy of the scattered lepton
k Four-momentum of the incident lepton
k′ Four-momentum of the scattered lepton
q Four-momentum of the virtual photon
P Four-momentum of the target nucleon
Ω Solid angle into which the outgoing lepton is scattered
Q2 Virtuality of the photon (scale of the interaction)
ν Lepton energy transfer to the virtual photon γ∗
y Fraction of the lepton energy transferred to the virtual photon
x Bjorken scaling variable (fraction of momentum of the nucleon carried by

the struck quark)
W 2 Squared invariant mass of the hadronic system

1Reactions are considered deeply inelastic as long as the photon wavelength λ ∼ 1/
√
Q2 � 1 fm, to resolve

the proton content.
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1.1.1 DIS cross-section and nucleon structure functions

The differential cross-section of the inclusive DIS process can be expressed as the contraction
of the leptonic tensor Lµν and the hadronic one Wµν [2]:

d2σ

dE′dΩ = α2

Q4
E′

E
LµνW

µν (1.6)

where α = e2/4π is the electromagnetic coupling constant. As leptons are point-like particles,
the leptonic tensor Lµν is completely calculable in Quantum ElectroDynamics (QED) and
describes the emission of a virtual photon by the incident lepton. It comprises a symmetric
part, µ↔ ν, which is independent of the polarisation of the lepton, and an antisymmetric part
depending on its polarisation:

Lµν = 2
[
kµk

′
ν + k′µkν − gµν(k · k′ −m2)

]
− 4imεµνρσsρk′σ (1.7)

where m refers to the lepton mass, gµν is the metric tensor, εµνρσ the Levi-Civita tensor and
sµ the spin four-vector of the lepton. Here, the leptonic tensor is summed over the polarisation
of the scattered lepton as its polarisation is not measured.

The absorption of the virtual photon is described by the hadronic tensor Wµν . However,
unlike Lµν , it cannot be calculated in Quantum ChromoDynamics (QCD) because of non-
perturbative effects in the strong interaction. Instead, Wµν is written in the most general
form that fulfils the Lorentz invariance, parity and time reversal invariances as well as the
conservation of the electromagnetic current. For a nucleon (spin 1/2 particle of spin four-
vector noted Sµ) it is expressed as:

Wµν =
(
qµqν
q2 − gµν

)
F1(x,Q2)

M
+
(
Pµ −

P · q
q2 qµ

)(
Pν −

P · q
q2 qν

)
F2(x,Q2)
M2ν

+ iεµνρσ
qρ

P · q

[
Sσg1(x,Q2) +

(
Sσ − S · q

P · q
P σ
)
g2(x,Q2)

]
(1.8)

The symmetric factors in µ↔ ν before F1 and F2 are spin independent while the antisymmetric
part corresponds to the spin dependent terms. The non calculable part of the hadronic tensor
is hidden in four unknown dimensionless functions F1, F2, g1 and g2 which describe the internal
structure of the nucleon. They can only depend on Lorentz invariants and are usually expressed
as a function of x and Q2. They are called respectively spin-independent, F1, F2 and spin-
dependent, g1, g2 nucleon structure functions.

In the case of unpolarised leptons or nucleons, the antisymmetric terms in the tensors cancel
and only the structure functions F1 and F2 can be determined by measuring the cross-section.
To access g1 and g2, both leptons and nucleons need to be polarised.

In this thesis, g1 is the spin structure function we want to extract. To that end, DIS cross-
sections of a longitudinally polarised nucleon anti-parallel σ↑↓ and parallel σ↑↑ to the lepton
polarisation are used to compute a double spin asymmetry:

A|| =
σ↑↓ − σ↑↑

σ↑↓ + σ↑↑
=

(2− y − γ2y2

2 )g1(x,Q2)− γ2yg2(x,Q2)
x2y2F1(x,Q2) + x(1− y − γ2y2

4 )F2(x,Q2)
(1.9)

where γ = 2Mx/
√
Q2.

1.1.2 Virtual-photon-nucleon scattering

The interpretation of the double longitudinal spin asymmetry is simpler in the virtual photon-
nucleon system. Using the optical theorem, it is possible to relate the absorption of the virtual
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photon to the imaginary part of the forward Compton scattering amplitudes AΛ,λ,Λ′,λ′ with Λ
(λ) and Λ′ (λ′) the helicity of the virtual photon (nucleon) in the initial state and in the final
state respectively. This is illustrated in Fig. 1.2 where the DIS cross section (left) is rewritten
as the multiplication of the graph by its complex conjugate (centre) which is equivalent to
the imaginary part of the forward Compton scattering amplitude after summing over all the
intermediate states (right). Imposing the helicity conservation as well as time and parity

X

2

∼ Im

γ∗ γ∗ γ∗

θγ∗γ∗ = 0

Figure 1.2: Optical theorem which connects the total virtual photon cross-section to the imaginary part
of the forward Compton scattering amplitude.

symmetries, four independent amplitudes remain and are combinations of the four structure
functions:

σT3/2 = 4π2α

K
A1, 12 ,1,

1
2

= 4π2α

MK
(F1 + g1 − γ2g2) (1.10)

σT1/2 = 4π2α

K
A1,− 1

2 ,1,−
1
2

= 4π2α

MK
(F1 − g1 + γ2g2) (1.11)

σTL = 4π2α

K
A1,− 1

2 ,0,
1
2

= 4π2α

MK
γ(g1 + g2) (1.12)

σL = 4π2α

K
A0, 12 ,0,

1
2

= 4π2α

MK

[
(1 + γ2)F2

2x − F1

]
(1.13)

where K is equal to ν + q2/2M according to the Hand convention [3]. The transverse virtual
photon absorption cross-sections for respectively a spin projection of 3/2 and 1/2 in the initial
state are noted σT3/2 and σT1/2. Finally, σTL corresponds to an interference term between the
transverse and the longitudinal cross-section and σL a longitudinal virtual photon absorption
cross-section. One usually also introduces the total transverse virtual photon absorption cross-
section:

σT = 1
2(σT1/2 + σT3/2) = 4π2α

MK
F1 (1.14)

which is completely spin independent as well as the ratio of the transverse to longitudinal
virtual photon absorption cross-section:

R = σL

σT
= (1 + γ2) F2

2xF1
− 1. (1.15)

Two virtual photon-nucleon asymmetries are defined:

A1 =
σT1/2 − σ

T
3/2

σT1/2 + σT3/2
= g1 − γ2g2

F1
(1.16)

A2 = σTL

σT
= γ

g1 + g2
F1

. (1.17)

They contain the information on the nucleon spin structure. Inserting Eqs. (1.15) to (1.17)
into Eq. (1.9), the double longitudinal spin asymmetry can be rewritten as:

A|| = D(A1 + ηA2) (1.18)



Section 1.2 : Physical interpretation of structure functions 7

where D is the depolarisation factor which makes the link between the lepton-nucleon and the
virtual photon-nucleon asymmetry. It represents the transfer of polarisation from the lepton
to the virtual photon and it is expressed in terms of y and R.

In COMPASS kinematics, the γ = 2Mx/
√
Q2 and η = 2γ(1− y)/(2− y) factors are small

as well as the value of A2 [4, 5, 6] and the double longitudinal spin asymmetry A|| can be
approximated by:

A|| ≈ DA1 = D
g1
F1
. (1.19)

Using Eq. (1.15) with the same approximation, g1 can be expressed as:

g1 ≈
A||
D

F2
2x(1 +R) (1.20)

where F2 and R are taken from previous measurements on unpolarised data.

1.2 Physical interpretation of structure functions

As the structure functions are not perturbative quantities, they cannot be determined from
perturbative QCD. However, they can be interpreted with a model, the quark parton model,
which can be improved by perturbative QCD. A more fundamental approach, also based on
QCD, the operator product expansion, allows to derived model-free relationships, experimen-
tally testable, called sum rules. In the following, examples of interpretation are given in the
parton model and in the QCD improved one.

1.2.1 Parton model

This approach is usually formulated in a reference frame, called infinite momentum frame,
where the nucleon moves with a large momentum in one direction. Consequently, the nucleon
can be considered as composed of massless particles (partons) without transverse momenta
(with respect to the motion of the nucleon). Considering the deep inelastic limit, the partons
seen by the probe appear as free particles due to the asymptotic freedom of the strong inter-
action. The partons are identified to the quarks as they are the only constituents1 which can
interact with the probe. They carry a fraction ξ of the longitudinal nucleon momentum P .
Comparing the invariant mass of the initial state ((ξP + q)2) to the final one (0), the Bjorken
scaling variable x is identified in this frame to the longitudinal nucleon momentum fraction
carried by the struck quark:

0 = (ξP + q)2 ⇒ ξ = −q2

2P · q = x (1.21)

In this framework, the hadronic tensor Wµν can be expressed as an incoherent sum of
elementary tensors wµν(ξ,s) weighted by the parton densities qsf (ξ) with electromagnetic charges
ef :

Wµν =
∑
f,s

e2
f

∫ 1

0
qsf (ξ) · wµν(ξ,s) dξ. (1.22)

The sum runs over the quark flavours (f = u, d, s, c, b, t, and the charge conjugates) and
the quark spin states (s = 1/2,−1/2). The elementary tensors represent the absorption of the
virtual photon by the quarks for the two spin projections. As the quarks are considered as

1Gluons do not carry electromagnetic charge.
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point-like particles with two helicities, the structure of each elementary tensor can be written,
by analogy to the leptonic tensor Eq. (1.7), as:

wµν(ξ,s) = 1
2ξP · q δ(ξ − x)

(
2ξ2PµPν − gµνξP · q + iεµνρσq

ρsσ
)
. (1.23)

Here, the incident lepton momentum k is replaced by the nucleon momentum fraction ξP
and the momentum of the parton in the final state (corresponding to the scattered lepton
momentum) is integrated over the phase-space since it cannot be detected.

Integrating Eq. (1.22), the hadronic tensor becomes:

Wµν =
∑
f

e2
f

[
PµPν
P · q

xqf (x)− gµνqf (x) + iεµνρσ
qρSσ

2P · q∆qf (x)
]

(1.24)

where qf (x) and ∆qf (x) are defined as:

qf (x) ≡ q+
f (x) + q−f (x) (1.25)

∆qf (x) ≡ q+
f (x)− q−f (x) (1.26)

In Eq. (1.25), qf represents the number of quarks with flavour f which carry a fraction of
nucleon momentum x. It is the sum of the quarks with a spin parallel q+

f and anti-parallel q−f
to the nucleon spin. The qf (x) are called the Parton Distribution Functions (PDF). Equation
(1.26) is the counterpart of qf (x) for the difference of quarks with spin parallel and anti-parallel
to the nucleon spin. As the ∆qf (x) depend upon the polarisation, they are called polarised
PDFs.

The structure functions can be derived from Eq. (1.24) in the parton model:

F1(x,Q2) = 1
2
∑
f

e2
fqf (x) (1.27)

F2(x,Q2) = x
∑
f

e2
fqf (x) (1.28)

g1(x,Q2) = 1
2
∑
f

e2
f∆qf (x) (1.29)

g2(x,Q2) = 0 (1.30)

The first feature in this model is the scaling of the structure functions, i.e. they do not depend
on the scale of the interaction. This is a direct consequence of the free point-like characteristic
of the model. It was predicted by Bjorken in 1968 and observed by SLAC [7], which validated
the parton model.

The second feature is the Callan-Gross relation:

2xF1(x) = F2(x). (1.31)

In addition to the free point-like particle aspect of the quarks, it relies on the assumption
of spin 1/2 particles. It was evidenced by SLAC in 1970 [8] which confirmed the spin 1/2
characteristic of the quarks.

In this picture, the sum of all quark fractions of the longitudinal nucleon momentum,∑
f

∫ 1

0
xqf (x)dx, must be one. Measurements of F1 and F2 yield instead a contribution of

about 0.5. Surprisingly, half of the proton momentum fraction was missing. It turned out
that the missing contribution was the one from the gluons. Gluons cannot directly couple to
the virtual photon, as they are neutral particles, and they are not accounted for in the parton
model. This model corresponds to the lowest order of QCD.
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1.2.2 QCD improved parton model

In section 1.2.1, the deep inelastic limit Q2 → ∞ (αs = 0) was assumed and no interaction
between quarks was possible. In order to take into account the gluon constituents of the
nucleon, the parton model is improved in the sense of describing the DIS at finite Q2 � M2.
In this limit, αs is small but non zero so that perturbative QCD can be applied.

QCD is a renormalisable gauge theory of the strong interaction based on a non-abelian
group, SU(3)c. Quarks interact via the exchange of a colour field carried by the gluons. Unlike
in QED, gluons carry themselves a colour charge and can interact between each others. One of
the consequences is the dependence of the strong coupling αs upon the scale of the interaction.
It comprises two properties: a property of “confinement”, where single quark or gluon cannot
be isolated at long distance and is always arranged in colourless hadron structures; and a
property of “asymptotic freedom”, where quarks and gluons appear as free particles at short
distances. At low energy scales (long distances), the strong coupling αs is of the order of unity
and perturbative developments cannot be applied. Phenomena occurring in this regime are
called “soft” and can only be parametrised from results of experiments. On the other hand, at
large energy scales (short distances), αs is small and perturbative calculations can be carried
out for such so called “hard” processes. For many measurable processes, including DIS, it
has been proved that the cross-section can be factorised in terms of a calculable infrared safe
quantity (hard part: quark-quark scattering cross sections, Wilson coefficients for instance)
and a non-calculable universal quantity (soft part: PDF and polarised PDF for instance).

In addition to the renormalisation scale, a new scale µf and a factorisation scheme are
introduced to separate long and short distance parts. The factorisation scale µf defines the
borderline between the long and short distances, while the scheme reshuffles finite pieces be-
tween the two parts. However, cross-sections are measurable quantities that must neither
depend on the factorisation scheme nor on the factorisation scale. The scheme independence of
the cross-section is guaranteed as long as the hard and the soft parts are combined in the same
factorisation scheme [9]. The factorisation scale independence of the cross-section is ensured
by a compensating dependence on the factorisation scale of the soft and hard part [10]. In
this improved parton model, the PDFs exhibit a dependence upon the scale (i.e. a scaling
violation).

In DIS, this scale is usually identified to Q2. The applicability of the model is commonly
taken in the limit of Q2 > 1 (GeV/c)2 � Λ2

QCD ∼ 0.04 (GeV/c)2. The Q2 dependence is
interpreted as follows. By increasing the resolution of the virtual photon, the probe starts to
be sensitive to the quark interactions. This is illustrated in Fig. 1.3, where the virtual photon
probes a quark with a fraction of momentum x at Q2

0 (left). At higher Q2 (right), it would
have seen a quark with a momentum fraction x− xg since the virtual photon could resolve the
gluon emission.

Figure 1.3: Illustration of the PDFs Q2 evolution. The dotted circles represent the resolution of the
virtual photon at Q2

0 (left) and Q2 > Q2
0 (right).

As a consequence, the number of partons carrying a small (large) fraction of the nucleon
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momentum increases (decreases) with Q2. The Q2 evolution of the PDFs follow the Dokshiter-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations. They are written in Eqs. (1.32) and (1.33)
assuming SU(3)f flavour symmetry of the light quarks and antiquarks. One flavour singlet1
distribution qS = u+ū+d+d̄+s+s̄ which is coupled to the gluon distribution g via the splitting
functions Pqg; two non-singlet2 distributions qNS : q3 = u+ū−d−d̄ and q8 = u+ū+d+d̄−2(s+s̄)
evolve separately from the gluons since Pqg are the same for the massless u, d and s quarks
and antiquarks. The number of active flavours is denoted nf .

d
d lnQ2

(
qS(x,Q2)
g(x,Q2)

)
= αs(Q2)

2π

(
Pqq 2nfPqg
Pgq Pgg

)
⊗
(
qS(x,Q2)
g(x,Q2)

)
(1.32)

d
d lnQ2 qNS(x,Q2) = αs(Q2)

2π Pqq ⊗ qNS(x,Q2) (1.33)

The splitting functions Pij(x/y) represent the probability for a parton j with a momentum
fraction y to radiate a parton i with a momentum fraction x (see Fig. 1.4). The convolution

Figure 1.4: Splitting functions Pij(z) of a parton j into a parton i with a momentum fraction z = x
x′ .

product (h⊗f =
∫ 1
x h(xy )f(y)dyy ) sums all the contributions of gluon emission or quark creation

to find a parton with a momentum fraction x in the final state.
The same Q2 evolution equations of PDFs (Eqs. (1.32) and (1.33)) are also available for

the polarised case where the splitting function Pij are replaced by their polarisation dependent
counterparts, ∆Pij .

1.2.3 Parton distribution functions

According to the factorisation theorem, the long distance physics can be separated from the
short distance processes. This factorisation implies the universality of the PDFs and their
independence on the physical process involved. Therefore the extraction of the PDFs and the
polarised PDFs is based on a global QCD analysis of all available data in a kinematic range
as wide as possible. The power of such a global analysis is illustrated in this section for the
unpolarised data, which cover a wide (x,Q2) kinematic domain. The polarised case is discussed

1A symmetric combination of the quarks in SU(3)f .
2Non-symmetric combinations of the quarks in SU(3)f .
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in chapter 4. Note that its data, provided by fixed target experiment, cover a much narrower
kinematic domain.

A global QCD analysis consists in fitting simultaneously various measurements in diverse
kinematic domains from different processes and provided by several experiments. The determi-
nation of the PDFs is currently based on data from charged and neutral current DIS, Drell-Yan
process, inclusive jet, charm, bottom, W and Z production in e±p and pp̄ collisions. Extra in-
formation coming from number and momentum sum rules is considered to constrain the PDFs
[11].

According to the DGLAP evolution equations, the PDFs can be completely determined once
they are known at a given scale. For that reason, functional forms are assumed for the different
quark flavours at a reference scale Q2

0. Commonly, simple but very flexible functional forms
are postulated to limit the number of parameters to fit with a minimum introduced bias1. The
reference scale is usually defined at the lowest scale limit where the DGLAP equations are valid,
i.e. Q2

0 ' 1 (GeV/c)2. The PDFs are evolved to the scales of the measurements and convoluted
to the coefficient functions or the partonic cross-sections to obtain “predictive” observables. A
χ2 function is minimised to determine the value of the parameters of the functional forms to
describe the data.

The proton structure function F p2 which represents 30% of the input data of the global
QCD analysis2 is shown in Fig. 1.5 left. A very wide kinematic domain is covered in x and
Q2 thanks to the combined measurements from fixed target experiments at a typical centre of
mass energy of 20 GeV and from the electron-proton collider experiments at 300 GeV in the
centre of mass frame. As expected from the improved parton model, the structure function
appears to be weakly dependent on Q2 for intermediate values of x. On the other hand, the
scaling violation of the structure function is clearly visible at both low and high values of x
due to gluon radiations.

The PDFs extracted by A.D Martin, W.J. Stirling, R.S. Thorne and G. Watt (MSTW
collaboration) from a global NNLO-QCD analysis, including the F p2 measurements, are shown
at 10 (GeV/c)2 in Fig. 1.5 right. The high-x region is dominated by valence up (uv) and down
(dv) quarks but rapidly the gluon contribution becomes significant when going to intermediate-
x and the low-x region is exclusively dominated by gluon distribution. The PDFs are rather
well constrained by the unpolarised data as visible from the coloured bands corresponding
to uncertainties at the 68% confidence level (C.L.). A good agreement between extractions
from different collaborations is obtained. Strangeness still suffers from a larger indeterminacy
though, for lack of precise and reliable data constraining it.

1Some collaborations like NNPDF, define a large number of parameters and use a neural network approach
to fit the data in order to prevent the PDFs from the bias due to the choice of functional forms.

2The rest of the input data are provided by the different channels listed in the second paragraph of this
section.
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Figure 1.5: Proton structure function F p2 as a function of Q2 for various x starting from 5 · 10−5 to
0.85 (left). Unpolarised parton distribution functions with their 68% C.L. uncertainties extracted by
the MSTW collaboration [11] (right). Figures are taken from [12].

1.3 Operator product expansion and spin sum rules

The parton model including QCD correction in its improved version constitutes a framework
in which the structure functions can be interpreted. Nevertheless, sum rules for the structure
functions can be derived from a more fundamental approach based directly on QCD. They
provide crucial tests of the theory as they do not depend on any model of hadronic structure.

Using the formalism of Operator Product Expansion (OPE) in the limit Q2 � M2, the
first moment of the structure functions can be related to the nucleon matrix elements of local
operators and Wilson coefficients, which can be derived from perturbative QCD. A description
of the OPE formalism can be found in [2]. Only the outline of the approach at leading twist1
applied to the first moment of the g1 functions are recalled since they are related to the spin
puzzle of the nucleon.

The operators Aqµ = ψγµγ5ψ are the axial-vector currents. Applied on a quark q, the
matrix elements of the operators correspond to the components of the quark spin vector sµ:

〈q, s|ψγµγ5ψ|q, s〉 = 2sµ (1.34)

At leading order, it can be shown that the matrix element of the operator applied on a nu-
cleon with a momentum P , and a longitudinal spin S can only be proportional to Sµ via non
perturbative elements aq:

〈P, S|ψγµγ5ψ|P, S〉 =
LO

2aqSµ (1.35)

1The twist of an operator is defined as the mass dimension of the operator minus its spin. Higher twist
(t > 1) operators expand in powers of (M/Q)t−2.
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Using the OPE, the first moment of g1 can be written as:

Γ1 =
∫ 1

0
g1(x)dx =

LO

1
2
∑
q

e2
qaq (1.36)

for the light quark flavours u, d and s. It is usual to introduce the SU(3)f flavour symmetry and
to gather the aq elements in three combinations corresponding to the three diagonal Gell-Mann
matrices, λ0, λ3 and λ8: 

a0 = au + ad + as
a3 = au − ad
a8 = au + ad − 2as

(1.37)

a0 corresponds to the axial-vector singlet of SU(3)f , while a3 and a8 are two non-singlet com-
binations of SU(3)f . In this case, Γ1 reads:

Γ1 = 1
9a0 + 1

12a3 + 1
36a8 (1.38)

Within the parton model (i.e. collinear quarks and gluon non interacting between themselves),
the matrix elements aq are expressed as the first moment of the quark and antiquark polarised
distribution functions1:

aq ≡ ∆(q + q̄) ≡
∫ 1

0
∆q(x) + ∆q̄(x)dx (1.39)

where ∆(q+ q̄) counts for the difference between the quarks and antiquarks of flavour q aligned
and anti-aligned to the nucleon spin. It implies that a0 = ∆(u + ū) + ∆(d + d̄) + ∆(s + s̄)
represents the total contribution of the quark spins to the nucleon spin ∆Σ.

Going beyond the leading order, the first moment Γ1 is Q2 dependent and the Wilson
coefficients, CS1 and CNS1 , are introduced to take higher order of QCD into account:

Γ1(Q2) = 1
9C

S
1 (Q2) a0(Q2) + CNS1 (Q2)

[ 1
12a3 + 1

36a8

]
. (1.40)

The matrix element a3 and a8 are still Q2 invariant in the extend of SU(3)f due to current
conservation[13, 14]. However, the singlet current is not conserved as a consequence of the
axial anomaly [15, 16] and the matrix element a0 is Q2 dependent. Depending on the scheme
of factorisation, a0 can be related in MS (Modified Minimal Subtraction) scheme directly to a
∆ΣMS(Q2), that depends on the scale2 or to an “intrinsic quark spin contribution” (independent
of the scale) together with an explicit gluon spin component (scale dependent) a0 = ∆Σ −
3αs
2π ∆G(Q2) in the AB (Adler-Bardeen) scheme.

1.3.1 Ellis-Jaffe sum rule SU(3)

One of the remarkable fact of the SU(3)f flavour symmetry is that the octet of current, involved
in the weak β-decay of the neutron and the spin 1/2 hyperons, is related to the axial-vector
current used to obtain the matrix elements a3 and a8. Moreover, in SU(3)f , those β-decay can
be described by two parameters F and D so that:

a3 = ∆u−∆d = F +D (1.41)
a8 = ∆u+ ∆d− 2∆s =3F −D (1.42)

1The notation is slightly confusing since in literature ∆q can also refer either to ∆q(x) or to
∫ 1

0 ∆q(x) +
∆q̄(x)dx.

2MS is the scheme used in chapter 4.
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Using the values of the matrix elements of the axial-vector currents in Eq. (1.40), one obtains
the Ellis-Jaffe sum rule:

Γp1 = CS1 (Q2)
[3F −D + 3∆s

9

]
+ CNS1 (Q2)

[3F +D

18

]
. (1.43)

Within the parton model and with the additional assumption that the strange quarks do not
contribute to the spin of the nucleon, a0 can identify with a8, Eq. (1.44). In this case, the
Ellis-Jaffe sum rule predicts a value for the first moment of the proton Γp1, see Eq. (1.45) [17].

∆s ' 0⇒ a0 ' a8 (1.44)

Γp1 = 5
36a8 + 1

12a3 = 0.188± 0.004 (1.45)

From Eq. (1.44), one can also derive a value for the quark spin contribution:

∆ΣE-J ∼ 0.6 (1.46)

First extraction of ∆Σ obtained from Γp1 was given by EMC (European muon collaboration)
[18], which reported a Ellis-Jaffe sum rule violation in the approximation of Eq. (1.44) and a
compatible value of ∆Σ with zero:

Γp1 = 0.123± 0.013± 0.019 at 〈Q2〉 = 10 (GeV/c)2 (1.47)
∆Σ = 0.12 ± 0.09 ± 0.14 (1.48)

These results are at the origin of the “"spin crisis" or more appropriately "spin surprise"”
according to [19]. The EMC measurements imply that if the SU(3)f symmetry stays valid the
strange quark polarisation contribution, ∆s, is sizeable and negative, else ∆s=0 but ∆ū '
∆d̄ < 0. In both cases, sea quark contribution is significant. The other explanation comes
from a confusion in the results. EMC actually did not measure ∆Σ but the observable a0. In
that case, the relation between a0 and the “true” quark polarisation ∆Σ is given by:

a0(Q2) = ∆Σ− 3αs2π∆G(Q2) (1.49)

where a0 receives a direct contribution from the gluon polarisation due to the axial anomaly.
Finally, the evaluation of Γp1 from the unmeasured region at x < 10−2 was questionable. For
the latter, an evaluation of Γp1 with a reduced unmeasured range x < 0.0036 is presented in
section 4.1.3.

However, the “spin surprise” came from the fact that the parton model was expected to be
correct, since successful descriptions of the static properties of the hadrons were obtained (like
charge and anomalous magnetic moments for instance [19, 20]) but the EMC measurements do
not constitute a contradiction of QCD.

1.3.2 Bjorken sum rule SU(2)

A way to test QCD is to evaluate the Bjorken sum rule [21, 22]. This sum rule assumes
only SU(2)f flavour symmetry. This symmetry also known as the isospin symmetry is more
fundamental in QCD than SU(3)f .

The matrix element of the proton can be related to the one of the neutron according to:

ap0 = an0 (1.50)
ap3 = −an3 (1.51)
ap8 = an8 (1.52)
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Moreover, a3 can be taken from the neutron weak β-decay constant gA/gV , which is measured
with a high accuracy: gA/gV = 1.2701 [12]. The Bjorken sum rule reads at leading twist:

Γp1(Q2)− Γn1 (Q2) = 1
6 ·

gA
gV
CNS1 (Q2) (1.53)

where CNS(Q2) is the non-singlet Wilson coefficient. It has been calculated up to the third
order in αs. A verification of this sum rule via the extraction of gA/gV from the first moment
of the proton and deuteron spin structure functions is presented in section 4.2.

1.4 COMPASS new gp1 proton spin structure function data at
200 GeV

In 2011, COMPASS took data using the 200 GeV polarised muon beam from CERN SPS and
a polarised proton target (NH3) to complement the existing set of polarised DIS data. Other
data in a similar kinematic range had been taken by SMC at 190 GeV with a lower luminosity,
and at COMPASS at 160 GeV on proton (NH3) and deuteron (6LiD) polarised targets. The
200 GeV energy had been chosen to provide new constraints in a wider kinematic domain, as
well as to improve the statistical accuracy of the existing measurements.

The new 200 GeV data set, which is the object of the work presented in this thesis, allows to
perform a verification of the Bjorken sum rule with better balance statistics between previous
COMPASS proton and deuteron data.

Those data are also included in a global NLO QCD fit of g1 proton, deuteron and neutron
world data to extract the polarised PDFs.
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Chapter 2

The COMPASS experiment

COMPASS is a fixed target experiment located at CERN on the SPS. The experiment is
dedicated to the study of nucleon spin structure and hadron spectroscopy as meant by its
name "COmmon Muon and Proton Apparatus for Structure and Spectroscopy". Structure has
been addressed with a polarised muon beam and polarised targets, while spectroscopy has relied
on hadron beams. The proposal [23, 24] was accepted in 1998. One of the main goals of the
spin structure programme was to measure directly the gluon polarisation [25, 26]. In parallel,
using the same data a large improvement in the statistical accuracy of DIS, both inclusive and
semi-inclusive, polarised measurements was at hand [27, 28, 29].

A second phase began in 2012 [30] and is devoted among others to the study of generalised
parton distributions through deeply virtual Compton scattering, nucleon transverse momentum
dependent distributions through the polarised Drell-Yan process and chiral perturbation theory
through Primakoff reactions.

In this chapter, the experimental setup used for polarised DIS measurements is presented. It
comprises the description of the polarised muon beam, the polarised target and some elements
of the COMPASS spectrometer.

2.1 Polarised beam

The beam is supplied to COMPASS hall through the M2 extraction line of the Super Proton
Synchrotron (SPS). The SPS provides a high intensity proton beam (∼ 1013 protons in typically
5 s spill for a SPS cycle of 17 s) with a momentum of about 400 GeV/c. This primary beam
(Fig. 2.1) impinges on a 500 mm thick Beryllium target (T6) and produces mainly pions and
secondarily kaons. A set of quadrupoles and dipoles guides the positive pions with a nominal
momentum of 217±10% GeV/c along a 500 m long decay tunnel. In this channel, a large fraction
of pions decays into a muon and a neutrino. At the end of the tunnel, a large Beryllium hadron
absorber takes in the remaining pions, while the muons go through it with an energy loss of
about 1%. The muon beam is steered to the experimental setup through a series of dipoles
and magnetic collimators that selects the energy band and through quadrupoles that keep it
focused.

The muon momentum is measured by four hodoscopes and two scintillating fibre stations
surrounding three dipoles and four quadrupoles which constitute the beam momentum station
(BMS - Fig. 2.2). For the nominal intensity of 1.6 · 108 µ+/spill at 200 GeV/c, the BMS mea-
sures each incident muon with an accuracy of 0.5%. The main characteristics of the detectors
composing the BMS are given in Table 2.1.

In the pion rest frame, the muons are naturally polarised by parity violation of the weak
decay. As the neutrinos are only left-handed and the pions are spinless particles, the produced
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Figure 2.1: Sketch of the M2 beam line with the polarised muon beam production.

Figure 2.2: Layout of the beam momentum station (Fig. taken from [31]). The hodoscopes are denoted
BM01 to BM04, the scintillating fibre stations BM05 and BM06, the dipoles B6 and the quadrupoles
Q29 to Q32.

Table 2.1: Main features of the hodoscopes making up the BMS [32].

Detector Active area ResolutionX × Y (cm2)
BM01-04 6-12 × 9-23 σs = 1.3-2.5 mm, σt = 0.3 ns
BM05 12 × 16 σs = 0.7 mm, σt = 0.5 ns
BM06 12 × 16 σs = 0.4 mm, σt = 0.5 ns
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muons have negative helicities. Since the helicity is not a Lorentz invariant, after applying
the Lorentz boost, the muon helicity depends on the decay angle defined in the centre of mass
frame with respect to the pion direction in the laboratory frame. Forward produced muons
keep a negative helicity while backward muons obtain a positive helicity (Fig. 2.3). Similar
conclusions can be drawn for kaons which constitute a small component of the secondary beam.
For highly relativistic particles, the angle dependence can be expressed by the ratio of the muon
momentum, pµ, to the parent momentum, phadron, in the laboratory frame. The dependence
of the muon polarisation on the ratio of momenta pµ/phadron is shown in Fig. 2.4a for both
pion and kaon decay. A high value of this ratio ensures a high value of muon polarisation and
no degradation from kaon contamination. The value 0.92 is chosen for pµ/phadron to maximise
the figure of merit I · P 2 (see Fig. 2.4a for the polarisation P and Fig. 2.4b for the intensity
I).

Figure 2.3: Pion decay into a muon-neutrino pair in c.m. (left) and laboratory (right) frame. Upper
(lower) figure is for forward (backward) muon production.
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Figure 2.4: a-Average muon polarisation as a function of pµ/phadron. b-Maximum muon flux for 1012

protons on the T6 target versus pµ/phadron. Figures a and b are taken from [32, 33]. The lines
pµ/phadron = 0.57 and pµ/phadron = 1.0 represent the two extreme cases (backward and forward) muon
production from pion decay. The figure of merit I · P 2 is maximised for pµ/phadron = 0.92.

The beam polarisation could be in principle analytically computed, however as the hadron
beam is not monochromatic the muon beam polarisation has to be corrected for momentum
spread and acceptance effects as well as for energy losses, especially in the hadron absorber.
For these reasons, a parametrisation of the muon beam polarisation as a function of the muon
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momentum is built using a Monte-Carlo simulation named Halo [34]. This program comprises
a detailed description of the beam optics including field maps inside and outside the magnet
apertures and including the material of potential scatterers, such as collimators and tunnel
walls. It is run separately for pion and kaon beams.

The individual muon polarisation is determined at the decay position, while the muon
energy is evolved along the beam line. Muons lost during the transport are discarded, those
leaving the nominal aperture, going through material and regaining the nominal aperture
before the target are kept and tagged as “halo” muons. The beam polarisation is the weighted
average of the polarisation of “direct” muons and “halo” muons coming from both pion and
kaon decays and going through the COMPASS target. Figure 2.5a shows the beam polarisation
for the different contributions as a function of the beam momentum. As expected from the weak
dependence on pµ/phadron around 0.92 in Fig. 2.4a, the polarisation of the “direct” and “halo”
muons from kaons is very flat and close to −1. For pions, as the slope of the muon polarisation
is much steeper as a function of pµ/phadron (Fig. 2.4a), the beam polarisation shows a stronger
dependence on the beam momentum. For the “halo” muons from pion decays, a plateau is
visible at low momenta and can be explained by energy losses during the trajectory of the
particle out of the nominal aperture. This causes a reduction of the particle momentum, while
the polarisation has been determined before the energy losses. The final beam polarisation
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Figure 2.5: a-Muon beam polarisation versus momentum for the four components of the beam (parent
hadron). The halo refers to hadrons which left the nominal aperture at some point but went through the
COMPASS target. b-Final beam polarisation summing over all contributions. The vertical error bars
correspond to the statistical uncertainty on the beam polarisation within a slice of beam momentum
(horizontal error bar) and the red band shows the results of a fit to an arc tangent function at 95% C.L.

is calculated as a weighted average of all the contributions. The points are fitted using an
arc tangent function to extrapolate the beam polarisation to any momentum (Fig. 2.5b). The
statistical accuracy of the Monte-Carlo simulation is well below 1‰ and the systematics of
the order of 4%. They include repeatability of the beam settings and alignment drift. The
reliability of the Monte-Carlo simulation was demonstrated by the Spin Muon Collaboration
(SMC) which measured also the beam polarisation on the same beam line by two different
techniques: muon elastic scattering asymmetry off an electron target and muon decay in flight
µ+ → e+νeν̄µ. Both results were in agreement with the Monte-Carlo simulation [35, 36, 33].

2.2 Polarised target
The material for the solid state polarised target is either deuterated lithium (6LiD) or ammonia
(NH3) crystals for measurements on the deuteron or proton respectively. The polarisation
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of the material relies on the Zeeman effect which allows a splitting of the spin state in the
presence of an intense and homogeneous magnetic field. Such a magnetic field is provided by a
superconducting solenoid supplying a 2.5 T field along the beam direction with a homogeneity
δB/B < 4 · 10−5. The polarisation achieved at thermal equilibrium is given by the Curie law
which reads for a spin 1/2 particle:

P1/2 = tanh
(
µB

kT

)
(2.1)

where µ is the magnetic moment of the nucleus, B is the value of the magnetic field, T is the
temperature and k is the Boltzmann constant. Due to the tiny value of the proton magnetic
moment, only a small polarisation of about 0.5% can be reached even at a few Kelvins while
in the same conditions a polarisation above 99% is obtained for electrons.

In order to increase the target polarisation, the dynamic nuclear polarisation (DNP) tech-
nique is used. It consists of transferring dynamically the polarisation of the electrons to the
nucleus. The material is first irradiated by an electron beam at low temperature to create
paramagnetic centres in the crystal lattice (around 10−4 − 10−3 per nucleus) which can be
filled with single polarisable electrons. In the presence of the strong magnetic field of the
solenoid, the electron spin couples to the nucleus hyperfine structures accessible by Zeeman
effect. Therefore a polarisation state can be induced by microwave radiations (Fig. 2.6a).
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Figure 2.6: a-The four energy levels defined by the spin projections of an electron-nucleus system.
Transitions between the levels are possible using microwave frequencies at ωe + ωp and ωe − ωp. Single
(double) arrows stand for the spin projection of the electron (nucleus). b-Target polarisations for the
upstream (red), downstream (green) and central (blue) cells versus the run number.

At equilibrium, only the B and D states are populated by roughly the same amount. Ap-
plying a microwave radiation with a frequency ωe + ωp (ωe − ωp), a transition from the B(D)
state to the C(A) state is induced. It consists of a simultaneous flip of the spin state of the
electron and of the nucleus to anti-align, B → C, (align, D → A) the nucleus spin with the
magnetic field direction. Promptly (∼ 1 ms) the electron spin relaxation occurs which leaves
the target in a D(B) state. As the electron gets back to its initial state, it can be used to
polarise several nuclei in its vicinity. Nuclei far from the paramagnetic centres are polarised
by spin diffusion [37, 38]. As the time of relaxation of the nucleus is very long (∼ 1 min), the
target remains in that polarisation state. By operating in a so-called frozen spin mode, i.e. at
very low temperature of about ∼ 50 mK, the time of relaxation can be of several months. Such
a low temperature is reached thanks to a 3He-4He refrigerator system.

A peculiarity of the COMPASS target is its composition in three cells of 4 cm diameter
and 30 cm, 60 cm and 30 cm long, i.e. 1.2 m long in total: the longest polarised target in
the world. The most upstream and downstream cells are shone with one of the two microwave
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frequencies (for instance ωe + ωp) whereas the central cell is radiated with the other frequency
(ωe − ωp) so that the central cell is always polarised in opposite direction with respect to the
upstream and downstream cells. This unique configuration better ensures that the two target
spin states are supplied with the same beam flux.

The target polarisation is measured by Nuclear Magnetic Resonance [39] (NMR) by means
of 10 coils along the target cells. The NMR signals are calibrated from measurements of thermal
equilibrium signals at 1 K [40, 41]. Almost constant target polarisations of about 0.8 and -0.8
with an accuracy of 3.5% are reached during the data taking (see Fig. 2.6b). Every day, the
spin states of the cells are reversed adiabatically without any polarisation loss by means of a
dipole magnet. The magnet produces a transverse field of about 0.5 T with respect to the beam
direction, which combined with the inversion of the current in the solenoid rotates continuously
the magnetic field within the target as well as the spin states within the cells. The dipole can
also be used to polarise the target transversely with respect to the beam axis. A sketch of the
target is shown in Fig. 2.7.

Figure 2.7: Sketch of refrigerated polarised target. The arrows indicate the orientation of the polarisation
for each target cell. The geometrical acceptance of the target is limited to ±180 mrad defined by the
radius of the solenoid.

2.3 Spectrometer

The spectrometer is composed of two stages each including a dipole magnet (Fig. 2.8). The
first stage, named LAS for Large Angle Spectrometer, is dedicated to low energy particles or
particles emitted at large angle. The main element is the dipole magnet SM1 with a wide aper-
ture of ±180 mrad which matches the angular acceptance of the target. The main component
of the field is vertical from top to bottom with a field integral of 1 Tm [42]. SM1 is located
4 m downstream of the target and ensures the measurement of particle momenta up to a few
dozen GeV/c.

The second stage, Small Angle Spectrometer (SAS), covers particle momenta from 5 GeV/c
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to a few hundred GeV/c and can detect all particles emitted in a cone of 30 mrad in opening
angle. The dipole SM2 present in this stage is located 18 m downstream of the target and has
a field integral of 4.4 Tm. As for SM1, the main field component of SM2 is vertical.

Figure 2.8: Sketch of the top view of the COMPASS muon setup (as built in 2010, no change compared
to 2011).

Whether it be in the LAS or in the SAS, each dipole is preceded and followed by telescopes
of trackers and ends with electromagnetic and hadronic calorimeters as well as a muon filter.
The momentum resolutions achieved for those two stages are shown in Fig. 2.9. Due to the
difference in bending power of the two dipoles, the relative momentum resolution σp/p is about
0.5% in the SAS and 1.2% for the tracks reconstructed in the LAS alone. It is also possible
to retrieve some particles escaping the SM1 magnet using its fringe field but the momentum
resolution in this case is of about 10%. A description of the main detectors of the spectrometer
is given in the next section.
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Figure 2.9: Relative track momentum resolution σp/p versus p.
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2.3.1 Tracking detectors

The trajectories of charged particles are determined on both sides of the dipoles so that their
deviation through the magnetic field allows for a measurement of the ratio of their charge
q to their momentum p. The achieved resolution depends on the resolution of the angle of
deviation θ which depends on the multiscattering along the particle path and on the detector
resolutions. As the particle flux decreases rapidly along the radial distance from the beam,
different technologies are used to build the detectors depending on their angular acceptance.
Three angular regions are identified and covered by the very small area trackers, the small area
trackers and the large area trackers to which corresponds a maximal particle flux of 5 · 107

Hz/cm2, 3 · 105 Hz/cm2 and 1 · 104 Hz/cm2, respectively. A summary of the different detectors
with some relevant characteristics for each region is given in Table 2.2 and below.

Table 2.2: Segmentation of the COMPASS spectrometer acceptance into three angular regions [32].

Very small area trackers (maximal flux: 5 · 107 Hz/cm2)
Detector # of det. Spatial resolution (µm) time resolution (ns)

Scintillating fibres 23 120-210 0.35-0.45
Silicon microstrip 6 8-11 2.5

Small area trackers (maximal flux: 3 · 105 Hz/cm2)
Detector # of det. Spatial resolution (µm) time resolution (ns)

Micromegas 12 90 9
GEM 22 70 12

Large area trackers (maximal flux: 1 · 104 Hz/cm2)
Detector # of det. Spatial resolution (µm) time resolution (ns)

Drift Chamber 3 190 -
Straw 9 190 -
MWPC 14 1600 -

Very Small Area Trackers

• Scintillating fibres:
They consist of 14 planes of detection with an active area from 4×4 cm2 to 12×12 cm2 and
are placed along the beam axis in the LAS as well as in the SAS. Each plane measures
one coordinate (vertical, horizontal or inclined by 45°) and is organised in 7 layers of
strands bringing 7 fibres together.

• Silicon microstrips:
They are organised in 3 stations of 2 detectors with an active area of 5×7 cm2. Each
detector can measure two components at the same time thanks to perpendicular readout
strips between the n-side and the p-side. All the stations are located before the target
and measure 4 projections (vertical, horizontal and inclined by ±5° with respect to the
horizontal axis).

The excellent spatial and time resolutions make those detectors suitable for beam particle
tracking. They can be used to propagate the incoming muon track back to the BMS and the
association of the extrapolated track in coincidence with the measurement of the BMS solve
possible ambiguities between several beam track candidates.
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Small Area Trackers

• Micromegas:
They are Micro Pattern Gaseous Detectors (MPGD) and are based on a MICRO MEsh
GAseous Structure ensuring a low material budget [43]. They consist of a conversion
gap placed on top of an amplification gap separated by a micro-mesh Fig. 2.10. Primary
electrons are created by ionisation in the conversion gap. They drift to the mesh and
enter the amplification gap where due to the strong electric field an avalanche occurs.
The ions produced during the avalanche are collected by the mesh in order to keep a fast
time response while the electrons are gathered by readout strips. They have an active
area of 40×40 cm2 with a blind centre of 5 cm diameter. They are located between
the solenoid and the SM1 magnet in 3 stations of 4 detectors (one for each projection:
horizontal, vertical and inclined by ±45°).

(∼ 5 mm depth, ∼ 1 kV/cm field)

(∼ 100 µm depth, ∼ 40 kV/cm field)

Figure 2.10: Principle of a Micromegas detector.

• GEM:
They are MPGD consisting of three Gas Electron Multiplier (GEM) foils which split
the gas chamber into 3 amplification stages as shown in Fig. 2.11 [44]. Each foil is 50
µm thick and drilled with holes of 70 µm diameter. Each side of the foil is submitted
to a different potential to create a strong electric field in the holes. Primary electrons
are created in the drift gap and multiplied in each GEM foil when passing a hole which
ensures the amplification and the collection of ions. The sharing of the amplification over
several stages guarantees low possibilities of electrical discharges. They have an active
area of 31×31 cm2 with a deactivated centre of 5 cm diameter. They are distributed
along the beam axis after the SM1 magnet in 11 stations of two detectors (one measuring
2 projections).

Large Area Trackers

• Drift chambers:
They are large gaseous volumes comprised between two cathodes made of Mylar coated
with graphite between which is placed alternately a potential wire of 100 µm diameter
and a readout wire of 20 µm diameter as shown in Fig. 2.12. A cascade of electrons
is created when an ionising particle crosses a drift cell and is collected by the readout
wires. Three detectors, DC00, DC01 and DC04, composed of eight layers of wires with 4
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inclinations (vertical, horizontal and tilted by ± 15° and ± 20° for DC04 with respect to
the vertical axis) are used. They have an active area of 180×127 cm2 and 240×204 cm2

for DC04 with a deactivated centre of 30 cm diameter. They are located before and after
the SM1 magnet.
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Figure 2.12: Drift cell geometry of the drift chambers as delimited by the two cathode foils and the two
potential wires.

• Straw tube chambers:
These gaseous detectors are similar in working principle to the drift chambers. They
consist of an assembly of Kapton tubes of 6 mm diameter. Each tube is plated with
aluminium and used as a cathode. A thin anode wire of 30 µm diameter made of gold-
plated tungsten is placed in the centre of every tube and brought to a high potential. A
cascade of electrons is created when an ionising particle crosses a tube and is collected by
the central wire. The straw tube detector [45] consists of two layers of tubes and measures
one component. Three stations of three detectors with an active area of 323×280 cm2

are placed between the two dipoles.

• Multiwire proportional chambers:
The tracking at large radial distance in the SAS is mainly ensured by multiwire propor-
tional chambers. They have an active area of 178×120 cm2 and a blind centre of 16 cm
to 22 cm diameter depending on their position in the spectrometer. Three stations of
two detectors are placed along the beam axis.
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2.3.2 Particle identification

Several devices are installed in the LAS and the SAS to ensure particle identification:
Two “muon filters” are used to identify the scattered muons. They consist of an absorber,

made of a 60 cm thick iron plate in the LAS and a 2.4 m thick concrete wall in the SAS,
sandwiched between two low resolution tracking detectors. The tracking is ensured by drift
tube detectors having a spatial resolution of 3 mm in the LAS and from 0.6 mm to 0.9 mm in
the SAS.

Two sets of electromagnetic and hadronic calorimeters realise the energy measurement
of particles. They complete each stage of the spectrometer and are designed to match the
acceptance of the LAS. As their use in terms of calorimetry is marginal in this analysis (except
for quality checks in 3.1.2), they are not described. The main features of each of the calorimeters
can be found in [32, 46].

Finally, a Ring Imaging CHerenkov detector is used to perform the hadron (pion, kaon,
proton) identification with as low as possible material budget. This detector is particularly
interesting when studying identified hadron spin asymmetries, which are not detailed in this
thesis. The characteristics of the detector can be found in [46].

2.4 Data recording

2.4.1 Trigger system

The goal of the trigger system is to select event candidates in a very short time (< 500 ns)
and with a small dead time in a high rate environment. The triggers launch the data acquisi-
tion and provide the reference time of the event. Several components such as a veto system,
fast hodoscope signals and energy deposits in calorimeters participate in the trigger system
depending on the kinematic of the reactions [32, 47].

The veto system is composed by three scintillating counters located 20 m, 8 m and 3 m
before the target with central holes of 10 cm, 4 cm and 4 cm in diameter, respectively. Those
counters are in anti-coincidence with all others components of the trigger system to prevent
events to be triggered by divergent beam particles (halo muon).

For deep inelastic scattering reactions, the trigger system is based mainly on hodoscope
signals which rely on the information on scattered muons alone. The trigger is fired when the
signal of two hodoscopes, which are made of slabs of fast scintillators are in coincidence and
that the trajectory of the hit slabs points to the target1. The hodoscopes in coincidence are:
H4L and H5L for the Ladder Trigger (LT), which covers low values of Q2 in the DIS regime;
H4M and H5M for the Middle Trigger (MT), which extends the kinematic coverage up to few
(GeV/c)2 in values of Q2; and completed by H3O and H4O for the Outer Trigger (OT), which
significantly contributes to measuring values of Q2 up to 30 (GeV/c)2. Those three sub-triggers
constitute the purely inclusive trigger component of the trigger system.

A second component of the trigger system is provided by hodoscope signals combined
with a calorimetric condition. This is the case for the Inner Trigger (IT), which requires the
coincidence of H4I with H5I and an energy deposit beyond the one expected of a single muon
in one of the two hadronic calorimeters to reduce background triggers due to elastic or quasi-
elastic scattering. This sub-trigger covers almost the same kinematic domain as the LT in the
DIS regime and will contribute slightly to the final sample of this analysis. However, the LAS
Trigger (LAST), which requires also an energy deposit in the calorimeters in addition to the

1The trigger system was actually designed to the requirement of both proper DIS and quasi-real photo-
production at low Q2. In the later case, as the muon scattering angle is small, instead of target pointing, the
trigger is based on the energy loss of the scattered muon by measuring its deflection in the two spectrometer
magnets. This is the case of the IT and LT which do not contribute much in this analysis.
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coincidence between H1G and H2G hodoscopes contributes significantly in measuring events
with Q2 above 30 (GeV/c)2 and up 100 (GeV/c)2. Those sub-triggers form the semi-inclusive
trigger component of the trigger system.

Finally, a standalone calorimeter signal can trigger the data acquisition when the scattered
muon escapes the hodoscope-based trigger acceptance. This is particularly interesting at very
large Q2 (in the absence of the LAST). In this case, the energy deposit must be well beyond
the one expected by a single muon.

The schematic position of the hodoscopes as well as the kinematic domains covered are
shown in Figs. 2.13 and 2.14 for a 160 GeV muon beam and the experimental setup up to 2007.
In 2010 and for the 2011 data taking with a muon beam of 200 GeV, the additional hodoscope
system (LAST) was added to better cover the large values of Q2, H1G was installed before
SM1 and H2G after SM2. The projection of the fraction of the different trigger component
contributions as function of x and Q2 for a 200 GeV muon beam is given in Fig. 2.15.
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Figure 2.13: Schematic view of the trigger system. The most upstream veto and the H1G and H2G
hodoscopes are not shown.

Table 2.3: Trigger component

Target Energy loss of Low E deposit High E deposit
pointing the scaterred µ in calorimeters in calorimeters

IncMT 3 3

inclusive OT 3

LT 3

IT 3 3

semi-inclusive MT 3 3 3

LAST 3 3

calorimetric CT 3
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Figure 2.15: Fraction of events triggered by three subsystems: a hodoscope signal alone (inclusive
in red), by a hodoscope signal combined with a calorimeter signal (semi-inclusive in green) and by a
calorimeter signal alone (calorimetric in blue) as a function of the Bjorken scaling variable (a) and Q2

(b) for a 200 GeV muon beam.
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2.4.2 Data acquisition system

For each triggered event, the information of the detectors are recorded by the Data AcQuisition
(DAQ) system. Preamplified and discriminated signals of the detectors are digitised via analog
or time to digital converters and sent to readout driver modules (CATCH or GeSiCA). Those
modules ensure the transfer of data from the front-end cards of the detectors to readout-buffer
PCs when a signal is emitted from the trigger control system. The aim of the readout-buffer is
to store temporarily the data and merge them in partial events. Those pieces of events are then
collected by event builders which create and save global events on raw data files containing the
times and the amplitudes of the signals of the detectors’ channels. Data files of about 1 GB size
are automatically copied on the tapes of the CERN central computer centre. The architecture
of the DAQ system is sketched in Fig. 2.16.

Modules

64 Readout buffer

12 Event builder
& Recording

16 PCs
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70 MByte/s

4 Gigabit
Ethernet
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Central Data
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Multiplexer
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40 MByte/s/link150 Readout

event builder
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CATCH GeSiCA

4 x 512 MByte spill buffer per PC

and filter

Figure 2.16: General structure of the DAQ system. It mainly consists on three stages: digital signals
collection, the readout modules, partial events storage, the readout buffer PCs, and event records, the
event builder (see text).

2.4.3 Event reconstruction

The transition from raw data information to physical analysable quantities is realised by the
COmpass Reconstruction Algorithm Library (CORAL) software. It consists mainly in recon-
structing the trajectories of the muon beam, the scattered muon and the final hadrons, as well
as the position of the vertices. From a description of the position of the detectors (alignment
file), magnetic field maps and calibration files, the raw data are converted into spatial hits in
the detectors and energy deposit in the calorimeters. Specific algorithms merge adjacent hits
into clusters which are fitted into trajectories. The converging trajectories are matched into
vertices. The reconstructed information is stored in the form of Data Summary Tape (DST)
which can be further analysed in a specific physics channel. The illustration of a reconstructed
DIS event from CORAL is shown in Fig. 2.17.
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Figure 2.17: Typical reconstructed DIS event in the spectrometer. The target is in light green, the two
dipoles are in pink, the detector planes in black with the associated clusters of hits in blue and the
reconstructed charged particle trajectories in red.



Chapter 3

Extraction of spin asymmetries and
spin-dependent structure function of
the proton

In this chapter, the full chain of the analysis implemented to calculate the asymmetry is
presented. As a first step, the stability of the apparatus is studied and the position of the
target is determined. This stage is essential to prevent possible bias, especially when a small
asymmetry (down to a few percents) is measured. Then the selection of data, the method of
extracting the asymmetries and a review of the systematic effects are introduced. The chapter
ends with the result of the proton spin dependent structure function gp1 .

3.1 Stability of the apparatus
The operation of all detectors of the spectrometer was monitored during the whole data tak-
ing to ensure stability in data recording. However, failures and repairs of detectors happen
sometimes and it is not easy to determine whether the issue encountered may impact the data
because of the complexity and redundancy of the apparatus. For this reason, before extracting
any physical quantity, the stability of relevant variables versus time is studied. First checks are
performed on a spill by spill basis (∼ 10 s) where the stability of variables directly correlated
to the efficiency or reliability of the detectors is monitored. Then an analysis on a run by run
(∼ 100 spills) basis is carried out to monitor the stability of well known physical quantities.
The latter case points to possible misalignments of the detectors or calibration issues.

3.1.1 Identification of bad spills

In the spill by spill analysis the time scale is the spill. The stability of reconstructed variables
over the spill number is analysed to evaluate the quality of the data taking. This analysis is
performed by a modified version of the software developed by the COMPASS collaboration to
make a study for each trigger independently1. The following variables are studied separately
for each of the six triggers:

• Number of primary vertices per event

• χ2
r of the primary vertices per vertex

• Number of beam particles per primary
vertex

• Number of tracks per primary vertex
1Depending on the physics channel: trigger mix, use of calorimeter or RICH, a set of unstable spill lists is

provided
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• χ2
r of the tracks per track

• Number of hits per track

• Trigger rate

• Number of charged clusters per event

• Charged cluster energy per event

• Likelihoods per track

Assuming that most of the recorded data are good, a fair estimator of the statistical fluc-
tuations of the variables is the root-mean-square (RMS) of each distribution. The method
used to identify the bad spills is the following: the value of each variable for a given spill is
compared to the ones of its neighbours comprised in a gliding window of 1,200 spills. A spill is
marked as bad, if for any of the distributions its number of neighbours within a certain amount
of RMS is lower than a threshold. In case of a stable data taking, none of the spills differs
significantly from its neighbours and a peak is expected around 1,200 neighbours; in case of a
clear instability a peak is also present around zero.
An example for the case of the number of tracks per vertex distribution is shown in Fig. 3.1 left.
The bad spills, marked in red, are derived after the cut on the neighbour distribution, Fig. 3.1
right. Pseudo-efficiencies of the 416 planes of detection are also studied. They are easily and

# tracks per primary vertex (Calorimeter trigger)

spill numbers # neighbours

Neighbour distribution

Figure 3.1: Left: Example of bad spill identification for the number of tracks per primary vertex versus
the spill number for a period of data taking. The blue lines represent a rotation of the solenoid field.
The identified bad spills are in red. Right: Neighbour distribution of the distribution on the left with
an entry for each spill. The vertical red line represents the cut on the minimal number of neighbours.

rapidly available for the full data taking and are computed from the ratio of the number of
hits detected in a plane to the number of hits expected during the reconstruction. As all the
planes are used to reconstruct the data, including the plane which is being considered, those
pseudo-efficiencies are always higher than the real efficiencies. However, they can still provide
useful information on the stability of detection and problems in the reconstruction. No more
spill rejection has been made at this stage because only temporary and limited losses of pseudo-
efficiency of detectors were observed and were judged to be compensated by the redundancy
of the tracking; otherwise the spill would have been rejected in the analysis described above.
Nevertheless, the pseudo-efficiencies are considered for a grouping of data in stable short lapses
of time (see section 3.1.3).

Table 3.1 shows the percentage of rejected spills after this stability study. A relatively large
fraction of the recorded data are rejected in the period1 W25 because of instabilities in one
of the triggers which were impacting all the other triggers. W32 shows also a large rate of
rejection because it underwent several trips of quadrupoles of the extraction beam line.

3.1.2 Run by run stability

Once the basic stability checks of the spectrometer are realised on a spill by spill basis, the
stability of the apparatus in measuring physical quantities is carried out. This more sophisti-
cated approach is more sensitive to alignment and magnetic field issues as well as to calorimeter

1A period corresponds to about a week of data taking with a dedicated offline alignment of the detectors. 12
periods have been taken in 2011.
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Table 3.1: Percentage of rejected spills for each period of data taking.

Period Percentage of rejected spills Period Percentage of rejected spills
W25 28.66% W34 10.31%
W27 8.64% W36 4.37%
W30 6.17% W38 3.15%
W31 9.46% W39 2.73%
W32 26.85% W41 2.35%
W33 4.70% W43 4.33%

calibrations. Three quantities were investigated: the value of the Bjorken scaling variable x for
µ−e elastic scattering events, the mass of the K0 and the missing energy in the reconstruction
of exclusive ρ. As an illustration of the stability checks only the former two are presented
below.

Elastic xµe scattering stability

The Bjorken scaling variable x is usually defined for a proton target therefore in case of an
elastic scattering with an electron (µe→ µ′e) its value is equal to the ratio of the mass of the
electron, me, to that of the proton, mp. The selection of µ−e elastic scattering events is defined
at Q2 < 1 (GeV/c)2 by a primary vertex with two outgoing tracks (the scattered muon and a
negative charged particle). To identify the electron, the ratio of the energy deposited by the
negative charged particle in the electromagnetic calorimeters to its momentum is required to be
within 0.8 and 1.2. The exclusivity of the reaction is ensured by a constraint on the coplanarity
of the scattering Eq. (3.1) and on the transverse momentum conservation Eq. (3.2).

~pµ × ~pµ′
|~pµ × ~pµ′ |

· ~pµ × ~pe
|~pµ × ~pe|

< −0.9 (3.1)

Pµ⊥ − Pe⊥ < 0.02 GeV/c. (3.2)

Finally the angles of the two outgoing tracks with respect to the incoming muon have to be
correlated and smaller than 6 mrad.
The xµe distribution for each run is fitted by a Gaussian and the results are compared to me

mp
versus the run number (Fig. 3.2).

Run number92000 93000 94000 95000 96000

p
m

e
m -

x

-35
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-25
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-610×

W32 W41W33W30W27W25 W39W38W36W34 W43W31

Figure 3.2: Stability of x for µ-e elastic scattering events versus the run number for the whole year. The
blue lines corresponds to different offline alignments of the detectors.

The mean value is shifted by 4.6% compared to the PDG value of me/mp [12]. However the
distribution is very stable and hence does not lead to further rejection.
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K0 mass stability

K0 are reconstructed using events with secondary vertices with two opposite-charged tracks.
The invariant K0 mass is calculated assuming both particles are pions. The mass peak is fitted
by two Gaussians and a linear function to describe the background. The result from the fit
is compared to the PDG value and the difference is shown in Fig. 3.3 versus the run number.
The distribution is very stable and the relative difference with the PDG value is of 0.2%.
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Figure 3.3: Stability of K0 mass versus the run number for the whole year. The blue lines illustrate the
change in the offline alignment of the detectors.

3.1.3 Data grouping

The data are gathered into small groups of runs close in time and involving two opposite
directions of the solenoid field. The idea is to prevent any false asymmetry from biasing the
physics asymmetry. The groups are determined according to the stability of the spill by spill
analysis and the detector pseudo-efficiencies. For acceptance considerations between the two
spin states, groups are determined also by taking into account balanced statistics between two
orientations of the solenoid field. This results in rejections of 4.5% of the runs because of badly
balance statistics between the two solenoid fields. An additional 5.5% of the runs are rejected
due to target polarisation losses during the data taking.

3.2 Target position

To determine precisely the position of the target, the full statistics accumulated during the data
taking is needed. The idea is to identify some elements of the target such as the microwave
stoppers between the target cells (for the z-position) and the mixing chamber (for x-y-position).
All events having a vertex with an incoming muon and several outgoing particles are retained.
In a first step, to determine the z-position, a cut on the radial position is imposed to remove
most of the target material (r < 2 cm) and the mixing chamber (r > 3.6 cm). Moreover only
events with a good resolution on the z-coordinate (δz< 0.75 cm) are kept. The distribution
of the z-position of vertices is plotted and an excess of events appears at the positions of the
two microwave stoppers. Both peaks are fitted by a Gaussian to obtain the central position of
the microwave stoppers. The fitted position of the two stoppers, together with the technical
drawing of the target give the precise position of the target cells.
In a second step, the interactions with the mixing chamber in which the target is placed are
studied. The cut on the resolution of the z-position of the vertices is released to δz < 2 cm. The
radial cut is set to remove only events in the target material (r < 1.5 cm). The distribution of
the position of vertices in the transverse plane lets the contour of the mixing chamber appear.
A circle with a radius rmixing = 36.45 mm is fitted to the outer contour of the mixing chamber
and gives the central position of the target. To determine the tilt of the target, the same
procedure is repeated on 12 slices of target along the z-direction. A very small angle of 1.04 ±
0.07 mrad is observed. Figure 3.4 shows the fits to the microwave stoppers on the left and an
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example of the circle fitting the mixing chamber. The position of the target is summarised in
Table 3.2.

z(cm) x(cm)

y(
cm

)

Figure 3.4: Position of the target along the beam axis on the left. The red lines show the centre of
the microwave stoppers. The green line shows the edge of each target cell. The transverse plane of the
target is shown on the right. The two red circles illustrate the contour of the mixing chamber, the blue
circle shows the target cell position.

Table 3.2: Summary of the target position along the beam axis and in the transverse plan.

z ∈ [−61.7,−32.4] ∪ [−26.5, 32.1] ∪ [37.2, 66.5]

Target centre given by:
upstream downstream

x–centre -0.0073 cm 0.1261 cm
y–centre -0.1680 cm -0.1796 cm

Target Radius: r ≤ 1.9 cm

3.3 Target filling
Knowing the position of the target, a study of its filling is performed. Since the number of
interactions with the ammonia material is much higher than the interaction with the cooling
helium, a lack of interactions within a part of the target indicates a deficit of ammonia in that
region. The distribution of the transverse position of vertices within the target is studied for
several slices of target. However, this distribution is a convolution of the target filling and
the beam profile so a deconvolution of these two distributions has to be done before checking
the uniform distribution of ammonia within the target. For that reason, the distribution of
interacting vertices is normalised by the distribution of beam tracks. The latter quantity is
determined by the position of the beam tracks recorded by a random trigger. No region of the
target reveals any sign of bad filling, as shown in Fig. 3.5.
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Figure 3.5: Check of the target filling in the transverse plane for the most downstream cell: ratio of the
distribution of vertices to the number of beam tracks. The black curve shows the position of the target.

3.4 Data selection

The full statistics accumulated in 2011 after the removal of bad spills and taking into account
the grouping list is used. About 12 ·109 events were recorded but only a small fraction of them
remains in the final physics sample. Any physical trigger is considered in this analysis, whether
it be purely inclusive or have a calorimetric condition. The primordial selection of events
demands the presence of an incoming muon reconstructed before the target and associated to
a vertex containing at least one outgoing particle. The identification of one of the outgoing
particles as a scattered muon requires that the outgoing particle has the same charge as the
beam and goes farther than the first muon filter. The number of radiation lengths crossed by
that particle has to be larger than 30 and its extrapolated trajectory must fall into the active
area of the fired trigger. In case the event contains more than one outgoing track fulfilling
these requirements, the event is discarded.
To guarantee the quality of the primary vertex, a fiducial cut on the reduced χ2 is applied
(χ2
r < 10) and, in addition, the sum of all fractional energies zh of the outgoing particles has

to be smaller than one. The position of the primary vertex has to be within one of the three
cells of the target in order to determine the spin state of the material with which the incoming
muon has interacted. Finally, the extrapolation of the incoming muon track must cross the
entire target so as to keep constant the beam flux over the three cells.
The kinematic domain available for the analysis is selected by cuts on the virtuality of the
photon, Q2, and on the fractional energy transferred from the muon beam to the virtual photon,
y. The former cut guarantees the hard scale of the process with Q2 > 1 (GeV/c)2 while the
latter one removes radiative events difficult to describe for y > 0.9 and events difficult to
handle in the reconstruction due to the low momentum for y < 0.1. The distributions of the
retained DIS events are given in Table 3.3 and represent 0.6% of the initial statistics. The
kinematic distribution are shown in Figs. 3.6 and 3.7 after all selection criteria but the one on
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the displayed variables.
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Figure 3.6: Distributions of Q2 vs y (left) and y vs x (right). Kinematic cuts for selecting DIS events
are represented by the black lines.
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Table 3.3: Summary of the suppression factors for the final sample. The last two rows indicate the
trigger contributions.

Cut Events/106 (%)
# Reconstructed events 12940 100.00

Presence of primary vertex 7921 61.21
Presence of a scattered muon 1955 15.10

Q2 > 0.9 (GeV/c)2 202 1.56
Withdrawal of bad spills 174 1.34

Withdrawal of runs without target polarisation measurements 173 1.33
|Ebeam − 200| < 20 GeV 173 1.33

Beam particle without reconstructed momentum 171 1.32∑
h zh < 1 170 1.31

Q2 > 1 (GeV/c)2 159 1.23
0.0025 < x < 0.7 156 1.21

0.1 < y < 0.9 99 0.77
Extrapolated muon beam crosses all cells 96 0.74

Presence of the primary vertex inside the target 78 0.60

# events from purely inclusive triggers 65 84.4
# events from semi-inclusive triggers 12 15.6

3.5 Computation of the spin asymmetry
The number of events Ncell for each target polarisation is related to the asymmetry through
Eq. (3.3). It consists of the beam flux φ, the acceptance of the cell acell, the density of material
in the cell ncell and the unpolarised DIS cross-section σ0. This first part in the right hand side
describes the number of events averaged over polarisation states for a given cell. The second
part consisting of the asymmetry describes the magnitude of the excess or of the deficit of
events depending on the spin state. This asymmetry Ap1 is weighted by the beam polarisation
Pb and the target cell polarisation Ptcell to give the direction of the effect and its magnitude. A
dilution factor f and a depolarisation factor D are also introduced to correct for the effective
proton and photon polarisations.

Ncell = φ acell ncell σ0 (1 + Ptcell Pb f DAp1) (3.3)

The dilution factor represents the fraction of polarisable material within the target. In order
to evaluate this quantity in the most realistic way Eq. (3.4), the number of nuclei nA (with
mass number A) present in the target is weighted by its total unpolarised cross-section σtotA .

f =
np σ

tot
p∑

A∈target
nA σ

tot
A

(3.4)

The total cross-section comprises the one-photon-exchange cross-section (Born approximation)
σ1γ and higher order QED radiation effects Eq. (3.5):

σtot(x,Q2) = ν σ1γ(x,Q2) + σel(x,Q2) + σqel(x,Q2) + σinel(x,Q2) (3.5)

where the ν factor stands for the vertex and the vacuum polarisation radiation and σel, σqel
and σinel represent the elastic, quasi-elastic and inelastic scattering respectively. The Feynman
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diagrams corresponding to Bremsstrahlung in the elastic and inelastic cross-section, vertex
correction and vacuum polarisation are given in Fig. 3.8. For semi-inclusive triggers the second
and third contributions (σelA and σqelA ) in Eq. (3.5) vanish, since the detected hadron in the
final state ensures the inelasticity of the reaction. The effective dilution factor in Eq. (3.3) is

Figure 3.8: From left to right, Feynman diagrams of the radiative processes for the elastic tail, the
inelastic tail, the vertex correction and the vacuum polarisation.

already corrected for those diluting radiative effects by the additional factor ρ from Eq. (3.6),
which is evaluated from precalculated tables obtained with TERAD [48].

ρ(x,y) = νη = ν
σ1γ
p

σtotp
(3.6)

The dilution factor is trigger and kinematic dependent as shown in Fig. 3.9. At low values of
x (i.e. low values of Q2), the dilution factor is larger for the semi-inclusive triggers than for
the inclusive ones, since the hadron detected in the final state ensured the inelasticity of the
reaction.
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Figure 3.9: Dilution factor with radiative correction included as a function of x for inclusive and semi-
inclusive triggers.

The depolarisation factor is defined as in Eq. (3.7):

D = y((1 + γ2y/2)(2− y)− 2y2m2/Q2)
y2(1− 2m2/Q2)(1 + γ2) + 2(1 +R)(1− y − γ2y2/4) (3.7)
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It represents the transfer of polarisation from the beam to the virtual photon [49, 50]. It
mostly depends on the kinematic of the virtual photon and on the ratio of the longitudinal
cross-section to the transverse one, R(x,Q2) [51]. D(y) increases with y which means that high
photon energies correspond to high photon polarisations.

3.5.1 Intuitive Asymmetry extraction

By combining the numbers of events from Eq. (3.3) for the upstream and downstream cells
Nu+d and those of the central cellNc, which correspond to the two opposite target polarisations,
one obtains Eq. (3.8):

Nu+d − Nc

Nu+d + Nc
= r − 1 + w Ap1 ( r|Pu+d|+ |Pc| )
r + 1 + w Ap1 ( r|Pu+d| − |Pc| )

(3.8)

where w = Pb f D and r = au+dnu+d/acnc is the ratio of the acceptance for the upstream and
downstream cells to the acceptance of the central one. The unpolarised cross-section cancels
in the ratio as well as the beam flux thanks to the cut on the extrapolation of the beam tracks
along the target.
Typically wAp1 � 1 and |r − 1| < 0.1 for inclusive measurements so that one can simplify
Eq. (3.8) under reasonable assumptions to obtain:

1
w〈P 〉

· Nu+d − Nc

Nu+d + Nc
= Ap1 + 1

w〈P 〉
· r − 1
r + 1︸ ︷︷ ︸

acceptance bias

(3.9)

where 〈P 〉 is the average value of the modulus of the target polarisation. The physical asym-
metry appears to be biased by an asymmetry of acceptance. To overcome this bias, the spin
states of the different target cells are regularly flipped by means of a rotation of the solenoid
magnetic field as described in section 2.2. After a field rotation, the Eq. (3.9) can be written
again with only an opposite sign before the physical asymmetry. By doing the difference be-
tween the measurements before and after a field rotation, the apparatus asymmetry cancels
out. In fact, the difference is computed at the Eq. (3.3) level, before making the simplifying
approximations which lead to Eq. (3.9), and results in Eq. (3.10) when only terms at first order
in Ap1 are kept and assuming identical r factor before and after a field rotation.

Ap1 = 1
2 ·

1
1− α2 ·

1
〈PBPT fD〉

·
(
Nu+d − Nc

Nu+d + Nc
−

N ′u+d − N ′c
N ′u+d + N ′c

)
(3.10a)

δAp1 = 1
2 ·

1√
1− α2

· 1
〈PBPT fD〉

·
√

1
Nu+d + Nc

+ 1
N ′u+d + N ′c

(3.10b)

The primed and unprimed quantities stand for before and after a field rotation and α is a
factor accounting for a non perfect acceptance cancellation.
Typically, for the inclusive asymmetry, α is very small (order of 1%) and can be neglected;
This is not the case for semi-inclusive asymmetries (where an identified hadron in the final
state is recorded in addition to the scattered muon) where values up to 50% can be reached.
For that reason, another method, less dependent on the acceptance discrepancies, is used and
is introduced in the next section.

3.5.2 Second order weighting method

This method was introduced by SMC then adapted to COMPASS and largely described in
[52, 53], hence only the outline is recalled. The number of events defined in Eq. (3.3) is
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integrated over all dependent variables but the ones binned in the asymmetry (typically x and
Q2) with a weighting factor w = fPbD. The weight takes better into account events with a
large polarisation transfer than the diluted ones. Equation (3.3) can be rewritten as Eq. (3.11):

pcell =
∫
Ncell w dX =

∫
φ σ0 ncell dX 〈acell〉 (1 + 〈βcell〉Ap1) (3.11)

where dX is the measure of all unbinned variables, β = wPcell and

〈acell〉 =

∫
φ σ0 ncell acell w dX∫
φ σ0 ncell w dX

(3.12a)

〈βcell〉 =

∫
φ σ0 ncell acell βcell w dX∫
φ σ0 ncell acell w dX

(3.12b)

are the weighted average of acceptance and of polarisation product. Instead of the arithmetic
average, the geometric average of Nu+d, Nc and N ′u+d, N ′c is computed:

pu+d · p′c
p′u+d · pc︸ ︷︷ ︸

δ

= 〈au+d〉〈a′c〉
〈a′u+d〉〈ac〉︸ ︷︷ ︸
κ factor

·(1+ < βu+d > Ap1)(1+ < β′c > Ap1)
(1+ < β′u+d > Ap1)(1+ < βc > Ap1) (3.13)

Assuming the double ratio of the average value of acceptances κ is equal to 1 like for the intu-
itive method, the physical asymmetry is one of the roots of the second order equation (3.13).
The statistical uncertainty on Ap1 is obtained by taking the derivative of Eq. (3.13) with re-
spect to δ and propagating the uncertainty. The uncertainty on δ, Eq. (3.14), is obtained by
propagating the uncertainties on pcell which follows a Poisson law.

σ2
δ = 1∑

i∈u+d
w2
i

+ 1∑
i∈c

w2
i

+ 1∑
i∈u+d

w2′
i

+ 1∑
i∈c

w2′
i

(3.14)

3.5.3 Radiative corrections

The proton asymmetry Ap1 is given in the one-photon-exchange approximation σ1γ
µp. The mea-

sured cross section σmeasµp contains contributions coming from the elastic, quasi-elastic and
inelastic tails as well as from the vertex correction and the vacuum polarisation :

σmeasµp = σ1γ
µp + σotherµp (3.15)

In the asymmetry, all contributions stay in the denominator while only spin-dependent parts
remain in the numerator.

Ameas1 =
∆σ1γ

µp + ∆σotherµp

σmeasµp

(3.16)

The corrections for these extra contributions are applied in two steps, one for the unpolarised
part and one for the polarised part. The first step corrects for the dilution of the denominator
by radiative events and is included in the dilution factor calculation (see Eq. (3.6)).
A second correction (ARC which is small) removes the contribution of ∆σµpother. It is evaluated
in x and Q2 bins by an iterative method with the POLRAD program [54]. Indeed the latter
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contribution depends also on the knowledge of the asymmetry. It is re-evaluated until Eq. (3.17)
converges (where A(k) is the corrected asymmetry after the kth step).

A(k) −A(k−1) =
∆σotherµp (A(k−1))

σ1γ
µp

→
converge

ARC (3.17)

Finally,
Aµp1γ = Ameas1

ρ
−ARC (3.18)

Figure 3.10 shows the size of the radiative corrections to subtract from A1 as well as the ratio
to the statistical uncertainty for beam energies at 160 GeV and 200 GeV. As expected the
corrections are small (<0.03) but not negligible compared to the accuracy of the measurements
where it contributes up to about 1σ at moderate x.
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Figure 3.10: (a): Radiative corrections ARC to subtract from A1 for 200 GeV and 160 GeV data as a
function of x. (b): Ratio as a function of x of the radiative corrections ARC to the statistical uncertainty
on A1.

3.5.4 14N polarisation correction

The measurements are done using an ammonia target (14NH3), which implies a little contam-
ination of the asymmetry of the proton Ap1 due to the presence of nitrogen Eq. (3.19), where
NX , σX and PX are the number density, the unpolarised cross-section and the polarisation of
the X element respectively.

Ameas1 = Ap1 + N14N
NH

P14N
PH

σ14N
σH

A
14N (3.19)

In the shell model, the nitrogen can be modeled as a carbon spinless core with a proton and a
neutron [40] so that the nitrogen contribution can be rewritten as: A14N σ14N = β14N g14N (Apσp+
Anσn), where the terms β14N and g14N correct for the nuclear effects and the EMC effect respec-
tively. The proton and the neutron contributions can also be expressed in terms of deuteron
asymmetry according to the relation : Ad1 σd = ωD (Ap1σp + An1σn), where ωD corrects for the
D-state of the deuteron. Reshuffling the equations, one ends with a correction to subtract from
the measured asymmetry in Eq. (3.20). The first factor accounts for the ratio of the number
of nuclei of 14N to that of H, the second one for the fact that the nucleon spin is anti-aligned
to the 14N one third of the time and the last factor stands for the relative polarisation of the
14N with respect to the protons [55, 28].

∆Ap1 = (1
3) · (−1

3) · (1
6) · σd

σp
Ad1 (3.20)
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A fit to the COMPASS deuteron data with a power-law function has been performed to obtain
a parametrisation of Ad1 in order to evaluate ∆Ap1 in Eq. (3.20). The magnitude of the correc-
tion, which increases the asymmetry, is plotted in Fig. 3.11. Although the correction for the
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Figure 3.11: (a): 14N correction to be subtracted from Ap1 as a function of x. (b): Ratio of the 14N
correction to the statistical errors of Ap1.

polarisation of the 14N nitrogen is found to be small in absolute value, it still represents 20%
of the statistical uncertainty at high x and is not negligible.

3.6 Systematic studies:
Search for biases and false asymmetries

As the physical asymmetry is heavily diluted (fDPbPt amounts typically to 6%), a good knowl-
edge of the various sources of systematics is needed. Several tests, using either Monte-Carlo
data or real data, have been carried out in order to quantify possible false asymmetries. None
of them reveal the presence of a false asymmetry larger than the statistical accuracy. A partial
review of the performed tests is presented.

3.6.1 Estimates based on a Monte-Carlo simulation

The Monte-Carlo simulation comprises a complete description of the apparatus and the mod-
elisation of the physical process of interest, DIS.
The different steps of the Monte-Carlo chain are:

• The generation of Deep Inelastic Scattering events based on LEPTO generator [56].

• The description of the apparatus effected thought COMGeant, a COMPASS derivative
of GEANT toolkit [57].

• The reconstruction of the events realised by CORAL, the COMPASS software of recon-
struction [32].

Smearing in x

The finite resolution of the spectrometer on the momentum reconstruction of the incident and
scattered muons introduces an uncertainty on Q2 and on x. Since the Q2 dependence of the
asymmetry is rather weak, the smearing in Q2 is expected to produce negligible effects and is
omitted from the description of the method of propagation given below. As the x distribution
shows two slopes (Fig. 3.7), one in the low x-region and one in the large x-region, the smearing
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in x leads to a bin migration of the asymmetry towards low x in the low x region and towards
high x in the high x region. Since the asymmetry is rather constant at low x, the smearing
effect is not expected to be important. In contrast, at high x a dilution of the asymmetry is
expected.
To quantify the effect, for each reconstructed event the asymmetry is always computed with
the generated kinematics and fills a bin in x in two histograms. One with the generated
kinematics and the second with the reconstructed kinematics. The average value over all
events of the asymmetry is then computed in each bin of x. Figures 3.12 and 3.13 show the
comparison between the asymmetry without smearing and the asymmetry obtained by the
method described above representing a smearing of about 5% in x and Q2. The two curves
are not distinguishable and the smearing in x and Q2, which at most in the last bin represent
1.5% of A1, can be neglected.
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Figure 3.12: Effect of a smearing in x, Q2. The asymmetry without smearing is represented in red, the
one with the effect of smearing in blue. The inset is a zoom of the low x region (MC study).
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Solenoid field

The fringe field of the solenoid in which the target is embedded extends over the closest detectors
and affects their performance. Its effect can create a difference of acceptance between the two
field orientations. In the past, the 2.5 T solenoid field used to polarise the target was reduced
to a holding field of 1 T during the data taking to diminish this risk. However, to reduce
the drawback of target polarisation build-up, in 2011 the data were taken with a 2.5 T field
for the first time. The Monte-Carlo simulation is used to compare the kinematic distributions
obtained using a 2.5 T field and a 1 T field. The impact on the asymmetries was also studied.
In Fig. 3.14 is shown Ap1 computed from Monte-Carlo data combining events produced for the
two directions of the solenoid field as it is the case for the real data. Since the event generator
is unpolarised, a null asymmetry is expected. The distribution is compatible with zero with a
χ2 probability of 95%. The good compatibility with zero within the statistical fluctuation does
not reveal the presence of solenoid field effects.

A
p 1

Figure 3.14: Asymmetry computed from unpolarised MC data as a function of x (MC study).

Trigger bias

Part of the events used to compute the inclusive asymmetry are recorded using a semi-inclusive
trigger. This fact introduces a bias in the inclusive asymmetry extraction depending on the
efficiency of the calorimeters in detecting hadrons according to their charge. Higher efficiency
of detecting charged hadrons causes a raise of scattering off u quarks (which are expected to
be positively polarised) compared to d quarks (negatively polarised). This results in a larger
asymmetry with an effect which is emphasised in the large x region (low values of W ) where
the calorimetric condition of the trigger may most likely be fulfilled by the leading hadron. A
Monte-Carlo simulation with POLDIS event generator was used to quantify the effect. SMC
showed (Fig. 3.15) that the difference of the asymmetry computed from inclusive events Ai1, and
“semi-inclusive” events Ah1 was negligible compared to the statistical precision of the data [58].
The same conclusion based on their results can be preliminary drawn for this analysis. The
same method based on Monte-Carlo study is being investigated to confirm the SMC observation
in the COMPASS trigger conditions.

3.6.2 Estimates based on real data

Wrong spin configuration association

As it was presented in sections 3.1.3 and 3.5.1, the data are grouped into small samples sep-
arated in time by a solenoid field rotation (Fig. 3.16) to cancel out the false asymmetry from
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Figure 3.15: Difference of the asymmetry computed for the inclusive DIS events and for the semi-
inclusive DIS events. The latter is a subsample of the former that at least contains a hadron surviving
cuts on the hadron fractional energy (z) and on the hadron momentum. Results are shown for two sets
of cuts (MC study).

the apparatus. A way to estimate the contribution of this false asymmetry is to combine data
separated by the two solenoid field rotations. The physical asymmetry is expected to be null
and any deviation from zero is due to acceptance differences. About 100 of groups of data were
created. For each group, the false asymmetry Afakei (x) and the χ2

1 = (Afakei /σi)2 for each bin
in x are calculated. The distribution of χ2

1 values for each x-bin is shown in Fig. 3.17. If no false
asymmetry is present, the distributions follow the χ2

1 probability density function. However, in
case of a false asymmetry each χ2

1 follows a non-central chi-squared distribution χ2
1,µ. As each

group has different statistics, each Afakei (x) follows a different χ2
1,µ-distribution. Nevertheless,

assuming that the false asymmetry is the same for all groups and that each σi is perfectly
known, the sum of the χ2

1,µ-distributions can be fitted with only one parameter µ defining the
amplitude of the false asymmetry. The result of the fit to each x-bin is shown as a blue line in
Fig. 3.17. The value of µ and its error are given in the top part of each pad. Most of the values
are fully compatible with a null false asymmetry but for two x-bins the compatibility with zero
is of about 2.6 σµ. As the x-bins are correlated, in case of a false asymmetry coming from the
apparatus, several consecutive x-bin should be affected. No trend is observed in any x-bin and
the effect on the two tendentious x-bins is isolated suggesting a statistical fluctuation. The
fits were also performed with µ set to zero in order to see the compatibility with a null false
asymmetry hypothesis and for all x-bins the probability of χ2 was found to be at least above
7%.

Figure 3.16: Illustration of the so called fake configuration (wrong association of spin states). Each
rectangle represent the spin state of a two cell target at a given time. Time goes from left to right.
Going from a row to another corresponds to a solenoid field rotation (flip of the spin states). The blue
ellipses show how the data are combined to compute asymmetry in this fake configuration.
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Figure 3.17: (A1/σ)2 distributions for asymmetries computed with the wrong spin configuration asso-
ciations. χ2

1,µ distributions are fitted to the data (blue lines) to estimate the value of µ (given in each
pad).

Target polarisation homogeneity

In order to check the homogeneity of the target polarisation, two false asymmetries are com-
puted by using events from the cells with the same spin state. In other words, the asymmetry
between events from the upstream and the downstream cells is compared to the zero expected
value. The same is done using events from the two halves of the central cell. Any deviation
from zero would reveal a problem with the target polarisation or acceptance issues after a
solenoid field rotation. To reduce the effect of differences of acceptance, the setup of three cells
is artificially rebuilt: the central cell is divided into 3 parts, the central part being twice as
long as the extreme parts. The first and the last parts represent a fake upstream cell and a
fake downstream cell while the part in the middle represents the fake central cell. A similar
procedure is applied to the upstream and downstream cells. They are divided into two and the
first part of the upstream cell stands for the fake upstream cell, the last part of the downstream
cell for the fake downstream cell and the last part of the upstream cell is merged with the first
part of the downstream cell to form the fake central cell. The results of these false asymmetries
are shown in Fig. 3.18, they are consistent with zero with a χ2 probability of 19% and 82%
for the upstream-downstream and central-central tests respectively and no inhomogeneity of
polarisation is found within the statistical fluctuations.

Anisotropy of the spectrometer

The aim of this study is to verify the homogeneity of the efficiency of the spectrometer, the
alignment of the detectors and thus possible changes in acceptance. Depending on the direction
of the scattered muon, the data are separated in two samples. In a first test, the two samples
consist of the data where the scattered muons go in the upper or in the lower part of the
spectrometer. In a second test, the samples are made up of data where the scattered muons
go to the left or to the right part of the spectrometer. From these samples and unlike in the
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Figure 3.18: Upstream-downstream (a) and central-central (b) false asymmetries.

previous tests, physical asymmetries are computed. Therefore, the relevant quantities are the
differences between the asymmetries computed for the top and bottom samples, and between
the ones computed for the left and right samples. Figures 3.19a and 3.19b show the result for
the two cases. The χ2 probability for a zero false asymmetry is 46% (10%) for the top-bottom
(left-right) asymmetry. The good compatibility with zero within the statistical fluctuation does
not reveal the presence of a false asymmetry.
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Figure 3.19: Difference of asymmetries top-bottom (a) and left-right (b) compared to zero.

Correlation between acceptances and solenoid field

As mentioned in section 3.5.1, to cancel out the apparatus false asymmetry, a solenoid field
rotation is performed once a day. This rotation introduces a correlation between the direction
of the solenoid field and the acceptance. To suppress this correlation, at least once a year
the target is completely depolarised and polarised again with different microwave frequencies
(section 2.2) for the different cells, in order to obtain an opposite spin state for a same direction
of the solenoid field. To estimate the size of the possible false asymmetry remaining after this
procedure, the physical asymmetry for each microwave setting (denoted A+ and A− respectively
in the following) is computed. Half the difference of the two represents the false asymmetry
due to the correlation between the acceptance and the direction of the solenoid field. This
residual false asymmetry is the fraction of the false asymmetry which is not cancelled due to
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unbalanced statistics in the two microwave settings Eq. (3.21).

Afalseres = (δA+)2 − (δA−)2

(δA+)2 + (δA−)2 ·
A+ −A−

2 (3.21)

Table 3.4 shows the group of the 2011 periods with the two microwave settings. The result of
the A+ and A− measurements for the inclusive asymmetry is shown in Fig. 3.20. The difference
between the two microwave settings is already compatible with zero with a χ2 probability of
42%. The false asymmetry due to the correlation between the solenoid field and the acceptance
is then negligible.

+ −

W25 W27 W30 W31 W32 W33 (W34) W36 W38 W39 W41 W43

Table 3.4: Sharing of data between the two microwave settings.
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Figure 3.20: Comparison of Ap1 for both microwave settings (red and blue). The bottom part of the
figure displays the difference between the two settings.

Compatibility in time

Finally, the self-consistency of the data is studied. The physical asymmetry is computed for
each group of data and noted Ai for the group number i. The distribution of these asymmetries
recentred by the sample average and normalised by the statistical uncertainty must follow a
normal distribution.

∆r = Ai(x)−A(x)√
σ2
i − σ2

A

 N (0,1) (3.22)
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In case of instabilities of the spectrometer (acceptance changes, efficiency drop, misalignment,
etc), a broadening of the distribution would appear (due to underestimated uncertainties). The
distributions associated to Eq. (3.22) is shown in Fig. 3.21 for each x-bin. Each distribution
contains 78 entries and is fitted with a Gaussian distribution using the maximum likelihood es-
timator. All mean values and widths are compatible with zero and one, respectively, suggesting
no systematic effects.
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Figure 3.21: Distributions of the normalised residuals ∆r (Eq. (3.22)). Each pad corresponds to an
x-bin. Each entry in a histogram corresponds to a sample of data of a few days before and after a field
rotation.

Further checks

More checks, summarised below, were performed to evaluate the reliability of the data. An
asymmetry has been computed with the events recorded during the night and those taken
during the day. Temperature variations between day and night results in changes of thermal
expansions and noise level in the detectors, which could have an effect on the asymmetry. The
two asymmetries were found fully compatible with a χ2 probability of 60%.

The asymmetry was also computed for each single trigger in order to check the stability of
the detectors covering different domains of the phase-space. They were found fully compatible
in the region of overlapping.

Finally, an asymmetry for each direction of the solenoid field has been evaluated. Although
the acceptance difference between the target cells is cancelled out by the microwave reversal,
the idea was to emphasise the correlation between the acceptance and the direction of the
solenoid field. Here again the two asymmetries were found compatible with zero with a χ2

probability of 46%.
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3.6.3 External contributions

In addition to the apparatus uncertainties, the measurement of the asymmetry is subject to ex-
ternal contributions, which introduce additional uncertainties. Among these additional inputs,
we report normalisation uncertainties such as the polarisation of the beam and of the target,
the dilution factor of the target and the depolarisation factor. Moreover, uncertainties are
assigned to the biases introduced by the polarised radiative correction as well as by neglecting
the A2 asymmetry contribution.

Polarisation uncertainties

As mentioned in section 2.1, the beam polarisation is determined by a Monte-Carlo simulation
describing the beam line. The relative uncertainties on the beam polarisation estimated by
MC have been evaluated to 4% [59] when it was possible to compare the simulation to the
measurement via a polarimeter. Since that time, the polarimeter has been removed and the
beam line upgraded. A conservative value of 5% is taken for the uncertainty on the beam
polarisation.
The uncertainties on the target polarisation [60] comprise the statistical uncertainties in the
measurement of the polarisation as well as the systematics coming from the measurement of
the temperature equilibrium and the measurements from the NMR coils. In total a relative
uncertainty of 3.5% is estimated.

Uncertainties on the dilution and depolarisation factors

The uncertainty on the dilution factor, f , originates from the uncertainties on the target
material [61] and on the total cross-sections. The contribution coming from the depolarisation
factor, D, is mainly due to the uncertainty on R, the ratio of the longitudinal to transverse
polarised photon absorption cross section. R is taken from a parametrisation based on the E143
fit to world data [51]. Three sources of uncertainties are taken into account: the statistical
errors, the model dependence and the radiative corrections. In total, the relative uncertainty
on the depolarisation factor is between 2 and 3 % depending on the kinematics.

Bias uncertainties

The contribution of the transverse asymmetry ηA2 has been neglected from the extraction of
A1 and an uncertainty taking into account this approximation is assigned to the systematics.
According to the measurement of [4], a constant value of 0.05 was taken as an upper limit of Ap2
for all x < 0.4 and 0.1 otherwise. This approximation results in a small uncertainty reaching
at most 10% of the statistical uncertainty.
The uncertainties arising from the additive spin dependent radiative corrections ARC come
mainly from the input parametrisation of Ap1 implemented in the POLRAD program. The
systematics assigned to ARC comes from the variations of the corrections when the input
parametrisation is varied inside its uncertainties. It represents at most 10% of the statistical
uncertainties. Finally, the systematics coming from the estimation of the correction of the 14N
contribution is estimated by the propagation of the uncertainties on the fit of Ad1 data. It
corresponds to an uncertainty which is always below 3% of the statistical uncertainties and can
easily be neglected when compared to the other sources of systematics.
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3.6.4 Summary and calculation of the systematic error

The goal of the present analysis is to extract the one-photon-exchange asymmetry A1γ
1 :

A1γ
1 = 1

fDPbPt
Araw −

(
ηA2 +ARC +Afalse

)
. (3.23)

This formula1 uses f , D, Pb, Pt and ARC1 which are only known with limited precision. In
addition A2 [62] is neglected and the uncertainties on the false asymmetry Afalse must be
estimated. All these factors contribute to the systematic error σsyst. Let us divide σsyst into
two classes: multiplicative σmult and additive σadd:

σmult = A1

√(
σPb
Pb

)2
+
(
σPt
Pt

)2
+
(
σf
f

)2
+
(
σD(R)
D(R)

)2
(3.24)

σadd =
√

(σηA2)2 + (σARC )2 +
(
σAfalse

)2
(3.25)

At the end these two terms are added in quadratures:

σsyst =
√

(σmult)2 + (σadd)2 (3.26)

To avoid a misunderstanding, we remind that the coefficient ρ (ρ = νσ1γ
p /σ

tot
p ) was included

into the dilution factor f , changing the meaning of A1 by transforming it into the asymmetry
for the one-photon-exchange2 A1γ

1 .
From the studies presented in section 3.6, no significant false asymmetries were found. The

uncertainty on its presence is evaluated as follows.
The total uncertainties are defined as on the one hand:

(σtot)2 = (σsyst∆r )2 + (σstat∆r )2 (3.27)

and evaluated on the other hand as:

(σtot)2 = (max{σ∆r,1}+ δσ∆r)2 (3.28)

where σ∆r is the width of the normalised residual shown in Fig. 3.21 and δσ∆r its uncertainty.
The equations 3.27 and 3.28 can then be reshuffled to obtain an upper limit for σAfalse/σstat,
which is given by σsyst∆r for every x-bin [20]:

σsyst∆r =
√

(max{1,σ∆r}+ δσ∆r)2 − 1. (3.29)

The different contributions to σsyst are summarised in Table 3.5. The fraction of the
total systematic uncertainty from each contribution is shown as a function of x in Fig. 3.22.
Although, all the tests were compatible with the absence of false asymmetry hypothesis, the
dominant fraction is the one from the false asymmetry uncertainty for mostly the whole range
in x. The sub-dominant contribution is from the beam polarisation uncertainty which is as
significant as the dominant uncertainty in the middle x-range around 0.1. The values of each
contribution for each bin in x are given in Table 3.6.

1Araw is the asymmetry of counts, i.e. N↑↓−N↑↑
N↑↓+N↑↑ .

2For simplicity, the 1γ index is omitted in the following.
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Figure 3.22: Fraction of the contribution of the different sources of systematics.

Table 3.5: Summary for the systematic error of A1.

Beam polarisation σPb/Pb 5%

Multiplicative Target polarisation σPt/Pt 3.5%

variables Depolarisation factor σD(R)/D(R) 2 – 3 %

error, σmult Dilution factor σf/f 2 %

Total σmult ' 0.07Ap1

Additive Transverse asymmetry ση·A2 10−3 − 10−2

variables Rad. corrections σARC 0.1 ·Max( |ARC,incl.| , |ARC,semi−incl.| ) = 10−5 − 10−3

error, σadd False asymmetry σAfalse < (0.36-0.84) · σstat
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Table 3.6: Contribution to the systematic error of A1 for the 17 x-bins.

〈x〉 σmult σadd σsyst

σPb σPt σf σD σARC σAfalse σηA2

0.0036 0.00126 0.00088 0.00051 0.00057 0.00046 0.00699 0.00014 0.00722
0.0045 0.00132 0.00092 0.00053 0.00074 0.00040 0.00516 0.00021 0.00550
0.0055 0.00125 0.00088 0.00050 0.00076 0.00039 0.00487 0.00027 0.00520
0.0070 0.00150 0.00105 0.00060 0.00097 0.00040 0.00389 0.00034 0.00447
0.0090 0.00130 0.00091 0.00052 0.00087 0.00042 0.00395 0.00043 0.00442
0.0119 0.00257 0.00180 0.00103 0.00172 0.00047 0.00377 0.00054 0.00535
0.0167 0.00415 0.00291 0.00166 0.00273 0.00055 0.00389 0.00068 0.00719
0.0244 0.00466 0.00326 0.00186 0.00298 0.00069 0.00443 0.00087 0.00810
0.0346 0.00523 0.00366 0.00209 0.00323 0.00087 0.00885 0.00106 0.01166
0.0488 0.00693 0.00485 0.00277 0.00417 0.00109 0.00597 0.00129 0.01162
0.0768 0.00970 0.00679 0.00388 0.00579 0.00144 0.01065 0.00167 0.01752
0.1217 0.01476 0.01033 0.00590 0.00617 0.00178 0.00913 0.00219 0.02211
0.1725 0.01753 0.01227 0.00701 0.00733 0.00192 0.01424 0.00270 0.02782
0.2228 0.01817 0.01272 0.00727 0.00760 0.00187 0.02330 0.00316 0.03405
0.2916 0.02102 0.01471 0.00841 0.00882 0.00159 0.01525 0.00372 0.03249
0.4073 0.02399 0.01679 0.00960 0.01016 0.00063 0.04618 0.00464 0.05664
0.5702 0.03564 0.02495 0.01426 0.01524 0.00142 0.08605 0.01174 0.09935
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3.7 Results on the longitudinal spin structure of the proton

3.7.1 Double spin asymmetry Ap
1

The extracted double longitudinal spin asymmetry for a 200 GeV muon beam is presented in
Fig. 3.23. The results are shown as a function of x at the measured Q2. A large positive
asymmetry is observed at large x and it dwindles along with x. To picture this behaviour, let
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Figure 3.23: The Ap1 asymmetry as a function of x obtained from the COMPASS data taken at 200
GeV. The band at the bottom shows the systematic uncertainty. The inset shows a zoom of the low x
region.

us recall the definition of A1 = (σ1/2 − σ3/2)/(σ1/2 + σ3/2) and consider only quarks.

• At large x ∼ 1: the struck quark carries all the momentum of the proton. As the virtual
photon interacts only with quarks with an opposite polarisation, σ3/2 cancels out and
A1(x→ 1) is expected to go towards 1.

• For x ∼ 1/3: the virtual photon interacts with the valence quarks. There are twice more
quarks with a polarisation anti-aligned to the polarisation of the virtual photon and thus
σ1/2 is twice larger than σ3/2 so that A1(x ∼ 1/3) is expected to be around 1/3.

• At small x � 1: the virtual photon probes sea quarks. All quark anti-quark pairs are
produced with opposite polarisation, hence one can expect the relative difference between
the two cross-sections, σ1/2 and σ3/2 to decrease.

However, this is only an intuitive representation and measurements are necessary to access and
to quantify the parton polarisation especially in the low x region.

The measurement at 200 GeV is compared to the previous measurements covering the same
kinematic domain: one extracted by COMPASS with a polarised muon beam of 160 GeV and
one by SMC using a polarised muon beam of 190 GeV in Fig. 3.24. The statistics of the
present results at 200 GeV is similar to the one from the previous 160 GeV data. They bring
together a factor of about 3 in statistical precision compared to SMC for a comparable beam
time. The 200 GeV data have about a factor of 2 larger systematics uncertainties compared to
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SMC data. This is mainly due to the beam polarisation and the false asymmetry estimation
uncertainties. The beam polarisation relies on a Monte-Carlo simulation, while it was also
measured in SMC. The method used by SMC to evaluate the possible false asymmetries is
mainly based on MC simulations to study acceptance variations [63]. With this method, SMC
reported an astonishing precision σAfalse ≤ 0.05σstat, while for COMPASS a conservative value
is quoted σAfalse ≤ (0.36-0.84)σstat.
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Figure 3.24: Same as 3.23 for COMPASS 200 GeV data (red), 160 GeV data (blue) and SMC 190 GeV
data (green).

The results are compared to the world data in Fig. 3.25, where the crucial supply of COM-
PASS data is visible in the low x region, which is only covered by CERN experiments. A
relatively good agreement is found between all experiments although they are measured at
relatively different Q2. The asymmetry is found to be very weakly dependent on the scale in
the accessed Q2 range. This is illustrated in Fig. 3.26 where each COMPASS x-bin is split into
three Q2 bins. The asymmetry is represented as a function of Q2. The COMPASS data are
fitted to a constant in each bin of x and no significant deviations were observed. This fact was
already observed by SMC [58].
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3.7.2 The proton spin dependent structure function gp1

When neglecting the A2 spin asymmetry, the proton spin dependent structure function gp1 is
related to A1 the spin asymmetry according to Eq. (3.30):

gp1(x,Q2) = F p1 (x,Q2) ·Ap1(x,Q2) (3.30)

where F p1 is the spin independent structure function of the proton. It is commonly evaluated
through the relation given in Eq. (3.31) which relates the second spin independent structure
function of the proton F p2 and the ratio of longitudinal to transverse virtual photon absorption
cross-section R.

F p1 (x,Q2) = F p2 (x,Q2)
2 · x · (1 +R(x,Q2)) (3.31)

F p2 is taken from [58] while R is the one used in the depolarisation factor and taken from [51].
Both structure functions are evaluated at the average value of x and Q2 of the data within each
bin. The systematic uncertainties on A1 are propagated with care to gp1 to take into account
the correlation between R and D and with an additional contribution for the uncertainties
on the F p2 parametrisation. The resulting spin-dependent structure function of the proton is
shown in Fig. 3.27. The statistical improvement of the 2011 data taking is clearly visible in
the low x region (x < 2 · 10−2) which is only significantly covered by COMPASS and SMC
experiments. In Fig. 3.28, x · gp1 is plotted to better apprehend the value of the integral of gp1
which is directly related to the quark helicity distributions at LO.
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Figure 3.27: The spin-dependent structure function of the proton gp1 as a function of x at the measured
Q2 > 1(GeV/c)2 for the 200 GeV COMPASS data (red) and compared to the 160 GeV COMPASS data
(blue) and to the 190 GeV SMC data (green).
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Chapter 4

NLO QCD analysis: Extraction of
polarised PDFs and Bjorken sum
rule

In this chapter, the new gp1 data presented in section 3.7 are fitted together with world data
on gp1 , gd1 and gn1 in order to extract the polarised parton distribution functions (PDFs). The
aim is to assess the precision with which inclusive data are able to constrain ∆Σ and ∆G. The
results of the fits are also used to evolve the COMPASS data alone to a common Q2 for the
purpose of updating the evaluation of the deuteron and proton first moment Γp1 and Γd1, as well
as the verification of the Bjorken sum rule.

The QCD fit is performed at NLO. It involves explicitly ∆g in the expression of g1. However,
as only inclusive DIS data and the NLO COMPASS open charm muoproduction extraction are
included in the fit, it is not possible to separate quarks from antiquarks1. The first moment
of the quarks per flavour, ∆(u + ū), ∆(d + d̄) and ∆(s + s̄) is obtained using also external
constraints coming from axial-vector weak couplings measured in baryon β-decay with the
assumption of SU(3)f flavour symmetry.

The chapter is organised as follows. Firstly, the fitting method is described with a detailed
analysis of the uncertainties. The results for the polarised PDFs are compared to other world
extractions which rely on other data and assumptions. The first moment of the proton and
the deuteron spin structure functions based on the COMPASS data alone is also evaluated.
Finally, the experimental verification of the fundamental Bjorken sum rule is presented.

4.1 NLO QCD fits

The extraction of the polarised PDFs is based on a computer program fitting gp1 , gd1 , gn1 and
the NLO open charm muon production data. It was developed by SMC (program #2 from
[64]). Modifications were added to take into account the normalisation uncertainties of the data
set and the external inputs (unpolarised PDFs, αs evolution code and axial-vector couplings)
were updated or modified according to the current knowledge. The fit is performed in the MS
factorisation and renormalisation scheme. Unlike most of the fitting programs on the market
which solve the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [65, 66, 67, 68]
in the Mellin space, this algorithm computes the Q2 evolution on a (x, Q2) grid2 which covers
the kinematic domain of the experimental data.

1For instance, semi-inclusive asymmetries Aπ
±

1,p/d and AK
±

1,p/d as they are sensitive to quark flavour can be
used to separate quarks from antiquarks.

2The grid spans values of Q2 from 1 to 100 (GeV/c)2 and values of x between 0.001 and 1.
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4.1.1 Method

Data used in the fit

All the data sets considered in the present analysis are given in Table 4.1. They include results
expressed as either A1, g1/F1 or g1. In the case of A1 data, the inputs are divided by the
kinematic factor

√
1 + γ2 =

√
1 + 4M2x2/Q2 to obtain g1/F1. Then, all g1/F1 values (either

original or obtained from A1) are converted into g1 by using the same F1 parametrisation (F1
being calculated from F2 [58] and R [69]). By doing so, instead of using directly the values of
g1, possible inconsistencies between experiments due to the use of different parametrisations
of F1 are minimised. In appendix A, the difference induced by using either g1 or converting
g1/F1 to g1 is illustrated for CLAS data.
The data binned in both x and Q2 are preferred over those integrated over Q2 when available,
to cover the widest kinematic domain and to be as sensitive as possible to the Q2 scaling
violation and thus to the gluon polarisation. Overall, 682 points are available covering the wide
kinematic domain shown in Fig. 4.1, two orders of magnitude in Q2 and two in x. However, only
679 points are retained in this analysis with three CLAS proton data points being discarded
because of their large contribution to the χ2 (about 40). The data included in the fit are listed
in Table 4.1.
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Figure 4.1: The x and Q2 kinematic domain covered by g1 data used in the analysis. Left: proton;
Centre: neutron; Right: deuteron.

Fitting function

At NLO, the expression for g1 reads:

g
p(n)
1 = 1

9

(
CS ⊗∆qS + CNS ⊗

[
±3

4∆q3 + 1
4∆q8

]
+ Cg ⊗∆g

)
(4.1)

where the flavour singlet and non singlet combinations of polarised PDFs in SU(3)f are used
(singlet ∆qS = ∆u + ∆d + ∆s, triplet ∆q3 = ∆u − ∆d and octet ∆q8 = ∆u + ∆d − 2∆s,
respectively) and ∆g is the gluon spin distribution. All quantities depend on x and Q2. The
Wilson coefficients CS , CNS and Cg are computed at NLO [70, 71].

Once the distributions are known at a given scaleQ2
0, the spin-dependent structure functions

can be computed at any Q2 scale by using the DGLAP equations:

d
d lnQ2 ∆qNS = αs(Q2)

2π ∆Pqq ⊗ ∆qNS (4.2)

d
d lnQ2

(
∆qS
∆g

)
= αs(Q2)

2π

(
∆Pqq 2nf∆Pqg
∆Pgq ∆Pgg

)
⊗
(

∆qS
∆g

)
(4.3)
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where αs(Q2) is the strong coupling, nf is the number of active quark flavours and ∆Pij are
the splitting functions computed up to NLO [72, 73]. The following functional forms are chosen
at a reference Q2

0 scale (see section 4.1.2 for more detail):

∆qS(x,Q2
0) = ηS

xαS (1− x)βS (1 + γSx+ ρS
√
x)∫ 1

0 x
αS (1− x)βS (1 + γSx+ ρS

√
x)dx

(4.4)

∆g(x,Q2
0) = ηg

xαg(1− x)βg(1 + γgx+ ρg
√
x)∫ 1

0 x
αg(1− x)βg(1 + γgx+ ρg

√
x)dx

(4.5)

∆q3(x,Q2
0) = η3

xα3(1− x)β3∫ 1
0 x

α3(1− x)β3dx
(4.6)

∆q8(x,Q2
0) = η8

xα8(1− x)β8∫ 1
0 x

α8(1− x)β8dx
(4.7)

In total, at most 14 parameters are used. Proton and neutron (from deuteron or 3He) target
measurements allow to disentangle the isospin singlet, triplet and gluon (from scaling violation)
distributions but the octet distribution is under-constrained. Therefore, assuming SU(3)f
symmetry, the first moment of the octet distribution, η8, is fixed to 3F −D, the value of the
axial-vector coupling of hyperon obtained from β-decay1[74]. The shape of the distribution is
expected to be determined from the different scale evolution of the non-singlet distributions.

The Q2 evolution of the four distributions is performed to reach the scale of each data point
and the distributions are combined to compute gfit1 . The solution for ∆qS , ∆q3, ∆q8 and ∆g
distributions is obtained by minimising the χ2 function given in Eq. (4.8). More details on the
fitting program can be found in [64, 75].

χ2 function

The χ2 function consists in three terms.

χ2 =
Nexp∑
n=1


Ndata
n∑
i=1

gfit1 (xi,Q2
i )−Nn gdata1,i
Nn σi

2

︸ ︷︷ ︸
Statistics

+
(1−Nn

δNn

)2

︸ ︷︷ ︸
Normalisations

+ χ2
positivity (4.8)

The main contribution comes from the difference between the model and the data within the
statistical precision. The second contribution is directly related to the normalisation factors of
the data sets, Nn, which are specific to each experiment and account for global systematic errors
within a given measurement. They appear as free parameters in the first term of the χ2 func-
tion to rescale the measurements and the uncertainties, and are constrained in the second term
where large fluctuations with respect to δNn are penalised. The uncertainties on the normali-
sation factors δNn are taken from the publications when they are available, or computed from
the uncertainties on the beam and target polarisations. The normalisation factors are deter-
mined simultaneously with the parameters of the functional forms. The remaining systematic
uncertainties locally correlated, mainly evaluated from the dilution factor, the depolarisation
factor and the false asymmetry are left out of the χ2 function. For a correct treatment of these
uncertainties [11, 76] the correlations between the points should be known which is not the
case in general. Finally, to constrain the unmeasured large x region, a positivity condition is
applied to the strange and gluon polarisation distributions |∆(s + s̄)(x,Q2)| < s(x) + s̄(x,Q2)
and |∆g(x,Q2)| < g(x,Q2). This condition comes from a probabilistic interpretation of the

1The condition is also applied to the triplet distribution, η3 = F +D.
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parton densities at LO. Beyond LO, the positivity condition is strictly valid only for the cross-
section relation, however it has been shown [77] that NLO correction to LO positivity bound
are small and negligible for x & 0.01 compared to polarised PDF uncertainties. Thus, a last
term χ2

positivity, is added to the χ2 function to impose |∆(s + s̄)(x,Q2)| < s(x) + s̄(x,Q2) and
|∆g(x,Q2)| < g(x,Q2) for all x above 0.1. This condition is applied at the lowest considered
scale Q2 = 1 (GeV/c)2 in this analysis, since positivity once satisfied to a scale is conserved
with the evolution to higher scales [78]. The unpolarised NLO PDFs used for the positivity
constraints are taken from the MSTW collaboration [11].
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4.1.2 Uncertainties affecting the QCD fit

Several sources of uncertainties affecting the QCD fits are studied in this section. Some of them
are directly related to the precision of the considered experimental data but others originate
from prescriptions used in the choice of functional forms and reference scale, and from theoret-
ical “limitation” due to the unavailability higher order QCD corrections (renormalisation and
factorisation scale dependence) or to the neglect of higher twist contributions. In consequence,
except for the theoretical uncertainties, a study of the possible systematics that could arise in
the QCD fit are investigated.

Error propagation from experimental data points

Three approaches are available to propagate the statistical precision of the experimental mea-
surements to the fit results. They are the Lagrange multiplier, the Hessian matrix and the
Monte-Carlo sampling [11]. The latter method is used in the present analysis for its simplic-
ity in spanning the uncertainties bands to the various Q2 nodes of the grid and because its
limitations in exporting the uncertainties to any Q2 do not affect the primary goal of assess-
ing the precision with which polarised inclusive DIS data are able to constrain ∆Σ and ∆G.
The method starts by generating replicas of the original data set by repeatedly and randomly
varying the original data points according to a Gaussian distribution centred on their mean
and with a width equal to their uncertainty. The data replicas are then fitted to produce PDF
replicas. Finally, the envelope of the distributions (defined as their sample mean ± their RMS)
of these PDF replicas evolved at any given Q2, provides an estimate of the error bands associ-
ated to the uncertainty on the data. Note that these error bands are not necessarily centred
on the original PDFs. The uncertainty on any quantity derived from the PDFs, such as ∆Σ
and ∆G, can be similarly obtained. An illustration of the method based on 2,000 replicas is
given in Fig. 4.2 for ∆G.
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210Confidence interval at 68 %
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2 = 3 (GeV/c)2Q

Figure 4.2: Illustration of the randomisation procedure for the polarised gluon distribution. The density
of results of the fits to the replicas are shown in colour scale and the black lines indicate a 1 σ deviation.

Choice of the functional forms

For each distribution, a functional form is assumed at the reference scale Q2
0 = 1 (GeV/c)2.

The functional forms are composed of at least two factors (Eqs. (4.4) to (4.7)): a factor in xα
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to give the shape at low x and a factor in (1−x)β for the behaviour at large x. For the singlet
and gluon cases, a factor in (1+γx+ρ

√
x) is added to allow the distributions to have a node.

Finally, all the distributions are normalised in such a way that the η parameters represent
the value of their first moment. The parameters ηS and ηg are determined from the fit while
the parameters η3 and η8 are fixed to the values obtained from β-decay measurements (see
section 4.1.1). The parameter βg, which is not very sensitive to the present data, is fixed to
7.5. The relevance of the parameters γs, ρs, γg and ρg has been investigated by fixing all of
them to zero and releasing them separately to test all possible combinations.
The three following combinations give a similarly good χ2 and span all possibilities of gluon
polarisation. They are studied in detail:

ffN : γS = ρS = γg = ρg = 0 χ2/ndf = 692/652
None of the distributions are allowed to cross zero and the fit converges to a relatively
large and negative gluon polarisation: ηg = -0.67± 0.13 and ηS = 0.35 ± 0.01.

ffP : γs 6= 0 and ρS = γg = ρg = 0 χ2/ndf = 682/651
The singlet distribution can cross zero which reduces the value of ∆Σ and the fit con-
verges to a positive gluon polarisation: ηg = 0.27 ± 0.09 and ηS = 0.28 ± 0.02.

ff0 : γs 6= 0, γg 6= 0 and ρS = ρg = 0 χ2/ndf = 676/650
Both the singlet and the gluon distributions can have a node and the gluon polarisation
is found to be compatible with zero: ηg = -0.13 ± 0.16 and ηS = 0.30 ± 0.02

The first moments of the polarised singlet and gluon distributions (∆Σ and ∆G) at Q2 = 3
(GeV/c)2 are given in Table 4.2 for the three cases. The other combinations, when they
converge, give a similarly good χ2 and are shown together with the three cases described above
in Fig. 4.3. One can see that the solutions for ∆Σ are rather well constrained by the data and
lie between the results given by the cases ffN and ffP. The solutions for ∆G lie also between
ffN and ffP but the sensitivity of the data to ∆g is very poor and the range of possible values
is much wider. Only the three cases ffN, ffP and ff0 described above are kept in the rest of the
analysis.

Table 4.2: First moment of the distributions for the three functional forms enumerated in the text. The
results are given at Q2 = 3 (GeV/c)2.

First moment ffN ffP ff0
∆Σ 0.318 0.272 0.287
∆G -0.832 0.451 -0.092
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Figure 4.3: Results for ∆qS(x) (blue) and ∆g(x) (red) for the sixteen different functional form assump-
tions as a function of x with their first moment ∆Σ and ∆G, and the associated value of χ2. In the
first column, γS = ρS = 0. In the second column ρS is free, in the third one γS is free and in the last
one both γS and ρS are free, and similarly for the rows with γg and ρg. The same procedure is applied
on the rows for γg and ρg. In five cases, no satisfying minimum were found. The pads coloured in grey
correspond to the three functional forms enumerated in the text.

Choice of the value of βg

The βg parameter, when left free, is not well determined by the data and is kept constant in
the fit. Low values of βg are not favoured because of the positivity condition, while large values
would kill the gluon polarisation at high x. Therefore, the parameter is set to 7.5. A scan of βg
values between 6 and 16 was performed to cover the uncertainty range of the parameter when
it is released. The results for the three functional forms are shown in Fig. 4.4. As expected,
the first moment of the distributions only evolves weakly with the values of βg. The highest
sensitivity is for the ffN case on both ∆Σ and ∆G; the lowest one for the ffP case. The effect
is quantified in Table 4.3.

βg
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Figure 4.4: ∆Σ (left) and ∆G (right) for various choices of βg. Results are given at Q2 = 3 (GeV/c)2.
The vertical line corresponds to βg = 7.5, value used in the analysis.
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Table 4.3: Errors on ∆Σ and ∆G due to imposing a fixed value of βg (see text).

ffN ffP ff0
δ∆Σ 0.015 <0.0005 0.015
δ∆G 0.03 <0.0005 <0.0005

Choice of the reference scale

The functional forms were arbitrarily defined at the reference scale Q2
0 = 1 (GeV/c)2. In

Figs. 4.5 to 4.7, the results obtained for Q2
0 values varying between 1 in violet and 63 (GeV/c)2

in red are shown. Varying the reference Q2
0, is equivalent to changing the functional forms at

the reference scale. The χ2 values in all cases are found to be almost unchanged.

ffN : γS = ρS = γg = ρg = 0 (Figure 4.5)
For Q2

0 varying from 1 to 18 (GeV/c)2, ∆G reduces from -0.78 to -0.33. Although the
∆qS(x) distribution shows some sensitivity, the first moment, ∆Σ, sees a compensation
between a gain at large x and a loss at small x so that it varies around 0.31.
Above Q2

0 = 20 (GeV/c)2, ∆G becomes positive at the reference scale and the evolution
to lower scales creates a node in ∆g(x) distributions. At Q2 = 3 (GeV/c)2, ∆G is stable
around -0.03 and ∆Σ ∼ 0.33.

ffP : γS 6= 0 and ρS = γg = ρg = 0 (Figure 4.6)
For Q2

0 varying from 1 to Q2
0 = 63 (GeV/c)2, ∆G varies from 0.45 to 0.03. As in the

previous case, the effect on ∆Σ is small and the first moment of the singlet distribution
stays around 0.28.

ff0 : γS 6= 0, γg 6= 0 and ρS = ρg = 0 (Figure 4.7)
For Q2

0 varying between 1 and 63 (GeV/c)2, ∆G varies between -0.10 to 0.06. The node
of this distribution stays around x ∼ 0.1. The value of ∆Σ varies between 0.265 and 0.285.

Exploring the configuration space of the functional forms along this reference scale dimension
allows to fill the gaps between the three discrete solutions ffN, ffP and ff0. The variation of the
reference scale shows that ∆G at Q2 = 3 (GeV/c)2 can take almost any value within [-0.9;0.5]
with a slightly favoured region in [-0.1; 0.1]. The favoured region for ∆Σ is around 0.27 at
Q2 = 3 (GeV/c)2 but values within [0.265;0.33] can be obtained when varying the reference
scale.
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Figure 4.5: ∆qS(x) and ∆g(x) at 3 (GeV/c)2 for several Q2
ref when ∆qS(x) = ηSx

αS (1− x)βS/NS and
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ref varies from 1 (GeV/c)2 in violet to 63 (GeV/c)2 in red.
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Error propagation from unpolarised PDF set via positivity constraint

As the fits rely on the unpolarised PDFs through the condition of positivity, the sensitivity of
the results of the fits on the PDFs was studied. The MSTW collaboration gives 2n+ 1 sets of
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PDFs, where n = 20 is the number of parameters used in their fit. One corresponds to their
optimal solution and the other 2n = 40 correspond to the solutions with a given increase of χ2

when moving along an eigenvector in the parameter space. The 40 sets of PDFs describing a
confidence interval of 1 σ (probability of 68%) have been used and the resulting uncertainties
on the polarised distributions have been computed according to the formulae (7) and (8) given
in [89].
The results for the central value (only for completeness) and the uncertainties are given in
Table 4.4 for the three solutions of ∆G. The error bands associated to this study are shown in
black in Fig. 4.8. As expected, an effect can only be seen on ∆g and ∆(s + s̄) for which the
positivity constraints are applied. The size of the effect is found to be small compared to the
statistical error band for the fits with the ffP and ff0 assumptions and completely negligible for
the ffN hypothesis. To explain these facts, one has to remember that the βg parameter is fixed
and the positivity constraint plays only a tiny role in the determination of γs (for ∆G ∼ 0)
and of αg (for all cases) since these parameters have a very limited impact in the high x region.
For ∆(s+ s̄), since the β parameters of ∆qs and ∆q8 are free, an effect representing a fraction
of the statistical error band is visible.

Table 4.4: Errors on the first moment of the polarised parton distributions associated to the uncertainties
on the unpolarised PDFs s(x) and g(x). The values are given at Q2 = 3 (GeV/c)2. Values of first
moments are given again only for completeness.

ffN ffP ff0

∆G -0.832+0.0004
−0.0013 0.451+0.0142

−0.0193 -0.092+0.0279
−0.0245

∆Σ 0.318+0.0025
−0.0023 0.272+0.0007

−0.0006 0.287+0.0004
−0.0005

∆(u+ ū) 0.838+0.0008
−0.0008 0.823+0.0002

−0.0002 0.828+0.0001
−0.0002

∆(d+ d̄) -0.431+0.0008
−0.0008 -0.446+0.0003

−0.0002 -0.441+0.0001
−0.0002

∆(s+ s̄) -0.090+0.0008
−0.0008 -0.105+0.0002

−0.0002 -0.100+0.0001
−0.0002

Effect of the uncertainty on αs

The value of the strong coupling at the mass of the Z boson αs(Z) is taken from the MSTW
collaboration for consistency with the PDFs which were fitted simultaneously. The impact
of the uncertainty on αs has been evaluated. As the PDFs used to impose the positivity
constraints are correlated with the value of αs, the right sets of PDFs were chosen consistently
with the value used for αs. The error bands on the polarised distributions corresponding to
the variation of “αs+PDF” within the confidence interval at 68% confidence level are shown
in red in Fig. 4.8 and given in Table 4.5. They have been computed according to equations
(9) and (10) of [89]. The size of the error is of about half of the statistical uncertainty for all
distributions.
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Table 4.5: Errors on the first moment of the polarised parton distributions associated to the uncertainties
on “αs+PDFs”. The values are given at Q2 = 3 (GeV/c)2. Values of first moments are given again only
for completeness.

ffN ffP ff0

∆G -0.832+0.0155
−0.0157 0.451+0.0449

−0.0332 -0.092+0.0997
−0.0857

∆Σ 0.318+0.0054
−0.0054 0.272+0.0050

−0.0062 0.287+0.0076
−0.0088

∆(u+ ū) 0.838+0.0017
−0.0017 0.823+0.0016

−0.0019 0.828+0.0024
−0.0028

∆(d+ d̄) -0.431+0.0019
−0.0019 -0.446+0.0018

−0.0021 -0.441+0.0026
−0.0030

∆(s+ s̄) -0.090+0.0018
−0.0018 -0.105+0.0017

−0.0021 -0.100+0.0026
−0.0030
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Figure 4.8: Distributions of the polarised PDFs as a function of x in blue with the error bands propagated
from the uncertainties on the unpolarised PDFs in black and from “αs+PDFs” in red. Results are at 3
(GeV/c)2.

Normalisation uncertainties

The normalisation values obtained from the fits listed in Table 4.1 are compatible with 1.0
except for E155 (1.11) and CLAS (1.07) proton data. For E155, it was expected since the
authors suggested already a normalisation of 1.08±0.03±0.07. For CLAS proton data, the 6%
normalisation was found to be unexpectedly large given the uncertainty quoted (2%).

SU(3)f symmetry breaking effect on the non-singlet distribution normalisations

The fits were performed assuming SU(3)f symmetry to fix the first moments η3 and η8 to F+D
and 3F − D respectively (see section 4.1.2). In this section the constants F and D are used
only to initialise the η3 and η8 parameters which are released under constraints. Additional
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terms defined in Eq. (4.9) are added to the χ2 function (Eq. (4.8))

χ2
add. =

(
εSU(2)f
δεSU(2)f

)2

+
(
εSU(3)f
δεSU(3)f

)2

(4.9)

where:
εSU(2)f = η3 − (F +D)

F +D
(4.10)

and
εSU(3)f = η8 − (3F −D)

3F −D (4.11)

represent the relative deviations from SU(2)f and SU(3)f respectively. The relative uncertain-
ties on F +D and 3F −D are δεSU(2)f and δεSU(3)f . The results of the fits give εSU(2)f = 0.08%
and εSU(3)f = 0.08%. The values are similarly small and do not imply deviations from the
SU(2)f and SU(3)f symmetry. Relaxing SU(2)f and SU(3)f does not change the value of the
other parameters (α3, α8, αS , ...) by more than 0.1% in the most extreme case and the cor-
relation between the ε parameters and the others is smaller than 10%. For those reasons, the
possible effects of symmetry breaking are neglected.
However, it should be noted that the possible actual symmetry breaking may not be reflected
by the value of δεSU(2)f and δεSU(3)f [90, 76].

4.1.3 Results and conclusions from the QCD fits of world data

On the polarised parton distributions:

All the results of the fits presented in section 4.1.2 are summarised in three parametrisations
(Fig. 4.9) that represent the three possible hypotheses of gluon polarisation ( ffN: ∆G < 0,
ffP: ∆G > 0 and ff0: ∆G ∼ 0). The dark coloured bands represent the statistical uncertainty,
i.e. the results of the error propagation of the statistical uncertainty of the input data. They are
evaluated via the randomisation procedure. The lightest bands correspond to the combined
statistical and all systematics uncertainties discussed previously. The major contribution of
the errors on the fit results comes from the choice of the functional forms that cannot be
discriminated by the present data. This is mainly due to the weak sensitivity of the data to
∆g(x) because of the limited kinematic coverage in x and Q2 in current measurements.

The comparison of the resulting g1 parametrisations to the world data are shown in Fig. 4.10.
The ff0 functional forms defined at Q2

0 = 1 (GeV/c)2 were chosen for the central value of g1 as
they give one of the best χ2 if ever it can really be discriminated. The ffN and ffP functional
forms were used to create the uncertainty bands. As expected from the low values of χ2

r ∼ 1.05,
a good description of the world data is given by the fits.
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Figure 4.9: Results from the NLO QCD fits of g1 world data at Q2=3 (GeV/c)2. Top left: Quark singlet
distribution x∆qS(x). Top right : Gluon spin distribution x∆g(x). Bottom left to right: x(∆q+∆q̄)(x)
for u, d and s flavour. The three solutions (dashed, solid and dotted lines) correspond to the three
hypotheses of functional forms (ffP, ff0, ffN) (see text and appendix B for the value of the parameters).
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Figure 4.10: Results for the COMPASS NLO QCD fit to g1 world data, proton (left) and deuteron
(right). The curves are given vs. Q2 at several values of x and are compared to the data. The orange
band represents the envelope of the three parametrisations given in appendix B (Table B.1) including
statistical and systematic errors. The dotted lines corresponds to the ff0 functional form defined at
Q2
ref = 1 (GeV/c)2.

On the first moment of the polarised parton distributions:

The confidence domains for the parameters ηS and ηg that correspond to the first moments
∆Σ and ∆G at the input scale are shown in Fig. 4.11 at Q2 = 1 (GeV/c)2 for the functional
forms ffN, ffP and ff0. The domains are derived from a study using the fitting error analysis
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method MINOS, which performs a minimisation of the χ2 for fixed values of ηS and ηg. A clear
correlation is visible between ∆G and ∆Σ. Considering the three ∆G solutions together, ∆Σ
is only constrained to [0.264, 0.356]. If the negative ∆G solution could be removed (slightly
larger χ2), ∆Σ would be constrained to [0.264, 0.318]. This is also illustrated in Fig. 4.12, which
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Figure 4.11: Domains of 39%, 70% and 90% confidence level for ηS (i.e. ∆Σ) and ηg (i.e. ∆G) for the
three assumed sets of functional forms. The domains are shown at Q2 = Q2

0 = 1 (GeV/c)2.

shows the results of ∆Σ and ∆G with the χ2 probability for all of the almost equally likely
functional forms studied in section 4.1.2. They are given at the average scale of the COMPASS
data 〈Q2〉 = 3 (GeV/c)2. For the functional forms defined at a reference scale different from
〈Q2〉, a numerical integration of the results of the fits is performed down to the lowest x point
of the grid: x = 0.001. The rest of the integral is estimated by an extrapolation of the form
xα. The resulting values of ∆Σ lies within [0.256,0.335] and ∆G value are within [−1,0.5]. For
completeness, the range of values for ∆Σ is given at Q2 = 1, 3 and 10 (GeV/c)2 in Table 4.6.
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Figure 4.12: χ2 probability for the various fits. Values are plotted vs. ∆Σ (left) and ∆G (right). The
first moments are given at Q2 = 3 (GeV/c)2. Fits with ∆G ∼ 0 and ∆G > 0 and smaller values of
∆Σ have a slightly higher χ2 probability than the ones for ∆G < 0 and greater values of ∆Σ, although
those first moments cannot be disregarded.
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Table 4.6: Range of solution for ∆Σ from the QCD fits of g1 at Q2 = 1, 3 and 10 (GeV/c)2. No Q2

evolution is seen.

Q2 ((GeV/c)2) ∆Σ
1 [0.264, 0.356]
3 [0.256, 0.335]
10 [0.258, 0.299]

On the first moment of the spin structure functions gp1 and gd1:

In order to compute the first moments Γp1 and Γd1, the COMPASS gp1 and gd1 data are evolved
(using the NLO fit) to the average scale of the measurements 〈Q2〉 = 3 (GeV/c)2 according to
the formula:

g1(xmeas.,〈Q2〉) = gmeas.1 (xmeas.,Q2
meas.)− g

fit
1 (xmeas.,Q2

meas.) + gfit1 (xmeas.,〈Q2〉) (4.12)

The results are shown in Fig. 4.13 and compared to the results of the NLO QCD fit at the
same scale. As expected the scaling violation of g1 increases for low values of x and “large”
values of Q2 and the behaviour of g1 depends more strongly on the shape of ∆g as it can be
seen for x < 0.01. A discrimination could be possible in this region only with an improvement
of statistical precision by a factor of four in the proton or deuteron data.
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Figure 4.13: Results for the COMPASS NLO QCD fit to g1 world data at 3 (GeV/c)2 compared to
COMPASS proton (top) and deuteron (bottom) data. As expected, for x < 0.01, the g1 behaviours
start to show a sensitivity to the gluon polarisation.
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The evaluation of the first moments Γp1 and Γd1 of the spin structure functions is based on
two contributions: one from the integral in the measured range and one from the extrapolations
to x = 0 and to x = 1. Within the measured range, the truncated first moment is evaluated
according to: ∫ xmax

xmin

g1(x, 〈Q2〉)dx ≈
n−1∑
i=1

(xi+1 − xi) · gdata1 (xc,i, 〈Q2〉) (4.13)

where xi are the edges of the bins and xc,i the centre of the ith bin. In the case of the proton,
the data points taken at the two beam energies 160 and 200 GeV are merged once evolved to
the same scale. For the unmeasured region, a numerical integration of the fits is performed
within the grid1 (4.14) and a linear extrapolation based on the fits complete the grid down to
x = 0.∫

grid
gfit1 (x, 〈Q2〉)dx =

∑
x∈grid

0.5 · (xi+1 − xi) ·
(
gfit1 (xi, 〈Q2〉) + gfit1 (xi+1, 〈Q2〉)

)
(4.14)

The values of the different contributions to the first moment of the proton and the deuteron
spin structure functions are given in Table 4.7 for the ff0 (∆G ∼ 0) hypothesis. The same

Table 4.7: Contribution to the first moment of the proton and deuteron spin structure functions Γp1 and
Γd1 at Q2 = 3 (GeV/c)2 (ff0 hypothesis).

x range Γp1
0.0000-0.0025 0.0025
0.0025-0.7000 0.1316 ± 0.0028
0.7000-1.0000 0.0031

x range Γd1
0.000-0.004 -0.0007
0.004-0.700 0.0457 ± 0.0027
0.700-1.000 0.0013

evaluation is also performed for the two other ∆G hypotheses. The results of the truncated
first moment as a function of the lower bound of the integral is shown in Fig. 4.14 for the three
∆G hypotheses.
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Figure 4.14: Truncated first moment of gp1 (left) and gd1 (right) at Q2 = 3 (GeV/c)2 as a function of the
lower bound of the integral. The arrows show the estimated first moments using the extrapolation from
the fits.

The spread of results for the different ∆G solutions are used as systematics associated to the
evolution. The statistical and the systematic uncertainties of the data points are propagated

1The grid covers the x range between 0.001 and 0.0025, and between 0.1 and 1
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to the evaluation of the first moment. Combining the proton and the deuteron data after a
correction for the D-state probability, one can also evaluate the first moment Γn1 of the neutron
spin structure function by the relation:

Γn1 = 2 · Γd1
1− 3

2 · ωD
− Γp1 (4.15)

The first moment of the spin structure functions with the statistical and systematical uncer-
tainties are given in Table 4.8 for three values of Q2.

Table 4.8: First moment of the proton (top), deuteron corrected for the D-state (middle) and neutron
(bottom) at 1,3 and 10 (GeV/c)2 from COMPASS data. The first uncertainty is statistical, the second
comes from the systematic uncertainties on the data and the last one from the evolution from the
measured scale to the Q2 of evaluation.

Q2 (GeV/c)2 Γp1
1 0.1313 ± 0.0027|stat. ± 0.0081|syst. ± 0.0036|evol.
3 0.1372 ± 0.0027|stat. ± 0.0084|syst. ± 0.0031|evol.
10 0.1396 ± 0.0027|stat. ± 0.0086|syst. ± 0.0022|evol.

Q2 (GeV/c)2 Γd1
1 0.0454 ± 0.0028|stat. ± 0.0081|syst. ± 0.0036|evol.
3 0.0463 ± 0.0028|stat. ± 0.0035|syst. ± 0.0031|evol.
10 0.0464 ± 0.0028|stat. ± 0.0035|syst. ± 0.0022|evol.

Q2 (GeV/c)2 Γn1
1 -0.0405 ± 0.0063|stat. ± 0.0108|syst. ± 0.0036|evol.
3 -0.0445 ± 0.0063|stat. ± 0.0112|syst. ± 0.0031|evol.
10 -0.0469 ± 0.0063|stat. ± 0.0114|syst. ± 0.0022|evol.

4.1.4 Comparison of ∆g from the NLO QCD fits to direct measurements

The three NLO fit results on ∆g are compared to direct measurements of ∆g in Fig. 4.15. These
measurements come from the analysis of the photon-gluon-fusion channel, which is tagged
by high-pT hadron (photo)productions [91, 92, 93, 94] or open charm muoproduction [26],
interpretable at LO and NLO, respectively. They are all in fair agreement with the fit results
(which do not include these data points but the COMPASS open charm measurement).

Let us take a closer look to the latest COMPASS LO ∆g extraction [92], which is the
most precise LO extraction in the world that gives 〈∆g/g〉 = 0.113 ± 0.038 ± 0.035 positive
at the 3σstat for 〈x〉 = 0.10. Compared to the ffP, ff0 and ffN NLO solutions separately, one
obtains a χ2 of 1.0, 5.4 and 42.7 respectively. Looking to these values and keeping in mind that
the results are at different QCD order of correction and that only the statistical uncertainty
of the direct measurement enters the chi-square calculation, one can conclude that the latest
COMPASS LO extraction favours the ffP and ff0 NLO solutions.

As the only direct NLO extraction of ∆G (COMPASS open charm muoproduction result)
is included in the fit, we only emphasise that it favours the ffN solution, see Table 4.1.
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4.1.5 Comparison of the present NLO QCD fits to other global QCD analysis

The results of the distributions of ∆(u+ ū), ∆(d+ d̄), ∆(s+ s̄) and ∆g are also compared in
Fig. 4.16 to other NLO QCD fit extractions from the LSS, DSSV and NNPDFpol collaborations
[95, 96, 97] with their error bars when they are available.

For ∆(u+ ū) and ∆(d+ d̄), a relatively good agreement is found within the measured range,
although the NNPDFpol1.1 distribution for ∆(d + d̄) deviates slightly from the general trend
between 0.04≤ x ≤0.1. A deviation from the general trend is also observed for the results of
the present analysis in the unmeasured high-x region. Unlike the other results, no positivity
conditions were applied to the ∆(u + ū) and ∆(d + d̄) distributions. This neglect is being
studied and will be discussed as a perspective in the end of the section.

Large differences are also visible over the whole x range for ∆(s + s̄) distribution. The
present analysis agrees with the result of NNPDFpol and gives a negative distribution for the
strange quark polarisations of the nucleon. This distribution is actually not well constrained
by the present data. In the case of only inclusive DIS data, the distribution of ∆(s + s̄)
is determined mainly by the SU(3)f flavour symmetry, which fixes the first moment to a
negative value, and marginally by the evolution. In contrast, in the fits of the LSS and DSSV
collaborations, semi-inclusive DIS data are included. Those data are sensitive to the quark
flavours but are also subjected to the knowledge of fragmentation functions. The discrepancy
for ∆s is known and is part of the current issues in spin hadronic physics to be solved.

Results for ∆g from the various fits are quite spread. The two solutions, ffP and ff0, which
have the best χ2 are the closest to the other analyses. In particular they are compatible with
the latest results of the DSSV and NNPDFpol collaborations, which include the RHIC spin
data in their fit and lead to a significant positive truncated ∆G value for x within [0.05,0.2]
(see Table 4.9 for a rough comparison).
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Figure 4.16: Distributions of ∆(u + ū) (top left), ∆(d + d̄) (top right), ∆(s + s̄) (bottom left) and ∆g
(bottom right) at 3 (GeV/c)2. This analysis (continuous blue line) is compared to LSS [95] (dotted
yellow and dashed-dotted pink lines), DSSV [96] (dashed red line) and NNPDFpol [97] (dashed teal
line) collaborations.

Table 4.9: Comparison of truncated ∆G to the range [0.05,0.2] at Q2 = 3 (GeV/c)2.

DSSV COMPASS
Estimated from results in[96] ffP ff0 ffN

0.09 0.19 0.03 -0.23

The first moments from the various fits including different kind of data are compared to
each other in Table 4.10. Although, the other results are given at different Q2 (as they are
published) the evolution of ∆Σ within this range of the scale is pretty weak and the results
could be compared. They are all compatible with the present analysis (COMPASS) with a
trend to small value of ∆Σ with respect to the range given by the present analysis. Notice that
the DSSV value given here corresponds to a truncated moment but is also close to 0.26 when
computed over the full interval.

For ∆G, only the collaborations including the RHIC spin data can derive from the fits a
significant positive value for the truncated moment. However, over the full interval the range
of uncertainties becomes as large as the one from COMPASS.

1Truncated first moment ∆Σ to the range [0.001,1] [76].
2Truncated first moment ∆G to the range [0.05,0.2] [96].
3Truncated first moment ∆G to the range [0.05,0.2].
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Table 4.10: First moment of ∆Σ and ∆G from different fits using different inputs. The results are given
at the relevant scale of extraction as published.

Collaboration Data ∆Σ ∆G
DIS SIDIS RHIC

COMPASS: 3 (GeV/c)2 3 7 7 0.26≤ ∆Σ ≤ 0.33 -1≤ ∆G ≤ 0.5

LSS: 4 (GeV/c)2 [95] 3 3 7
0.207± 0.034 0.316± 0.190
0.254± 0.042 -0.339± 0.458

DSSV1,2: 10 (GeV/c)2 [76, 96] 3 3 3 0.366+0.042
−0.062 0.010+0.06

−0.07
NNPDFpol1.13: 10 (GeV/c)2 [98] 3 7 3 0.18±0.21 0.17±0.06

4.1.6 Further steps for QCD analysis

The results shown so far correspond to a first iteration of the analysis. Since then, few defects
has been identified. Solutions to fix those irregularities are proposed in this section but only
cursory and preliminary results are presented. The main ideas are the following:

• A better treatment of the positivity constraint

• A stricter cut on W 2 to ensure the selection of data not affected by higher twist effects.

• A restriction to pure g1 data (discard open charm muoproduction result)

The treatment of the positivity constraint, which was restricted to the ∆(s + s̄) and ∆g
distributions, is being generalised to ∆(u+ ū) and ∆(d+ d̄). Adding two terms to the χ2 of the
forms of the one already defined in section 4.1.1 does not lead to a convergent fit. Instead, the
penalty term of Eq. (4.8) due to the violation of positivity, was changed to the form of [99]:

χ2
positivity =

∑
0.1<x∈grid

1
33
(
eKu[∆(u+ū)−(u+ū)] + eKd[∆(d+d̄)−(d+d̄)]

+eKs[∆(s+s̄)−(s+s̄)] + eKg [∆g−g]
)

(4.16)

where the Kq factors are arbitrary fixed and represent the strength of the positivity condition.
In contrast to the previous definition of the penalty, the condition is always checked whether
the positivity condition is violated or not and introduces a bias. To limit this bias, the penalty
term is normalised by 33, the value corresponding to the number of x points above 0.1 in the
grid. In this way, even when the polarised distributions converge towards the unpolarised one4,
the bias is only of one. Moreover, it is checked at the end of the fit that the penalty contribution
is negligible compared to the global χ2. The advantage of this definition is a smoother penalty
when converging close to the unpolarised distribution. New solutions of the fits were obtained
with a reduced positivity violation.

The normalisation of the CLAS data contributes now even more significantly to the global
χ2. As those data are the more precise in the high-x region and measured at a relatively low
value of Q2, the apparent incompatibility with the positivity condition is thought to come from
higher twist effects. When removing those data, the χ2 of the new solutions are comparable
to the one of the results presented here and the positivity conditions are satisfied within the
polarised and unpolarised PDF uncertainties. Parts of other data may be affected by higher
twist effects, instead of removing the CLAS data, a stricter cut on W like NNPDF [97] is

4For instance, it is expected that ∆u →
x→1

u.
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investigated. The preliminary results (not detailed here) favour two solutions of the fits (∆G ∼
0 and ∆G > 0) to the detriment of the ∆G < 0 one. As a consequence, the range for ∆Σ
would be reduced to [0.25;0.29]. More studies are planned (impact of the choice of reference
scale and exploring several values of Kq).

The results on the proton and deuteron first moments should stay valid as the positivity
constrains have a small impact on the spin structure function. Figures 4.17, shows the values
of the proton and the deuteron first moments evaluated from the COMPASS data for several
models and especially for the results of the fit presented and the new preliminary results. No
significant effect is noticeable.
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Figure 4.17: Comparison of the first moment Γp1 and Γd1 extracted from the data after evolution according
to different models. “This fit” refers to section 4.1.3 and the “New fit” to section 4.1.6.

4.2 Bjorken sum rule

The Bjorken sum rule relates the first moment of gNS1 to the ratio of the axial-vector to vector
weak coupling constant gA/gV (see section 1.3.2). The non-singlet spin structure function gNS1
can be calculated by combining the g1 proton and deuteron data together:

gNS1 (x,Q2) = gp1(x,Q2)− gn1 (x,Q2) = 2
[
gp1 −

gd1
1− 1.5ωD

]
. (4.17)

where ωD = 0.05 ± 0.01 represents the D-state probability of the deuteron. An evaluation of
the Bjorken sum rule is performed with the new data at 200 GeV, which slightly extend the
measured range from x = 0.004 to x = 0.0025. As gNS1 is only related to ∆q3 the non-singlet
quark distribution of SU(2) flavour symmetry, only few parameters are needed. Moreover, as
a non-singlet distribution, its evolution is decorrelated from ∆g and a wide kinematic coverage
in the (x, Q2) plane is not mandatory as long as precise data covering a wide range of x are
available. Unlike in the previous section, the fit of gNS1 is performed to the COMPASS data
alone. Thus the previously published COMPASS data [27, 28] are combined with the 200 GeV
data according to Eq. (4.17). However, as the 200 GeV data have a slightly larger 〈Q2〉 than
the previous measurements at 160 GeV, the deuteron and proton data cannot be combined
directly, they first need to be evolved to the same scale.
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4.2.1 Q2 evolution and data combination

The data are evolved according to Eq. (4.18), which relies on the results of the fits to the spin
structure functions g1.

gdata1 (x,Q2
0) = gdata1 (x,〈Q2〉) +

[
gfit1 (x,Q2

0)− gfit1 (x,〈Q2〉)
]

(4.18)

To minimise the uncertainty on the evolution, due to the formula itself and to the uncertainties
on gfit1 , the evolution is limited to a small Q2 range: the 200 GeV proton data are evolved to
the kinematics of the 160 GeV proton data. The deuteron data are at a slightly smaller scale
due to differences in the trigger mix, so they are evolved to the Q2 of the proton data. Then,
the proton and the deuteron data are combined according to Eq. (4.17). For the new data
point at 〈x〉 = 0.0036 no corresponding value of gd1 was measured so a data point is inferred
based on the value of the gd1 fit. The procedure for gNS1 computation through evolutions and
for the fit is illustrated in Fig. 4.18 together with the x-Q2 initial values of the data.

Figure 4.18: Illustration of the different steps to calculate gNS1 from the 160 and 200 GeV proton and
160 GeV deuteron data together with the average x-Q2 values for the various data taking.

4.2.2 Fit of gNS1

The COMPASS data are fitted with the same program as the one used for the NLO fit to
the world data but restricted to the non-singlet case and ∆q3 determination. The following
functional form for ∆q3 at a reference scale Q2

0 = 1 (GeV/c)2 is assumed:

∆q3(x,Q2
0) = η3

xα3(1− x)β3∫ 1
0 x

α3(1− x)β3dx
, (4.19)

as in section 4.1.2 but this time the η3 parameter is left free. The distribution is evolved to the
Q2 of the data according to Eq. (4.2). It is next convoluted to the Wilson coefficient to obtain



86 Chapter 4 : NLO QCD analysis: Extraction of polarised PDFs and Bjorken sum rule

gNS1 :

gNS1 (x,Q2) = 1
6

∫ 1

x
CNS( x

x′
,αs(Q2))∆q3(x′,Q2) (4.20)

A simple χ2, taking into account only the statistical uncertainties of the data points, is min-
imised to determine the value of the parameters:

χ2 =
16∑
i=1

gNS,fit1 (x1, Q
2
i )− g

NS,data
1,i

σstati

2

. (4.21)

Only three parameters are fitted out of sixteen data points.
The Bjorken sum rule can be checked in two ways: directly from the value of the η3 parameter
or indirectly from ΓNS1 the first moment of gNS1 , which are expected to give gA/gV and 1

6gA/gV
at LO, respectively. The two methods are presented below.

4.2.3 Extraction of gA/gV from the fit

The results from the fit are given in table 4.11.

Table 4.11: Results of the fits of ∆q3 at Q2
0 = 1 (GeV/c)2.

NS Parameter (prelim.)
Param. Value
η3 1.24± 0.06
α3 −0.11± 0.08
β3 2.2+0.5

−0.4

χ2/ndf 8.1/13

Although the systematic uncertainties were neglected, a very good value of χ2 is obtained and
more complicated functional forms are thus disregarded. The value of the η3 parameter is in
very good agreement with the value of 1.2701±0.0025 reported in the PDG.

This value is independent of the scale and therefore the η3 parameter must be independent
of the choice of reference scale Q2

0. The fit is therefore performed again with the same functional
form defined at Q2

0 equal 1.5, 3.0, 5.0 and 9.0 (GeV/c)2. The results are given in 4.12. As

Table 4.12: Parameters of NLO QCD fit to gNS1 data for several reference scales Q2
0.

Q2
0 (GeV/c)2 η3 α3 β3

1.5 1.233± 0.056 −0.158± 0.070 2.35± 0.42
3.0 1.233± 0.056 −0.212± 0.062 2.52± 0.42
5.0 1.234± 0.056 −0.242± 0.057 2.63± 0.42
9.0 1.235± 0.056 −0.269± 0.053 2.75± 0.42

expected, the value of the η3 parameter remains the same when changing the value of Q2
0. The

parameters α3 and β3 vary with Q2
0 as also expected from the evolution.

The Bjorken sum rule is verified with 4.5% with this method which is based on the statistical
uncertainties of the data only.
The second method below takes into account the data systematic uncertainties, which can more
easily be propagated in this case.
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4.2.4 Extraction of gA/gV from the data

The value of gA/gV is also related to the first moment ΓNS1 of gNS1 . In MS, this relation is:

ΓNS1 (Q2) =
∫ 1

0
gNS1 (x,Q2)dx = 1

6C
NS(Q2)

∣∣∣∣gAgV
∣∣∣∣ (4.22)

when higher twist terms are neglected. The non-singlet coefficient function CNS(Q2) is ex-
pressed as a power series in αs calculated up to the third order, for four active quark flavours
[100]:

CNS(Q2) = 1︸︷︷︸
LO

−
(
αs
π

)
︸ ︷︷ ︸
NLO

− 3.25 ·
(
αs
π

)2

︸ ︷︷ ︸
NNLO

− 13.85026 ·
(
αs
π

)3

︸ ︷︷ ︸
NNNLO

. (4.23)

To evaluate ΓNS1 , as the data points on gNS1 are at different Q2, they are first evolved to
the average measured scale of the experiment. The evolution is made in the same way as in
Eq. (4.18) to bring the measurements to a common 〈Q2〉 = 3 (GeV/c)2 for the whole x range.
This time, gdata1 corresponds to the “measured” gNS1 and gfit1 to the fitted parametrisation of
gNS1 . The systematic uncertainty from this evolution is expected to be smaller than the one
based on the fit to the world data, as the evolution of the non-singlet spin structure function
does not depend on ∆g. The evaluation of ΓNS1 relies on two different contributions, one from
the measured range of the data and one from the unmeasured ranges for x→ 0 and x→ 1. For
the x range of the data, the integral is calculated according to Eq. (4.13). The contribution from
the unmeasured range is calculated from a numerical integration of the non-singlet fit results
within the grid (as in Eq. (4.14) with gNS1 instead of gp1 or gd1) and from a linear extrapolation
of the fit result for the integral down to x = 0. Figure 4.19 left shows the non-singlet data
points after evolution to 〈Q2〉 and compared to the fit. As already mentioned, the data and
the fit agree well to each other.
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Figure 4.19: Left: Values of gNS1 (x) at Q2 = 3 (GeV/c)2 from the gd1 and gp1 data (closed circles)
and from the combined gp1 data and gd1 NLO QCD fit result (open square). Right:

∫ 1
xmin

gNS1 dx as a
function of xmin from the extrapolation of the fit (open circle) and completed with the data points
(closed circles). The arrow shows the value for the full range 0 < x < 1 and the green line the expected
results at NLO and leading twist.

The value of the integral evaluated from the data with the extrapolation from the fit is shown
in Fig. 4.19 right. The combined 200 GeV proton data and gd1 NLO fit add a new “measured”
point at x = 0.0036 that confirms the beginning of the asymptotic behaviour of

∫ 1
x g

NS
1 (x)dx.

The resulting ΓNS1 is indicated by the arrow on the y-axis. The different contributions to the
integral are given in Table 4.13 and 94% of the extrapolated ΓNS1 comes from the measured



88 Chapter 4 : NLO QCD analysis: Extraction of polarised PDFs and Bjorken sum rule

range. The contribution from the range of 0.7 < x ≤ 1 corresponds to 2.3% of ΓNS1 whereas
the contribution for 0 ≤ x < 0.0025 accounts for 3.7%.

Table 4.13: First moment ΓNS1 at Q2 = 3 (GeV/c)2. The different contributions of the evaluation of the
integral of gNS1 (see text) and the resulting first moment ΓNS1 at Q2 = 3 (GeV/c)2.

Contribution to ΓNS1 (Prelim.)
x range ΓNS1

0 − 0.0025 0.0064
0.0025 − 0.7 0.170± 0.008

0.7 − 1.0 0.0047
0 − 1 0.181± 0.008

The systematic uncertainties on ΓNS1 come mainly from the uncertainties associated to the
measurements of gp1 and gd1 . They comprise the beam and target polarisation uncertainties
as well as the uncertainties on the dilution factors and the depolarisation factor. The other
contributions are either negligible or should compensate in the computation of gNS1 as both
proton and deuteron data come from the same experiment. The errors from the extrapolation
and the evolution to a common Q2 are found to be negligible as in [28], and will be discussed
later. The different contributions to the systematics uncertainties are given in Table 4.14.

Table 4.14: Relative systematic uncertainties for the different data samples.

Systematic uncertainties (prelim.)
Deuteron 160 GeV Proton 160 GeV Proton 200 GeV

Beam polarisation 5%
Target polarisation 5% 2% 3.5%
Depolarisation factor 2% 2% 2%
Dilution factor 2% 1% 2%
Combined(target, dep., dil.) 6% 3.6%

For the full x range a value of

ΓNS
1 (Q2 = 3 (GeV/c)2) = 0.181± 0.008(stat.)± 0.014(syst.) (Prelim.) (4.24)

is obtained. Using the NLO coefficient function CNS1 (Q2) at Q2 = 3(GeV/c)2, one obtains
Eq. (4.25).
The result is dominated by the systematic error, where the largest contributions are from
the uncertainty on the beam polarisation, which is common to all data sets and from the
absolute contribution from the proton data normalisation (see Table 4.15). To ensure that the

Table 4.15: Absolute contributions to the systematic uncertainties of gA/gV .

Syst. uncertainties on gA/gV (prelim.)
Beam polarisation 0.061
Deuteron data 0.033
Proton data 0.064
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Figure 4.20: Left: Comparison of x ·gNS1 from different models to the data at 〈Q2〉 = 3 (GeV/c)2. Right:
Comparison of gA/gV extraction at different Q2

0 values.

uncertainty on the contribution coming from the extrapolation of the integral can be neglected,
several parametrisations [101, 102, 103, 104, 105] were taken, different Q2

0 values were explored
between 1 and 10 (GeV/c)2 and the results were compared to the one obtained from Table 4.7.
Figure 4.20 left shows the comparison at 〈Q2〉 of different models to the data. The differences
of the contribution from the extrapolated region are found to be within 0.8% of gA/gV . The
variation of gA/gV when changing Q2

0 were found to be of the order of 0.3% (Fig. 4.20 right).
In comparison to the value of gA/gV obtained from the neutron β decay Eq. (4.26) [12], the

Bjorken sum rule is verified with 8.5% accuracy.

gA/gV = 1.220± 0.053(stat.)± 0.095(syst.) (Prelim.) (4.25)

gA/gV = 1.2701± 0.002|β decay (4.26)
The results is obtained at NLO whereas the one from the beta decay measurements takes into
account all orders. To estimate the size and the direction in which further orders will influence
the results, the value of gA/gV using the NNLO coefficient function CNS1 (Q2) is evaluated. In
this case,

gA/gV = 1.256± 0.054± 0.098 . (Prelim.) (4.27)
is found and the Bjorken sum rule is verified with 8.8% accuracy.

4.2.5 Comparison of the Bjorken sum rule to other analysis

Compared to the previous COMPASS result [28], the contribution from the extrapolation to
x = 0 is now 31.6% smaller than before. The result for ΓNS1 agrees well with the previous one
(0.190 ± 0.009 ± 0.015). The precision of the result is improved by about a factor of 12% in
terms of statistical uncertainties and 7.1% for the systematics uncertainties due to the lower
value of ΓNS1 . A gain of 25% of precision could be achieved by reducing the Monte-Carlo beam
polarisation uncertainties to 4%, as it was achieved in the past.

This present result is also compatible within 1.5σstat. with the latest extraction of CLAS
[106] including higher twist corrections, which reported a value of 0.1697 ± 0.0005|stat. ±
0.0171|sys. at Q2 = 3.22 (GeV/c)2. That result is slightly below the extraction presented
here with a better statistical error bar and slightly larger systematics uncertainties. The dom-
inant part of their systematic uncertainties comes from the models used for extrapolating ΓNS1
from x ∼ 0.36 down to x = 0 (∼ 80% of the first moment). Indeed, unlike this study, the x-bin
data are not evolved to a common Q2 value therefore for a given scale only a limited x domain
is covered by experimental data.
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4.3 Key information of the chapter
A NLO global QCD fit of the gp1 , gd1 and gn1 world data has been performed. This includes
the latest 200 GeV gp1 data and the NLO open charm ∆G extraction. Overall, 679 data points
are fitted using about 11 parameters for the functional forms of the polarised quark singlet,
non-singlet and gluon distributions and 18 parameters for the normalisation of the experiments.

Three categories of functional forms describing equally well the data are kept. They can
identify with a positive, compatible with zero and negative gluon polarisation. The dominant
uncertainty on the fit results comes from the choice of the functional forms. Taking into account
the propagated statistical uncertainties of the data and the uncertainties on the functional
forms, the quark polarisation ∆Σ ranges from 0.26 to 0.33 and the gluon polarisation ∆G from
−1 to 0.5 at 3 (GeV/c)2 in the MS scheme.

Other global NLO QCD fits give compatible results for ∆Σ yet with a general trend towards
the lower bound. For ∆G, the two (positive and compatible with zero) solutions for the
truncated first moment are compatible with the DSSV and NNPDFpol fits, which include the
precise ∆G sensitive RHIC spin data. The sensitivity of the inclusive data to ∆G is very
limited.

A test of the Bjorken sum rule is performed on the COMPASS gp1 and gd1 data alone.
Including the gp1 data from the previous chapter reduces the contribution from the unmeasured
region in the evaluation of the first moment by about 70% and improves the statistical accuracy
by 12%. The Bjorken sum rule is verified with 9% accuracy. This result is in agreement with
both the previous COMPASS and the latest CLAS publication.



Conclusion

The spin internal structure of the proton has been studied via neutral current polarised deep
inelastic scattering ~µ~p→ µ′X, which is one of the cleanest process available to probe hadrons.
The data were taken on a polarised NH3 target with the COMPASS experiment and using
the most energetic polarised muon beam (200 GeV) available in the world. About 80·106 DIS
events were collected to extract the double longitudinal spin asymmetry of the proton Ap1 and
the derived proton spin dependent structure function gp1 . The kinematic domain covered by
those data extend the world kinematic coverage down to x = 0.0036 and up to Q2 ' 100
(GeV/c)2. The new data set completes the previous COMPASS measurement obtained at
160 GeV with comparable statistics. From the combined results, about a factor of three in
statistical precision is obtained compared to the previous SMC experiment for a similar beam
time. The dominant systematic uncertainty comes from the uncertainties on the experimental
false asymmetry contribution and represents a factor of 30% to 80% of the statistical precision.
It is mainly evaluated from statistical tests on the data. The advantage of the method is its
reliability in reflecting the experimental condition. The drawback is a conservative estimation
of the uncertainties due to the limited statistics.

Polarised PDFs were extracted from a NLO (MS) QCD fit of world inclusive DIS gp1 , gd1
and gn1 data including the present gp1 results at 200 GeV and the NLO direct extraction of the
gluon polarisation ∆G from the COMPASS open charm channel. Depending on the choice of
functional forms postulated in the fit, three categories of solutions corresponding to a positive,
compatible with zero and negative ∆G value are found. As a consequence, the choice of
functional forms constitutes the dominant uncertainty. The solution for the first moment of the
quark spin contribution to the nucleon spin, ∆Σ, ranges from 0.256 to 0.335 atQ2 = 3 (GeV/c)2.
This is in agreement with other NLO QCD fits like the ones from the LSS, DSSV and NNPDFpol
collaborations, which include additional data sets. The first moment ∆G, which is not well
constrained by inclusive data, is found to be within -1 and 0.5 at Q2 = 3 (GeV/c)2. The positive
and with a node solutions, that correspond also to the best χ2 fit results of this analysis, are
in agreement with the DSSV and NNPDFpol truncated ∆G first moment, which is better
constrained due to the inclusion of the precise gluon sensitive RHIC spin data.

The first moments of the spin structure functions are evaluated from the COMPASS data
alone in the measured range, once they are evolved to a common scale. The results of the fit to
the world inclusive data are used to perform both the data evolution and the evaluation of the
integral in the unmeasured regions. At Q2 = 3 (GeV/c)2, the first moment is: Γp1 = 0.1372 ±
0.0027|stat.± 0.0084|syst.± 0.0031|evol. for the proton, Γd1 = 0.0463± 0.0028|stat.± 0.0035|syst.±
0.0031|evol. for the deuteron and Γn1 = −0.0445± 0.0063|stat.± 0.0112|syst.± 0.0031|evol. for the
neutron. They all violate, as already reported, the Ellis-Jaffe sum rule.

Finally, a completely independent NLO fit based on the proton and deuteron COMPASS
data alone is performed to verify the Bjorken sum rule. The result of this fit is used to both
evolve the measurements to a common scale and to extrapolate the value of the integral outside
of the x-range covered by the data. The first moment of the non-singlet spin structure function
is found to be ΓNS1 = 0.181± 0.008|stat. ± 0.014|syst., where 94% of the value is evaluated from
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the data. Compared to the previous COMPASS evaluation of the Bjorken sum rule, the con-
tribution from the unmeasured region is 30% smaller. The statistical uncertainties are reduced
by about a factor of 12% and the systematic errors by 7%. The verification of the Bjorken sum
rule is now verified with 8.5% accuracy.

The QCD analysis suffers from a limited kinematic coverage of the current inclusive data
and their limited precision. The 200 GeV data do not change much the general trend of
the PDFs but a reduction of the uncertainties on the PDFs was observed. This fact will be
quantified, once the further steps of the QCD analysis discussed in section 4.1.6 are finished.

Finally, it must be stressed that a future polarised electron-ion collider would allow for a
major breakthrough, by opening up the kinematic domain to much larger Q2 values and lower
x values, which constitutes the most limiting aspect in determining ∆G from g1 data.
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Appendix A

Influence of F1 on NLO QCD fit

Two different ways of treating the CLAS data in the fit were tried by using the published
values of either g1 or (g1/F1) to evaluate the impact of F1 parametrisation. Similar results
are obtained in both cases for all distributions but the gluon ∆g(x). However, it is found
that the impact is negligible given the accuracy to which the inclusive data constrain the ∆g
distribution, see Fig. A.1.
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Figure A.1: Results from the NLO QCD fit when using g1 and F1 · (g1/F1) for the CLAS data for three
sets of functional forms giving a positive ∆G (ffP, top), a compatible ∆G with zero (ff0, middle) and a
negative ∆G (ffN, bottom).



Appendix B

QCD fits parameters

parameters ∆g(x) < 0 (ffN) ∆g(x) with a node (ff0) ∆g(x) > 0 (ffP)
ηg −0.669 +0.122

−0.137 −0.135 +0.191
−0.198 0.267 +0.086

−0.084

αg −0.119 +0.150
−0.141 0.175 +0.277

−0.268 2.001 +0.584
−0.498

βg 7.5* 7.5* 7.5*
γg 0* −6.512 +1.473

−2.175 0*
ηs 0.348 +0.011

−0.010 0.302 +0.017
−0.017 0.278 +0.016

−0.016

αs 1.789 +0.167
−0.156 −0.110 +0.140

−0.118 −0.298 +0.087
−0.084

βs 3.985 +0.279
−0.263 3.175 +0.237

−0.214 2.910 +0.189
−0.166

γs 0* −13.044 +1.079
−1.183 −13.064 +1.001

−1.027

η3 F +D = 1.269* F +D = 1.269* F +D = 1.269*
α3 −0.081 +0.031

−0.030 −0.106 +0.031
−0.030 −0.108 +0.031

−0.030

β3 2.193 +0.104
−0.102 2.170 +0.104

−0.101 2.170 +0.104
−0.101

η8 3F −D = 0.587* 3F −D = 0.587* 3F −D = 0.587*
α8 0.581 +0.153

−0.149 0.405 +0.181
−0.311 0.351 +0.184

−0.306

β8 3.125 +0.441
−0.418 2.785 +0.476

−0.653 2.645 +0.465
−0.627

χ2/ndf 692.4/652 675.5/650 681.9/651

Table B.1: Parameters of the NLO QCD fits defined at 1 (GeV/c)2 for the three functional forms. The
parameters marked with an asterisk are fixed. The errors on the parameters have been determined by
MINOS with ∆χ2=1. However these errors are not the ones considered in physics discussions.



104 Appendix B : QCD fits parameters





Résumé :

Cette thèse présente un travail relatif à l’étude de la structure en spin longitudinal du nucléon. Le but
est de déterminer la contribution des constituants du proton, quarks et gluons, à la formation de son spin
1/2. L’analyse s’appuie sur les données de l’expérience COMPASS qui bénéficie d’un faisceau de muons
polarisés à 200 GeV diffusé sur les protons polarisés d’une cible d’ammoniac (NH3) de 1,2 m de long.
On mesure l’asymétrie de spin longitudinal des sections efficaces de diffusion profondément inélastique.
On extrait la fonction de structure en spin du proton, gp1 , étendant la couverture cinématique mondiale
à des régions inexplorées jusqu’à maintenant (0,0036 ≤ 〈x〉 ≤ 0,57; 1,03 ≤ 〈Q2〉/(GeV/c)2 ≤ 96 et
23 ≤ 〈W 2〉/(GeV/c)2 ≤ 320).
Les résultats, d’une grande précision statistique, sont inclus dans une analyse des données mondiales de
gp1 , gd1 and gn1 (proton, deutéron et neutron) au 2ème ordre de QCD afin de paramétrer les distributions de
quarks et de gluons polarisés. L’étendue de la couverture cinématique en x et Q2 des données mondiales
de g1, un élément déterminant pour la sensibilité à la polarisation des gluons ∆G, s’avère trop limitée
pour constituer une extraction précise de celle-ci. Néanmoins, l’analyse QCD permet de déterminer la
contribution du spin des quarks au spin du proton à 0.26 < ∆Σ < 0.33 à 〈Q2〉 = 3 (GeV/c)2 dans
le schéma MS. L’étude montre que l’incertitude principale sur ∆Σ est liée au choix des formes fonc-
tionnelles utilisées dans la régression des données. Enfin, la règle de somme de Bjorken, qui constitue
un test de QCD, est vérifiée avec une précision de 9% en utilisant les données de COMPASS uniquement.

Mots-clés :
Fonction de structure en spin du proton; Expérience COMPASS; Diffusion profondément inélastique;
Faisceau polarisé; Cible polarisée; Spin longitudinal du nucléon; Régression au 2ème ordre de QCD;
Polarisation des quarks et des gluons; Règle de somme de Bjorken.

Abstract :

The work presented in this thesis is related to the study of the longitudinal spin structure of the nucleon.
The aim is to determine the contribution to the spin 1/2 of the proton in terms of its constituents, quarks
and gluons. The analysis is performed on the data taken with the COMPASS experiment, which benefits
from a polarised muon beam at 200 GeV scattered off polarised protons from an ammonia target of 1.2
m long. The double longitudinal spin asymmetry of deep inelastic scattering cross-section. The spin-
dependent structure function of the proton gp1 is derived from these measurements, which extend the
kinematic world coverage to unexplored region so far (0.0036 ≤ 〈x〉 ≤ 0.57, 1.03 ≤ 〈Q2〉/(GeV/c)2 ≤ 96
and 23 ≤ 〈W 2〉/(GeV/c)2 ≤ 320).
The results obtained with a high statistical precision are included in a Next-to-Leading order QCD
analysis of world gp1 , gd1 and gn1 (proton, deuteron and neutron) data to parametrise the polarised quark
and gluon distributions. The g1 world coverage of the x and Q2 kinematic domain, which is a key
point in the sensitivity to the gluon polarisation ∆G, turns out to be too limited for an accurate ∆G
determination. Nevertheless, the QCD analysis allows to determine the quark spin contributions to the
proton spin to 0.26 < ∆Σ < 0.33 at 〈Q2〉 = 3 (GeV/c)2 in the MS scheme. The dominant uncertainty
on ∆Σ is related to the choice of functional forms assumed in the fit. Finally, the Bjorken sum rule,
which constitutes a fundamental test of QCD, is verified on the COMPASS data alone with a precision
of 9%.

Keywords :
Spin-dependent structure function of the proton; COMPASS experiment; Deep inelastic scattering;
Polarised beam; Polarised target; Longitudinally polarised nucleon; NLO QCD fit; Quark gluon polari-
sations; Bjorken sum rule;
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