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Abstract

In this thesis the resonance extraction from the world’s largest data sample on diffractively
produced π−π+π− final states is presented. The data were collected during the COMPASS
2008 hadron run using an incoming beam of π− at 190 GeV/c momentum on a proton
target. The amount of data allows for the first time a thorough inclusion of the dependence
on the squared four-momentum transfer t′ in the partial-wave analysis. This novel analysis
method on the one hand improves the separation of the resonant and non-resonant
contributions to the final state. On the other hand it allows to extract for the first time the
t′ dependence of individual resonances in great detail.

The resonance extraction was systematically studied in the mass range of
0.9 ≤ m3π ≤ 2.3 GeV/c2 and in the range of 0.1 ≤ t′ ≤ 1.0 GeV2/c2. It has been
observed that due to many local solutions reproducible results can only be achieved by
performing a large amount of different fits using randomly distributed starting values. To
cope with the numerous results a new selection method was developed in order to extract
the relevant physical solutions. This is necessary, because the best results that show the
lowest deviation from the data in terms of χ2 lead to partly unphysical parameters.

With this method a set of six selected partial waves based on previous publications
and belonging to JPC = 0−+, 1++, 2−+, 2++ and 4++ have been analysed observing am-
biguous solutions. These ambiguities are resolved by increasing the number of included
partial waves to a total of 13. With around 68 000 data points and slightly above 620 free
parameters this is by far the most extensive analysis performed in this field.

Besides the six established resonances belonging to the studied waves, excitations
of the a1(1260) and a2(1320) mesons have been observed. Additionally the discov-
ery of a new excited a1 decaying into f0(980)π from a previous analysis of this data
sample could be confirmed, assigning a mass of ma1(1420) = 1408 MeV/c2 and a width of
Γa1(1420) = 157 MeV/c2.
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Zussamenfassung

In dieser Arbeit wird die Extraktion von Resonanzparametern für die weltweit größte
gesammelte Menge an Daten mit diffraktiv erzeugten π−π+π− Endzuständen vorgestellt.
Die Daten wurden 2008 während der COMPASS Strahlzeit mittels eines auf ein Ziel aus
flüssigem Wasserstoff gerichteten π− Strahls mit einem Impuls von 190 GeV/c gesammelt.
Diese Menge an Daten erlaubt zum ersten Mal eine vollständige Berücksichtigung der
Abhängigkeit vom Viererimpulsübertrages t′ in der Partialwellenanalyse. Dies ermöglicht
einerseits eine bessere Trennung von resonanten und nicht resonanten Beiträgen zum
Endzustand und andererseits erstmalig die Extraktion der detaillierten t′-Abhängigkeiten
einzelner Resonanzen.

Die Resonanzparameterbestimmung wurde systematisch im Massenbereich von
0.9 ≤ m3π ≤ 2.3 GeV/c2 und im Impulsübertragsbereich von 0.1 ≤ t′ ≤ 1.0 GeV2/c2

untersucht. Es wurde beobachtet, dass aufgrund vieler lokaler Lösungen reproduzierbare
Ergebnisse nur mittels einer großen Anzahl von Wiederholungen der Parameteranpassung
mit zufällig verteilten Startwerten erreichbar sind. Um die vielen Lösungen bewältigen zu
können wurde ein neuartige Auswahlmethode entwickelt, die die relevanten physikalis-
chen Lösungen auswählt. Dies ist notwendig, weil die am besten zu den Daten passenden
Lösungen zum Teil nicht-physikalische Resonanzparameter aufweisen.

Mit dieser Methode wurden sechs Partialwellen mit JPC = 0−+, 1++, 2−+, 2++ und
4++ untersucht, wobei für diesen auf früheren Publikationen basierenden Satz an Wellen
mehrdeutige Lösungen gefunden wurden. Diese Mehrdeutigkeit konnte mittels einer Er-
weiterung auf insgesamt 13 verwendete Wellen aufgelöst werden, was zu der mit ungefähr
68 000 Datenpunkten und etwas über 620 freien Parametern mit Abstand umfangreichsten
Analyse in diesem Feld führte.

Neben den sechs zu den untersuchten Wellen gehörenden etablierten Resonanzen,
wurden auch angeregte Zustände des a1(1260) und a2(1320) Mesons beobachtet. Weit-
erhin konnte die Entdeckung eines neuen, bisher unbekannten angeregten a1, welches
in f0(980)π zerfällt, aus einer vorangegangenen Analyse dieser Daten bestätigt wer-
den. Es wurden eine Masse von ma1(1420) = 1408 MeV/c2 und eine Breite von
Γa1(1420) = 157 MeV/c2 gemessen.
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Chapter 1

Introduction

1.1 The light meson sector

Despite the fact that in the discovery rush from the late 1940’s to the 1960’s light mesons1,
meaning those containing only u,d and s quarks, were one of the first unstable hadrons ob-
served by cosmic ray and accelerator experiments, there remain quite a lot of unanswered
questions. This is due to exactly the same reason as the early discovery of light mesons:
The small mass of their constituents.

While with the development of the Quantum ChromoDynamics (QCD) in the 1960’s and
the discovery of the asymptotic freedom in the early 1970’s high-energy reactions could be
well described, QCD perturbation theory breaks down for low energies corresponding to
long distances. For mesonic systems that contain at least one heavy quark, like the c or the
b, a non-relativistic description in terms of potentials is quite a good approximation, but
for light mesons more complex models and calculations are needed. More on this topic
can be found in section 1.1.2.

With all the success in high-energy reactions and the heavy-quark systems, the light-
meson sector became more or less neglected until its revival around the turn of the
millennium due to the observation of mesons with potentially gluonic degrees of freedom
by several experiments like BNL852, e.g. [2], and VES, e.g. [3]. Even though these candid-
ates were found, they are still strongly disputed, since there are quite heavy disagreements
in between experiments and even in between different publications from the same experi-
ment. After a short discussion of mesonic models, where the relevant quantum numbers
are introduced, this topic will be further discussed in section 1.1.3.1.

1.1.1 Constituent Quark Model

The simplest mesonic model is the constituent quark model, developed independently by
Gell-Mann and Zweig (see [4–6]), where the meson is a bound system of a quark-antiquark
pair. Each quark has a charge of either 2/3 or −1/3 and each antiquark has a charge of
either −2/3 or 1/3, so the bound system always has an integer charge between −1 and 1.
Both quark and antiquark are fermions with a spin of 1

2 . The total intrinsic spin of the

1For the sake of a short introduction a basic knowledge of terminology in particle physics will be supposed.
In case needed please refer to standard textbooks like [1].
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Chapter 1 Introduction

system can therefore be either S = 0 or S = 1 with up to three different spin projections Sz:

1√
2
(|↑↓〉 − |↓↑〉) S = 0 Sz = 0

1√
2
(|↑↓〉+ |↓↑〉) S = 1 Sz = 0

|↑↑〉 S = 1 Sz = +1
|↓↓〉 S = 1 Sz = −1

The coupling of the total spin S with the relative orbital angular momentum L between
the quarks results in the total angular momentum J of the quark-antiquark pair, which is
normally referred to as the spin of the meson:

|L− S| ≤ J ≤ L + S

Combining the positive intrinsic parity of the quark with the negative one of the
antiquark and multiplying the parity of the spatial wave function the total parity P of the
qq-state is:

P = (+1)(−1)(−1)L = (−1)L+1

The naturality η is defined to be η = +1 for natural spin-parity P = (−1)J and η = −1
in case of P = (−1)J+1. This results in:

η = P(−1)J (1.1)

Its further importance will be discussed with the introduction of the reflectivity in
section 3.1.

The C-parity is strictly only defined for eigenstates under charge-conjugation, which
are in the case of light mesons the neutral states with the third component of the isospin
I3 = 0, but by convention the whole isospin triplets are assigned the C-parity of their
I3 = 0 state:

C = (−1)L+S

For example the π− is therefore assigned the C-parity C = +1 of the π0, because it is
part of the π isospin triplet with l = 0 and S = 0.

A more proper way to handle the charged light mesons is to define a new operation
called G-parity, which is the charge-conjugation followed by a charge flip realised via a
rotation by 180◦ around the y-axis in isospin-space:

G = C · eiπ I2 = (−1)L+S+I

Since the rotation in isospin-space only works for mesons made of u and d quarks
as intended, only for these mesons the G-parity is a good quantum number. However,
flavour-neutral combinations of strange, charm or bottom mesons can also be eigenstates
of the G-parity. Therefore strong decays, like e.g. φ(1020)→ KK, still conserve G-parity.

With this formulae the possible quantum numbers for mesons in the constituent quark
model can be calculated as shown in table 1.1, leaving the following combinations of JPC

that are not allowed in this simple model and therefore denoted as spin-exotic:

JPC = 0−−, even+−, odd−+

2



1.1 The light meson sector

L S J I IG JPC nomenclature
0 0 0 0 0+0−+ η

1 1−0−+ π
1 1 0 0−1−− ω

1 1+1−− ρ
1 0 1 0 0−1+− h1

1 1+1+− b1
1 0 0 0+0++ f0

1 1−0++ a0
1 0 0+1++ f1

1 1−1++ a1
2 0 0+2++ f2

1 1−2++ a2
2 0 2 0 0+2−+ η2

1 1−2−+ π2
1 1 0 0−1−− ω

1 1+1−− ρ
2 0 0−2−− ω2

1 1+2−− ρ2
3 1 2 0 0+2++ f2

1 1−2++ a2

Table 1.1: Possible quantum numbers for mesons in the constituent quark model for a spin
J ≤ 2.

1.1.2 Quantum Chromodynamics

The constituent quark model is very successful describing most mesons, but measurements
of the current masses of light quarks show that these masses are negligible compared
to the quark masses, which are assigned in the constituent quark model. This deviation
points to the fact that the meson masses are dominated by non-perturbative dynamics of
the gluonic field. In order to describe the dynamics inside the meson more realistically a
description based on QCD is needed. However, a perturbative treatment is in this case
impossible and therefore either an effective model has to be build out of the QCD or it has
to be calculated numerically.

At the beginnings of numerical QCD calculations missing processing power prevented
quantitative results, but inspired from their qualitative achievements the flux-tube model
was proposed in the 1980 [7, 8]. In this model a tube-shaped gluonic field of constant
energy density, the flux-tube, connects the quark and the antiquark. Since the effects of
virtual quark-antiquark pairs are neglected the model is considered a phenomenological
approximation.

One of the important effects of the flux-tube is that it can be excited and therefore adds
additional freedom to the possible quantum numbers, so all JPC combinations, including
the exotic ones, which are forbidden in the constituent quark model, can be achieved.

3



Chapter 1 Introduction

With the flux-tube in its ground state the spectrum from the constituent quark model is
reproduced. The new mesonic states with an excited gluonic field configuration are called
hybrids.

However, in the flux-tube model there exists not only the possibility to connect the
quarks by a flux-tube, but also the possibility to close the flux-tube onto itself and com-
pletely leave out the quarks. These mesons are called glueballs, but have not yet been
observed. The reason for the uncertainty of their existence is simply that for the lightest
predicted glueballs the JPC quantum numbers are not exotic and therefore not easily dis-
tinguishable from constituent quark states. Despite its nice features recent studies showed
that, when this model is applied to light quarks, the flux-tube breaks down because of
pion production out of the vacuum [9].

However, due to the technological improvements of the last 30 years numerical calcula-
tions from first principles are now possible in the framework of lattice QCD [10]. These
computing power intense calculations are done on an euclidean space-time grid with
lattice spacing a. In the limit of a → 0 continuum field theory is reached, but since the
required processing power is proportional to a−6 the grid is as coarse as possible [11],
being, for example, in the case of the calculation shown in figure 1.1 a = 0.12 fm.

The current computing power also limits the number of quark-antiquark loops that can
be included. In order to reduce these the mass of the quarks is increased artificially. As a
reference on how close masses are to the physical point the pion mass is used. This is as an
example mπ = 396 MeV/c2 for the recent calculation [12] shown in figure 1.1. Even if the
masses do not correspond to the physical masses the light-meson spectrum is reproduced
quite well and predictions should be taken seriously.

Figure 1.1: Light-meson spectrum from lattice QCD calculations [12].
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1.1 The light meson sector

One of this predictions is, for example, that the lightest hybrid super-multiplet2 with

JPC = 0−+, 1−−, 2−+, 1−+

includes as the lightest spin-exotic the heavily disputed isovector π1(1600) (see sec-
tion 1.1.3.1).

However, lattice QCD currently assumes that all states are stable and therefore does not
give any information on decay widths or branching ratios between decays.

1.1.3 Open Questions

1.1.3.1 Confirmation or Falsification of Resonances

With all the predicted states from models and lattice QCD calculations, precise experi-
mental measurements with a good handle on the systematics become more and more
important. Currently there are 178 light unflavoured mesons listed in the Review of
Particle Physics [13] of which only 47 are confirmed. This is partly due to the complexity
of the analysis needed to disentangle the resonances, but also due to a strong dependence
on the model used to describe the measured data.

A good example for both is again the search for the spin-exotic π1(1600) in diffractive-
dissociation data of the π−π+π− final state. In this channel the first observation was
done by BNL E852 seeing a clear peak at 1.6 GeV/c2 (see figure 1.2a [2]). Later the same
collaboration published a result with an extended analysis model, where the spin-exotic
state is not visible anymore (see black markers in figure 1.2b [14]). Then the VES group
confirmed the π1(1600) again, but did see a broad structure instead of a narrow peak
(see figure 1.2c [15]) and finally the COMPASS collaboration claimed to see a resonant
structure with a mass of 1.66 GeV/c2 (see figure 1.2d [16]).

1.1.3.2 Nature of States

An even more complex question than the existence of a state is to determine its inner
structure. A convincing answer on whether and to what degree a state is a simple quark-
antiquark system, a hybrid, a glueball or something else can only be given by a matching
of theoretical decay predictions and experimental data, but at the moment for most states
theory as well as experiment are lacking the necessary precision by far. So all current
discussions on this topic have to be seen as hints on whether a model or calculation is
favoured or disfavoured by the data, which help to improve understanding and thereby
the theoretical and experimental work.

Here the already addressed search for spin-exotic mesons, like the π1(1600), is crucial
to confirm or falsify the constituent quark model. However, there are also intense studies
in the region of non-exotic quantum numbers. A hot hybrid candidate is the π2(1880)
since its closeness to the π2(1670) makes an explanation as a radial excitation unlikely.

2The term ‘super-multiplet’ is historical and denotes a grouping of ordinary flavour multiplets of a given
JPC to a bigger one with the same modes of excitation, e.g. all multiplets with L = 2. Assuming perfect
flavour, spin and isospin symmetry they are supposed to have the same mass.
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Chapter 1 Introduction

(a) BNL E852 [2] (b) BNL E852 [14]

(c) VES [15] (d) COMPASS [16]

Figure 1.2: Overview of analyses investigating the spin-exotic JPC = 1−+ meson π1(1600)
in the π−π+π− channel [17].
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1.2 The COMPASS Experiment at CERN

Alternatively [18] proposed that both resonances are just a different manifestation of the
same resonance shifted by an interference effect.

For a further discussion of the potential of diffractive dissociation into the π−π+π−

final state at COMPASS refer to section 1.3.3. For a detailed report on the current status of
hybrid and glueball searches in general please refer to [19].

1.2 The COMPASS Experiment at CERN

In order to contribute to, amongst others, the open questions discussed in the previous
section the COmmon Muon and Proton Apparatus for Structure and Spectroscopy (COM-
PASS), was set up at the M2 beam line of the Super Proton Synchrotron (SPS) at CERN. It is
a high-luminosity fixed-target experiment dedicated to study the structure and dynamics
of hadrons in the non-perturbative regime of QCD. While here only a short overview is
given, the spectrometer is discussed in more detail in section 2.1.

In the meson sector the collaboration uses, for example, inverse kinematics for Compton
scattering with virtual photons called Primakoff reactions to study the hadronic structure
of unstable particles [20–22]. Furthermore central production [23, 24] and diffractive
scattering of mesons on nuclei are used in order to investigate gluonic states, like hybrids
and glueballs [16, 25, 26]. For additional information on the physics program please refer
to [27–29]. The case of diffractive dissociation into π−π+π− is explained further in section
1.3 and analysed in chapter 3, 4 and 5.

Due to COMPASS origin as a merging of two separately proposed experiments,
HMC [30] for structure measurements with muons and CHEOPS [31] for hadron spectro-
scopy, it can measure with various beams and targets. For example a positive muon beam
is used for spin physics, a positive hadron beam for central production and a negative
hadron beam for diffractive dissociation analysed in this thesis. COMPASS started data
taking in 2002, but except of a two-week pilot run using a lead target in 2004 (see [16]
for results) the first hadron-beam data were collected in 2008 on a 40 cm long liquid hy-
drogen target. The energy of the negative secondary hadron beam was ELab ≈ 190 GeV,
corresponding to a centre-of-mass energy of

√
s ≈ 20 GeV.

1.3 Diffractive Dissociation of Pions at 190GeV

This thesis analyses the diffractive dissociation of a beam π− on a proton into the π−π+π−

final state in the 2008 COMPASS data, thereby continuing the work of [17]. Similar analyses
are also in progress for other final states, in example for the isospin-partner π−π0π0 [32].

Diffractive dissociation denotes the soft scattering of a beam particle on a target particle
resulting in an excitation of the beam followed by its decay into the final state. In the case
of this analysis the beam particle is a π− and the target particle is a proton. During the scat-
tering process the π− is assumed to get excited into an intermediate state X−, which dis-
sociates into the π−π+π− final state. A schematic drawing of this π−p→ π−π+π−precoil
process is shown in figure 1.3.

That X− is dominated by resonances is one of the few necessary assumptions, since it
allows to factorise the production from the decay. Furthermore isospin and G-parity are

7



Chapter 1 Introduction

p

P\R

p

π−
X−

π−

π−

π+

Figure 1.3: Schematic drawing of single-diffractive dissociation of π− into π−π+π− on a
proton target [17].

assumed to be conserved in the interaction vertices. The only other assumptions, being
the isobar model in combination with no final state interaction and the used wave sets,
will be explained in section 3.1.

The four-momentum of the intermediate state is calculated from the four-momenta of
the final-state pions:

pX =
3

∑
i=1

pπ,i

The invariant mass is then calculated from the four-momentum:

m2
X = m2

3π =
p2

X
c2

The extraction of resonance parameters, which will be described in chapter 4, is per-
formed in the range of:

0.9 ≤ mX ≤ 2.3 GeV/c2

The squared four-momentum transfer t from the beam to the recoil particle is calculated
as following:

t = (pπbeam − pX)
2 < 0

Even for zero scattering angles, meaning forward scattering of the pion, t has a small
deviation from zero, which is needed to excite the beam particle to a mass mX. Since
this minimal momentum transfer is purely due to kinematics and therefore clouds the
information on the physics of the production mechanism, it is usually subtracted:

t′ ≡ |t| − |t|min ≥ 0

However, |t|min is typically well below 10−3 GeV2/c2 and the range of analysed four-
momentum transfer in this thesis is:

0.1 ≤ t′ ≤ 1.0 GeV2/c2

8



1.3 Diffractive Dissociation of Pions at 190 GeV

Therefore to a very good approximation:

t′ ≈ |t|

In the observed region of diffractive scattering, where the centre-of-mass energy is
much larger than the squared four-momentum transfer, Regge theory predicts the strong
interaction to be dominated by Pomeron exchange, which is interpreted as a long-range
gluonic interaction. With the RREnf parametrisation from [33] the percentage of Pomeron
exchange was estimated by [34] to be 85%. In any case the true nature of the exchange does
not matter to the analysis and only the conservation of G-parity and isospin mentioned
above is crucial. A couple of quantum numbers consistent with Pomeron exchange
are used in the analysis, but all of them are well backed by the data. Still some brief
information on the production mechanism and references to further readings will be
provided for interested readers in the following subsection.

1.3.1 The Pomeron

The basic idea of Regge physics is that not just a single particle is exchanged like the pion
in Yukawa’s theory [35], but in principle infinitely many. This sum of infinitely many
particles that are exchanged in the same interaction is called a Regge trajectory or simply
Reggeon. For a mathematical description of these trajectories Regge continued the angular
momentum into the complex plane [36]. This interpolation can only be unique if the
trajectories are split into even- and odd-signatured ones, which means that they contain
only particles with even or odd angular momentum L.

This finally results in Regge trajectories containing families of bound states, where
the total angular momentum J rises in steps of 2, e.g. {a2(1320), a4(2040), . . . } or
{ρ(770), ρ3(1690), . . . }. These trajectories are visualised in the so-called Chew-Frautschi
plot shown in figure 1.4.

Later it was shown that the so-called Sommerfeld-Watson transform, which trans-
forms the sum over all particles on a trajectory in an integral over the complex angular
momentum plane, made it possible to do an analytical continuation from the formation-
experiment channel to the high-energy diffractive-scattering channel, studied in this thesis.
In the Chew-Frautschi plot (see figure 1.4) this means to continue the approximately linear
Regge trajectories to negative values of the squared mass, which of course only make
sense if the interpretation is changed from a squared mass to the squared four-momentum
transfer t.

Comparing the predictions from Regge theory for the total cross section σtot(s) in
scattering experiments with real data it was found that in theory σtot(s) falls with rising
centre-of-mass energy

√
s, but in reality it rises. To explain this behaviour an until then

unknown trajectory with an intercept slightly above 1 was introduced.
This trajectory is called Pomeron trajectory or simply Pomeron [37]. In comparison to

normal Regge trajectories it has a much lower slope. Bound states on this trajectory have
to carry the quantum numbers of the vacuum, so they have to be flavourless hadrons with
even parity and C-parity as well as positive naturality [38].

Up to now no state was found to lie on that trajectory. However, the still doubted
f2(1910) with JPC = 2++ is a possible candidate [39] and support comes from lattice QCD

9



Chapter 1 Introduction

Regge Trajectories

αρ(t) = 0.48 + 0.88 t

α
P
(t) = 1.086 + 0.25 t

J = Re{α(m2)}

Mass2 (GeV2) →

J 
→

1.0

2.0

3.0

4.0

5.0

1.0 2.0 3.0 4.0

f2(1270)

π

ρ

a2(1320)

ρ3(1670)

b1(1235)

f1(1285)

π2(1670)

Pomeron

Figure 1.4: Mesonic Regge trajectories [34].
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1.3 Diffractive Dissociation of Pions at 190 GeV

calculations predicting a glueball with JPC = 2++(see figure 1.1), but a real matching
between lattice QCD and measurements is only possible if branching ratios for decays at
physical masses can be predicted.

However, the f2(1910) cannot be observed in this analysis due to its quantum numbers.
For further details please refer to section 1.3.3. In general the derivation of Regge theory
from QCD is still an open question. For a more thorough introduction to Regge physics
please refer to [39].

1.3.2 Alternative Production Mechanisms

After this short excursion on Regge theory and the Pomeron a for this thesis more relevant
aspect has to be discussed. Besides the quasi-elastic scattering via Pomeron exchange also
alternative production mechanism occur. One of them is the so-called Deck-effect [40]
shown in figure 1.5. It denotes a decay of an incident high-energy beam pion into a
π+π− resonance and a single pion, followed by a quasi-elastic scattering of either the 2π
resonance or the pion on the proton. Since this non-resonant production of a 3π final state
can so far not be separated and does not have well-defined quantum numbers it ends up
in the analysis as a broad background beneath the resonances.

p

P\R

π−

π−

p

π−
π−

π+

Figure 1.5: Schematic drawing of one possible amplitude for the Deck-effect in π− into
π−π+π− reactions [17].

An on the level of event selection (section 2.2) mostly separable production mechanism is
the so-called central production shown in figure 1.6 as one case of multi-Regge exchange3.

1.3.3 Observables at COMPASS

Using the previously explained production mechanism via a Pomeron with IG = 0+ the
potential of diffractive dissociation into 3π at 190 GeV can be evaluated. The π− beam has

3The Deck-effect is in some sense a special case of multi-Regge exchange, but it depends on the used model,
whether it is truly multi-Regge.
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p

P\R

P\R

π−

p

π−

π−

π+

Figure 1.6: Schematic drawing of central production as one case of multi-Regge ex-
change [17].

IG = 1− and isospin as well as G-parity are conserved in strong interactions. Therefore
the resonance X− also has to have IG = 1−.

This part can also be reconstructed from the π−π+π− final state, thereby omitting the
quantum numbers of the Pomeron. In this case the calculation of the G-parity is similar:

G(X−) = G(π)3 = (−1)3 = −1

However, for the isospin it has to be considered that the three observed pions have a
total charge of −1. This can only be achieved if the resonance is at least part of an isospin
triplet. Since flavour-exotic mesons with isospin I = 2 have not been observed so far,
I = 1 can be assumed.

Independent on how it has been determined IG = 1− directly results in C = +1 for the
neutral member of the isospin triplet, since:

G = (−1)L+S+I = C · (−1)I

⇒ −1 = C · (−1)
⇔ C = +1

A direct calculation via C(X−) = C(π−) · C(P) = (+1) · (+1) = +1 is not valid,
because the π− is not a C-parity eigenstate.

To calculate the producible JP quantum numbers of the resonance X− takes a little more
effort. Using JPC = 0−(+) of the beam pion and, for example, JPC = 2++ as the dominant
quantum numbers of the Pomeron trajectory the total spin S is:

|J(π−)− J(P)| ≤ S ≤ J(π−) + J(P)

⇔ |0− 2| ≤ S ≤ 0 + 2
⇔ S = 2

12



1.3 Diffractive Dissociation of Pions at 190 GeV

L JP(X−)
0 2−

1 1+, 2+, 3+

2 0−, 1−, 2−, 3−, 4−

3 1+, 2+, 3+, 4+, 5+

4 2−, 3−, 4−, 5−, 6−

Table 1.2: Possible JP quantum numbers of 3π resonance X− for angular momentum
L ≤ 4.

This has to be combined with the possible angular momentum L between both particles:

|L− S| ≤ J(X−) ≤ L + S

The parity for this state is then:

P(X−) = P(π−) · P(P) · (−1)L = (−1) · (+1) · (−1)L = (−1)L+1

The possible JP up to L = 4 are listed in table 1.2.
It is obvious that in principle all JP quantum numbers except 0+ can be produced, which

is not altered by choosing other allowed quantum numbers for the Pomeron. In terms
of observable states this means that all aJ and πJ except a0 are possible. Though the a0
decay into 3π is forbidden by conservation of angular momentum and parity [41] it is also
not observed in its dominant decay into π−η [25], which further supports this production
mechanism.

Table 1.3 is an overview on all observed states as given in [13], which can in principle
be studied in this analysis. Of course it is obvious that due to the high number only a part
of them will be studied in this thesis.

1.3.4 Overview on the analysis procedure

In order to extract the resonance parameters of the intermediate state X− first the data cor-
responding to diffractive dissociation into the π−π+π− final state are selected (chapter 2)
and then they are binned in the invariant mass m3π and the squared four-momentum
transfer t′ as well as separated into partial waves (chapter 3). Finally the resonance para-
meters are determined from the m3π mass dependence in a combined fit of all t′ bins and
a selected sub set of partial waves (chapter 4).

The new thorough inclusion of the four-momentum transfer t′ into the analysis provides
for the first time at the level of resonance extraction a good handle on the separation of
the single diffractive dissociation from alternative production processes, which is an open
problem since the 1960’s. This significantly reduces the model dependence and thereby
increases the precision of the measurement. Furthermore it allows for the first time to
study the t′ dependences for individual resonances (chapter 5).

However, with the huge amount of COMPASS 2008 data and thereby strongly reduced
statistical errors the systematic effects dominate the precision of the measurement and
therefore have to be studied extensively. In the scope of this thesis this is done at the level

13



Chapter 1 Introduction

Particle IG JPC Mass[MeV/c2] Width[MeV/c2] Status
a1(1260) 1−1++ 1230± 40 250 to 600 Established
a1(1640) 1−1++ 1647± 22 254± 27 Omitted from Summary
a1(1930) 1−1++ 1930 +30

−70 155± 45 Further
a1(2095) 1−1++ 2096± 17± 121 451± 41± 81 Further
a1(2270) 1−1++ 2270 +55

−40 305 +70
−40 Further

a2(1320) 1−2++ 1318.3 +0.5
−0.6 107± 5 Established

a2(1700) 1−2++ 1732± 16 194± 40 Omitted from Summary
a2(1950) 1−2++ 1950 +30

−70 180 +30
−70 Further

a2(1990) 1−2++ 2050± 10± 40 190± 22± 100 Further
2003± 10± 19 249± 23± 32

a2(2030) 1−2++ 2030± 20 205± 30 Further
a2(2175) 1−2++ 2175± 40 310 +90

−45 Further
a2(2255) 1−2++ 2255± 20 230± 15 Further
a3(1875) 1−3++ 1874± 43± 96 385± 121± 114 Further
a3(2030) 1−3++ 2031± 12 150± 18 Further
a3(2275) 1−3++ 2275± 35 350 +100

−50 Further
a4(2040) 1−4++ 1996 +10

−9 255 +28
−24 Established

a4(2255) 1−4++ 2237± 5 291± 12 Further
2255± 40 330 +110

−50
a6(2450) 1−6++ 2450± 130 400± 250 Omitted from Summary
π(1300) 1−0−+ 1300± 100 200 to 600 Established
π(1800) 1−0−+ 1812± 12 208± 12 Established
π(2070) 1−0−+ 2070± 35 310 +100

−50 Further
π(2360) 1−0−+ 2360± 25 300 +100

−50 Further
π1(1400) 1−1−+ 1354± 25 330± 35 Established
π1(1600) 1−1−+ 1662 +8

−9 241± 40 Established
π1(2015) 1−1−+ 2014± 20± 16 230± 32± 73 Further

2001± 30± 92 333± 52± 49
π2(1670) 1−2−+ 1672.2± 3.0 260± 9 Established
π2(1880) 1−2−+ 1895± 16 235± 34 Established
π2(2005) 1−2−+ 1974± 14± 83 341± 61± 139 Further

2005± 15 200± 40
π2(2100) 1−2−+ 2090± 29 625± 50 Omitted from Summary
π2(2285) 1−2−+ 2285± 20± 25 250± 20± 25 Further
π4(2250) 1−4−+ 2250± 15 215± 25 Further

Table 1.3: Parameters of already observed 3π resonances as given in [13], which can be
studied at COMPASS. If entries are bold in the first column they are established states
and if they are bold in the second column they have exotic quantum numbers. States with
unknown quantum numbers are omitted.
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1.3 Diffractive Dissociation of Pions at 190 GeV

of resonance extraction. Since this thesis presents the first resonance extraction performed
with the improved analysis framework and the first extraction from the COMPASS 2008
data sample, which allows to study the whole spectrum in unprecedented detail, it will
concentrate on the sectors with rather well-established ground-states, being a1, a2, a4, π2
and to some extend π.
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Chapter 2

Event Selection

As a first step of any analysis the events of interest have to be filtered out of the huge
amount of data taken. This chapter describes the selection criteria applied in [17], after
giving a short overview on the COMPASS Spectrometer, which helps understanding the
choices in the event selection.

2.1 The COMPASS Spectrometer

To meet all the requirements from the different experimental areas the COMPASS spectro-
meter needs a large and uniform acceptance over a wide kinematic range, good kinematic
reconstruction capabilities and the ability to measure extremely small scattering angles. In
order to achieve this it has been designed as a two-stage magnetic spectrometer. Since this
thesis will focus on the final step of the data analysis, where most issues concerning ap-
paratus effects are already accounted for, the further discussion of the experimental setup
will be very brief. For additional information please refer to the technical reports [42, 43].

In order to create the secondary beam, that will later be focused on the COMPASS target,
the intense primary proton beam with ELab ≈ 400 GeV from the SPS is focused onto a
Beryllium production target of a length of up to 500 mm. Various targets with different
length can be used to fit the secondary beam intensity to the experimental needs. For the
2008 hadron run the highest possible intensity was desired, because of the large amount of
data needed to disentangle the complex contributions to the hadronic spectrum. Therefore
the maximum of 500 mm has been chosen for the target length, resulting in an average
beam intensity of 5 · 106 s−1 [43] producing in total over 1 PB of data per year [44]. After
the production target the secondary beam is collimated and the desired momentum range
is filtered in an approximately 1 km long beam line using several magnets.

In front of the target two Cherenkov counters were installed to distinguish the different
beam-particle species. A silicon tracking telescope is used to measure the direction of the
beam particles. Their momenta have to be reconstructed from the outgoing final-state
particles. In order to ensure exclusivity of the measured reactions a Recoil Proton Detector
(RPD) consisting of two concentric barrels of scintillators was build around the target.

Behind the target a 50 m long two-stage spectrometer is positioned for tracking and
calorimetry at forward angles. A schematic view of it is shown in figure 2.1. The
spectrometer has a wide angular acceptance of ∆Θ = ±180 mrad and a large overall
acceptance× reconstruction efficiency of about 50% for the complete reconstruction of an
event with three charged tracks over a wide range in m3π and four-momentum transfer t′

(see [17, 45]).

17



Chapter 2 Event Selection

The particle tracking close to the beam (2.5 to 20 cm radial distance) was done by so-
called Small-Area Trackers (SAT) consisting of Micromegas1 and GEM2 detectors due to
their high-rate capabilities. For regions further away from the beam axis with lower rates
large drift chambers, MWPCs3 and straw-tube trackers are used as Large-Area Trackers
(LAT). The first spectrometer stage has a momentum resolution of 1% . δp

p . 3% and
the second spectrometer stage with an angular acceptance of ∆Θ = ±30 mrad meas-
ures particles with momenta above 5 GeV/c and improves the momentum resolution to
δp
p . 0.4% [43]. Both stages are also fully equipped with electromagnetic calorimeters for

neutral-particle detection, but since this analysis uses only charged tracks they will not be
further discussed. Particle identification is only performed in the first spectrometer stage
by a RICH4 achieving kaon-pion separation at 95% confidence level for particle momenta
in between 9.5 and 50 GeV/c [24].

Figure 2.1: Schematic view of the COMPASS experiment for the 2008 hadron run.

1Micro-Mesh Gaseous Structure
2Gas Electron Multiplier
3MultiWire Proportional Chamber
4Ring-Imaging Cherenkov Detector
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2.2 Selection Criteria

2.2 Selection Criteria

The selection starts with a separation of the diffractive dissociation process into π−π+π−

from all other studied channels, followed by a removal of parasitic events. At the end less
than 1% of the total events survive all selection cuts. Still the π−π+π− channel has the
highest diffractive dissociation cross-section at COMPASS. In the following the general
idea of the cuts will be explained, but for a detailed description please refer to [17].

The first cuts are rather straight forward as given by the event topology: There should
be exactly one interaction point of a beam pion and a target proton for each event, which is
called primary-vertex. By allowing only one interaction point the so called pile up, where
multiple reactions happen in the same event, is suppressed.

Naturally for the π−π+π− final state there should be exactly three charged tracks
detected by the tracking system. Furthermore it is required that the complete set of track
parameters is reconstructed, as needed for the further analysis, and that the net charge of
the three final-state particles should be the same as the one of the incoming pion, namely
−1.

After this coarse preselection already 93.2% of the events are ruled out. Now more
advanced cuts are needed to clean the sample. For the beam-time cut the time of the
incident π− as measured by the beam telescope is compared to the time reconstructed for
the event. If they match within the combined time resolution, the event is accepted by this
cut.

The next cut requires the Diffractive Trigger 0 (DT0) to have fired. Since there are a
couple of different triggers depending on the physics of interest, not all recorded events
are due to the DT0, which is designed to select diffractive-dissociation events. The trigger
combines the signals of the beam counter, the RPD and some veto detectors. The beam
counter is a scintillator disc, which verifies together with the scintillating fibre detector
FI01X that a beam particle is hitting the target. The beam veto on the other hand suppresses
events, where beam particles missed the target, because they result in unwanted tracks
that do not originate from the target.

The part that is triggering on diffractive reactions is the RPD shown in figure 2.2. The
production mechanism described in section 1.3 leads to a recoil proton, which in the lab
frame is a slow charged particle leaving the target under a large angle with respect to the
beam axis. The RPD is designed to measure these particles. Therefore the DT0 requires
signals in both RPD rings.

The last two components of the trigger are the so-called sandwich veto, which rejects
events, where particles emerging from the target are outside of the geometrical acceptance
of the detector, and the so-called beam killers, which are placed on the beam axis in the
second part of the spectrometer and prevent a trigger signal in case they are both traversed
by a particle. The beam killers are necessary since only a small fraction of the beam
particles actually do interact in the target. The whole DT0 trigger system is sketched in
figure 2.3.

In addition to its use in the trigger system the RPD information permits to reconstruct
tracks of the recoil particle. Of course there should be exactly one such track, namely the
one of the recoil proton. With a cut on the target position reactions in the material around
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Chapter 2 Event Selection

Figure 2.2: RPD trigger scheme based on the segmented scintillator rings [17].

Beam

Beam
Veto

FI01X + Beam Counter

Target

RPD Sandwich
Veto

SM1 SM2 Beam Killer ECAL2

Figure 2.3: Scheme of the DT0: The main component is the RPD (blue), triggering on slow
charged particles leaving the target. In addition upstream of the target the beam trigger
(blue) is tagging single incoming beam particles. The veto system (red), consisting of beam
veto, sandwich veto and beam killer, is completing the DT0 system [17].

the cylindrical liquid hydrogen target, i.e. the cooling pipe and the exit windows, can be
sorted out.

The following two cuts are done in order to ensure exclusivity, meaning that all final-
state particles have been reconstructed. Non-exclusive events can happen, for example,
due to inefficiencies in the detector or reconstruction or due to neutral particles, because
the calorimeter information is not used. Furthermore additional particles can hit the
detector, which are not from the target region and did not trigger the vetos.

The first cut is on energy conservation, but since the momentum of the beam pion is not
measured its energy has to be calculated from the momentum of the three reconstructed
pions as described by [46]. After the calculation a 2σ cut on the Gaussian peak at∼ 191 GeV
in the energy spectrum shown in figure 2.4 is applied. The resulting σ ≈ 1.9 GeV agrees
well with the expected 1% beam energy spread [47].
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Figure 2.4: Calculated beam energy, before (unfilled histogram) and after the coplanarity
cut (filled histogram). The red lines indicate the 2σ cut on the energy peak [17].

The coplanarity cut uses the fact that due to momentum conservation no net transverse
momentum with respect to the beam is allowed, which requires that the difference of the
azimuthal angle φ of the recoil proton and the excited state X− is ∆φ = 180◦. However
this is slightly softened by taking into account the geometry of the RPD as well as the
effect of multiple scattering in the inner ring.

Additionally cuts on the four-momentum transfer t′ are introduced to clean the sample.
The low-momentum cut at 0.1 GeV2/c2 removes pile-up and noise in the region below the
acceptance of the RPD and the high-momentum cut at 1.0 GeV2/c2 keeps the probability
for multi-Regge exchange and excitations of the target proton low.

So far all incident and final-state particles were treated as pions (pion hypotheses)
and this will be kept for the further analysis, but the negative secondary hadron beam
consists at the COMPASS target of ∼ 97% π−, ∼ 2% K−, ∼ 1% p and a negligible amount
of muons and electrons. To suppress the small background contribution the CEDAR and
RICH detectors are used to veto clearly identified particles that are not a pion. For more
information please refer to [17].

Additionally to the non-pionic background there exists background due to other pro-
duction processes as explained in section 1.3.2. The central production as one of these
can be separated from diffractive dissociation via the kinematic variables rapidity y and
Feynman’s xF, defined in [13] as:

y =
1
2

ln
E + pz

E− pz
and xF ≈

2pz,CM√
s

with the energy E of the particle and its momentum component pz along the beam axis in
the laboratory frame and the centre-of-mass energy

√
s and the momentum component

along the beam axis pz,CM in the centre-of-mass frame.
The typical kinematics for central production contain a fast π− and a centrally produced

π+π− system. Quantifying this leads to a cut on a rapidity gap between the fast π− and

21



Chapter 2 Event Selection

the π+π− system of 4.5 in combination with xF larger than 0.9. For more information
please refer to [17].

Finally the mass range is limited to 0.5 ≤ m3π ≤ 2.5 GeV/c2 as in previous experiments.
The range starts considerably lower than the lightest observed 3π resonance at 1.2 GeV/c2

and can be extended in the future up to higher masses due to the large data sample and
the excellent acceptance of the apparatus.
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Chapter 3

Partial-Wave Decomposition of the π−π+π−

Final State

This chapter will describe the main results of a partial-wave decomposition in bins of the
invariant mass m3π and the squared four-momentum transfer t′, which were developed
in [17] and which constitute the basis of this thesis.

3.1 PWA Method

The invariant mass distributions of the selected data sample are shown in figure 3.1. The
2π invariant mass spectrum contains both possible π+π− combinations for each event,
since the two final-state π− are indistinguishable. While the clearly visible resonant
structures in the 3π mass distribution confirm the assumption that the intermediate state
X− is dominated by resonances and therefore production and decay are factorisable, the
visible resonances in the 2π mass spectrum suggest the use of the isobar model. This
model assumes that multi-body decays can be described as a tree of successive two-body
decays. In the case of the 3π final state this means that the intermediate state X− decays
into a so-called bachelor π− and a 2π resonance, the isobar, which then continues to decay
into a π+ and π−. This decay sequence is illustrated in figure 3.3.

The use of the isobar model is further supported by the Dalitz plots in figure 3.2, which
show that the occurrence of specific isobars depends on the invariant three-pion mass
m3π as one would expect it due to the larger phase-space for higher masses as well as
the different possibilities for the intermediate states X− and thereby different quantum
numbers.

As the schematic sketch in figure 3.3 already suggest it is further assumed that no
final-state interaction disturbs the phase-space distributions, which are fitted in the first
partial-wave analysis step that is described in the remainder of this section.

The goal of this step is now to disentangle the different contributing X− and their
decay channels. In order to do so a description of the decay kinematics is needed. Each
two-body decay vertex has five degrees of freedom, e.g. the masses of the mother and the
two daughter particles plus two decay angles, which define the direction of the daughter
particles. Counting two decay vertices the total number of degrees of freedom is 10, but
since the final state is fixed to three pions and the isobar enters as the daughter of the first
decay and as the mother of the second decay only six variables remain. Finally describing
the decay for a given mass m3π of the intermediate state X−, which is a property of the
production, the degrees of freedom reduce to five. These five variables, which are here
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Chapter 3 Partial-Wave Decomposition of the π−π+π− Final State

Figure 3.1: 3π (left) and 2π (right) invariant-mass spectrum after event selection. In both
spectra clear structures are visible. While the 3π mass distribution is dominated by a peak
attributed to the a2(1320) with a low-mass shoulder corresponding to the a1(1260) and a
smaller π2(1670) peak at higher masses, the largest contribution to the 2π mass spectrum
is the ρ(770), followed by the f2(1270). Moreover the f0(980) and the ρ3(1690) appear as
high-mass shoulders [45].

Figure 3.2: Dalitz plots for selected 3π mass ranges of the a2(1320) (left) and the π2(1670)
(right) with linear z-axis. In both plots clear bands at 0.6 GeV2/c4 corresponding to the
ρ(770) are visible. For the π2(1670) additional f2(1270) bands at 1.6 GeV2/c4 and sharp
edges at 1.0 GeV2/c4 associated to the f0(980) can be seen [45].
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Figure 3.3: Schematic drawing of single-diffractive dissociation of π− into π−π+π− on a
proton target in the isobar approximation without final-state interaction [45].

chosen to be the mass of the isobar and the four decay angles, are in the following denoted
by τ.

The τ distribution depends on the quantum numbers of the intermediate state X− and
the isobar as well as on the orbital angular momentum between the isobar and the bachelor
pion. The angular momentum between the π+ and π− in the isobar decay also plays a
role, but, since pions are spin-less particles, it is equal to the spin of the isobar. In addition
to the so far discussed IG JPC of X− the spin projection M is important for the distribution.
In contrast to the other quantum numbers M needs a reference axis. The natural choice is
to take the quantisation axis along the beam direction. Combining this with the definition
of the y-axis along the normal of the production plane, which is spanned by the incoming
beam and the outgoing X−, results in the used Gottfried-Jackson Frame [48].

In order to account for parity conservation in the strong-interaction process a transforma-
tion from the canonical basis to the reflectivity basis [49] is performed. This transformation
combines states of opposite spin projection M. Therefore in the reflectivity basis M is now
limited to values between 0 and J. However, a new quantum number, the eigenvalue of
the reflectivity operator, is added. The operator is defined as the parity operator followed
or preceded by a rotation around the normal of the production plane. For bosons its eigen-
value, denoted reflectivity ε, can take on ±1. This corresponds in the Gottfried-Jackson
Frame to the naturality of the exchange particle defined in equation 1.1 and therefore
ε = +1 is related to all trajectories with natural spin-parity, in particular the Pomeron.

Having a set of properly defined quantum numbers, they describe the spatial distribu-
tions of the decay particles completely except of two unknown couplings appearing in
the decay vertices. Assuming that they do not depend on the kinematics, the couplings
can be absorbed into the production amplitudes, which bundles the unknown parts into
the complex functions Tε

α(mX, t′) called transition amplitudes, because they carry informa-
tion about the production as well as the decay. Doing this leaves the decay amplitudes
ψε

α(mX, τ) completely defined and calculable. The factorisation of the two amplitudes is
of course only possible, because the intermediate state X− is as we have seen dominated
by resonances.
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Chapter 3 Partial-Wave Decomposition of the π−π+π− Final State

The index α denotes the so-called partial wave containing the quantum numbers
IG JPC M of the intermediate state X−, the isobar ξ and the orbital angular momentum L
between the isobar and the bachelor pion. In short-hand notation a partial wave is fully
defined by IG JPC MεξπL or leaving out IG = 1−, because it is predetermined by the final
state, simply JPC MεξπL. Since the partial waves normally interfere with each other they
have to be summed up coherently to obtain the seven-dimensional intensity distribution,
but an advantage of the used reflectivity base is that waves with different reflectivities
do not interfere and can therefore be summed up incoherently. This is described by the
following equation:

I(mX, t′, τ) = ∑
ε=±1

∣∣∣∣∣∑α

Tε
α(mX, t′)ψε

α(mX, τ)

∣∣∣∣∣
2

(3.1)

In order to eliminate the dependence of the decay and transition amplitudes on mX and
t′ the analysis is performed in bins, which for mX are chosen to be equidistant and of size
20 MeV/c2. The t′ binning, on the other hand, was chosen as given in table 3.1 in order to
distribute the events equally. This together with the correlation of the t′ and the invariant
mass distribution of the 3π system is shown in figure 3.4.

Bin t′ range [GeV2/c2]
1 0.100 to 0.113
2 0.113 to 0.127
3 0.127 to 0.144
4 0.144 to 0.164
5 0.164 to 0.189
6 0.189 to 0.220
7 0.220 to 0.262
8 0.262 to 0.326
9 0.326 to 0.449
10 0.449 to 0.724
11 0.724 to 1.000

Table 3.1: t′ binning used in the analysis.

Since the transition amplitudes Tε
α are not unique due to arbitrary complex phases,

instead the so-called spin-density matrix ρε
αβ is used as defined in equation 3.2 represented

in the Chung-Trueman parametrisation [49].

ρε
αβ = Tε

αTε∗
β (3.2)

For a single kinematic bin in the (m3π, t′) plane the intensity therefore reads:

I(τ) = ∑
ε=±1

∑
α,β

ρε
αβψε

α(τ)ψ
ε∗
β (τ) (3.3)

This parametrisation of the now only five-dimensional intensity distribution is fitted to
the measured data using a maximum-likelihood method resulting in a spin-density matrix
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Figure 3.4: Intensity distribution with logarithmic z-axis binned in the invariant mass m3π

and the squared four-momentum transfer t′. Equidistant mass bins of 20 MeV/c2 and 11
t′ bins with equal intensity are chosen [17].

for each (m3π, t′) bin, which is referred to as mass-independent fit. The mass dependence
of ρε

αβ(m3π, t′) is then analysed in the mass-dependent fit explained in chapter 4.
Since both final-state π− are indistinguishable this is taken into account in the analysis

by calculating ψε
α(τ) for both possibilities and adding them coherently, thereby respecting

interferences. This method is denoted Bose symmetrisation, because the coherent sum
constructs a wave function that is symmetric under the exchange of the two π−.

While the m3π spectrum is binned in order to remove the dependence on m3π, the one
on the isobar mass m2π has to be known precisely at this step, because it influences the
decay. How m2π is parametrised for the individual isobars can be found in [17]. Here only
the used isobars are listed in table 3.2.

The next step is to calculate all possible partial waves for these isobars, but as they are
in principal infinitely many, one important decision is how to truncate the partial-wave
expansion of equation 3.3. The goal is to describe the data with the minimum amount of
partial waves, that is with the minimum number of free parameters. Including to many
insignificant waves will lead to overfitting. On the other hand, if important waves are
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Particle JPC

(ππ)S 0++

f0(980) 0++

f0(1500) 0++

f2(1270) 2++

ρ(770) 1−−

ρ3(1690) 3−−

Table 3.2: Used isobars with their JPC [17]. (ππ)S denotes a parametrisation for the broad
component of isobars decaying with an orbital angular momentum 0.

missing, intensity may be wrongly attributed to other waves and can even create artificial
structures, like shown in figure 1.2a for the case of the BNL E852 π1(1600) search.

Since in general the wave intensity is expected to decrease for larger J, M and L, [17]
started with about 160 waves by including all with total spin J ≤ 6, M ≤ 1 and positive
reflectivity ε = +1 and adding some specific waves with, for example, negative reflectivity
ε = −1 or M = 2. Taking mostly ε = +1 is motivated by the Pomeron dominance at
COMPASS beam energies. Step by step waves with insignificant intensities over the whole
m3π and t′ range were removed and finally a set of 88 waves remained. This constitutes
the largest wave set used in an analysis of this kind so far and reflects the size of the data
set.

The 88 used waves are listed in table 3.3. In order to get an estimator on how much each
wave contributes their intensities, summed over all m3π and t′ bins, are given normalised
to the total number of events. However, due to interference effects between the waves the
sum of these relative intensities is slightly larger than 100%.

An additional complication arises from the fact that in the low-mass region, which
corresponds to small phase-space volume, the fit has problems to distinguish between
certain waves. This typically leads to fit instabilities, where waves have unphysically large
intensities in the low-mass region, but are destructively interfering so that the net result
is again compatible with the data. These artifacts mostly involve waves with high-mass
isobars, which therefore have high physical 3π-mass thresholds. Also wave pairs where
isobar spin and the angular momentum L between the isobar and bachelor pion are
interchanged, like for the 1++1+ρ(770)πD and 1++1+ f2(1270)πP waves, are sensitive to
these effects. This can be largely suppressed by applying the mass thresholds listed in
table 3.3 during the fitting.

Finally in order to account for background contributions, where the three pions are
uncorrelated, for example, from not discriminated pile-up, a special wave, the so-called flat
wave, that has an isotropic phase-space distribution is added incoherently to equation 3.3:

I(τ) = ∑
ε=±1

∑
α,β

ρε
αβψε

α(τ)ψ
ε∗
β (τ) + T2

flat

28



3.1 PWA Method

JPC Mε Isobar L T[GeV/c2] I[%]

FLAT — 3.09

0−+0+ (ππ)S S — 7.96
0−+0+ f0(980) S 1.20 2.44
0−+0+ ρ(770) P — 3.55
0−+0+ f0(1500) S 1.70 0.10
0−+0+ f2(1270) D — 0.22

1++0+ ρ(770) S — 32.65
1++1+ ρ(770) S — 4.10
1++0+ ρ(770) D — 0.90
1++1+ ρ(770) D — 0.56
1++0+ (ππ)S P — 4.07
1++1+ (ππ)S P 1.10 0.18
1++0+ f2(1270) P 1.22 0.44
1++1+ f2(1270) P — 0.49
1++0+ f2(1270) F — 0.14
1++0+ f0(980) P 1.18 0.25
1++1+ f0(980) P 1.14 0.08
1++0+ ρ3(1690) D — 0.12
1++0+ ρ3(1690) G — 0.04

1−+1+ ρ(770) P — 0.85

2++1+ ρ(770) D — 7.66
2++2+ ρ(770) D — 0.33
2++1+ f2(1270) P 1.00 0.48
2++2+ f2(1270) P 1.40 0.01
2++1+ ρ3(1690) D 0.80 0.02

2−+0+ f2(1270) S — 6.72
2−+1+ f2(1270) S 1.10 0.87
2−+2+ f2(1270) S — 0.11
2−+0+ f2(1270) D — 0.91
2−+1+ f2(1270) D — 0.20
2−+2+ f2(1270) D — 0.08
2−+0+ f2(1270) G — 0.08
2−+0+ ρ(770) P — 3.83
2−+1+ ρ(770) P — 3.33
2−+2+ ρ(770) P — 0.16
2−+0+ ρ(770) F — 2.19
2−+1+ ρ(770) F — 0.30
2−+0+ ρ3(1690) P 1.00 0.23
2−+1+ ρ3(1690) P 1.30 0.11
2−+0+ (ππ)S D — 2.96
2−+1+ (ππ)S D — 0.38
2−+0+ f0(980) D 1.16 0.55

3−+1+ ρ(770) F — 0.05
3−+1+ f2(1270) D 1.34 0.03

JPC Mε Isobar L T[GeV/c2] I[%]

3++0+ ρ(770) D — 0.89
3++1+ ρ(770) D — 0.99
3++0+ ρ(770) G — 0.36
3++1+ ρ(770) G — 0.12
3++0+ f2(1270) P 0.96 0.43
3++1+ f2(1270) P 1.14 0.45
3++0+ ρ3(1690) S 1.38 0.43
3++1+ ρ3(1690) S 1.38 0.15
3++0+ ρ3(1690) I — 0.01
3++0+ (ππ)S F 1.38 0.23
3++1+ (ππ)S F 1.38 0.32

4−+0+ ρ(770) F — 0.98
4−+1+ ρ(770) F — 0.38
4−+0+ f2(1270) D — 0.30
4−+1+ f2(1270) D — 0.14
4−+0+ f2(1270) G 1.60 0.01
4−+0+ (ππ)S G 1.40 0.28

4++1+ ρ(770) G — 0.76
4++2+ ρ(770) G — 0.03
4++1+ ρ3(1690) D 1.70 0.01
4++1+ f2(1270) F — 0.18
4++2+ f2(1270) F — 0.02

5++0+ ρ(770) G — 0.33
5++0+ ρ3(1690) D 1.36 0.02
5++0+ f2(1270) F 0.98 0.11
5++1+ f2(1270) F — 0.09
5++0+ f2(1270) H — 0.02
5++0+ (ππ)S H — 0.13
5++1+ (ππ)S H — 0.08

6−+0+ (ππ)S I — 0.11
6−+1+ (ππ)S I — 0.05
6−+0+ ρ(770) H — 0.70
6−+1+ ρ(770) H — 0.14
6−+0+ ρ3(1690) F — 0.05
6−+0+ f2(1270) G — 0.05

6++1+ ρ(770) I — 0.04
6++1+ f2(1270) H — 0.03

1++1− ρ(770) S — 0.30

1−+0− ρ(770) P — 0.26
1−+1− ρ(770) P — 0.67

2++0− ρ(770) D — 0.31
2++0− f2(1270) P 1.18 0.18
2++1− f2(1270) P 1.30 0.33

2−+1− f2(1270) S — 0.18

Table 3.3: Used wave set with applied threshold T and relative total intensity I. It con-
tains 80 amplitudes with positive and 7 with negative reflectivity [17]. Note that due to
interference the sum of the intensities results in 105.47%.

29



Chapter 3 Partial-Wave Decomposition of the π−π+π− Final State

3.2 Spin-density matrix in bins of m3π and t′

Since the spin-density matrix ρε
αβ from equation 3.2 is Hermitian it is represented as an

upper triangular matrix. By enumerating the partial waves α and β this leads to:

ρε =

Tε
1Tε∗

1 Tε
1Tε∗

2 · · ·
Tε

2Tε∗
2 · · ·

. . .

 (3.4)

Note that the diagonal elements are the squared absolute values of the transition
amplitudes and are therefore real. They are in the following denoted as “intensity” of a
partial wave. The off-diagonal elements describing the interferences between waves are in
general complex, but the information on their absolute value is already included in the
intensities and therefore only their argument, referred to as “relative phase”, is of interest.
Furthermore the fact that waves with different reflectivities are not interfering leads to a
block-diagonal form of the spin-density matrix:

ρ =

Flat 0 0
0 ρ+1 0
0 0 ρ−1


Of course not all 88 intensities and 3181 relative phases can be discussed. Therefore only

some common features of the waves, which are later used for the resonance extraction de-
scribed in chapter 4, are pointed out here. More information on the possible interpretations
of the results at this stage of the analysis is available in [17].

The waves with the largest total intensities are 1++0+ρ(770)πS and 2++1+ρ(770)πD
shown in figure 3.5. While in the 1++ wave a broad peak attributed to the a1(1260) is
visible, the narrow peak in the 2++ wave is due to the a2(1320). Comparing the lowest
and the second highest t′ bin a clear shift of the peak position is observable in the 1++

wave, while the a2(1320) peak is completely unaffected. This indicates that the 1++ wave
has strong contributions from non-resonant production processes.

A further feature in the high-t′ region of the 1++0+ρ(770)πS is the shoulder at the
side of the main resonance due to a second interfering resonance in this wave. This is
more prominent in the 2−+0+ f2(1270)πS wave plotted in figure 3.6, where the π2(1880)
is visible as a slight bump on the falling flank of the π2(1670) peak. The second wave
in figure 3.6, denoted 0−+0+ f0(980)πS, shows a problem that can occur for the applied
thresholds. While the intensity going to a physical thresholds should continuously drop
and finally reach zero, here it is cut off at non-zero intensities, because a higher threshold
had to be used due to instabilities in the fit. In order to minimise this effect the thresholds
have been chosen as low as possible. However, the π(1800) peak is not affected and
therefore the chosen threshold has only a minor influence on the resonance extraction in
this wave.

So far only waves with relatively large intensities were shown, hence in figure 3.7
two waves, namely 4++1+ρ(770)πG and 1++0+ f0(980)πP, with total relative intensities
around or below 1% are plotted. As the broad high-mass a4(2040) peak in the 4++ wave
demonstrates, a clear signal can also be found in small-intensity waves. The same is
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Figure 3.5: Intensities of the 1++0+ρ(770)πS (left) and 2++1+ρ(770)πD (right) waves for
the lowest (upper row) and the second highest (lower row) t′ bin [17]. The percentages
give the intensity integrals normalised to the total number of events in the respective t′

bin.
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Figure 3.6: Intensities of the 2−+0+ f2(1270)πS (left) and 0−+0+ f0(980)πS (right) waves
for the lowest (upper row) and the second highest (lower row) t′ bin [17]. The percentages
give the intensity integrals normalised to the total number of events in the respective t′

bin.

32



3.2 Spin-density matrix in bins of m3π and t′

true for the 1++ wave, but here additionally to the isolated, narrow peak visible at about
1.4 GeV/c2 in the low-t′ region, for high t′ a broad structure at higher masses emerges.
The peak at 1.4 GeV/c2 is peculiar due to its extremely steep rise and the fact that so far
no resonance with this quantum numbers has been observed at this position. In chapter 4
a possible interpretation as an a1(1420) resonance will be discussed.
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Figure 3.7: Intensities of the 4++1+ρ(770)πG (left) and the 1++0+ f0(980)πP (right) waves
for the lowest (upper row) and the second highest (lower row) t′ bin [17]. The percentages
give the intensity integrals normalised to the total number of events in the respective t′

bin.

Since the interference terms are an important aspect in the identification of resonances
two examples, namely the relative phase motions of the 2++1+ρ(770)πD wave with
respect to the 1++0+ρ(770)πS and the 2−+0+ f2(1270)πS wave, are shown in figure 3.8.
The common phase motion at about 1.3 GeV/c2 is related to the a2(1320). The opposite
direction of the phase motion is due to the fact that for the plots on the left side the phase
of the 1++ wave is subtracted from the 2++ wave, while for the plots on the right side
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Chapter 3 Partial-Wave Decomposition of the π−π+π− Final State

the 2++ wave is subtracted from the 2−+ wave. The difference in strength results from a
different interference with the other given wave. Like the a2(1320) peak the related phase
motion does not change with t′. However, the low- and high-mass parts of the relative
phases do.
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Figure 3.8: Relative phase motions of the 2++1+ρ(770)πD wave with respect to the
1++0+ρ(770)πS (left) and the 2−+0+ f2(1270)πS (right) wave for the lowest (upper row)
and the second highest (lower row) t′ bin [17]. The intensities of the corresponding waves
are also plotted (red, grey) in order to make the correlation to the phases easier to observe.
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Chapter 4

Extraction of Resonance Parameters

4.1 Fit of m3π dependence

Having the data binned in the invariant mass m3π and the squared four-momentum
transfer t′ as well as separated into partial waves, this information can now be used to
extract resonances. However, since the t′ dependence of resonances and even more so
the non-resonant contributions has not been studied extensively so far, no assumptions
are made at this point, but instead the t′ spectra are later extracted for further studies as
described in chapter 5. Therefore the resonant contributions in the different partial waves
are determined by modelling only their m3π dependence. The resonance parameters are
estimated fitting the spin-density matrices ρε

αβ resulting from the mass-independent fit
using a χ2 minimisation.

For this purpose ρε
αβ is parametrised in the following way:

ρε
αβ(m3π, t′) =

ϕε
α(m3π) ∑

k(α)
Cε

αk(t
′)Dk(m3π, t′; ξk)

Ψ(m3π)

·

ϕε
β(m3π) ∑

k(β)

Cε
βk(t

′)Dk(m3π, t′; ξk)

∗ (4.1)

Dk(m3π, t′; ξk) denotes dynamic terms, meaning resonant and non-resonant contribu-
tions. The ξk are the free shape parameters of each term k. For resonances ξk represents
mass and width and for non-resonant contributions some general shape parameters b and
ci with i = 1, 2, 3. Each dynamic term is multiplied by a so-called coupling Cε

αk(t
′), before

the contributions in a single wave are summed coherently. Finally ϕε
α(m3π) is the phase

space for a decay into partial wave (α, ε) and Ψ(m3π) describes the decreasing probability
for the production of high-mass intermediate states X−.

The resonant terms are described with relativistic Breit-Wigner amplitudes as in equa-
tion 4.2, where m0 denotes the mass and Γ0 the total width of the resonance.

Dk(m3π; m0, Γ0) =

√
m0Γ0

m2
0 −m2

3π − im0Γ(m3π)
(4.2)

The Breit-Wigner intensity as a function of mass is plotted in figure 4.1a for the case of a
narrow, isolated resonance, while the phase of the amplitude δ is shown in figure 4.1b. It
rises from 0◦ to 180◦ and passes 90◦ at the peak position m0 of the resonance.
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Chapter 4 Extraction of Resonance Parameters

(a) Intensity (b) Phase

Figure 4.1: Example of a simple relativistic Breit-Wigner [50].

The mass-dependent width Γ(m3π) in the denominator takes into account the decay
phase space, which is described by including the dominant decay channels. In the numer-
ator on the contrary the phase-space for a decay into the particular partial wave, where
the resonance is measured in, has to be considered for the mass-dependence. Therefore
to be able to use the same amplitude for multiple waves this part is factored out and
accounted in the factor ϕε

α(m3π) in equation 4.1. Such a parametrisation is used to model
the well-known resonances a1(1260) and a2(1320). However, due to a lack of knowledge
about their dominant decays Γ(m3π) is reduced to a constant for all other resonances
considered here:

Γ(m3π) = Γ0

For the a1(1260) the so-called Bowler parametrisation [51] is used, where the phase-
space $1+S

ρπ (m) for a ρπ S-wave decay with an orbital angular momentum S is explicitly
calculated taking into account the width of the ρ(770):

Γ(m3π) = Γ0
m0

m3π

$1+S
ρπ (m3π)

$1+S
ρπ (m0)

(4.3)

The mass-dependent width of the a2(1320) is approximated by taking into account
its decay into ηπ with a branching fraction x = 20% and by attributing the remaining
branching fraction of (1− x) = 80% to the ρ(770)π channel:

Γ(m3π) = Γ0
m0

m3π

[
(1− x)

qρ(m3π)F2
L(qρ(m3π))

qρ(m0)F2
L(qρ(m0))

+ x
qη F2

L(qη(m3π))

qη(m0)F2
L(qη(m0))

]

In contrast to the a1(1260) the ρ(770) is here treated as a stable particle. The break-up
momenta of the ρ(770)π and ηπ decays are denoted qρ(m) and qη(m). Their general form
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4.1 Fit of m3π dependence

is with the pion mass mπ and the isobar mass mIsobar:

qIsobar(m) =

√
(m2 − (mπ + mIsobar)2) (m2 − (mπ −mIsobar)2)

2m
(4.4)

The Blatt-Weisskopf centrifugal-barrier factors FL(q) by [52] account for the orbital
angular momentum L = 2 in both two-body decays.

The coherently added non-resonant terms account for alternative production processes,
like the Deck-effect (see section 1.3.2). Unfortunately there are no generally accepted
parametrisations available and therefore a phenomenological approach was chosen, which,
as shown in section 4.4.4, introduces a large systematic uncertainty. For partial waves with
a significant non-resonant contribution the non-resonant terms are modelled with the free
parameters b and ci according to:

Dk(m3π, t′; b, c0, c1, c2) = (m3π −mthreshold)
be(c0+c1t′+c2t′2)q(m3π)

2
(4.5)

The break-up momenta q(m3π) are the same function as for the resonances using the
isobar given in the respective partial wave. mthreshold is an empirical value fixed to 0.5.

In order to stabilise the fit by reducing the total number of free parameters for smaller
waves or waves with small non-resonant contributions the simpler parametrisation in
equation 4.6 was used for the non-resonant terms, which corresponds to equation 4.5 where
all free parameters except c0 are set to zero. In both cases the non-resonant amplitudes are
purely real.

Dk(m3π; c0) = ec0q(m3π)
2

(4.6)

How the different contributions manifest themselves in the intensity spectra of the two
dominant waves is shown in figure 4.2. In the logarithmic scale it is visible that the model
contains two resonances in each of these waves. The ones at lower masses are the ground
states a1(1260) for the 1++ wave and a2(1320) for the 2++ wave. The resonances at higher
masses are associated excited states and denoted a′1 and a′2. While the a′1 appears as a
shoulder, the a′2 is an example that due to interferences a resonances can also create a
pronounced dip.

The relative phases for multiple interfering resonances are illustrated exemplarily in fig-
ure 4.3, which shows the part of the spin-density matrix that contains the 1++0+ρ(770)πS
and the 2++1+ρ(770)πD waves. Here the phase motion of the narrow a2(1320) is nicely
visible at 1.3 GeV/c2, but its low- and high-mass behaviour gets distorted by additional
resonances in both waves. The purely real non-resonant terms only contribute to the phase
in form of an offset.

The couplings multiplied to the dynamical terms Dk(m3π, t′; ξk) are complex and de-
termine the strength of each component as well as the phases relatively to the other
dynamical terms and thereby the interferences. There exists one such coupling for each
term in each wave for each t′ bin and since they all have to be extracted from the data they
are the largest fraction in terms of number of fit parameters. However, they are luckily
entering equation 4.1 at maximum quadratically and can therefore be determined much
more reliable than the shape parameters ξk.

The parametrisation of the spin-density matrix in principal has to be applied to all 3269
elements with the exception of the flat wave, but this is practically not possible. Therefore
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Figure 4.2: Intensity of the 1++0+ρ(770)πS (left) and the 2++1+ρ(770)πD (right) partial
waves for the lowest t′ bin in linear (upper row) and logarithmic scale (lower row). The red
line represents the total mass-dependent fit, whereas the other lines show the individual
components, being the resonant terms (blue) and the non-resonant terms (green). While
the lines are solid inside and dotted outside of the fit range of the mass-dependent fit, the
markers representing the mass-independent fit are blue inside and grey outside of this fit
range.
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Figure 4.3: Part of the fitted spin-density matrix showing the 1++0+ρ(770)πS and the
2++1+ρ(770)πD wave for the lowest t′ bin. The colour scheme is the same as in figure 4.2.
The plots along the diagonal show the partial-wave intensities. The relative phase presen-
ted in the upper right plot is given in the form “column− row” and is shifted by −34◦ in
order to be centred in the range between−180◦ and +180◦. The offset that has to be added
to the values on the axis in order to receive the non-shifted phase is denoted in the right
corner of the plot. Furthermore the individual components of the phase are not drawn.
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Chapter 4 Extraction of Resonance Parameters

as a minimal starting set the waves from a previous analysis [16] were chosen, except that
the 1−+1+ρ(770)πP wave has been replaced by the 1++0+ f0(980)πP wave in order to
clarify the resonance behaviour of the newly discovered narrow, isolated peak structure in
it. All six fitted partial waves are listed in table 4.1.

The three largest waves are described by two resonances and the more elaborate para-
metrisation of the non-resonant terms (equation 4.5), whereas the three smaller waves are
only allowed to have a single resonance and the simplified non-resonant parametrisation
(equation 4.6). While the lower limits of the fit ranges result from a too sparsely populated
phase-space that leads to uncertain data points, the upper limits are due to arising new
features that are not explainable by the given model, like, for example, the occurrence of a
third resonance.

Partial wave Resonances Non-resonant Fit range[GeV/c2]
term

1++0+ρ(770)πS a1(1260), a′1 eq. 4.5 0.90 to 2.30
2++1+ρ(770)πD a2(1320), a′2 eq. 4.5 0.90 to 2.00
2−+0+ f2(1270)πS π2(1670), π2(1880) eq. 4.5 1.40 to 2.30
0−+0+ f0(980)πS π(1800) eq. 4.6 1.20 to 2.30
4++1+ρ(770)πG a4(2040) eq. 4.6 1.25 to 2.30
1++0+ f0(980)πP a1(1420) eq. 4.6 1.30 to 1.60

Table 4.1: Wave set with six waves.

The 6× 6 spin-density sub matrix corresponding to the wave set of table 4.1 is shown for
the lowest t′ bin in figure 4.4. However, the fit is performed in all t′ bins at the same time,
where the shape parameters ξk are identical in each t′ bin. The behaviour as a function of
t′ has to be explained only by the couplings and the explicit t′ dependence of the shape
of some of the non-resonant terms. This means that the fit has to describe roughly 14 900
data points with in total 352 real parameters: 319 for the couplings, 18 for the resonances
and 15 for the non-resonant terms.

In order to see why the separation in t′ and thereby the large number of couplings is
needed the intensities of the 1++0+ρ(770)πS wave are shown in figure 4.5 for all eleven t′

bins. While a shift of the a1(1260) peak with t′ was already visible in the mass-independent
fit, it can now be discussed in terms of the applied model. In the low-t′ region the peak is
on the low-mass side of the real resonance peak, whereas for high t′ it is on the high-mass
side. It is explained in the given model by a shift of the relative phase between the a1(1260)
and the non-resonant terms of about 180◦ over the shown t′ range. Thereby these two
components interfere at low t′ constructively below the Breit-Wigner resonance, where the
phase of its amplitude is approximately 0◦, and destructively above it, where the phase of
the amplitude is approximately 180◦, while it is exactly the other way round at high t′.

In the 2++1+ρ(770)πD wave plotted in figure 4.6 the steadiness of the a2(1320) peak
is now attributed to the comparatively small non-resonant contribution. In logarithmic
scale, however, the dip in the high-mass tail vanishes for high t′. This can be explained
by a change of the relative intensity of the a′2 with respect to the a2(1320) in combination
with a slight shift in their relative phase away from a completely destructive interference.
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Figure 4.4: Fitted spin-density sub matrix for the lowest t′ bin containing the waves
from table 4.1 in the same order. An enlarged version can be found in section A.1 in the
appendix. The colour scheme is described in figure 4.2 and the plotting of the relative
phases is commented in figure 4.3.
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Figure 4.5: Intensity of the 1++0+ρ(770)πS wave as a function of t′ in linear scale. t′ is
increasing first from left to right and then from top to bottom. The lower right corner
shows the intensity sum of all eleven t′ bins. The colour scheme is the same as in the
previous plots and described in figure 4.2.
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Figure 4.6: Intensity of the 2++1+ρ(770)πD wave as a function of t′ in logarithmic scale.
The ordering in t′ is the same as in figure 4.5. The colour scheme is described in figure 4.2.
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Having seen how the model is able to describe the features of the established resonances,
it is interesting to look at how well it can explain the newly found potential resonance
in the 1++0+ f0(980)πP wave. Considering the intensity shown in figure 4.7 the fit is
matching the data consistently with the exception of the highest t′ bin, where the signal
looses its significance. Furthermore the relative phases with respect to other waves given
in figure 4.8 feature in all t′ bins a significant phase motion, so it can be safely concluded
that the a1(1420) is consistent with a Breit-Wigner resonance description.
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Figure 4.7: Intensity of the 1++0+ f0(980)πP wave as a function of t′ in linear scale. The
ordering in t′ is the same as in figure 4.5. The colour scheme is described in figure 4.2.
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Figure 4.8: Phase of the 1++0+ f0(980)πP wave relative to the 1++0+ρ(770)πS (upper left),
2++1+ρ(770)πD (upper right), 2−+0+ f2(1270)πS (lower left) and 4++1+ρ(770)πG (lower
right) waves for the lowest (blue), intermediate (red) and second highest (green) t′ bin.

4.2 Systematic Studies of the Fit Procedure

What so far has been neglected is that the result described in the previous section was
not obtained by performing only a single fit, but in fact was selected from a set of 1000.
This turned out to be necessary, because the fit result is observed to be dependent of the
way the fit is performed. This can be seen in the distribution of the found χ2 values in
figure 4.9, where different starting values and different orders of releasing the parameters
were chosen for the same model fitted to the same data. In the ideal case the fit should
always converge to the same minimum, but the χ2 values are obviously spread over a
wide range with some values that are more frequently appearing than others. However, it
gets even more complicated, because many of these solutions are not “physical” in the
sense that the fitter uses the given freedom in a way it is not intended. For example, in
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Chapter 4 Extraction of Resonance Parameters

some fit results the resonant term of the excited resonance is assigned nearly the same
mass as the ground state in the same partial wave in order to compensate imperfections in
the peak description of the ground-state resonance, which contradicts the model intention.
Such “unphysical” solutions unfortunately include the ones with the lowest χ2, but before
it can be discussed, how to properly handle this, it has to be explained, how the different
fits are performed.
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Figure 4.9: Distribution of χ2 values resulting from fits with random starting values and
different orders of releasing the fit parameters.

In a first step 250 different sets of starting values are generated by drawing the dynamical
parameters ξk uniformly from certain ranges, which are based on previous fits as well
as on the values and errors listed in [13]. The chosen intervals and the distribution of
the starting values for the a1(1260) and the a′1 can be seen in figure 4.10. One important
observation is that the starting values of the fits resulting in the best χ2 are fairly equally
spread over the whole range. This is the same for all other dynamical parameters and
shows that changes of the starting range are not likely to cause any systematic effects.

After the creation of the 250 sets of starting values, for each of them the best start values
for the couplings are determined. This can be done separately for all t′ bins, because they
are only connected by the dynamical parameters. Since for the lowest t′ bin basically no
expectation values exist, the real and imaginary parts of the couplings are each drawn
uniformly 25 times in the range between −1 and +1. These are then used as starting
values for 25 fits, where the ξk are fixed to the previously drawn values. Finally the
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Figure 4.10: Start-value distribution for the mass and the width of a1(1260) (blue) and
a′1 (yellow). The shading of the discs around the coloured dots indicate the resulting χ2

values from best (dark grey) to worst (light grey) in 10 grey scales grouping always 10%
of the fits. The lines in the same grey shades connect the parameter values of the same
fit. The ranges where the starting values are uniformly drawn from are indicated by the
dotted rectangles. The horizontal black broken lines at widths of 40 and 1000 MeV/c2

show the limits applied to all resonances in the fit. The mass limits are 1 and 3 GeV/c2,
respectively, and are indicated by the range of the x-axis. The vertical broken line is the
upper limit of the fit range of the partial waves, which contain the plotted resonances. For
the 1++0+ρ(770)πS wave shown here the lower limit is at 0.9 GeV/c2 and therefore below
the general mass limit of 1 GeV/c2 and not drawn.
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couplings from the fit with the best χ2 are chosen. This procedure can now either be
repeated independently for all other t′ bins or one can exploit the fact that the couplings
should not vary strongly from bin to bin and therefore take the values from the lower
neighbouring t′ bin as starting values. Both methods are complimentary and therefore
both are applied, choosing at the end the solution with the lowest χ2 for the couplings.
It should be noted that for a set of dynamical parameters close to their later determined
optimum values in the χ2 minimum both methods yield the same values.
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Figure 4.11: Distributions of χ2 values resulting from fits with random starting values split
into the individual release orders described on page 48.

Having now obtained 250 sets of randomly distributed ξk with their individually best
couplings, they are used as starting values for the final fits, but as previously mentioned
the results also depend on the order of releasing the parameters. Looking at figure 4.11,
which shows the previously given distribution of χ2 values separated into the four used
release orders, it is evident that the more frequent χ2 values appear in all of them, but
have strongly varying probabilities. The parameter release orders were chosen with the
purpose of enhancing the probability of convergence to the global minima, but keeping
the introduced method bias minimal. Furthermore it was paid attention that they explore
diverse paths to the solution. This resulted in the following four methods, where all
couplings are free during the whole fit and the shape parameters are partially released in
up to four steps, so that in the end all parameters are free:

Method 1: All dynamical parameters ξk are released from the beginning and the fitter has to
determine the optimal way to the minimum by itself. Thereby no additional bias is
introduced.
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4.2 Systematic Studies of the Fit Procedure

Method 2: In a first step only the shape parameters of the non-resonant terms are released,
since they are in general much less well-known then the ones of the resonances. In a
second step additionally all remaining shape parameters are released.

Method 3: In a first step only the dynamical parameters of the non-resonant terms of the three
waves with the highest intensity, namely 1++0+ρ(770)πS, 2++1+ρ(770)πD and
2−+0+ f2(1270)πS, are freed. Then additionally the resonance parameters of these
three waves, denoted major waves, are released and in a final step all the remaining
ones are released. Thereby the largest contributions to the χ2 are fitted first.

Method 4: This is a combination of the previous two release orders by first fitting the shape
parameters of the non-resonant terms of the major waves, then additionally those of
the non-resonant terms of the so-called minor waves, then the resonance parameters
of the large waves and finally those of the small waves.

Using these methods on all 250 sets of starting parameters results in the 1000 fits, whose
χ2 values are shown in figures 4.9 and 4.11. The topic of the rest of this section will now
be, how to find the best physical solution.

Starting with the resulting distributions for the mass and width of the a1(1260) and
the a′1 in figure 4.12 the first observation is that for some fits the estimated parameters
have extremely large error bars, while for others the parameters are at the introduced
limits. The large error bars are due to a failed convergence, whereas the fits at the limits
are in a region, which is either ruled out by the scope of the given model or by physical
arguments.

In detail the low-mass limit is set to 1 GeV/c2, since there are no known 3π reson-
ances below that value. The high-mass limit was chosen to be 3 GeV/c2, because the
maximum fit range is 2.3 GeV/c2 and anything above that contributes only via its tail
thereby causing only negligible phase motion. The limits on the width at 40 MeV/c2 and
1 GeV/c2 are defined by mostly the same arguments. Excited resonances are not expected
to be drastically smaller than their ground states and if they are extremely wide their
phase motion is changing so slowly with mass that they cannot be distinguished from
the non-resonant terms anymore. So by removing those unphysical fits only around 500
remain. They still spread over a fairly wide range in terms of parameter and χ2 values as
can be seen in figures 4.13 and 4.14. The three smaller 0−+0+ f0(980)πS, 4++1+ρ(770)πG
and 1++0+ f0(980)πP waves are not shown, because the fit always finds roughly the same
parameter values.

In the distribution of χ2 values in figure 4.13 can be seen that most minima are found
only rarely. One possible explanation is that these are local minima into which the fitter
gets trapped. The observation that none of them are found with a lower χ2 than the
lowest frequently occurring minimum leads to the impression that the fitter gets caught
by ripples in the χ2 manifold, while approaching another minimum. Therefore these
spurious solutions are removed by requiring that a similar χ2 has to be found a number of
times within intervals of 0.01. In order to determine a proper threshold on how many fits
have to result in a specific χ2 in order to accept the solution, the histogram in figure 4.13 is
projected onto the y-axis. This projections shows how often Nsameχ2 fits with similar χ2

have been found. After multiplying each Nsameχ2 bin in the projection with its x-value
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Figure 4.12: Masses and widths of the a1(1260) (blue) and the a′1 (yellow) for all 1000 fits.
The used plotting scheme is explained in figure 4.10 with the exception that in this plot
the statistical errors given by the fitter are drawn in addition.

Nsameχ2 an interpretation as a not normalised probability of a fit to result in such a χ2

becomes possible. This is plotted in figure 4.15.
First a strong decrease of the probability with Nsameχ2 is observable as it is expected

for spurious solutions. Then the distribution rises again linearly due to the frequently
found minima. Furthermore large gaps are eminent for the region above the spurious
solutions. Therefore the cut is chosen to be in the first pronounced gap that has at least
three not populated Nsameχ2 bins. After applying this cut the distribution of the resonance
parameters looks much cleaner (see figure 4.16).

However, looking in more detail at the 1++ resonances the a′1 has for the best fits in
terms of χ2 a mass that is just about 70 MeV/c2 larger than the one of the a1(1260). In this
solution the fitter misuses the a′1 to better describe the rising flank of the a1(1260) peak, as
can be seen in figure 4.17a, instead of using it to describe the shoulder in the high-mass tail
of the a1(1260). This gives a first hint that the chosen parametrisation of the a1(1260) and
the non-resonant term are not sufficient to describe the peak shape within the extremely
small statistical errors of the 1++0+ρ(770)πS wave. However, since these solutions are
not physical, they are removed.

In order to generalise this cut it has to be defined, when exactly two resonances in one
wave are too close. As an universal measure the phase motion of the resonant terms was
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Figure 4.13: Distribution of χ2 values of converged fits that are not at a parameter limit and
cut away (green) or kept (blue) by the later applied physical and model-based restrictions.
The red line indicates the cut on spurious solutions applied in the next step. The histogram
is binned in steps of 0.01.

chosen defining the centre range by going 22.5◦ up and down from the phase at the peak
mass m0 and taking the corresponding masses, so that one fourth of the whole phase
motion is included in this interval. Then all solutions are removed, where the centre
ranges of resonances in the same wave are overlapping.

Furthermore resonances that have a mass outside of the fit range of their wave are
contributing only via their tales, which in general have only a slow phase motion and
therefore are hard to distinguish from the non-resonant terms. So they are either an
indication for another resonance closely above the fit range or simply misused by the fitter
as an additional non-resonant term. In the parameter distributions of the 2++1+ρ(770)πD
wave in figure 4.16 one solution is above the fit range, which goes up to 2 GeV/c2. The
corresponding intensity in this partial wave is shown in figure 4.17b and indicates that a
third resonance might occur shortly above the fit range. However, including this third
resonance and extending the fit range results almost always in unphysical solutions, where
one of the resonances becomes extremely broad and works more like a non-resonant term.
A typical example is shown in figure 4.18b.

Additionally it may happen that the mass ordering of the resonances in one wave is
inverted. Since the parametrisation of the first and the second resonance are in general
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Figure 4.14: Parameter values of a1(1260) (top, yellow), a′1 (top, blue), a2(1320) (centre, red),
a′2 (centre, green), π2(1670) (bottom, blue) and π2(1880) (bottom, green) for converged
fits not at a parameter limit. An explanation of the used plotting scheme can be found in
figure 4.12.
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Figure 4.15: Projection of the distribution of χ2 values in figure 4.13 on the y-axis followed
by a multiplication of each Nsameχ2 bin with its x-value Nsameχ2 . The histogram can be
interpreted as a not normalised probability of a fit to result in a χ2 interval with Nsameχ2

values. The fits that are cut away (kept) by later applied physical and model-based
restrictions are indicated in green (blue). The red line shows the cut on spurious solutions
performed in the next step.

not the same, a simple change in the assignment of the resonance labels is not possible.
Therefore these solutions have to be removed as well. However, for the model used here
all fits, where this occurs, belong to spurious solutions and therefore are already erased.

At the end, when all cuts are applied only about 180 fits corresponding to three different
solutions remain. An overview of the exact numbers after each cut is listed in table 4.2,
whereas the final parameter distributions are shown in figures 4.19 and 4.20.

Now that all this three solutions are valid, in principal the best in terms of χ2 should be
chosen, but as discussed earlier, the a1(1260) peak is not well described by the model and
even after the unphysical solutions are removed this influences the χ2. The influence can
be shown by removing the contribution of the intensity of the 1++0+ρ(770)πS wave from
the χ2 value. The results are given in table 4.3. While the third solution is still the worst,
the first and the second solution interchange their order with respect to χ2. This means
that while the first solution describes the a1(1260) intensity peak better, the second one
does a better job for the rest of the data. The distance between the two best solutions in the
a′1 parameters suggests that the fitter might have found two different excited resonances,
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Figure 4.16: Parameter values of a1(1260) (top, yellow), a′1 (top, blue), a2(1320) (centre, red),
a′2 (centre, green), π2(1670) (bottom, blue) and π2(1880) (bottom, green) after removing
spurious solutions. An explanation of the used plotting scheme can be found in figure 4.12.
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Figure 4.17: Examples of physical cuts for the lowest t′ bin in logarithmic scale. The colour
scheme is described in figure 4.2.
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in logarithmic scale. The colour scheme is described in figure 4.2.
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Chapter 4 Extraction of Resonance Parameters

but unfortunately as shown in figure 4.18a the fitter does not give meaningful results
when three resonances are included in the 1++0+ρ(770)πS wave. As this problem already
emerged for the case of the 2++ sector, it seems to be a general property of the model
described here. Therefore at this stage it cannot be decided, which solution should be
preferred.

Cut Number of remaining fit results
1000

Failed convergence 924
Parameter close to limits 494
Spurious solutions 311
Interchange of resonance positions 311
Proximity of resonances 198
Resonances outside fit range 184

Table 4.2: Overview on the applied cuts.

Solution 1 2 3
Total χ2 70 072 72 162 76 576
χ2 without the intensity of the 1++0+ρ(770)πS wave 61 639 61 489 67 638

Table 4.3: χ2 values of the three final solutions for the six-wave model.
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Figure 4.19: Parameter values of a1(1260) (top, yellow), a′1 (top, blue), a2(1320) (centre,
red), a′2 (centre, green), π2(1670) (bottom, blue) and π2(1880) (bottom, green) after all cuts.
An explanation of the used plotting scheme can be found in figure 4.12.
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Figure 4.20: Parameter values of π(1800)(top, blue), a4(2040) (centre, red) and a1(1420)
(bottom, red) after all cuts. An explanation of the used plotting scheme can be found in
figure 4.12.
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4.3 Extended Fit

In order to solve the ambiguities in the model with only six waves more information is
included into the fit by adding seven further partial waves from the mass-independent fit.
Table 4.4 list the extended wave set. The general idea was to stabilise the second reson-
ances with waves, where they are more dominant, and thereby remove the ambiguities.
Important is that no further resonances have been introduced into the fit. However, each
of these seven new waves needs an own non-resonant term and an additional coupling
for each term, including the resonances, in each t′ bin, which results in a total of 802 real
parameters for the description of now roughly 68 000 data points.

Partial wave Resonances Non-resonant Fit range
terms [GeV/c2]

1++0+ f0(980)πP a1(1420) eq. 4.6 1.30 to 1.60
1++0+ρ(770)πS a1(1260), a′1 eq. 4.5 0.90 to 2.30
1++0+ρ(770)πD ∗ a1(1260), a′1 eq. 4.6 0.90 to 2.10
2++1+ρ(770)πD a2(1320), a′2 eq. 4.5 0.90 to 2.00
2++2+ρ(770)πD ∗ a2(1320), a′2 eq. 4.6 1.00 to 2.00
2++1+ f2(1270)πP ∗ a2(1320), a′2 eq. 4.6 1.00 to 2.00
2−+0+ f2(1270)πS π2(1670), π2(1880) eq. 4.5 1.40 to 2.30
2−+1+ f2(1270)πS ∗ π2(1670), π2(1880) eq. 4.6 1.40 to 2.30
2−+0+ f2(1270)πD ∗ π2(1670), π2(1880) eq. 4.6 1.60 to 2.30
2−+0+ρ(770)πF ∗ π2(1670), π2(1880) eq. 4.5 1.20 to 2.10
0−+0+ f0(980)πS π(1800) eq. 4.6 1.20 to 2.30
4++1+ρ(770)πG a4(2040) eq. 4.6 1.25 to 2.30
4++1+ f2(1270)πF ∗ a4(2040) eq. 4.6 1.40 to 2.30

Table 4.4: Extended wave set with 13 waves. The asterisks mark new waves with respect
to the smaller wave set with six waves. The ordering is chosen to match with the one in
figure 4.25.

In order to decrease the number of fit parameters it is used that the relative branching
ratios between the different considered decay channels of a resonance should not depend-
ent on t′. So, for example, the intensity ratio between an a1(1260) in the ρ(770)πS and in
the ρ(770)πD wave should be the same for all t′ bins. Therefore the couplings Cε

α,k(t
′) are

separated into the t′ dependence CJPC Mε,k(t′) and the “branchings” BJPC [Isobar]πL,k, which
describe the decay dependence:

Cε
α,k(t

′) = BJPC [Isobar]πL,k · CJPC Mε,k(t
′). (4.7)

The index α = JPC M[Isobar]πL containing the partial wave was split up in order to do
emphasise that the branchings BJPC [Isobar]πL,k are independent of t′, the spin projection M
and the reflectivity ε, while the t′ dependences CJPC Mε,k(t′) are independent of the decay
described by [Isobar]πL. Since the different partial waves interfere, the branching as well
as the t′ dependences are in general complex.
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Chapter 4 Extraction of Resonance Parameters

Note that the t′ dependence is different for different spin projections M and there-
fore this cannot be used to connect, for example, the couplings of the a2(1320) in the
2++1+ρ(770)πD wave with the ones in the 2++2+ρ(770)πD wave, but still it reduces the
total number of parameters by 180 down to 622.

The way the random studies are performed does not need to be changed, except of
a consistent extension of the definition of the major and minor waves. Considered as
a major wave are now all waves containing the a1(1260), the a2(1320) or the π2(1670).
Furthermore the number of fits has been increased to 10 000.

The effect of the cut on spurious solutions can be seen best in the distribution of χ2

values shown in figure 4.21. There are in principal two groups of physical solutions that
survive it. One with a χ2 of about 325 000 that has two secondary minima, which are worse
in χ2 but do not vary strongly in the parameters, and one with a χ2 of roughly 386 000.
The parameter distribution after all cuts in figure 4.23 shows that the worse solution with
a χ2 of approximately 386 000 has an extremely light a1(1260). Table 4.6 shows that this
solution in addition describes the a1(1260) peak worse than the first solution, so it can
be safely rejected. Looking at figure 4.22 it can be seen that the proximity of the two a1
resonances in the solution with the best χ2 is much more pronounced than in the case of
the smaller wave set. The precise numbers for all cuts are given in table 4.5. For the reason
of completeness the plots after all cuts for the minor waves are given in figure 4.24
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Figure 4.21: Distribution of χ2 values before the removal of spurious solutions for the
extended wave set. The plotting scheme is described in figure 4.13.
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Figure 4.22: Mass and width of a1(1260) (blue) and a′1 (yellow) after the cut on spurious
solutions. An explanation of the used plotting scheme can be found in figure 4.12. Note
that these resonances are now fitted in two waves at the same time and therefore the
vertical black broken line indicates the lower of the two upper ends of the individual fit
ranges.

Cut Number of remaining fit results
9942

Failed convergence 9041
Parameter close to limits 7653
Spurious solutions 4753
Interchange of resonance positions 3736
Proximity of resonances 3523
Resonances outside fit range 3523

Table 4.5: Overview on the applied cuts for the extended wave set.

Solution 1 2
Total χ2 325 125 386 466
χ2 without the intensity of the 1++0+ρ(770)πS and D waves 297 718 356 470

Table 4.6: χ2 values of the two final solutions for the extended wave set.
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Figure 4.23: Parameter values of a1(1260) (top, yellow), a′1 (top, blue), a2(1320) (centre,
red), a′2(centre, green), π2(1670) (bottom, blue) and π2(1880) (bottom, green) for the
extended wave set after all cuts. An explanation of the used plotting scheme can be found
in figure 4.12.
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Figure 4.24: Parameter values of π(1800)(top, blue), a4(2040) (centre, red) and a1(1420)
(bottom, red) for the extended wave set after all cuts. An explanation of the used plotting
scheme can be found in figure 4.12.
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In summary the extended wave set reaches its goal to solve the ambiguities observed
in the smaller wave set. The spin-density matrix for the lowest t′ bin in figure 4.25 gives
an impression of the dimension of this fit and shows that the model describes the data
overall fairly well. In order to illustrate this further figures 4.26, 4.27 and 4.28 show the
intensities of the three largest waves as a function of t′. The peak shift of the a1(1260) and
the destructive-interference dip of the a2(1320) and the a′2 are reproduced. As expected
the bad description of the rising flank of the a1(1260) peak is not solved and in the
additional 1++0+ρ(770)πD wave in figure 4.29 the agreement is even worse. Here the fit
only coarsely describes the data. The improvement for higher t′ leads to the conclusion
that the difference is due to an insufficient description of the non-resonant term. This is
further supported by the rather odd behaviour of the non-resonant contribution, which is
growing, instead of decreasing, exponentially with mass. Attempts to solve the issue have
not been successful so far.

Table 4.7 and Figure 4.30 compare the resonance parameters of the extended and the
smaller wave set. The most striking changes are observable for the second resonances.
The ambiguity for the a′1 was resolved with parameters that have more or less the mass
of solution 1 and the width of solution 2 of the six-waves model. At the same time
the a1(1260) mass decreases, which is likely to be caused by the 1++0+ρ(770)πD wave.
The a′2 is getting considerably lighter with a width between both previous solutions. As
figure 4.27 illustrates the mass of the a′2 is now below the interference dip. In contrast
to the six-waves model this might provide the possibility to use a third a2 resonance to
describe the higher mass regions. However, this is left for further work.

The π2(1880) is also considerably lighter in combination with a slightly heavier
π2(1670), which is mainly due to the newly introduced 2−+0+ f2(1270)πD wave in fig-
ure 4.31. Here the π2(1880) is the dominant contribution and can therefore be much better
determined than before.

The statistical errors listed in table 4.7 are for the extended wave set at most 0.4 MeV/c2

in mass and 1.3 MeV/c2 in width. Compared to the also shown six-waves model they
were considerably reduced by up to one order of magnitude. After this reduction the
statistical errors are more than one order of magnitude smaller than the systematic ones
determined in the next section. Therefore they are from now on neglected. All in all it can
be said that the extension of the wave set has improved the fit quite considerably.
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Figure 4.26: Intensity of the 1++0+ρ(770)πS wave as a function of t′ in logarithmic scale.
The ordering in t′ is the same as in figure 4.5. The colour scheme is described in figure 4.2.

66



4.3 Extended Fit
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Figure 4.27: Intensity of the 2++1+ρ(770)πD wave as a function of t′ in logarithmic scale.
The ordering in t′ is the same as in figure 4.5. The colour scheme is described in figure 4.2.
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Figure 4.28: Intensity of the 2−+0+ f2(1270)πS wave as a function of t′ in logarithmic scale.
The ordering in t′ is the same as in figure 4.5. The colour scheme is described in figure 4.2.
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4.3 Extended Fit
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Figure 4.29: Intensity of the 1++0+ρ(770)πD wave as a function of t′ in logarithmic scale.
The ordering in t′ is the same as in figure 4.5. The colour scheme is described in figure 4.2.
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Resonance Parameter M[MeV/c2] A1[MeV/c2] A2[MeV/c2]
a1(1260) Mass 1285.8± 0.1 1307.5± 0.3 1290.6± 0.4

Width 444.3± 0.3 342.6± 1.0 383.7± 0.7
a1(1420) Mass 1408.1± 0.1 1408.6± 0.2 1412.6± 0.3

Width 156.7± 0.5 160.1± 0.6 152.4± 0.8
a′1 Mass 1751.9± 0.4 1748.7± 1.7 1940.9± 1.5

Width 257.4± 1.3 566.7± 3.6 152.0± 3.1
a2(1320) Mass 1314.2± 0.0 1313.6± 0.1 1314.1± 0.1

Width 108.0± 0.1 105.9± 0.1 109.0± 0.1
a′2 Mass 1647.9± 0.2 1791.5± 1.9 1766.5± 1.6

Width 430.2± 0.4 502.5± 4.2 315.6± 3.8
a4(2040) Mass 1933.7± 0.2 1942.5± 0.5 1946.4± 0.5

Width 357.4± 0.6 369.1± 1.3 359.6± 1.1
π(1800) Mass 1795.8± 0.1 1797.0± 0.2 1803.8± 0.2

Width 217.2± 0.3 219.2± 0.5 214.5± 0.5
π2(1670) Mass 1662.5± 0.1 1640.2± 0.8 1639.3± 0.4

Width 292.6± 0.2 294.6± 1.8 295.9± 0.5
π2(1880) Mass 1818.4± 0.1 1945.5± 2.0 1940.2± 0.8

Width 347.0± 0.3 359.4± 3.3 304.8± 2.1

Table 4.7: Resonance parameters for the best solution of the extended wave set (M) and
the two ambiguous solutions with the smaller wave set (A1 and A2). Where applicable
the given resonance names are attributed by a rough accordance with the values in [13].
For the a′1 and a′2 no clear assignment is possible. The given errors are the statistical ones
determined by the fitter.
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Figure 4.31: Intensity of the 2−+0+ f2(1270)πD wave as a function of t′ in logarithmic scale.
The ordering in t′ is the same as in figure 4.5. The colour scheme is described in figure 4.2.
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4.4 Systematic Studies of the Model

That the changes in the resonances parameters between the extended wave set and the
smaller one were quite pronounced already hints that the systematic errors are by far the
dominant ones. In order to get a good estimate on them 14 further studies with 1000 fits
each were performed testing different aspects of the model and of the event selection.
Since the amount of information used by the fitter for the smaller wave set is much less
than for the extended fit, the smaller wave set is not included into the systematics. In the
following the individual studies will be presented always comparing to the results of the
13 waves model from the previous section, being referred to as the main fit. The scale of
the spread of the resonance parameters of all systematic studies is shown in figure 4.32.
The a2(1320) is, as expected, extremely stable. Furthermore the a1(1420), a4(2040) and
π(1800) are rather stable as well, because they are not affected by other resonances in their
waves. A larger spread of parameter values is observable for the π2(1670), π2(1880) and
a′2. Due to the strong non-resonant contributions in the 1++0+ρ(770)πS and D waves the
a1(1260) parameters are less stable. The ones of the a′1 are for the same reason more or less
undetermined.
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Figure 4.32: Resonance parameters estimated in the systematic studies. The black circle
around the dots marks the solution from the main fit.
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4.4.1 Reproducibility of Results

Having seen how large the discrepancies between fits with different models can be the
most important study is whether the results are reproducible within one model. First
it was checked, whether 1000 fits are enough to reproduce the fit result, using only the
first 1000 fits of the larger study of the main fit. Then the fits were repeated on another
computing cluster and finally the start-value range of the a′1 was shifted to demonstrate
that the fit is insensitive to the particular choice of values as was already concluded in
section 4.2 from the distribution of the starting values of fits that resulted in the best χ2.
The new start-value range is shown in figure 4.33. Table 4.8 summarises the resulting
resonance parameters. The largest deviation between all four studies is 0.2 MeV/c2, so the
reproducibility can be considered as perfect. Additionally the spread of parameter values
within the chosen solutions was checked, being at most 0.1 MeV/c2, and is therefore also
negligible. Summarising these studies, the results after the full procedure with random
start values and applied cuts are the same. Since the spread of parameter values between
the other systematic studies is much larger, their results will only be stated with a precision
of 1 MeV/c2.

Resonance Parameter M[MeV/c2] A[MeV/c2] B[MeV/c2] C[MeV/c2]
a1(1260) Mass 1285.8 1285.7 1285.7 1285.7

Width 444.3 444.3 444.3 444.3
a1(1420) Mass 1408.1 1408.1 1408.1 1408.1

Width 156.7 156.7 156.7 156.7
a′1 Mass 1751.9 1751.9 1751.9 1751.9

Width 257.4 257.4 257.4 257.4
a2(1320) Mass 1314.2 1314.2 1314.2 1314.2

Width 108.0 108.0 108.0 108.0
a′2 Mass 1647.9 1647.9 1647.9 1647.9

Width 430.2 430.3 430.3 430.4
a4(2040) Mass 1933.7 1933.7 1933.7 1933.7

Width 357.4 357.4 357.4 357.4
π(1800) Mass 1795.8 1795.8 1795.8 1795.8

Width 217.2 217.2 217.2 217.2
π2(1670) Mass 1662.5 1662.5 1662.5 1662.5

Width 292.6 292.6 292.6 292.6
π2(1880) Mass 1818.4 1818.4 1818.4 1818.4

Width 347.0 347.0 347.0 347.0

Table 4.8: Table of resonance parameters for study on reproducibility. M denotes a study
with 10 000 fits. A gives the result for the same study using only the first 1000 fits. B is a
study with the same model, but determined on another computing cluster and C denotes
a study were the starting values of the a′1 had been changed in order to be located around
the resulting parameters for this resonance. The new range is shown in figure 4.33.
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Figure 4.33: Alternative starting values for the a′1 (green) and unchanged starting values
for the a1(1260) (blue). An explanation of the used plotting scheme can be found in
figure 4.12.

4.4.2 Influence of the Branchings

The next study tries to estimate the influence of the branchings introduced in equation 4.7
by using independent couplings Cε

α,k(t
′) for all waves instead. After all cuts four different

solutions with the χ2 values given in table 4.9 remained. They are resulting from two
different solutions for the a1 resonances, which both have again two different solutions for
the π2(1880) as can be seen in figure 4.34. The two solutions with the narrower π2(1880)
have nearly equal χ2. However, after an exclusion of the 1++0+ρ(770)πS and D intensities
from the χ2 calculation, the difference between their χ2 is increasing and therefore only
solution 1 with the narrower a′1 is accepted.

Solution 1 2 3 4
Total χ2 308635 308834 311495 311577
χ2 without 1++0+ρ(770)πS, D intensity 284715 287683 290612 287509

Table 4.9: χ2 values of the final solutions for the extended wave set without branchings.

The differences of solution 1 to the main fit are given in table 4.10 and figure 4.35. The
largest change is seen in the a′1 resonance parameters, even though the general trend
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that the first resonances are getting narrower and the second resonances are becoming
broader is also true for the a1(1260), a′2, π2(1670) and π2(1880). Sitting in the tail of the
insufficiently described a1(1260) peak it is not surprising that the a′1 changes the most
and the fitter uses the additional freedom here to improve the description of the rising
flank of the a1(1260) peak for higher t′. Summing up this study, the effect of the additional
constraints is clearly visible and reflects that the separation between resonant and non-
resonant terms done by the fitter is partly ambiguous. The effects of this uncertainty
are the strongest for the 1++ waves, where the non-resonant contributions are the most
prominent.

Resonance Parameter M[MeV/c2] A[MeV/c2]
a1(1260) Mass 1286 1284

Width 444 426
a1(1420) Mass 1408 1408

Width 157 157
a′1 Mass 1752 1694

Width 257 354
a2(1320) Mass 1314 1314

Width 108 108
a′2 Mass 1648 1658

Width 430 433
a4(2040) Mass 1934 1932

Width 357 352
π(1800) Mass 1796 1795

Width 217 212
π2(1670) Mass 1662 1660

Width 293 286
π2(1880) Mass 1818 1820

Width 347 354

Table 4.10: Resonance parameters for study on branchings. M denotes the main fit. A is a
study without further constraints through branchings, where the t′ dependences of the
same resonances in different waves are no longer coupled.
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Figure 4.35: Resonance parameter overview for study on branchings. The black circle
around the dots marks the solution from the main fit.

4.4.3 Study on the Choice of Wave Set

Having seen how strong the differences between the six waves and the thirteen waves
are, one important study is how the resonance parameters depend on the wave set. Since
using only six waves restricts the amount of information too much in order to include it
in the systematic error estimation, only one or two waves are removed in the following.
Starting by leaving out the 1++0+ρ(770)πD wave, so that the a1(1260) and a′1 are directly
defined only by the 1++0+ρ(770)πS wave, results in a vast increase of unphysical solutions
surviving the cut on spurious solutions and having a better χ2 then the physical ones
as can be seen in figure 4.36. Additionally it is the only case in all performed studies,
where a solution with the best χ2 from all that are marked as physical is removed as a
spurious solution. This is shown in figure 4.37. However, lifting this cut and applying all
others leads to figure 4.38, which shows that the best solution has an a1(1260) at around
1.05 GeV/c2, which just describes the rising flank of the resonance peak while the rest is
described by the a′1. This is clearly not a meaningful solution, but was just not filtered
by the cuts on physics. At the end for this wave set without the 1++0+ρ(770)πD wave
the same two classes of ambiguous solutions for the a′1 survive as in the case of only 6
waves. However, the exact a′1 parameters have changed. The a′2 and π2(1880), which also
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significantly changed going from six to thirteen waves, reproduce roughly the main fit
instead of the values from the small wave set.
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Figure 4.36: Mass and width of a1(1260) (blue) and a′1 (yellow) after the removal of
spurious solutions for the extended wave set without the 1++0+ρ(770)πD wave. An
explanation of the used plotting scheme can be found in figure 4.12.

Having observed a significant shift of the two π2 resonances towards each other go-
ing from six to thirteen waves, it is interesting to study, whether this is only due to
the 2−+1+ f2(1270)πD wave, where the π2(1880) is dominant, or is further amplified
by the two other new waves in this sector. Therefore those are left out and only the
2−+1+ f2(1270)πS and 2−+1+ f2(1270)πD waves are included in this study. After re-
moving the unphysical solutions that appear in most studies due to an interchange of
resonance positions of the a1 resonances shown in figure 4.39 the remaining solutions
for the π2 parameter are given in figure 4.40. Besides the two solutions that are roughly
the same as the one of the main fit, there are two solutions with an unexpectedly wide
π2(1670), which are later removed by the proximity cut. In comparison to the main fit
(see figures 4.28, 4.31 and A.11) the narrower physical solution in figure 4.41 exhibits a
peculiarly strong destructive interference. However, this behaviour is vanishing towards
higher t′ in contrast to the unphysical solution, where it continuous over the whole t′

range. So it seems that the fits are distorted by the lack of information.
In general leaving out waves seems to amplify ambiguities and decrease the stability

of the fits. While none of the two studies described above would be able to provide a
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Figure 4.37: Distribution of χ2 values before the removal of spurious solutions for the
extended wave set without the 1++0+ρ(770)πD wave. The plotting scheme is described
in figure 4.13.

reasonable main fit, they are still good to estimate the systematic errors. The resulting
resonance parameters for these studies are compared to the main fit in table 4.11 and
figure 4.42. They support that the large shift of the π2(1880) mass going from 6 to 13
waves is caused by the 2−+1+ f2(1270)πD wave while suggesting that the increase in the
π2(1670) mass is due to the other two new 2−+ waves.

Additionally a study has been performed, where both waves containing the a1(1260)
and a′1 are removed from the wave set, since there are still some issues with their descrip-
tion by the fit due to the large non-resonant contributions in them. That the maximum
deviation for the other resonances is smaller than for the case of only leaving out the
1++0+ρ(770)πD wave can be seen as a slight hint that the shortcomings in describing the
intensity distribution of the 1++ waves in the main fit do not significantly disturb the other
resonances. However, comparing the results of the study without the 1++0+ρ(770)πD
wave and the one without the 2−+1+ f2(1270)πS and 2−+0+ρ(770)πF waves it seems that
the influences of the π2 parameters on the other waves are more pronounced.
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Figure 4.38: Mass and width of a1(1260) (blue) and a′1 (yellow) after all cuts leaving out
the removal of spurious solutions for the extended wave set without the 1++0+ρ(770)πD
wave. An explanation of the used plotting scheme can be found in figure 4.12.
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Figure 4.39: Mass and width of a1(1260) (blue) and a′1 (yellow) after the removal of spurious
solutions for the extended wave set without the 2−+1+ f2(1270)πS and 2−+0+ρ(770)πF
waves. An explanation of the used plotting scheme can be found in figure 4.12.
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Figure 4.40: Mass and width of π2(1670) (blue) and π2(1880) (green) after the cut on the in-
terchange of resonance positions for the extended wave set without the 2−+1+ f2(1270)πS
and 2−+0+ρ(770)πF waves. An explanation of the used plotting scheme can be found in
figure 4.12.
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Figure 4.41: Intensity in the 2−+1+ f2(1270)πS (left) and the 2−+1+ f2(1270)πD (right)
waves for the lowest t′ bin in the best physical (upper row) and unphysical (lower row)
solution after the cut on the interchange of resonance positions for a systematic study
without the 2−+1+ f2(1270)πS and the 2−+0+ρ(770)πF waves. The colour scheme is
described in figure 4.2.
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4.4.4 Study on the Choice of Parametrisation

Since it was observed that the description of the rising flanks of the a1(1260) peaks by the
a1(1260) resonance term in combination with the non-resonant term of the 1++0+ρ(770)πS
or D wave are insufficient, it is important to study the occurring deviations for differ-
ent parametrisations. This is even more the case, because the non-resonant terms are
parametrised phenomenologically.

One test was performed with a fixed-width Breit-Wigner instead of the Bowler paramet-
risation from equation 4.3 for the a1(1260). In addition three different parametrisations
for the non-resonant terms, which are observed to be the strongest source of systematics
besides the choice of the wave set, were tested. In one study all non-resonant terms use
the simplest parametrisation (equation 4.6) and in another study only the parameter b
was fixed to zero for all terms using the equation 4.5. Furthermore in order to check
whether the description of the rising part of the a1(1260) peak can be better described by
an increase in the freedom of the non-resonant contributions the following parametrisation
was used in the 1++0+ρ(770)πS and D waves:

(m−mthreshold)
b0+b1t′+b2t′2 e(c0+c1t′+c2t′2)q2

(4.8)

As can be seen in table 4.12 the χ2 shrinks with an increased freedom for the non-
resonant contributions, which can be achieved with only slightly more parameters com-
pared to the 68 255 data points. The most significant improvement is noticeable for the
additional factor (m−mthreshold)

b, which improves the χ2 by more than 30 000. Extending
this term further with a build-in t′ dependence does succeed in describing the rise of
the a1(1260) peak in the 1++0+ρ(770)πS wave, but leads to a suspicious result for the
1++0+ρ(770)πD wave shown in figure 4.43. Furthermore the fitter has huge problems
converging and often runs into the parameter limits as can be seen in table 4.13.

Parametrisation of non-resonant term χ2 Nparameter

Extended parametrisation from equation 4.8 307 418 629
Main fit 325 125 622
b = 0 in parametrisation from equation 4.5 356 248 619
Parametrisation from equation 4.6 for all waves 366 348 610

Table 4.12: χ2 values for different parametrisations of the non-resonant terms.

The resonance parameters resulting from the different studies are presented in table 4.14
and figure 4.44. While the change of the a1(1260) parametrisation is almost only changing
the parameters of the a1 resonances, the usage of the extended non-resonant term from
equation 4.8 additionally influences the a′2. The other two changes in the parametrisation
influence all resonances considerably as can be expected, because they were applied to
more waves. In waves with two resonances the first always gets lighter and the second
heavier. For the simple parametrisation from equation 4.6 all resonances except the
π2(1670) are additionally getting narrower. So, in general the large systematic effects from
the non-resonant terms are clearly visible.

The test with the simpler fixed-width a1(1260) parametrisation results in the lightest
and broadest a1(1260) of all systematic studies. However, since the parametrisations are
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Figure 4.43: Intensity of the 1++0+ρ(770)πD wave as a function of t′ in logarithmic scale
for the study with the extended parametrisation of the non-resonant terms given in
equation 4.8. The ordering in t′ is the same as in figure 4.5. The colour scheme is described
in figure 4.2.

87



Chapter 4 Extraction of Resonance Parameters

Cut Number of remaining fit results
966

Failed convergence 681
Parameter close to limits 92
Spurious solutions 52
Interchange of resonance positions 52
Proximity of resonances 52
Resonances outside fit range 52

Table 4.13: Overview on the applied cuts for the study with the extended non-resonant
terms from equation 4.8 in the 1++0+ρ(770)πS and D waves.

different the mass and width parameters slightly change in their meaning, so that they are
not directly comparable. This effect is not taken into account and is left for a further study.
Therefore the resulting systematic error might be somewhat overestimated.
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Chapter 4 Extraction of Resonance Parameters

4.4.5 Study on the Used Resonances

In order to check the significance of the not established resonances a1(1420), a′1 and a′2 they
were removed from the model in three separate studies. The χ2 values given in table 4.15
clearly show that the fitter has problems describing some features of the data without
those resonances. For the a1(1420) the fitter was neither able to describe the intensity of
the 1++0+ f0(980)πP wave nor its relative phase motions (see figure 4.15). In the case of
the a′1 and a′2 the description of the waves, where these resonances are more dominant,
also failed (see figures 4.46 and 4.47). However, the description of the 1++0+ρ(770)πS
and the 2++1+ρ(770)πD wave did not suffer visibly. This includes the description of the
interference dip for the 2++ wave, but in order to make up for the missing a′2 the fitter
needs here a 14 MeV/c2 broader a2(1320). The overview on all results is given in table 4.16
and figure 4.48.

χ2 Nparameter

Main fit 325 125 622
Without a1(1420) 443 942 598
Without a′1 372 180 596
Without a′2 452 720 574

Table 4.15: χ2 values for studies without selected resonances.

Resonance Parameter M[MeV/c2] A[MeV/c2] B[MeV/c2] C[MeV/c2]
a1(1260) Mass 1286 1290 1300 1297

Width 444 449 456 450
a1(1420) Mass 1408 — 1407 1404

Width 157 — 157 162
a′1 Mass 1752 1731 — 1721

Width 257 250 — 274
a2(1320) Mass 1314 1314 1314 1318

Width 108 108 108 122
a′2 Mass 1648 1655 1651 —

Width 430 453 454 —
a4(2040) Mass 1934 1933 1935 1934

Width 357 359 354 353
π(1800) Mass 1796 1792 1794 1787

Width 217 218 219 221
π2(1670) Mass 1662 1666 1663 1662

Width 293 283 289 279
π2(1880) Mass 1818 1819 1818 1809

Width 347 350 351 367

Table 4.16: Resonance parameters for studies without selected resonances. M denotes the
main fit. The others are studies leaving out the a1(1420) (A), the a′1 (B) and the a′2 (C).
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Figure 4.45: Intensity of the 1++0+ f0(980)πP wave (left) and its phase relative to the
4++1+ρ(770)πG wave (right) for the main fit (upper row) and the study without an
a1(1420) (lower row) for an intermediate t′ bin. The colour scheme is described in fig-
ure 4.2.
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Figure 4.46: Intensity of the 1++0+ρ(770)πD wave (left) and its phase relative to the
4++1+ρ(770)πG wave (right) for the main fit (upper row) and the study without an a′1
(lower row) for an intermediate t′ bin. The colour scheme is described in figure 4.2.

Besides the broadening of the a2(1320) two other peculiarities are observed in the study
without an a′2. First of all figure 4.50 shows that the best solution in terms of χ2 was
found only twice. However, since these two solutions are unphysical this is not an issue.
Additionally figure 4.49 suggest that the cut on spurious solutions was requiring a too
large number of equal χ2 solutions, but again this is not a problem. One of the four missed
solutions is unphysical, one has a χ2 of roughly 640 000 and the other two are solutions,
where the fitter missed another accepted solution by only 0.1 in χ2. So the final result is
robust against changes in the cut on spurious solutions.

Summarising the studies without selected resonances, it can be stated that all resonances
are required and lead to a significant decrease in the χ2 value.
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Figure 4.47: Intensity of the 2++1+ f2(1270)πP wave (left) and its phase relative to the
4++1+ρ(770)πG wave (right) for the main fit (upper row) and the study without an a′2
(lower row) for an intermediate t′ bin. The colour scheme is described in figure 4.2.
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Figure 4.48: Resonance parameter overview for studies without selected resonances. The
black circle around the dots marks the solution from the main fit.
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interpreted as a not normalised probability of a fit to result in a χ2 interval with Nsameχ2
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Figure 4.50: Distribution of χ2 values before the removal of spurious solutions for the ex-
tended wave set without the a′2 resonance. The plotting scheme is described in figure 4.13.

95



Chapter 4 Extraction of Resonance Parameters

4.4.6 Study on the Event Selection

Finally two studies have been performed on how robust the resonance parameters are
against an increase of the incoherent background due to, for example, kaons or non-
exclusive events. This is achieved by first removing the cuts on particle identification and
on central production. In the second study additionally the condition on the coplanarity
and the requirement of exactly on reconstructed track in the RPD were lifted. Thereby the
fraction of non-exclusive events is increased. The total number of events is in the first study
increased by approximately 26% and in the second study increased by approximately 76%.
In both studies roughly 10% of the additional events are absorbed by the flat wave, which
results in an increase of its relative total intensity from 3.09% to 4.78% and 5.63%. The
rest is distributed over the other waves. Due to the nature of the background it typically
does not interfere with the diffractive-dissociation process. However, since no incoherent
terms are applied to the model, the fitter has to describe this background in terms of
coherently summed contributions. In the ideal case this would completely be absorbed
by the non-resonant terms. However, as can be seen in table 4.17 and figure 4.51 it also
influences the resonance parameters. The magnitude of the changes is small compared to
other studies, but the direction of the variations is especially for the a4(2040), π(1800) and
π2(1880) different than in the rest of the studies.

Resonance Parameter M[MeV/c2] A[MeV/c2] B[MeV/c2]
a1(1260) Mass 1286 1295 1288

Width 444 451 432
a1(1420) Mass 1408 1407 1406

Width 157 150 146
a′1 Mass 1752 1747 1747

Width 257 209 212
a2(1320) Mass 1314 1314 1314

Width 108 108 108
a′2 Mass 1648 1652 1651

Width 430 444 432
a4(2040) Mass 1934 1944 1944

Width 357 350 345
π(1800) Mass 1796 1802 1804

Width 217 219 220
π2(1670) Mass 1662 1664 1664

Width 293 282 283
π2(1880) Mass 1818 1834 1838

Width 347 358 373

Table 4.17: Resonance parameters for study on event selection. M denotes the main
fit. A removed the cuts due to particle identification and on central production in the
event selection. For B the condition on the coplanarity and the requirement of exactly on
reconstructed track in the RPD were lifted additionally.
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Figure 4.51: Resonance parameter overview for study on event selection. The black circle
around the dots marks the solution from the main fit.

4.4.7 Comparison with the PDG 2012

Finally all studies are combined in a systematic error by using the largest deviation seen
with respect to the main fit, which determines the central values. The results are listed
in table 4.18 in combination with the corresponding averages from the PDG 2012 [13].
The comparison of the central values is visualised in form of an excitation spectrum in
figure 4.52. For a representation including the errors the summary plot from the beginning
of this chapter has been extended by adding the values from experiments that were used
for averaging in the PDG 2012. In order to adapt the scale to the size of the individual
spreads the plot is split into the five parts shown in figure 4.53, 4.54, 4.55, 4.56 and 4.57.

The a1(1260) results are at the high-mass side of the PDG 2012 estimate and most of the
other experiments. However, since COMPASS for the first time performed an analysis in
bins of t′, which improves the separation of resonant and non-resonant contributions, this
is not an unlikely effect. The errors are defined by two solutions. The broadest and lightest
a1(1260) is from the study with the fixed-width parametrisation, which as stated before
might overestimate the error. Whereas the narrowest and heaviest solution is related to
the extremely broad a′1 from the study with only the 1++0+ρ(770)πS wave containing
those two resonances.

The a′1 itself is more or less undetermined, therefore the values for the a1(1640) as well
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Resonance Parameter COMPASS Result PDG 2012

[MeV/c2] [MeV/c2]

a1(1260) Mass 1285.8 +20.4
−53.9 1230± 40

Width 444.3 +31.8
−107.3 250 to 600

a1(1420) Mass 1408.1 +11.1
−3.6 —

Width 156.7 +5.8
−19.8 —

a′1 Mass 1751.9 +204.5
−57.7 1647± 22 1930 +30

−70

Width 257.4 +247.3
−132.4 254± 27 155± 45

a2(1320) Mass 1314.2 +3.5
−2.7 1319.0 +1.0

−1.3

Width 108.0 +14.3
−1.8 105 +1.6

−1.9

a′2 Mass 1647.9 +39.4
−0.0 1732± 16

Width 430.2 +35.5
−58.1 194± 40

a4(2040) Mass 1933.7 +10.8
−15.8 1996 +10

−9

Width 357.4 +5.0
−14.8 255 +28

−24

π(1800) Mass 1795.8 +8.6
−8.7 1812± 12

Width 217.2 +3.4
−10.2 208± 12

π2(1670) Mass 1662.5 +3.5
−30.6 1672.2± 3.0

Width 292.6 +20.0
−13.4 260± 9

π2(1880) Mass 1818.4 +19.1
−9.3 1895± 16

Width 347.0 +25.8
−47.5 235± 34

Table 4.18: Resonance parameters with systematic errors and values from the PDG
2012 [13]. For the a2(1320) the average for the 3π mode is stated and since the COMPASS
parameters for the a′1 are spread so widely the values of the a1(1640) and the further state
a1(1930) are presented.

as the ones for the a1(1930) are stated from the PDG 2012. The errors are mainly given
by the study with only the 1++0+ρ(770)πS wave containing this resonance. The lowest
mass, however, is from the solution without applied branchings. In order to improve the
certainty of the parameters of this resonance as well as those of the a1(1260) additional
studies including more waves and a more realistic description of the non-resonant terms
are required.

Since it was newly discovered by COMPASS the a1(1420) is not listed in the PDG
2012. Nevertheless, owing to its well-pronounced phase motions, it is already quite well
determined and fluctuations between different studies are small. The error is spanned by
the light solution without an a′2 and the heavy solution with only two waves in the 2−+

sector.
As the most well-determined 3π resonance the a2(1320) is often used to check for
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Figure 4.52: Comparison of the centre values from the COMPASS analysis given in
table 4.18 (blue) with the PDG 2012 [13] (grey). The centres of the bars mark the masses
of the resonances, while the full heights represent their widths. Since no central value is
given for the PDG 2012 width estimate of the a1(1260), the parameters for this resonance
are taken from the only experiment that is included in fits and limits. Due to the problems
fitting three resonances in the same wave that are described in section 4.2 no COMPASS
values for a third resonance with JPC = 2−+ are given.

problems in the analysis. While there is a deviation from the PDG 2012 3π average,
looking at the individual measurements the COMPASS result is in quite good agreement.
For nine of the thirteen measurements used for the average of mass and width the central
value of this study lies within their 1σ error intervals. Furthermore it is interesting to see
that the strong outlier due to a fit without an a′2 is within one σ of the PDG 2012 average.
Considering that in general previous measurements did not include a second a2 due to
lack of data in the high-mass region of this wave the observed tension is less significant.

For the a2(1700), which is omitted from the PDG 2012 summary table, a clear discrep-
ancy is observable for the COMPASS results with respect to the values from the PDG 2012.
From the two measurements that are closest to the result of this thesis one is separated
in terms of its errors by 0.3σ in mass and 2.1σ in width, while the other is 1.3σ away in
mass and 3σ in width. However, the largest deviation for this resonance in the different
studies are observed for the four different parametrisations of the non-resonant term, so
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Figure 4.53: Comparison of the results from COMPASS with the PDG 2012 values [13] for
the a1(1260) (green) and a′1 (blue). While the full circles mark the individual systematic
studies performed for the COMPASS data, the open circles show the listed measurements
of these resonances in the PDG 2012. Note that in general only the values used for the
PDG 2012 average are shown. However, in the case of the a1(1260) no average is stated
and therefore all scattering and proton-proton collision data are used. The average PDG
2012 value itself is marked by the black dots, whereas the respective errors are represented
by the light grey boxes around them.

there is still quite some room for improvement for the a2(1700) parameters with a better
characterisation of the non-resonant contribution.

The determined parameters of the π(1800) are in quite good agreement with the PDG
2012 and the individual studies are distributed more or less homogeneously in the error
interval.

For the a4(2040) on the contrary the deviation from the PDG 2012 is significant. However,
the spread of values listed in the PDG 2012 is quite large. Nevertheless most experiments
listed in the PDG 2012 find a higher mass then determined in this study with a deviation
of up to 4σ in terms of their errors. Compared to this the divergence in between the
individual systematic studies is rather small.

Finally the π2(1670) and π2(1880) are both significantly deviating from the PDG 2012
average by 3 to 5σ in mass and width. However, the largest shift in terms of resonance
parameters is observed between six waves and thirteen waves for these resonances. The
π2(1880) mass, for example, was at 1.94 GeV/c2 for the six-waves model, which is on the
high-mass side of the PDG 2012 average and therefore significantly closer to two of the
four listed experiments. Additionally the systematic error is mostly defined by the study
leaving out two 2−+ waves and by the ones changing the non-resonant parametrisation
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Figure 4.54: Comparison of the results from COMPASS with the PDG 2012 values [13]
for the a2(1320) (blue). The new a1(1420) resonance (green) is plotted in addition. The
plotting scheme is the same as previously in figure 4.53.
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Figure 4.55: Comparison of the results from COMPASS with the PDG 2012 values [13] for
the a′2. The plotting scheme is the same as previously in figure 4.53.
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Figure 4.56: Comparison of the results from COMPASS with the PDG 2012 values [13] for
the a4(2040) (green) and π(1800) (blue). The plotting scheme is the same as previously in
figure 4.53.

in, beside others, the 2−+0+ f2(1270)πS wave. In order to fully explain the deviation more
dedicated studies are necessary.

Considering all resonances the fit result looks in general convincing. However, the seen
deviations require further dedicated work that studies primarily the influences of the
chosen wave set and improves the description of the non-resonant terms.
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in figure 4.53.
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Chapter 5

Fit of t′ Dependence

In contrast to the m3π distribution, which was used in the previous chapter to extract
resonances, the topic of this chapter is the t′ distribution. The simplest approach is to
look at t′ spectra for different slices of the m3π distribution like it is done, for example, in
figure 5.1.
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Figure 5.1: t′ distribution in the kinematic range of 0.80 ≤ m3π ≤ 0.81 GeV/c2 (left) and
1.60 ≤ m3π ≤ 1.61 GeV/c2 (right) [17].

The ACCMOR Collaboration used this method for the so far most detailed parametrisa-
tion of the t′ dependences [53]. However, the novel method including the t′ binning in
the resonance extraction now allows to study the t′ dependences for individual resonant
and non-resonant contributions. For this purpose for each t′ bin the intensities of these
components are integrated over the m3π fit range in the single waves.

The result for the 1++0+ρ(770)πS wave in the main fit from the previous section is given
in figure 5.2. In addition to the m3π-integrated intensities also the phases of the complex
couplings of the individual contributions are plotted relative to the one of the a2(1320)
in the 2++1+ρ(770)πD wave. Furthermore the intensity distributions are parametrised
by an exponential distribution with slope parameter b. This parametrisation is motivated
by a calculation of the t′ dependence of the cross section assuming elastic scattering via
Pomeron exchange and using the elastic form factor of the pion [39]. This results for a
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fixed centre-of-mass energy and the t′ . 1 GeV2/c2 range of diffractive scattering roughly
in:

dσ

dt′
∝ e−bt′
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Figure 5.2: t′ dependence of the m3π-integrated intensity (upper row) and the phase
(lower row) of the a1(1260) (left), the a′1 (centre) and the non-resonant term (right) in the
1++0+ρ(770)πS wave in the main fit. The red line indicates the fit of the single exponential
parametrisation in equation 5.1 to the data represented by the red bars. The height of the
bars shows the statistical error. Dotted lines indicate an extrapolation beyond the fit range.

However, applying this to states with a spin projection M 6= 0 an additional term
is needed, since M introduces a dependence on the azimuthal angle φ in the intensity
distribution. This angle is not defined in the forward limit of zero scattering angles
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and therefore the intensity has to vanish in this limit. The suppression is realised by an
additional factor t′|M| leading to the final parametrisation in the form:

dσ

dt′
∝ t′|M|e−bt′ (5.1)

Especially for non-resonant terms it happens that a second component with a shallower
slope is dominant for higher t′. Therefore bins at the end or to a limited extend also at the
beginning of the accessed t′ range have been excluded from the fit with equation 5.1.

Including all other solutions that were used to determine the systematic error for the
resonance parameters leads from figure 5.2 to figure 5.3. It is striking that while the
a1(1260) and the non-resonant term behave more or less stable, the a′1 distribution exhibits
large fluctuations. This is not unexpected recalling the large spread in the a′1 resonance
parameters. However, in contrast to the a1(1260) and the a′1 resonance, where the phase
does not vary strongly with t′, the phase of the non-resonant term significantly grows
with t′ in order to describe the peak shift of the a1(1260). This behaviour is also observed
for the majority of the other resonances. However, in some waves the second resonance as
well as the non-resonant term deviate from this behaviour. This indicates that the fitter has
problems to disentangle them for these waves. One example for this is the a′2 in figure 5.5.

In the following the three waves defining the a2 resonances, namely 2++1+ρ(770)πD,
2++2+ρ(770)πD and 2++1+ f2(1270)πP are discussed. Their t′ dependence is shown in
figures 5.4, 5.5 and 5.6.

In figure 5.4 it can nicely be seen that all phases are given relative to the a2(1320) in
the 2++1+ρ(770)πD wave. Therefore the phase of this resonance is completely flat by
definition. The a2(1320) has been chosen as the reference, because it appears in one of the
largest waves in the wave set, which is included in all systematic studies. Furthermore the
a2(1320) is the clearest and best-known resonance in the 3π spectrum. In the intensities
the effect of the t′|M| factor in the parametrisation is visible, which agrees well with the
data. In figure 5.5 the effect is even stronger for M = 2.

The effect of the implemented branchings can be seen, for example, for the
2++1+ f2(1270)πP wave in figure 5.6. Apart from an offset the t′ dependences of
the phases of the a2(1320) and a′2 are the same as for the 2++1+ρ(770)πD wave, which is
coupled to this wave via the branchings in equation 4.7. The only phase shift is visible
for the systematic study without branchings. However, that this shift is rather small for
the a2(1320), which has in its intensity peak from all observed resonances the smallest
non-resonant contribution, further supports the separation of the dependence on the
decay and t′ performed in equation 4.7. The M = 2 wave in figure 5.5 shows a different t′

dependence, because the spin projection enters in equation 5.1. However, the observed
phase motion for the a2(1320) is still small.

It is also interesting to look at the interplay between the a′2 and the non-resonant term.
While for the 2++2+ρ(770)πD and the 2++1+ f2(1270)πP waves, which mainly define
the a′2, the phase of either the a′2 or the non-resonant term is strongly varying over t′,
they are both rather stable in the 2++1+ρ(770)πD wave. For the 2++1+ f2(1270)πP wave,
where a variation of the a′2 is suppressed by the coupling to the 2++1+ρ(770)πD wave
through the branchings, the changing component is the non-resonant term, whereas in the
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Figure 5.3: t′ dependence of the intensity (upper row) and the phase (lower row) of the
a1(1260) (left), the a′1 (centre) and the non-resonant term (right) in the 1++0+ρ(770)πS
wave. Like in figure 5.2 the red line indicates the fit of the parametrisation in equation 5.1
to the data of the main fit shown in red. The systematic studies discussed in section 4.4 are
plotted with blue lines and blue data bars. The height of the bars represents the statistical
error. Dotted lines indicate an extrapolation beyond the fit range.
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Figure 5.4: t′ dependence of the intensity (upper row) and the phase (lower row) of the
a2(1320) (left), the a′2 (centre) and the non-resonant term (right) in the 2++1+ρ(770)πD
wave. The plotting scheme is the same as in figure 5.3.
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Figure 5.5: t′ dependence of the intensity (upper row) and the phase (lower row) of the
a2(1320) (left), the a′2 (centre) and the non-resonant term (right) in the 2++2+ρ(770)πD
wave. The plotting scheme is the same as in figure 5.3.
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Figure 5.6: t′ dependence of the intensity (upper row) and the phase (lower row) of the
a2(1320) (left), the a′2 (centre) and the non-resonant term (right) in the 2++1+ f2(1270)πP
wave. The plotting scheme is the same as in figure 5.3.
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2++2+ρ(770)πD wave that is not constraint via branchings it is the a′2. This is again a sign
that the fit has problems separating the a′2 from the non-resonant contributions.

Furthermore it is interesting that in the systematic study without an a′2 the phase of
the non-resonant term in the 2++1+ f2(1270)πP wave is nearly constantly at about −50◦,
while most other studies show a significant growth with t′. The study without an a′2 also
leads to the highest observed intensity for the non-resonant term in this wave, whereas the
steepest slope is due to the study, in which the explicit t′ dependence was removed from
the parametrisation of the non-resonant terms. The shallowest slope and lowest intensity,
however, is from the study leaving out two 2−+ waves.

The 2−+0+ f2(1270)πS wave, which is the third large wave in the wave set and the
1++0+ f0(980)πP wave, which contains the new a1(1420), are shown in figures 5.7 and 5.8.
Both are rather stable. The only significant divergence can be seen for the study, where
the 1++0+ f0(980)πP wave is fitted without the a1(1420). In this model the intensity of the
non-resonant contribution increases drastically and also changes its phase behaviour.

The resulting exponential slopes from the fit with the parametrisation from equation 5.1
are listed for the resonances in table 5.1 and for the non-resonant terms in table 5.2. While
the slopes of the resonances are mostly around 8 (GeV/c)−2, the ones for the non-resonant
contributions are with a few exceptions above 11 (GeV/c)−2. This means that the intensity
of the non-resonant parts drops in general faster with rising t′ and therefore the spectrum
is in general cleaner for higher t′. However, most non-resonant terms exhibit a second
component with a significantly shallower slope above roughly 0.5 GeV2/c2.

The largest systematic error, being +20.2
−0.1 (GeV/c)−2, occurs for the a′1, which is not sur-

prising looking at figure 5.3. The statistical errors are with a maximum of 0.1 (GeV/c)−2for
the resonant and 0.4 (GeV/c)−2for the non-resonant terms again mostly negligible and
therefore are not listed.

For the non-resonant term in the 2−+0+ρ(770)πF wave no values are given. This is
because of the determined t′ dependence shown in figure 5.9. For most studies it is strongly
curved, though for M = 0 only a straight line in the logarithmic representation is allowed
in the parametrisation. Therefore the fitter is simply incapable of finding a valid solution.
The large visible statistical errors for lower t′ indicate problems of the mass-dependent fit
determining this contribution, which most likely also lead to this unusual t′ dependence
and is an additional hint that the parametrisation of the non-resonant terms needs to be
improved for further work.
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2−+0+ f2(1270)πS wave. The plotting scheme is the same as in figure 5.3.
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Resonance Partial Wave Slope b [(GeV/c)−2]

a1(1420) 1++0+ f0(980)πP 9.2 +0.5
−0.8

a1(1260) 1++0+ρ(770)πS ∗ 12.7 +0.5
−3.9

1++0+ρ(770)πD ∗ 12.5 +0.9
−1.7

a′1 1++0+ρ(770)πS ∗ 3.8 +20.2
−0.1

1++0+ρ(770)πD ∗ 3.8 +8.3
−1.2

a2(1320) 2++1+ρ(770)πD ∗ 8.3 +0.2
−0.7

2++1+ f2(1270)πP ∗ 8.4 +0.2
−0.8

2++2+ρ(770)πD 8.6 +0.0
−0.1

a′2 2++1+ρ(770)πD ∗ 5.7 +5.7
−0.2

2++1+ f2(1270)πP ∗ 5.7 +2.9
−0.2

2++2+ρ(770)πD 13.4 +0.4
−3.1

a4(2040) 4++1+ρ(770)πG ∗ 8.5 +1.7
−0.2

4++1+ f2(1270)πF ∗ 8.5 +2.3
−0.3

π(1800) 0−+0+ f0(980)πS 8.4 +1.7
−0.3

π2(1670) 2−+0+ f2(1270)πS ∗ 8.1 +4.3
−1.1

2−+0+ f2(1270)πD ∗ 8.1 +4.2
−0.5

2−+0+ρ(770)πF ∗ 8.1 +1.9
−0.4

2−+1+ f2(1270)πS 3.8 +2.2
−0.4

π2(1880) 2−+0+ f2(1270)πS ∗ 7.6 +3.5
−0.1

2−+0+ f2(1270)πD ∗ 7.6 +3.5
−0.1

2−+0+ρ(770)πF ∗ 7.6 +1.3
−0.1

2−+1+ f2(1270)πS 18.6 +0.6
−4.3

Table 5.1: Slopes of the t′ spectra of the resonances with systematic errors. The statistical
errors are negligible. For the individual resonances the asterisks mark waves, which
are coupled through the branchings. The slopes of resonances in coupled waves are not
always exactly identical, because the relative errors are not increasing with the same rate
with t′ due to different intensities of the resonances in different waves.
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Figure 5.9: t′ dependence of the intensity (upper row) and the phase (lower row)
of the π2(1670) (left), the π2(1880) (centre) and the non-resonant term (right) in the
2−+0+ρ(770)πF wave. The plotting scheme is the same as in figure 5.3.
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Partial Wave Slope b [(GeV/c)−2]

1++0+ f0(980)πP 11.5 +2.0
−1.1

1++0+ρ(770)πS 15.1 +11.0
−2.5

1++0+ρ(770)πD 15.6 +1.8
−12.0

2++1+ρ(770)πD 13.9 +7.0
−1.9

2++1+ f2(1270)πP 12.2 +5.6
−9.1

2++2+ρ(770)πD 8.0 +0.7
−0.4

4++1+ρ(770)πG 17.1 +1.5
−4.0

4++1+ f2(1270)πF 11.5 +4.7
−0.4

0−+0+ f0(980)πS 24.2 +4.8
−2.9

2−+0+ f2(1270)πS 11.0 +1.9
−7.2

2−+0+ f2(1270)πD 15.1 +2.1
−4.4

2−+0+ρ(770)πF —

2−+1+ f2(1270)πS 8.5 +1.0
−2.1

Table 5.2: Slopes of the t′ spectra of the non-resonant terms with systematic errors. The
statistical errors are negligible. The non-resonant term in the 2−+0+ρ(770)πF wave is not
compatible with the parametrisation in equation 5.1 (see figure 5.9).
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Chapter 6

Conclusions

The large data set from the 2008 COMPASS hadron run permits to study the 3π spectrum
in unprecedented detail. In combination with a novel analysis method that combines the
information of several t′ bins this leads on the one hand to a better separation of resonant
and non-resonant components in the resonance parameter extraction and on the other
hand allows for the first time to study in detail the t′ dependences of the intensities and
phases of individual components.

The new resonance denoted a1(1420), which has been found in the previous
work [17], was confirmed in this thesis with parameters ma1(1420) = 1408 MeV/c2 and
Γa1(1420) = 157 MeV/c2. This resonance is highly peculiar, because whether models nor
lattice calculations expect a resonance in this mass region. The fact that it is only observed
in the decay mode to f0(980)π hints to an exotic nature of the a1(1420) or to coupled
channel effects from the decay of the a1(1260) to K∗(892)K [54].

For the extraction of resonance parameters extensive systematic studies are extremely
important, not just because the statistical errors are very small, but also because due
to many local minima reproducible results are only achievable with a large number of
different fits. This thesis presented a novel method using additional constraints in order
to filter out the relevant solutions from the up to 10 000 fits created by random starting
values and different orders of releasing the parameters of the dynamical terms during the
fit.

Despite the selection criteria two ambiguous solutions remained for the original wave
set, which includes six partial waves and is close to that of previous analyses, like [16].
In order to resolve these ambiguities the wave set was extended by seven further waves.
To large extends the data could be well described without additional resonances. How-
ever, especially the results for π2(1670) and π2(1880) significantly deviate from the PDG
2012 [13]. This shift of the resonance parameters is caused by the additional constraints
due to the enlarged wave set. Furthermore the systematic errors for the a1(1260) and the
a′1 are still large. The main source for this are the uncertainties in the parametrisation of
the non-resonant terms and the choice of the wave set.

6.1 Outlook

In order to reduce the systematic uncertainty caused by the choice of the wave set, further
studies including more waves are planned. For the practical reason of computing time
they will most likely be dedicated to individual sectors in JPC. However, simultaneously
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the non-resonant terms need to be improved. Two different ways to approach this are
in preparation. One is to simulate the believed to be dominant source for non-resonant
contributions, namely the Deck-effect, with Monte-Carlo (MC) methods and to decompose
the MC data into partial wave amplitudes. The thereby achieved spectral distribution
could then be used as a parametrisation for the non-resonant terms.

The other approach are so-called Pietarinen expansions, where resonances are described
as poles in the complex energy plane. The amplitudes of the resonant and non-resonant
terms are then described by the poles in combination with a number of Pietarinen power
series. The Pietarinen functions are a complete set of functions with well-known analytic
properties. By the use of this series the arbitrariness in the choice of parametrisations
is avoided and the number of power series used is simply based on the maximally
allowed deviation of the fit from the data. For further information please refer to [55, 56]
and citations therein. This alternative approach looks most promising and was already
successfully applied to baryon resonances, but whether and how it can be applied to the
analysis presented here still has to be investigated.

Probably the first improvement that will be implemented is a redefinition of the χ2

function used for minimisation. So far the χ2 has been calculated comparing the real and
imaginary parts of all elements of the spin-density matrix for model and data. While this
is valid as a minimisation criterion, the interpretation of χ2

NDF is problematic, because the
used data points are in general not independent. On the one hand the intensities of the
individual waves are also influencing the off-diagonal elements, where just the phase
information are independent from the intensities. On the other hand the phase between
waves A and B as well as A and C already fully defines the one between B and C. A direct
fit of selected phases is impractical, but another way to remove this redundant information
is to select an anchor wave and fit only the real and imaginary parts of the elements, which
include this wave, making use of the known covariance matrix.

Another source of uncertainty, but this time arising from the mass-independent fit, is
the isobar model in combination with the isobar parametrisation. In order to improve the
description a new kind of analysis method is currently developed [45] on the same data
as used for this thesis. In this method the fixed amplitudes of the isobars are replaced by
piece-wise constant functions, which then are determined by fits to the data, resulting in
an bind isobar shape.

A further consistency check is to fit also the π−π0π0 channel in the 2008 COMPASS data
with the method presented in this thesis. Finally in order to contribute to the long-lasting
discussion of the spin-exotic states, a study including the spin-exotic 1−+1+ρ(770)πP
wave with the π1(1600) in the mass-dependent fit will soon be performed.
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Figure A.1: Part 1 of 3 of the fitted spin-density matrix from figure 4.4. Please refer to the
text there for further information.
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text there for further information.
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Figure A.3: Part 3 of 3 of the fitted spin-density matrix from figure 4.4. Please refer to the
text there for further information.
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A.2 13 waves
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Figure A.4: Part 1 of 10 of the fitted spin-density matrix from figure 4.25. Please refer to
the text there for further information.
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Figure A.5: Part 2 of 10 of the fitted spin-density matrix from figure 4.25. Please refer to
the text there for further information.
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Figure A.6: Part 3 of 10 of the fitted spin-density matrix from figure 4.25. Please refer to
the text there for further information.
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Figure A.7: Part 4 of 10 of the fitted spin-density matrix from figure 4.25. Please refer to
the text there for further information.
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Figure A.8: Part 5 of 10 of the fitted spin-density matrix from figure 4.25. Please refer to
the text there for further information.
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Figure A.9: Part 6 of 10 of the fitted spin-density matrix from figure 4.25. Please refer to
the text there for further information.
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Figure A.10: Part 7 of 10 of the fitted spin-density matrix from figure 4.25. Please refer to
the text there for further information.
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Figure A.11: Part 8 of 10 of the fitted spin-density matrix from figure 4.25. Please refer to
the text there for further information.
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Figure A.12: Part 9 of 10 of the fitted spin-density matrix from figure 4.25. Please refer to
the text there for further information.
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Figure A.13: Part 10 of 10 of the fitted spin-density matrix from figure 4.25. Please refer to
the text there for further information.
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Own Contributions

The analysis I performed is based on previous work that is described up to section 4.1.
The decomposition in spin-parity states was finished and a first extraction of resonance
parameters with six partial waves had been performed, but the usage of the fit program
was quite time-consuming and error-prone.

In order to make large scale systematic studies possible I had to create a Python wrapper
that automatically created the configuration files and provided, for example, the start
parameters. Nearly 700 individual fits later trying out over 40 different models with 13
different release orders for the fit parameters I had to realise that there are a lot of local
minima and no single order is able to reliably find the best χ2. Therefore I implemented a
more elaborated search for the global minimum, but with the first successes it became clear
that the newly found best χ2 values often were unphysical. So the major achievement of
the first 8 months was to realise that with the employed minimisation method it is simply
impossible to find central values with systematic errors for the resonance parameters
without performing large-scale studies with random starting values and different release
orders as described in section 4.2.

In order to finish these studies in time I had to implement the automatic generation and
execution of fits with random starting values. The computing jobs had to be submitted to
three completely different computing clusters (E18, CERN, C2PAP), since one single study
with 10 000 fits needed roughly a week on 2000 cores. At the end I had to find appropriate
criteria to select only the physical solutions.
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