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Tobias Schlüter Prof. Dr. Wolfgang Dünnweber
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Zusammenfassung

Diese Dissertation widmet sich der Analyse der Eigenschaften der Systeme π−η und
π−η′. Wir untersuchen dazu Daten, welche das COMPASS-Experiment am CERN im
Jahr 2008 bei den Reaktionen π−p → π−π−π+π0p bzw. π−p → π−π−π+η mit nied-
rigem Impulsübertrag auf das Targetproton (0.1 GeV2 < −t < 1 GeV2) aufgezeichnet
hat. Die isoskalaren Mesonen η und η′ erscheinen dann als als Peaks in den invariante-
Masse-Spektren der Dreikörpersysteme π−π+π0 bzw. π−π+η, die jeweils im Endzustand
π−π+γγ selektiert wurden. Wir zerlegen die so gewonnenen Zweikörpersysteme nach
Partialwellen. Wir finden eine einfache Vorschrift, welche es erlaubt allein anhand von
Phasenraumfaktoren mit guter Übereinstimmung die Amplituden der geraden Partial-
wellen D+ (JP = 2+) und G+ (JP = 4+) zwischen den beiden Endzuständen zu über-
setzen. Desweiteren gehen wir die Frage nach, ob eine beobachtete Intensität der P+-
Welle mit einer Resonanz identifiziert werden kann. Ihr neutraler Isospinpartner hätte
Quantenzahlen JPC = 1−+, welche nicht mit einem Fermion-Antifermion-Zustand iden-
tifiziert werden können, welche also nicht einem Quarkmodellzustand zugeordnet werden
können. Zudem identifizieren wir die bekannten Mesonen a2(1320) und a4(2040), deren
Verzweigungsverhältnisse wir bestimmen

Bevor wir zu diesen Ergebnissen kommen, beschreiben wir die bekannten Eigenschaften
der starken Wechselwirkung im Hinblick auf die Systematisierung mesonischer Systeme.
Wir diskutieren die im von uns betrachteten Bereich hoher Energien und niedriger Im-
pulsüberträge übliche Behandlung von Streuprozessen als t-Kanalaustausch sogenannter
Regge-Trajektorien und erörtern Symmetrieeigenschaften, welche die Datenanlyse erheb-
lich vereinfachen.

Anschließend diskutieren wir das COMPASS-Experiment, wobei wir besonderes Ge-
wicht auf die Teile legen, welche bei der Gewinnung der in dieser Arbeit analysierten
Daten wesentlich waren. Insbesondere beschreiben wir den als Teil dieser Arbeit entwi-
ckelten Sandwich-Veto-Detektor, ein elektromagneitsches Kalorimeter, welches als we-
sentlicher Teil des Triggersystems die verwertbaren Daten um einen Faktor > 3 anrei-
cherte, indem es Ereignisse ausschloss, in welchen Reaktionsprodukte das Spektrometer
verfehlten.

Um die Datenselektion mit bestmöglicher Qualität durchführen zu können, wurde
im Rahmen dieser Arbeit ein datenbasiertes Eichverfahren für die elektromagnetischen
Kalorimeter des COMPASS-Experiments entwickelt. Eine Software zum kinematischen
Fit wurde ebenso entwickelt und benutzt, um eine möglichst hohe Auflösung zu erzielen.
Wir zeigen kinematische Größen, die die vorliegenden Produktionsmechanismen verdeut-
lichen.

Wir erläutern das Analyseverfahren der sogenannten Partialwellenanalyse in seiner
Anwendung auf die betrachteten periphär produzierten Systeme aus zwei Pseudoska-



laren Teilchen und die benutzten Softwarelösungen, welche teilweise eigens für diese
Arbeit entwickelt wurden. Diese Techniken wenden wir auf die Daten an und kommen
so zu den bereits oben erwähnten Ergebnissen. Wir vergleichen auch die Ergebnisse, die
wir mit zwei verschiedenen Ansätzen erhalten. Beim einen wird das π−η(′)-System als
Zweikörpersystem behandelt, beim anderen werden die Dreikörperzerfälle η → π−π+π0

bzw. η′ → π−π+η zur Untergrundseparation benutzt und somit ein Vierkörpersystem
behandelt.

Wir heben an dieser Stelle besonders hervor, dass wir eine einfache Transformation
finden, welche es erlaubt die beobachteten Partialwellen D+ und G+ mit Quantenzahlen
JP = 2+ bzw. 4+ zwischen den beiden Systemen ηπ− und η′π− als qualitativ gleichartig
zu erkennen. Wir stellen aber auch fest, dass diese Gleichartigkeit für die spin-exotische
P+-Welle nicht gegeben ist.

Zuletzt führen wir in Analogie zu früheren Analysen Modellfits durch, in welchen wir
Parametrisierungen der Daten anhand von Breit-Wigner-Resonanzamplituden finden,
und nutzen diese, um Verzweigungsverhältnisse der bekannten a2(1320) und a4(2040)
Mesonen zu gewinnen. Wir vergleichen diese mit den Vorhersagen aus der Theorie der
η-η′-Mischung, und im Falle des a2(1320), mit früheren Messungen.

In Anhängen sammeln wir einige nützliche Formeln und außerdem Ergebnisse, welche
nicht zum Hauptteil dieser Arbeit passen.
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1. Introduction

The structure of particle physics has remained stable ever since the introduction of what
is now called the Standard Model of particle physics some forty years ago. It is a gauge
field theory which divides the elementary particles into two categories: the leptons,
subject to the electroweak interaction, and the hadrons, subject to both the electroweak
interaction and the strong interaction SU(3). These interactions are themselves mediated
by quantized fields which number four in the case of the electroweak interaction, the
massless photon and the massive vector gauge bosons Z, W+, W−, and the massless
gauge boson of the strong interaction, the gluon. The building particles of the standard
model have been all identified in the laboratory with one exception: at the time of this
writing the experimental discovery of the last remaining ingredient, the Higgs boson,
part of the mechanism of electroweak symmetry breaking which lends the weak gauge
bosons Z, W± their masses, is imminent. First indications of this boson were found in
the vicinity of a mass of 125 GeV, but only in the summer of 2012 enough data will be
available to confirm or refute these indications.

Quantum Chromodynamics (QCD), the theory of the strong interaction,1 on the other
hand has been vindicated in the laboratory time and again, but it poses its own chal-
lenges: its low-energy regime is that of strong coupling where perturbative expansions
in terms of the coupling strength become impossible. Only at high-energies does the
so-called running of the coupling constant allow for perturbative calculations, and the
theory has enjoyed tremendous success in this region. At low energies however, calcula-
tions need to rely on models that capture the properties of the theory essential to the
task at hand. This does especially apply to the manifestations of the strong interaction
that lead the way to the discovery of quantum chromodynamics: namely the structure of
mesons and baryons. The symmetries and structures of these particles could be under-
stood in a framework of underlying fractionally-charged fermions, combining in groups of
two (particle-antiparticle, the mesons) or three (particles or antiparticles, the baryons),
the quarks [Gell-Mann, 1964; Zweig, 1964a,b]. Yet, while the observed regularities in
the meson and baryon spectra lead to the discovery of the underlying theory, QCD, This
underlying theory didn’t allow for calculation of the properties of the hadrons. Various
approaches to the problem have been developed.

Chiral Perturbation Theory One such approach to low-energy QCD comes from effec-
tive field theories, especially Chiral Perturbation Theory [Gasser and Leutwyler, 1984,
1985; Weinberg, 1979]. This is an effective theory of the light mesons which respects

1A complete set of references covering the history and current research of this field is given in Ref. [Kro-
nfeld and Quigg, 2010].
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the internal symmetries of QCD together with a so-called power counting scheme which
allows a systematic expansion in terms of particle momenta and/or energies. As such it
can be used to calculate the interactions of the light mesons. By use of dispersion rela-
tions which follow from unitarization and analyticity requirements, it has recently been
used successfully to describe two-pion states up to the KK̄ threshold [Ruiz de Elvira
et al., 2011]. To lowest order chiral perturbation theory is equivalent to the pre-QCD
current algebra, yet the systematic expansion possible with chiral perturbation theory
has proven successful in the calculation of processes such as the η → 3π decays which is
hugely underestimated in the lowest order approximation and thus current algebra, or
the two-photon decays of the π0 and η mesons, which are the main confirmation of the
existence of the existence of SU(3)color. The theory has been expanded by also including
in the power-counting scheme systematically the effects of the 1/NC expansion which
allows inclusion of the η′ meson [Leutwyler, 1998]. We will discuss the special role of the
η and η′ mesons in Sec. 1.1.2.

The Constituent Quark Model Here, quarks interact via a potential that is derived
from the static approximation to QCD [Godfrey and Isgur, 1985]. This model can
account for the known meson resonances but lacks predictive power in the low-mass
range, where relativistic effects become important. Especially in the isoscalar sector,
though, it fails to account for some of the lower-lying states.

The Bag Model This model describes hadrons by confining quarks, antiquarks and glu-
ons into a finite-volume where they interact among themselves [Johnson, 1975]. Hadronic
collisions then lead to overlap between these bags, and thus interactions between the vir-
tual particle seas of the two hadrons.

Lattice QCD In this approach, spacetime is discretized as a four-dimensional lattice.
QCD is then approximated as a theory on this discrete lattice. The path-integrals
decribing the amplitudes of the theory then become regular integrals which can be eval-
uated with lots of computing power. This approach is limited in that the finite available
computing time, and calculations have to be performed at unphysical values of the in-
puts (usually, for instance the pion mass which in current calculations is taken around
700 MeV). A recent summary giving up-to-date predictions for the meson spectrum can
be found in [Dudek, 2011].

The flux-tube model This is a model derived from lattice calculation where the binding
interaction between the quarks is described as a string of massive beads. Excitations of
the string then lead to excited mesonic states [Isgur and Paton, 1985].

Lattice QCD, the bag model, and the flux-tube model have in common the prediction
of integral-spin states which cannot be understood as bound states of quark-antiquark
pairs. Their existence is also expected from QCD sum rule considerations. These are
on the one hand glueballs, which are manifestations of the self-interaction of the non-
commutative SU(3) theory, and on the other hand so-called hybrid states where besides
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constituent quarks and antiquarks also gluonic degrees of freedom are excited. Reviews
of the topic are for instance Refs. [Amsler and Törnqvist, 2004; Crede and Meyer, 2009;
Klempt and Zaitsev, 2007; Meyer and Van Haarlem, 2010]. References and predictions
from various models are given in Table 1.1.

Model Mass [GeV] References

Bag Model 1.3− 1.8 [Barnes et al., 1983; Chanowitz and
Sharpe, 1983]

Flux-Tube Model 1.8− 2.0 [Barnes et al., 1995, 1997; Close and
Page, 1995; Isgur et al., 1985; Page,
1997; Page et al., 1999]

QCD Sum rules 1.3− 1.5, 2.1− 2.5 [Balitsky et al., 1982; Govaerts
et al., 1987; Latorre et al., 1987]

Lattice QCD 1.6-2.0 [Bernard et al., 2003]

Table 1.1.: Predictions of various models for the lightest hybrid meson with quantum
numbers JPC − 1−+.

We comment on the experimental status of the hybrid resonances relevant to the
analysis work discuss in this thesis in Sec. 1.2. But first we will turn to addresing in
more detail the structure of QCD and the meson spectrum. After discussing the current
experimental evidence for hybrid mesons in the π−η and π−η′ systems, we will discuss
some of the properties of the diffractive reactions that produce the π−η(′) system we
discuss. Next, we will give a quick review of the COMPASS experiment at CERN where
the data for this analysis was obtained and we will dwell on the sandwich veto detector,
whose design, assembly, installation and maintenance was undertaken as part of the
work leading to this thesis. After that we shall turn to the analysis: we discuss the data
event selection, the analysis procedure and its implementation and the results of these
partial-wave fits. Finally we conclude. In appendices we collect various stuff that didn’t
fit the mainline of the text but which is nevertheless interesting or important.

1.1. Quantum Chromodynamics

1.1.1. Structure of the Theory

Quantum chromodynamics (QCD) is the accepted theory of the strong interaction. Par-
ticles subject to the strong interaction are called hadrons. The fundamental degrees of
freedom of the strong interaction are the quarks and the gluons. The Lagrangian of
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QCD can be written

L =
∑
q

ψ̄q,a(iγµ∂µδab − gsγµtCabACµ −mqδab)ψq,b −
1
4F

A
µνF

Aµν . (1.1)

The sum runs over all quarks, six in total. The additive quantum numbers of the quarks
are summarized in Tab. 1.2. Repeated indices are summed over and spinor indices are
omitted. The various symbols have the following meaning: the ψq,a are the quark fields.
They are Dirac spinors and reside in the fundamental representation of the color group
SU(3), the color indices a, b run from 1 to NC = 3. The strong coupling constant gs
together with the quark masses mq are the experimental inputs to the theory. ACµ are
the gluon fields. They reside in the adjoint representation of the color group, the color
index C runs from 1 to N2

C − 1 = 8. The tCab are the SU(3) generators, usually given in
the form of the Gell-Mann matrices. They obey the SU(3) algebra

tAtB − tBtA = ifABCtC , (1.2)

with fABC the SU(3) structure constants. With these the Yang-Mills field strength takes
the form

FAµν = ∂µA
A
ν − ∂νAAµ − gsfABCAAµABν . (1.3)

The vertices of the theory are shown in Fig. 1.1. The gluon only couples to a pair of
quarks of the same flavor. This is encoded by the conserved flavor quantum numbers
isospin, strangeness, charm, bottomness and topness. The special role of isospin is due
to the low mass of the u and d quark leading to an almost exact symmetry which will be
discussed below. A manifestation of the conservation of these flavor quantum numbers
is the observed behavior of the strange particles: these particles such as the kaons are
produced copiously in the strong interaction, yet turn out to be long-lived, only decaying
via the weak interaction. For instance, the lightest strange particle, the charged kaon,
has a lifetime cτ = 3.712 m. Strange particles are only produced in pairs, and there lies
the explanation of the seeming discrepancy between the easy production and difficult
decays: strange particles contain a strange quark. The strong interaction can produce
these quarks only in conjunction with their corresponding antiquark. If this pair ends
up in different particles, then the strange quark and antiquark can no longer disappear
via the strong interaction, as there is no corresponding antiquark around. Strangeness is
not conserved in the weak interaction and therefore the lightest strange particles decay
weakly.

1.1.2. Quarks and Mesons

Meson Composition

Mesons are strongly interacting particles, i.e. hadrons, of integral spin. Like all hadrons
they are colorless, i.e. their decomposition in terms of the fundamental degrees of freedom
of QCD, quarks and gluons, has to be that of a scalar in color-space. The simplest such
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Quark d u s c b t

Electric Charge −1
3 +2

3 −1
3 +2

3 −1
3 +2

3

Baryon Number 1
3

1
3

1
3

1
3

1
3

1
3

Isospin 1
2

1
2 0 0 0 0

Isospin z-component −1
2

1
2 0 0 0 0

Strangeness 0 0 -1 0 0 0

Charm 0 0 0 1 0 0

Bottomness 0 0 0 0 -1 0

Topness 0 0 0 0 0 1

Table 1.2.: Additive quantum numbers of the quarks.

g

g

g

g

g

g

g

q

q̄

g

Figure 1.1.: Fundamental vertices of the strong interaction.
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objects are bound states of a quark and an anti-quark.2 A quark lives in the fundamental
representation SU(3)color, commonly denoted 3. An anti-quark likewise lives in the
complex-conjugate of the fundamental representation, i.e. 3̄. The Clebsch-Gordan series
for this is (see e.g. [Jones, 1990])

3⊗ 3̄ = 8⊕ 1, (1.4)

so that a quark-antiquark pair can reside either in the adjoint representation 8 of
SU(3)color or indeed in the scalar, color-singlet representation. Such a state would be
called a quark-model meson.

Similarly, a pair of gluons, which reside in the adjoint representation of SU(3)color,
the color octet 8, can form a colorless state via

8⊗ 8 = 27⊕ 10⊕ 1̄0⊕ 8⊕ 8⊕ 1, (1.5)

where besides a number of higher representation also the scalar representation appears.
Such a state would be called a glueball. Alternatively, as a pair of two quarks can also
reside in the color octet 8, such a pair can also combine with a gluon to form a hybrid
meson. Also, more complex objects can be imagined, say a molecule composed of two
quark-antiquark pairs, both either in the color octet or color singlet representation.

Quantum Numbers

Restricting ourselves to mesons composed of a quark q and its own antiquark q̄, the
possible quantum numbers JPC can be derived right away (e.g. [Landau and Lifchitz,
1989]). Fermion and anti-fermion have opposite intrinsic parity, the product of their
parities is therefore ηqηq̄ = −1. Accordingly, the parity of a state with orbital angular
momentum L is

P = ηqηq̄(−1)L = (−1)L+1. (1.6)

Fermi-symmetrization requires that the wave function of the qq̄ system change sign under
simultaneous exchange of the coordinates, the spins and the charge variables of system.
The first again gives a factor (−1)L, the second gives (−1)S+1, where S is the spin of
the combined system. The factor comes about because the singlet (triplet) combination
S = 0 (S = 1) is anti-symmetric (symmetric). The exchange of the charge variables is
mediated by charge conjugation C. So one has

(−1) = (−1)L(−1)S+1C,

and therefore
C = (−1)L+S . (1.7)

One now sees that CP conservation demands that spin and orbital momentum are
conserved separately, so one can use them meaningfully to classify possible qq̄ states.

2A readable introduction to the implications of the quark model is Ref. [Lipkin, 1973]
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This follows from
CP = (−1)L+S(−1)L+1 = (−1)S+1, (1.8)

where only S appears which can only take the values 0, corresponding to CP = −1,
and 1, corresponding to CP = +1. Conservation of CP therefore implies separate
conservation of S and L.

With this in mind one can write down the possible quantum numbers JPC of the qq̄
system. Quantum numbers that don’t fit into this scheme are called exotic quantum
numbers. Using spectroscopic notation, the possible quantum numbers up to L = 2 are
given in the following table:

2S+1LJ
1S0

3S1
1P1

3P0
3P1

3P2
1D2

3D1
3D2

3D3

JPC 0−+ 1−− 1+− 0++ 1++ 2++ 2−+ 1−− 2−− 3−−

Mesons not composed from a quark and its anti-quark have well-defined spin J and
intrinsic parity P , but they are not eigenstates of the charge conjugation operation C.
Besides all charged mesons this also applies to flavored quarks which are mesonse whose
quark composition contain at least one quark that is not u or d, say ds̄ for the K0. The
identification of a charged state with an exotic quantum number state therefore has to
rely on additional classification beyond JP . This is afforded by the systematization of
mesons into multiplets.

Isospin, SU(3)flavor: Meson Multiplets

Isospin is an approximate symmetry of nature, it was originally introduced by Heisen-
berg in the context of a systematic description of nuclear levels [Heisenberg, 1932]. Here,
he made the observation that protons and neutrons are the same object with respect
to the strong interaction with one exception: the wave-function has to be antisymmet-
ric under exchange of two protons or two neutrons, but no such symmetry requirement
exists for the exchange of a proton and a neutron. Therefore, the nuclear level scheme
can be decomposed according to the symmetries under exchanges of particles. Such a
decomposition naturally leads to the representation theory of SU(2) – the same group
that is used to classify the spin-states of systems of electrons. The symmetry transfor-
mation of this symmetry in the case of the nucleus leads to exchanges of protons and
neutrons and therefore links different isotopes. From this comes the name isotopic spin,
later shortened to isospin.

The same reasoning applies to the fundamental building blocks of hadrons, quarks.
Here to good approximation the u and d quarks can be considered massless and therefore
identical as far as the strong interaction is concerned. Hence, states can be grouped into
so-called iso-multipletts according to the representation theory of SU(2) [Gell-Mann,
1964; Zweig, 1964a,b]. One collects the u and d quark into an isospin doublet(

u

d

)
, (1.9)
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where the u has isospin (I, Iz) = (1
2 ,

1
2) and the d quark the corresponding (I, Iz) =

(1
2 ,−

1
2). The antiquarks then form an isospin doublet as well,(

−d̄
ū

)
(1.10)

(the minus sign comes from the translation of the complex conjugate representation of
the anti-particles to the representation of the particles, which mimics the traditional
usage). From this one can now build, taking for illustration the L = S = 0 mesons, the
isotriplet

π+ = −ud̄,

π0 = 1√
2

(uū− dd̄),

π− = dū,

(1.11)

and the isosinglet

ηq = 1√
2

(uū+ dd̄). (1.12)

The latter is not to be confused with the physical η which also has admixture from the
s quark. The minus signs come about because the natural representation for antiquarks
is the complex-conjugate representation, but in order to save the writing of upper and
lower indices the equation is written in terms of the same representation for quarks and
antiquarks.

Isospin invariance being to good approximation a conserved quantity of the strong
interaction, the treatment of interactions can be much simplified by the introduction of
a common quantum number linking particles in an isospin multiplet. This is G-parity. Its
corresponding operator is defined as a charge-reversing rotation in isospin space followed
by charge conjugation. The usual choice is

G = CeiπIy . (1.13)

Keeping in mind that Cπ0 = +π0, Cπ± = −π∓, and employing standard theory of the
rotation group, one thus arrives at

Gπ0 = −π0, Gπ± = −π±, (1.14)

and the pions indeed have the same G-parity. We also see that, inserting Eq. (1.7), we
can write

G = C(−1)I = (−1)L+S+I (1.15)

for each multiplet, where the second identity is derived from the quark model. G-parity
conservation explains for instance that the isospin triplet vector meson ρ(770) cannot
decay to three pions even though phase space allows this, while on the other hand the
isospin singlet vector meson ω(782) decays to three final state pions but not two. It also
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explains why the three-pion decay of the η meson (G = +1) happens at such a glacial
pace, comparable to the electromagnetic decay η → γγ: G-parity conservation forbids
the decay, so it has to take place via the isospin-breaking electromagnetic interaction.

Using G-parity, the concept of exotic quantum numbers can be extended to charge
states. By this, for instance an I = 1 state with JPG = 1−− would be considered exotic,
as its neutral isospin partner has exotic quantum numbers JPC = 1−+.

In practice, the s quark is also much lighter than the other quarks, and one arranges
the light mesons according to SU(3)flavor, which takes care of the symmetrization re-
quirements imposed by Fermi statistics. By this, the light mesons are classified into
flavor nonets. This is illustrated in Fig. 1.2 for the pseudoscalar mesons (JPC = 0−+)
and in Fig. 1.3 for the vector mesons (JPC = 1−−). The quark content is given together
with the name of the respective mesons in the corners. The quark content for the mesons
in the center is given by linear combinations of the quark-antiquark pairs of the various
flavors. Here, since flavor symmetry is not an exact symmetry, and a transition such as
ss̄ → uū + dd̄ therefore does not violate conservation laws, the various states with the
same JPC mix. On the other hand, to the approximation that isospin is conserved, the
I = 1 states π0; ρ0 don’t mix with the I = 0 states η, η′;ω, φ.

I z
=
−1

I z
=
−
1

2

I z
=

0
I z

=
1

2

I z
=

1

S
=

+1

S
=

0

S
=
−1

K0

ds̄

K+

us̄

π+ud̄

K̄0
sd̄

K−
sū

π− dū
π0, η, η′

uū, dd̄, ss̄

Figure 1.2.: Light scalar nonet. The quark
contributions to the mesons
are indicated. For the quark
content of the neutral mesons
π0, η, η′ see the text.

I z
=
−1

I z
=
−
1

2

I z
=

0
I z

=
1

2

I z
=

1

S
=

+1

S
=

0

S
=
−1

K∗0

ds̄

K∗+

us̄

ρ+
ud̄

K̄∗0
sd̄

K∗−
sū

ρ− dū
ρ0, ω, φ

uū, dd̄, ss̄

Figure 1.3.: Light vector nonet. The quark
contributions to the mesons
are indicated. For the quark
content of the neutral mesons
ρ0, ω, φ see the text.

Mixing in the iso-scalar sector is commonly parametrized in terms of the SU(3) singlet
and octet states which can be written using the generic notation ψ1 and ψ8 for the singlet
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and octet, respectively,

ψ1 = 1√
6

(uū+ dd̄− 2ss̄),

ψ8 = 1√
3

(uū+ dd̄+ ss̄).
(1.16)

The physical states are obtained from these by an orthogonal transformation, to wit

ψ′ = ψ8 cos θ − ψ1 sin θ,
ψ = ψ8 sin θ + ψ1 cos θ.

(1.17)

For the vector and tensor mesons, the physical states are found to be very close to the
case of ideal mixing, where the physical states are mostly dd̄ + uū and ss̄, respectively.
In the pseudoscalar case on the other hand, determinations of the mixing angle yield a
wide range of values [Feldmann, 2000]. This is attributed to a more complicated mixing
scheme, where the decay constants, low-energy effective parameters of chiral perturbation
theory which are relevant to most determinations of the mixing parameters, mix in a
way independent of the particle wave functions. On the other hand, it is found that up
to OZI violating terms, the mixing angle φ can be determined in a process-independent
way [Feldmann et al., 1998], provided it is defined in the flavor basis where the basis
states

ηq = 1√
2

(uū+ dd̄),

ηs = ss̄,

(1.18)

mix to form the physical states via

η = ηq cosφ− ηs sinφ,
η′ = ηq sinφ+ ηs cosφ.

(1.19)

The mixing angle can be accessed from decay branchings of quarkonium mesons [Bramon
et al., 1999]. Assuming no strange-quark content in the decaying mesons, which is found
to good approximation for the tensor mesons (JPC = 2++), one can derive the relative
branching for the a2 and a4 mesons

Γ(aJ → η′π)
Γ(aJ → ηπ) = tan2 φ

(
kη′π
kηπ

)2J+1

, (1.20)

where J = 2 or J = 4 and kηπ, kη′π are the breakup momenta at the nominal mass of
the decaying meson [Bramon et al., 1999]. From the known branchings of the a2(1320),
φ = 43.1◦±3.0◦ is found, consistent with the overall average φ = 39.3◦±1.0◦ determined
from a variety of experimental inputs [Feldmann et al., 1998]. A determination of the
relative branching fraction Γ(a4 → η′π)/Γ(a4 → ηπ) would be a new input, and will be
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pursued in this thesis. Recent studies find a small gluonic contribution in the η′, leading
to a more complicated mixing scheme [Ke et al., 2010; Mathieu and Vento, 2010a,b].

The comparatively large mass of the η′ is due to the chiral anomaly, according to
which even in the chiral limit mu = md = ms = 0 chiral symmetry is not fully restored.
Therefore chiral symmetry leads to only eight massless Goldstone bosons (π0, π±, K±,
K0, K̄0, η8), leaving the η1 massive even in this limit [’t Hooft, 1986].

1.2. Previous Analyses of the π−η and π−η′ Systems

The ηπ and η′π complexes have attracted quite some interest in the past. Even though
hybrid meson decays are expected to be suppressed to two S-wave mesons [Barnes et al.,
1997; Close and Page, 1995; Isgur et al., 1985; Page, 1997], these are are attractive can-
didates for the experimetnal discovery of such mesons. This is because decays of the
preferred P -wave meson such as π−f1(1285) or π−b1(1235) lead to much more compli-
cated final states. For instance, the b1 decays dominantly to πω(782), which, if followed
by the dominant ω → π−π+π0, leads to a final state with five pions with no phase-
space boundaries nearby that allow unique identification of the intermediate states. We
illustrate this channel in App. I. We also point out that our selection of πη′ data also
contains the π−f1 data in an intermediate step, see Fig. 4.9a. We show some results of
a preliminary partial-wave analysis in App. H.

Instead of these more complicated states, first hints of an spin-exotic state with quan-
tum numbers 1−+ were found in the π0η system by the GAMS collaboration in the
reaction π−(100 GeV)p → π0ηp [Alde et al., 1988]. They observed a state with mass
1406± 20 MeV and width 180± 30 MeV which they found resonating against the dom-
inant a2(1320). These results were questioned in Ref. [Tuan et al., 1988] and a later
reanalysis by members of the collaboration could not confirm the results, a resonant
interpretation could not be confirmed or excluded (see [Sadovsky, 1999]).

In 1993 the VES collaboration studied the reaction π−N → π−ηN at a beam mo-
mentum of 37 GeV, finding a broad P -wave enhancement around 1.4 GeV [Beladidze
et al., 1993]. At the same time at KEK the reaction π−p→ π−ηp was studied at beam
momentum 6.3 GeV. They found a P -wave resonance with parameters very close to the
a2(1320) observed in D-wave. Leakage could not be excluded [Aoyagi et al., 1993].

The E852 collaboration claimed evidence for an exotic meson in 1997, studying the
reaction π−p→ π−ηp at a beam momentum of 18 GeV. They successfully parametrized
this as a Breit-Wigner function, distorted by a polynomial, with parameters m =
1370±16+50

−30 MeV and Γ = 385±40+65
−105 [Chung et al., 1999; Thompson et al., 1997]. Si-

multaneously, the Crystal Barrel collaboration analyzed the annihilation reaction p̄d→
π−π0ηpspectator at rest. Their data required a ηπ P -wave resonance with parameters
m = 1400 ± 20 ± 20 MeV and Γ = 310 ± 50+50

−30 MeV [Abele et al., 1998]. They also
found that an ηπ-P -wave contribution was necessary to accurately describe the Dalitz
plot in p̄p-annihilation at rest into π0π0η [Abele et al., 1999]. Unlike the other cited
experiments, where the data are dominated by the a2(1320), the p̄d annihilation data
show contributions comparable in size for both the P -wave and the a2(1320).
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Returning to charge-exchange data, an analysis of E852 data published in 2003 on
the reaction π−p→ ηπ0n found a P -wave that could not be accomodated with a Breit-
Wigner resonance description [Dzierba et al., 2003]. A 2006 analysis of the same reaction
by the E852 collaboration found a P -wave resonance, with parameters m = 1257± 20±
25 MeV and Γ = 354±64±60MeV. They did not take the unnatural exchange waves into
account when interpreting the data, nor did they allow the parameters of the D+-wave
resonance a2(1320) to vary during the fit.

The discovery of an exotic meson decaying to ηπ immediately lead to the question
of whether it could also be observed in the η′π. Group theoretic considerations made
after the initial observations by the GAMS collaboration predicted that a state with
gluonic contributions should couple much stronger to the η′π system than to the ηπ
system [Close and Lipkin, 1987].

In a 1993 analysis of the π−p → π−η′p channel, the VES collaboration found a
P -wave comparable in size to the D-wave, but could not establish its resonant na-
ture [Beladidze et al., 1992, 1993]. In 2001, on the other hand, the E852 collaboration
claimed a resonance in the same reaction with parameters m = 1597± 10+45

−1−MeV and
Γ = 340 ± 40 ± 50 MeV [Ivanov et al., 2001]. Reanalysis of the VES data did not yield
conclusive results on the resonant character [Amelin et al., 2005]. A 2004 analysis of the
charge-exchange reaction π−p→ η′π0n found P -wave production predominantly through
unnatural partial waves. They therefore concluded that the coupling of the P -wave to
ρπ is small [Amelin et al., 2004]: BR(π1 → ρπ) < 0.03) (where the label is not meant
to imply a resonant character).

Likewise, the Crystal Barrel collaboration investigated whether an exotic πη′ resonance
appears in pp̄ annihilation at rest. In the final state π0π0η′ their analysis shows no sign
of a P -wave resonance, its inclusion in the fit showed no improvements in fit quality
finding only very little intensity in that wave [Abele et al., 1997]. Unlike the neutral
case, a preliminary analysis of π−π+η′ data found a P -wave resonance with parameters
m = 1555 ± 50 MeV and Γ = 468 ± 80 MeV which accomodates for up to 20% of their
data [Reinnarth, 2001].

Most recently, the CLEO collaboration studied the decays χc1(3510) → ηπ+π− and
χc1 → η′π+π− and found an exotic P -wave in η′π consistent with the π(1600), but they
also could not firmly establish its resonant nature [Adams et al., 2011].

A combined analysis of ηπ0 and η′π0 data interpreted the observed P -wave as remnants
of final-state interaction [Szczepaniak et al., 2003]. Also the mass-difference between the
resonance observed in πη data (around 1400 MeV) and the πη′ data (closer to 1600 MeV)
was interpreted as the result of final-state interaction [Donnachie and Page, 1998].

To summarize the state of exotic resonances in the πη and πη′ systems, we collect
some remarkable features of these data:

• neutral final states in the reaction π−p → ηπ0n, disfavors the production of the
1−+ resonance rendering a coupling to πρ unlikely [Tuan et al., 1988],

• an exception is the Crystal Barrel data on the π−π0η final state,

• the masses found in the two decays πη and πη′ are at tension, but this tension

12



can be resolved in re-scattering models, which are probably not applicable to the
Crystal Barrel data,

• but models with re-scattering can do without a resonance at all;

• all scattering data relies in their analysis on the interpretation of phase-motions
relative to a strong D-wave. the structure of this D-wave is not understood. Ad-
ditionally, the interpretation of the phase-motions is not as straightforward as it
may seem, we comment on this in Sec. 7.2.

Besides the ηπ and η′π final states, exotic waves were also found in the π−f1 [Kuhn
et al., 2004] and π−b1 [Amelin, 1998; Dorofeev et al., 2002; Lu et al., 2005] systems.
Their results find resonant states compatible with the π(1600) but this interpretation
requires the introduction of additional new states in other partial waves, in order to
correctly describe the observed phase-motions. Also in the πρ channel claims of the
exotic resonance π1(1600) have been made, by E852 [Adams et al., 1998; Chung et al.,
2002], and also by the COMPASS collaboration [Alekseev et al., 2010]. Nevertheless,
the VES collaboration found that the presence or absence of an exotic πρ wave depends
on assumptions made in their analysis [Amelin et al., 2005]. A second analysis of a
much-enlarged sample of E852 data on the π−π+π− and π−π0π0 final states found no
exotic resonance [Dzierba et al., 2006]. An observation of a 1−+ in the πρ channel
would engender a large production cross-section in photoproduction experiments, due
to vector meson dominance, nevertheless recent, preliminary analyses of CLAS data on
the reaction γp→ π+π+π−n show no significant contribution of this wave [Bookwalter,
2011].

13



2. Particle Production

High-energy scattering leads to the production of additional particles. We will concern
ourselves with the domain of high-energy and small momentum transfers, where a num-
ber of characteristic features obtain [Rossi et al., 1975]. The most important feature
for this analysis is the diffractive excitation of the beam particle [Feinberg and Pomer-
ančuk, 1956; Good and Walker, 1960], where the beam particle is excited into a state
with the same conserved charges, but (perhaps) different angular momentum and par-
ity. The framework where the dynamics of this class of processes is best described is
Regge theory, originally developed as an alternative approach to solving the Schrödinger
equation [Regge, 1959], where angular momentum ` is allowed to take arbitrary complex
values. The allowed eigenvalues of mass m then increase with ` due to the increasing
centrifugal potential. These lines are the Regge trajectories α(m2). It is then found that
mesons (or baryons) can be classified into linear trajectories where one has ` = α(m2)
at the physical angular momenta and masses [Chew and Frautschi, 1962]. Regge the-
ory additionally allows deriving asymptotic properties of scattering cross-sections in the
regime of high-energy scattering at low-momentum transfer relevant to us. We will thus
briefly discuss the main features of the scattering amplitudes as given by Regge theory.

Since the Regge approach to relativistic scattering is based on the analyticity and
crossing requirements for the amplitudes [Mandelstam, 1959; Omnès and Froissart, 1963],
we shall briefly discuss them. The Lorentz-invariant amplitude of the (spin-averaged)
scattering process 1 + 2 → 3 + 4 is a function of the four-momenta p1 . . . p4 of the
external particle. Since it is Lorentz-invariant, it is actually a function of Lorentz-
invariant combinations of these. Besides the masses m2

i = p2
i these are habitually chosen

as the Mandelstam variables

s = (p1 + p2)2, t = (p1 − p3)2, and u = (p1 − p4)2. (2.1)

Since
s+ t+ u =

∑
i

m2
i , (2.2)

actually only two of the Mandelstam variables are independent, and we write the ampli-
tude as A(s, t). s is square of the center of mass energy of the scattering process, t the
moemntum transfer variable. The Mandelstam hypothesis is that the amplitude for the
crossed t-channel process

1 + 3̄→ 2̄ + 4 (2.3)

is the analytical continuation of the amplitude A(s, t) of the s-channel process 1 + 2→
3 + 4 where one identifies p3 = −p3̄ and p2 = −p2̄ in the calculation of the Mandelstam
variables, and likewise for the crossed u-channel process 1 + 4̄ → 2 + 3̄. In the Regge-
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exchange approach, an asymptotic expression for A(s, t) in the physical region of the
s-channel process is then calculated by summing the important terms of the partial-
wave series for the t-channel process by transforming the series into an integral over
complex angular momenta.

2.1. Regge Description of High-Energy Scattering

In terms of Regge trajectories, the amplitude for the s-channel process AB → CD can
be written as

A(s, t) = γAC(t)γBD(t)exp(−iπα(t)) + S
sin πα(t)

1
Γ(α(t))

(
s

s0

)α(t)
, (2.4)

where γAC(t), γAB(t) are the couplings of the Regge trajectory α(t) to the particles AC
and BD, respectively, s0 ≈ 1 GeV2 is the hadron mass scale and S = ±1 the signature of
the Regge trajectory [Collins and Martin, 1982, 1984]. The term (Γ(α(t)))−1 cancels the
unphysical poles of the Regge propagator (sin πα(t))−1 at negative α(t). The signature
factor exp(−iπα(t)) + S cancels odd/even poles. The amplitude then has even/odd
poles for positive integral α(t) which correspond precisely to the t-channel exchanges
of the particles on the Regge trajectory. The splitting into even and odd trajectories
is necessary because they exhibit different symmetry under the crossing s ↔ u, it is
therefore specific to a relativistic treatment [Frautschi et al., 1962; Gell-Mann, 1962].

Two important properties of the Regge amplitude Eq. (2.4) are the following: on the
one hand the factorization property implies simple relations between the cross-section
of processes where the same Regge trajectories are exchanged, which is experimentally
verified, comparing e.g. the cross-section of πp → πp and pp → pp scattering. On the
other hand, the total s-channel cross-section behaves as

dσ
dt ∼ s

−2|A(s, t)|2 ∼ F (t)
(
s

s0

)2α(t)−2
, (2.5)

which allows predictions of the asymptotic behavior of the cross-sections. Especially,
since all known meson and baryon trajectories are reasonably well approximated by the
linear

α(t) = α0 + α′t, (2.6)

with α0 ≈ 0.5 GeV−1 and α′ > 0, one finds that the cross-section

dσ
dt ∼ F (t)

(
s

s0

)2α0−2
exp(2α′ log(s/s0)t) (2.7)

rapidly decreases as a function of s, and for small |t| one has approximately dσ/dt ∼ s−1.
The total cross-section σT (AB) = σ(AB → anything) is related to the forward elastic
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Figure 2.1.: Total cross section for various hadronic interactions. At low energies sharp
peaks due to resonance scattering are observed, then at intermedite energies
the cross-sections fall continuously until the high-energy regime takes over,
leading to an increase in cross-sections up to the ultra-high energy collisions
observed in cosmic rays. The COMPASS beam energy of 191 GeV lies well
in the high-energy regime of rising cross-sections. Data from [Nakamura
et al., 2010].
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amplitude by the optical theorem

σT (AB) ∼ 1
s

ImAAB→AB(s, t = 0) ∼ sα(0)−1 (2.8)

(use has been made of the realness of γAB(t) and α(t)). Experimentally, one observes
an increase of hadronic cross-sections for very large momenta, see Fig. 2.1. The increase
is found to follow approximately σT ∼ s0.081 [Donnachie et al., 2002] . Hence, the main
process in high-energy hadron scattering is not meson or baryon exchange. Instead, it is
assumed to be a manifestation of gluon exchange. Its properties can be well described by
a Regge pole, the Pomeron, with αP (0) = 1.07. Experiment appears to confirm the same
factorization behavior as in Eq. (2.4), but the picture of elastic hadron-hadron scattering
as mediated by exchanges of a single such Pomeron pole cannot be complete because
the exponentially increasing cross-section predicted from Eq. (2.8) violates unitarity as
expressed by the Froissart bound

σT (s) < 1
m2
π

log2(s/s0) (s→∞). (2.9)

The Pomeron is a flavorless Regge pole corresponding to exchanges with quantum num-
bers JP = 0+, 1−, 2+, . . . . As such it is understood as exchange of gluonic ladders [Don-
nachie et al., 2002]. It is found to couple to protons as a non-conserved vector cur-
rent [Close and Schuler, 1999a,b]. The gluonic character of the Pomeron makes the
excitation of mesons by Pomerons, e.g. in the diffractive π−p processes studied in this
thesis, a prime candidate for the production of hybrid mesons.

Regge theory has been extended to the description of multiparticle processes such
as AB → CDE [Hong-Mo et al., 1967a,b; Kibble, 1963]. For a modern view see e.g.
Ref. [Kaidalov et al., 2003]. The formalism was applied to the process πp → KK̄p in
Ref. [Shimada et al., 1978]. This work is of interest, because the P -wave contribution
in this channel appears to be correctly described by these models with no additional
resonance. The authors also find that resonance-like phase-shifts can be produced by
this type of model, extending previous results for scattering experiments [Schmid, 1968].
This makes the task of disentangling resonances from non-resonant backgrounds more
difficult both conceptually and experimentally. Whether the same formalism can also
be applied to the analysis of the ηπ and η′π channels, and whether it can accomodate
for the P -wave contributions remains an interesting question for theoretical study.

The different production mechanisms expected to participate in the production of
the π−η system analyzed in this thesis are depicted in Fig. 2.2. These diagrams have
in common that the recoiling proton participates via the exchange of the Pomeron, a
natural-parity Regge trajectory. Therefore, the available quantum numbers of the π−η
system will be the same for the three processes and theoretical insights will have to be
used to distinguish the three. Additionally, crossing symmetry and the duality hypothesis
from scattering theory (see e.g. Ref. [Collins and Martin, 1982, 1984])1 suggest that the

1These requirements are what lead to the famous Veneziano model [Veneziano, 1968], one of the origins
of string theory.
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Figure 2.2.: Expected production mechanisms. Reggeized exchanges are indicated in
blue. Besides direct production of a resonance (denoted X) which then
decays into the final state particles π−η (or η′ throughout), an η can be
produced at central rapidities by double-Pomeron exchange. Additionally, a
leading η can be produced in a Deck-like process by the exchange of a Regge
trajectory, here the leading candidate is the Reggeized a2.

amplitudes for the processes in Figs. 2.2a and 2.2c are not only closely related but cannot
be treated separately in a consistent manner. Therefore, a clearcut separation into the
different classes may not be feasible.

2.2. The reflectivity basis

In the study of diffractive beam excitation one is interested in reactions of the type
A + B → R + C where R is the state under investigation and the particles A,B,C are
known (π−, p, p in the case under consideration). On the other hand, the initial state is
unpolarized and the polarization of the recoiling proton C is not measured. Therefore
the state of R is not fully determined, but instead described by a density matrix. If
all other kinematic variables are known, the density matrix can have at most rank
two [Hansen et al., 1974; Thompson et al., 1975], but additional sources of incoherence,
such as integration over t or m(C) may require higher rank density matrices. Parity
conservation implies further restrictions on the density matrix. Namely, the density
matrix is block-diagonal in the eigenvalues of the reflection operator

Πy ≡ P exp(−iπJy), (2.10)

where y is the direction orthogonal to the production plane defined by the momenta of
A and B in the rest-frame of R, P is the parity operator and Jy is the generator of
infinitesimal rotations about the y-axis. Compared to using parity without additional
rotation, this operation has the advantage that the particle momenta remain unaffected
by this reflection operator. Rotational invariance implies that invariance under reflection
is equivalent to invariance under the parity operation.
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Given a basis of angular momentum eigenstates |EηJm〉 characterized by their in-
trinsic parity η, total angular momentum J , angular momentum projection m and
other quantum numbers labelled collectively E, the corresponding properly normalized
(bosonic) eigenstates of the reflectivity operator are given by

|E ε η J m〉 = θ(m)
(
|E η J m〉 − εη(−1)J−m |E η J −m〉

)
, (2.11)

where m now takes only non-negative values and normalization requires θ(m) = 1/
√

2
for m > 0 and θ(0) = 1/2 [Chung and Trueman, 1975]. For sake of ulterior convenience,
we have defined the reflectivity ε such that

Πy |E ε η J m〉 = −ε |E ε η J m〉 . (2.12)

There is only one m = 0 state, as |E ε η J 0〉 = 0 if ε = η(−1)J , and therefore both bases
(J,m) and (ε, J,m) contain the same number of states. We will show why the seemingly
unnatural choice for the sign of ε turns out very natural.

2.3. Correspondence Between Naturality and Reflectivity

We now specialize to the Gottfried-Jackson frame which is also known as t-channel
helicity frame. In this frame, the y axis is orthonal to the production plane as before.
It is a rest frame of the produced system and for the sake of definiteness, we choose the
direction of y as given by the cross-product of the (boosted) target and recoil momenta.
The z axis is chosen along the direction of the beam. The direction of x is given by the
right-hand rule. This is the frame we shall use throughout the remainder of this work.

The Gottfried-Jackson frame is special in that the exchanged naturality η(−1)J corre-
sponds to the reflectivity ε defined above, at least in the limit of high-energy scattering
at small angles, i.e. s large and t small. In Ref. [Gottfried and Jackson, 1964] this is only
shown on the level of intensities for the case of a single angular momentum being present,
and the general statement is quoted throughout the literature, e.g. Ref. [Ader et al.,
1968; Thompson et al., 1975], but the proof is to our knowledge never made explicit,
though all the prerequisites appear e.g. in [Cohen-Tannoudji et al., 1968]. The proof is
quite simple. First, the t-channel helicity states have the following symmetry

M J
λ3λ1λ4λ2 = ηη4η2(−1)J+s4−s2M J

λ3λ1−λ4−λ2 , (2.13)

for the Jth partial wave in the scattering process 1 + 2 → 3 + 4 where intrinsic parity
η is exchanged. λi, si and ηi refer to the helicity, spin and intrinsic parity of particle i.
The t-channel helicity amplitude (leaving aside other partial waves to avoid clutter) is
then

Mλ3λ1λ4λ2 = (2J + 1)dJλµ(cos θt)M J
λ3λ1λ4λ2 (2.14)

with λ = λ1−λ3, µ = λ2−λ4. Now in the forward-region of the s-channel process, s� t
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and thus cos θt large.2 The asymptotic behavior of the Wigner functions is [Kibble, 1963]

dJ−λµ(cos θt) −−−−−−→
cos θt→∞

(−1)λdJλµ(cos θt). (2.15)

In this limit one then has

Mλ3λ1λ4λ2 → ηη4η2(−1)J(−1)λ4−λ2(−1)s4−s2Mλ3λ1−λ4−λ2 . (2.16)

With this at hand, we can prove the statement that we are after. Taking the reaction
p(1

2
+) +π(0−)→ p(1

2
+) +X(s η4

4 ), where X is produced in a state of defined reflectivity
ε (where the sign convention is as above) and spin substate m, we have

M ε
λ3λ1m0 ≡ θ(m)

(
Mλ3λ1m0 − εη4(−1)s4−mMλ3λ1−m0

)
. (2.17)

Inserting Eq. (2.16), this reduces to

M ε
λ3λ1m0 → θ(m)(1 + η(−1)Jε)Mλ3λ1m0, (2.18)

which is zero for η(−1)J 6= ε, proving the statement. For m = 0 the statement holds
exactly because one then has λ = 0 in Eq. (2.15) and both sides are equal independent
of the value of cos θt.

In order to avoid the perhaps confusing convention for the sign of the reflectivity ε,
we will distinguish the two classes by the terms natural-parity waves (ε = +1) and
unnatural-parity waves (ε = −1). Since all the production mechanisms depicted in
Fig. 2.2 are mediated via a natural exchange from the proton, all of them contribute to
the natural-parity, positive reflectivity waves.

2Note that outside the physical region of the t-channel cos θt is not restricted to the range [−1, 1].
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3. The COMPASS Experiment

The COmmon Muon Proton Apparatus for Structure and Spectroscopy (COMPASS)
experiment at CERN [Baum et al., 1996] is a fixed-target experiment attached to CERN’s
M2 beamline whose magnetic spectrometer is capable of high-resolution measurements
of both neutral and charged final-state particles with wide momentum range. It formed
out of a synthesis of the proposed HMC [Nappi et al., 1995] and CHEOPS [Alexandrov
et al., 1995] experiments. Where the HMC collaboration wanted to pursue measurements
of the spin-structure of the nucleon using deep-inelastic scattering with a muon beam,
the CHEOPS collaboration aimed at studying the hadronic spectrum in reactions of a
hadronic beam with nuclear targets. In 2010, the successor experiment COMPASS-II
was proposed [Gautheron et al., 2010] and since 2012 it is pursuing its wide-ranging
physics programmes.

Why do these different physics programmes converge at the same experiment? Because
the beams offered by the M2 beamline are unique as it allows both high-intensity, high-
energy polarized muon beam and flexible high-energy hadron beams, both positively and
negatively charged. These beams are produced in the following way: the Super Proton
Synchrotron (SPS), see Fig. 3.1, emits a 450 GeV proton beam. This proton beam is
injected into the M2 beamline, where it hits a Beryllium target, called production target,
leading to a large number of secondary hadrons. In order to produce a polarized muon
beam this production target is chosen far away from the spectrometer, allowing the
hadrons to decay. Remaining hadrons are then scraped away by hadron absorbers after
which the remaining muon beam is focused and steered to the target. Polarization of
the beam obtains because of the handednes of the neutrinos in the dominant decays
π → µνµ and K → µνµ of the pseudoscalar mesons. In order to obtain a hadron
beam, a production closer to the target is chosen, thus leading to a almost pure hadron
beam. The hadron beam at 191 GeV, chosen in the 2008 and 2009 hadron spectroscopy
campaigns has the following composition at the COMPASS target: for the positive beam
π+ : K+ : p = 0.240 : 0.014 : 0.746, for the negative beam π− : K− : p̄ = 0.968 : 0.024 :
0.008 [Alekseev et al., 2012]. In this thesis we analyze data taken with this negatively
charged beam impinging on a liquid hydrogen target. Therefore the exposition will
focus on the corresponding spectrometer setup. The spectrometer setup used in the
muon beam campaigns until 2006 is described to great detail in [Abbon et al., 2007]. A
publication on the modifications made since is forthcoming [Alekseev et al., 2012].

We shall now discuss the COMPASS spectrometer. Overall, it consists of a beam
definition stage, the target and two spectrometer stages, each equipped with tracking
and particle identification. An overview is presented in Fig. 3.3.
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sits at the center of the large ring. Picture from http://ps-div.web.cern.

ch/ps-div/PSComplex/accelerators.pdf (visited 2012-05-23).

22

http://ps-div.web.cern.ch/ps-div/PSComplex/accelerators.pdf
http://ps-div.web.cern.ch/ps-div/PSComplex/accelerators.pdf


Z (m)

1030 1050 1070 1090 1110 1130

M2 BEAM FOR COMPASS - VERTICAL SECTION

Preliminay 26-11-97

B6V

B8V

B9HB8H

Q31
Q32

Q33

Q34
Q35

SCR7

HOD3
HOD4

MIB3

CEDARS

TRIG+
FISCS

TRIG+
FISCS

NA58

TARGET

Old

Q36
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in the pictures are bending magnets in green, scrapers in violet, quadrupoles
in blue and particle detectors in red. Figure from http://sl.web.cern.ch/
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Figure 3.3.: Top and side views of the COMPASS 2008/09 spectrometer [Jasinski, 2012].
Along the beam direction, from left to right, we see the CEDAR detectors
used for beam particle identification. Next, the upstream Silicon stations
used for vertexing of the beam particle. The recoil proton detector (RPD)
follows next, it contains the target. An enlarged view of the target region
around the RPD is found in Fig. 3.4. The target region is followed by a num-
ber of tracking stations and the first spectrometer magnet, SM1. Subsequent
tracking stations are followed by the Ring Imaging Cherenkov (RICH) de-
tector, used for charged particle identification and the electromagnetic and
hadronic calorimetry (ECAL1 and HCAL1) of the large angle spectrome-
ter. After muon identification and small angle detectors (not labelled) we
see the second spectrometer magnet (SM2), which again is followed by a
number of tracking stations and electromagnetic and hadronic calorimetry
(ECAL2 and HCAL2). The remainder of the spectrometer is devoted to
muon identification. The picture is not to scale. The distance from the
target to the first spectrometer magnet is approximately 7 m, and from the
target to ECAL2 approx. 33 m.
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3.1. Beam Definition

In the 2008/09 setup the following properties of the beam particles are determined on
their way to the target:

• two CEDAR detectors [Bovet et al., 1978; Jasinski, 2012] are used to identify the
beam particle. For the purposes of the analysis discussed in this work, they can
be used to suppress backgrounds from the kaonic part of the beam. Use of this
information didn’t alter the results of the analysis, so no use was made of the
CEDAR information, and we won’t discuss it further,

• Silicon detectors and scintillating fiber detector precisely measure the trajectory
of the beam particle in order to reconstruct as precisely as possible the vertex of
the target interaction,

• a Beam telescope is used as part of the trigger (discussed below),

• additionally, a Beam Momentum Station (BMS) can be moved into the beamline,
forming a telescope around the bend near B6V in Fig. 3.2. The BMS allows to
determine the momentum of the beam particles at the per-cent level. Since it
introduces a significant amount of material, and since the momentum spread of
the hadron beam is already smaller than the resolution of the BMS, it is not used
with the hadron beams.

3.2. The Target Region

During the 2008 and parts of the 2009 hadron spectroscopy campaigns, the target of the
COMPASS spectrometer was a cylindrical liquid hydrogen cell of 40 cm length and 35 mm
diameter, positioned along the nominal beam axis. This cell was installed inside a recoil
proton detector (RPD), a time-of-flight detector intended to trigger on recoiling slow
protons while also determining their momentum and direction of emission [Bernhard,
2007]. A cross-section of the target region is shown in Fig. 3.4. This detector consists
of two rings of scintillator slabs arranged on cylinders concentric with the target. The
inner ring consists of 12 identical 5 mm thick scintillators which are read out individually
with photomultiplier tubes at both the upstream and downstream ends. The outer ring
is composed similarly from 24 scintillators which are arranged such that the azimuthal
resolution of the coincidence between the inner and the outer ring is maximized, i.e. half
the scintillators of the outer rings are centered relative to the elements of the inner ring,
half are aligned with the boundaries between the scintillators of the inner ring. The
detector covers the angular range from 55◦ to 125◦ as seen from the target center. A
proton can be detected when it passes through the inner ring of scintillators, depositing
its remaining energy in the outer ring. This requires a minimal momentum transfer
|t| ≈ 0.07 GeV2. As a trigger component, the RPD triggered on positively identified
protons with a timing resolution better than 350 ps (rms). The proton momentum is
measured by correlating the times of signals in the inner and outer scintillator rings. Its
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Figure 3.4.: The target region showing the liquid hydrogen target inside the RPD detec-
tor. The beam enters from the left, passing through three silicon detector
stations on its way. Off-axis beam particles are rejected via the upstream
veto. Two silicon downstream of the target allow for precise vertexing even
at small emission angles. The time of flight scintillators of the RPD detec-
tor are indicated. Finally particles outside the spectrometer acceptance are
rejected by the sandwich veto.
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emission point along the beam axis and the angle of the proton is determined from the
correlation between the upstream and downstream photomultipliers. The proton is then
identified by its specific energy loss in the inner and outer rings.

In the target area there is also the upstream veto which is used to suppress particles
entering the target region close to the nominal beam axis but outside of the target radius.
Tracking around the target is discussed in the following section, and the sandwich veto
detector which is situated at the downstream end of the target region is discussed in
detail in Sec. 3.6. Its purpose is to suppress events where particles are emitted outside
the spectrometer acceptance of approximately ±10.3◦ as seen from the upstream edge
of the target.

3.3. Tracking

The purpose of a particle physics experiment is to provide information on event kine-
matics in such a way that the underlying dynamics can be studied. In particle collisions,
particle paths may change and new particles may be created. The task is then to learn
as much as possible about the particles as possible. Such information concerns their
points of emissions, their momenta and energies, their charges and masses, and any
other properties that may be of interest. Short-lived particles that decay immediately
after their production have to be reconstructed from their decay objects. On the other
hand, long-lived particles can be detected individually in their course of interaction with
the spectrometer. In the context of a typical particle physics experiment, the following
particles are considered long-lived, and we will discuss their detection in what follows:
the photon, the electron, the muon, the pions, the kaons, the neutron, the proton, the
Λ(1115), the Σ+(1190) and Σ−(1197) and the Ξ(1320) together with their antiparticles.
Additionally, atomic nuclei can have lifetimes exceeding the age of the universe, but we
shall not consider them specially. Lastly, neutrinos are long-lived but escape detection
outside of specifically designed experiments.

Out of these long-lived particles, we shall first turn towards the detection of the charged
ones, e±, µ±, π±,K±, p̄, p. The three main processes allowing for the detection of charged
particle trajectories are ionization energy losses, transition radiation and Cherenkov
radiation. Uses of the latter is discussed in Sec. 3.4, we won’t discuss transition radiation
further, and we will now turn to ionization.

3.3.1. Physical Foundations

High-energy particles traversing material undergo a series of collisions with the electrons
in the material. This energy loss per amount of material traversed is approximately
given by the Bethe-Bloch formula, found in any textbook, e.g. Ref. [Leo, 1994],

− 1
ρ

dE
dx = 2πr2

emeN0
Z

A

z2

β2

{
ln
[

2meβ
2

(1− β2)I

]
− 2β2 + C

}
, (3.1)
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where x is the length of material traversed, re the classical electron radius, me the mass
of the electron, N0 the Avogadro constant, Z the atomic number of the material tra-
versed, A its molar mass, ze the charge of the traversing particle, and β its velocity.
Finally, I is the effective ionization potential and a property of the material and C
summarizes corrections necessary for small energies (where the atomic shell structure
becomes important) and very high energies (where faster traversal of the material leads
to less polarization and therefore weaker shielding of the electromagnetic field). Elec-
trons additionally suffer energy losses due to bremsstrahlung, which we shall discuss in
Sec. 3.4.3.

How is the energy loss detected? There are essentially two ways: either the electrons
which have become separated from the atomic cores are collected and their charge is
amplified to a measurable signal, or light emitted by recombination of ions and electrons
as well as from molecular deexcitation is detected. The former processes are relevant in
semiconductor detectors and gaseous detectors, the latter in scintillation detectors.

3.3.2. Tracking Detectors in the COMPASS Experiment

Before turning to the individual detectors in the COMPASS setup, we shall discuss the
information obtained from the detectors. Each particle detector measures coordinates
and time of particle traversal. The detectors are planar and oriented orthogonally to
the beam axis along which they are installed. Most detector planes measure a single
coordinate, except for the pixelized GEM and Micromegas detectors which measure two
coordinates. The one-dimensional detectors are arranged in stations combined from sev-
eral planes oriented along the x and y axis, and – in order to resolve left-right ambiguities
and ambiguities resulting from different tracks hitting the same detectors strip – at 20
or 45 degree angles with respect to these axes. Neglecting the extension along the beam
axis, each station can then measure a point in space.

Very Small Area Trackers These are the detectors placed in the vicinity trajectory of
the (undeflected) beam. Requirements on these are high-rate capability and very good
spatial resolution for efficient vertexing.

Scintillating Fiber (SciFi) stations are detectors built from several layers of wavelength
shifting fibers which are used as scintillator medium. These are arranged along the
various spatial directions. These detector can stand high rates on the order of 3 · 106 Hz
per fiber, are highly efficient (> 96%) and deliver good time resolution (on the order of
400 ps). Besides tracking, they are also used as parts of the beam trigger. A total of
eight stations of varying size were installed in the spectrometer.

Silicon detectors are used as vertex detector in the immediate vicinity of the target.
Their role as vertex detectors is due to their spatial resolution: up to 8µm (rms) can
be achieved and a time resolution of the order of 1.3 ns (rms). The silicon detectors
are semiconductor detectors where traversing particles excite electrons into the valence
band. A current due to these electrons is then detected. The silicon detectors were
cooled to cryogenic temperatures (liquid nitrogen) to minimize doping loss and slow
radiation aging.
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Additionally, the newly developed pixel readout for the central area of the GEM
detectors, allowed their use in very small angle tracking. This is discussed below.

Small Area Trackers These cover the area close to the beam at distances from around
2.5 cm to 40 cm. Here, again high spatial resolution is required as well as radiation hard-
ness, combined with a small material budget along the beam direction. Two types of
the detectors were used for this purpose: gas-electron mulatiplier (GEM) detectors and
micromesh gaseous (Micromegas) detectors. COMPASS was the first large-scale exper-
iment to use either type of detector. Both detectors are gaseous detectors separating
the drift from the amplification stage. In the Micromegas detectors, ionization electrons
drift towards a fine metallic mesh, the eponymous micro mesh. Beyond the mesh, the
electrons are accelerated leading to the typical ionization cascade of gaseous detectors.
The readout allows for a spatial resolution of 90µm (rms) while a temporal resolution
of 9 ns (rms) could be obtained over the active area of 40× 40 cm2 with a circular dead
zone of radius 5 cm in the central region.

The GEM detectors employed by COMPASS [Ketzer et al., 2004] use three layers of
GEM foils to ensure safe operation at high rates by a reduced conversion time. The
GEM detectors provide a spatial resolution of 70µm (rms) and a temporal resolution of
12 ns over the active area of 31×31cm2. Again, the detector center was not powered. In
2008 a new pixelized GEM detector was installed in the COMPASS experiment, allowing
use of the detector even in the central region. These were installed in five stations, one
upstream of the first spectrometer magnet SM1, adding redundancy in the very central
region of the spectrometer, and two upstream and downstream of SM2, each. In 2009 a
pixelized Micromegas station was also installed for testing purposes upstream of SM1.

Large Area Trackers Finally, the area away from the beam was covered with several
types of wire drift detectors. Next to SM1 three drift chambers with an active area of
180×127cm2 and 176 pairs of wires running at opposite-sign high voltages were installed,
providing a spatial resolution of 190µm. Wire detectors rely on an external time source
to determine the distance of particle impacts from the wires. Therefore they do not
provide time measurements on their own.

A number of multiwire proportional chambers is installed over the whole spectrometer.
The active area is depending on the station either 178× 120 cm2 or 178× 80 cm2. Wires
are spaced apart by 2 mm, and the total resolution is 1.6 mm.

Another type of tracking detectors in COMPASS are the straw tube drift cham-
bers [Bychkov et al., 2006], straw detectors for short. In these, each individual wire
is placed in a surrounding tube, ensuring the mechanical stability over the large area.
The active area of 323×280 cm2 is covered with tubes of diameter 6.14 mm in the central
region and 9.65 mm in the region away from the beam. The inner part achieves a spatial
resolution of 190µm. The straw detectors are installed as the last part of tracking before
particle identification in each spectrometer stage, i.e. right upstream of the RICH in the
large-angle spectrometer and upstream of ECAL2 in the small-angle spectrometer.

Finally, a large area drift chamber (W45) is installed in the vicinity of ECAL2. Its
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active area is 500×250 cm2, giving a resolution of 0.5 mm. Its large wire spacing of 4 cm
leads to huge dead time, requiring a dead zone in the central 50 – 100 cm.

Hodoscopes Mostly for the purpose of muon identification and triggering, COMPASS
is also equipped with several large trigger hodoscopes consisting of scintillators. The
resulting light is read out by photomultipliers.

These trackers combined lead to a reconstruction performance on the order of 90 %
measured as the ratio of reconstructed tracks over generated tracks in Monte Carlo
calculations for tracks with momentum above a lower limit of approx. 1 GeV. A weak
point of the setup is the lack of redundancy in the very small area tracking. In the
2008 setup, only three tracking planes are available in central region of the spectrometer
upstream of SM1: two Silicon stations and one PixelGEM detector. Especially for
displaced decays such as those of the long-lived neutral K0

S , efficiency drops dramatically
for decays downstream of the silicon detectors. We shall now discuss the reconstruction
of individual tracks, from which we shall turn to vertexing and the associated questions
concerning the reconstructions of K0

S and other intermediate particles.

3.3.3. Track Reconstruction

Analysis in particle physics is a process of subsequent abstractions: electrical signals in
detectors are associated with detector hits. Hits in several planes of the same detector
station or in neighboring read-out strips of detectors are combined into clusters which
contain temporospatial information on particle passages. These clusters are combined
into particle tracks which combine several clusters to obtains tracks characterized by
trajectories, particle charge and momentum. Tracks are combined into events, together
with further properties of the events such as vertex location, calorimeter information etc.
Events are then grouped into physical classes based on cuts, topological characteristics
and so on. Different levels of analysis require different levels of abstraction, but most
physics analysis begins on the level of tracks and vertices as for what concerns charged
particles.

The track reconstruction program uses information on the magnetic fields in the spec-
trometer setup, the positions and readout geometries of the detectors and the material
distribution in the spectrometer in order to obtain information on the trajectories and
momenta of charged particles traversing the spectrometer.1 Magnetic fields in the spec-
trometer are confined to the areas of the spectrometer magnets SM1 and SM2 (and,
in setups with polarized target, the target area). Since outside of magnetic (and elec-
tric) fields, particles propagate on straight lines, the first step in track reconstruction is

1During the course of this thesis a new way of storing and handling information on materials in the
spectrometer was devised and implemented, making available all of the information in the Monte Carlo
software also to the reconstruction software. This contrasts with a previous, averaged description
using so-called material maps which turned out to be very unwieldy and incapable of describing small
but important objects such as the RICH beam pipe. The code making this possible are TGeoManager

and related classes in the ROOT framework [Antcheva et al., 2009]. Recent data productions of the
COMPASS experiment make exclusive use of this new approach.
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the identification of reasonably straight lines of clusters in the field-free regions of the
spectrometer. The second step makes use of the fact that trajectories are only deflected
very little in projections parallel to magnetic fields. The tracking algorithm thus tries to
bridge candidate tracks across the magnets in such a projection. Once such a candidate
track has been found, the Kalman filter algorithm (e.g. [Frühwirth et al., 2000]) is used
to combine the individual clusters to a single trajectory, obtaining the particle momen-
tum and its traversed radiation length (as a measure of multiple scattering) as well as
the covariance matrix of the track parameters in the process. In App. B we give some
useful formulae concerning track parametrization and the momentum determination. It
is worth keeping in mind that the radius of curvature of a track is measured, and thus
the charge-momentum ratio q/P , and thus errors are given in terms of the inverse mo-
mentum. The iterative Kalman filter algorithm allows successive incorporation of the
information from the individual detector planes, and is mathematically equivalent to the
much more expensive solution of a least-squares problem incorporating the information
of all detector planes [Kalman, 1960]. Unlike the least-squares approach, the sequential
move from detector plane to detector plane allows for the straightforward incorporation
of the effects of material.

3.3.4. Vertex Reconstruction

Tracking as described above does not teach anything about the physical interactions
leading to the appearance of these tracks. In order to gain insight on these, tracks have
to be combined in order to find common points of origin or disappearance (in the case
of the beam track). The points are what is referred to as vertices. Besides being closer
to the physical quantities of interest, the condition that the two tracks meet, allows
enhanced determination of the track parameters. The COMPASS reconstruction allows
for two classes of vertices which are called

• primary vertices where a beam particle measured in the beam telescope could be
matched with any number of particles in the spectrometer, and

• secondary vertices which are restricted to pairs of oppositely charged spectrometer
tracks. Possible origins of such pairs of tracks are the conversion of photons into
e+e− pairs on traversal of material, and the decays of the long-lived K0

S meson and
Λ baryon.

The reconstruction software does not allow for multiparticle secondary interactions of
so-called kinks, where a charged particle decays into another charged particle and a
neutral particle, leaving a characteristic corner (the kink) in bubble-chamber imagery.
This appears for instance in the decay of the Σ+ baryon which decays predominantely
either to pπ0 (where the track after the kink corresponds to the proton, and the π0 is
not seen) or to nπ+ (where the track after the kink corresponds to the pion, and the
neutron is not seen). Additionally note that the recoiling proton is not included in the
reconstruction of the primary vertex. As it is reconstructed in the recoil proton detector
it is not available to the common tracking software.
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Let’s discuss the reconstruction of secondary vertices (so-called V0 vertices) first. The
reconstruction software calculates the closest distance of approach (CDA) between all
pairs of oppositely charged pairs of reconstructed tracks.2 All such pairs which closely
approach each other are then fit into a vertex, meaning that a common point of origin
together with a set of track parameters is found, where the tracks extrapolated to where
they were measured coincides with the measured values. This proceeds as follows: the
reconstructed tracks are extrapolated to some plane, e.g. the most upstream detector
plane with hits associated with one of the tracks. Let p1,2 be the track parameters of
the tracks in this plane and Ck their covariance matrices. The goal is to find a vertex
location x and track parameters in the vertex q1,2 such that the extrapolations hk(x, qk)
from x to the plane of the pk are closest to the pk in the sense that

χ2 =(h1(x, q1)− p1)TC−1
1 (h1(x, q1)− p1)

+ (h2(x, q2)− p2)TC−1
2 (h2(x, q2)− p2)

(3.2)

is minimized in x, q1, q2. After linearizing the hk, this problem can be attacked with
the techniques described in App. D.3 Yet, the problem is actually in such a form that the
Kalman filter technique can be applied, which becomes more computationally efficient
as more tracks are considered. See e.g. [Frühwirth et al., 2000].

Primary vertices are reconstructed in the same way, only terms corresponding to
the additional tracks (beam track, additional spectrometer tracks) have to be added in
Eq. (3.2). In order to limit computation time, the Kalman filter algorithm is used, and
the tracks are added subsequently instead of solving the complete least-squares problem
at a single time. What the Kalman filter essentially does is that for each additional track
k the following χ2 is minimized

χ2 =(hk(x, qk)− pk)TC−1
k (hk(x, qk)− pk)

+ (x− xk−1)TC−1
xk−1(x− xk−1),

(3.3)

where xk−1 is the vertex position obtained after including track k − 1, and Cxk−1 is its
covariance matrix. Then, after all tracks have been added to the vertex, in a so-called
smoothing step the information gained due to the subsequent tracks is propagated back
to the track parameters of the tracks included earlier. The beam track is special as
it enters the vertex instead of leaving it, but it can be handled mathematically in the
same way. The COMPASS reconstruction software attempts to fit all tracks which are
pointing to the target into a primary vertex. Only tracks which lead to huge increases in
χ2 are rejected. Additionally, for small targets or when other prior information on the

2To be precise: the CDA is calculated only in terms of the orthogonal distance of the tracks, i.e. the
separation between the tracks is only considered in the same plane orthogonal to the beam axis.
Owing to the small inclination of the tracks, this is a minor difference to the strict usage of the term.

3Note that in the notation hk(x, qk) it is tacitly assumed that the qk are given at the point x. Therefore
each qk contains only three additional unknowns (the momentum). Therefore, the first two terms in
Eq. (3.2) (giving 10 terms in the case of a diagonal covariance matrix) suffice to obtain x, q1, q2 (9
unknowns).
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vertex location is available, this can be encoded in an inititial guess x0 with covariance
C0.

During the course of this thesis a vertexing software was developed in order to facilitate
the usage of kinematic constraints along the lines given in Ref. [Forden and Saxon, 1986]
and also to improve vertex determination in events with few tracks but additional neutral
particles, such as in events of the type π−p → K0

SK
0
Sπ
−p, where the spectrometer

only sees one outgoing track attached to the primary vertex together with the two
displaced vertices corresponding to the K0

S → π−π+ decays. If in such an event the
pion from the initial interaction is emitted at small angles the primary vertex is only
weakly constrained, and it can therefore be improved by using the information from
the neutral particles, something not foreseen in COMPASS’s standard software stack.
This was not used in the analysis discussed in this thesis, as the error estimates from
tracking and calorimetry turned out incompatible, making the effects of kinematic fits
involving both tracking and calorimetery information intransparent. Nevertheless, this
vertexing software was also used to reconstruct cascade decays in an inclusive selection.
In these, the doubly-strange, charged Ξ baryon (or antibaryon throughout what follows)
is produced in the primary vertex. After propagating a few centimeters it decays into a
Λπ± pair. The neutral Λ again propagates some distance before decaying in a secondary
vertex, either into pπ− or p̄π+ (the anti-Lambda). This sequence of subsequent decays
is a manifestation of the selection rule that strangeness, to leading order in the weak
theory, changes by at most a unit at a time [Glashow et al., 1970]. The Ξ being a
doubly-strange object thus has to decay in two steps. The data selection then proceeds
by finding secondary vertices which match a Λ hypothesis. The Λ candidates are then
kinematically fitted with the Lambda mass as constraint. Subsequently, the resulting
Λ tracks are combined into new vertices with all tracks that could not be associated
with either the primary vertex or the Λ decay vertex. In the resulting mass spectrum,
Fig. 3.5, both the Λ (Λ̄) and the Ξ± peaks stand out nicely. Their resolutions are found
to be 2.0 MeV and 2.8 MeV respectively.
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Figure 3.5.: Illustration of secondary and tertiary vertex reconstruction. The spectra
show the invariant pπ mass distributions of an inclusive selection of Λ→ pπ−

and Λ̄→ p̄π+ decays (left) and that of π±Λ pairs where pairs were selected as
described in the text. For reference, the tabulated masses [Nakamura et al.,
2010] are mΛ = 1115.683± 0.006 MeV and mΞ± = 1321.71± 0.07 MeV.
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3.4. Particle Identification

3.4.1. Velocity Measurement by Cherenkov Radiation

Particles travelling through a medium at speeds exceeding the speed of light in that
medium emit Cherenkov light as a result of the electro-magnetic field in the medium not
being able to adapt quickly enough to the passage of the particle. Given the refractive
index n of the medium and the particle’s velocity β > 1/n, Cherenkov light will be
emitted at an angle θ relative to the direction of flight of the particle. This angle is
given by

cos θ = 1
βn

. (3.4)

The ring imaging Cherenkov detector (RICH) design which is employed at COMPASS [Ab-
bon et al., 2011], see Fig. 3.6, uses this light to measure velocities of particles in the
following way: light emitted upon the particle’s traversal is reflected by a wall built of
spherical mirrors. In their focal plane a large number of photodetectors is installed. This
geometry projects onto circles in the focal plane all light emitted at fixed angles relative
to the straight-line trajectories. The radii of the circles are then a measure of the particle
velocities and the positions of the rings allows the association to the individual tracks
reconstructed by the tracking system. Given the kinematical relation

β = p

E
, (3.5)

and assuming the momentum measured by the tracking system, the particle’s energy
can then be determined and therefore its mass via the mass-shell relation m2 = E2− p2.
This procedure is limited towards low velocities, as particles can only be identified if they
emit any Cherenkov light (the requirement β > 1/n from above), and it is limited for
high velocities, as the emission angles of the different particle species become arbitrarily
close as p → ∞ because then β → 1 and cos θ → 1/n independent of the particle
mass. The relation between momentum and Cherenkov angle is shown in Fig. 3.7, where
pions, Kaons and (anti-)protons appear as distinctive bands. The RICH gas C4F10
has a refractive index of 1.0014 at a wavelength λ = 400 nm [Ullaland, 2005], giving a
limiting angle of approx. 5.3 rad. The implementation in COMPASS makes use of both
the momentum information and the discrete particle masses to calculate a likelihood
function giving the relative likelihoods that a particle is identified as any of electron,
pion, kaon or proton.

For the work covered in this study the RICH contributes only via the RICH beam
pipe which is a four meter long helium-filled steel pipe oriented along the beam axis
installed in the center of the RICH detector. Its diameter is 10 cm with a wall thickness
of 0.3 mm. Its purpose is to prevent the interaction of undeflected beam particles with
the RICH gas, both in order to reduce ionization of the gas and in order to reduce
Cherenkov light by fast particles which cannot be identified anyway. Unfortunately, the
material budget of the RICH pipe turned out to be significant. Due to the low angle
of emission, photons emitted from the target routinely pick up more than a radiation
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Figure 3.6.: Illustration of the RICH functioning principle (left) and a sketch of its design
(right). Source: http://wwwcompass.cern.ch/compass/detector/rich/

rich_figures.html (2012-05-24).
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Figure 3.7.: The Cherenkov emission angle as function of momentum, reconstructed from
2008 COMPASS data [Jasinski, 2012]. From right to left one observes three
bands, corresponding to (anti-)protons, kaons and pions respectively. In the
upper left corner one observes the contribution from electrons.
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length when propagating through the RICH pipe. Monte Carlo studies undertaken in
the LMU group suggest that 21% of the photons interesting for the final states studied
in this thesis are lost there [Diefenbach, 2011]. It has also been found that a significant
fraction of pions interacts in the material of the RICH pipe. For the 2012 run a new,
Kapton-based design was implemented.

3.4.2. Muon Identification

We shall briefly mention muon identification which is an important part of the COM-
PASS muon programme, but which is not used in the COMPASS hadron programme.
Muons can traverse large amounts of material without any interaction. Unlike Pions,
which are of comparable mass, muons do not interact strongly. Bremsstrahlung is also
suppressed compared to electrons. Therefore the main process of energy loss for a muon
is multiple scattering, a process which absorbs only a small fraction of the muon energy
per given length. This property is used in muon identification: muons traverse both the
electromagnetic and hadronic calorimeters behind which concrete absorbers are placed.
Behind these concrete aborbers large tracking detectors are placed. If a track after ex-
trapolation through all of this material can be identified with a hit in these planes, then
it is considered a muon track.

3.4.3. Calorimetry

Calorimetry is the process of particle energy measurement by total absorption. It is also
a means of particle identification, as different particles behave differently in calorimeters.
In the preceding section we mentioned muons which are typically not all absorbed in
calorimeters. In COMPASS calorimetry in both stages is divides into two parts: elec-
tromagnetic and hadronic calorimetry. The reason for this distinction is that it takes a
significantly larger amount of material to absorb high energy hadrons than it takes to
absorb electrons or photons. We do not discuss hadronic calorimetry further, only noting
in passing that these are the tool to detect neutrons and the long-lived neutral kaon K0

L

at high energies. Charged pions are identified by their low probability of interacting in
the electromagnetic calorimeter and their absorption in the hadronic calorimeter. Addi-
tionally, the increased width of hadronic showers compared to electromagnetic showers
can be made use of in a COMPASS-like setup [Binon et al., 1988; Davydov et al., 1977].
Calorimeters which unify electromagnetic and hadronic calorimetry are discussed e.g. in
Ref. [Wigmans, 2000].

Physical Foundations

The basic processes of interaction between high-energy photons and matter is pair con-
version, where in the field of a nucleus a photon can turn into an electron-positron
pair by transferring a small amount of energy to the nucleus. High-energy electrons in
passing close to nuclei radiate photons, the so-called bremsstrahlung process. Now the
photon produced in a bremsstrahlung process can convert into a electron-positron pair,
and these in turn can also undergo bremsstrahlung processes. Thus, a whole cascade of
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particles can be produced from an initial photon or electron. This cascade is called an
electromagnetic shower, and it is by means of such a shower that the electromagnetic
calorimeter measures the energy and impact point of the inital particle. The following
conditions have to be met in order to allow the forming of a shower:

• the material has to be dense in order to maximize the efficiency as a conversion
target,

• it has to contain lots of nuclei with large electrical charge and which are heavy,
and

• there must be a way of obtaining a signal from the calorimeter, preferably not by
having to measure the temperature increase due to the impact, even though that
is suggested by the term “calorimetry.”

COMPASS employs two principles of electromagnetic calorimeters: lead-glass calorime-
ters and sampling calorimeters. Useful formulae for describing the material properties
are collected in App. A. The two fundamental properties in describing the development
of electromagnetic showers are the radiation length X0 and the critical energy Ecrit. The
radiation length of a material is the thickness of material after which the energy of a
high-energy electron has on average been reduced by a factor of 1/e. The bremsstrahlung
energy loss is proportional to the electron energy and is, as a function of the traversed
length of material X and the radiation length, given by(dE

dX

)
brems

= − E

X0
. (3.6)

The critical energy Ecrit is the energy at which the ionization loss per radiation length
X0 equals the electron energy. Hence, it is the energy above which the energy loss can
sensibly be decribed in terms of electromagnetic cascades. The conversion probability for
a high-energy photon is also given in terms of the radiation length. Namely, a radiation
length is the length after which a photon has underwent a pair production process with
a probability of

Pγ→e+e−(X0) = 1− exp(−7/9) ≈ 54%. (3.7)

The appearance of the radiation length in both Eqs. (3.6) and (3.7) is due to the fact
that in both processes the underlying physics process is the same, but with an electron
(positron) and the photon exchanged between initial and final state.

A simplified description of the main properties of electromagnetic showers is the follow-
ing: after passing through a path of length X0, a photon of energy E0 will be replaced
by an electron-positron pair with average particle energy E0/2 with a probability of
54%. After another layer of thickness X0 these will have emitted bremsstrahlung with
an average energy of E0(1 − e−1)/2. Thus after a total thickness of nX0, one expects
approximately 2n particles with average energy E0/2n in the shower. Hence the shower
discontinues, once E0/2n < Ecrit, leading to a total of

nmax = ln(E0/Ecrit)
ln 2 (3.8)
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traversed radiation lengths. The transverse dimension of a shower is measured in terms
of the Molière radius RM which is given by

RM = 21 MeV · X0[cm]
Ecrit

. (3.9)

On average, 90% of the shower energy is deposited within a cylinder of radius RM around
the shower axis. The transverse dimensions of the calorimeter cells in the GAMS part of
the calorimeter (see below) are similar to the Molière radii of the showers. Comparing
the energy deposits in neighboring cells then allows for a precise determination of the
impact points of the photon [Lednev, 2011]. Comparing reconstructed impact points
with the reconstructed particle trajectories finally serves to indentify electrons, as they
will deposit their energy in a photon-like shower, and it holds Ecluster = ptrack.

The lead-glass calorimeters of the COMPASS experiment use the Cherenkov light
emitted by the shower electrons to measure energy. The amount of Cherenkov light is
roughly proportional to the total length T of the electron tracks in the shower which is
given by [Kleinknecht, 2005]

T =
(4

3X0 + 2
3 t0
)

E0
Ecrit

, (3.10)

where t0 is the range of the electrons at the critical energy (which given the low mass of
the electrons is well above the Cherenkov threshold).

In order to allow for a higher radiation dose, the inner parts of ECAL2 employs sam-
pling calorimeter blocks which use scintillators to measure the shower energy, and which
are therefore sensitive to the energy deposited by the shower. A sampling calorimeter
is longitudinally divided in alternating layers of absorbing material (lead) and readout
material (scintillators). Only energy deposited in the scintillators is seen. It is therefore
reasonable to study the energy deposit per unit of length, which is approximately given
by [Kleinknecht, 2005]

dE
dt = E0

βα+1

Γ(α+ 1) t
αe−βt, (3.11)

with α, β properties of the material, and t = X/X0 the traversed thickness of material
in units of the radiation length. Detailed studies of the properties of electromagnetic
showers were pursued in Ref. [Grindhammer and Peters, 1993; Grindhammer et al.,
1990].

Electromagnetic Calorimeters in COMPASS

Both spectrometer stages are equipped with electromagnetic calorimeters, named ECAL1
in the large-angle spectrometer, ECAL2 in the small-angle spectrometer. Large angular
coverage is necessary as photons can be emitted in any direction. ECAL1, installed in
front of HCAL1 at a distance of approximately 12 m from the target, has a surface of
3.97 × 3.86 m2 with a central hole of 1.07 × 0.61m2. It consists of a total of 1500 lead-
glass blocks, each read out by a photo-multiplier tube. It consists of three types of lead
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(a) ECAL1 (b) ECAL2

Figure 3.8.: Geometrical layout of the electromagnetic calorimeters. The different types
of calorimeter blocks are indicated by different colors. Gray: OLGA, Green:
Mainz, Red: GAMS, Cyan: Radiation Hard GAMS, Blue: SHASHLYK.

glass blocks, whose distribution is shown in fig. 3.8a. The central part consists of 508
lead-glass blocks of the type previously used in the GAMS-4000 experiment[Binon et al.,
1986], arranged on a 44× 24 matrix whose central part, corresponding to 28× 16 blocks
has been left empty to allow particles to reach the small-angle spectrometer. Matrices
of lead-glass blocks made out of SF57 lead-glass [Adamovich et al., 1996] (called Mainz
blocks) are installed above and below. Each of these blocks measures 7.5× 7.5× 36 cm3.
In order to align these blocks with the GAMS blocks in the central part, 1.6 mm hori-
zontal gaps have been left between the modules. These gaps are filled with iron where
particles under low angle are expected. Finally, the outermost parts of ECAL1 are
formed by the OLGA modules that measure 14.3×14.3×45.5 cm3 each, are made out of
SF5 lead-glass [Astbury et al., 1985], and are arranged in 8× 20 matrices on both sides.

OLGA Mainz GAMS rad.hard GAMS

lead glass type SF5 SF57 TF1 TF101

fraction of PbO 55% 57% 50% 50%

density g/cm3 4.08 5.51 3.86 3.86

X0 [cm] 2.74 1.55 2.54 2.74

RM [cm] 4.3 2.61 4.7 3.7

refractive index 1.67 1.89 1.65 1.67

length [X0] 18.5 23.3 16.42 15.2

Table 3.1.: Properties of the different types of lead-glass. References given in the text.

ECAL2 consists of 3068 lead-glass blocks arranged on a 64× 48 matrix, where a hole
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of 2 × 2 blocks has been left around the nominal position of the beam, extrapolated to
ECAL2. Each block has a cross-section of 3.83× 3.83 cm. In the 2008 and 2009 setups
several rows of ECAL2 are not visible from the target due to the positioning of HCAL1.

Three different types of blocks are used: the outermost parts consists of TF1 lead-
glass [Binon et al., 1986], surrounding radiation hardened lead-glass blocks made out of
TF101 [Abbon et al., 2007; Kobayashi et al., 1994]. The central part is built out of the
SHASHLYK type blocks depicted in fig. 3.9, which support radiation doses of several
hundred kGy. They are sampling calorimeter blocks, composed of 155 layers of lead
and scintillator where the scintillation light is collected by 16 wavelength shifting light
fibers running through the length of each module converging onto a photomultiplier.
The assembly can be seen in Fig. 3.9. The amount of scintillation light is proportional
to the energy of the incident particles and the resolution has been measured to be
σ(E[GeV])/E = 6.6%/

√
E ⊕ 1% in test beam measurements.4

Both ECALs are installed on a motorized support, allowing movement orthogonal to
the beam direction. This is used to expose all parts of ECAL1 equally to an electron
beam used to calibrate the energy response. Temporary drifts are monitored by LED
and laser calibration systems, which deposes a defined amount of light in each cell and
measure the response.

Figure 3.9.: A calorimeter block of the SHASHLYK type. The left picture shows the
complete module except for the photomultiplier attachment which is off the
picture to the left. The right picture shows a closeup where the scintillating
fiber used for light collection can be clearly made out inside the transparent
scintillators. The opaque gray parts in between the scintillators are the lead
absorbers. Between the upper pair of fibers and the lower pair, two of the
four steel wires holding the assembly together can be made out. They are
attached to the Aluminum plates on both ends. Particles enter the assembly
from the right. References given in the text.

Simulation of the ECAL response

The analysis described in this thesis makes heavy use of Monte Carlo simulations, several
million events were simulated, each containing initially two photons. These simulations
use COMPASS’s modified version of GEANT3. GEANT3 simulates particle physics
processes by following individual particles through a given material distribution while
keeping track of energy losses and particles produced along the way [GEANT]. The

4G. Khaustov as quoted by Platchkov ’08.
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simulation time for each event is for the biggest part determined by the total path
length traveled by simulated particles. As we saw above, this total path lengths grows
approximately linearly with the energy contained in a shower. One thus expects several
tens of meters of paths in a shower of, say, 20 GeV in the GAMS part of the calorimeters.
This, together with the large number of particles that need to be created and destroyed
in the course of the simulation makes the simulation of electromagnetic showers an
expensive task. During the course of the thesis, two approaches to this problem were
tried. On the one hand a geometrical simulation taking only the main effects into
account. As this is discussed at length in Ref. [Diefenbach, 2011], we shall only summarize
its main features below. Additionally, the Monte Carlo software was modified to replace
the shower simulation in ECAL2 by an efficient, parameterized approach developed at
DESY [Grindhammer and Peters, 1993; Grindhammer et al., 1990]. This latter approach
yielded results identical to the complete simulation, while reducing the average time per
event of the simulations by a factor of three without any tuning.

First, the geometrical simulation: in it only the most important aspects of the pho-
ton acceptance were simulated. Namely, the geometrical shapes of the electromagnetic
calorimeters and the material contained in the RICH pipe described above were taken
into account. Events from the Monte Carlo generator were then processed by tracing the
photon trajectories, accepting them based on their hitting the calorimeters while taking
into account the radiation length picked up in traversing the RICH beam pipe. Partial-
wave analyses were performed using either only this purely geometrical simulation or
combining it with a simulation where the charged tracks were simulated in the usual
COMPASS Monte Carlo software. No significant differences in results were obtained,
illustrating that the effects of acceptance are dominantly due to the geometry of the
calorimeters.
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Figure 3.10.: Response of ECAL2 with the full simulation (red) and the parameterized
GFLASH simulation for a sample of 10 GeV and 20 GeV photons hitting
the individual calorimeter parts far from boundaries. From left to right
the responses of the GAMS part, the radiation-hard GAMS part, and the
SHASHLYK part are shown. Adjustment of the energy scale has not yet
taken place, which explains the slight offset with respect to to the expected
central values.

Second, a parameterized shower simulation was implemented. This meant replacing
the tracking of individual photons and electrons through the calorimeter blocks with a
parameterized approach, where the individual shower particles were replaced by a shower
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object that, propagating on a straight line, deposits energy according to longitudinal and
transverse parameterizations of electromagnetic showers. Additionally, the sampling
SHASHLYK part of the calorimeter is replaced with an effective material, and effects of
the sampling readout are simulated in the software, again in a parameterized fashion.
Details can be found in Refs. [Grindhammer and Peters, 1993; Grindhammer et al., 1990].
Since most of the shower particles are of low energy, both the calorimeter signal and the
processing time is dominated by the low-energy tails of the showers. Therefore, only the
tails of the showers, produced by particles with energies below 5 GeV were simulated in
this parameterized fashion. In order to not distort the shower shapes, and to correctly
simulate particles leaving the calorimeter, the default setting was used according to
which the shower parametrizations were only used when more than 90% of the shower
tail was expected to be deposited in a single calorimeter cell. With these parameters and
no additional tuning, results indistinguishable from the full Monte Carlo simulation were
obtained, while using significantly less computing time. Fig. 3.10 shows a comparison of
the simulated response of ECAL2 to fixed-energy photons with the standard simulation
and with the parameterized simulation.

3.5. Trigger

The purpose of the trigger is two-fold: on the one hand it is intended to tag with high
efficiency interesting events which then are recorded for further analysis, on the other
hand it should ensure high purity by rejecting events that are not of the requested type or
are contaminated by additional particles and the like in order to cope with the limited
recording capacity of the experiment. The type of event of interest in this study is
defined by a beam particle interacting in the target such that a recoil proton is ejected
at large angles while no additional particles are produced in the target fragmentation
area. In order to suppress events triggered by particles entering the spectrometer off the
beam axis, veto hodoscopes upstream of the target cover the area from just outside the
target cross-section up to several meters away. If a particle is found in these detectors,
an event is not recorded. The other components in the main physics triggers are shown
schematically in Fig. 3.11.

The main physics trigger is called DT0. It is defined as

DT0 = BT ∧ RPD ∧VETO,

here BT denotes the beam-trigger condition explained in Fig. 3.11, RPD denotes the
recoil proton condition discussed in Sec. 3.2, and VETO denotes the absence of a signal
from the upstream hodoscopes explained above, the beam-killer hodoscope (see figure)
or the sandwich veto detector, which will be discussed in detail below. Under typical
conditions, approximately 0.2% of the 2·108 beam particles per 16.8 s lasting spill fullfilled
this trigger condition.

Besides this physical trigger, events with a kaon trigger (requiring BT ∧ CEDARs ∧
VETO) were recorded. Additionally, events with only beam triggers and other diagnostic
triggers were recorded with large prescaling factors. We shall now turn to the discussion
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Figure 3.11.: Schematic view of the main trigger components. The beam enters the
figure from the left, first passing through the CEDAR detectors which
are the main part of the kaon trigger. The beam particle is identified by
a coincide of a scintillating fiber detector (SciFi1) and a scintillating disk.
The target is contained in the recoil proton detector (RPD) which identifies
the proton leaving the target. Particles emitted outside the acceptance
of the spectrometer are rejected by the sandwich veto detector. Finally,
purity is enhanced by a suppression of non-interacting beam particles by
the beam killer hodoscope which is installed right in front of ECAL2 along
the nominal trajectory of the undeflected beam. Figure from Ref. [Jasinski,
2012].

43



of the sandwich veto detector which was developed and assembled during the course of
this thesis.

3.6. The Sandwich Veto Detector

The requested event types have in common that the target proton remains intact.5 It is
emitted at large angles compared to the beam direction with momenta on the order of a
few hundred MeV/c. This proton is detected by the recoil proton detector (RPD) which
encloses the target with an angular range from 55◦ to 125◦ as seen from the centre. Apart
from the recoiling proton no other particle is expected in the target fragmentation region.
Inelastic, non-diffractive processes and diffractive excitations of the target produce the
dominant background, yielding additional particles in this region. In order to enrich the
recorded data with kinematically complete events of the required type, a veto trigger
counter was needed that spans a large part of the angular range between the acceptances
of the spectrometer and that of the RPD.

The sandwich veto detector designed, assembled, installed and operated durign this
thesis is a 2 m×2 m detector with optically active wavelength shifting (WLS) fibre read-
out that detects photons and charged particles falling in a solid angle of 1.15 sr outside
of the spectrometer’s geometric acceptance (Fig. 3.4). In principle the detector is a thin
electromagnetic-calorimeter-type detector complying with the following demands: high
rate capability, good time resolution, compact geometry, high efficiency for minimum
ionizing particles and photons with energy above 100 MeV, and low false-veto probabil-
ity.

At full use of the data recording capacity of 30 kHz, it is found that inclusion of the
SW veto enriches the recorded sample with good candidate events by a factor of about
3.5. Apart from the event type described above, the SW veto is also useful in studies of
exclusive events with excited recoil protons detected by the RPD or with nuclear recoils
unnoticed by the RPD.

3.6.1. Detector Setup

Scintillators with WLS fibre readout

Light signals from scintillating material can be collected, converted and transported to
photomultipliers by wavelength shifting fibres. This technique has been optimized by the
Moscow-Protvino groups [Ivashkin et al., 1997; Karyukhin et al., 1996; Mineev et al.,
2002; Yershov et al., 2005] with regard to good efficiency, fast timing and radiation
hardness. It allows for compact large-area calorimeter designs.

The scintillator material used here is a polystyrene (DOW Styron 637) with additives
of pTP (2% weight fraction) as primary fluor and POPOP (0.02% weight fraction) as
secondary fluor. The intensity of the scintillation light assumes its maximum at 420 nm,
the refractive index is n = 1.59.

5This chapter follows closely Ref. [Schlüter et al., 2011a].
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Figure 3.12.: Photographs of the scintillators used. Left: a single tile in front of stacks
of several tiles. The eight grooves for fiber insertion run vertically. In the
center, a hole for insertion of a sleeve through which a bolt passes. Near
the bottom two knobs ensure correct alignment. Right: Single layer of 4
scintillator tiles with an area of 80 cm × 20 cm. Eight pairs of fibres are
glued into grooves of 2.2 mm depth.

Tiles of an area 20 cm×20 cm and thickness of 5 mm of the same type used by a previous
cosmic muon experiment were manufactured at the the Institute of High-Energy Physics
(Protvino) by means of molding techniques 6. Eight grooves of 1.4 mm width and 2.2 mm
depth run in parallel over each tile for fibre accomodation. Four of these were included
in the mold, the other four milled subsequently. Two small knobs were molded and a
central hole was drilled to allow for stable stacking in sandwich layers.

Optically active fibres of 120 cm length are used for readout. The chosen type of
multiclad fast green wavelength shifters (Bicron BCF-92, �1 mm [St. Gobain 2005])
are characterised by absorption and emission maxima at 410 and 490 nm, respectively.
Core and cladding refractive indices are n = 1.60 and 1.42, respectively, and the 1/e
attenuation length is > 3.5 m.

For installation in the sandwich detector, 4 scintillator tiles or 4 stacked pairs of tiles
are grouped in bars of an area of 80 cm×20 cm and thickness 5 mm or 10 mm, respectively.
A four-tile bar has eight pairs of fibres for common readout (Fig. 3.12). Double layers
consist of a layer as above, the fibres running on the upper side, on which another layer
is stacked carrying only one fibre per groove, altogether 8× 3 fibres.

The fibres are glued into the grooves with optical cement BC-600 [St. Gobain 2002]
which has a refractive index n = 1.56. After mixing, this two-component glue is extruded
into the groove with a syringe. The fibres are inserted such that they are fully covered
with glue. For fibre-pair readout, a second string of glue is overlayed on the first fibre
before inserting the second fibre. The far-side ends as seen from the photomultiplier are
cut at an angle to suppress light reflection. This is validated by the absence of reflected
photon signals. After hardening of the optical cement, scintillator bars have sufficient
mechanical stability for subsequent handling.

In the final assembly the scintillator bars are wrapped with a single layer of white
Tyvek paper R1025D (thickness 140µm). This diffusive reflector is found to increase

6Details at http://www.ihep.ru/scint/index-e.htm
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Figure 3.13.: Pulses from cosmic muons recorded with an oscilloscope connected to the
photomultiplier anode from one bare double layer of 10 mm scintillator
thickness (left), and from the final sandwich detector (right). An accidental
single photoelectron show up on the tail of the left signal.

the light output by 25%. This was studied in Ref. [Dhibar, 2008].
Bundles of fibres from a single detector block (see below) are fed through a plexiglas

cylinder. After fixation with epoxy glue, ends are cut and the front side is polished.
It is attached to a XP2262B phototube. Initially XP2020 phototubes were employed,
which have less gain but elsewise are suited as well. Both tubes are fast and provide
quantum efficiencies of about 20%. The efficiency curves are rather flat, peaking at
420 nm [Photonis].

Cosmic ray tests were performed with trigger counters above and below scintillator
tiles. Pulses from muons in a double layer, with most probable energy deposit of 1.9 MeV,
produce signals of about 10 photoelectrons (Fig. 3.13). Rise times and decay times (20%-
80%) of 3 and 6 ns are found. Comparing signals from the far and near end, we find a
light attenuation of 25% over the length of 80 cm.

3.6.2. Sandwich Assembly

The SW has a total thickness of 5.1 radiation lengths. It consists of 12 blocks, each of an
area of 80 cm×40 cm minus cutouts for the central hole arranged on the 2 m×2 m surface
(Fig. 3.14). Each block is assembled from 5 steel-covered lead-plates and 5 scintillator
layers, 3 of 10 mm and 2 of 5 mm thickness. As seen from the target entry, the hole is
approximately conical with an opening angle of ±10.3◦. Each block is mounted on a
steel plate of 8 mm thickness which is attached to an outer support frame. The complete
detector has a mass of 2 t. It is held in the vertical position by a welded H-iron support
frame which is stabilized by struts across the corners. These allow mounting the detector
blocks in the horizontal position. The frame also carries a small multiplicity counter
covering the inner hole on the spectrometer side. this counter was used as a trigger on
events with low momentum transfer during the 2009 run [Alekseev et al., 2012].

The optically inactive layers of the calorimeter consist of 5 mm lead plates which
have 1 mm steel glued to each side to accomplish sufficient stiffness for the assembly
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Figure 3.14.: Design of the veto detector. The light-shielding boxes are omitted for the
lower 5 detector blocks and for one of the two horizontal detector blocks to
uncover the photomultiplier assembly. The support frame has horizontal
and vertical lengths of 228 and 256 cm, respectively.
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PMT

Detector Block

Figure 3.15.: View of a detector block with photomultiplier tube (PMT) enclosed in a
cylinder of soft iron which is attached to the lower steel plate.

Steel Lead Scintillator
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Figure 3.16.: Lateral cut of the near photomultiplier side of a detector block (PMT to
the right). The cut is along one of the grooves in the scintillator tiles.
One light fibre, out of a total 208, is shown emerging from a groove. Steel
screws cramp the 5 steel-covered lead layers and the Al shims to the lower
steel plate which is downstream in the vertical detector position. One of
the bolts traversing the detector block is recognized.
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(Figs. 3.15, 3.16). Each scintillator layer is formed by a pair of 80 cm×20 cm scintillator
bars lying side-by-side. Their positions are fixed by two knobs per tile, mentioned above,
and by 8 bolts per detector block, traversing the central holes of the scintillator tiles
(Fig. 3.15, 3.16), four of which have sleeves between the lead/steel plates ensuring their
proper distance. To accomplish mechanical stability without exerting pressure on the
scintillators, the lead/steel plates are cramped onto the rear steel plate where the correct
distance is enforced by aluminium shims. In total a block has 64 scintillator plates which
are grouped in 3 double layers on the upstream side (top in Figs. 3.15, 3.16) and 2 single
layers on the downstream side. For the given amount of scintillators this order gives the
best efficiency for low-energy photons according to Monte Carlo simulations (see below).

The light fibres are fed through channels in the shims. For common readout, the total
of 208 fibres per block are bundled in a plastic cylinder which is attached to the entrance
window of a XP2262B phototube. The stray magnetic field of the spectrometer’s first
stage dipole magnet necessitates magnetic shielding of the photomultipliers. This is
accomplished by double cylinders made of µ-metal and soft iron, respectively (Fig. 3.15).

3.6.3. Monte Carlo Studies

The response of the detector to photons and charged particles was simulated with the
Monte Carlo code Geant4 [Agostinelli et al., 2003; Allison et al., 2006].7 The energy de-
posit in the scintillator layers for perpendicularly impinging photons of various energies
(Fig. 3.17) is characterized by a broad peak from showers and narrow peaks superimposed
at lower energies. The first (second) narrow peaks are due to single electrons or, less fre-
quently, positrons traversing only one of the scintillator layers of 5 mm (10 mm) thickness,
respectively. Shown for comparison is the energy deposit of muons with Ekin = 285 MeV
and Ekin = 160 GeV (used at COMPASS for spectrometer alignment). The most prob-
able energy deposit of muons is almost independent of their energy in this range. This
comes in spite of the energy loss at 160 GeV being considerably larger than in the min-
imum ionizing case (285 MeV): the additional energy loss is due to radiative processes:
the ensuing photons pass through the assembly undetected, and e+e− pairs are mostly
produced and stopped in a lead layer depositing no energy in the scintillators.

The fraction of photons with energy deposit above ∆E gives the efficiency for dis-
criminator threshold corresponding to ∆E (Fig. 3.17). For threshold corresponding to
one third of ∆EMIP = 7.5 MeV, the most probable energy deposit of minimum ionizing
particles, the efficiency is above 90% for energies above 100 MeV and drops to 80% for
50 MeV photons. This threshold was chosen in COMPASS runs after a pulse height
calibration with muons of high energy (next section), however, halving the threshold is
feasible at the noise level observed in the experiment.

In order to suppress delayed energy deposits from secondary processes induced by
very soft hadrons, the simulated energy deposits were integrated over a timespan of
10 ns. This timespan is adapted to the observed signal broadening coming from light

7All plots were created using the QGSP_BIC physics list. No significant dependency on the choice of
physics list was observed.
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Figure 3.17.: Monte Carlo prediction of the energy deposit, summed over all scintillator
layers, for photons and muons impinging perpendicularly on the veto de-
tector (grey histograms). For photons, the black lines indicate the fraction
of events above the value of ∆E, thus giving the efficiency as function of
thresholds on the energy deposit.
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Figure 3.18.: Monte Carlo prediction of the energy deposit, summed over all scintillator
layers, for π+ and π− impinging perpendicularly on the veto detector (grey
histograms). Integration of ∆E was stopped after 10 ns which is relevant
only in the case of 50 MeV (see text). For the black lines see Fig. 3.17.

collection and conversion in the scintillators and the WLS fibres (see below). Significant
differences from the complete energy deposits occur only for hadrons of low energy.

For pions with kinetic energy above 50 MeV, efficiencies above 95% are obtained
(Fig. 3.18). The edge at 4 MeV of the distribution of energy deposits for 50 MeV pi-
ons is due to their low range leading to stopping in the second lead/steel layer. The
integration time of 10 ns is relevant for 50 MeV pions. For larger time spans the ∆E
distribution develops a broad shoulder towards larger values (not shown). In the case
of stopped negative pions, this is mostly due to secondary neutrons scattering in the
scintillator material after being produced in the Pb layers. In the case of stopped pos-
itive pions, the broadening can be traced back to µ+(e+ν̄µνe) decay. These effects are
not important for the present vetoing at sufficiently low threshold but should be kept in
mind when pile-up is a concern. Pions with energy at or above 100 MeV yield a peak
above or at ∆EMIP (Fig. 3.18, right) with insignificant dependence on the integration
time and insignificant π+/π− difference, since the pions traverse the detector.

The first lead/steel layer corresponds to the range of 30 MeV pions. Up to this energy
pions are not vetoed. This layer was chosen for the entry to suppress false vetoes from
delta electrons accompanying valid events in the target. Monte Carlo simulations of
delta electron production by 190 GeV pions traversing the 40 cm liquid hydrogen target
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give a 1% probability for a veto signal induced by delta electrons.

3.6.4. Performance of the Veto Detector

Photomultiplier signals from cosmic muons traversing the final detector assembly have
average rise times (20%-80%) of 3.3 ns, logarithmic decay times of 9 ns, and widths at
half maximum of 12 ns (Fig. 3.13). These values are larger by a factor of almost 3 than
those obtained for single photons and they are also larger than the corresponding values
for a single double layer. These differences are attributed to the statistical spread of
light collection times.

The total number of photoelectrons for minimum ionizing particles (MIP) impinging
perpendicularly on the detector amounts to 45. Taking the quantum efficiency into ac-
count, this corresponds to 220 photons entering the photomultiplier window. It was
observed that significant light collection only occurs in the fibers closest to the impact
point (also [Ruschke, Private communication, May 2012]). More relevant for fast dis-
crimination is the signal height. Because of the photoelectrons’ time spread the resulting
signal height corresponds to a lower number of single photoelectrons. It is found that
the average signal height for MIPs corresponds to 18.7 single photoelectrons. For the
COMPASS veto trigger a discriminator threshold corresponding to six times the single
photoelectron level was chosen. The 10 ns coincidence time requirement of the COM-
PASS veto system was easily fulfilled.

The veto efficiency for MIPs was determined with 160 GeV/c muon beams using a
halo trigger. A veto flag probability of 98% was obtained for muons with a reconstructed
track traversing the SW detector. This value refers to homogeneous irradiation of the
complete detector plane excluding the central hole. Tracks at the block edges contribute
more than half of the missing 2%. Details in Ref. [Wöhrmann, 2010].

Hadron beam test runs with the SW excluded from the hardware trigger but recorded
as flag demonstrate its proper operation. For events carrying the flag, the total mo-
mentum distribution of particles detected in the spectrometer is shifted towards lower
momenta with respect to the incoming π− momentum of 191 GeV/c due to the mo-
mentum carried away into the sandwich veto detector. This is attributed to target
fragmentation. Such kind of events are strongly suppressed in the distribution without
veto flag where a peak characteristic of exclusive kinematics stands out. This group of
events is attributed to the processes of interest here, namely peripheral production of
mesons. For this example, events with one (Fig. 3.19) or three reconstructed tracks in the
spectrometer (Fig. 3.21) were selected, defining a total momentum vector. This vector
and the momentum vector pi of the incoming pion define an (oriented) plane which can
be compared with the (oriented) plane defined by pi and the momentum vector of the
target-like recoil detected with the recoil detector. The “coplanarity angle” ∆φ between
these planes shows a peak at zero, characteristic of exclusive kinematics, for events with
no SW veto signal, whereas events with a SW veto signal have a broad ∆φ distribution.
These distributions are shown in Figs. 3.20 and 3.22 for the two event classes. A peak
in these latter distributions would indicate false vetoes. For these plots a total recon-
structed momentum > 180 GeV/c was required, which largely suppresses events where
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Figure 3.19.: Scattering angle vs. momentum for events with a single reconstructed track
in the spectrometer. Right: events where no veto signal was produced by
the sandwich detector, left: events where there was such a veto signal. In
the right picture the elastic scattering peak is clearly visible at the nominal
beam momentum of 191 GeV, a minimum scattering angle is enforced by
the trigger condition that there be a recoiling proton. With the veto signal,
the distribution is widenend and shifted to lower momenta. Additionally,
the cutoff at low transverse momenta required by the trigger is not fulfilled.
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Figure 3.20.: Coplanarity angle (see text) for events with one reconstructed track and
total momentum above 180 GeV recorded with (patterned filling) / without
veto signal from the sandwich detector.
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Figure 3.21.: Scattering angle vs. momentum for events from 191 GeV π− + LH2 with
three reconstructed charged tracks in the spectrometer. The scattering
angle and momentum p refer to the total momentum vector in the labora-
tory sytem evaluated from the three tracks. The left image shows events
where a veto signal was produced by the sandwich detector, whereas in
the right picture there was no such veto signal. Small scattering angles are
suppressed by the requirement of a signal from the recoil proton detector.
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Figure 3.22.: Coplanarity angle (see text) for events with three reconstructed charged
tracks with total momentum above 180 GeV recorded with (patterned fill-
ing) / without veto signal from the sandwich detector.
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momentum was carried away by neutrals not taken into account here.
Important figures of merit are the enrichment factor of useful data in the recorded

events and the probability of false vetos. The former is defined as the factor by which
the physics trigger rate increases if the sandwich is not included in the veto. At given
data recording capability of about 30 kHz in the present case, the rate of physics data
recording is increased by this factor due to the SW veto. Enrichment factors of 3.3 to
3.8 were obtained in the hadron runs. Typical beam rates were 2 · 108 particles per
spill with spill length and repetitions rate of 16.8 and 21 s, respectively, and SW rate
of about 1 MHz. The probability for wrong vetoes was extracted from SW coincidences
with noninteracting beam particles and also from the ∆φ distributions as in Fig. 3.22.
A probability of 1% was found for faulty SW vetoes, which agrees with estimates from
the simulation of delta electron production.

3.6.5. Summary

A compact 2 m× 2 m sandwich detector of 5.1 radiation lengths total thickness was in-
stalled around the COMPASS spectrometer’s entry for vetoing on incomplete detector
events. Read-out by WLS fibres running in grooves over the scintillators allowed for
MHz rates and fast triggering. A total energy deposit in the scintillators of 7.5 MeV,
obtained for minimum ionizing particles (MIP), results in 220 photons entering the pho-
tomultipliers (PM). Statistical spread of light collection times leads to a signal rise time
of 3.3 ns and logarithmic decay time of 9 ns, corresponding to 3 times the single photo
electron values. The resulting MIP signal height corresponds to 18.7 photo electrons.
The PM output was fed directly into the veto discriminator.

The veto efficiency for MIP’s was found to amount to 98 % for a discriminator threshold
corresponding to one third of the MIP signal height [Roushan, 2009; Wöhrmann, 2010].
Monte Carlo simulations yield efficiencies for this threshold which are above 95 % for
pions with kinetic energy above 50 MeV and above 90 % (80 %) for 100 MeV (50 MeV)
photons. The detector performed well for about 12 months of running time in 2 years,
mostly with pion beams of 190 GeV/c impinging on a liquid hydrogen target. Rejecting
events not completely covered by the spectrometer, it increased the fraction of useful
data with complete kinematics by a factor of 3.5 as compared to data recording with
inactive sandwich veto. Since this factor was obtained at full use of the data recording
capacity of 30 kHz, it translates directly into a gain in statistics for the diffractive and
central production processes under study.
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4. Data Set and Event Selection

The analysis presented in this work uses data taken by the COMPASS experiment in
its 2008 run, where a beam of negatively charged hadrons, consisting mostly of pions,
passed through a liquid hydrogen target. Only data fulfilling the DT0 trigger requirement
described in Sec. 3.5 was taken into account. In order to allow refinement of the selection
criteria without having to repeatedly process the complete 2008 data sets, a two-step
selection was employed where in the first step the data set was reduced by very general
criteria before selecting in a second step the data used in the physics. These data
sets were then refined to the final data sets of ≈ 120 000 events of the type π−p →
π−η(π−π+π0(γγ))p and ≈ 50 000 events of the type π−p→ π−η′(π−π+η(γγ))p.1 Since
this work involved the development of a calibration algorithm for the electromagnetic
calorimeters, we will describe this algorithm after a short disgression on the procedure
of reconstructing neutral particles from calorimeter data. After this we will turn to the
data selection proper employed in the analysis.

4.1. Reconstructing Photon Four-Vectors

Photons are measured by detecting their energy deposits inside the electromagnetic
calorimeters. Possible candidates are energy deposits that are not in the vicinity of
reconstructed impact points of charged tracks. Any physics interpretation needs the full
four-vector in order to be able to proceed. A four-vector for the massless photon is given
by three quantities which can be chosen to be the energy E of the photon (as measured
in the calorimeter) and its direction (which is given by two angles). The direction of the
photon is determined by making a hypothesis about the point x of emission of the photon
and linking this point to the point of impact y in the calorimeter. The three-vector p of
the photon can then be determined as

p = E × y − x
|y − x|

, (4.1)

from which one has immediately m2
γ = E2 − p2 = 0 as required.

All intermediate particles under consideration have very short lifetimes so that the
point of their decay can be taken to be the reconstructed primary vertex. Take for illus-
tration the long-lived π0 and have it pick up the complete available energy of 190 GeV.
Its lifetime is τ = (8.4 ± 0.5) × 10−17 s [Nakamura et al., 2010] which translates to a
decay length of ` = γcτ = (E/mπ0)cτ ≈ 35µm, well below the tracking resolution in the

1Most of this work was done in collaboration with C. Raab and H. Wöhrmann and is also documented
in their bachelor’s and diploma theses [Raab, 2011; Wöhrmann, 2010], respectively.
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beam direction. The lifetime of the π0 being orders of magnitude above that of all other
intermediate particles, it is clear that all photons can be assumed to originate in the
location of the reconstructed primary vertex. On the other hand, secondary reactions
may lead to γ emission away from the target, examples are processes as diverse as π0

production in hadronic interactions away from the target,2 the decay of the CP -even
neutral Kaon K0

S → π0π0 or the emission of Bremsstrahlung by δ-electrons. Moreover,
charged particles whose tracks are not reconstructed or hadronic showers in the ECALs
may lead to calorimeter clusters not associated with reconstructed charged tracks and
will therefore have to be suppressed in the data selection.

In the case of π0 → γγ or η → γγ, another requirement that can be made in the
selection is that the reconstructed mass of the photon pair be in the vicinity of the
nominal π0 or η mass. The invariant mass squared of the pair of photons with four-
vectors p1,2 = (E1,2,p1,2) determined as above is then

m2
γγ = (p1 + p2)2 = 2E1E2(1− cosϑ) = 4E1E2 sin2 ϑ

2 ≈ E1E2 · ϑ2, (4.2)

where ϑ is the angle between the directions of the two photons and use has been made
of p2

1 = p2
2 = 0, i.e. |pi| = Ei. The approximation is valid for small values of ϑ. An

important consequence of this is the following: for a given energy E = E1 + E2 of the
decaying particle, there is a minimal angle ϑmin between the photons which is obtained
in the case E1 = E2 = E/2 and it is given in the approximation of small angles

ϑmin = 2mγγ

E
. (4.3)

The photons will then be on a cone about the direction of flight of the decaying pseu-
doscalar, with apex at the point of decay, making an angle ϑmin/2 = mγγ/E with its
direction. In the case of different energies, say E1 > E2 of the two photons, the photon
with energy E1 will move towards the initial direction of the decaying particle, i.e. to the
inside of the cone, whereas the other photon will move away from the cone. Hence, for
a given direction of the π0, say, most photons will be concentrated in a small part of the
calorimeter. In the case of COMPASS, for a π0 with energy 40 GeV pointing at ECAL2,
the base of the cone will be an be a circle of radius ∼ 10 cm. I.e., one photon from the
decay of the π0 will be within this cone, the other outside at an arbitrarily large angle.
On the other hand, the photons will always be separated by at least twice this radius.

4.2. ECAL Calibraton With π0 Decays

The energy measurement in a calorimeter is much more sensitive to calibration issues
and temporal fluctuations than the momentum measurement in tracking: whereas mo-
mentum measurement is determined by the quality of knowledge of the placement of
the inert detectors and of the stable magnetic fields, the calorimeter measurement is

2We discuss structures of this kind in Ref. [Bernhard et al., 2012].
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determined by the response of the individual calorimeter cells. These are read out with
photomultiplier tubes which are individually subject to the influence of temperature,
voltage fluctuations, their coupling to the calorimeter blocks are subject to condensa-
tion in optical contacts, etc. By the design of the GAMS-type calorimeter, where the
block size is matched to the Molière radius of the block material, the bulk of the energy
deposited in a shower is deposited in very few cells, so good calibration and monitoring
of each indidual cell is mandatory. An initial calibration is obtained by illuminating the
calorimeters with an electron beam. The defined energy of the electron beam can then
be used to determine calibration coefficients describing the repsonse of each individual
cell. Temporal fluctuations are then accounted for by a laser system in ECAL1 and a
system of monitioring LEDs in ECAL2, where defined amounts of light are injected into
the individual calorimeter cells. Comparing the calorimeter response to these light pulses
at some later time to the responses recorded during the electron calibration runs then
allows compensating for temporal fluctuations of the calorimeter. Temporal fluctuations
of the LED or laser systems can be detected in part by observing systematic shifts over
a large number of calorimeter cells.

In order to further refine the calibration, and to incorporate information obtained
during the experiment, as a next step one performs a calibration based on physics data, a
so-called π0 calibration. Here photons from π0 decays are used to enhance the calibration.
Both these types of calibrations were not available during the 2008slot3 data production
used in this work. We therefore developed our own π0 calibration strategy, applied on
top of the reconstructed data, in order to increase the quality of the data, as we observed
clear deviations of the positions of observed π0 and η peaks from their nominal values.

The π0 calibration procedure determines calibration factors, which are applied to the
energy values stored in the reconstructed DSTs. In order to do this, a superset of the
events used in the analysis was pre-selected into a minimal data structure to allow fast
processing. Then the following procedure was iterated:

1. Candidate events with a γγ mass near the π0 or η mass are identified.

2. For each such event, scaling factors are calculated by means of a fit to the π0 or
η mass. These scaling factor, if applied to the energy values, yield the correct π0

or η mass. These values are recorded, attributing them to the central calorimeter
cell of each shower.

3. After processing all events, for each cell the average of the obtained scaling factors
is calculated and stored.

4. From now on, each energy measurement is multiplied by the scaling factors, and
the procedure is iterated.

The iteration continues until the scaling factors stabilize. With this procedure, scaling
factors for most of the calorimeter cells can be obtained on a run-by-run basis. For cells
farther away from the beam axis where smaller numbers of photons hit the calorimeter,
averages are built over several runs.
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The impact on the resolution of the calorimeters is illustrated in fig. 4.1, where γγ
mass spectra are shown and the benefit to physics analysis is illustrated in fig. 4.2 where
the γγ system falling in the η mass range is combined with a pair of pions π+π−, showing
a decided improvement in resolution.
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Figure 4.1.: Effect of π0 calibration on γγ mass distribution. All plots show the same
sample of exclusive events with two good ECAL clusters and three or five
charged tracks. The blue histograms show the distribution before application
of the π0 calibration coefficients, yellow afterwards. The leftmost figure
shows the complete mass range, the other two pictures zoom on the ranges
of the π0 (center) and η mass ranges. The peaks become noticeably sharper
and move towards the nominal masses.

4.3. Preselection

Data selection was performed in two steps. First, the complete 2008 data sample was
subjected to fairly loose cuts intended to on the one hand reduce the data set to a
manageable size while on the other hand still allowing refinement of the selection cuts at
a later stage. At the same time this preselection was intended to allow for a subsequent
selection of a class of final states wider than the ηπ− and η′π− final states considered
in this thesis. The effect of the cuts is summarized in table 4.1. In the following we will
discuss the cuts individually.

In the following we shall discuss the individual cuts in the order in which they are
applied.

DT0 Trigger The main physics trigger during the 2008 data taking was the DT0 trigger.
Its purpose is to select events of the intended diffractive signature, defined by the recoiling
proton. The trigger criteria are the following:

1. Beam trigger: coincidence between two beam definition counters is required.

2. Recoil Proton Trigger: angular coincidence between photomultiplier signals in the
inner and outer ring of the RPD is required to ensure the required recoiling proton.
An FPGA-based signal shape analysis to suppress electrron and pion backgrounds
was foreseen but turned out to be unnecessary [Alekseev et al., 2012].
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Figure 4.2.: Effect of calorimeter calibration. The figure shows reconstructed masses of
the π−π+η system where η → γγ is selected by a mass window around the
nominal η mass. The events are exclusive. The red histogram shows the data
before any calibrations are applied, the blue historgram shows the data after
π0 calibrations are applied to the measured γ energies. The black histogram
shows the effect of applying a one-constraint kinematic fit to the γγ system
of the blue histogram. The peaks correspond to the η′(958) and f1(1285)
mesons. The improvement in both resolution and the actual determined
mass value is clear.

All Data W33 W35 W37

Total Events 6 013 121 609 1 264 032 348 1 907 620 614 2 841 468 647

DT0 trigger 4 514 085 911 1 000 839 072 1 434 392 992 2 078 853 847

Best PV exists 3 827 890 956 810 913 642 1 225 881 401 1 791 095 913

PV in target 3 377 377 786 713 660 970 1 078 640 544 1 585 076 272

3,(4),5 tracks 953 331 520 202 024 797 305 753 075 445 553 648

Charge sum 598 861 361 127 622 315 192 356 151 278882895

2 or 4 gammas 136 350 868 9 899 311 51 616 068 74 835 489

energy cut 44 896 141 1 062 549 17 895 249 25 938 343

Table 4.1.: Cut-flows for the pre-selection. The number of events remaining after each
cut is indicated. The numbers are also given for the individual data taking
periods W33, W35, W37.
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3. No Veto: Several veto detectors suppress a fraction of unwanted events. There are
two classes of veto detectors: on the one hand vetos upstream of the spectrometer
which are used to suppress events where particles entered the spectrometer without
traversing the target. Such particles can be for instance muons from the beam halo
or pions whose momenta are outside of the range accepted by the beam optics. The
other class of veto detectors are downstream of the target. These are the sandwich
veto detector discussed in Sec. 3.6, used to suppress events with particles produced
outside the spectrometer acceptance, and the beam killer hodoscope which is used
to suppress non-interacting beam particles. It is situated in front of ECAL2, and
its main purpose is the suppression of pileup events, where two beam particles enter
the spectrometer in close succession with only one interacting inside the target.

The bulk of the recorded data are taken with this trigger (which is not pre-scaled),
amounting to 85 % of the total recorded data set.

Primary Vertex Reconstructed Near Target This cut requires that there actually be
a primary vertex (shorthand for a vertex which was associated with a beam track)
reconstructed in the vicinity of the target which at this stage is defined by the range
−75 cm < z < −25 cm and r ≤ 2 cm with z the coordinate along the nominal beam axis
and r the distance from the nominal beam axis. The RPD requirement in the trigger
by itself ensures that a large fraction of the primary vertices is indeed inside the target.
Some space is left to be able to study the reconstruction quality at a later stage, e.g. in
order to be able to study the safety margin needed to prevent including interactions in
the target windows. The primary vertex distribution before this cut is shown in Fig. 4.3.
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Figure 4.3.: Distribution of reconstructed primary vertices along z. This distribution
is taken without any cuts besides requiring the DT0 trigger, therefore the
bulk of the data is represented by elastic scattering events where the small
scattering angle leads to decreased resolution. This explains the washed out
edges of the target region.
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Three to Five Outgoing Tracks in Primary Vertex The fundamental topological qual-
ity of a vertex is the number of tracks attached. The event categories of interest contain
three or five charged pions, and thus these numbers were required. Note that the recoil
proton is not included in COMPASS’s tracking and therefore it is also not taken into
account in vertexing nor in the numbers given.

Charge Conservation The diffractive scattering events are characterized by an I = 0
exchange, i.e. the fast system must have the same charge as the beam. Events where total
charge is different from −1 must be badly reconstructed, and are therefore rejected.3

Two or Four Good ECAL Clusters In this initial step, the selection was prepared for
a larger class of final states than were analysed in this thesis. Therefore, not only events
with the two calorimeter clusters required for π0 → γγ or η → γγ were selected, but also
events with four clusters (as in the channel ωπ−π0, where an exotic state was claimed [Lu
et al., 2005]). Only clusters which fulfilled the following criteria were considered in the
selection:

1. no reconstructed track was associated with the cluster by the reconstruction.

2. a minimum energy was required for the cluster: 1 GeV in ECAL1, 4 GeV in ECAL2.

3. the cluster time t relative to the beam lies in the window −8 ns ≤ t ≤ 10 ns. The
distribution of cluster times is illustrated in Fig. 4.4. The very sharp peaks near
the expected time zero is evident.

4. if the cluster is reconstructed in ECAL2, it is required that it lies within the vertical
range of ECAL2 that is visible from the target, i.e. −17 ·3.83 cm ≤ y ≤ 16 ·3.83 cm
(3.83 cm× 3.83 cm being the cross-section of the calorimeter cells).

The last cut comes about because part of HCAL1 overlaps the acceptance of ECAL2.
Clearly an unwelcome feature of the spectrometer setup, this leads to a large loss of
photons which can’t be compensated in the simulation, both because the large fraction
lost introduces large statistical fluctuation in the number of remaining photons but also
because the simulation only takes the actual calorimeter blocks of HCAL1 into account
but not the photomultipliers, support structure etc., leading to underestimation of the
loss in MC simulations.

Total Energy Finally, in order to suppress data from incompletely reconstructed, non-
exclusive events, the total energy Etot defined sum of the energies of the reconstructed
tracks (pion mass hypothesis) and of the calorimeter clusters (taking π0 calibrations
into account) is required to lie in a fairly large window about the nominal beam energy,
namely 175 GeV ≤ Etot ≤ 205 GeV. The total energy distribution at this point is shown

3When studying this, we found a small fraction of particles where the charge assignment from tracking
was overridden during vertexing (i.e. PaTPar and PaTrack had different charge assignments). We
rejected such events.
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Figure 4.4.: Cluster time distribution for all clusters in ECAL1 (left) and ECAL2. The
time is measured relative to the beam time and takes the distance of the
calorimeters to the target into account. Therefore the weight of the distri-
bution is expected to lie near 0 ns.

in Fig. 4.5. It is clear from the picture that a large fraction of non-exclusive events
remains at this point in the selection, even though the exclusive peak at 191 GeV is
becoming visible.
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Figure 4.5.: Total energy distribution in the pre-selection sample.

4.4. Selection of PWA Input Trees

The preliminary selection decreased the data volume more than hundred-fold. The
remaining data could be processed within half a day on a system with fast input-output
or significantly faster on batch systems. This allowed iterative refining of the data
selection cuts. The final states under consideration in this thesis have the following
topologies: either three spectrometer tracks (π−η, π−η′) or five spectrometer tracks
(π−η′) and two photons (mγγ = mπ0 mass for π−η and π−η′ in the case of five tracks,
mγγ = mη for π−η′ in the case of three tracks). Other cuts describe features of the
experiment. These latter cuts are common between the final states, and are defined as
follows:

Primary Vertex Inside Target Cell Here the cut on the reconstructed primary vertex
is tightened to include only events inside the target cell with sufficient safety margins to
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suppress interactions in the target walls. With r and z as above, the cuts are −67.5 cm ≤
z ≤ −29.5 cm and r ≤ 1.57 cm.

Exactly Two Good ECAL Clusters The analysis is restricted to events with exactly
two photons in the final state, and so is the data.

Momentum Conservation The cut on the total energy, defined as the sum of the pho-
ton energies (with π0 calibration) and the energies of the charged tracks (pion hypothesis)
is tightened to the range 186 GeV ≤ Etot ≤ 196 GeV.4

Mass cuts The mass cuts used to select the various pseudoscalars were the following:

• π0 → γγ selection: |m(γγ)−mπ0 | < 20 MeV/c2.

• η → γγ selection: 500 MeV/c2 ≤ m(γγ) ≤ 620 MeV/c2. The range is asymmetric
about the nominal mass of approx. 547.9 MeV/c2 to account for an energy de-
pendence in the ECAL response which shifts the mass of low-energy ηs to higher
values.

• η → π−π+π0 selection: |m(π−π+π0)−mη| < 20 MeV/c2, where the input Lorentz
vector for the π0 is obtained after a kinematic fit5 of the two-gamma system to the
π0 mass.

An important nuance of all this is the following: we employ two different PWA pro-
grams which treat the decay of the isoscalar differently. In the LMU program it is
assumed that all data input comes from πη or πη′ events, and the isoscalar is consid-
ered a stable particle with a fixed mass. The Protvino program, only applicable to the
three-track channels, on the other hand takes the experimental resolution of the isoscalar
decay into account in order to separate the data from the background beneath the ex-
perimental peak. In order to cleanly separate this background, data in a broad window
about the η or η′ peak therefore has to be considered. Doing so would be detrimental for
the LMU program or for the purpose of plotting π−η or π−η′ distributions. Therefore,
there are two windows employed when selecting the η or η′: on the one hand a broad
window for input into the Protvino program, on the other hand a tight window together
with a kinematic fit for the LMU program input and for plots showing the data.

4.4.1. The π−η(→ π−π+π0) Final State

Besides the common cuts, the following three cuts select this final state:

4It was found after the release of the data that doing this cut using the kinematically fit momenta of
the γγ system has detrimental effects on the data quality, so this cut diverges from the description
given in [Schlüter et al., 2011b].

5This is a least-squares fit where constraints from kinematics are introduced, in this case the requirement
that the invariant mass of the photon pair equals the pi−0 mass. A software for this was developed
sduring the course of this thesis. It uses a simplified version of the approach given in App. D.
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• three reconstructed tracks are leaving the primary vertex,

• a π0 → γγ is found in the window given above, and

• one of the two combinations π−π+π0 falls in the η window given above (for plots) or
within 50 MeV/c2 about the tabulated η mass (for input to the Protvino program).

How the sequence of cuts improves the exclusivity of the data sample is illustrated in
Fig. 4.6. The peak around the nominal total final state energy 191 GeV becomes more
well-defined. The increase in quality introduced by the η-requirement is interesting in
that it illustrates how the little available phase-space for the decay of the η acts as
an efficient means of background suppression, rendering further requirements such as
kinematic fits to the complete event dynamics unnecessary. Similar considerations apply
to the π−η′ final states discussed below.

The intermediate π−π+π0 spectrum (two combinations per event) is shown in Fig. 4.7a.
The well-known η(548) and ω(782) resonances dominate the spectrum. A bump near
the a2(1320) can also be made out clearly. Near 1700 MeV/c2 an enhancement appears
to be present, consistent with the π2(1670) which is known to decay predominantly into
three pions. From the zoom to the η region, it is clear that by one can obtain a data set
with very little contamination by means of a mass cut. The experiment’s resolution was
determined by a fit to the η peak (the natural width is entirely negligible). A fit with the
double Gaussian form A(ce−(m−mη)2/2σ2

1 + e−(m−mη)2/2σ2
2 ) + linear background yielded

the widths and relative weights σ1 = 3.17 MeV/c2, σ2 = 6.87 MeV/c2 and c = 3.11,
respectively. The resolution is only weakly sensitive to the π−η mass.

The resulting π−η mass spectrum shown in Fig. 4.8a. It is dominated by the a2(1320)
resonance, consistent with previous studies of the same channel in production experi-
ments (e.g. [Beladidze et al., 1992; Thompson et al., 1997]). This is also illustrated by
Fig. 4.8d, which shows the distribution in the variables m(ηπ−) and cosϑGJ, explained
in Sec. 7.1 when the procedure of partial-wave analysis will be discussed. Here the spin-2
a2 is identified as such by the presence of two maxima of the cosϑGJ distribution around
the a2 mass. Another striking feature is the clustering of data near cosϑGJ = ±1 for
m(ηπ−) > 2 GeV/c2, which has to be contrasted with assumptions of final states pro-
duced by decays of intermediate π−η resonances. We will discuss the content of this
figure in more detail later when we turn to the analysis of the data.

4.4.2. The π−η′(→ π−π+η(→ γγ)) Final State

Besides the common cuts, the following three cuts select this final state:

• three reconstructed tracks are leaving the primary vertex,

• a π0 → γγ is found in the window given above, and

• one of the two combinations π−π+η falls within 20 MeV/c2 of the known η′-mass
(for plots) or within 50 MeV/c2 (for input to the Protvino program).
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Figure 4.9.: Intermediate mass spectra used for the η′ selection.
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Again, we illustrate the intermediate steps of the selection. The π−π+η mass spec-
trum is shown in Fig. 4.9a. The strong peaks correspond to the η′(958) and f1(1285)
resonances. The η′ region is shown in more detail in Fig. 4.9b, again very little back-
ground remains under the peak. A fit to the η′ peak with the double Gaussian form
A(ce−(m−mη)2/2σ2

1 + e−(m−mη)2/2σ2
2 ) + linear background yielded the widths and relative

weights σ1 = 3.64 MeV/c2, σ2 = 9.01 MeV/c2 and c = 2.86, respectively. These numbers
are remarkably similar to the ones given for the resolution of the η → π−π+π0 given
above, underlining the weak dependence of these resolutions on the kinematical regime.

The π−η′ mass spectrum obtained in the selection is depicted in Fig. 4.10a. The con-
trast with the π−η mass spectrum is striking: the a2 only appears as a small peak on a
broad structure which reaches it maximum near 1.6 GeV/c2. This broad structure falls
up rather steeply towards higher masses and is succeeded by a tail reaching towards high
mass ranges. Again, the overall picture is consistent with previous analyses such as [Be-
ladidze et al., 1992, 1993; Ivanov et al., 2001]. An important difference is COMPASS’s
reach towards higher π−η′ masses. The region above ≈ 2 GeV has previously remained
unexplored.

A more detailed view of the content of the data is found in Fig. 4.10d where again
the distribution in the cosine of the Gottfried-Jackson angle ϑGJ is shown as a function
of mass. Near the a2 mass one again sees an inhomogeneous distribution, but now the
intensity distribution for low masses is concentrated at positive values of cosϑGJ but
then shifts rapidly to negative values as mass increases. This is consistent with rapid
phase motion of a spin-2 D-wave against a spin-1 P -wave as will be explained below. For
higher masses up to approx. 2 GeV/c2 a complex picture emerges before the data again
concentrate near the edges. The low fraction of data with cosϑGJ ≈ +1 at high masses
is partly due to acceptance effects. This will be explained in further detail in Sec. 5.

4.4.3. The π−η′(→ π−π+η(→ π−π+π0(→ γγ))) Final State

Besides the common cuts, the following three cuts select this final state:

• five reconstructed tracks are leaving the primary vertex,

• a π0 → γγ is found in the window given above,

• one of the six combinations π−π+π0 (π0 fitted kinematically) falls within the η
window given above, and

• one of the two remaining combination of π−π+η falls within 20 MeV/c2 of the
known η′ mass.

Due to the small available phasespace in the η′ → π−π+η(→ π−π+π0) decay, it often
arises the case where several combinations of pions are compatible with the η mass
hypothesis. Therefore this mass cannot be used in a constrained fit where one would
ideally fit the η′ system with three constraints, representing the three intermediate sharp
states π0, η and η′. Instead, we don’t use the constraint on the intermediate η but instead
use its mass spectrum to assure that the two-constraint fit to the π0 and η′ masses works
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(a) Intermediate π−π+η spectrum show-
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entries per event.
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(b) Zoom on the η′ region in Fig. 4.11a.

Figure 4.11.: Intermediate mass spectra used for the η′ selection.
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Figure 4.12.: Final spectra from the π−η′ selection in the five-track final state.
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as expected. This is illustrated in Fig. 4.13, where the green ditribution shows the mass
spectrum of all η candidates where only the γγ system has been fitted to the π0 mass
and the blue spectrum shows the mass spectrum after the γγ system has been fitted
with the π0 and η′ mass contraints. The η peak becomes slimmer and the background
under the center of the peak is reduced.6

hMetaFit
Entries  6364
Mean   0.5476
RMS    0.008985

GeV
0.4 0.45 0.5 0.55 0.6 0.65 0.7

en
tr

ie
s 

/ M
eV

0

100

200

300

400

500

mass of eta candidate w/ eta’ fit hMetaFit
Entries  6364
Mean   0.5476
RMS    0.008985

hMetaPreFitNoPi0Fit

Entries  6461
Mean   0.5471
RMS    0.01252

hMetaPreFitPi0Fit
Entries  6461
Mean    0.548
RMS    0.008328

hMetaFit
Entries  6364
Mean   0.5476
RMS    0.008985

mass of eta candidate w/ eta’ fit

Figure 4.13.: Effect of kinematical fit. The picture shows how the kinematical fit of the
η′ → 4πγγ improves the quality of the selection. Details, see text.

The data look very similar to the previous larger set, we shall only briefly highlight
the differences. First, the size of the sample is significantly reduced. This is in part
due to the ratio of the branching fractions BR(η → γγ)/BR(η → π−π+π0) = 1.73,
but to a large part due to the reduced acceptance, which one the one hand comes
about because of the larger number of tracks, which are only reconstructed with finite
acceptance, and on the other hand the higher degree of pollution in the calorimeters
where the charged pions shower in the spectrometer, and their secondaries end up in the
calorimeters without being associated to any track by the reconstruction. This reduced
acceptance also manifests itself in the faster decrease of the high-mass tail of the π−η′

spectrum. Nevertheless, the features in the low-mass range m(η′π−) < 2 GeV/c2 are
compatible to the three-track selection even without acceptance corrections.

4.4.4. The π−η′(→ ππη(→ πππ0)) Final State With Six Photons

As an illustration of the variety of final states in which the same physics appears, we study
final states with three charged tracks and six photons in the calorimeter, either coming
from the decay chain η′ → π0π0η followed by η → π−π+π0 or from the decay chain
η′ → π−π+η followed by η → 3π0, whose relative branching fractions are [Nakamura
et al., 2010]

BR(η′ → π+π−η)× BR(η → π0π0π0) = 43.2%× 32.57% = 14%,
BR(η′ → π0π0η)× BR(η → π−π+π0) = 21.7%× 22.74% = 4.9%.

(4.4)

6Note that we didn’t allow the charged tracks and the vertex to be altered by the fit. This was
done regrettingly after writing software to obtain a complete covariance matrix for the vertex and
extensive studies, because it was found that the scale of the error measurements returned from the
reconstruction software is incompatible between the calorimeter clusters and the spectrometer tracks.
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As in the case discussed in the previous section, the determination of the particles
belonging to the intermediate η is not always uniquely possible, which in this case leads
to some ambiguity in the selection. As we are not interested in the dynamics of the η′

decay, we make no attempt to distinguish the two possibilities in the data selection, even
though we make a cut on η → 3π0 which suppresses the decay chain where η → π−π+π0.

We perform the same common cuts as explained above, but requiring six good gamma
clusters. After this, we require exactly three tracks in the reconstructed primary vertex,
which is subjected to the target cut and the charge conservation cuts given above. We
then sum the calorimeter cluster energies and the track energies, requiring the same
exclusivity criterium as before. The mass spectrum of the resulting six gamma system
is shown in Fig. 4.14. To extract the interesting data which always has three π0s, we
require that there is at least one combination of pairs of clusters that allows for three π0s
(20 MeV/c2 window). The resulting 6γ mass spectrum can be seen in the same figure.
The η peak can be seen quite prominently. Cutting on this peak (50 MeV/c2 window)
yields the mass spectrum shown in the left plot in Fig. 4.15 which is quite similar to
Figs. 4.9a and 4.11a, except for the reduced statistics and the reduced resolution which
is due to the absence of a kinematical fit. We now cut on the mass of the π−π+π0π0π0

system and perform a one-constraint kinematical fit requiring the η′ mass for the system
π−π+ +6γ where only the measured directions and energies of the photons are allowed to
vary. This gives us the π−η′ mass spectrum shown on the right of Fig. 4.15, which again
shows the same features as seen previously, even though with largely reduced statistics.
These data were not further analyzed.
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5. Properties of Produced Particles

Kinematical Limits In Fig. 5.1 we show the kinematical limits on the particles we want
to study. Due to the large discrepancy in mass, the η (η′) will on average pick up a larger
fraction of the initial beam momentum than the pion (the momentum transfer to the
target proton is on the order of a few hundred MeV). At the same time, already at
invariant π−η (π−η′) masses close to threshold can the pion attain very low momenta,
outside of the spectrometer acceptance, and we therefore expect a loss of efficiency in
those ranges. As we have seen in Figs. 4.8d and 4.10d, the data actually populate the
kinematic extremes at high masses.1 Therefore the relative fractions in these regions
of the distributions are distorted. We will see in the partial-wave results that indeed
the different degrees of occupancy between the forward and backward regions seen in
Fig. 4.8d, do not lead to the appearance of strong odd/even partial wave interference
(which would provide for such an effect) but instead, taking acceptance into account,
the odd partial waves remain very small.
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Figure 5.1.: Kinematics ranges for the decay of a π−η (left) or π−η′ (right) system with
total momentum p = 191 GeV as function of its invariant mass. The shaded
areas indicate the possible momenta of the respective particles for a given
invariant mass of the pair.

Rapidity Distributions Rapidity is the boost parameter y corresponding to the longi-
tudinal velocity of a particle, where longitudinal refers to the beam direction. One has

1Note that due to the initial scattering, cosϑGJ = ±1 does not coincide with the extremities shown in
Fig. 5.1, but the difference is small due to the small scattering angle.
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for a particle with longitudinal velocity component βL

y = Arctanh βL = Arctanh pL
E

= 1
2 ln E + pL

E − pL
. (5.1)

Differences between rapidities are independent of the longitudinal velocity of the frame
in which they are calculated. It is therefore meaningful to classify reactions accord-
ing to differences in rapidity. Hadronic interactions at low momentum transfer show a
phenomenology of so-called rapidity gaps, in which secondary particles cluster around
certain distinct rapidity values with gaps of a few units of rapidity between the clusters.
Generally, each rapidity gap can be identified with the exchange of a Reggeon [Gribov
et al., 2009]. In the diffractive excitation process, which is the main focus of this the-
sis, there are two such clusters: one is formed by the recoil proton, the other by the
decay products of the excited beam pion. In another process, and potential background
to the beam pion excitation process, particles are produced at central rapidities. Here
central means that the produced particles have a rapidity gap both with respect to the
target and with respect to the forward going scattered beam. This process is referred to
as central production. At the COMPASS beam energy we have for the beam particle,
depending on its type, the following rapity difference between beam and target:

particle π± K± p/p̄

rapidity at 191 GeV/c 7.92 6.65 6.01

As an illustration of the differences in regime that can obtain, we show rapidity
distribution for two data samples obtained with the same selection applied to differ-
ent COMPASS data sets in Fig. 5.2: on the left, we show data from the reaction
π−p → π−K0

SK
0
Sp [Schlüter, 2009; Schlüter, 2010], on the right data from the reaction

pp→ pK0
SK

0
Sp.

2 One immediately sees one striking difference between the distributions:
the rapidity distribution of the kaons in the case of a pion beam is composed of two
parts: one which is very similar to the distribution seen in the proton data, and another
part where the kaon and pion rapidities overlap. This latter case corresponds to diffrac-
tive excitations of the beam particle, and we conclude that it is relatively suppressed for
the proton beam. On the contrary, the central production process behaves very similar
between the two, as is expected from Regge factorization. The gap between the recoil
proton and the kaons is due to the acceptance of the COMPASS spectrometer: slow
particles will not enter the spectrometer, leading to the kind of incomplete events the
sandwich veto detector of Sec. 3.6 is supposed to veto. The distribution is expected to
be symmetrical because Lorentz-invariance dictates that the process is independent of
inertial frame and the assignment of target and beam proton is equivalent to a particular
choice of inertial frame.

The π−η and π−η′ data shows both regimes, which we illustrate by showing rapidity
distributions in the same way as before, but split into subsets of low and high invariant
mass as indicated on the figure, Fig. 5.3. We see that at high invariant masses a rapidity

2All data in this chapter are shown without acceptance corrections.
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Figure 5.2.: Rapidity difference relative to the target. Both plots show the recoil proton
in red, the Kaons in green, and the scattered beam particle in blue. Data
are from the reactions π−p → π−K0

SK
0
Sp (left) and pp → pK0

SK
0
Sp (right)

at a beam momentum of 191 GeV. The right edge of the beam particle
distribution is shifted between the plots due to the different masses of the
beam particles.

gap obtains between the pion and the isoscalars, whereas at low invariant masses the
particles remain in the same rapidity range. The π−η data is dominated by the a2(1320)
decay whose dipole-like structure (cf. Fig. 4.8d) leads to the doubly-peaked distributions
in the low-mass range. At high masses the distribution are very much in favor of an
interpretation as central production of the η(′) meson. The also observed case where
the η(′) meson is observed at leading rapidities can be understood as double-peripheral
processes of the kind depicted in Fig. 2.2c. We are not aware of a previous experiment
that could study the π−η(′) systems over such a large range of invariant masses in ex-
clusive reactions, thus allowing a study of physics from threshold well into the range of
double-Regge exchanges.

Double-Pomeron Exchange We can investigate whether the centrally produced η and
η′ mesons of Fig. 5.3, i.e. those which are produced at low rapidities, are produced by
double-Pomeron exchange. Models for the Pomeron predict specific angular distributions
for this process [Close and Schuler, 1999b]. These models were found to be in agreement
with the data of the WA102 experiment [Barberis et al., 1998, 1999]. The extraction of
unambiguous results from the data on η or η′ production would require a study of the
energy dependence of their production, in order to understand the contribution from
Reggeon-Pomeron interactions. Hence we shall only briefly show that the data are in
accordance with the double-Pomeron prediction of the model cited above.

We take data where 2.5 GeV < m(η(′)π) < 3.5 GeV to suppress both resonant contri-
butions and regions with extreme momenta that may lead to a large acceptance effect.
Then we select the subset of slow η(′), defined by y − yTarget < 5. For these data we
plot the angle φ given by the center-of-mass angle between the planes defined on the
one hand by the beam and the scattered pion, and on the other hand by the target and
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(a) π−η data, m(π−η) < 2 GeV
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(b) π−η′ data, m(π−η′) < 2 GeV
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(c) π−η data, m(π−η) > 2 GeV
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(d) π−η′ data, m(π−η′) > 2 GeV

Figure 5.3.: Rapidity distribution for the π−p → π−η(′)p data. The recoil proton is
shown in red, the η(′) in green, and the pion in blue. At high masses rapidity
gaps arise. A feature that cannot be seen from this kind of pictures is that
events in the right-side bump of the π distributions correspond to events in
the left-side bumps of the η(′) distributions and vice versa.
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the recoil proton [Close and Schuler, 1999b]. For a vector-like Pomeron, this angle is
expected to follow a sin2 φ distribution. The distributions are shown in Fig. 5.4. We see
that except for a slight shift of the distributions which we do not understand, the data
agree with this prediction.
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(b) π−η′ data

Figure 5.4.: Distribution of angular difference between the production planes in the
center-of-mass frame. See text for details.
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Figure 5.5.: Comparison of the neutral and charged 3π mass distributions in the re-
action π−p → π−π−π+π0. Left: m(π−π+π0) (two entries per event,
black) and m(π−π−π+) (height doubled, red). Right: ratio (neutral − 2 ×
charged)/(neutral + 2× charged) with statistical error bars.

Isospin structure of the π−π−π+π0 system In Fig. 5.5 we illuminate the isospin
structure of the final state π−π−π+π0 by comparing the distributions obtained in the
neutral case π−π+π0 (where there are two combinations per event) and the charged
case π−π−π+ (which we scale by a factor of two to compensate for the possibility of
only a single combination). We see that except for the isospin zero resonances η(548)
and ω(782) these two systems are practically identical in content, even in spite the
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absence of any acceptance corrections. Since the system π−π−π+ has to have isospin
≥ 1, we see that the neutral system π−π+π0 is also in a state of isospin ≥ 1 outside
the known I = 0 resonances. There is no indication of the φ(1020) which would only
appear in the neutral combination. The charged combination slightly overshoots the
neutral near 1.1 GeV. This is probably due to the dominance of the a2(1320) in the π−η
final state. The charged combinations of pions would then have to have an invariant
mass which is below the mass of the a2(1320) by an amount comparable to the sum of a
pion mass (140 MeV) and the breakup momentum of the η(548) in the three pion decay
(174 MeV). This was verified by not including in the charged combination data which is
compatible with the η hypothesis. The stronger bump in the neutral case near 1.3 GeV
does not offer an equally simple explanation. There is no fitting resonance listed in the
particle tables [Nakamura et al., 2010]. On the other hand, cutting away all data with
m(π−π+π0) < 850 MeV, i.e. also suppressing the ω contribution, makes it seem that
this is strictly an acceptance effect: in this case the neutral and charged histograms,
which necessarily have the same content after allowing for the two possible combinations
in the neutral case, cross at approximately 2.4 GeV, with the neutral histogram being
above the charged data throughout at lower masses and below at higher masses. With
the same cut, the a2(1320) also stands out quite prominently out of both the charged
and the neutral distributions. In the ratio plotted on the right, we see the effect of the
lower mass of the π0 compared to the charged pions near threshold. This shows that
the background under the η cannot be estimated from the charged data, unlike in the
case of the ω. We will not further consider the data outside the vicinity of the η peak.
We also mention that a similar comparison is not possible in the case of the π−π−π+η
final state as the mass of the η is quite different from that of the pions and there is no
symmetry linking the different three-body systems.

t′ Dependence of Cross-Section In general, peripheral particle production shows expo-
nentially decreasing behavior as function of momentum transfer [Donnachie et al., 2002].
Additionally, changes in helicity introduce powers of momentum transferx (e.g. [Perl,
1974]). We are thus lead to study the momentum transfer distributions approximating
them with the functions e−Bt

′
or t′e−Bt

′
. Our fits to the π−η′ data are summarized in

table 5.1. We note that these values fall in the expected range from e.g. other COM-
PASS analyses, but they are in stark contrast to the much wider slope, B = 2.93 GeV−2,
that the E852 collaboration found when fitting with the simple exponential to data from
the same reaction at lower beam energy [Ivanov et al., 2001]. These slopes were studied
for our data in detail in Ref. [Wöhrmann, 2010].
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mass bin [GeV] fit with A exp(−B|t|) fit with A|t| exp(−B|t|)

m < 1.5 5.5 8.2

1.5 < m < 1.9 5.1 7.5

1.9 < m < 2.2 4.8 7.1

2.2 < m < 3 4.6 6.9

Table 5.1.: Fit to the slope parameter B in units of GeV−2 for momentum transfer as
function of mass for the π−η′ data.
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6. The Partial-Wave Analysis Procedure

Our analysis follows a procedure that separates the analysis and interpretation of the
data. The first step decomposes the data into partial waves, where no resonant struc-
tures or behaviors are assumed. This is achieved by dividing the data into bins according
to the invariant mass of the system, and analysing these bins independently. The proce-
dure of analysis of the contents of the individual bins is explained in this chapter and the
following chapter and pursued in Sec. 8. The interpretation of the data in terms of reso-
nances or other structures is then pursued by fitting the results of this binned approach
with mass-dependent functions, such as Breit-Wigner distributions or background terms.
We do this in Sec. 9. As dependence on the invariant mass of the total system only en-
ters in this second step, we call the fit in mass bins also “mass-independent partial-wave
analysis” and the second step “mass-dependent partial-wave analysis.” Where the mass-
independent analysis tries to steer clear of any physical prejudice, the mass-dependent
analysis has to make assumptions about the physics being present.

6.1. The Likelihood Function

As any fit, the partial-wave fit fits a theoretical model to data by adjusting free param-
eters in the model in order to maximize the agreement between the data and the model.
In this particular case, the agreement is measured by the extended likelihood function
and the model is that of an amplitude composed of different partial waves whose rela-
tive strengths and phases are given by the free parameters of the model, the so-called
production amplitudes of the partial waves. The data are processed in independent bins
of the invariant mass of the overall mesonic systems. In each such bin, the model then
reproduces the data by calculating angular distributions based on a physical model of
partial waves together with an acceptance description of the detector. Formally, this
procedure can be written down in the following way: the physics model is contained in
the partial-wave amplitudes ψij(τ), where i, j identify the partial waves and τ are the
variables characterizing the events. We use two indices i, j to divide the amplitudes into
classes such that partial-waves with different i do not interfere. The intensity function
is then

I(τ) =
∑
i

∣∣∣∣∑
j

Aijψij(τ)
∣∣∣∣2, (6.1)

with Aij the production amplitudes which we aim to obtain. The overall normalization
of I(τ) and thus Aij will be determined by the fit as explained below. The equation can
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immediately be rewritten

I(τ) =
∑
i

∑
jk

ψ∗ij(τ)A∗ijAikψik(τ)

≡
∑
i

∑
jk

ψ∗ij(τ)ρijkψik(τ),
(6.2)

where we have introduced the density matrix components ρijk. The block-diagonal
decomposition is based on physical and mathematical arguments [Chung and Trueman,
1975; Hansen et al., 1974], in the particular case of the two-body final state it can only
be decomposed into two parts, corresponding to natural and unnatural parity exchanges
in the t-channel, so we shall not dwell on this further. The reason for this is discussed
in Sec. 7.2.

The intensity function is taken proportional to the differential cross-section dσ
dτ of a

particular event. The probability of observing a particular event which has kinematic
variables τ is called acceptance and we shall describe this acceptance by a function η(τ).
The probability that a particular event characterized by its variables τi, given particular
values of the production amplitudes, would be observed is then

Pi = I(τi)r
dτI(τ)η(τ) , (6.3)

where the integral covers all of phase-space. We abbreviate the integral in the denomina-
tor N̄ =

r
dτI(τ)η(τ). In a particle physics experiment that runs for a finite interval of

time, the number N of observed events is itself a random variable following the Poisson
distribution. The extended likelihood formalism takes this into account by including this
Poisson probability in the construction of the likelihood function

L ≡ e−N̄ N̄N

N !

N∏
i=1

Pi, (6.4)

where the N̄ defined above now becomes the expected number of observed events, as
the Poissonian term has its maximum for NN̄ . Hence, it fixes the normalization of the
intensity function and therefore the production amplitudes. Details on the properties of
extended likelihood functions can be found in Refs. [Barlow, 1990; Orear, 1958]. Inserting
the Pi from above, the expression immediately simplifies to

L = e−N̄

N !

N∏
i=1

I(τi). (6.5)

As usual, it is more convenient to deal with a sum than with a product, so the maxi-
mization will be performed on the logarithm of the likelihood function,

logL = − logN !− N̄ +
N∑
i=1

log I(τi). (6.6)
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Additionally, the term logN ! is dependent only on the data set and therefore doesn’t
change when the production amplitudes are varied, which in turn means that it does not
affect the location of the maximum. Hence, we will drop this term from the likelihood
function, and we obtain the extended log-likelihood function as

logL = −
w

dτI(τ)η(τ) +
N∑
i=1

log I(τi). (6.7)

Experimental acceptance only enters through the first term, experimental data only
through the second term. We shall now discuss the evaluation of the first term.

Acceptance is evaluated by Monte Carlo methods. Here, a large number NMC of
events τMC

i corresponding to a flat distribution in the phase-space is generated. These
events are then fed through a complete detector simulation, followed by the same event
reconstruction and data selection the real data went through. For each event, η(τ`) can
then be evaluated. The integral is in turn evaluated by sampling it with the Monte Carlo
events. To this end, first insert the intensity function from Eq. (6.2) to obtain

w
dτI(τ)η(τ) =

w
dτ
∑
i

∑
jk

ψ∗ij(τ)A∗ijAikψik(τ)η(τ)

=
∑
i

∑
jk

A∗ijAik
[w

dτψ∗ij(τ)ψik(τ)η(τ)
]
,

(6.8)

where on the second line we have interchanged summation and integration. The term
in square brackets is independent of the production amplitudes and as such can be
evaluated ahead of the maximization. We shall call it the normalization integral, given
by

Iijk ≡
w

dτψ∗ij(τ)ψik(τ)η(τ), (6.9)

which we sample with the Monte Carlo events according to1

Iijk ≈
[r

dτ
]

NMC

NMC∑
`=1

ψ∗ij(τMC
` )ψik(τMC

` )η(τMC
` ) (6.10)

(here
[r

dτ
]

stands for the total volume of phase-space.) In the usual case where after
the simulation the event is either rejected (η = 0) or accepted (η = 1), the sum effectively

1It is perhaps worth noting that the formulae for the numerical evaluation of the normalization integrals
are wrong throughout the literature with the notable exception of [Aston et al., 1985], where the
maximization procedure is slightly different, sidestepping the issue. The literature is mostly in the
form of internal notes or preprints, such as [Berger, 2011; Chung, 2010; Cummings and Weygand, 2003;
Szczepaniak et al., 2004]. In these references, the term

[r
dτ
]

is omitted, leading to a different scale
of the production amplitudes obtained. Namely, the maximum is then obtained with the production

amplitudes multiplied by

√[r
dτ
]
. These references then have to go to lengths to obtain the correct

normalization of the predictions made from the partial-wave fit according to the procedure discussed
following Eq. (6.13). The significance of the missing factor can be understood by thinking e.g. about
the evaluation of

r 1
0 x

2dx and
r 1
−1 x

2dx by this sampling method.
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extends only over the Nacc accepted events τacc
` ,

Iijk ≈
[r

dτ
]

NMC

Nacc∑
`=1

ψ∗ij(τacc
` )ψik(τacc

` ). (6.11)

Nevertheless, fractional η can be treated in a straightforward fashion by returning to
Eq. (6.10).

After the maximization of the likelihood function, in particular N̄ will be very close
to the number of observed events N . As a corrollary of this, the quality of the Monte
Carlo description can be evaluated by the kinematic validation which we shall pursue in
Sec. 8.5. For this, we consider the integral

N̄ =
w

dτI(τ)η(τ) (6.12)

and its numerical evaluation

N̄ ≈
[r

dτ
]

NMC

Nacc∑
`=1

I(τacc
` ). (6.13)

It is clear that here the total data sample is reproduced where each accepted MC event
contributes with a weight w` given by

w` =
[r

dτ
]

NMC
I(τacc

` ), (6.14)

the sum of these weights being the total number of events. Histogramming any other
quantity with this weight allows a comparison between the MC description and the data.
If the MC sample closely describes the properties of the data not entering the decay
amplitudes – such as location of the primary vertex, azimuthal angle of the plane of the
original interaction, the t′ distribution etc. –, and if the decay amplitudes are sufficient
to describe the properties of the data, then any difference between such a histogram and
the data should be of statistical origin. Such comparisons are shown in Sec. 8.5.

To summarize, the fit models the observed distributions of particles by adjusting the
production amplitudes such that the angular distributions expected from the combina-
tion of the decay amplitudes with the acceptance description match the angular distri-
butions observed in the data. In particular, the data are not acceptance corrected at any
point. Quite the contrary, the fit model contains all the information about the detector
acceptance.

6.2. Likelihood Function for Combined Fits

One interest of this work was the combined fit of the π−η′ data selected in different final
states where after the decay η′ → π−π+η the η decays either to two photons or to three
pions π−π+π0. One thus has to find a likelihood function which allows simultaneously
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dealing with both final states.
This can be done as follows: let ρ1 and ρ2 = (1 − ρ1) be the relative branching

fractions of the two final states. Then one introduces the intensity functions for the two
final states which ought to be given by I1(τ) = ρ1I(τ) and I2(τ) = ρ2I(τ), and therefore
log I`(τ) = log ρ` + log I`(τ). We denote the N` events in each final state τ `i . With these
definition one has for the predicted numbers of events for each final state

N̄` =
w

dτI`(τ)η`(τ) = ρ`
w

dτI(τ)η`(τ), (6.15)

where the different acceptance functions for the two final states have been introduced,
and for the total number

N̄ = N̄1 + N̄2. (6.16)

The acceptances need to be studied in separate Monte Carlo simulations. The real data
part of the log-likelihood function decomposes into two parts, one for each final state

N1∑
i=1

log I1(τ1
i ) +

N2∑
i=1

log I2(τ2
i ) =N1 log ρ1 +

N1∑
i=1

log I(τ1
i )

+N2 log ρ2 +
N2∑
i=1

log I(τ2
i ),

(6.17)

and therefore the combined log-likelihood function can be written

logL =− ρ1
w

dτI(τ)η1(τ)− (1− ρ1)
w

dτI(τ)η2(τ)

+N1 log ρ1 +
N1∑
i=1

log I(τ1
i ) +N2 log(1− ρ1) +

N2∑
i=1

log I(τ2
i ).

(6.18)

The normalization integrals introduced in the previous section can be used as before,
and the same evaluation of the fit quality as before can be undertaken, considering the
different final states separately of course. The generalization to several final-states is
obvious. Additionally, besides different final states, the different data sets could also be
due to different triggers or even different experiments. The relative branching ρ1 can be
fitted as a free parameter or prescribed.

This combined fit was implemented in the partial-wave program developed during the
course of this thesis. This is not the program we used for the final analysis, as it has
no means of accounting for the background under the η′ or η peaks. Nevertheless, we
verify the Monte Carlo description of the spectrometer by checking whether the correct
branching fraction obtains when fitting the π−η′ data from both the final state with the
intermediate η decaying to two photons and three photons simultaneously. From the
tabulated branching fractions of the η meson [Nakamura et al., 2010] one has

ρ1 ≡
BR(η → γγ)

BR(η → γγ) + BR(η → π−π+π0) = 63.4%. (6.19)
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The data selected for both final states were fitted, and the relative branching fractions
obtained in all mass bins are depicted in Fig. 6.1. One sees that the fit indeed finds
the correct branching ratio throughout the relevant mass range. Above 2.4 GeV the
deviations become significantly larger. We do not draw physical conclusions in that
range.
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Figure 6.1.: Relative branching obtained for a combined fit of πη′ data in two final states
(see text). The expected value is indicated by a horizontal line. It is repro-
duced fairly well, expcept for the high-mass range where the fit quality
deteriorates due to the presence of additional partial waves.
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7. Implementation

During the course of this work two programs were used that apply the formalism
explained in the previous section to the analysis of the diffractively produced two-
pseudoscalar final states π−η and π−η′. One of these programs, developed as part of the
dissertation work, implements this analysis as a strict two-body analysis. We shall refer
to this program as LMU program. It totals about 5000 lines (145 kB) of C++ code and
uses the TFitterMinuit classes distributed with the ROOT libraries [Antcheva et al.,
2009] for minimization. This program has also been used for preliminary studies of the
centrally produced π−π+ system in the reaction pp → pfastπ

−π+pslow with data from
the COMPASS 2009 run [Austregesilo and Schlüter, 2012]. It has also been used for the
analysis of Kπ final states shown in the appendix G.

The other program, derived from a program originally developed in the late 1960ies [As-
coli et al., 1970; Hansen et al., 1974], takes the full four-body final state π−π−π+π0 or,
respectively, π−π−π+η into account in order to separate the η (η′) from the background.
This will be called Protvino program in the remainder of the text, as it’s currently de-
veloped mainly by D. Ryabchikov at the Protvino Institute of High-Energy Physics. It
is also the program used in other COMPASS analyses such as [Adolph et al., 2012; Alek-
seev et al., 2010]. We shall first discuss the detail of the two-body analysis, then discuss
the additional implementation details of the four-body analysis.

7.1. Amplitudes for Two-pseudoscalar States

The angular momentum ` of a system of two pseudo-scalars is given by their orbital
angular momentum. The amplitude for a two-pseudoscalar system with angular mo-
mentum ` and angular momentum projection on the z-axis given by m is by elementary
quantum mechanics given by the spherical harmonic Y `

m(θ, φ) with the usual spherical co-
ordinates. For a fixed mass of the two-pseudoscalar system, its phase space is completely
described by the angular variables and the description in term of spherical harmonics
is complete. The spherical harmonics are not eigenfunctions of parity, while the strong
interaction conserves parity. The implications of parity conservation are implemented
as follows: for the type of interactions considered a production plane can be uniquely
defined. Therefore, the requirement of parity conservation is most usefully implemented
by defining states as eigenfunctions with respect to reflections on the production plane
(which equals the parity operation followed by a rotation which takes the particle mo-
menta back to their original values) [Chung, 1997; Chung and Trueman, 1975]. The
quantum number corresponding to this operation is called reflectivity and takes two
values ±1. The full set of quantum numbers in this basis is then ε, `,m where ε = ±1,
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0 ≤ m ≤ ` and m = 0 only for ε = −1. The corresponding basis for the two-pseudoscalar
states is formed by the functions

Y ε`
m (θ, φ) ≡ cm

(
Y `
m(θ, φ)− ε(−1)mY `

−m(θ, φ)
)
, (7.1)

where cm is a normalization: 1/
√

2 for m 6= 0 (reflecting the orthogonality of the Y `
m)

and 1/2 for the case m = 0 where the two spherical harmonics are equal. It is worth
noting that ε is −1 times the eigenvalue of the reflection operator when applied to the
state. The value of this choice will become clear below.

The natural frame of reference in which to define the angles going into the spherical
harmonics of Eq. (7.1) is the Gottfried-Jackson frame, also called t-channel helicity frame.
This frame is defined as the right-handed rest-frame of the produced state (π−η′) whose
axes are chosen such that the x-axis lies in the production plane, the y-axis is orthogonal
to it, and the z-axis is along the line of the exchanged momentum, i.e. also fixing the
sign, the beam direction as seen in the rest frame.

As shown in Sec. 2.3, the two classes of events ε = ±1 correspond in the asymptotic
limit s→∞ to different production processes. Additionally, they do not interfere [Chung
and Trueman, 1975]. Namely, by the choice of sign mentioned above, ε = +1 corresponds
to so-called natural transfers where only quantum numbers JP = 0+, 1−, 2+, . . . are
exchanged, whereas ε = −1 corresponds to unnatural exchanges with quantum numbers
JP = 0−, 1+, 2−, . . . . The Pomeron trajectory corresponds to a natural exchange and
is expected to be dominant in the regime under study as explained in Sec. 2.1. We will
now see that these two classes can be distinguished by eye if looking at the data in the
right way.

Making the functional dependence on φ explicit, the spherical harmonics can be rewrit-
ten as

Y `
m(θ, φ) = Y `

m(θ, 0)eimφ, (7.2)

and it holds that Y `
−m(θ, φ) = (−1)m(Y `

m(θ, φ))∗ where the asterisk denotes complex
conjugation. Inserting this knowledge into Eq. (7.1) one finds

Y +1 `
m = 2icmY `

m(θ, 0) sinmφ, (7.3)

and
Y −1 `
m = 2cmY `

m(θ, 0) cosmφ. (7.4)

Therefore the presence of unnatural exchange will manifest itself as non-zero intensity
for φ = 0. It is perhaps worth noting that the S-wave ` = 0 can only appear in unnatural
exchanges.

Setting j = (`,m) we can insert this into the intensity function of Eq. (6.1) by identi-
fying

ψij(ϑ, φ) = Y i`
m (ϑ, φ), (7.5)

and by using as volume element the usual solid-angle integral

dτ = d(cosϑ)dφ, −1 ≤ cosϑ ≤ +1, 0 ≤ φ < 2π. (7.6)
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Traditionally, analysis of the πη or πη′ system includes all amplitudes of spin up to a
total of two and m ≤ 1. Following the convention in the literature, we shall label the
waves using a letter from spectroscopic notation S, P,D . . . together with a subscript
+, − or 0, which indicates naturality and spin substate at the same time, where +
indicates m = 1 natural exchange waves, − indicates m = 1 unnatural exchange wave,
and 0 indicates m = 0 waves, which can only correspond to unnatural exchange. We
include two additional waves in the analysis: the m = 2 natural exchange spin-2 wave,
labeled D++, and the m = 1 natural exchange spin-4 wave, labeled G+. Note that
one can’t add the D−− wave at the same time as the D++ wave as this would lead
to an underdetermination of the angular distributions [Lednev, 1997], but this wave is
expected to be strongly suppressed.

We show in Figs. 7.1, 7.2, and 7.3 exemplary angular distributions derived from these
amplitudes. For the main waves of interest, which are all natural-parity exchange waves
with m = 1, the distribution in ϕGJ is independent of the particular wave, and therefore
not depicted. We can thus show the relevant information in two dimensions, plotting
the relative phase shift between the waves on the horizontal axis and cosϑGJ along the
vertical axis. In the figures we see that changes in relative phase between the waves alter
the distributions in cosϑGJ significantly. This is what the fit utilizes to extract phase
information.
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Figure 7.1.: Interference of P+ and D+ waves for different relative strength. Each sub-
figure shows for the relative contribution to the amplitude indicated on the
plot the evolution of the angular distribution in terms of cosϑGJ as a func-
tion of phase-shift. In real data, the phase-shift will be a function of mass
and the relative thus of phase-shift.

Comparing Fig. 7.1 to the data shown in Figs. 4.8d and 4.10d, we can see certain
similar features: near the D+ wave resonance a2(1320) we do indeed see a forward and
backward peak in intensity, whose relative strength changes rapidly in the case of the
π−η′ data (corresponding to a large P+ contribution) and slowly in the case of the π−η
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Figure 7.2.: As Fig. 7.1 for P+ and G+ wave interference.
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Figure 7.3.: As Fig. 7.1 for D+ and G+ wave interference.
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data (small P+ wave contribution). In the π−η′ data we can then see a slow shift of
intensity between the forward and backward regions taking place for invariant masses
between around 1400 and 1800 MeV. Then, near 2 GeV, especially in the π−η data,
we see a structure resembling the bottom-left plot of Fig. 7.3. Thus, from this alone
we can already determine that we should have a strong D+ wave whose phase changes
rapidly near 1300 MeV compared to a P+ wave which is present in both the π−η and
π−η′ data, but which is relatively stronger in π−η′. We also see that there should be a
phase motion between the D+ and G+ data in the vicinity of 2 GeV, with little other
contribution especially in the case of the π−η data. We will see all this confirmed by the
actual analysis in the coming sections.

7.2. Ambiguities in the Two-body Analysis

We shall first discuss the technique known as “Barrelet zeros” [Barrelet, 1972] as it is
applied to ππ scattering, e.g. [Becker et al., 1979; Estabrooks and Martin, 1975; Hyams
et al., 1975], because the situation there is much simpler and the technique becomes
clear before applying it to the more complicated situation in decays.

Discrete Ambiguities in ππ Scattering Partial Waves In general, the partial-wave
sum for the scattering amplitude of two pions in the case where the highest angular
momentum ` occuring is L can be written

A(s, t) =
L∑
`=0

(2`+ 1)a`(s)P`(z = cos θ), (7.7)

where the amplitude is expressed as function of the Mandelstam variables s, t and z =
cos θ can be calculated as function of the two. This is a polynomial of degree L in z and
can thus be written as function of its complex-valued Barrelet zeros zi(s), to wit

A(s, t) = f(s)
L∏
i=1

(z − zi(s)). (7.8)

The measured values are the cross-sections at real values of s, z which for fixed s are
proportional to the modulus-squared of the amplitude, which for real scattering angles
and therefore real values of z is

dσππ→ππ
dt ∝ |A(s, t)|2 = |f(s)|2

L∏
i=1

(z − zi(s))(z − z∗i (s)). (7.9)

Besides being independent on the overall phase contained in f(s), the value of this
expression is invariant under the substitution zi → z∗i for any of the 2L combinations
of the i ∈ {1, . . . L}. Therefore, from measurement alone the amplitude Eq. (7.8) can
only be determined up to this 2L-fold ambiguity in the signs of the imaginary parts
of the Barrelet zeros. Since the Legendre polynomials form an orthogonal basis of the
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space of polynomials, each such ambiguous solution in the form of Eq. (7.8) can be
converted back to a set of partial waves in the form of Eq. (7.7) and each such set
of partial waves predicts the same angular distributions. The decision which such set
of angular distributions catches the physics therefore needs additional input, such as
behavior corresponding to known resonances, requirements from analyticity etc.

Discrete Ambiguities in Two-Pseudoscalar Final States in Scattering Experiments
Here, the situation is more complicated as one has to deal with two non-interfering
contributions coming from natural and unnatural exchange waves, respectively. Addi-
tionally, we have to take into account the magnetic quantum number m which is usually
≤ 1. Following the methods of Refs. [Barrelet, 1972; Costa et al., 1980; Gersten, 1969;
Martin et al., 1978; Sadovsky, 1991], one can write for the amplitudes after a judicious
choice of linear combinations and variables [Chung, 1997]

g(u) = c
1

(1 + u2)L
2L∏
k=1

(u− uk),

h+(u) = c′
u

(1 + u2)L
L−1∏
k=1

(u2 − rk).
(7.10)

where u = tan(ϑGJ/2) and L is the maximum angular momentum considered. The
intensity is related to these in the following way: writing

h0(u) = 1√
2

(g(u) + g(−u)),

h−(u) = 1
2(g(u)− g(−u)),

(7.11)

one has for the intensity function

I(Ω) = 1
4π
[
|h0(ϑGJ) +

√
2h−(ϑGJ) cosϕGJ|2 + |

√
2h+(ϑGJ) sinϕGJ|2

]
. (7.12)

Relations between the coefficients of the polynomials in Eq. (7.10) and the partial waves
are given in Ref. [Chung, 1997]. The ambiguous solutions are now obtained by sequen-
tially trying all combinations of complex conjugates of the zeroes uk, rk in Eq. (7.10)
and solving for the partial waves.

In the case under consideration, unnatural-exchange waves are absent from the data.
In this case, ambiguities only arise when angular momenta of at least three units are
present. Additionally, an incomplete set of waves, such as our main set P+, D+, G+, has
no ambiguities besides the trivial indeterminacy of the signs of the relative imaginary
parts. We return briefly to the question of ambiguities when we include the F+ wave in
Sec. 8.6.2.
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Continuous Ambiguities In this section we set out to show how a fit with higher-rank
density matrix is not possible in the two-pseudoscalar case when only the information
from the angles ϑGJ, ϕGJ is taken into account. The intensity function for a rank-two
fit then has the general form

I(ϑGJ, ϕGJ) = I1(ϑGJ, ϕGJ) + I2(ϑGJ, ϕGJ), (7.13)

where I1, I2 are the incoherent contributions, which we assume both to be due to natural-
parity exchange. The goal of this section is to show that the intensity distribution I1 +I2
can, by an appropriate choice of partial waves, be expressed with a single set of partial
waves, i.e. any distribution where the physics requires rank two can be fitted with a
rank-one density matrix. Since the case of rank one is a special case of the case of rank
two (set all partial waves in the second component to zero, i.e. I2 = 0), it is then clear
that a fit with rank two or higher can’t be stable, one has to fit with rank one and then
be careful in the physical interpretation to allow for incoherent contributions.

The assertion is easily proven by looking at the relations between the partial waves
and the moments of the intensity distribution, which taken together are equivalent to
the intensity distribution. The moments are defined in the usual way as

H(LM) =
w

dΩY L∗
M (ϑGJ, ϕGJ)I(ϑGJ, ϕGJ). (7.14)

Since this is linear one has H(LM) = H1(LM) +H2(LM), where H(LM) refers to the
moments of I and H1(LM), H2(LM) to the moments of I1, I2. For the case of only the
natural-parity waves P+, D+ being present, relevant to the low-mass range, the following
linearly independent moments obtain in terms of the production amplitudes,

H(00) = |P+|2 + |D+|2,

H(10) = 1√
5

Re(P ∗+D+),

H(40) = − 4
21 |D+|2.

(7.15)

Writing P1, D1, P2, D2 for the production amplitudes of the partial waves the non-
interfering components, one finds from H(LM) = H1(LM) + H2(LM) that the same
angular distribution is described by the rank-one density matrix with waves P+, D+
given by

|D+|2 = |D1|2 + |D2|2,
|P+|2 = |P1|2 + |P2|2,

cos ∆φ = |P1||D1| cos ∆φ1 + |P2||D2| cos ∆φ2
|P+||D+|

,

(7.16)

where the ∆φ denote the phase differences arg(D+/P+), and similar for ∆φ1, ∆φ2. This
result is unique up to a global phase and the sign of ∆φ. Note that this solution always
exists except in the uninteresting case where either |D+| or |P+| is zero and the phase
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differences therefore becomes undefined. For the case with an additonal G+ wave, one
derives similar relations. Since the rank-one case can be reached by the limit D2 → 0,
P2 → 0, there is no unique best description of the data in a rank-two fit.1 In the special
case where cos ∆φ1 = cos ∆φ2 = cos ∆χ one can write

cos ∆φ = ξ cos ∆χ, 0 ≤ ξ ≤ 1, (7.17)

where ξ is then a measure of coherence and ∆χ is interpreted as the physical phase
difference which can be extracted if assumptions about ξ are made [Martin et al., 1978].

This issue seems to have escaped the authors of analyses of the π−η and π−η′ final
states with the exception of the authors of Ref. [Chung et al., 1999] who instead go on
to show that for the case of a fit which accomodates Breit-Wigner resonances in both
the D+ and P+ partial waves, one can find a rank-two density matrix which has these
same resonances in both non-interfering contributions. From this, they seem to conclude
that a successful fit to the rank-one density matrix with both a P -wave resonance and a
D-wave resonance implies that even in the presence of non-interfering contributions, this
interpretation should hold. How this exercise in algebra should have the stated physical
conclusion remains unclear, as only for very specific relative strengths of the various
partial waves one will observe the resonances present in the rank-two density matrix
with the same functional form in the rank-one fit. Indeed, one can show that under
fairly general circumstances, one can find coefficients such that P1 = αP , D1 = βD,
P2 = γP , D2 = δD. For this it is not needed the P and D be Breit-Wigner functions,
contrary to what the authors of Ref. [Chung et al., 1999] seem to suggest. What is really
shown by Eq. 7.16 is that any interpretation of the results of the mass-independent fit
should allow for non-interfering contributions.

7.3. Four-body Analysis of the Two-Pseudoscalar Final States

Selection of the η → π−π+π0 or η′ → π−π+η decays invariably leads to background, both
due to the finite resolution of the detector and because of background processes that are
unaccounted for. In the two-body analysis of the π−η and π−η′ systems described before,
there is no room for the fit to separate these contributions from the data which is of
interest, the corresponding intensity will end up being described by the partial waves. It
is therefore of interest to devise a strategy which separates out background contributions.
In the analysis under description, the full four-body information available is used for this
purpose. As shown in Sec. 4.4.1 and Sec. 4.4.2, the isoscalars are observed as peaks with
double-Gaussian shape sitting on a rising background. It is also shown there that the
decay of the pseudoscalars is not isotropic, but instead decays with large invariant mass
of the π−π+ pair are favored. This was predicted for the η (see e.g. Ref. [Bijnens and

1During the final stages of the preparation of this thesis it was found that the moments for the combi-
nation of waves P+, D+ and D++, while leading to very similar equations, do not allow the same kind
of unique reduction from rank two to rank one. This is due to the additional information contained
in the interference of M = 1 and M = 2 contributions and their different dependence on ϕGJ. First
attempts of rank-two fits were inconclusive, but the implications could not be studied further.
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Ghorbani, 2007] and references therein). On the other hand, theoretical calculations have
caught up with experimental data on the η′ decays only recently (e.g. Ref. [Escribano
et al., 2011] and references therein).

The fit incorporates this additional information in the following way: data are selected
in a wide window around the nominal mass of the isoscalar. Then, when calculating the
amplitudes for the physical waves, two additional factors appear: one corresponding to
the double-Gaussian shape of the η/η′ peak (being an amplitude, the square-root of
the double-Gaussian function is used), and another one corresponding to the η/η′ decay
amplitude where the tabulated empirical parametrizations [Nakamura et al., 2010] are
used. Additionally, a so-called flat wave is introduced whose amplitude is isotropic in
the four-body phase-space. This absorbs the background under the isoscalar peak. In
App. H we document first steps to a complete four-body partial-wave analysis of the
π−π−π+η system, which would also account for the bckground under the η′ in terms of
partial waves.

An analysis in the full four-body space in principle requires a correctly Bose-symmetrized
amplitude between the two identical π− appearing in the final state where both combina-
tions should be added coherently. Nevertheless, given the small width of the isoscalars,
the overlap region cannot be disentangled from the experimental smearing, while simul-
taneously leading to a physical effect only in a very small region of phasespace (estimated
by the ratio of the width of the isoscalar divided by the several orders of magnitude larger
size of the available phasespace). Therefore, this symmetrization is not performed, both
combinations are added incoherently.

Lastly, the four-body phase-space has to be filled by Monte Carlo events. Since in the
real data only events are considered where one neutral three-body combination lies in the
vicinity of the isoscalar mass, only a small part of the full phase-space contributes in the
analysis. The Monte Carlo generation therefore only populates this part of phase-space.
In the case of η′π− the Monte Carlo generation is isotropic apart from this cut. For the
ηπ− generation on the other hand, a weighted Monte Carlo is used to probe the range of
the η efficiently with less generated events. Events are generated following a probability
distribution which generates more events in the vicinity of the η peak (its functional
form as function of the three-body mass is that of a constant plus a Gaussian centered
about the η mass). When calculating the normalization integrals, each event is weigthed
with the inverse of this probability distribution, leading to an efficient evaluation of the
same integral.
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8. Results of the Partial-wave Analysis in
Mass Bins

In this section we present the results of the mass-independent partial-wave analysis of the
η′π− and ηπ− data. First, we give the results from fits to the complete data sets and then
we show a number of alternative fits and results from the kinematic validation of the fits.
Except for Sec. 8.7 where we compare the results obtained with the different partial-wave
programs, all figures were obtained with the full four-body analysis program.

Let’s quickly recall the knowledge from previous analyses: in the diffractively produced
ηπ and η′π systems, D and P wave intensities were observed. In η′π, a previous analysis
also found a G-wave intensity [Ryabchikov, 1997]. Charge-exchange reactions also saw
S-wave intensities, but since these can only arise from Reggeon exchanges, they are
suppressed at 191 GeV where the neutral Pomeron exchange is dominant. In the ηπ−

system the D+-wave was foudn to be dominant, unllike in the η′π− system where the
P+ wave is of comparable strength to the D+ wave.

8.1. Partial-Wave Analysis of the η′π− system

The results of the mass-independent fit to the π−η′ system are shown in Fig. 8.1. De-
picted are the natural-parity waves. On the diagonal, the intensities of the allowed
waves are shown, from left to right these are the P+, the D+ and the G+ waves. These
three waves together with the flat wave allow to describe the data up to approximately
1.8 GeV. Inclusion of the spin-three F+ wave is discussed in Sec. 8.6.2. The effect of
its addition on the natural-parity waves shown above is a stabilization of the G+ wave
which in the fits shown here has a discontinuity near 2 GeV. The interferences between
the waves are shown above and below the diagonal of Fig. 8.1. Above, the relative real
parts are plotted, below the relative imaginary parts.

Mass-independent partial-wave analysis confirms the features expected from previous
analyses: the unnatural exchange waves are suppressed; in the natural waves, the P+
wave is the largest wave, showing a broad bump centered around 1.6 GeV. In terms of
intensity, is followed by the D+ wave which shows a peak corresponding to the a2(1320)
near threshold, followed by a broad shoulder which begins to decrease near 2 GeV. The
G+-wave is zero until approximately 1.8 GeV, then shows a structure near 2 GeV, fol-
lowed by a slowly increasing background. Also, the unnatural waves start to increase in
the high-mass range beyond 2 GeV. More on this later.

The phase motions derived from this are depicted in Fig. 8.2. Two features are easily
identified with known physical objects: the rapid phase-motion between the P+ wave
and the D+ wave around 1.3 GeV corresponding to the a2(1320), and the phase motion
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Figure 8.1.: Mass-independent partial-wave analysis of the π−η′ system. The matrix
show on the diagonal the intensities of the P+, D+, and G+ waves. Above
the diagonal are shown the respective relative real parts, below the respec-
tive relative imaginary parts. The signs of the imaginary parts are not
determined by the fit.
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Figure 8.2.: Phase motions in the η′π− system. The function arg is the function giving
the phase of its complex argument, and thus the phase-difference between
numerator and denominator in the fractions.

of the G+ wave near 2 GeV relative to both the P+ and the D+ waves, signifying the
presence of the a4(2040). The remaining phase-motion not associated with established
resonances is the one between the P+ and D+ waves in the range from approximately
1.5 GeV to 2 GeV where a slow phase-shift is followed by a rapid increase near 2 GeV.
These will be studied in the chapter on mass-dependent fits, where different models for
these structures will be applied.
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Figure 8.3.: Intensities obtained in the mass independent fit to the unnatural-parity and
flat waves in the η′π system.

The re-appearance of the unnatural exchange waves visible in Fig. 8.3 in the high-mass
range is due to the following reason. As seen in Fig. 4.8d, the data concentrates near
cosϑGJ = ±1. This concentration of the data near the edges requires higher and higher
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partial waves, rendering the wave set which includes only waves in the range L = 1, 2, 4
insufficient which makes the fit attempt other waves. The ϑ distribution of the unnatural
waves tends to be sharper, and this is reflected in the fit’s propensity for using them.
We show in Sec. 8.6.2 how the inclusion of higher-spin waves prevents this rise of the
unnatural waves in the high-mass region. This feature will become more clear in Sec. 8.5
where the fit results will be compared to the data.

We also studied inclusion of the D++ wave, the m = 2 contribution to the spin-two
wave. It was found at a relative strength of 3% relative to the D+ wave, but with large
uncertainties, and was not further considered.
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8.2. Partial-Wave Analysis of the ηπ− system

The data in the ηπ− channel are dominated by the well-known a2(1320) resonance.
This feature, evident from the invriant mass spectrum, is confirmed by the partial-wave
analysis which finds the largest contributions in the D+ wave. Its m = 2 component, the
D++ wave is found at the 3% level. Besides this well known resonance, it appears again
a broad structure in the P+ wave, this time centered at approximately 1.3 GeV. The
intensity in this wave vanishes for masses above approximately 1.8 GeV which implies
that the fit sees no forward-backward asymmetry after acceptance corrections in the
high-mass range. The P+ wave intensity is lower in the π−η system than in the π−η′

system, even though the latter has much less available phase-space. We will return to
this point in Sec. 8.3. Lastly, the G+-wave shows a peak compatible with the a4(2040)
near 2 GeV and rises above. In terms of phase motions, the D+ and D++ waves appear
phase-locked after they both pick up intensity. While this suggests a similar physical
origin of both waves the difference in relative height of the peak to the high-mass shoulder
indicates that the shoulder is generated by a different physical process from the main
peak.

The phase motions between the P+ and D+ waves shows the same behavior as in
previous analyses at lower energies [Amelin et al., 2005; Beladidze et al., 1993; Chung
et al., 1999; Szczepaniak et al., 2003]. The fit is self-consistent in that the phase motion
between and P+ and D++ waves mimics that between the P+ and D+ waves, and that
the differences are reflected in the phase motion between the D+ and D++ waves. The
relative phase-shift between D+ and G+ waves is again compatible with the presence of
the a4(2040) resonance. In terms of interpretation it is unfortunate that there’s almost
no overlap between the P+-wave and G+-wave structures, which would allow attributing
phase-shifts to individual waves independently of a model.1

Around 1.3 GeV we observe a peak in the G+ wave. This is understood as leakage from
the much stronger D+ wave, where due to an incomplete Monte-Carlo description, the
observed intensity distribution is not perfectly described. Namely, the occupancy of the
center of the electromagnetic calorimeter does not agree between the fit prediction and
the data. Potentially, this is due to a slight mismatch between the momentum transfer
distribution used in the Monte Carlo generation and the actual data, we will return to
this particular point in Sec. 8.5.

1To be precise, if one observed a similar phase-shift between waves A and B as well as between waves
A and C, while at the same time no such phase-shift is seen between waves B and C, then one is left
with two possibilities: either the phase shift is due to a change of phase of wave A, or waves B and
C move in sync. A model that distinguishes between the two possibilities can then be much simpler
than if, say, only information on the relative phase-shift between waves A and B is available with no
information on wave C.
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Figure 8.4.: Mass-independent partial-wave analysis of the π−η system. The matrix show
on the diagonal the intensities of the natural-parity waves. Above the diago-
nal are shown the respective relative real parts, below the respective relative
imaginary parts. The signs of the imaginary parts are not determined by
the fit. The dominating D+ wave leaks into the G++ wave in the mass range
near 1.3 GeV.
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Figure 8.5.: Relative phases of the natural-exchange waves in the π−η system.
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8.3. Comparison of the Two Systems

As discussed in Sec. 1.1.2, the η and η′ mesons mix. Namely, the OZI rule predicts
that aside from angular momentum barriers, the amplitudes for initial states with no
strangeness content leading to final states with η′ or η mesons and no strange quarks in
the other final-state particles should behave as [Okubo and Jagannathan, 1977]

A(η′)
A(η) ∝ tanφ, (8.1)

with φ the pseudoscalar mixing angle in the flavor basis, provided the process can be
drawn with a connected quark-line diagram. Intuitively, this is readily understood as
the suppression of the production of an ss̄ which would need a disconnected quark-line
diagram, exactly the case of OZI suppression.

Testing this prediction in the case under study is interesting for two reasons: on the
one hand, the production of η mesons via double-Pomeron exchange in the usual picture
of the Pomeron as a purely gluonic object need not follow this prediction: when the η
is produced from two Pomerons, then only the flavor-neutral couplings of the gluons to
the quarks should contribute, and the conditions for application of the OZI rule are not
given. On the other hand, the coupling of a qq̄g system – another case where the OZI
rule is not applicable – to πη′ is predicted to be enhanced over the coupling to πη [Close
and Lipkin, 1987]. It was already verified by previous experiments that the P+ possesses
this property [Beladidze et al., 1993]. We shall study this property also for the other
waves.

In general, cross-sections for the production of the πη′ and πη system of angular
momentum J and mass m that follow the OZI prediction should behave as

σπη′

σπη
= q′(m)
q(m)

F 2
J (q′(m))
F 2
J (q(m))

tan2 φ, (8.2)

where q(m) (q′(m)) denotes the break-up momentum of the system when decaying to
πη (πη′). General relations of this type are given in [Okubo and Jagannathan, 1977].
The first factor is a phase-space factor, the second, dynamical term corresponds to the
angular momentum barrier, the third term describes the mixing between the ηs [Amsler
et al., 1992]. The form of the dynamical term is not given a priori and depends on the
interaction. For a reaction where an intermediate spin-J resonance decays, the usual
Hippel-Quigg factors [von Hippel and Quigg, 1972] are a natural, but not necessary
choice [Abele et al., 1997; Amsler et al., 1992]. Since we have seen before that large
contributions also take place away from resonances, we take the simple form

FJ(q) = qJ , (8.3)

which has the required asymptotics near threshold, but makes no further dynamical
assumptions. We are thus lead to the following way of comparing the amplitudes leading
to the two final states under consideration: take the partial-wave amplitude extracted
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from the partial-wave amplitude for the πη final-state; multiply this amplitude with a
factor (

q′(m)
q(m)

)J+1/2
; (8.4)

superimpose the thus obtained amplitudes on the corresponding amplitudes for the η′π
final states. More precisely, the accessible quantities are the interference terms and
intensities which always involve products of two amplitudes (not necessarily different),
so the corresponding value is scaled with two such factors, one for each partial-wave
amplitude. The resulting intensities and interference terms are depicted in Fig. 8.6.
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Figure 8.6.: Comparison of the partial-wave amplitudes obtained in the πη′ (black) and
πη systems (red) after re-scaling with the phase-space factors.

The comparison shows two striking features: first, the close similarity of the even
partial waves, D+ and G+. The close match in the overall normalization is supposed to
be accidental subject to further MC studies: in Sec. 9.3 we extract relative branching
fractions of the a2(1320) which are at slight tension with theoretical expectations and
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tabulated values.
It appears that the physical content of these waves is the same in both final states,

even in the high-mass range where non-resonant production is expected to be dominant.
On the other hand, the P+ wave is strongly suppressed in the πη final state in accordance
with the suspected non-qq̄ character of this wave. Comparing the phase motions (which
are not affected by the scaling procedure) as shown in Fig. 8.7, one finds that the P+
wave has the same phase relative to the D+ wave at the πη′ threshold, which suggests a
common origin, but it then evolves differently which contradicts them having the same
resonant content. The similarity of the scaled D+ waves suggests that the difference in
the relative phase motion of the P+ and D+ waves is mainly due to different contents of
the P+ wave. The phase determination of the mass-independent fit is not unique, as the
sign of the relative imaginary part cannot be fixed. We thus show two possible branches
of the phase determination in the π−η system, the red points correspond to the ones
shown before, the blue points are mirrored on the −180 deg line. The phase-difference
in the π−η′ system is continuous and remains within the same 180 deg range, so we do
not show any alternative branches there. If one takes the mirrored points into account,
the phase motion from the P+-wave in π−η overshoots the phase observed in the π−η
system, but otherwise they turn out fairly similar. Returning to Sec. 7.2, where we
discussed the possibility of incoherent contributions, the simplest explanation appears
to be an incoherent contribution larger in the π−η′ data. This contribution – taking the
similarity between the D+ waves into account – would have to be mostly P+ wave. Then
the phase motion near 2 GeV would actually be due to the disappearing of the additional
P+ wave contribution and not to a resonance in the D+ wave. This in turn would be
consistent with the relative phase motion of the D+ and G+ waves which shows a phase
motion corresponding to a resonance in the G+ wave but no sign of a 180 degree motion
in the opposite direction stemming from a second D+ wave resonance.
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Figure 8.7.: Comparison of the relative phases. For the D+/P+ comparison we show
both ambiguous branches of the phase-motion in the π−η system (see text).
The relative phase motion of the P+ and G+ waves is not shown as they
have only very little overlap in the π−η data.
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Lastly, a comment on the role of angular momentum barrier factors in this comparison:
if instead of the simple factors FL(q) = qL one uses the angular momentum barrier factors
from Eq. (F.9) as in FL(q) = BL((qR)2) with R ≈ 1 fm, the scaling blows up the ηπ data
relative to the η′π data, as only for very large values of the breakup momenta the ratio
of the angular momentum barrrier factors BL((q′R)2)/BL((qR)2) becomes comparable
to the simpler phase-space factor (q′/q)L. This will be taken up in Sec. 9.3.

8.4. t′-dependent Fits

In order to gain further insight into the production of the ηπ− or η′π− pairs, we pursued
fits in various ranges of the momentum transfer t′. First, we performed fits where we
only included data in the range 0.1 GeV2 < t′ < 1 GeV2, as that is the range covered by
the Monte Carlo generation. Fit results were not affected significantly by this. Then we
subdivided this range into two ranges of approximately the same content, 0.1 GeV2 <
t′ < 0.3 GeV2 (“low-t′”) and 0.3 GeV2 < t′ < 1 GeV2 (“high-t′”) and performed fits in
these two subranges. The only wave where we expect a markedly different dependence
on t′ is the M = 2 D++ wave. While for the M = 1 waves the expected behavior of the
cross-section is dσ/dt′ ∝ t′ exp(−bt′), one expects the wider dσ/dt′ ∝ t′2 exp(−bt′) for the
M = 2 wave. In principle, different physical processes contributing could be governed
by different exponential functions. As we see from the results of the fits, depicted in
Fig. 8.8 for η′π− and Fig. 8.9 for ηπ−, this appears not to be the case. The intensities as
well as the interference terms come out very similarly in the different t′ bins. We shall
comment briefly on the most important differences below. The unphysical waves are not
depicted, they contain no interesting content.

In the η′π− there appear two significant differences. First, the P+ intensity appears
to be shifted to a slightly higher mass. This is perhaps important in the physical in-
terpretation. Clearly, the similarity between the different t′ bins suggests that if the
production mechanism changes at all, it does so very slowly. Therefore we would expect
a resonance to appear in the same place in the two fits. This suggests that P+ wave is
not saturated by a resonance. This will be studied during the course of mass-dependent
fits, discussed in Sec. 9. Secondly, the G+ wave intensity looks very different in the two
momentum transfer ranges. Actually, the interference terms are very stable, so one is
left to assume that this difference in the intensity is due to an instability of the fit in
this range due to the too-simple model, as was previously hinted at in the fits over the
whole t′ range.

As for what concerns the ηπ− data, there are again two striking differences. First,
the M = 2 D++ wave is much more pronounced at higher values of t′. This will be
quantified in the section on mass-dependent fits. Secondly, the interference between P+
and D+ wave changes between the two momentum transfer ranges. To be precise, in
the interference plot, the minimum of the high-t′ curve is much shallower than that of
the low-t′ curve. The P+ wave intensity itself seems to be slightly lower in the high-t′

range, but this difference appears to lie within error bars. Lastly, the unphysical G+
wave intensity in the range of 1.3 GeV is not affected by the choice of t′ bin, which is
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Figure 8.8.: Natural parity waves in η′π− for low (black) and high (red) t′ bins. Display
as in Fig. 8.1.
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Figure 8.9.: Natural parity waves in ηπ− for low (black) and high (red) t′ bins. Display
as in Fig. 8.4.
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a manifestation of the low dependence of the lab momenta on the initial momentum
transfer.

8.5. Kinematic Validation

As discussed in Sec. 6.1, the quality of the fit can be assessed by comparing the predic-
tions made by the fit with the real data. In Figs. 8.10 to 8.18, we show comparisons
of a number of representative quantities in various mass ranges. The boundaries of the
mass ranges are in sequence (mπ +mη) — (mπ +mη′) — ma2 — (ma2 +Γa2) — 1.6 GeV
— 2 GeV. The range below the πη′ threshold is only shown for the πη data. In each
of the ranges, the same set of variables and is shown. The measured data are repre-
sented by black dots. The fit prediction is decomposed into the contributions of the
three incoherent parts: the flat wave (green), the unnatural-parity waves (blue) and the
natural-parity waves (red). The flat wave contributions is determined by the size of the
window about the η(′) peak. Varying the size of this window showed no important effect
on the physical waves. Statistical fluctuations are expected to be smaller in the Monte
Carlo predictions than in the data, given that the Monte Carlo data sample is at least
ten times larger than the real data sample in each mass bin. We briefly comment on the
variables that are shown and explain their meaning:

(a): this is the distribution of the z coordinate of the primary vertices which are initially
generated following a flat distribution over the target.

(b): distribution of the momentum transfer t′ to the target.

(c): these show the invariant mass of the neutral three-body system π−π+π0 or π−π+η
which contains the η or η′, respectively. The flat wave does not have the three-
body peak, whereas the natural and unnatural exchange waves do contain it. The
quality of the description can therefore be assessed comparing the peak and its
neighborhood.

(d), (e), (f): distributions of the momenta of the final state particles, p(η), p(π+) and
p(π−). Since there are two π− in the final state, there are two entries per event
in the p(π−) plots. Except for acceptance effects, this latter plot should consist of
two components, one identical to the p(π+) distribution (which comes from the η,
η′ decay), the other coming from the accompanying π− in π−η, π−η′.

(g), (h): distributions of the emission angles ϕGJ, cosϑGJ of the η (η′) in the π−η
(π−η′) rest systems. In order to uniquely identify the η (η′) from the two possible
combinations, a tighter window (±20 MeV) has been applied before filling these
plots. This explains the relatively smaller contribution of the flat wave compared
to the other plots.

Note that the partial-wave amplitudes and therefore the fit are only sensitive to the
angular distributions in the rest-frame of the mesonic system. This already explains the
large deviation seen in the t′ distribution: two things are at play. On the one hand, the
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data was processed with no cut on the values of t′ whereas the Monte Carlo generation
only included t′ > 0.1 GeV2. Since the fit predicts the number of observed events the
integrals of the data and fit distribution will match, blowing up the fit prediction his-
togram which only extends over a smaller range. No significant changes in the fit results
were observed when only including data with t′ > 0.1 GeV2. On the other hand, the t′

distribution appears steeper in the data than in the fit results. The t′ distribution used
in the generator was obtained by a fit to the complete data set, not taking any depen-
dency on mass into account. As the t′ distributions of the fit results approach the data
closer for higher masses, it appears that the original extraction of the t′ distribution was
dominated by the high mass range (including data beyond the upper limit of these plots,
2 GeV). Monte Carlo studies showed no strong dependency of the acceptance on t′ away
from the trigger threshold [Diefenbach, 2011]. These two observations, together with the
lack of direct dependence of the fit variables on t′ then explain how these deviations can
persist even in a good fit. For comparison, we show in App. E the same plots where in
the fit the data were restricted to the range 0.1 GeV2 < t′ < 1 GeV2

For the πη data the fit matches the data exceedingly well in the three central mass
ranges. In the lowest bin shown in Fig. 8.10, one notes the large contribution of the flat
wave. Looking at the m(π−π+π0) distribution, one notes a bump corresponding to the
ω(782). The fit does not know about the ω and therefore doesn’t model it. We verified by
means of side-bin studies that its presence does not distort the η peak. Studies of mass
spectra revealed the most likely origin of this contribution being the low-mass tail of the
b1(1235) produced in the same final state by the reaction π−p → b−1 p with subsequent
decays b−1 → π−ω and ω → π−π+π0. No comparable effect can be observed in the π−η′

data where one could expect the f1(1285) to reflect in a similar way in the mass ranges
of Figs. 8.17 and 8.18.

In the highest-mass πη bin depicted in Fig. 8.14, one sees in the p(π−) distribution a
contribution that is not accounted for where very fast π− are emitted. It was shown in
additional studies which are briefly discussed in Sec. 8.6.2, that these could be accom-
modated with additional high spin waves, namely the F+ wave with JP = 3− and by
going up to spin six for the highest masses. The range where these contributions appear
matches roughly what one sees in a double-Regge model for the case of KK̄ produc-
tion in π−p collisions, albeit at lower beam energy [Shimada et al., 1978]. Comparing
to the corresponding mass range for πη′ in Fig. 8.18, one notes that this contribution
does not stand out there. Again, studies that go beyond the scope of this thesis showed
that the data could be better accommodated introducing an F+ wave for π−η′ masses
above approximately 1.8 GeV. At even higher masses a similar high-momentum peak
also appears in the π−η′ data (not shown). These additional waves also remove the need
for the unnatural exchange waves that become important at high masses, as seen for
instance in Fig. 8.14h, where the unnatural wave intensity depicted in blue tries to make
up for the incomplete description at the phase-space edges while the corresponding ϕGJ
distribution shows no signs of deviating from a purely natural-parity distribution with
a flat background.

One sees throughout that the η and η′ peaks are nicely saturated by the fit, which
illustrates that the background subtraction procedure works, and the description of the
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η and η′ resolution is accurate enough.
Comparisons of a few additional quantities, integrated over the whole mass range

below 2 GeV are shown for π−η in Fig. 8.19 and for π−η′ in Fig. 8.20. Again, data
and fit are in very good agreement. Three remarks are in place concerning the plots
showing the azimuthal emission angle of the recoil proton. First, this angle is not the
discrete angle measured by the recoil proton detector but instead reconstructed from
momentum conservation (formulae in App. C). Second, one part of the detector was
excluded, as its response in terms of momentum transfer squared t was found to be
different from the remainder of the detector, and no complete parameterization of the
detector’s performance was available in time for this thesis. Third, for the same reason a
simple performance parameterization was extracted from the π−η data and also applied
to the π−η′ data, verifying its quality. The pictures show two features: a fast oscillation
corresponding to the varying performance of the slabs of the recoil proton detector
(which the aforementioned performance parameterization models), and a slow oscillation
reflecting the shape of the spectrometer (which is taken into account by the usual Monte
Carlo simulation). The recoil proton detector being an essential part of the trigger, the
observed good agreement is very satisfying. Yet, given its importance even finer details
should be taken into account. Work towards these ends was still ongoing by the time of
completion of this thesis.
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mη′ ] = [687 MeV, 1097 MeV]. The data are represented by the black points.
The (stacked) histograms illustrate the incoherent components of the fit
result. In green the FLAT wave, in blue the unnatural exchange waves and
in red the physical natural-parity waves. The sum of the three histograms
should match the data. 112
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Figure 8.11.: Comparison between π−η data and fit prediction for m ∈ [mπ+mη′ ,ma2 ] =
[1097 MeV, 1318 MeV]. Other details as in Fig. 8.10.
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Figure 8.12.: Comparison between π−η data and fit prediction for m ∈ [ma2 ,ma2 +Γa2 ] =
[1318 MeV, 1425 MeV]. Other details as in Fig. 8.10.
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Figure 8.13.: Comparison between π−η data and fit prediction for m ∈ [ma2 +
Γa2 , 1.6 GeV] = [1425 MeV, 1600 MeV]. Other details as in Fig. 8.10.
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Figure 8.14.: Comparison between π−η data and fit prediction for m ∈ [1.6 GeV, 2 GeV].
Other details as in Fig. 8.10.
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Figure 8.15.: Comparison between π−η′ data and fit prediction form ∈ [mπ+mη′ ,ma2 ] =
[1097 MeV, 1318 MeV]. Other details as in Fig. 8.10.
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Figure 8.16.: Comparison between π−η′ data and fit prediction for m ∈ [ma2 ,ma2 +
Γa2 ] = [1318 MeV, 1425 MeV]. Other details as in Fig. 8.10.
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Figure 8.17.: Comparison between π−η′ data and fit prediction for m ∈ [ma2 +
Γa2 , 1.6 GeV] = [1425 MeV, 1600 MeV]. Other details as in Fig. 8.10.
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Figure 8.18.: Comparison between π−η′ data and fit prediction for m ∈ [1.6 GeV, 2 GeV].
Other details as in Fig. 8.10.
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Figure 8.19.: Comparison between π−η data and fit prediction for additional quantities
for m(π−η) < 2 GeV. Color code as in Fig. 8.10.
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Figure 8.20.: Comparison between π−η′ data and fit prediction for additional quantities
for m(π−η′) < 2 GeV. Color code as in Fig. 8.10.
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8.6. Alternative Combinations of Waves

8.6.1. The Low-Mass G+ Wave in ηπ−

The fits we showed previously in Fig. 8.1 show an unphysical enhancement in the 4++

G+ wave near 1.3 GeV, where the dominant D+ wave peaks. In order to study the origin
of this contribution, we performed fits where this wave was not made available to the fits
in the mass bins below 1.5 GeV. The effect of this can be seen in Fig. 8.21. The sharp
unphysical structure previously visible in the G+ wave now settles on the 1−+ wave, while
not affecting its phase relative to the D+ wave significantly. Studies of photon impact
points in the electromagnetic calorimeters lead to the conclusion that this leakage is
caused by an incomplete description of the acceptance of the very populated central
region of the forward electromagnetic calorimeter ECAL2. Since a new production of
the data was underway by the time of the finishing of this thesis, further studies were
delayed until this new production with rewritten calorimeter code becomes available.

8.6.2. Fits With Higher Spins

Already in the discussion of the kinematical validation, we mentioned the necessity for
higher-spin contributions. These are expected to appear due to the presence of non-
resonant contributions which clearly dominate the high-mass range and which, when
decomposed into partial waves will populate several partial waves. Additionally, previous
analyses of related reactions, such as π−p → K−K0

Sp in Ref. [Cleland et al., 1982a;
Martin et al., 1978], showed such contributions.2 In general, they pose several problems.
First, the ambiguities discussed in Sec. 7.2 need to be resolved. In principle, these
ambiguities affect data with only natural-parity contributions when spins of at least
three units of angular momentum are included [Chung, 1997]. Yet, they didn’t arise
so far because even though we introduced the G+ wave with J = 4, we didn’t also
introduce the spin-three F+ wave. The resulting set, not forming a complete basis, is
unambiguous. Still, there are several indications that further contributions are needed
for the fit presented in this work. First, it shows slight instabilities: for instance the
jump in the G+-wave intensity near 2 GeV in Fig. 8.1, where a slight change in the
acceptance description could make the intensity in that bin appear in the P+ wave

2Due to the background subtraction needed in our analysis, their technique of moment analysis using a
linear-algebra technique for acceptance correction cannot be applied to our analysis. This moments
technique is based on the observation that the observed intensity is the product of the spectrome-
ter acceptance function and the intensity expected without any detector acceptance effects, i.e. the
acceptance corrected intensity distribution which contain the actual physics information. Moments
here refers to the standard technique of decomposing a function on the sphere in terms of spherical
harmonics. Inserting the moments decomposition of the unknown acceptance-corrected intensity and
of the known acceptance function into the equation for the moments decomposition of the observed
intensity, Hobserved(LM) =

r
dΩY L∗M (ϑGJ, ϕGJ)Iobserved(ϑGJ, ϕGJ), the integral can be evaluated with

standard formulae, and one obtains a matrix relation between the observed moments and the accep-
tance corrected, expected moments. Inverting this matrix then allows extraction of the acceptance
corrected moments. The moments are related to the partial waves by quadratic equations. The
ambiguities discussed in Sec. 7.2 appear during the solution of these equations.

123



 GeV 
0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

 E
ve

nt
s/

 4
0 

M
e

V
   

0

1

2

3

4

5

310×

(a) |P+|2
 GeV 

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
 E

ve
nt

s/
 4

0 
M

e
V

   
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

610×

(b) |D+|2

 GeV 
0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

 E
ve

nt
s/

 4
0 

M
e

V
   

0

0.5

1

1.5

2

2.5

3

3.5

4

310×

(c) |G+|2
 

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

-450

-400

-350

-300

-250

-200

-150

-100

(d) arg(D+/P+)

Figure 8.21.: Results of fits to the ηπ− system with the 4++ wave introduced only above
1.5 GeV. One sees that the leakage around 1.3 GeV previously observed in
the 4++ wave now has moved to the 1−+ wave. The phase motion between
P+ and D+, on the other hand, is fairly resilient to this problem. The G+
wave has changed only insofar, as it is now zero below 1.5 GeV.
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instead. Secodnly, we have also seen in Sec. 8.5 that the description of the data cannot
reproduce all kinematical features.

We thus extended the fit to include the F+ wave for invariant masses above 1.5 GeV
(for ηπ−) and above 1.8 GeV (for η′π−), and the spin-five H+ wave together with the
spin-six I+ wave above 2.3 GeV. These ranges were suggested by the induced change in
the log-likelihood function: inclusion below these limits lead to no significant change in
the log-likelihood function. I.e. the price of introducing the ambiguities was not justified
by an increased quality of the fit. On the other hand, above these limit significant
changes in the value of the log-likelihood function were observed.

We will only show the intensities of the various waves. The ambiguity was resolved
by choosing the solution found with the smallest intensity for the F+ wave. This way
the results most closely resemble the fit results given previously.3 We show the results
for the π−η channel in Fig. 8.22 and for the π−η′ channel in Fig. 8.23. We see large
error bars in the bins containing the thresholds for the additional waves, probably due
to a misalignment between the mass bins and the threshold values. In the η′π we see
that the 4++ wave has stabilized, the jump at 2 GeV has disappeared. Also, this wave
rises much slower at high masses compared to the previous fits. In the ηπ data no
significant changes can be observed. In both cases the unnatural parity exchange waves
become compatible with zero (not pictured), illustrating their unphysical character and
justifying their omission in future analysis.
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Figure 8.22.: Intensitis of natural-parity waves for the ηπ− data when including addi-
tional waves (see text).

3This approach was developed by D. Ryabchikov.
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Figure 8.23.: Intensitis of natural-parity waves for the η′π− data when including addi-
tional waves (see text).

8.7. Comparison Between Different Approaches to the
Partial-Wave Analysis

As discussed in Sec. 7, our main analysis was done with a program taking the complete
four-body dynamics of the π−π+π−η or, respectively, π−π+π−π0 final-state into account
in order to extract background contributions that cannot be attributed to the π−η′ or
π−η final states. Nevertheless, we pursued the analysis in parallel with a homegrown
program that only takes the two-body final-state into account. This was done both to
ensure our understanding of the procedure and to verify the results obtained in the more
complicated approach.

In this section we shall briefly present a comparison of the results obtained with both
programs. Since the Monte Carlo simulation is not exchangeable between both pro-
grams, and since we didn’t want to waste CPU time, not all refinements have gone into
the Monte Carlo simulations pursued for the two-body analysis. So besides differences
due to the subtracted background in the four-body analysis, we also expect differences
stemming from this. Additionally, bins were offset by 5 MeV, which facilitates simulta-
neous plotting.

We show in Fig. 8.24 the results for the intensities of the natural-parity waves from the
LMU program overlaid in red on the results from the Protvino program. The programs
agree on all the main features, even the error bars come out comparable in size. Besides a
small difference in the total number of events extracted from the fit, the most significant
difference is the different choice of value in the aforementioned unstable bin at 2 GeV:
here, the LMU program chose to shift intensity from theG+ wave into the P+ wave, which
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intuitively coincides with the observation discussed in Sec. 8.6.2 that the introduction
of the F+ wave stabilizes this region. Likewise, in Fig. 8.25 we compare the phases.
Again, the different programs coincide very well. Deviations in the phases relative to the
G+ wave at low-masses are expected, as intensities are very low in that range. Again,
we observe the jump near 2 GeV, and again the solution from the the LMU program is
discontinuous.
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Figure 8.24.: Intensities of the natural-parity waves extracted with the Protvino program
(black) and the LMU program (red) for the π−η′ data.
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Figure 8.25.: Relative phases of the natural-parity waves extracted with the Protvino
program (black) and the LMU program (red) for the π−η′ data.

We show the same kind of comparison for the π−η data. Since we didn’t have the
same data set available for the LMU program as was used with the Protvino program,
the intensities returned from the LMU program are rescaled with a factor two to roughly
match the results obtained with the Protvino program. This explains the larger (statis-
tical) error bars on the fit results from the LMU program. The intensities are shown in
Fig. 8.24. Except for different behavior with respect to the leakage from the a2(1320),
the agreement is very good. The same can be said for the relative phases, except for a
slight disagreement on the rising edge of the a2(1320).
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Figure 8.26.: Intensities of the natural-parity waves extracted with the Protvino program
(black) and the LMU program (red) for the π−η data.
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Figure 8.27.: Relative phases of the natural-parity waves extracted with the Protvino
program (black) and the LMU program (red) for the π−η data.
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9. Mass-dependent Fits

The mass-dependent fit offers an interpretation of the data by fitting a physical model to
the results obtained in the mass-independent fit. From the remarks in Sec. 7.2, it is clear
that the relative phases have to be taken with a grain of salt. This is further supported
by the observations made during the comparison of the relative phases obtained in the
π−η and π−η′ data in Sec. 8.3. Nevertheless, in order to reproduce the steps taken by
previous analyses, we assume the data to be fully coherent, and therefore the phase
motions to give an accurate picture of the physics. In order to avoid the sign ambiguity
in the relative imaginary parts and therefore the phases, we fit the intensities and relative
real parts of the waves with Breit-Wigner functions of the form described in App. F.

9.1. Mass-dependent Fit of the ηπ− System

Here we set out to fit the results from the mass-independent partial-wave fit to the
π−η system shown in Sec. 8.2, thus finding an economical, simultaneous description of
the D+, D++, P+ and G+ waves, where we additionally demand that the resonances
appearing in the D+ and D++ waves be the same.

In Fig. 9.1 we show results from the fit to the D+ and D++ waves. The ingredients
used for the fit of these waves are:

• A dynamical Breit-Wigner which takes the spin and known branchings of the
a2(1320) into account. The same BW is used for both the M = 1 and M = 2
wave. (Shown in black.)

• A Breit-Wigner function for a second 2 + + resonance. The same Breit-Wigner
function is used for both the M = 1 and M = 2 wave. (Shown in green.)

• An exponential background of the shape exp(−αq2) where α is a fit parameter
and q is the break-up momentum. These are separately fitted for the two waves.
(Shown in cyan. The sum of the cyan and green curves is shown in magenta.)

• The Breit-Wigners and backgrounds are multiplied by phase-space factors which
include the angular-momentum barriers (these are already included in the formulae
of App. F.) Since the same Breit-Wigner functions are used in the description of
the D+ and D++ waves, they are also multiplied with the same phase-space factors.

In Fig. 9.2, we show the corresponding results for the D+ and P+ waves from the same
fit. The P+ wave is fitted with one Breit-Wigner (magenta) and a background as before
(green). One notes that the Breit-Wigner function is shifted to higher masses compared
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COMPASS

Figure 9.1.: Mass-dependent fit to ηπ showing the fit of the M = 1 and M = 2 com-
ponents D+ and D++. The plots show from left to right, from top to bot-
tom: the D+ intensity, the D++ intensity, Re(D∗++D+), the relative phase
arg(D++/D+). The full fit is depicted by the thick red line, for the other
colors, see text.

to the data points. Constructive and destructive interference with the background ac-
counts for this, in a way similar to a model where the observation of a π(1400) in the
ηπ final state was explained as the interference of the π(1600) observed in other final
states with a non-resonant background [Donnachie and Page, 1998]. Leaving aside the
interpretation, this is due to the small error bars of the almost vanishing P+ intensity
near 2 GeV (Fig. 9.2). Any deviations there blow up the χ2 function calculated during
the fit. Therefore destructive interference between the resonance and the background
increases the χ2 value significantly. Future analysis would have to revisit this aspect.
Including the F+ and other higher waves may also lead to small modifications.

Finally, in Fig. 9.3 we show the remaining wave, the G+ wave where the a4(2040)
shows up. It is accompanied by a background which rises very rapidly at very high
masses but which remains well-contained within the fit range.

We omit showing the intereference terms between the subdominant waves P+, D++,
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Figure 9.2.: Mass-dependent fit to ηπ showing the fit of the D+ and P+ waves. The
plots show from left to right, from top to bottom: the D+ intensity (same
as in Fig. 9.1), the P+ intensity, Re(P ∗+D+), Im(P ∗+D+), and the relative
phase arg(P+/D+). The full fit is depicted by the thick red line, for the
other colors, see text.

G+. Suffice to say that the fit manages to describe all of them with quality comparable
to what was shown before. A mass-dependent fit that didn’t include the D++ yields
very similar results.

The numerical results of the fit are summarized in Tab. 9.1. The different waves were
included in the following ranges:

D+ : 0.9 < m < 2.3 GeV

D++ : 1.2 < m < 2.3 GeV

P+ : 0.9 < m < 2.3 GeV

G+ : 1.6 < m < 2.3 GeV

Additionally, the data was binned in two bins in the momentum transfer t′ with
approximately identical content, 0.1 GeV−2 < t′ < 0.25 GeV−2 and 0.25 GeV−2 < t′ <
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Figure 9.3.: Mass-dependent fit to ηπ showing the fit of the D+ and G+ waves. The
plots show from left to right, from top to bottom: the D+ intensity (same as
in Fig. 9.1), the G+ intensity, Re(G∗+D+), the relative phase arg(G+/D+).
The full fit is depicted by the thick red line, for the other colors, see text.

1.0 GeV−2, and the data then was fitted in a combined fit, requiring the same shapes of
all components, but allowing different strengths. Here the following integrated intensities
of the D++ wave relative to the D+ wave were found:

0.1 < t′ < 0.25 : 2.71%
0.25 < t′ < 1.0 : 6.03%.

This yields a slope b = 8.3 GeV−2 if integrating the expected t′2 exp(−bt′) dependence for
the D++ wave, which coincides with the values obtained in the π−π−π+ analysis [Haas,
2012]. This also coincides with the näıve picture that higher spin projections can only
be obtained for larger scattering angles.
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JPC state m± stat. Γ± stat

2++ a2(1320) 1.314 GeV± 0.9 MeV 116 MeV± 2.2 MeV

2++ a′2(1700) 1.527 GeV± 0.3 GeV 297 MeV± 42 MeV

1−+ π1(1600) 1.556 GeV± 25 MeV 500 MeV± 25 MeV

4++ a4(2040) 1.915 GeV± 8.6 MeV 279 MeV± 23.7 MeV

Table 9.1.: Fit results for the individual resonant contributions to the ηπ system. The
errors given are only statistical errors.

9.2. Mass-dependent Fit of the η′π− System

Similarly, we performed a fit of the η′π system. In order to obtain a stable fit which
describes the broad D+ wave, the a′2 had to be fixed to “reasonable” values. Another
difference compared to the π−η system is that no D++ wave was included, as it could
not be cleanly extracted in the mass-independent fit due to its low strength. For the
results see Tab. 9.2.

JPC state m± stat. Γ± stat

2++ a2(1320) 1.307 GeV± 3.6 MeV 116.5 MeV± 7 MeV

2++ a′2(1700) 1.6 GeV 275 MeV (fixed)

1−+ π1(1600) 1.783 GeV± 19 MeV 388 MeV± 18 MeV

4++ a4(2040) 1.956 GeV± 17 MeV 234 MeV± 31 MeV

Table 9.2.: Fit results for the individual waves contributing to the η′π system. The errors
given are only statistical errors.

We show in Figs. 9.4 and 9.5 the results from mass-dependent fits to the η′π− system.
The fit model contains the following ingredients:

• The D+ wave is composed from a dynamical width Breit-Wigner, which incor-
porates the known branchings of the a2(1320) (depicted in magenta), a second
Breit-Wigner which is fixed at the mass given in the table below (depicted in
cyan), and an exponential background of the form given before (depicted in green,
its interference with the a2(1320) BW is shown in black. The importance of using
the dynamical width Breit-Wigner is illustrated in Fig. F.1 in the appendix.

• The P+ wave is parameterized by a fixed-width Breit-Wigner (depicted in magenta)
and an exponetial background (green).

• The G+ wave is parameterized by a Breit-Wigner (green) and an exponential back-
ground (cyan).
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Figure 9.4.: Mass-dependent fit to η′π showing the fit of the D+ and P+ waves. The
plots show from left to right, from top to bottom: the D+ intensity, the P+
intensity, Re(P ∗+D+), the relative phase arg(P+/D+). The full fit is depicted
by the thick red line, for the other colors, see text.

• The Breit-Wigners and backgrounds are multiplied by phase-space factors which
include the angular-momentum barriers (these are already included in the formulae
of App. F.)

It is perhaps noteworthy that the simple model for the P+ wave manages to account
for its shape into the range well above 2 GeV. On the other hand, a resonant interpre-
tation is difficult, as the fit requires a huge non-resonant background, while at the same
time the phase-motion, determined only relative to the D+ depends on the details of the
parametrization of the D+ wave. This parametrization could not be brought into accor-
dance with the results from the π−η data, even though we saw in Sec. 8.3 that the main
features are shared between the two final states. We assume that this is due to the way
this kind of analysis ignores incoherent contributions which we previously considered a
likely explanation of the the seeming incompatible in the observed phase-motions of the
two final states.
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COMPASS

Figure 9.5.: Mass-dependent fit to η′π showing the fit of the D+ and G+ waves. The plots
show from left to right, from top to bottom: the D+ (same as in Fig. 9.4)
intensity, the G+ intensity, Re(G∗+D+), the relative phase arg(D+/G+). The
full fit is depicted by the thick red line, for the other colors, see text.
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9.3. Extraction of Branching Fractions

We will now use the results from this section to determine branching ratios of the es-
tablished resonances a2(1320) and a4(2040) and will compare these to the world average
values and to predictions made from the η − η′ mixing.

Below, we give the total numbers of a2(1320) and a4(2040) resonance decays observed
in the two final states as calculated by integrating the result from the mass-dependent
fit. Taking into account the branching fractions of the η′, η and π0 decays1, we also
calculate the ratio ρ of the branching fractions (errors are only statistical, due to the
huge background beneath the a2(1320) in π−η′ it has a large systematic error):

Resonance N(π−η) N(π−η′) ρ = BR(π−η′)
BR(π−η)

a2(1320) (5.31± 0.13) · 105 (2.15± 0.19) · 104 (5.3± 0.5)%

a4(2040) (2.29± 0.30) · 104 (2.71± 0.41) · 103 (16± 2.6)%

The tabulated value for the relative branching of the a2(1320) is [Nakamura et al., 2010]

ρPDG = BR(a2(1320)→ η′π)
BR(a2(1320)→ ηπ) = 0.53± 0.09

14.5± 1.2 = (3.7± 0.7)%,

which is at slight tension with our value. The value ρPDG was obtained from the following
measurements: by the VES collaboration in two publications, ρ = 0.034±0.08±0.05 [Be-
ladidze et al., 1992] and ρ = 0.047 ± 0.01 ± 0.04 [Beladidze et al., 1993], and by the
Crystal Barrel collaboration who give a value ρ = 0.032± 0.009 [Abele et al., 1997]. We
see that the later VES value agrees with ours within errors. To our knowledge, no such
comparison was previously undertaken for the a4(2040).

In order to compare with theoretical predictions, where assumptions about the reso-
nance shape may be different from ours, we also give the ratios r of the peak heights h
corrected for the branching ratios of the subsequent decays:

Resonance h(π−η) h(π−η′) ratio r = h(π−η′)
h(π−η ×BR

a2(1320) 1.35 · 105 4.5 · 103 4.4%

a4(2040) 2.6 · 103 3.5 · 102 17%

Lineshape effects should affect the a2 which is close to the πη′ threshold much more than
the a4. Comparing to the previous table, we find this expectation confirmed.

Ignoring effects of the widths of the resonances, we can approximate the expected
ratios by

ρ ≡ σ(πη′)
σ(πη) = q′

q

(
FJ(q′)
FJ(q)

)2
tan2 φ, (9.1)

1The correction factor is (BR(η → π−π+π0) × BR(π0 → γγ))/(BR(η′ → π−π+η) × BR(η → γγ)) =
1.32.
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where q, q′ are evaluated at the nominal mass of the resonance[Amsler et al., 1992].
Since our mass for the a4(2040), mfit(a4) = 1.92 GeV, (consistent with other COMPASS
analyses [Alekseev et al., 2010; Haas, 2012]) is significantly lower than the value given
in the particle data tables [Nakamura et al., 2010], mPDG(a4) = 2.001 ± 0.001 GeV, we
use both values in the calculation. For the a2(1320) we use the tabulated mass value
m(a2) = 1.318 GeV. In order to compare to Ref. [Bramon et al., 1999], we calculate
values using FL(q) = qL, and also the forms more suited to our fit, where the angular
momentum barriers from Eq. (F.9) were used. We assume the world-average value of
the pseudoscalar mixing angle [Feldmann et al., 1998] tan2 φ = 0.67. The results are
given in Tab. 9.3.

Resonance FL(q) expected ratio π−η′

π−η observed ratio ρ observed ratio r

a2(1320) q2 0.029 0.053± 0.005 0.044

a2(1320) B2((qR)2) 0.12

a4(2040)PDG q4 0.13 0.16± 0.026 0.17

a4(2040)PDG B4((qR)2) 0.37

a4(2040)fit q4 0.10

a4(2040)fit B4((qR)2) 0.32

Table 9.3.: Expected ratios from Eq. (9.1) compared to observed ratios of the cross-
section and ratio of peak height.

We see that the observed numbers systematically lie above the expected numbers in
Tab. 9.3. The best match is found by comparing peak heights and taking the simple
phase-space factors qL. If we assume that an overall scale is wrong, we can correct for
this scale by comparing the ratios of deviation from the expected value, i.e.

robserved(a2)
rexpected(a2, q2) = 0.044

0.029 = 1.51, robserved(a4)
rexpected(aPDG

4 , q4)
= 0.17

0.13 = 1.31. (9.2)

And thus, adjusting to the ratios found for the a2(1320) resonance, we do indeed find
that the ratios for η′ production to η production decays of the a4(2040) resonance is
close to the value expected from η′–η mixing. The good agreement with the value for
the relative branching a2 → η′π and a2 → ηπ suggests a systematic error either in the
theoretical calculation or the extraction that is not yet accounted for.
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10. Conclusions

We have studied the reactions π−p → π−ηp and π−p → π−η′p at momentum transfers
to the target in the range 0.1 GeV2 < −t < 1 GeV2. Initially, this was motivated by
previous claims of a spin-exotic resonance in the P -wave of these reactions. We have
selected and analyzed data taken by COMPASS in 2008. Our analysis employed the
technique of partial-wave analysis, which we described in detail. We compared the
results between two different implementations. As a new component of the apparatus,
we developed a 2 m× 2 m veto detector.

We found significant P -wave intensities in both final states. We also found known
resonances and further structure in the D+ and G+ waves. Due to the higher bombarding
energy compared to previous studies of these channels, and due to the large acceptance
of the COMPASS experiment, we could follow the partial-wave decomposition to masses
beyond 2 GeV. We found that at high masses rapidity-gap kinematics arise, where a
Regge description of the data is more economic, and correspondingly extracted additional
partial-waves in the fit. We found that the waves D+ and G+ show very similar behavior
between the π−η and π−η′ systems, once phase-space factors are taken into account. This
similarity is not given for the P+ wave which is enhanced in the π−η′ system compared
to the π−η system, even before taking into account the larger π−η phase-space. The
phase motion of the P+-wave relative to the D+-wave also shows different behavior in
the two systems, though the phase-difference agrees on the π−η′ threshold.

Resonance parameters, including relative branching fractions, of the a2(1320) (in the
D+ wave) and the a4(2040) (in the G+ wave) are found to be in agreement between both
channels and with other measurements (where available). A resonant interpretation of
the P+-wave contributions in the vein of previous analyses was possible by including
large background terms and by adding additional resonance terms into the D+ wave.
Nevertheless, the fit needs to accomodate strong interferences between backgrounds and
resonances. We also find from mathematical considerations that this type of analysis
does not account correctly for incoherent contributions to the data set, which we find
likely given distinct differences between the phase-motions observed in the two channels.

In a preliminary common analysis of the complete π−π+π−η system, which we discuss
in App. H, we find comparable integrated intensities for the intensities of the η′π− 1−+

P-wave and the π−f1 1−+ S-wave and D-wave.
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A. Averaged Material Properties

In this appendix we collect some of the standard formulas used to calculate quantities
relevant to the Monte Carlo description of calorimeters. Given a molecule or mixture
composed of materials with nuclear charge numberss Zi and nuclear masses Ai where
ni atoms of each species i are present, one then defines the molecular weight Amol and
molecular nuclear charge number Zmol as (following CONS110-1 in [GEANT])

Amol =
∑
i

niAi, Zmol =
∑
i

niZi. (A.1)

The fraction by weight pi of each species is then

pi = niAi
Amol

. (A.2)

In order to calculate averaged quantities one can then employ the effective nuclear charge
and mass

Aeff =
∑
i

piAi, Zeff =
∑
i

piZi. (A.3)

Electromagnetic shower development is parametrized in terms of the radiation length X0
and the critical energy Ecrit. The radiation length for an element can be approximated
by

1
ρX0

= 4αr2
0NA

1
A
Z(Z + ξ(Z))

(
ln 183
Z1/3 − FC(Z)

)
, (A.4)

where α is the fine-structure constant, r0 the classical electron radius, NA Avogadro’s

number (in
[
g mol−1

]
), and the functions ξ(Z) and FC(Z) are given by

FC(Z) = (αZ)2
( 1

1 + (αZ)2 + 0.2026− 0.0369(αZ)2

+ 0.0083(αZ)4 − 0.0020(αZ)6
)
,

(A.5)

ξ(Z) =
ln 1440− 2

3 lnZ
ln 183− 1

3 lnZ − FC(Z)
. (A.6)

For a compound the radiation length is averaged as

1
ρX0

=
∑
i

pi
ρiX0i

. (A.7)
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The critical energy in the sense of Rossi’s approximation B (p. 224 in [Rossi, 1952], also
p. 27 in [Wigmans, 2000]) can be approximated by [Grindhammer and Peters, 1993]

Ecrit [MeV] = 2.66×
(
ZρX0
A

)1.1
, (A.8)

where ρX0 is given in units of
[
g cm−2]. For a sampling calorimeter one additionally

needs the sampling frequency FS and the relative response of the calorimeter to electrons
and minimum-ionizing particles, denoted e/mip. The sampling frequency is defined as

FS = ρX0
da + dp

, (A.9)

where ρX0 is the effective radiation length and da (dp) denotes the thickness of the
active (passive) layers of the sampling calorimeter. In words, the sampling frequency
is the number of calorimeter layers within an effective radiation length. The relative
response can be approximated via

e

mip
≈ 1

1 + 0.007(Zp − Za)
, (A.10)

where the indices again correspond to the passive and active materials.
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B. Tracks in a Magnetic Field

From the Lorentz force
F = Cqβ ×B, (B.1)

where C is a constant depending on the choice of units, q is the charge of the particle
passing through the magnetic field B with velocity β = dx/dt and F is the force exerted
on the particle, one obtains the equation of motion

mγ
d2x

dt2 = κqβ(t)×B(x(t)), (B.2)

where again κ is a constant that depends on the choice of units, m is the particle mass
and γ is the usual Lorentz factor

γ ≡ (1− β2)−(1/2). (B.3)

In the usual system of units (B in Tesla (T), masses, energy and momentum in GeV, x
in meters, t in seconds), one has

κ = 0.299792458 GeV

T ·m , (B.4)

where the numerical value is the same as for the speed of light c.
The trajectory can be parametrized in terms of the trajectory length s as measured

from some arbitrary starting point, ds
dt = v as

d2x

ds2 = κq

P

dx
ds ×B(x(s)), (B.5)

where the momentum (unchanged in the propagation) P = βγm was introduced. In
fixed-target experiments it is common to parametrize tracks as function of z instead of
s. This requires obviously that tracks never turn backwards. Denoting derivatives with
respect to z by primes, one has

s′ =
√

1 + x′2 + y′2 (B.6)

and obtains after the variable transformation

x′′ = κq
P s
′ (x′y′Bx − (1 + x′2)By + y′Bz

)
,

y′′ = κq
P s
′ ((1 + y′2)Bx − x′y′By − x′Bz

)
.

(B.7)
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After fixing some value of z, the track is completely specified by five variables: (x, y, x′, y′, q/P ).
One colloquially calls this tuple of numbers the helix of the track at z (see e.g. [Bock
et al., 1990]).1

As a special case that allows simple estimation think of a magnetic field that is homo-
geneous, of strength B and parallel to the y axis for 0 < z < Z, and a particle initially
flying along the z axis with momentum P. The remaining non-trivial equation of motion
inside magnetic field has the form

x′′ = κqB

P

(
1 + x′2

)3/2
(B.8)

which describes a circle with radius

R = P

κqB
. (B.9)

Provided Z < R, the particle will escape on the other side, shifted to

x(z = Z) = R−
√
R2 − Z2, (B.10)

and the inclination of the track will be

x′(z ≥ Z) = Z√
R2 − Z2

= BZ√
P 2

κ2q2 − (BZ)2
, (B.11)

where the latter form is useful, as usually the integrated field
r
B dz is given. For fast

particles this can be approximated

x′(x ≥ Z) ≈ κBZ q

P
. (B.12)

For instance, the integrated field of SM1 in the COMPASS experiment is 1 Tm, ap-
proximating the field as homogeneous over the length of the magnet, Z = 110 cm, for a
particle of momentum 1 GeV the bending radius will be R = 3.7 m which corresponds
to a deflection angle at the exit of the magnet of atan x′ = 300 mrad.

1In a homogeneous magnetic field, and without radiation, the most general trajectory a charged particle
can describe is a helix. Of course, the given parametrization in terms of z doesn’t allow for the general
case, and in a real experiment the particle will leave the magnetic field at some point. Therefore,
this usage of helix is jargon.
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C. Determination of the Beam Momentum

In this appendix we shall show how to calculate the beam momentum given the infor-
mation available in the COMPASS hadron setup, namely the direction of the beam, the
mass of the target, the mass of the recoil and the four-vector p3 of the forward going sys-
tem. Here, we consider the measurement of the recoil momentum by the RPD imprecise
and thus avoid using it. In the laboratory frame, we write

• p1: the beam four-momentum with known mass p2
1 = E2

1 − p2
1 = m2

π and known
direction such that the scattering angle ϑ ≡ ∠p1p3 is known,

• p2 = (mp, 0, 0, 0): the four-vector of the target with mp the proton mass,

• p3: the known four-momentum of the forward system, p3 = (E3,p3) with invariant
mass m3, and

• p4: the unknown four-momentum of the recoil with p2
4 = m2

p.

One then has for the Mandelstam variables from Eq. (2.1), judiciously avoiding p4,

s = (p1 + p2)2 = m2
π +m2

p + 2mpE1,

t = (p1 − p3)2 = m2
π +m2

3 − 2E1E3 + 2|p1||p3| cosϑ,
u = (p2 − p3)2 = m2

p +m2
3 − 2mpE3.

(C.1)

The goal is to find |p1| =
√
E2

1 −m2
π. Inserting Eq. (C.1) into the relation between the

Mandelstam variables Eq. (2.2),

s+ t+ u =
∑
i

m2
i = m2

π + 2m2
p +m2

3,

one obtains immediately the quadratic equation

0 = |p1|2
(
|p3|2 cos2 ϑ− (E3 −mp)2

)
+ |p1||p3| cosϑ

(
m2
π +m2

3 − 2mpE3
)

+ 1
4
(
m2
π +m2

3 − 2mpE3
)2
−m2

π(E3 −mp)2.

(C.2)

This can be solved with the standard quadratic formula. The signs have been chosen
such that the positive root is appropriate. For other beams or targets replace mπ and
mp accordingly. An approximate solution can be found e.g. in [Weitzel, 2008].
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D. Solving Least Squares Problems

A commonly used estimator in physics analyses is the least-squares estimator which
has certain welcome properties, besides being fairly easy to understand (details e.g.
in [James, 2006]).

D.1. Unconstrained Case

The mission is to find x ∈ Rn that minimizes

(Ax− b)2 ≡ min, (D.1)

where A ∈ Rm×n is of rank k ≤ m ≤ n and b ∈ Rm. The general solution is obtained by
singular value decomposition (SVD) (details e.g. in [Brandt, 1999; Lawson and Hanson,
1987]), where A is decomposed into three matrices, according to

A = USV T (D.2)

with the following properties:

• U ∈ Rm×m, U orthogonal, i.e. UT = U−1,

• V ∈ Rn×n, V orthogonal, i.e. V T = V −1, and

• S ∈ Rm×n, where S has the form

S =



s1 0 0 · · ·

0 s2 0 · · ·

0 0 . . .

...
...

... sk 0 · · ·

0 0 0 0 0 · · ·
. . .

...
...

...
...

... 0



(D.3)

where the si 6= 0 are the singular values of A. For sake of notational simplicity,
we shall call s ≡ diag(si), i.e. the non-singular upper left part of S.
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With this notation, the least-squares problem Eq. (D.1) can be rewritten in the equiv-
alent form

(SV Tx−UTb)2 ≡ min . (D.4)

Introducing p ≡ V Tx and g ≡ UTb and writing them as k-vector and (n − k)-vector,

p =

p1

p2

 and, respectively, as k-vector and (m− k)-vector g ≡

g1

g2

, one obtains as

equivalent form of Eq. D.1

(s · p1 − g1)2 + (0 · p2 − g2)2 ≡ min . (D.5)

The first parenthesis can always be put to zero by choosing p1 = s−1g1, and the second

has the value (g2)2 independent of the value of p2, i.e. for any p2, xmin ≡ V

s−1g1

p2


is a solution of the least-squares problem. For k = n, the solution is unique. Otherwise,
the solution of minimal length is obtained by setting p2 ≡ 0, where this follows from the
orthogonality of V .

Putting everything together, writing V 1 for the first m columns of V and U1 for the
first k columns of U , the solution of the least squares problem can be written

x ≡ A†b ≡ V 1s
−1UT

1 b, (D.6)

where we have introduced the pseudo-inverse A† of A. By linear error propagation, the
covariance matrix C of x given the covariance matrix Cb of b is then

C = A†Cb(A†)T . (D.7)

D.2. Constrained Case

A set of linear constraints can be written

Ex− c = 0. (D.8)

Here x is as before, c ∈ Rl, E ∈ Rl×n and E is of maximal rank l < n. Our task now
is to find in the set of the solutions x of Eq. (D.8) the solution where the least-squares
form Eq. (D.1) takes the smallest value.

The approach taken is straightforward: first one determines the subspace of solutions
of Eq. (D.8), then one rewrites Eq. (D.1) as a problem on that subspace. Then the
solution can be obtained as before. The first step is achieved again by singular value
decomposition. The rest is algebra.

We write the singular value decomposition of E as

E = HRKT , (D.9)
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where in the same way as before H is an orthogonal (l × l) matrix, K is an orthogonal
(n×n) matrix and R is an (l×n) matrix which is zero except for the diagonal elements.
From l < n and rgE = l it follows that the first l columns of R form a diagonal matrix
where all diagonal elements are non-zero. We call this submatrix r. For ease of notation
we also write K = (K1|K2), where K1 consists of the first l columns of K, K2 of the
remaining (n − l). The aimed-for division into subspaces is now obtained by writing

KTx ≡

ξ1

ξ2

 (ξ1 has l rows, ξ2 has (n− l)), which immediately implies

x = K1ξ1 +K2ξ2, (D.10)

from which, by the structure of R (used in the last equality) one has for any solution of
Eq. (D.8)

c = Ex = EK1ξ1 +EK2ξ2 = EK1ξ1. (D.11)

Solving for ξ1, one then has the general solution

x = K1r
−1HTc+K2ξ2, (D.12)

where only ξ2 is arbitrary. Inserting this equation into Eq. (D.1) and solving the resulting
equation in ξ2, one then obtains the solution of the constrained problem.

Explicitly, it remains to minimize

(Ax− b)2 =
(
A(K1r

−1HTc+K2ξ2)− b
)2

(D.13)

as a function of ξ2. Putting this in the form of Eq. (D.1),(
AK2ξ2 − (b−AK1r

−1HTc)
)2
, (D.14)

hopefully makes transparent what remains to be done. Explicitly, using the pseudo-
inverse, one has

x =
(
K1(EK1)† −K2(AK2)†AK1r

−1HT
)
c+K2(AK2)†b. (D.15)

Given the covariance matrices Cb and Cc of b and c, respectively, the covariance matrix
for x can now be read off (replace Mb by MCbM

T and likewise for c, where M
represents the matrix in front).

D.3. Application to Measured Data

For measured data x with covariance matrix C, the least-squares form for changes ε in
x (such as result from a fit) is usually written

χ2 ≡ εTC−1ε. (D.16)
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This can be brought into the form of Eq. (D.1) by using the Cholesky decomposition of
the positive-definite, symmetric matrix C−1 (see e.g. [Brandt, 1999])

C−1 ≡HTH, (D.17)

where by definition of the decomposition, H is an upper-diagonal square matrix, i.e. its
elements below the diagonal are zero. With it, one can immediately write

χ2 = (Hε)2 (D.18)

which is a special case of the form Eq. (D.1).
For non-linear constraints, the solution can be obtained by linearization and iteration.

I.e., given the non-linear constraint f(x) = 0, linearize around some starting point x0,
for instance the measured values, writing

f(x) = f(x0) + ∂f

∂x

∣∣∣∣
x=x0

· (x− x0). (D.19)

Then one solves for the constraint

Ex− c = 0 (D.20)

where the previous notation was restored by writing

E ≡ ∂f

∂x

∣∣∣∣
x=x0

, and c ≡ Ex0 − f(x0). (D.21)

The procedure is then iterated, using the results from the previous iteration as starting
point, until a satisfying fit is obtained.
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E. Kinematic Validation in Restricted t′

Range

In this appendix we collect plots comparing the fit prediction with the data in the same
way as in the plots shown in Figs. 8.10 to 8.20 in Sec. 8.5, but with the data restricted
to the range 0.1 GeV2 < t′ < 1 GeV2. We see that the t′ distribution of the Monte Carlo
still does not match the data, but we also see that the fit quality of the fits shown in
the main text is not inferior to that shown here. This is because the distribution of
transverse momenta is determined by the breakup momenta much more than by the
initial production process, to wit compare Fig. 8.19 to Fig. E.10 as well as Fig. 8.20
to Fig. E.11. This observation holds true especially for small values of t′ where the
deviations between the distributions in MC and the real data are largest.
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Figure E.1.: Comparison between π−η data and fit prediction for m ∈ [mπ + mη,mπ +
mη′ ] = [687 MeV, 1097 MeV]. Other details as in Fig. 8.10.
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Figure E.2.: Comparison between π−η data and fit prediction for m ∈ [mπ+mη′ ,ma2 ] =
[1097 MeV, 1318 MeV]. Other details as in Fig. 8.10.
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Figure E.3.: Comparison between π−η data and fit prediction for m ∈ [ma2 ,ma2 +Γa2 ] =
[1318 MeV, 1425 MeV]. Other details as in Fig. 8.10.
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Figure E.4.: Comparison between π−η data and fit prediction for m ∈ [ma2 +
Γa2 , 1.6 GeV] = [1425 MeV, 1600 MeV]. Other details as in Fig. 8.10.
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Figure E.5.: Comparison between π−η data and fit prediction for m ∈ [1.6 GeV, 2 GeV].
Other details as in Fig. 8.10.
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Figure E.6.: Comparison between π−η′ data and fit prediction for m ∈ [mπ+mη′ ,ma2 ] =
[1097 MeV, 1318 MeV]. Other details as in Fig. 8.10.
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Figure E.7.: Comparison between π−η′ data and fit prediction for m ∈ [ma2 ,ma2 +Γa2 ] =
[1318 MeV, 1425 MeV]. Other details as in Fig. 8.10.
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Figure E.8.: Comparison between π−η′ data and fit prediction for m ∈ [ma2 +
Γa2 , 1.6 GeV] = [1425 MeV, 1600 MeV]. Other details as in Fig. 8.10.
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Figure E.9.: Comparison between π−η′ data and fit prediction for m ∈ [1.6 GeV, 2 GeV].
Other details as in Fig. 8.10.
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Figure E.10.: Comparison between π−η data and fit prediction for additional quantities
for m(π−η) < 2 GeV. Color code as in Fig. 8.10.
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Figure E.11.: Comparison between π−η′ data and fit prediction for additional quantities
for m(π−η′) < 2 GeV. Color code as in Fig. 8.10.

159



F. Cross-section Formula

This appendix collects a few useful formula, mostly concerning the mass-dependent fit.
Following Ref. [Jackson, 1964], the differential cross-section for the production and sub-
sequent decay of a resonance can be written in factored form

dσ = FdΦn|M|2 = FdΦn|f(m)|2|A(m,Ω)|2. (F.1)

Here F is a flux factor, dΦn ≡ dΦn(P ; p1, . . . pn) the Lorentz-invariant n-body phase-
space for a system of total momentum P , and M is the amplitude which is assumed
to factor into a part f(m) which describes the production of the resonance for a given
invariant mass m and into a part A(m,Ω) which describes its decay (Ω are the invariant
masses and angles describing the decay). In our case there are three particles in the
final state, the πη (πη′) pair and the recoil proton. The phase-space can be factored as
follows

dΦ3(P ; p1, . . . pn) = (2π)3dm2dΦ2(Q; p1, p2)dΦ2(P ;Q, p3), (F.2)

where Q is a four-vector with Q2 = m2. We can now write the cross-section in factorized
form, to wit

dσ = (2π)3F |f(m)|2dΦ2(P ;Q, p3)︸ ︷︷ ︸
dσprod(m)

× |A(m,Ω)|2dm2dΦ2(Q; p1, p2)︸ ︷︷ ︸
dynamics of the resonance

. (F.3)

Propagation and decay of the resonance are now separated from its production.1 The
two-body phase-space in the rest-frame where Q = (m,0) is

dΦ2(m; p,−p) = |p|dΩ
4(2π)6m

. (F.4)

We shall now discuss the the dynamical term

|A(m,Ω)|2dm2dΦ2(Q; p1, p2) = 2m|A(m,Ω)|2dmdΦ2(Q; p1, p2).

We assume that the resonance amplitude can be written as

A(m,Ω) = BW (m)× ψ(m,Ω), (F.5)

where ψ(m,Ω) is the known decay amplitude which encodes the kinematical requirements
and, in an isobar model, dynamical assumptions about the decay. The mass-indepedent
fit gives us the amplitudes with its dependencies on the production and the decay in-

1Ref. [Pǐsút and Roos, 1968] identifies a number of assumptions made in this type of formulas.
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tegrated out. We are thus left with a sampling in m of what was suggestively denoted
BW (m) which we want to model in order to extract the physical content of the partial
waves.

For a single resonance, the usual form is that of a Breit-Wigner resonance,

BW (m) =
√
mΓ(m)

m2 −m2
0 − im0Γtot(m)

. (F.6)

Here m0 is the nominal mass of the resonance, Γ(m) is its partial width for the decay
under consideration, which is usually parametrized as

Γ(m) = Γ0
q

m

m0
q0

(
BL((qR)2)
BL((q0R)2)

)2

, (F.7)

with q the breakup momentum for mass m, q0 its value at resonance, BL the Blatt-
Weisskopff factors [Chung, 2010; von Hippel and Quigg, 1972] which ensure the correct
asymptotic behavior, required by analyticity, for the orbital angular moemntum L of
the decay, and R an empirical interaction radius which is commonly taken to be 1 fm,
but which can be fitted as a free parameter. Γ0 is then the nominal partial width of the
resonance decaying into the particular channel under consideration. The total width is
given as the sum over the partial widths Eq. (F.7) weigthed with their branching ratios,
i.e.

Γtot(m) =
∑
i

BRiΓi(m) where
∑
i

BRi = 1. (F.8)

Since (above threshold) the phase of the Breit-Wigner function is determined by its
denominator which is independent of the decay channels, the Breit-Wigner phase is de-
termined by the leading channels. For reference, we give the first few angular momentum
barrier factors in the normalization BL(1) = 1 of Ref. [Chung, 2010] (the other com-
mon normalization BL(z) → 1 for z → ∞ is obtained by dropping the factor in the
numerator)

B0(z) = 1,

B1(z) =
√

2z
z + 1 ,

B2(z) =
√

13z2

(z − 3)2 + 9z ,

B3(z) =
√

277z3

z(z − 15)2 + 9(2z − 5)2 ,

B4(z) =
√

12746z4

(z2 − 45z + 105)2 + 25z(2z − 21)2 .

(F.9)

For the a2(1320), the following parameters were used for the final states, their (orbital)
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angular momenta and branching fractions:

a2(1320)→ πρ : L = 2 BR = 0.8

a2(1320)→ πη : L = 2 BR = 0.2.

The branching to πη′ was neglected, as were the other tabulated decays modes from
Ref. [Nakamura et al., 2010]. The importance of using the dynamical width, coupled-
channel Breit-Wigner function is illustrated in Fig. F.1, where one can see that the single-
channel Breit-Wigner function introduces a spurious mass shift as well as a spurious
phase-motion compared to a description taking the leading channels into account.
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Figure F.1.: Importance of the dynamical width Breit-Wigner for the description of the
a2(1320) → π−η′ decay. shows the single-channel Breit-Wigner,
shows the coupled-channel Breit-Wigner. Additionally, in the right plot the
relative difference in phase of the two Breit-Wigner amplitudes is plotted as

.
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G. Further Two-Body Final States

In this appendix we quickly summarize some results obtained for the reactions K−p→
K0
Sπ
−p and π−p→ K0

SK
−p on a subset of the 2008 data. The same reactions at lower

beam momenta were previously analyzed by Refs. [Cleland et al., 1982a,b; Martin et al.,
1978]. Since kinematic considerations show that the charged particles lie largely outside
the acceptance of the RICH detector, the data samples were selected by identifying the
beam particle as either a kaon or a pion and then tagging strangeness by the displaced
K0
S → π−π+ decay. The CEDAR purity turned out insufficient to select a clean pion

beam, therefore we didn’t perform partial-wave analysis on the K−K0
S data, which is

large polluted by π−K0
S data. Instead we show that some of the same features as in

the π−η data arise in this channel in Fig. G.1. A possible source for these data is the
COMPASS 2009 positive hadron beam data: during the data taking, one CEDAR was
set up for π+ identification. This should allow for a clean selection of the π+p→ K+K0

Sp
reaction.

mKK
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

ct
h

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

htemp
Entries  14376
Mean x   1.652
Mean y  0.1322
RMS x  0.4675
RMS y  0.6769

0

10

20

30

40

50

60

htemp
Entries  14376
Mean x   1.652
Mean y  0.1322
RMS x  0.4675
RMS y  0.6769

cos(theta):mKK

0 20 40 60 80 100 120 140 160 180 200-4

-3

-2

-1

0

1

2

3

4

hKprob
Entries  13201
Mean x   105.9
Mean y  -0.2201
RMS x   47.31
RMS y   1.161

hKprob
Entries  13201
Mean x   105.9
Mean y  -0.2201
RMS x   47.31
RMS y   1.161

log2(p(K) / p(Pi)) over momentum

Figure G.1.: The left plot shows cosϑGJ vs. m(KK) where we clearly see the a2(1320)
resonance. At high masses we see the same kind of forward-backward peak-
ing also observed in the π−η(′) states. The right plot illustrates the con-
tamination from the kaon beam. As a function of the momentum of the
charged track emanating from the primary vertex, we depict the logarithm
of ratio of the RICH likelihoods for kaon and pion for this track. Where
the RICH cannot distinguish the particles, we see the same likelihoods, i.e.
the logarithm of the ratio is zero, and at low momenta where the RICH
is efficient, we see two branches: one for pions and one for kaons. Since
strangeness is tagged by the K0

S , and assuming the target stays intact, this
in turn means that the beam contains a large admixture of kaons.

In 2008 the CEDARs were set to positive Kaon identification. Therefore a clean kaon
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beam sample could be obtained and we could perform partial-wave analysis on the Kπ
data, where we find the known kaon resonance K∗(892) in the P+ wave and K∗(1430)
in the D+ wave. This is illustrated in Fig. G.2. Acceptance correction were not taken
into account for this analysis. The data are a subset of the 2008 data.
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Figure G.2.: These plots show the K0
Sπ
− data. On the top left we see the invariant mass

spectrum, where we already see that it’s dominated by the K∗1 (892) and
K∗2 (1430) resonances. In the top right we see again mass vs. cosϑGJ, where
the spin-1 and spin-2 nature of the resonances is already evident. This
is confirmed by the partial wave results depicted in the lower row, where
on the left we see the P+ wave, on the right the D+ wave. The observed
masses and widths are compatible with the tabulated values [Nakamura
et al., 2010]. Keep in mind the difference in axis ranges between the upper
and lower plot.

164



H. Partial-Wave Analysis of the π−π−π+η
System

As mentioned in Sec. 1.2, one of the main channels where one expects to see decays of
a hybrid meson is the π−f1 channel. The main decay channel of the f1 resonance is
ππη, and indeed we find the f1 as a strong peak in the invariant mass spectrum for the
π−π+η system in Fig. 4.9a.

Since the f1 peak sits on a huge background, an analysis will have to take into account
the full four-body system, also taking into account other intermediate states such as
ηa2(→ πρ), ρa2(→ ηπ) and ρa0(→ ηπ), where the subsequent decay of the second
particle is given in brackets, or reflections from the π−η′ data, leading to a difficult
task. Additionally, experimental resolution smears the sharp f1 peak and this has to be
taken into account when calculating isobar amplitudes for the πf1 partial waves. We
follow a procedure developed at the VES experiment: from a fit to the f1 peak with
a smeared Breit-Wigner function taking the tabulated mass and width of the f1, the
width of the Gaussian smearing is determined. In calculating the amplitudes, the real and
imaginary parts are then smeared separately by folding the Breit-Wigner amplitudes with
a Gaussian of half the width determined for the smearing of the intensity. Additionally,
charge-conjugation invariance imposes symmetry requirements on the f1 → π−π+η decay
amplitude. Therefore, the f1 amplitude should not be decomposed further, but instead
be written in a way that engulfs this knowledge.

This is not the only technical difficulty in the analysis. Another concerns the highly
anisotropic phase-space population. Together with the large four-body phase-space, an
isotropic population of the phase-space as in Eq. (6.9) would lead to very inefficient use
of computing time. Therefore a combination of weighted generators has to be used in
the analysis.

The required work for all these tasks was found to exceed the time-constraints of this
PhD thesis, especially as also work on the Monte Carlo infrastructure, ECAL calibra-
tion, kinematic fitting software and analysis software was necessary. Nevertheless, a
preliminary analysis was performed with the purely geometrical Monte Carlo software
discussed in Sec. 3.4.3, and we collect some of the preliminary results in this appendix.
Also, the dissertation of H. Yang concerns itself with this analysis.

We mention that the production characteristics of the f1 meson at COMPASS are
discussed in Ref. [Wöhrmann, 2010]. One of the observations made there is that at high
invariant masses of the π−f1 system a forward-backward peaking is observed similar to
the one in the π−η and π−η′ systems.

In the Dalitz plot of Fig. H.1, taking into account that the background beneath the f1
peak also appears in the Dalitz plot, we see that the f1 decays mainly via f1 → a0(980)π.
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Interference with the decay via η(ππ)S leads to a peculiar structure.
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Figure H.1.: Overall features of the π−f1 final state. On the left the Dalitz plot for
the π−π+η data in a mass-window around the f1 peak. On the right the
mass spectrum obtained combining the data from the mass window with
the remaining pion.

In the following we show some waves in the π−f1 subsystem. The π−η′ subsystem
is also included in this analysis, its amplitudes treated incoherently with the remainder
of the data, in accordance with the considerations of Sec. 7.3. This work was done
in collaboration with D. Ryabchikov, who presented results obtained with the same
program using data from the VES collaboration at the Hadron2011 conference.1

Fig. H.2 shows the intensities of the main waves in the π−f1 system. The labeling is
JPCM επ−f1W , where W refers to the orbital angular momentum of the π−f1 system
in spectroscopic notation and the other symbols have their common meanings. Unlike
the two pseudo-scalar case treated in the rest of this thesis, the spin of the f1 can couple
with the orbital angular momentum, and thus total orbital momentum J is no longer
redundant with the orbital momentum.

We see broad bumps in the 1++ and 1−+ waves centered at about 1.8 GeV. In the 1−+

D-wave this bump is shifted towards higher masses compared with the S-wave. This is
consistent with the influence of angular momentum barriers. In the 4++ wave, we see a
bump which probably corresponds to the a4(2040). The apparent higher mass compared
to our main analysis (see Sec. 9.3) is again probably due to angular momentum barriers.

Corresponding phase-motions are shown in Fig. H.3. We see that both 1−+ waves are
phase-locked with respect to each other, in accordance with a resonant interpretation.
Their phase is also constant with respect to the 1++ wave. An interpretation in terms
of resonances thus requires the simultaneous introduction of a non-established resonance
in both 1−+ and 1++ waves. See D. Ryabchikov’s aforementioned presentation for the
problems this poses on an interpretation. Besides these, we also see that the 4++ wave

1The results do not appear in the conference proceedings but the presentation is available online at
http://www.slac.stanford.edu/econf/C110613/slides/154-slides.pdf.
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Figure H.2.: Main π−f1 waves.

shows a very clean phase-motion with respect to the other waves, consistent with an
interpretation of the bump around 2 GeV as due to the a4(2040) resonance. This decay
mode has not been previously observed. Finally, we point out that waves containing the
contested η(1295) which decays to π−π+η do not appear to be necessary for a convincing
fit of the data.

For reference, we give the integrated intensities for the exotic 1−+ waves for its dif-
ferent decays. These numbers include acceptance corrections only for the geometrical
acceptance of the spectrometer. We show the numbers for different integration ranges,
owing to different thresholds and the near-absence of the πη′ P -wave above 2 GeV:

Decay 1.2− 2 GeV 1.5− 2 GeV 1− 3 GeV

πη′ P -wave 4427 4279 5108

πf1 S-wave 4846 6338

πf1 D-wave 1011 1617

Our data show no strong preference for the decay to πf1.
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Figure H.3.: Phases between the main π−f1 waves. The 1−+ and 1++ waves show no
significant relative phase motion. The 4++ shows a phase motion compatible
with the a4(2040) compared to both other waves.
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I. The final state π−π+π−π0π0

Here we briefly show some features of the channel which is selected by adding a π0 to
our π−η selection: π−π+π−π0π0, which contains the channel πb1(1235), or, since the b1
almost exclusively decays to πω, the channel π−π0ω. Note that both isospin substates b−1
and b01 appear. In Fig. I.1 we see how this state is selected. We notice in passing that the
η → π−π+π0 is very much suppressed compared to our π−η selection. A mass spectrum
for the πη systems (not shown) contains an a0(980) peak. A possible interpretation for
this appearance of the a0 is as a result of the isospin violating f0 ↔ a0 mixing. Since the
f0 contribution is well understood from COMPASS’s π−π+π− analysis, this would open
a way to a measurement of the isospin violation in a similar vein as a recent analysis by
the VES collaboration [Dorofeev et al., 2011].
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Figure I.1.: Selection of the π−π+π−π0π0 final state. We show on the left the invariant
masses of photon pairs against the corresponding other combination, the
π0π0 peak can be amde out clearly (fully symmetrized, 6 entries per event).
On the right we show the mass spectrum for the π−π+π0 subsystem where
for each event all four combinations are shown.

Selecting the ω with a mass cut, we can investigate the structure of the ωπ−π+ system
as shown in Fig. I.2. Near the three-body threshold we see the a2(1320) meson. This was
cut out in a previous analysis of the π−b1 channel [Lu et al., 2005]. At higher three-body
masses, we find a large fraction of events decaying via the ρ(770) meson, especially in
the mass range around 1800 MeV where the a′2 is predicted which dominantly decays to
ρω [Barnes et al., 1997]. Besides this, the b1(1235) can be made out in both combinations
of m(ωπ). We note that the a2(1320) lies below the ρω threshold, yet the decay fraction
to ππω is roughly 10% [Nakamura et al., 2010]. Unfortunately, we do not have a Dalitz
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plot available. The particle data group actually lists no study of the a2 → ωππ decay
after 1974, and a spin-parity analysis of the enhancement has never taken place, with a
total of only a few hundred events observed in the listed measurements. Therefore, it’s
certainly a worthy endeavour to study this in COMPASS data.
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Figure I.2.: Goldhaber plots illustrating the composition of the π−π0ω system. In each
plot, the vertical axis represents the invariant mass of the π−π0ω system,
the horizontal axis the invariant mass of a two-body subsystem.
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