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Abstract

The study of hadronic scattering amplitudes and in particular the spectroscopy of light mesons
provide a unique tool to investigate the strong interaction. At very low energies the meson spec-
trum is governed by the spontaneous breakdown of the chiral symmetry of the QCD vacuum. At
higher masses a series of resonances appears. Their origin and their relation to chiral symmetry
breaking is only partly understood. In particular for masses above ∼ 1.6 GeV/c 2 while a large
number of states have been reported they are still poorly known experimentally. One compli-
cation are multi-body final states into which heavy mesons can decay. In this thesis a method
for the amplitude analysis of the π−π+π−π+π− system is being developed. The COMPASS ex-
periment at CERN uses the diffractive dissociation of a 190 GeV pion beam as a source of meson
resonances up to masses of about 3 GeV/c 2. A partial wave decomposition of the 5π system is
presented here which for the first time allows to search for mesonic 5-body resonances. A novel
technique based on an evolutionary algorithm is developed to solve the problem of finding a
reliable truncation of the partial wave expansion of the hadronic amplitude. The method for
the first time allows the investigation of systematic uncertainties introduced by the use trun-
cated isobar model amplitudes. The well known π2(1670) and π(1800) states are found with
good agreement to measurements in other channels. In addition there is evidence for several
other resonant contributions, among them the controversialπ2(1880)which is being discussed
as a hybrid-meson candidate. In the course of the analysis a new software-framework for am-
plitude analysis has been developed, which is now being used by the COMPASS collaboration
for the analysis of several hadronic channels.
Future experiments in particle physics will have to collect large amounts of data in order to
search for the subtle effects that would indicate new physics beyond the standard model or to
be able to apply sophisticated analysis methods like the amplitude analysis presented in the
first part of this thesis. Therefore, modern detectors have to operate at extremely high signal
rates. A high-rate capable Time Projection Chamber (TPC) would be an ideal, large-volume
charged-particle tracking detector. In order to investigate the possibilities to construct such
a device a detailed simulation of a TPC has been implemented. With these tools it is demon-
strated that the key challenges of event mixing and space-charge accumulation can indeed be
solved.
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Zusammenfassung

Das Studium hadronischer Streuamplituden und insbesondere die Spektroskopie leichter Meso-
nen stellt ein einzigartiges Werkzeug zur Untersuchung der Starken Wechselwirkung dar. Bei
sehr kleinen Energien wird das Mesonenspektrum von der spontanen Brechung der chiralen
Symmetrie des QCD-Vacuums bestimmt. Bei höheren Massen erscheint eine Serie von Reso-
nanzen. Deren Ursprung und ihre Beziehung zur chiralen Symmetriebrechung sind nur teil-
weise verstanden. Insbesondere wurden bei Massen über∼ 1.6 GeV/c 2 Hinweise auf eine große
Anzahl an Zuständen beobachtet deren Eigenschaften experimentell noch schlecht bekannt
sind. Eine Komplikation bei solchen Messungen sind Mehrteilchen-Endzustände in welche
diese schweren Mesonen zerfallen können.
In dieser Arbeit wird eine Methode für die Amplituden-Analyse des π−π+π−π+π− Systems en-
twickelt. Das COMPASS Experiment am CERN nutzt die diffraktive Dissoziation von Pionen
mit einer Energie von 190 GeV als Quelle von mesonischen Resonanzen mit Massen bis zu
etwa 3 GeV/c 2. In dieser Arbeit wird eine Partialwellenzerlegung des 5π-Systems präsentiert,
die es zum ersten Mal erlaubt nach 5-Körper Meson-Resonanzen zu suchen. Eine neuartige
Technik, basierend auf einem evolutionären Algorithmus wird entwickelt, um das Problem der
Suche nach einem verlässlichen Abbruchkriterium für die Partialwellenentwicklung der hadro-
nischen Amplitude zu lösen. Mit Hilfe dieser Methode können zum ersten Mal systematische
Messunsicherheiten, die aus der Wahl des Abbruchkriteriums folgen, abgeschätzt werden. Die
wohlbekannten Zuständen π2(1670) und π(1800) werden in guter Übereinstimmung mit Mes-
sungen in anderen Kanälen gefunden. Zudem gibt es Hinweise auf mehrere weitere resonante
Beiträge, darunter das als Kandidaten für ein Hybrid-Meson kontrovers diskutierte π2(1880).
Im Verlauf der Analyse wurde eine neue Software für Amplituden-Analysen entwickelt, welche
nun von der COMPASS Kollaboration für die Analyse weiterer hadronischer Kanäle verwendet
wird.
Zukünftige Experimente in der Teilchenphysik werden große Datenmengen sammeln müssen
um nach den subtilen Effekten suchen zu können, die auf neue Physik jenseits des Standard-
models hinweisen könnten, oder um ausgefeilte Analysemethoden wie die Amplitudenanal-
yse, die im ersten Teil der Arbeit präsentiert wird, anwenden zu können. Aus diesem Grund
müssen moderne Detektoren bei hohen Signalraten betrieben werden. Eine hochratenfähige
Zeit-Projektions-Kammer (Time Projection Chamber, TPC) wäre ein idealer Spurdetektor für
geladene Teilchen, der große Volumen abdecken kann. Um die Möglichkeiten für die Kon-
struktion eines solchen Gerätes zu untersuchen wurde eine detailierte Computersimulation
geschrieben. Mit diesem Werkzeug wurde demonstriert, dass Schlüsselprobleme, wie das Event-
Mixing und die Akkumulation von Raumladung in der Kammer lösbar sind.
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Chapter 1

Introduction: Light–Meson
Spectroscopy

In her [Nature’s] inventions nothing is lacking, and nothing is
superfluous.

Leonardo da Vinci

SPECTROSCOPY has been an experimental tool for quantum physics since the early beginnings
of its development. The study of the bound states of atomic and nuclear systems and the

transitions between those states has been one of the cornerstones of the development of mod-
ern physics and of particle physics in particular. Today the frontier of spectroscopy in this field
lies in the investigation of bound or resonant systems of strongly interacting particles. In this
introductory chapter an overview of this topic will be given in order to provide background and
context for the data analysis presented in this thesis. This introduction is not meant to be an ex-
haustive discussion on strong interaction physics but rather an outline of important concepts
and a collection of references that have been useful for the author.
Hadron physics — the study of strongly interacting particles, the hadrons — is a wide field
spanning from the interactions of the elementary fields that carry the charges of the strong
force, the quarks and the gluons, to the nuclei of atoms which build up the baryonic matter our
environment consists of.
There are 6 known quarks which are organized into three families as shown in table 1.1. The u -
type quarks have electric charge qu ,c ,t = + 2

3 e and the d -type quarks have qd ,s ,b = − 1
3 e , where

e is the absolute value of the electric charge of the electron.

up u charm c top t
mu = 1.7−3.3 MeV/c 2 mc = 1.27+0.07

−0.09 GeV/c 2 m t = 172.0±0.9±1.6 GeV/c 2

down d strange s bottom b
md = 4.1−5.8 MeV/c 2 ms = 10129

−21 MeV/c 2 mb = 4.190.18
−0.06 GeV/c 2

Table 1.1: Quark masses. From [1], for the precise definition of the quark masses see there.

From the quark masses listed here the special role of the light quarks — the up and down quarks
— (and to some extend the strange quark s ) is apparent. Indeed due to this scale separation
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1.1. MODELS OF MESONS

between light and heavy quark flavors the phenomena encountered in respective hadronic sys-
tems are quite distinct. In addition both light quarks have rather similar masses, at least when
viewed on a typical hadronic scale and the resulting symmetry is quite well realized in nature. It
can be described by an SU (2) isospin symmetry which first was used to describe the proton and
the neutron as an isospin-doublet of the nucleon. In most parts of this thesis isospin symmetry
will be assumed to hold exactly.
Quarks have never been observed as free particles but are confined inside the hadrons of which
two classes are known, the baryons containing three valence-quarks and the mesons, which
contain quarks and antiquarks in equal proportions. While the lightest baryon, the proton, ap-
pears to be stable on the timescale of the age of the universe, the mesons are very short-lived
and ultimately decay into particles (leptons, photons) that do not experience the strong inter-
action. This classification can be understood from the global U (1) symmetry of the underlying
theory — quantum chromodynamics (QCD) — which leads to the conservation of the baryon
number, while there is no such rule for the mesons.
Predicted already in 1935 in order to explain the short range of nuclear forces [2] the lightest
meson — the pion — was discovered in 1947 in photo-emulsion experiments studying cosmic
rays [3]. As will be discussed below, the pion is now understood as the result of the spontaneous
breakdown of a fundamental symmetry of the strong interaction. While the consequences of
this symmetry breakdown are being more and more understood its ultimate origin remains
an open question. It is believed to be an emergent phenomenon arising from the intricate
structure of the strong interaction. The study of these forces on scales where bound systems
are formed is the regime of hadron spectroscopy.
Atomic spectra can be understood to great precision in the context of quantum electrodynamics
(QED). In contrast the situation with the spectrum of hadronic excitations and light mesons
in particular is still far from being satisfactory. The difficulties are believed to arise from the
astonishingly more complex phenomena that emerge from the gauge-symmetry structures of
QCD as compared to its so successful older sister QED. The fact that the energy scales of typical
hadronic systems far exceed the masses of light quarks and thus relativistic quark-antiquark
pairs can always be produced further complicates the situation.
In the following some models of mesons will be reviewed and some of the open questions that
arise will be discussed. In section 1.2 the focus is then narrowed further on those topics which
are relevant for the discussion of the data presented this thesis. The chapter will conclude with
a section on the parametrization of resonances in the context of spectroscopic models.

1.1 Models of Mesons

The following discussion on different models that are being used to discuss the meson spec-
trum will be restricted to the light-meson sector. Only mesons containing u and/or d (and in
some cases s ) quarks will be considered.

1.1.1 Constituent Quark Model

The description of mesons as bound systems of a fundamental fermion–antifermion pair pre-
dates the development of QCD as a gauge field theory of the strong interaction and was first
introduced by Murry Gell-Mann and Yuval Ne’Eman in their seminal “Eightfold Way” [4]. Light

4



CHAPTER 1. INTRODUCTION: LIGHT–MESON SPECTROSCOPY

and strange hadrons are here classified according to the SU (3)flavor symmetry, which is approx-
imately fulfilled by the hadrons known at that time. Different schemes were discussed how to
build up the hadron spectrum from a fundamental triplet of fields in a Lagrangian field theory,
one of them representing the mesons as fermion-antifermion pairs. A particular elegant way
of constructing the lightest meson– as well as baryon multiplets was to allow the fundamental
fermions to carry non-integer electric charges. The integer-charge representations that could
be built from these quarks [5] correspond to the basic SU (3)multiplets: A singlet and an octet
for the meson sector and a decuplet for the baryons. Thus a meson could be understood as a
quark–antiquark pair and a baryon as a bound system of three quarks.
From the assumption that mesons consist of a bound qq̄ pair one can1 immediately construct
some basic rules concerning the possible quantum numbers of such systems (see for example
[6]). There are two light flavors of quarks which can be represented to a good approximation2

as a SU (2)isospin doublet with I = 1/2, I3(u ) = +1/2 and I3(d ) = −1/2. Mesons therefore can
according to this model only be formed in either isospin singlet, or isospin triplet states. Al-
though the quarks carry fractional electric charges these assignments indeed lead to integer
electric charges for the mesons.
Further degrees of freedom are given by the angular momenta of the fermion-antifermion sys-
tem. The quark has spin S = 1/2 and positive parity by convention — the antiquark has negative
parity. There are two possible states the two spins can couple to

|↑↓〉 S = 0

|↑↑〉 S = 1

In addition there can by orbital angular momentum ` between the two constituents and the
total angular momentum of the two-fermion system J can take the values

J ∈ [|`−S|,`+S].

The parity of the meson is then given by

P = (−1)1+`.

In the case when quark and antiquark have the same flavor, i. e. the 3rd component of the
meson–isospin of the meson is zero, I3 = 0, then the meson is in a C -parity eigenstate with the
eigenvalue

C = (−1)`+S .

Charged mesons (I3 6= 0) are obviously not in an eigenstate of C . By convention the I3 = ±1
elements of an I = 1 isospin triplet are assigned the same C -parity as the I3 = 0 element of that
triplet. An alternative construction is the G -parity that is defined as a charge-conjugation oper-
ation followed by a rotation in isospin-space. This operator flips the I3 axis and thus the electric
charge of the meson and one can construct a good quantum number for all light mesons with

G = (−1)I+`+S

1in a non-relativistic approximation.
2Indeed isospin symmetry is broken by the different electric charges as well as the slightly different masses of

the u and d quarks. Since the electromagnetic interaction is much weaker than the strong force at the scales we are
interested in and since the mass–splitting between u - and d -quarks is small compared to typical hadronic scales
for the purpose of the spectroscopy of excited mesons it is a good approximation to neglect these effects.
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1.1. MODELS OF MESONS

From these rules the possible spin/isospin/parity (often abbreviated as spin-parity) states of
the qq̄ system are readily constructed:

` S J P = (−1)1+` I G = (−1)I+`+S C = (−1)`+S I G J PC nomenclature
0 0 0 −1 0 +1 +1 0+0−+ η

0 0 0 −1 1 −1 +1 1−0−+ π

0 1 1 −1 0 −1 −1 0−1−− ω

0 1 1 −1 1 +1 −1 1+1−− ρ

1 1 0 +1 0 +1 +1 0+0++ f 0

1 1 0 +1 1 −1 +1 1−0++ a 0

1 0 1 +1 0 −1 −1 0−1++ h1

1 0 1 +1 1 +1 −1 1+1+− b1

1 1 1 +1 0 +1 +1 0+1++ f 1

1 1 1 +1 1 −1 +1 1−1++ a 1

1 1 2 +1 0 +1 +1 0+2++ f 2

1 1 2 +1 1 −1 +1 1−2++ a 2

2 0 2 −1 0 +1 +1 0+2−+ η2

2 0 2 −1 1 −1 +1 1−2−+ π2

(1.1)

The nomenclature of these mesonic states is completed by adding the mass (in units of MeV/c 2)
of a particular state in brackets behind the symbol, such as

ρ(770), a 1(1260)orπ2(1670)

for example.
It turns out that there are certain spin-party combinations which are not allowed in a qq̄ sys-
tem. Some examples are

J PC = 0−−, 0+−, 1−+, 2+−, 3−+...

Such states are called spin-exotic and they play a central role in current experimental efforts
of meson spectroscopy. If a meson with such quantum numbers would be identified it could
not be accommodated in the constituent quark model. At the moment there are a few known
candidates for a J PC = 1−+ resonance. The most intensively studied is the π1(1600), for which
observations of the decays into ηπ and f 1π have been reported (see [?, PDG10]nd references
therein) and which recently has been observed by the COMPASS experiment [7] in the decay to
π−ρ0(770). A recent review on the status of spin-exotic systems can be found in [8].
Indeed it is known that there is much more to systems of strongly interacting particles than the
naive constituent-quark picture described so far suggests, as will be seen in the following sec-
tions. Consequently the investigation of the so called exotic systems might yield insight into the
structure of mesons beyond the naive quark model. Nevertheless, the systematization scheme
that is provided by the quark model is very valuable in classifying the observed hadronic states.
The constituent quark model can be completed with a quark-antiquark potential and relativis-
tic corrections in order to provide the means to calculate the mass spectrum of mesons [9]. For
the iso-vector mesons the agreement with experimental data is quite impressive. The iso-scalar
resonances, however, are purely described in this model.
To this date the iso-scalar resonances and in particular the scalars are not well understood and
it is widely believed that the naive quark-antiquark picture is far too simplistic to describe these
states. Carrying the quantum numbers of the vacuum, scalar systems are readily produced
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CHAPTER 1. INTRODUCTION: LIGHT–MESON SPECTROSCOPY

in inelastic hadronic scattering processes and an intimate connection to the structure of the
strong–interaction vacuum is anticipated. Recent reviews of this topic are available in [10, 11,
12]. Iso-scalar scalar resonances have extensively been studied in ππ and K K interactions.
However, there is no reasons why at higher masses the 4π system should not strongly couple to
these quantum numbers. It is in this context that scalar systems will play a role in later parts of
this thesis.

1.1.2 Quantum Chromodynamics

From the proposition of the quark-concept by Murray Gell-Mann it took another decade of
experimental efforts discovering the existence of point-like, spin 1/2 partons [13] inside the
nucleon and the development of Quantum Chromodynamics (QCD) [14, 15] as the correct
quantum field theory of the strong interaction to establish the quarks as physical fields which
interact through SU (3)color gauge fields whose quanta are called gluons.
QCD is a renormalizable quantum gauge field theory [16]with a running coupling that strongly
depends on the scale at which a system is investigated. Renormalization therefore breaks the
classical scale-invariance of QCD and introduces a single scale ΛQC D ∼ 1 GeV/c . The running
coupling vanishes at small (large) spatial (momentum) scales — the theory exhibits asymptotic
freedom [17, 18]. In this regime a perturbative expansion of QCD is justified and the theory has
been tested to high precision against experiments.
The basic reason for this behavior — radically different from quantum electrodynamics — is
the non-abelian nature of the SU (3) gauge group which leads to a self-interaction of the gauge-
fields. The gluons provide an additional contribution to the vacuum polarization which differs
in character from the quark-antiquark contribution and leads to anti-screening of the gauge
charges and thus to asymptotic freedom.
At small momentum scales q 2 <Λ2

QC D , however, the same cause leads to the running coupling
becoming large and a perturbative treatment in terms of quark-gluon interactions is not pos-
sible anymore. This is commonly called the non-perturbative regime of QCD and it includes
the spectrum of bound states of the theory as well as long-range strong interaction, such as the
scattering of hadrons at small momentum transfer.
Depending on temperature and density QCD exhibits several phases. For the purpose of this
thesis we will focus on low temperatures and densities. In this regime the vacuum contains a
quark-antiquark condensate and quarks are not observed as free particles. They are said to be
confined inside the hadrons and the only configurations that are realized as hadronic particles
are color singlets. The detailed mechanism of confinement cannot be understood in perturba-
tion theory and is by many thought of as one of the biggest challenges in particle physics today.
Confinement even plays an important role for studies of QCD in the perturbative regime, since
although there might be a small scale involved in the microscopic scattering process, in the end
there will be hadrons that are detected in the experiment. Perturbative calculations in QCD rely
on the assumption that this hadronization can be factorized from the hard scattering process.
Even in the pre-QCD era, symmetries in the hadron spectrum haven been used to deduce that
the light-quark masses are much smaller — O (few MeV/c 2) — than typical hadron masses as
shown in table 1.1 (a detailed review on this topic is given in [19]). So the situation in the hadron
spectrum is quite different from atomic or even nuclear physics where the masses of particles
are given to a good approximation by the masses of the constituents (electron/positron for the
positronium system, electrons and nucleus for an atom, nucleons inside a nucleus) and the
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1.1. MODELS OF MESONS

binding energy for most cases is just a small correction. In contrast, it is now understood that
the hadron masses are dominated by the non-perturbative dynamics of the gluonic fields and
the bare quark masses are essentially negligible3. Indeed the small quark masses invalidate
attempts to define a potential for light mesons, because of the highly relativistic nature of the
problem.

1.1.3 Spontaneous Chiral Symmetry Breaking

In the limit of vanishing quark masses QCD exhibits some remarkable global symmetries, most
importantly chiral symmetry, which means that the left- and the right-handed parts of the
fermion spinors decouple and that they can be transformed independently of each other. How-
ever, if this symmetry would be realized in nature, then the hadron spectrum would show a
characteristic pattern of pairs of degenerate states with opposite parity. Actually such parity
doubling is not observed for the ground states of the baryon- as well as the meson spectrum.
Chiral symmetry is spontaneously broken. The vacuum of QCD is not chirally symmetric. For
SU (2) flavor symmetry the pion triplet is interpreted as the Goldstone-bosons of the sponta-
neous breaking of chiral symmetry and thus the small pion mass of mπ ∼ 140 MeV/c 2 can be
explained. The finite value of the pion mass is attributed to the fact that the small current-quark
masses explicitly break chiral symmetry.
It is believed that the mechanism for the symmetry breaking emerges from the non-abelian
structure of QCD, however its details are not fully understood. In the framework of QCD sum
rules it can be shown that in the hadronic phase, at low temperatures and low densities, the vac-
uum contains a condensate of quark-antiquark pairs (for a recent review on the topic see [20]).
Such a condensate breaks chiral symmetry. Modern applications of QCD Dyson-Schwinger
equations also study dynamical symmetry breaking in a non-perturbative framework (see for
example [21] and references therein.). On important effect is the dynamical generation of
constituent-quark masses. From this perspective the constituent-quarks encountered in the
naive quark model above are understood as quasi-particles which derive their mass from the
propagation through the QCD condensates.
As Pseudo-Goldstone bosons the pions at rest experience only a faint residual of the strong
force. This property has lead to the development of chiral perturbation theory [22] or more
generally chiral dynamics which now are established tools to study interactions of hadrons at
small momentum scales. Modern reviews on chiral dynamics can be found for example in
[23, 24]. One interesting result, which is of relevance for the discussions in this thesis, is the
determination of the ππ scattering amplitude at small masses[25]. Another example is the
calculation of the π−γ→π−π+π− cross-section to first order in chiral perturbation theory [26]
which has recently been measured by the COMPASS experiment [27] confirming the theoretical
result.
Unfortunately as soon as larger (pion-)momenta are involved, the tools mentioned above can
not be used anymore. Therefore the excited states of the hadron spectrum still pose a con-
siderable challenge. One important question is, how does the spontaneously broken chiral
symmetry, which is so important for the understanding of the low-energy part of the spectrum
relate to the excited states? Before this question can be attacked another successful model of
excited mesons should be mentioned.

3The mass of the pion is strongly affected by the small but finite quark masses, since being a Goldstone boson in
the limit of vanishing quark masses the pion would also be mass-less
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1.1.4 The QCD String — Old and Modern Pictures

Inspired from the Hamiltonian formulation of lattice QCD Nathan Isgur and Jack Paton already
in 1985 proposed the flux-tube model for hadrons [28, 29]. The basic idea of the model is, that
the gluonic field forms a tube-like configuration with constant energy density connecting the
quark and the antiquark in a meson. Also configurations would be thinkable in which the flux-
tube is closed onto itself and forms a bound state without valence quarks — so called glueballs.
Indeed in lattice QCD calculation with infinitely heavy quarks the formation of a gluonic flux-
tube has been demonstrated [30, 31]. The model is expected to work rather well for the heavy
quarkonia.

Despite some remarkable success the model is not derived from first principles and carries
some serious deficiencies. In particular the effect of virtual quark-antiquark pairs is neglected.
Especially in the light-quark sector it has to be considered as a phenomenological approxima-
tion.

Nevertheless, the flux-tube model has been of special interest, since it allows the calculation
of decay branching ratios for excited mesons by modeling the decay as a breaking of the flux
tube with simultaneous creation of a quark-antiquark pair (to implement confinement) at the
breaking point [32]. Especially for field configurations which correspond to excited flux-tubes4

the model can provide interesting predictions by taking into account the overlap of the flux-
tube wavefunctions [33, 34]. We will come back to some examples of flux-tube model predic-
tions below.

The idea that hadrons possess stringy properties is actually even older than the QCD inspired
flux-tube model and was first proposed in the context of high energy hadronic scattering phe-
nomenology for scattering processes with small momentum transfer5, which can be described
by the so called Regge theory [35].
Much more will be said about the Regge formalism in chapter 2. One important concept in
the discussion of stringy models of hadrons are Regge trajectories. As shown in Figure 1.1 there
is, to quite good approximation, a linear relationship between the spin of excited mesons (or
baryons) and their squared mass. This relation is exactly what one would expect from a straight,
rotating string with constant, universal energy density (the string tension) along it’s length. The
picture is supported by the fact that all observed Regge trajectories corresponding to ordinary
mesons (and also Baryons) have the same universal slope. The Pomeron trajectory has a special
role in the description of high energy scattering processes and will be discussed in section 2.2.2.

The flux-tube model as such makes no reference to chiral symmetry breaking. However, if
quarks are indeed confined by a mechanism as implied by the flux-tube model, then there
might be a close connection between the two concepts, since confinement is a sufficient (but
maybe not necessary) condition for spontaneous chiral-symmetry breaking [36].
The connection between the seemingly stringy character of the excited mesons and the spon-
taneous breaking of chiral symmetry is one of the most interesting questions in hadron spec-
troscopy. In recent years there has been a controversy on whether there are global symme-
try patterns emerging in the highly excited meson spectrum [37, 38, 39, 40, 41]. Mesons with
masses above about 1.5GeV/c 2 show a pattern of degeneracies that has been interpreted as the

4Such states would be called hybrid mesons and evidently could possess quantum numbers which are forbidden
in the constituent quark model (see section 1.1.1).

5At large momentum transfer the hard scattering processes now described in perturbative QCD are becoming
relevant and Regge theory cannot explain the observed data.
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Regge Trajectories

αρ(t) = 0.48 + 0.88 t

α
P
(t) = 1.086 + 0.25 t

J = Re{α(m2)}

Mass2 (GeV2) →

J 
→

1.0

2.0

3.0

4.0

5.0

1.0 2.0 3.0 4.0

f2(1270)

π

ρ

a2(1320)

ρ3(1670)

b1(1235)

f1(1285)

π2(1670)

Pomeron

Figure 1.1: Mesonic Regge trajectories. There is a linear relationship between the spin J of a
meson and its squared mass. The Pomeron trajectory will be discussed in section 2.2.2. (Plot
by courtesy of Suh-Urk Chung)

existence of meson regge trajectories (see Figure 1.2). The interpretation of the observed de-
generacies as a sign for an effective restoration of chiral symmetry in the high-lying part of the
spectrum is, however, debated.

The measurements which lead to these interpretations have almost exclusively been extracted
from the data of only one experiment — the Crystal Barrel experiment [42, 43, 44] at LEAR.
Many of the high-lying resonances found there are still awaiting confirmation by independent
groups [1]. In order to illustrate this point Figure 1.3 shows the mass distribution of meson
states with I G = 1− listed by the Particle Data Group [1]. The different colors correspond to the
level of confidence assigned to the respective states. It ranges from established states (green),
states that have been clearly seen but need confirmation by another experiment (blue) and
states which are barely known, mostly from a single publication (red). From this picture it is
immediately clear that there is a need for clarification of the light-meson spectrum in the mass
range around and above 2 GeV/c 2.

One would also like to compare the data from different production mechanisms. At LEAR the
production of mesons through antiproton-nucleon annihilation (at rest) has been studied. The
data which will be discussed in this thesis has been obtained from diffractive pion dissociation
(for details see chapter 2).

It should be pointed out that the search for resonances in the region above 2 GeV/c 2 is a difficult
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CHAPTER 1. INTRODUCTION: LIGHT–MESON SPECTROSCOPY

Figure 1.2: Regge trajectories of excited mesons. There is an ongoing debate, whether the ob-
served degeneracies can be interpreted as an effective restoration of chiral symmetry for high-
lying states. Plot reproduced from [41].

task since any possible mesonic state will be embedded in a continuum of scattering states,
which depends on the production process. Furthermore, at these high masses there are many
open channels that a resonant state can couple to, many of which leading to multi-body final
states, which further complicates the analyses. The large phase-space that is available for such
an excited state to decay into leads to very short lived resonances with large decay widths. This
can lead to an overlap of several states and to mixing of states with equal quantum numbers.
Experimentally some techniques to deal with these difficulties have been developed and we
will discuss some of those below.

Making progress on the understanding of the excited meson spectrum will require not only the
precise measurement of the masses of resonances up to high spins in order to reconstruct the
Regge trajectories, but even more important the determination of the decay patterns, viz. the
hadronic transition matrix elements for as many (coupled) channels as possible. This thesis is
attempting to make a contribution to this endeavor, developing methods to deal with multi-
particle decays.

An interesting recent development is the reappearance of the hadronic string picture in a new
framework. Rather than treating the gluonic flux tube as a semi-classical object, developments
in string theory, in particular the conjecture by Maldazena on the duality between string theo-
ries and conformal field theories [45] lead to the development of a new class of hadronic mod-
els. The conjecture allows to re-interpret the solutions to a weakly coupled gravity theory in a
curved, higher dimensional space as the solutions of a strongly coupled SU (N ) gauge theory. A
recent review on the topic can be found in [46]. The main drawback of these methods is that as
far as is known the duality only holds for large N far from the physical value of N = 3.
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Figure 1.3: Meson states with I G = 1− listed in the PDG [1]. Green are established states, blue
are states that need confirmation and red are further states that have so far only been seen by
one group or for which only limited information on the quantum numbers is available. The
histogram is stacked.

1.1.5 Dynamically Generated Mesons

One approach to expand the application of the techniques of chiral dynamics to higher-mass
meson states is the construction of so called dynamically generated mesons. Any theory of the
strong interaction should obey two fundamental constraints which — because their relevance
is independent of the underlying dynamics — have also played a major role in the early days of
strong interaction physics6: they are analyticity and unitarity of the scattering and transition
amplitudes. The requirement that amplitudes can be described by analytic functions which
can be continued into the complex plane of its kinematic variables (like the square of an in-
variant mass s ) and which conserve probability, i. e. unitary of the scattering matrix, poses
stringent constraints. These constraints allow to extrapolate amplitudes, which are rigorously
defined in the region where chiral perturbation theory is valid (i. e. at small meson masses), to
higher masses (see [49, 50, 51, 52]). Models like these are known as chiral-unitary approaches.
The application of the unitarity relation, however, involves sums over all open channels that a
state can couple to. The different decay modes of the mesons play a central role in the forma-
tion of the spectrum. As a consequence it is important not only to measure the masses and the
quantum numbers of hadronic states but also their coupling to all possible decay channels.
An open question is, how the inner substructure of mesons and the symmetries of QCD are
reflected in those couplings. There are attempts to set up effective field theories which include
not only the pions but also other low-lying mesons, such as the ρ(770), as degrees of freedom
(see for example the review [53]). Applying the chiral-unitary framework then allows for ex-
ample to describe several iso-scalar resonances with masses above 1 GeV/c 2, among them the
f 2(1270) with J PC = 2++, as a bound system of two (or more) vector states like ρρ [54, 55].
In the face of the data that will be presented in this thesis, it would be certainly interesting to

6For historical text-books see for example [47, 48].
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extend such calculations to the three-body system ρρπ.

1.1.6 Lattice-QCD Results on the Light-Meson Spectrum

The explicit numerical evaluation of QCD problems on a space-time lattice is another approach
to understand the strong interaction [56, 57]. A complete numerical solution of QCD is still not
feasible today, however, dramatic progress to overcome some of the technical difficulties in re-
cent years has made it possible to perform first studies of the light-meson spectrum. Among the
challenges7 is the inclusion of quark-antiquark loops, which for light quarks obviously are very
important but computationally expensive. Another important issue for the study of angular-
momentum eigenstates is, that on a (hyper-)cubic lattice the rotational symmetry is broken
down to a set of discrete groups. The correspondence of states found in such a world to the
physical world has to be established by the projection of rotation operators onto the elements
of the discreet groups.
First calculations along these lines have recently been published for the spectrum of highly
excited iso-vector [58] and also iso-scalar states [59]. The study of different operators evalu-
ated on the lattice allows to identify their contributions to the different bound states. In simple
words this provides a means to systematically study contributions like qq̄ , multiquark, gluonic
field configurations and so on for each state. Interestingly also bound states with the afore-
mentioned spin-exotic quantum numbers J PC = 1−+, 0+− and 2+− have been found. Although
the effective pion mass of mπ ∼ 400 MeV/c 2 that has been used in these calculations is still far
from the physical value there are indications that the lightest multiplet of hybrid states is seen
in these calculations [60] in the mass-range around 1.8 GeV/c 2. A hybrid meson is a state that
has excitations of the gluonic field contribute to the quantum numbers of the object. In the
flux-tube model described above this would for example correspond to a vibrational excitation
of the flux-tube.
The final, ambitious goal of these such calculations is the computation of the full hadronic
spectrum, including scattering and transition amplitudes. However, due to the use of an Eu-
clidean space-time grid in lattice calculations it is not straight forward to extract information
on the time-development of bound states, viz. their decays. For a recent review on proposed
methods to this end see [61].

1.2 Physics Potential of the 5π Channel

In this thesis a partial-wave analysis of the diffractively produced 5-pion system will be pre-
sented. The following section summarizes the most important motivations for this analysis
and presents some of the physics questions that arise in the context of the different perspec-
tives on light-meson spectroscopy that have been discussed above.
The π−π+π−π+π− system has negative G -parity and, since it has electric charge, cannot be in
an isoscalar state. For the isovector 5π system the C -parity is even. Similar arguments hold for
the π+π−π+ subsystem. The even G -parity system of four pions, however, can be either in an
isoscalar as well as in an isovector state8.

7Further problems include effects from the finite size of the simulated lattice and quark masses which have to
be chosen larger than the physical values in order to keep the computational efforts manageable.

8Isospin I > 1 will not be considered for the search for resonant states here.
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Search for Hybrid Mesons

As explained in section 1.1.1 spin-exotic states are a promising signature for the search for hy-
brid mesons because in this case a resonance could not be explained by a qq̄ pair. The lightest
spin-exotic hybrid state is predicted by lattice QCD to be an isovector with the quantum num-
bers J PC = 1−+ and with a mass of approximately 1.6 GeV/c 2 [8, 60]. A candidate state which
would fit these characteristics is the above mentioned π1(1600) for which observations in the
decay modesρπ, η′π and f 1(1285)π have been reported [1, 7]. However all these analyses have
some drawbacks and the nature of the state is still debated [8, 10]. Apart from the fundamen-
tal question on the resonant nature of the observed signals, an important question is, whether
the couplings of the state to different decay channels can be understood in a model of hybrid
mesons.

The lightest spin-exotic hybrid state described by the flux-tube model is predicted to couple
strongly to the f 1π and b1π decay modes[34] both of which can in principle couple to the 5π
final state, with the f 1 having been seen in π−π+π−π+.

mπ1 b1π f 1π η′π ρ(1450)π
1.6 GeV 24 : 5 : 2
2.0 GeV 43 : 10 : 27 : 12

Table 1.2: Predictions of 1−+ hybrid meson relative branching ratios from [34].

Table 1.2 shows flux-tube model calculations for the branching fractions of the J PC = 1−+ hy-
brid meson [34]. A distinct feature of these calculations is the b1π to f 1π partial width ratio
which also is in very good agreement with studies on the lattice [62]:

Γ(π1→b1π)
Γ(π1→ f 1π)

= 4 (1.2)

An investigation of the f 1(1285)π system in the decay channel f 1(1285) → ηππ been carried
out at BNL by [63] and indeed they find a contribution of the spin-exotic 1−+ wave. In order
to establish the resonant nature of the spin-exotic partial wave the authors of that analysis
examine its interference with the J PC = 1++ f 1(1285)π system for which an amplitude with
two resonances has been fitted to the data. However, since in that analysis no attempt has
been made to clarify this picture by studying interferences with further partial waves, it is still
unclear if there is a single a 1(1700) state or if one can confirm the indications that there might
actually be several states with these quantum numbers in the mass range from 1.6 to 2 GeV/c 2.

All of the isobars in table 1.2 are allowed to decay into 4 charged pions. The f 1 and the ρ(1450)
have been seen in π+π−π+π− decays. The b+1 is known to decay to π+ω→ π+π−π+π0 so the
analog decay of the b 0

0 into four charged pions can in principle also be expected. The heavy
η′(1405) has been reported in this channel as well [1]. This means they all can be expected to
contribute as a subsystem to the 5π final state, opening the possibility to study their interfer-
ence patterns and relative branching ratios in the same final state.

However, in diffractive pion dissociation — the mode of production of mesonic systems used
at the COMPASS experiment — due to parity conservation in strong interaction processes and
for kinematic reasons the excitation of a pion into a spin-exotic state with J PC = 1−+ requires a
significant momentum transfer t ′ as will be explained in detail in sections 2.2 and 3.1.1.
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There are, however, also hybrid meson candidates which do not carry spin-exotic quantum
numbers. For example the aforementioned a 1(1700) state has been discussed in the frame-
work of the flux-tube model and its decay properties have been calculated within this model
for the hybrid as well as the conventional meson scenarios [34]. For the hybrid meson a rather
narrow width of 100 to 200 MeV/c 2 and a sizable branching into ρ′(1450)π is predicted. The
experimental situation in this wave is unclear, however, since so far experiments have not been
able to convincingly separate resonant contributions from non-resonant background and un-
ambiguously determine the number of resonances contributing.
A similar situation is encountered in the J PC = 2−+ sector. In addition to the very well known
π2(1670) resonance there are indications for a couple of further resonances (see [1]). Especially
the π2(1880) is an interesting candidate since it is so close in mass to the π2(1670) that it seems
unlikely to be a radial excitation of that state. A recent investigation of the expected decay
patterns of this state in the frameworks of both a quark model as well as the flux-tube model is
presented in [64] indicating a dominant quark-antiquark structure of the state. Conversely, in
lattice calculations [60] a large hybrid-like component is found for the second J PC = 2−+ state.
A further interesting option is to study the 4-pion subsystem in order to search for spin-exotic
states with positive G -parity. The four pions can couple both to isoscalar as well as to isovec-
tor states and is in itself an extremely interesting object of study as will be discussed in some
more detail in sections 3.2.2 and 5.3. The primary candidate of interest would be the isoscalar
partner to the π1(1600)with the quantum numbers I G J PC = 0+1−+, which would be called the
η1(1600). Indeed in lattice simulations there are now indications that such a state might exist
at a slightly larger mass than its isovector counterpart [60]. The experimental establishment
of further parts of a spin-exotic meson multiplet would be a tremendous step forward in the
understanding of the light meson spectrum.
Table 1.3 lists three possible spin-exotic even G -parity states with spin 0, 1 and 2. These states
have been studied in the flux-tube model indicating significant coupling to the 4π final state
[34]. Lattice calculations indicate that both the 0+0+− and the 0+2+− states are significantly
heavier than the 0−1−+ state [60]. An interesting outcome of these calculations is the prediction
of a rather narrow width of 60 to 160 MeV/c 2 for the latter state, making it an interesting object
for experimental searches.

J PC Topic Status
0+1−+ η1 Width 60−160 MeV/c 2

Decays to a 1π and π(1300)π
1+0+− b0 Can be close to lowest 1−+ state

Decays to a 1π and π(1300)π
1+2+− b2 Could be very narrow ∼ 10MeV

Decays to a 2π and a 1π

Table 1.3: Spin-exotic G -parity even meson candidates. Decay calculations in the flux-tube
model [34].

Another topic is the study of scalar resonances in the 4π system. In the mass region between
1.2 GeV/c 2 and 2 GeV/c 2 several isoscalar scalar states have been found. The precise number
is still being debated[65, 66]. Although these discussions have been guided mainly by results
obtained for the 2-pion system, also the 4π system has been studied already by the Crystal
Barrel collaboration [67] in p̄ n annihilation. Complimentary data could potentially yield very
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valuable insights into the coupling of scalar resonances to multibody final states, especially
since in diffractive dissociation the mass of the 4π subsystem is not as stringently limited by
phase-space as in the case of p̄ n annihilation.

The Light-Meson Frontier — Highly Excited States

The spectrum of highly excited light mesons with masses above ∼ 2 GeV/c 2 is only purely
known. Nevertheless there are ongoing debates about the interpretation of the general struc-
ture of the spectrum in terms of large symmetries as has been discussed in section 1.1.4. One
open question in this regard is the possible existence of a parity partner to the well known
J PC = 4++a 4(2040) resonance. Is there a J PC = 4−+π4(2040) resonance at roughly 2 GeV/c 2 as
predicted by some of the models which imply effective restoration of chiral symmetry in the
high-lying meson spectrum [68]? Crystal Barrel has not seen such a state, the lightest 4−+ me-
son being listed in the PDG at a mass of 2250± 15 MeV/c 2[1]. However, it has been argued[69]
that such a state might just not be efficiently produced in the Crystal Barrel experiments, since
for the production of a spin 4 resonance in p̄ n annihilation an F−wave is required which
should be strongly suppressed for p̄ n at rest or even in flight as it has been the case at the
LEAR setup. No such limitations exist for the diffractive production of resonances and if the
state exists it should be detectable and might couple strongly to the 5π final state.

Dynamically Generated Resonances

Another field where the data presented here could potentially be very valuable input is the
extension of the unitarized chiral models for dynamical generated mesons (see section 1.1.5)
from the vector-vector case to more complicated configurations. Indeed the ρρπ system is
found to be one of the main components of the 5π final state as will be discussed in this thesis.

1.3 Resonances

Mesons — except for the relatively long-lived ground-states — are not observed directly in
common particle detectors due to their extremely short life-times. The time scale on which
a typical hadron exists is of the order of∆t =O (10−23s). The corresponding typical uncertainty
in the energy of these states is∆E = ħh/∆t =O (100 MeV). Such resonances are most commonly
observed as peaks in production cross-sections as a function of the invariant mass of the sys-
tem under study. For example the differential cross-section for electron-positron annihilation
into hadrons

∂

∂ s
σ(e+e−→ hadrons)

as a function of the invariant mass of the e+e− system
p

s is dominated by a peak at∼ 0.8 GeV/c 2

with a width of roughly 150 MeV/c 2. This enhancement on closer inspection is composed of the
broad isovector ρ(770) and the much narrower isoscalarω(782) resonances.
A basic assumption in the study of hadronic resonances is that resonances are not fundamen-
tally different from stable particles and as such they are described by poles of the scattering
amplitude as a function of the squared invariant mass s of the resonant system. The main dif-
ference between a stable particle and a short-lived resonance is that in the latter case the am-
plitude has no pole for real s but instead there exists a pole in the analytic continuation of the
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amplitude into the complex s -plane. The existence of such an analytic continuation is required
in order for the amplitude to respect causality. It is easy to see from the time-development

|X (t )〉 ∼ exp (−i EX t ) |X 〉

that a state X which decays as the time t progresses requires a negative imaginary part of EX .
The resonance pole lies in the complex s -plane, below the real axis. The scattering amplitude
A (s ) can be examined in the vicinity of this pole by expanding the product [48]

g (s ) = (s − sP )A (s )

where sP = sX − iγ is the position of the pole with sX ,γ ∈R+. The expansion around sP can be
written as

g (s ) = g (sP )+ (s − sP )g ′(sP )+ . . .

The most primitive approximation of the amplitude in the vicinity of the pole can then be ob-
tained by only keeping the first term in the expansion:

(s − sP )A (s )≈ g (sP )

or

A (s ) =
−g (sP )

sX − s − iγ

which is the well known form of the Breit-Wigner resonance amplitude.
For convenience this amplitude is often written in the following form, which introduces the
width Γ= γ/m of the resonance as the width of the Breit-Wigner peak at half maximum

ABW (s ) =
mΓ

m 2− s − i mΓ
(1.3)

and the mass of the resonance m =
p

sX .
In general the width Γ of a resonance depends on the available phase-space for the decay chan-
nels. This is a consequence of the unitarity property of the scattering matrix and (in the case of
elastic scattering through a resonance) can already be seen from the optical theorem

ImA ∝σtot

(see for example [48]). For narrow resonances setting Γ = const is a valid approximation. Yet,
for a detailed investigation of the shape of a broad resonance the dynamical width has to be
taken into account

ABW (s ) =
mΓ(s )

m 2− s + i mΓ(s )
. (1.4)

As more complicated systems are studied, it turns out that the detailed form of the amplitudes
can be greatly distorted by the coupling to channels with thresholds close to the resonances
mass whereΓ(s ) is a strongly varying function. Furthermore unitarity puts stringent constraints
on the amplitude as mentioned before. The mixing of several overlapping resonant states fur-
ther complicates the picture. In such cases it is indeed the positions of the poles of the ana-
lytically continued transition or scattering amplitudes and the residuals at the poles that are
the defining characteristics. In the following we summarize a formalism that deals with these
issues, especially the mixing of several resonances with the same quantum numbers.
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1.3.1 Mixing of Resonances in the Propagator Matrix Formalism

The propagator matrix formalism as reviewed here traces back to Nils Törnqvist’s Unitarized
Quark Model [70]. Based on these ideas and motivated by the data measured at the Crystal
Barrel experiment at LEAR, a formalism for the analysis of the scalar meson spectrum has been
developed in [71]. Pragmatic applications for phenomenology have been extensively described
by David Bugg in [65].
The basic concept that will be spelled out here is the correct generalization of the Breit-Wigner
amplitude to the case of several (overlapping) resonances. The formalism is being described for
the case of spin 0 resonances. However, the generalization to higher spins will be self evident. It
should be noted that the fully dispersive D-matrix formalism is closely related to the manifestly
unitary K -Matrix formalism as is explained in [71].
Anisovich et al. write the elastic scattering amplitude in a channel9 n is in the presence of sev-
eral resonant states as (cf. [71], eqn.(27))

A n (s ) = g n
a (s )D

n
ab (s )g

n
b (s ) (1.5)

Here Dab is called the propagator matrix and the vertex functions g n
a (s ) and g n

b (s ) describe the
coupling of the different resonances to the scattering channel n . A summation over a and b
is understood. The vertex functions are in general s -dependent and in particular can contain
form factors describing the finite range of interaction between hadrons (see [70]).
For an arbitrary number of resonances the propagator matrix is most conveniently defined
through its inverse which takes the following form:

D−1 =











M 2
1 − s −B12(s ) −B13(s ) · · ·

−B21(s ) M 2
2 − s −B23(s ) · · ·

−B31(s ) −B32(s ) M 2
3 − s · · ·

· · · · · · · · · · · ·











(1.6)

with the definition

M 2
a ≡m 2

a − Ba a (s ). (1.7)

Here the real valued ma are called the bare masses of the different states while the complex
functions Bab (s ) parametrize the dynamics of resonance formation and mixing. The imaginary
parts of Ba a are determined by the coupling of a state a to its decay channels and are related
to the resonance width Γtot through

ImBa a (s ) =maΓtot(s ) (1.8)

The real part ReBa a (s ) can be obtained from a dispersion relation by imposing analyticity on
the propagator functions.

ReBa a (s ) =−

∞
∫

thr

d s ′

π

ImBa a (s ′)
s ′− s

(1.9)

9The term channel refers to a specific initial and/or final state such as ππ, Kπ or π+π−π+π− for example. Of
course a state can only couple to a channel with the same quantum numbers.
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Here −
∫∞

thr
is the Cauchy principle value integral. In the idealized case when ImBa a (s ) does not

depend on s then through the dispersion integral also ReBa a will be a constant which can be
absorbed by a redefinition of ma . In general, however, this dispersive contribution will modify
the shape of the resonance, especially if it is close to channel thresholds where the respective
contribution to ImBa a (s ) is a rapidly varying function of s . For simplicity such effects will be
neglected for the further discussion.
Putting the formulas given above together

M 2
a − s =m 2

a − s − Ba a (s ) =m 2
a − s − i maΓtot(s ) (1.10)

the well-known Breit-Wigner denominator is constructed.
The off-diagonal terms Bab (s ) in equation 1.6 describe the mixing between the different states.
They in general also depend on s , can in principle also be obtained through dispersion relations
and are related to the couplings of the bare states to the scattering channels. In practical fits,
where not all open channels are known, the mixing terms may be treated as another set of
phenomenological constants (c. f. [65]).
In order to illustrate the difference between the formalism described here and a simple sum of
Breit-Wigner amplitudes 1.4 we consider the case of two resonances:

D−1 =

�

M 2
1 − s −B12

−B21 M 2
2 − s

�

(1.11)

Inverting this matrix gives

D =
1

det D−1

�

M 2
2 − s B12

B21 M 2
1 − s

�

(1.12)

which is

D =
1

(M 2
1 − s )(M 2

2 − s )− B12 B21

�

M 2
2 − s B12

B21 M 2
1 − s

�

(1.13)

For the first element D11

D11 =
(M 2

2 − s )

(M 2
1 − s )(M 2

2 − s )− B12 B21
=

1

(M 2
1 − s )− B12 B21

(M 2
2−s )

(1.14)

with equation (1.10) one arrives at

D =
1

m 2
1 − s − i m1Γ1(s )− B12 B21

m 2
2−s−i m2Γ2(s )

(1.15)

Without mixing B12 = B21 = 0 this expression turns into the Breit-Wigner formula. For the
realistic case with mixing it is significant that the last term in the denominator makes a con-
tribution to both the real and imaginary part of the amplitude. As has been shown in [65] the
effect of this term to first order is an additional phase by which the two resonances are rotated
against each other. Consequently, if mixing effects are not taken into account explicitly but
instead parametrizations based on the simple Breit-Wigner formula are used then one has to
allow additional (constant) phases between the Breit-Wigner terms. This argument is the justi-
fication for the simplified parametrization that will be used in chapter 6 to explore the resonant
structure of the 5π system.
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Before the complete amplitude can be assembled according to equation 1.5, the vector of vertex
functions g (s ) has to be defined. Törnqvist in addition to the coupling constants allows for a
so called formfactor F (s ) in the vertex functions, which according to him “one expects [...] to
be smooth functions of s , which include angular momentum barriers, radial nodes, and in
principle the left hand cuts.”[70]. For practical applications and keeping in mind that here the
formalism should be applied not to elastic scattering but to a production process, the following
assumptions are made:

• The main s -dependence of g (s ) is given by the form factors F (s ). The coupling itself is
assumed to be a smooth and in particular non-singular function of mass (in the physical
region). This will be approximated by a simple mass-independent coupling constant. We
will use one universal form factor and not distinguish between states and channels here.
The couplings g n

a to the decay channels will be taken as real-valued.

• For diffraction experiments the production coupling constants g b will be allowed to be
complex and denoted as ĝ b . This allows for free phases in the production of the different
states. Here we divert from the scheme described in [71]. In particular we require the pro-
duction vertices to be independent of the decay channel in order to allow the decoupling
of width of the resonance from the observed intensity, which in production experiments
is determined by the source. In order to fix the (unmeasurable) overall phase, one of the
production couplings has to be restricted to real values.

The decay couplings are related to the partial widths of the individual resonances. For the case
without mixing we have

�

g n
a

�2
ρn (m 2

a )/ma =Γn
a

(1.16)

Here ma is the mass of the resonance a while ρn (s ) is the invariant phase space of channel n
which for a decay into two stable particles with masses µ1 and µ2 reads

ρ(12)(s ) =
1

16πs

p

[s − (µ1+µ2)2][s − (µ1−µ2)2] (1.17)

Γn
a is the partial width into that channel. It is useful to normalize ρ(s ) such that ρn (m 2

a ) = 1.
Then the total width of the resonance is defined through

∑

n

�

g n
a

�2
=maΓtot (1.18)

and
∑

n

�

g n
a

�2
ρn (s ) =maΓtot(s ) (1.19)

For several mixed states decaying into many channels the definition of partial widths and res-
onance mass becomes difficult. An unambiguous specification can only be given in terms of
the poles in the complex s -plane of the proper analytical continuation of the amplitude and its
residuals at the poles. However, one can still identify the width that a resonance would have if
there would be no mixing by using the equations above.
The full amplitude for two mixed resonances (setting B12 = B21) in a certain channel n given
by equation 1.5 is
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g n D ĝ =
g n

1 ĝ 1

(M 2
1 − s )− B 2

12

(M 2
2−s )

+

g n
2 ĝ 2

(M 2
2 − s )− B 2

12

(M 2
1−s )

+

(g n
1 ĝ 2+ g n

2 ĝ 1)B12

(M 2
2 − s )(M 2

1 − s )− B 2
12

From this formula it is obvious that for non-zero mixing the Breit-Wigner-like denominators in
the first two terms are modified and there appears a third term containing a product of both
poles. Only for zero mixing (B12 = 0) one recovers an amplitude that takes the shape of a sum
of two Breit-Wigners with complex coefficients.
This neglect of the mixing terms has often been employed in phenomenological analyses with
good successes in describing the data. For broad resonances exhibiting a strong overlap this
simplification should, however, be used with great care since the results will be misleading
in the presence of strong mixing. In order to gain a first understanding of 5π system the fit
presented in this thesis will employ the simplified model. Attempts to explicitly include mixing
in the parametrization are left for future research.
A simple method for the treatment of nonresonant, coherent background has been suggested
by Törnqvist [70]. To this end one adds another row into the propagator matrix, which instead
of the pole term (M 2

x − s ) contains a constant chosen in the right dimension GeV2/c 2, thus
making the following replacement in (an additional row in) equation 1.6

(M 2
x − s )→M 2

bkg (1.20)

The above model allows the parametrization of amplitudes containing several resonances which
decay into many channels. The exact line shape of a resonance is determined by all open decay
channels as expressed in equation 1.19 and by the dispersive effects. Thus all channels that a
resonance is decaying into are tied together. For a full understanding of all the mentioned ef-
fects it is therefore necessary to measure a system of resonances in all possible decay channels.
Unfortunately such information is not readily available, especially for the mass range above
2 GeV/c 2 with a larger number of open channels.
Still, it is possible to perform a parametrization of the limited data which are available using a
simplified model. For this, equation 1.19 can be rewritten:

maΓtot(s ) =maΓtot

∑

n

γnρn (s ) (1.21)

where the branching fractions γn =Γn/Γtot have been introduced such that
∑

n

γn = 1 (1.22)

Now, a (possibly large) fraction of the contributing decay channels have not been measured.
Thus one might split the expression for the width in two pieces

maΓtot(s ) =maΓtot





measured
∑

n

γnρn (s )+γunobserved



 (1.23)
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Where the mass dependence of γunobs. has already been neglected. Note that the relative branch-
ing fractions of the observed channels are fixed by the different decay strengths into different
channels through the g n

a (c. f. equation 1.16). In addition there is the constraint equation

measured
∑

n

γnρn (s )+γunobserved = 1 (1.24)

In summary the effect of several unobserved channels can be approximated by an s -independent
contribution to the dynamic width, neglecting the detailed shape of the different phase space
factors. This will of course not work properly in the vicinity of sharp thresholds whereρn varies
strongly with s . A prominent case where this effect cannot be neglected is the f 2(1565) which
sits right at theωω threshold (for a discussion see for example [65]).
For the case of the 5π channel the following thresholds have been identified for the I g = 1−

quantum numbers:

Channel Threshold (GeV/c 2)
ωωπ 1.71
φωπ 1.94
η′η′π 2.06
φφπ 2.18

Table 1.4: Thresholds of I G = 1− channels in the region around 2 GeV/c 2 involving narrow
secondary states.

For none of these channels reliable information is available. In principle one could try to in-
fer the couplings of the resonances to all possible decay modes by measuring the line shapes
with high precision. However, without any direct observation such attempts would be prone
to ambiguous solutions. Because of this, threshold effects in unobserved channels have been
neglected in the analysis presented below.
From the discussion above it is clear that the approximations made — notably the simplified
treatment of the dynamic width and the neglect of dispersive effects — are especially problem-
atic in the vicinity of a threshold when there are few open channels, such as the K K̄ threshold,
which consequently has attracted much discussion in the literature (some recent examples are
given in [72, 73] and references therein). In this case unitarity imposes rigorous constraints
on the structure of the amplitude and thus correlations between the participating channels.
The situation with many open channels is remarkably different. Here dispersive effects are dis-
tributed over many contributions, the detailed influence of a single channel on the shape of
the resonance in general becoming quite subtle, depending on its branching ratio. On these
grounds the aforementioned approximations may well be justified.
For the implementation in a fitting program, a convenient choice is to use the partial widths
Γn

a as free parameters (including one for the unobserved channels) and to calculate the decay
coupling constants as

g n
a =

p

maΓn
a (1.25)

The total width is then computed through
∑

n

Γn
a =Γ

a
tot (1.26)
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and does not appear as an explicit fitting parameter. The production couplings ĝ b , the bare
masses ma and a possible form-factor are additional free parameters of the model. For a model
which takes into account mixing between the different states there are the mixing parameters
Bi j which in the simplest case can be approximated by constants [65].
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Chapter 2

Diffractive Pion Dissociation at
COMPASS

DIFFRACTIVE pion dissociation is the main mechanism used for the production of mesons at
the COMPASS experiment at CERN. This chapter describes the measurement of diffrac-

tive processes with this apparatus. In particular the diffractive dissociation of pions into the
π−π+π−π+π− final state is discussed. After a brief overview of the experimental setup that has
been used during the year 2004 run the main part of the chapter deals with the selection of
exclusive 5-pion events from the recorded data and their interpretation in terms of diffractive
dissociation.

2.1 The COMPASS Experiment

A very detailed description of the Common Muon and Proton Apparatus for Structure and
Spectroscopy (COMPASS) is given in the paper [74]which explains the experimental setup that
has been used in the year 2004. In the following, only the main features that are important
for the measurement of the diffractive pion dissociation into 5 charged pions will be briefly
summarized. COMPASS is also equipped with large-acceptance photon-detection capabilities,
but the focus of this thesis is placed on the fully charged final state and so a description of the
calorimetry will be left aside.
COMPASS has been designed to study strong interactions in the non-perturbative regime of
QCD. Three types of measurements were foreseen in the initial design of the experiment. The
first is deep inelastic scattering of polarized muons off a polarized target to study the polar-
ization of the gluonic content of the nucleon. The second type is hadron-hadron scattering at
small scattering angles — in the so called diffractive regime — to study hadronic resonances.
The third is hadron-photon scattering in Primakoff kinematics [75] which gives access to pion
and kaon polarizabilities. In fact the latter two experiments can be performed in parallel using
heavy nuclear targets as sources of strong electromagnetic fields (due to their high Z ) as well as
providing a hadronic medium on which scattering through the strong interaction may happen.
The general requirements that are demanded from the spectrometer in order to perform the
envisioned physics measurements are large and uniform angular and momentum acceptance,
good kinematic reconstruction capabilities and the ability to measure extremely small scatter-
ing angles. Furthermore in order to gather the large data sets that are essential to study rare
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processes or to perform partial-wave analyses, the experiment is designed to handle high lu-
minosities of up to 5·1032cm−2s−1 for the muon beam and to record large data volumes (8 TB/d
during the 2004 hadron pilot run).

2.1.1 Hadron Beam at the M2 SPS Beamline

A key feature of the experiment is the M2 beamline at the CERN Super Proton Synchrotron
(SPS). The intense primary 400 GeV/c proton beam of the SPS is focused onto a Beryllium tar-
get of variable length (up to 500 mm) in order to create a secondary beam containing mainly
pions as well as some kaons and protons. A system of six quadrupole and three dipole mag-
nets is used to select a secondary beam with up to 225 GeV/c momentum1. At this stage the
contribution of kaons to the negative beam is ∼ 3.6%. The following beamline, which is about
1 km long, is used to collimate the beam, to filter the desired momentum range and (if so de-
sired) to separate muons — which are created in pion decays — from the hadrons by sending
the beam through a series of thick hadron absorbers made from Beryllium. While for the muon
beam there is a dedicated dipole magnet and detector system to measure the momentum of
each individual beam particle, the system is not usable for the hadron beam because of its pro-
hibitively large interaction length. Thus for the hadron beam only the direction of the beam
particles is measured by a silicon tracking telescope in front of the target, but not its momen-
tum.
The acceleration cycle of the SPS dictates a spill structure of the extracted beam. That means
that there is a period where the proton beam is inserted into the SPS and accelerated to the
nominal energy, followed by a series of extraction phases (called spills) when the beam is steered
out of the SPS ring and delivered to the various experiments. The proton flux that was available
to COMPASS in 2004 was 1.2 · 1013 protons during a 4.8 s spill. The SPS cycle had a length of
16.8 s. The allowed hadron flux at the COMPASS experiment is limited to 108 hadrons per SPS
cycle by radiation protection regulations.

2.1.2 Target and Luminosity

For the 2004 hadron run the hadron beam impinged on disks made of lead with a total thickness
of 3 mm. The total integrated luminosity collected in this run has been determined [76] from
decays of kaons in the beamline to be

∫

Ld t = 9.55 ·104 mbarn−1

. The analysis presented in this thesis only uses about 80% of the total data set, which was
recorded with a split target of 2+1 mm thickness. Only during the data taking on this target the
Online Filter described below was in stable operation.

2.1.3 Spectrometer Setup

Figure 2.1 shows an overview sketch of the spectrometer from the year 2004 hadron pilot run.
Here the

1The maximum reachable beam momentum with a modified acceptance optics of the beamline is 280GeV/c
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Figure 2.1: Overview of the COMPASS spectrometer setup in the year 2004.

A special feature of COMPASS is its setup as a two-stage magnetic spectrometer. In order to
provide optimal tracking capabilities for both particles entering the spectrometer under large
angles and/or slow momenta as well as for high momentum particles with very small scattering
angles the experiment employs two large dipole magnets which are surrounded by tracking de-
tectors to measure the trajectories of charged particles. The first spectrometer contains a Ring
Imaging Cherenkov Counter (RICH) for charged particle identification. For the 2004 hadron
run this detector was filled with N2 gas in order to reduce the amount of material in the spec-
trometer for the Primakoff Compton measurement, which was running in parallel. This gas
choice severely limits the kinematic domain where effective particle ID can be performed and
for this reason no RHICH information has been used in the analysis presented here. In addition
each spectrometer stage is also equipped with electromagnetic and hadronic calorimeters. In
the following the charged tracking system is described in some more detail, since it is crucial
for the measurement of the π−π+π−π+π− final state.

Tracking System

The target region In order to precisely reconstruct the position where an interaction occurred
in the target and to measure the scattering angles of outgoing particles with respect to the beam
the target has been surrounded by double-sided silicon micro-strip detectors which are ca-
pable of measuring points on the trajectories of charged particles with a spatial resolution of
∼ 10µm2 in two projections and a time resolution of 2.5 ns [74]. In the 2004 setup there were
two silicon stations in front of the target and three stations downstream. Each station contains
two double-sided detectors, thus providing four point measurements on the beam track and
up to six point measurements on each outgoing track. The downstream silicon detectors also

2The double sided silicon strip detectors have an average resolution of 8µm on the p-doted-side and 11µm on
the n-side.
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play a central role in the online-filter that has been used to reject background events and en-
hance the fraction of usable and interesting data in real-time during data taking. This will be
discussed in some detail below.

Another crucial component of the experiment has been a scintillating multiplicity counter. In-
stalled directly behind the target this device has been operated in a threshold counter mode as
an active element of the trigger system. Details will be given below in section 2.1.3.

The first spectrometer stage — also called the Large Angle Spectrometer LAS — is built around
a dipole magnet (spectrometer magnet 1, SM1) placed about 4 m downstream of the target area
and covering ±180 mrad polar acceptance with a field integral of 1.0 Tm. It is surrounded by
several detectors for charged particle tracking. COMPASS employs high luminosities and the
detectors close to the beam have to operate and be able to reconstruct particle tracks in a high
rate environment. Therefore the tracking system is subdivided into two parts. The Small Area
Trackers (SAT) cover the region close to the beam (∼ 2.5 to 20 cm radial distance) with high
granularity and detector technology that can withstand the high ionization rates. The outer
regions of the acceptance are covered by the more conventional Large Area Ttrackers (LAT).

COMPASS was the first large-scale particle-physics experiment to make use of Micro Pattern
Gas Detectors. Two detectors of this class, the Micromegas[77, 78] and the GEM[79, 80, 81,
82, 83] detectors, have been installed as the SAT system, both offering a rate capability of up
to 104 s−1mm−2 and a spatial resolution of the order of 100µm[83]. There are three stations
of Micromegas detectors — measuring 4 spatial projections each — installed in front of SM1.
Downstream of SM1 there are in total eleven GEM detector stations installed. Each of those
stations also measured four spatial projections. Further details on these tracking detectors are
available in [74] and references therein. The most central regions up to a distance of 2.5 cm
from thee beam of the SAT detectors are penetrated by the beam and thus are usually switched
off during full intensity data taking. During runs with the muon beam this innermost region
is covered with Scintillating Fiber detectors. However, these detectors have a significant thick-
ness of up to 2.79% of a radiation length and therefore stations 4,6 and 7 were removed[84] for
the measurements with the hadron beam. In order to retain sufficient redundancy for charged
particle tracking close to the beam in the region between SM1 and SM2 the center-areas of the
GEM detectors were activated. This has to be taken into account in the reconstruction software
and also in the Monte Carlo model of the detector (see section 3.6) when analyzing data from
that period.

The LAT system of COMPASS is comprised of several large drift chambers (DC), multi-wire pro-
portional chambers (MWPC) and straw-tube trackers (see Figure 2.1). In front of SM1 there is
one of three identical drift chambers (DCs), the other two being installed downstream of the
magnet. With a spatial resolution of 270µm and an active size of 180×127 cm2 these detectors
provide tracking information for low-momentum particles. Downstream of SM1 there are also
15 straw-tube detectors and eleven MWPC stations (containing 3 wire layers each) for the track-
ing of particles which traverse the spectrometer under large angles in the range of 15−200 mrad.
All these detectors have an inactive area to accommodate the beam and the high-rate region
which is covered by the SAT.

In total there are 47 tracking detectors (including the micro-strip silicon and the SciFi detectors
downstream of the target) in the first spectrometer stage. For further details the interested
reader should consult [74].
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The second spectrometer stage uses a dipole magnet with 4.4 Tm field integral, located 18 m
downstream of the target and offering a polar acceptance of±30 mrad (hence the abbreviation
SAS for Small Angle Spectrometer) to detect particles with momenta larger than 5 GeV/c . This
magnet is sandwiched by similar detectors as used in the LAS. In addition 6 stations of large-
area drift chambers are used here. The total number of tracking detectors in the SAS is 42.

(a) Single track acceptance (b) Momentum Resolution

Figure 2.2: Reconstruction performance for single, charged tracks. (a) Acceptance of the ap-
paratus as a function of the momentum (note the double-logarithmic axes). (b) Momentum
resolution of charged track reconstructed in the fringe-field upstream of SM1, in SM1 only or
in both spectrometer magnets. Both plots from [74]. For details on the simulated data sample
see there.

Charged particle tracking performance of the COMPASS spectrometer is summarized in
Figure 2.2, which has been taken from [74]. The single track reconstruction acceptance is
shown in Figure 2.2(a). It lies between 60 and 80% over much of the relevant kinematic range.
Only for particles blow p ∼ 10 GeV/c the acceptance drops to roughly 10% at p ∼ 1 GeV/c .
Figure 2.2(b) shows the momentum resolution which is achieved using different parts of the
spectrometer. Even slow particles, which do not even reach through the first dipole magnet
can be reconstructed by following their trajectory in the fringe field of SM1. For charged parti-
cles that are reconstructed using only the first spectrometer stage a resolution in the %-range is
achieved over a large kinematic range. The full reconstruction with both dipoles, which is pos-
sible for tracks with p > 5 GeV/c can achieve an excellent momentum resolution of δp

p ∼ 0.4%.
This performance, which translates to an excellent coverage of even multi-particle phase spaces
is an essential prerequisite for partial-wave analyses that depend on the complete reconstruc-
tion of exclusive events.

Diffractive Trigger and Online Filter

Figure 2.3 shows an overview of the detector elements that have been used to setup the trigger
for the 2004 hadron run. The beam is defined by a beam counter and a veto hodoscope up-
stream of the target. The upstream veto rejects particles that do not hit the target material. The
beam counter is operated in anti-coincidence with three beam-killer scintillators to suppress
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2.2. EXCLUSIVE PRODUCTION OF 5 PIONS

Figure 2.3: Sketch of the trigger elements for the Primakoff/Diffractive Trigger.

pions which do not interact in the target. The downstream hodoscope in front of the second
electromagnetic calorimeter (ECAL2) has been used for the Primakoff trigger and will not be
needed for the following discussion.
In order to enhance the fraction of diffractive events during the 2004 hadron run a special trig-
ger was set up. Its main active element was a scintillating multiplicity counter (MPC), which
covered the complete angular acceptance of the COMPASS spectrometer. A scintillator disk
of 49 mm diameter and 3 mm thickness was used to measure the amplitude of the scintilla-
tion signal produced by traversing charged particles. By requiring this signal to pass a certain
threshold a trigger signal was constructed which implemented the requirement that at least
two charged tracks were going in coincidence through the counter. For a 5-pion event the
probability that two out of five charged particles hit the MPC is very close to 1. An additional
element of the trigger logic was the online filter. This software-filter improved the selectivity of
the trigger by a fast examination of the data stream. Only interesting events have been tagged
for tape-recording. This filter was requiring a minimum track multiplicity in the silicon stations
downstream of the target. The applied algorithm [85] determines the number of hits in each
of the twelve detector planes. The four planes with highest and the four planes with lowest hit
multiplicities are discarded. In the remaining four planes a minimum of five hits is required for
the event to be accepted. It can be easily shown with Monte Carlo studies (see also section 3.6)
that this condition is practically always fulfilled for 5-pion events.
A further element in the diffractive trigger were two veto counters which were supposed to
reject particles emitted under large angles, outside the spectrometer acceptance (see Figure
2.4). Especially due to the the second station, which was placed about 4 m behind the target
and had a circular central opening of 290 mm, events containing a pion which was emitted
under a larger angle of θ > 35 mrad were suppressed. This effect has to be accounted for in
the acceptance corrections as it has — for high invariant masses of the 5-pion system — a
significant effect on the measured angular distributions as will be discussed in section 3.6.

2.2 Exclusive Production of 5 Pions

The reaction studied in this thesis is the production of five charged pions through the diffrac-
tion of a high energy π− on a nuclear target

π−+A→π−π+π−π+π−+A
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Figure 2.4: Sketch of the trigger elements around the target region.

.
A is the target nucleus which is assumed to act as a source of the strong force and takes up
recoil momentum without being destroyed. This assumption will be justified in the following.

π
π
π

π
π
π

A
A

Figure 2.5: A high energy pion beam impinging on a nuclear target and producing five outgoing
pions.

Figure 2.5 shows a pictorial illustration of the aforementioned process. In the following the 4-
momentum of the incoming pion will be written as pbeam. The target nucleus has a 4-momentum
pA (p ′A ) before (after) the interaction and pX =

∑5
i=1(pπ)i is the 4-momentum of the multi-pion

system in the final state. The most important Lorentz-invariant quantities that describe the
process are:

• the squared invariant center of mass energy

s = (pbeam+pA )2

• the squared 4-momentum transfer to the target

t = (pbeam−pX )2

• the invariant mass of the produced multi-pion system

m 2
X = p 2

X
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2.2. EXCLUSIVE PRODUCTION OF 5 PIONS

Another important quantity that will be used in the discussion is the energy of the multi-pion
system in the laboratory frame EX = p 0

X .
In this section the selection of exclusive 5π production events at COMPASS is discussed. The
observed momentum transfer distribution is interpreted as diffractive pion dissociation.

2.2.1 Data Set and π−π+π−π+π− Event Selection

The analyzed data sample was recorded during the 2004 COMPASS pilot hadron run. During
that run a pion beam with an energy of 189 GeV was impinging on a target made of two stacked
lead discs of 2 mm and 1 mm thickness which were suspended with a distance of 100 mm be-
tween them. In total data from 56 runs (run numbers 43191-43323) from the hprod_nov05_1
data-production have been analyzed. The data selection was done in several steps with in-
creasingly tightened kinematic cuts in order to select exclusive 5-body events. For further anal-
ysis the data has been partitioned into three momentum transfer intervals as explained below.

5π Final State from Primary Vertex

PHAST [86] is the COMPASS analysis software which provides access to the reconstructed par-
ticle candidates. For the present analysis version 7.072 of this program has been used. The first
basic steps of data selection were done using this tool and the resulting pre-selected event data
was written to a custom ROOT tree in order to facilitate a fast turnaround for further refine-
ments in the analysis. The applied cuts are summarized in Table 2.2.1. Only events with exactly
one reconstructed vertex in the target region have been considered. Valid vertices consist of
one incoming and five outgoing charged tracks. This definition is motivated by the picture of
diffraction (see section 2.2.2). According to this hypothesis the target nucleus only receives a
small recoil momentum. Most of the recoiling nuclei will not even leave the target material
and thus must remain undetected. Therefore, in the 2004 detector setup no means of detecting
slow recoil particles has been foreseen. As a final requirement to define an exclusive 5-pion
event, the total charge of the outgoing particles is required to be negative, corresponding to the
charge of the beam pions. This requirement excludes charge transfer reactions.

Description Range Yield
Exactly one primary vertex z PV ∈ [−330, 290]cm
Number of outgoing tracks 5 3678937
5π system total charge q =−1
Refined vertex position z vertex ∈ [−322,−298]cm 2356747
Exclusivity E5π ∈ [189−6; 189+6]GeV
Refined vertex position z vertex ∈ [−319,−299]cm 384235

Table 2.1: List of cuts applied in order to select exclusive 5π production events.

Figure 2.6 shows the vertex distribution after these cuts. The two target discs of the 2+ 1 mm
lead target appear as clearly visible peaks in the histogram.

Pion Hypothesis and Kaonic Background: The selected final state is analyzed under the as-
sumption that all outgoing particles are pions. The final state particle 4-momenta are cal-
culated under this pion hypothesis. The inclusive production cross section for kaons is ex-
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Figure 2.6: Primary vertex distribution along z in the laboratory reference frame of COMPASS.
The origin of the ordinate corresponds to z 0 =−310.5 cm. The two target discs of the 2+1 mm
target are clearly resolved.

pected to be about 5% of the pion cross section. Unfortunately no particle identification was
available in 2004 so a background of kaons (which are assigned the wrong mass hypothesis)
has to be expected in our data sample. Note, however, that for an incident pion because
of strangeness conservation only pairs of kaons will be produced. In that case the reaction
π+Pb→π−π+π−K +K −+Pb would be misinterpreted as π+Pb→π−π+π−π+π−+Pb.
Furthermore the pion beam contains a∼ 3% kaon contamination. Since not particle identifica-
tion for the beam particle has been used, diffractive kaon dissociation K −+Pb→π−π+π−π+K −+
Pb is another background to the 5π final state. The impact of this kaonic background may be
studied with Monte Carlo simulations in the future. Improvements in the COMPASS apparatus
(CEDARS and RICH) will open the possibility for closer cross checks using data from the 2008
and 2009 runs.
Since the expected background contributions to the cross section are on the few percent level,
the pion hypothesis is adopted for the rest of this thesis unless stated otherwise.
There have been no offline selection criteria on the diffractive trigger or the online filter (c. f. sec-
tion 2.1.3). The diffractive trigger bit has been found to be set for all recorded 5π events. The
online filter is 100% efficient for these events. Both effects can be understood by looking at the
threshold criteria for the multiplicity counter and the online filter, which had originally been
tuned to capture events with 3 charged pions in the final state. Events with even more charged
tracks obviously will fulfill these trigger criteria with high probability. Thus the trigger that has
been used acts like a minimum-bias trigger for the case of the π−π+π−π+π− final state.

Selection of Exclusive Events

Figure 2.7 shows the total reconstructed energy of the 5π system. A clear exclusive peak is ob-
served at the nominal beam energy of E = 189 GeV. Since neither the energy of the impinging
pion has been measured precisely with the 2004 setup, nor has the recoil particle been ob-
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2.2. EXCLUSIVE PRODUCTION OF 5 PIONS

served, the kinematics is under-determined. The exclusivity peak serves as the only criterion
to define exclusive events. Excitations of the target nuclei can therefore not be completely ex-
cluded. However, for the small momentum transfer reactions that will be studied (see below)
any particles from the decay of a nuclear excitation will have very low momentum (® 1 GeV) in
the laboratory frame and will with high probability not be detected in the apparatus. Such pro-
cesses are therefore unlikely to contaminate the amplitude analysis of the 5π system described
in chapter 3.
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Figure 2.7: Total Energy of the 5π system with a clear peak for exclusive events at 189 GeV.

There is a considerable tail of non-exclusive background events extending below the exclusivity
peak. Presumably this distribution originates from events, where one or more particles have
not been reconstructed. Candidate background reactions are for example

π−+Pb→π−π+π−π+π−π0π0+Pb

or
π−+Pb→π−π+π−η′+Pb with η′→π+π−π0

where the π0s remain unobserved.
In order to isolate exclusive 5π production it is required that the five outgoing pions carry the
full beam energy. Thus the final cuts for the event selection are:

• Exclusivity: E5π ∈ [189−6; 189+6]GeV

• z vertex ∈ [−319,−299]cm

• Final yield: 384235 events

Figure 2.8 illustrates the effect of the exclusivity cut on the vertex distribution. The gray his-
togram shows the same distribution as Fig. 2.6 on a logarithmic scale. In yellow the distribution
after the exclusivity cut is shown. No background outside the two target cells of the 2+1mm tar-
get remains. Therefore the cut on the vertex position can be left relatively loose in the following.
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Figure 2.8: Primary vertex distribution along z in the laboratory frame (in gray all 5π events).
The yellow histogram shows the effect of the exclusivity cut E5π ∈ [183, 195]GeV on the vertex
distribution.

2.2.2 Diffractive Production Mechanisms

Momentum Transfer Distribution

Since only the direction of the beam has been measured with high precision, its 4-momentum
is reconstructed from the energy of the outgoing 5-body system under the assumption of an
elastic nuclear recoil.
For the case when the mass of the recoiling target particle remains constant during the scatter-
ing process, an approximate formula for the beam-energy can be derived [87]which is valid for
small scattering angles θ :

Ebeam = EX +
1

2m0(1−ε)
�

(EXθ )2+(mπε)
�

with ε≡
m 2

X −m 2
π

2m0EX
(2.1)

Here EX is the energy and mX the invariant mass of the 5π system and m0 the recoil mass. The
formula takes into account the momentum transfer that is needed to scatter the incoming pion
into the massive multi-pion final state.
The minimum value for |t |depends on the invariant mass m5π reflecting the fact that a minimal
longitudinal momentum transfer is necessary to provide the energy for the production of four
additional pions. It is convenient to define

t ′ = |t | − |t |min ≥ 0 (2.2)

In the laboratory system for high beam energies the following approximation [87] is useful to
calculate t ′:

|t |min ≈

�

m 2
X −m 2

beam

�2

4|~pbeam|2lab

(2.3)
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Figure 2.9 shows the momentum transfer distribution of the exclusive event sample on a log-
arithmic scale. The spectrum shows a characteristic peak in the forward direction t ′ ∼ 0. This
phenomenon is well known in high-energy hadron scattering and is understood in the frame-
work of diffractive hadron scattering.
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Figure 2.9: Overall t’ distribution; logarithmic scale.

Diffraction and Regge theory

The term diffraction in high-energy hadron scattering refers to a situation where the center-of-
mass energy

p
s is much larger than the squared momentum transfer. The scattering ampli-

tudes in this regime have been successfully explored in the framework of Regge theory [88, 89,
90]. The basic idea of Regge theory is the analytical continuation of the partial wave helicity
amplitudes for the scattering process into the complex angular momentum plane and the sub-
sequent application of dispersion relations in order to constrain their possible structure — the
so called Sommerfeld-Watson transform.
The advantage, but also one limitation of this approach is that it does rely only on very general
properties of the scattering amplitudes, such as analyticity and unitarity, while the underly-
ing hadron dynamics is absorbed into phenomenological constants, like the residuals of Regge
poles. Extensive reviews on Regge theory are available in [91, 35, 92, 48]. The validity of Regge
theory is limited to a specific — yet phenomenologically important — kinematic region char-
acterized by

s �Λ2
QCD > |t |

The complete derivation of Regge theory from QCD in this kinematic limit is still an open the-
oretical challenge3.
For the purpose of the present analysis, however, the Regge picture of diffractive scattering
provides a very nice starting point, as it allows to represent the scattering of a high-energy pion

3There are, however, attempts to explore the issue of Regge behavior in simplified versions of QCD. For a modern
example see [93].
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Figure 2.10: Diffractive pion dissociation on a nucleus.

on a nucleus into a five pion state with a graph as shown in Fig. 2.10. The situation where one
of the initial hadrons stays intact while the other one scatters into a multi-particle final state is
called single-diffractive dissociation. Diffractive dissociation events are characterized by large
rapidity gaps between the different groups of particles. Here the 5π system is scattered into the
forward direction, while the target nucleus only receives a small recoil. This scattering process
can be described by the exchange of a quasi-particle in the t -channel which is called a Reggeon.
Originally Regge theory was developed to understand the properties of elastic hadron scatter-
ing. The corresponding amplitude is visualized in Figure 2.11. This relatively simple case shall
serve here as a preparation for the description of the inelastic multi-particle production ampli-
tude following later.

a c

b d

R P

gac

gbd

Figure 2.11: Elastic scattering amplitude in the Regge picture.

The elastic scattering amplitude for a single Reggeon exchange (in the limit s � t ) takes the
following form [92]:

A(s , t )∝ gλaλc (t ) ·
�

s

s0

�α(t ) S+exp (−iπα(t ))
2 sinπα(t )

· gλbλd (t ) (2.4)
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where S is the signature4 of the exchanged Reggeon and α(t ) is the corresponding Regge trajec-
tory. The gλiλ f are (real valued) effective coupling constants associated to the Regge vertices.
They contain the regge pole residue as well as kinematic singularities. These latter factors arise
from angular momentum conservation and lead to a t -dependence of the vertex functions that
is sensitive to the helicity flip |λ f −λi | at the respective vertex [91]:

gλiλ f (t )∝ (t )
|λ f −λi |/2 (2.5)

Thus helicity flip amplitudes (i. e. λ f 6=λi ) are suppressed for small values of t .
The prediction for the asymptotic behavior of the total hadronic cross section can be obtained
by realizing that the amplitude for elastic forward scattering at t = 0 is essentially given by
equation 2.4 as

A(s , t = 0)∝ sα(0). (2.6)

With the optical theorem

σtot ∝
1

s
ImA(s , t = 0) (2.7)

the total cross section has to exhibit the asymptotic s -dependence

σtot ∝ sα(0)−1. (2.8)

It is well known that the Regge trajectories derived from the meson spectrum are to a good
approximation linear [89, 91]

α(t ) =α0+α′ · t (2.9)

as shown in Figure 1.1. The intercept of these trajectories is smaller than one α(t = 0) =α0 < 1,
which means that the total cross section should drop with rising s . Indeed the contrasting ob-
servation is a slow rise ofσtot(s )with increased center of mass energy. This problem is resolved
by the introduction of a Regge trajectory with an intercept close to one. The name of this ob-
ject is the Pomeron [94, 95]. It was shown by Foldy and Peierls [96] that the Pomeron has to
carry the quantum numbers of the vacuum, in particular its parity and its G -parity are even,
and the Pomeron is an isospin-singlet. Another important feature of the Pomeron is its positive
naturality5.
The extend to which the total cross section is dominated by Pomeron exchange can be inferred
from fitting Regge parametrizations to total cross section measurements obtained from elas-
tic scattering data via the optical theorem. The COMPAS (sic.) working group is fitting the
total π−p and π+p cross sections using models with the exchange of two Regge trajectories
and a Pomeron contribution [97]. Figure 2.12 shows their parametrizations in the intermediate
energy range. For higher and higher energies the cross sections for the charged pions increas-
ingly coincide indicating an even C -parity process — Pomeron exchange — is dominating for
large energies. For a 190 GeV pion beam scattering off a proton, the center of mass energy is

4As one constructs an analytic continuation of helicity amplitudes into the complex angular momentum plane
it turns out that this can not be done in a general way. Instead one has to distinguish explicitly between odd/even
J (for integer angular momentum J ) contributions. The two cases lead to a different factor ±1 in the amplitude,
called the signature. For details see [35].

5In order to construct helicity amplitudes which describe the scattering of parity eigenstates it turns out that one
needs to form linear combinations of amplitudes with the same spin but opposite helicity. The remaining degree
of freedom in this construction is described by the so called naturality (compare to the discussion on reflectivity in
section 3.1.1).
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Figure 2.12: Reggeon-Pomeron parametrization of pion-proton total scattering cross sections
as a function of the center of mass energy

p
s . Fit parameters from [97].

p
s = 18.9 GeV. From the parametrization of [97] (using the RREn f model described therein)

the ratio of Pomeron / Regge-exchange contributions to the total cross section is 85%. It is im-
portant to keep in mind that this number refers to the total cross section as a function only ofp

s , integrating out the t−dependence. Indeed for low-t reactions the Pomeron contribution
can be much larger. The reason behind this is the different slopes of the Pomeron trajectory
(α′P = 0.25 GeV−2) [98] and the ordinary meson trajectories (α′R = 0.88 GeV−2) [91] (see also Fig-
ure 1.1), which implies that their relative contributions to the scattering amplitude (at fixed s )
do depend strongly on t .

There are two important expectations that follow for diffractive reactions at COMPASS energies.
First, since the Pomeron does not carry isospin and has even G -parity these quantities will be
conserved in the reaction and thee incoming pion beam will dominantly dissociate into I G = 1−

final states. This is the reason why the exclusive production of five pions is favored above the
4-pion final state in COMPASS data. The second conclusion is related to the arguments on
naturality discussed above. Parity conservation will lead to a strong constraint on the helicity
states of the produced multi-particle system. This topic will be discussed in detail in section
3.1.1.

Historically there are two important approaches how to generalize Regge theory to multi par-
ticle production (see e. g. chapter 11 of [92]): the diffractive excitation or nova model and the
multiperipheral models. Figure 2.13 shows graphical illustrations of these models.

The diffractive excitation model (Fig. 2.13(a)) is based on the idea, that the incoming pion is
excited into an intermediate state X via Pomeron exchange. This state, sometimes called a fire-
ball or a nova, subsequently decays into the final-state particles. For a small number of decay
products it is obvious that X can be a mixture of different spin-parity Eigenstates. The indi-
vidual partial waves can contain resonant contributions and indeed for the 3π final state it is
well known that these resonances are responsible for a significant part of the cross section, in
particular for relatively low invariant masses of X in the region of mX = 1 to 2 GeV/c 2. Reso-
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nances show up as poles of the production amplitude of the multi-body state in the complex
m 2

X -plane. For physical m 2
X ∈ R, these poles result in characteristic phase shifts of the ampli-

tudes as a function of mX . The structure of the production amplitudes can be reconstructed
through interference effects in the angular distributions of the decay products as will be ex-
plained in chapter 3.
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Figure 2.13: Multi particle production mechanisms. (a) is the diffractive excitation model in
which the incoming pion is excited into an intermediate state X, which subsequently decays
into the final state pions. (b-d) are Regge exchange diagrams which appear in the multiperiph-
eral model.

The multiperipheral models involve multiple Regge exchanges. Some example diagrams are
shown in Figures 2.13(b-d). A prediction of the multiperipheral model, which has been used in
the past to distinguish between the different production mechanisms are the rapidity distribu-
tions of the final-state particles. The multiperipheral models predict gaps in rapidity between
the different clusters of particles. Harris et al. [99, 100] compared rapidity distributions in the
exclusiveπ−d → 3π−2π+d reaction at 15 GeV/c with model predictions from a multiperipheral
and a nova model. They were lead to the conclusion, that the simpler nova model was sufficient
to describe the data. Giving the limited statistics of only about 170 events that was available to
them it was not possible to study the details of the nova decay such as its spin-parity content.

Figure 2.14(a) shows the rapidity distribution for negative pions out of the exclusive 5-pion
final state. There are no pronounced structures in this distribution. Note, however, the limited
acceptance of the COMPASS setup in 2004 as shown in Figure 2.14(b). While in the range 4 <
yπ− < 7 the distribution is rather flat, there is practically no acceptance for yπ− < 4. The reason
for this is the veto counter which imposes an angular cut of ∼ 35 mrad in the laboratory frame.
Therefore one can not exclude additional structures at low rapidities and thus an estimation
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Figure 2.14: (a) Rapidity distribution for negative pions out of the 3π−2π+ system. (b) COM-
PASS acceptance in rapidity. The overshoot of the acceptance below y = 2 is an artifact of the
Monte Carlo simulation.

of multiperipheral contributions to the 5π production cross section on this grounds is very
difficult.
In the future, this issue could be studied in greater detail using the data from the 2008 COMPASS
run, for which the angular acceptance of the spectrometer has been greatly improved with a
new detector setup.
The present analysis concentrates on production mechanisms of the diffractive excitation type.
We will employ amplitude analysis methods to search for resonances with different quantum
numbers, decaying into five pions. Figure 2.13(a) will therefore be the guiding picture for set-
ting up the partial-wave analysis formalism in the next chapter. Multiperipheral contributions
will not be treated explicitly in the amplitude analysis and will be expected to show up as non-
resonant background.

Momentum Transfer Ranges

For further studies the data sample is divided into three bins in the momentum transfer t ′. The
chosen ranges in t ′ roughly correspond to a region of coherent scattering on the complete lead
nucleus for low t ′, a high t ′ range where the scattering is off quasi-free nucleons inside the lead
nuclei and an intermediate range between those two cases. The t ′ bins have been chosen as
shown in table 2.2

Low-t ′: t ′ ∈ [0, 0.005]GeV2/c 2 202578 events
Medium-t ’: t ′ ∈ (0.005, 0.1]GeV2/c 2 121885 events
High-t ′: t ′ ∈ (0.1, 2]GeV2/c 2 58672 events

Table 2.2: Momentum transfer ranges.

Figures 2.15(a), 2.15(b) and 2.15(c) show the t ′ distributions in the low-t ′, medium-t ′ and high-
t ′ ranges respectively. Note that these distributions include only events within the exclusivity
cut E5π ∈ [189− 6; 189+ 6]GeV. The low-t ′ distribution has a single exponential slope as ex-
pected for coherent diffractive scattering off the lead nucleus. The slope for high-t ′ is consid-
erably smaller and could be due to a scattering off individual nucleons. In the intermediate
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region the picture is complicated by the occurrence of diffraction patterns.
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Figure 2.15: t ′ distributions for different t ′ bins (a) low-t ′: 0<t’≤ 0.005GeV2/c 2; (b) medium-t ′:
0.005<t’≤ 0.1GeV2/c 2; (c) high-t ′: 0.1<t’≤ 2GeV2/c 2; logarithmic scale;

The slope of the t ′-spectrum dσ
d t ′ ∝ e−b0t ′ in the low-t ′ bin has been fitted to

b0 = 292.8±1.6 (GeV2/c 2)−1.

This corresponds to a black disc scattering radius fxfatal[101] of

R5π
Pb = 0.3

p

b0 fm= 5.1fm
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This is considerably smaller than the value calculated through the approximate formula

RA ∼ r0A
1
3 r0 = 1.25 fm.

RPb ∼ 7.4 fm

Indeed monte carlo studies of the apparatus show that the measured t ′ spectrum for forward
scattering (low-t ′) is completely dominated by resolution effects. In particular the measured
slope in that region can be completely explained with the limited resolution in that variable.
The reason for this is the multiple scattering of the charged final state pions inside the target
material and in the structures of the detectors themselves. The effect is more pronounced in
the π−π+π−π+π− final state than in the π−π+π− where a black disk scattering radius of

R3π
Pb = 5.92±0.02 fm

has been measured using the data from the same period [102].
Because of this limited resolution the choice of the low-t ′ interval has to be understood only
as a means of selecting events in which the 5-pion system is produced in forward direction,
without implying a detailed analysis of the shape of the t ′−distribution.
It is quite instructive to look at the distributions of energy EX of the 5-pion system for the three
t ′-ranges separately as shown by the three differently colored distributions in Figure 2.16. For
all t ′-bins there is an exclusive peak. However, it becomes obvious that the non-exclusive back-
ground tail correlates strongly with the momentum transfer and is prominent in the high-t ′

and even the medium-t ′ samples, while it is much smaller for the low-t ′ sample. Actually this
is to be expected since for a non-exclusive event the calculated t ′ will actually only refer to a
sub-event. This miscalculation will typically shift the t ′ to higher values since due to missing
particles the transverse momentum balance does not work out.
It is for this reason that the following partial-wave analysis has only been applied to the low-
t ′ data where the assumptions of exclusivity as well as the diffractive picture are much better
justified.

5π Invariant Mass Spectrum

Having established the extend to which the exclusive production of 5 charged pions can be un-
derstood in terms of diffractive excitation of the incoming pion one can examine the invariant
mass spectrum of the 5π system. A spectrum integrated over the whole t ′-range is shown in
Figure 2.17. There is a distinct structure visible around 1.8 GeV/c 2. The questions to be ex-
plored are

• What is the partial-wave decomposition of this spectrum? Which spin-parity states con-
tribute?

• Are there resonant contributions? How many resonances can be identified and what are
there parameters?

In the 1.8 GeV/c 2 mass region the J PC = 0−+π(1800) and 2−+π2(1670) resonances are known
through their decays for example into 3π [1]. In the J PC = 1++ sector resonances such as the
a ′1(1700) are expected to show up from model calculations [34] which also indicate that these
states to contain hybrid meson contributions. Several experiments have measured this partial
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Figure 2.16: Exclusivity peak for three different t ′ bins.

wave in different final states, but no conclusive picture has emerged yet and it is suspected that
actually several overlapping resonant states with J PC = 1++ exist in the relevant mass range.
Finally Figure 2.18 shows the invariant mass spectra for the 5π final state systems in the dif-
ferent momentum transfer bins. A comparison of the peaking structure at 1.8 GeV/c 2 shows
a clear t ′-dependence. While at low-t ′ the peak is quite prominent it tends to decrease in in-
tensity (with respect to the higher mass part of the spectrum) for higher momentum transfer.

In order to learn more about what the diffractively produced 5-pion system is composed of,
the full information of correlations in all kinematic variables of the final state have to be taken
into account. To achieve this, an amplitude-analysis formalism is developed in the following
chapters which enables a decomposition of the spectrum into definite spin and parity eigen-
states. Interferences between the different partial-wave amplitudes are accessible through the
observed angular distributions and allow the measurement of relative phases between the par-
tial waves. This phase information will be the basis for the search for resonant contributions,
which will be described in chapter 6.
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Figure 2.17: Invariant mass of the 5π system. Exclusivity cut applied E5π ∈ [183, 195]GeV.
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Chapter 3

Amplitude Analysis for Fixed 5-Body
Mass

To try to make a model of an atom by studying its spectrum is
like trying to make a model of a grand piano by listening to
the noise it makes when thrown downstairs.

Anonymous

THE goal of the amplitude analysis employed here is the identification of possible resonant
contributions to the diffractively produced 5-pion system and the determination of the

spin parity quantum numbers of the corresponding states. In order to achieve this, a two-step
approach is chosen. In the first analysis step, described in detail in this chapter, the data is
partitioned into bins of definite 5-pion mass mX =m5π. Based on the observed angular cor-
relations between the pions the intensity in each bin is then decomposed into different par-
tial waves with definite spin-parity. The result of this first step is a measurement of the spin
density matrix of the intermediate state X in each mass bin. This first step is often called the
mass-independent partial wave analysis. I will also use the term fixed-m5π amplitude analy-
sis instead, in order to emphasize which invariant mass quantity is really kept fixed during the
procedure.
In a second analysis step the dependence of the spin density matrix elements on the 5-body
mass is investigated. From intensity distributions and relative phase motions between different
partial waves possible resonant contributions are inferred. Since absolute phases are not mea-
surable by definition, the strategy will be to use well-known resonances as interferometers in
order to construct amplitudes which describe the data. This step is called the mass-dependent
analysis or resonance extraction step and will be explained in chapter 6.1.

3.1 General Structure of the Amplitude

The invariant mass of the 5-pion system mX is a direct observable in the diffraction experi-
ment. This allows to analyze events with different mX independently of each other. Since the
signature of a resonance is encoded in the phase of the respective amplitude as a function of
the invariant mass, the binning of the data allows to conduct the analysis without any prior
assumptions on the shape of the amplitude in this variable.
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For the present analysis the low-t ′ data set described in section 2.2 is partitioned into 28 mass
bins of 60 MeV/c 2 width each, spanning the mass range 1.36 GeV/c 2 ≤mX ≤ 3.04G e V /c 2. The
formalism developed below is applied independently to each of these mass bins in order to
measure the spin-density matrix at different masses mX .
In this section the general structure of the amplitude describing a diffractive excitation process
as depicted in Figure 2.13(a) is constructed for the case of fixed 5-body mass mX and fixed
total center-of-momentum energy

p
s . The appropriate quantum numbers are summarized

and general conservation laws are used to restrict the structure of the transition amplitude.

3.1.1 Isospin and Parity Conservation

In strong interactions parity is a conserved quantum number. For systems containing only light
quarks, isospin and G -parity are also good quantum numbers.
The dominance of Pomeron exchange — the exchange of vacuum quantum numbers I G = 0+

in the t -channel (c. f. section 2.2.2) — means that isospin and G -parity of the initial pion
I G = 1− are carried over to the final state. Indeed the 5-pion system has negative G -parity and
for a fully charged system π−π+π−π+π− the 3-component of the isospin has to be I3 = −1 as
can be seen from the Gell-Mann–Nishijima formula [103, 104]

Q = I3+
1

2
Y

recalling that the hypercharge Y =S+C + B ′+T + B for light mesons (Baryon-Number B = 0)
without strangeness, charm, bottomness and topness (S = C = B ′ = T = 0) is zero. Conse-
quently the isospin I has to be 1 (or larger). Since no I = 2 resonances are known, we will
restrict the analysis to the production of I = 1 systems. Indeed it is observed that at COM-
PASS energies in exclusive, single-diffractive processes mainly systems with I G = 1− like π−η,
π−π+π−, π−π0π0 or π−π+π−π+π− are produced.
While the incoming pion has zero spin, the Pomeron, being a Regge-trajectory has a more com-
plicated spin structure which contains scalar as well as tensor components. Furthermore there
can be orbital angular momentum between the beam pion and the Pomeron which allows the
excitation of higher-spin states for X . However, as will be shown below, there are still some
restrictions on the spin-parity states that can be produced in pion diffraction, which can be
deduced from the fact that this process is dominated by Pomeron exchange.
The intermediate states X are characterized by the quantum numbers I G (J PC )M where M ∈
[−J , J ] is the z-component of the spin J in a suitable coordinate system. Here the z -direction
will be measured along the momentum-vector of the incoming beam-pion in the laboratory
system. The corresponding reference frame where X is at rest is the Gottfried-Jackson frame
which will be explained in detail in section 3.2.1. From the discussion above it is clear that
I G = 1− for the 3π−2π+ system. Since per definition the charge-conjugation quantum number
is

C =G · (−1)I

it follows that the π−π+π−π+π− system is being assigned even charge conjugation C = +1. It
should be noted, however, that the charged system is not an eigenstate of C.
An important issue are the consequences of parity conservation on the polarization of X . It
has been shown (c. f. [105]) that under the premise of parity conservation at the pion-Pomeron
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vertex one can find a basis for the |J M 〉 states in which the spin density matrix assumes a block-
diagonal form. This is achieved by forming linear combinations of states with opposite spin
projection M . LetψJ M denote a state with spin J and J3 =M . The parity eigenstate amplitude
can the be constructed in the following way:

ψεJ M = c (M )
�

ψJ M −εP(−1)J−MψJ (−M )
�

with ε=±1, M ≥ 0, c (M > 0) = 1p
2

and c (M = 0) = 1
2

(3.1)

where P is the parity quantum number and ε is a newly introduced quantum number called
reflectivity, which for mesons (bosons) can take on the values ε ∈ ±1 and by construction cor-
responds to the naturality of the exchanged reggeon (c. f. [48]). Since the Pomeron has positive
naturality it is expected that dominantly states with positive reflectivity are produced at high
energies while the contribution of amplitudes with negative reflectivity should be suppressed.
The∼ 15% Reggeon contribution to the total π−p cross section at COMPASS energies (see sec-
tion 2.2.2) gives a first estimate of the magnitude of this effect.
It can be easily shown from the formulas above, that indeed for positive reflectivity ε=+1 only
states with

P = (−1)J−M+1

such as
J P M ∈ {0−0, 1+0, 1−1, 2−0, 2+1, ...}

contribute. Note that scalar states cannot be produced at all in diffractive pion dissociation
with Pomeron exchange.
The kinematic selection of the small momentum transfer region implies a further restriction on
the possible states. As can best be seen from equation 2.4 at low t ′ there is a penalty for helicity
flip transitions with∆λ= |λ f −λi |> 0 of the form

A ∝ t ′∆λ

This applies in principle to both vertices of the diffraction diagram 2.11. A spin flip at the lower
“target vertex” g b d would induce the same penalty as a spin flip at the upper “beam vertex”
g a c . If the target particle has nonzero spin, the two contributions for spin flip an spin non-flip
have to be treated incoherently.
Since the incoming pion has no spin, here∆λ=M . Thus, summarizing, in the limit t ′→ 0 only
M = 0 states will be produced and there will be no spin flip at the target vertex. This kinematic
constraint limits the list of important contributions to

J PC ∈ {0−+, 1++, 2−+, 3++, ...} M = 0

The suppression of target spin flip contributions motivates the fully coherent1 treatment of the
diffractive amplitude below.

3.1.2 Amplitude Parametrization

The amplitude for the diffractive dissociation of a pion into 2π+3π− through an intermediate
state X is constructed by multiplying the production amplitude T̂ , which describes the transi-
tion π+P→ X with an amplitude ψ̂ describing the decay of X into five pions as illustrated in

1apart from background contributions
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π
π
π

π

π
πP

T̂ ψ̂
X

Figure 3.1: Factorization of the partial wave amplitude into production amplitude T and decay
amplitude ψ. For fixed 5-body-mass mX the phase from the propagator of X is absorbed into
T .

Figure 3.1. There also is a propagator-like amplitude that describes the intermediate state X
carrying a phase and only depending on m 2

X . However, since the constructed amplitude will
be applied only in a small range of mX this propagator can be assumed to by approximately
constant in this mass bin and it will be absorbed into the production amplitude. T̂ is thus de-
fined at2 mx and depends on the quantum numbers of X , the center of mass energy

p
s and

the momentum transfer t ′. The
p

s dependence, which is of the form given in equation 2.4 will
be neglected in the following since only data at one value of

p
s will be analyzed. The t ′ depen-

dence is assumed to be universal for all partial-wave amplitudes with the same M and will also
be integrated over the chosen range.
The full amplitude for pion diffraction into the 5π final state with a given reflectivity ε at fixed
5-body-mass mX is expanded in the following way:

A ε ∝
∑

α̂δ

T̂ εα̂ ψ̂
ε
α̂δ(τ) (3.2)

The index α̂ summarizes the possible combinations of quantum numbers I G (J PC )M for the
state X , while δ stands for the possible decay channels through which the 5-pion final state is
reached (see also section 3.2). τ represents a suitable set of independent kinematic variables
which span the phase space of the 5π system at fixed mX and is the experimental input for the
analysis, measured for each event in the data sample. ψ̂εα̂δ(τ) is the amplitude for the decay
of the state α̂ in the decay channel δ and T̂ εα̂ represents the amplitude for the production of
that state with reflectivity ε. The sum

∑

α̂δ runs over all possible quantum numbers of X and
over all possible decay modes δ. It is a generalization of the well known partial wave expansion
of elastic scattering and thus the amplitudes T̂ εα̂ ψ̂

ε
α̂δ(τ) are also often called partial waves. Of

course, just as the partial-wave expansion has to be truncated in practical applications, also
the number of components in the above parametrization has to be finite. The set of partial
waves which is used in a particular application is called the waveset. The choice of a particular
waveset might introduce an important systematic uncertainty in the analysis. This problem
will be explored in depth in chapter 4.
From the general form of the amplitude the multi-differential cross section is parametrized in

2Indeed the definition of a small mass bin implies that the T̂ defined here are actually amplitudes integrated over
the respective mass range.
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the following way:

dσ5π

dτ
=σ0 ·

∑

ε

∑

r

�

�

�

�

�

∑

α̂δ

T̂ εα̂r ψ̂
ε
α̂δ(τ)

�

�

�

�

�

2

≡σ0 · I (3.3)

Here σ0 is a constant that is left undetermined. All relevant structures which will be explored
are encoded in the intensity I . Only relative measures, such as relative intensities or phase-
differences will be used to perform and interpret the amplitude analysis. There are two in-
coherent sums in the above parametrizations: States with different reflectivity are produced
incoherently as explained above. The rank r takes into account further sources of incoherence
in the production process. The index therefore only appears in the production amplitudes. In
the analysis presented here a rank r = 1 has been used for full coherence as mentioned above
and we will drop the sum over the rank for brevity in later chapters.
The spin density matrix elements can be written in terms of these amplitudes as

ρ̂ε
α̂β̂
∝
∑

r

T̂ εα̂r T̂ ∗ε
β̂r

(3.4)

3.1.3 Positivity Constraints

Apart from the constraints from parity conservation on the spin density matrix ρ̂ discussed in
section 3.1.1, there are additional important constraints [105]. In particular the eigenvalues
of ρ̂ — since they represent probability densities — should be real and positive. This require-
ment is called the positivity constraint and has another important practical implication for the
parametrization of the spin density matrix in the reflectivity basis: In order to avoid unphysical
phases some of the production amplitudes have to be constrained to the real axis. For higher
rank spin density matrices spurious parameters have to be eliminated. In each rank the vector
of production amplitudes thus starts with a real-valued entry. For each additional rank one
more parameter is set to zero as explained in detail in [105].
The partial waves which occur with real-valued production amplitudes T̂ εα̂r ∈ R fix the (un-
physical) absolute phase for their rank to 0. Because of this special role, they are called anchor
waves. Mathematically the choice of anchor waves is arbitrary, however for numerical reasons
it is advantageous to choose anchor waves that are stable and have a significant intensity in
order to provide a clear reference phase.

3.2 Decay Parametrization — The Isobar Model

In this section the parametrization of the decay amplitude ψ in terms of the so called isobar
model is discussed. In order to understand its assumptions and to clarify the terms used it is
instructive to briefly review the origins of this model before we apply a modern version to our
problem.
In hadron physics the isobar model was first introduced in the context of pion-nucleon reac-
tions [106, 107, 108]. The basic idea was that the production of a 2-body system Nπ dominantly
proceeds through the formation of an intermediate state called the isobar R which then decays
into the two final state particles as indicated in Figure 3.2. In that sense the diffractive excita-
tion model described above could already be seen as an instance of the isobar model with the
intermediate state X being the first isobar. In modern applications, however, there is a clear
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≈

R

Figure 3.2: Basic idea of the isobar model. The production of a 2-body system is dominated by
an intermediate state R which decays into the two final state particles.

distinction made between the diffractively produced system X and the isobars occurring in the
decay as explained in the following.

≈

R1
R2

Figure 3.3: Extension of the isobar model to the 3-body system.

The model was soon extended to the description of 3-body systems (see Figure 3.3), notably
the pπ+π− system [109] and also its short comings in terms of unitarity and analyticity con-
straints were realized [110]. A vast program to restore proper mathematical properties of the
resulting amplitudes via the application of dispersion relation techniques was launched which
finally provided “a retrospective justification of the use of the non-unitary isobar model in the
Nππ system...” [111]. In recent years, mainly through the availability of large data samples,
questions on unitarity effects reemerged (see e. g. [112]). A considerable problem for the ex-
ploitation of unitarity arguments to constrain amplitudes in the region above 1.5 GeV/c 2 is the
presence of many open channels and partial waves with higher spin content. This problem has
not been solved in a general way yet. In the present analysis unitarity effects have not been
taken into account explicitly. The development of the corresponding corrections might be a
fruitful endeavor for future, improved analyses.

Motivated by the successful application to the three pion system [113, 114, 115, 7] and by recent
extensions of the model to diffractively produced 4-body system[116] and the 5-body system
in p̄ n annihilation at rest[67, 117] the analysis presented in this thesis develops the isobar for-
malism for the diffractively produced 5-body system. Although the basic building blocks of the
amplitudes are essentially the same as for the 3-body isobar model, due to the larger number of
final state particles a few additional effects emerge in the 5-body amplitude that play no role in
simpler systems. In particular the isospin symmetrization as well as the slightly more complex
spin-orbit coupling will be discussed in the following.

For a 5-body system there are 3 possible distinct isobar decay tree topologies which are de-
picted in Figure 3.4. In case (a) the system X decays into a 3-body and a 2-body subsystem.
In cases (b) and (c) the first decay proceeds via the emission of a pion. The remaining 4-pion
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Figure 3.4: The 5-body isobar model. There are three different basic decay topologies. See text.

system can decay into two (2π)0 systems as in (b) or it can emit another pion as in (c). The im-
plied dynamics is encapsulated in the parametrization of the propagators for the intermediate
isobars. Underlying the three decay topologies for the 5-pion system are in fact the different
possible isospin-decompositions of the 3π−2π+ system which will be discussed in more detail
in section 3.2.3.

3.2.1 Helicity Formalism

The helicity formalism [118] provides a very general way of implementing the transition ampli-
tude of complicated decay chains. Each node in the decay tree represents a 2-body decay of a
state I G (J PC )M into two isobars I G1

1 (J
P1C1
1 )λ1 and I G2

2 (J
P2C2
2 )λ2. Each 2-body decay amplitude

depends on the helicities of the decay products λ1,λ2 coupling to a total spin S with helicity
λ. The orbital angular momentum ` between the decay products couples to the spin S yielding
the spin of the decaying state J with spin projection M . Note that there is a slight difference in
the choice of quantization axes between the decay of the diffractively produced state X and the
isobars in the decay tree as will be discussed below.

Of course for the two-body decay all conservation laws have to be fulfilled, such that G =G1 ·G2,
P = P1 ·P2 ·(−1)` and the usual spin coupling rules are respected for the isospins I ∈ [|I1−I2|, I1+
I2] and the angular momenta J ∈ [|s − `|, s + `].
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Figure 3.5: Construction of the Gottfried-Jackson frame. For details see text.

The 2-body amplitude can be written as:

A(τ) =
∑

λ1λ2

D J
Mλ(θ ,φ, 0) fλ(mR , m1, m2) with λ≡λ1−λ2 (3.5)

An important feature of this amplitude is the factorization into an angular part, described by
the Wigner-D-functions D J

Mλ(α,β ,γ) and a dynamical part f .

Angular structure: The D-functions describe the rotation U [R(α,β ,γ)]3 of a state |J M 〉 with
spin J and spin-projection M through the Euler angles (α,β ,γ) [118]

U [R(α,β ,γ)] |J M 〉=
∑

M ′

|J M ′〉D J
M M ′ (α,β ,γ)

The angular structure of a 2-body decay can be completely described by the orientation of
the breakup momentum in a suitable coordinate system. This is the reason why in the ampli-
tude formula only the two angles θ and φ appear4. The two decay angles are defined in the
Gottfried-Jackson frame for the decay of the 5-body state X and in so called helicity frames for
the isobar decays. The main difference between these coordinate systems is the choice of the
quantization axis as will be explained in the following.
Figure 3.5 illustrates the construction of the Gottfried-Jackson frame which is used to parametrize
the decay of a diffractively produced state X into two decay products p1 and p2. As a first step

3U [R] is the unitary rotation operator acting on the state |J M 〉.
4It is possible to write the amplitude in a different convention with D J

Mλ(θ ,φ,−θ ). The number of independent
angles for a 2-body decay, however, is always two.
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the coordinate system in the laboratory frame is rotated from (x , y , z ) → (x ′, y ′, z ′) such that
the scattering plane, spanned by the momentum vectors of the beam, the 5-pion system X and
(redundantly) the recoil momentum come to lie in the (x ′, z ′) plane. The y ′ axis is then per-
pendicular to the scattering plane. For the helicity frames a similar construction is made such
that the y ′-axis is defined by the production plane of the isobar in question. Keeping the y ′

direction fixed a boost is performed into the rest frame of X . A rotation around the y ′ direction
is then applied such that the z ′′ axis is aligned with the boosted beam-momentum p ′b e a m . It
serves as the quantization axis for the Gottfried-Jackson frame. The 3-momenta of the decay
products p ′′1 and p ′′2 are of course back to back and of equal magnitude in this frame and the
breakup momentum is uniquely defined q = p ′′1 . The angles θGF (Gottfried-Jackson-θ ) andφTY

(φ-Treiman-Young) are the polar and azimuthal angles of the direction defined by q . For the
helicity frames the z ′′-axis is aligned with the direction of flight of the decaying isobar in its
production frame before the boost into the isobar rest-frame is being applied.
Experimental results for the angular distribution in these variables, from which the information
on the contributing partial waves can be extracted will be discussed in section 5.1.

Dynamics of the intermediate states: The function

fλ(mR , m1, m2) =
p

2`+1 (`0Sλ|Jλ) (J1λ1 J2 −λ2|Sλ)Q`S(mR , m1, m2) g `S (3.6)

contains the Clebsch Gordan coefficients of the helicity couplings. Note that the projection of
the orbital angular momentum ` onto the quantization axis is always 0, as made explicit in the
first Clebsch Gordan coefficient. This is so, because the orbital angular momentum vector has
to be orthogonal to the breakup momentum of the 2-body system. However, in the helicity
frame the breakup momentum has exactly been chosen as the quantization axis. The relative
minus sign for the two helicities λ1 and λ2 in the second Clebsch Gordan coefficient comes
from the fact that they are both measured on the same quantization axis whereas the directions
of flight of the decay products are of course back-to-back.
Q is a dynamical function, parametrizing the dependence of the amplitude on the mass of the
decaying state mR . In the most simple case it is given by a relativistic Breit-Wigner propagator
and appropriate angular-momentum barrier factors [119]. The choice of a reasonable dynami-
cal functionQ to describe the intermediate isobar states is an important input to the model and
will be discussed in section 3.2.2. In the case of the first decay node - the decay of the state of
interest X - the factor Q contains only the angular-momentum barrier factors. The propagator
function is absorbed into the production amplitude as mentioned above.
g `S is the `S-coupling constant which represents the overlap of the wave function of the mother
particle with the two-body wave function of the daughter particles in the state with orbital an-
gular momentum ` and total spin S. It can also be understood as the branching fraction of a
resonant state into the specific decay channel. As such it could be calculated if a reliable model
of mesons would be available and g `S would be independent of the masses of the participating
particles. Unitarity corrections to the isobar model may lead to an effective dependence of g `S
on the breakup momentum and the masses of the daughter particles. In principle also addi-
tional phases can be generated [120]. However, since no consistent framework for the treat-
ment of such rescattering effects exists, the g `S will be approximated as constants and thus
can also be absorbed into the model parameters T . For this reason there will be independent
production amplitudes Tα̂δ for each decay mode and formula 3.3 has to be rewritten
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(3.7)

where the index α= α̂δ now summarizes all quantities needed for the definition of a complete
5-body decay amplitudeψεα:

• A set of quantum numbers I G (J PC )M ε for the system X ;

• A decay topology;

• The intermediate systems R1, R2 and R3, with quantum numbers I Gk
k (J

Pk Ck
k ) k = 1..3,

taking into account isospin coupling and G−parity conservation.

• At each 2-body decay node: the spin s and the orbital angular momentum ` between
the decay products, taking into account parity conservation such that orbital angular
momentum contributes (−1)` to the overall parity.

These quantities and their relation to an isobar decay tree are illustrated in Figure 3.6.

π

π

π

π

π

IG(JPC)M ǫ

IG1
1 (JP1C1

1 )

IG2
2 (JP2C2

2 )

IG3
3 (JP3C3

3 )

ℓs

ℓ1

ℓ2

ℓ3

Figure 3.6: Specification of a 5-pion isobar model decay amplitude. In addition to all the spin
parity and orbital angular momentum quantum numbers one has to specify propagator func-
tions for the intermediate isobar states (in blue).

Once the 2-body decay amplitudes have been defined for each node in the decay tree, the final
amplitude is obtained as a product of these sub-amplitudes, where appropriate sums over all
possible helicity states have to be taken into account. Note that each two-body sub-amplitude
is defined in its own coordinate system or helicity frame. Thus the complete isobar-model am-
plitude is not formulated in terms of invariant quantities and has to be evaluated algorithmi-
cally. For details see [118].
At this point another remark on the generality of the model is in order. The `s -coupling struc-
ture used in formulas 3.5 and 3.6 is valid only for the non-relativistic case. As long as the
breakup momentum of the decay products is small it can be applied as a good approximation.
More general expressions have been developed for example in [121]. The implementation of
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this fully relativistic formalism is an interesting option for future improvements of the present
analysis.

3.2.2 Isobar Parametrizations

In the isobar model parametrizations for the isobar subsystems have to be specified in the form
of the dynamical functionsQ`s (mR , m1, m2). In most analyses that are known to the author only
the resonant contributions to the amplitudes are used to construct these functions, usually by
exploiting results from other experiments where the relevant two-body decay of the state R has
been studied in detail.
At this point a problem arises that has often been criticized. As long as in each I G (J PC ) chan-
nel there is only one (narrow) resonance the approach taken so far is consistent. However,
if there are two or more overlapping resonances in the same channel, then unitarity imposes
strong constraints on the amplitudes. It can easily be shown that a sum of two Breit-Wigner
amplitudes violates (elastic) unitarity. On the other hand it is also well known that the shape
of the spectrum of a particular system (say the π+π−-system) strongly depends on its source.
This makes it difficult to propagate information on the amplitude from one process to another
(e. g. ππ scattering to ππ production from different sources). Only the pole positions of res-
onances in the complex m 2

R -plane and the residuals of these poles are universal and do not
depend on the production process. The presence of other particles in addition to the isobar
and inelastic contributions invalidate the straightforward application of unitarity constraints.
For a discussion on this issue see for example [122] and references therein.
The standard procedure that has been adopted by most analysts so far, is to treat each resonant
state independently, which effectively amounts to a sum of Breit-Wigner propagators with com-
plex coupling coefficients. Models of this type have been quite successful phenomenologically,
which can be understood from the arguments presented in section 1.3.1. The isobar model
neglects mixing between the intermediate states. The freedom allowed by complex coupling
coefficients is often sufficient to construct an amplitude that gives a decent description of the
data. The following analysis will also adopt this strategy, however, it is understood that here
we have identified a point which should be better understood for future improvements of the
model. One possible approach to this problem is presented in section 5.3.
In this section the two-, three- and four-pion systems are briefly discussed and the parametriza-
tions used for their description are described. Most of the information has been taken from the
particle data summary tables [1] and only Isospin 0 and 1 have been taken into account.

The (π+π−) Subsystem

The dominant I = 1 state in the (2π)0 system is the ρ(770) with J PC = 1−− which is showing
up as a peak in the π+π− invariant mass distribution in Figure 3.7. The 2-pion p -wave has
been parametrized with a fixed-width relativistic Breit Wigner for the ρ(770). The author is
aware of more advanced parametrizations of the ππ P-wave[123, 112]. The implementation of
these parametrizations would be an interesting option for future improvements of the present
analysis.
In the isoscalarππS-wave the low mass region is dominated by theσ pole with J PC = 0++. The
parametrization of the 0++ amplitude including also the f 0(980) and possible further contri-
butions has been subject to vigorous discussions. Recent developments include the so called
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Figure 3.7: Invariant mass of π+π− pairs out of the 5 charged pions in the final state. There are
6 entries per event in this plot. The ρ(770) is clearly visible on top of a large (combinatorial)
background.

inverse amplitude method which uses dispersion relation techniques to construct an analytical
continuation of the amplitude from the threshold region where constraints from chiral pertur-
bation theory provide a valuable anchor point [124, 125, 126, 123].
In the present analysis these recent parametrizations have not yet been taken into account.
Instead an older, phenomenological approach has been taken over which goes back to the K -
Matrix parametrization presented in [127]. In particular we use the “M-solution” parametriza-
tion described there with all parameters f i

j set to zero and with parameters c 4
00 = c 4

11 = 0. This
modification has been introduced since the f 0(980) appears as a dip in ππ scattering data —
for which the original “M-solution” model has been fitted — while in production processes it
is seen as a clear peak and its production strength depends strongly on its source. Therefore
the f 0(980) is treated as a separate resonance with a free overall phase shift relative to the mod-
ified (ππ)S−wave “M-solution” parametrization. In the following the symbol σ will be also used
to identify the phenomenological (ππ)s -wave, although this amplitude encompasses more than
only theσmeson. Intensity and phase are reproduced in Figure 3.8.
A further important resonance is the f 2(1270) with J PC = 2++. Although not visible by eye in
the 2π spectrum the state has been considered as a Breit-Wigner isobar in the present analysis.

The (3π)± Subsystem

Theπ−π+π− system (odd G -parity) has been studied extensively in diffractive production [113,
114, 115, 7]. The dominant states observed in that production mechanism are listed in table
3.1 together with their dominant decay modes. Figure 3.9 shows the mass-spectrum of the ob-
served (3π)− subsystems selected from the 5π final state. Around 1 GeV/c 2 the broad a 1(1260)
andπ(1300) likely dominate the spectrum. Note that there is considerable combinatorial back-
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Figure 3.8: (ππ) s -wave parametrization. Modified K -matrix solution from [127] as described
in the text.

Name J PC Major decay modes
a 1(1260) 1++ ρπ,σπ
π(1300) 0−+ ρπ,σπ
a 2(1320) 2++ ρπ

π2(1670) 2−+ f 2π, ρπ
π(1800) 0−+ f 0(980)π,σπ

Table 3.1: Main resonant contributions to the π−π+π± system considered in this analysis.

ground in this plot since it contains six entries per event. In diffractive production the 1++ par-
tial wave contains significant contributions from the so called Deck-effect [128, 129] which is
an example of a multiperipheral process mentioned in section 2.2.2. Only through the obser-
vation of the a 1(1260) in τ-decays has its resonant contribution been firmly established [130].
The narrow a 2(1320) is just visible as a slight shoulder in the spectrum, however, it is a well
established resonance. The pseudoscalar π(1300), which due to its large width is quite hard
to pin down experimentally, is included in the analysis as a very broad resonance. π2(1670)
and π(1800) are both quite well established states. They have been considered in the analysis
but due to their large mass they do not yet play a big role in the 5π-mass range and thus the
available 3π phase space that has been analyzed.
All these states have been parametrized by relativistic Breit-Wigner amplitudes in their domi-
nant decay modes (see section 1.3).

The (4π)0 Subsystem

Theπ+π−π+π− system is the most challenging to parametrize, even in the simplified approach
that is adopted here, because the least reliable information is available and some of the re-
ported states are still controversially discussed. To get an idea in which mass-range those sys-
tems fall Figure 3.10 shows the invariant mass spectrum of the neutral 4-pion subsystems (3
entries per event). The sharp peak on the rising edge of the phase space at m ∼ 1.28 GeV/c 2
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Figure 3.9: Invariant mass of 3π sub-states. There are six entries per event in this plot.

could be explained by the f 1(1285) resonance, which is known to be narrow (Γ = 25 MeV/c 2).
In order to investigate this system it is useful to plot the invariant mass of a (π+π−) out of the
4π system against the invariant 4π mass as in Figure 3.11. There is a clear vertical band at
m4π ∼ 1.28 GeV/c 2 and a broader structure around m4π ∼ 1.4 GeV/c 2. At m4π ∼ 1.5 GeV/c 2

there are indications of a dominant ρρ decomposition of the 4π system. Figure 3.11 has al-
ready been studied in [102] and its rich structure was a key motivator for the present work. In
order to illustrate the substructure of the 4π system Figure 3.12 shows the invariant mass of one
p i +π− subsystem versus the mass of the remaining two pions for different 4π-mass ranges.
While for m4π ® 1.6 GeV/c 2 the shape of this distribution is dominated by the limited phase
space, for higher 4-pion masses there is a clear ρ(770)ρ(770) correlation visible. For very high
masses above m4π ¦ 2 GeV/c 2 another structure is becoming visible, which corresponds to an
f 2(1270)ρ(770) correlation.

The 4π system can both be realized in an isospin 1 and an isospin 0 state. Its G -parity is even.

Table 3.2 summarizes the resonant states that have been considered for the 4π system. For
the resonance parametrizations again relativistic Breit-Wigner amplitudes have been used. It
is known that due to coupling effects between different channels the resonance shapes and
phase motions can be distorted. The most dramatic known example in this respect is the
f 2(1565) which in the 2π decay channel acquires a strongly asymmetric line shape due to the
rapid opening of the ωω phase space at roughly the same mass [65]. Apart from this example
the effects from dispersion and mixing have been found to produce only mild changes in the
line shape [65], justifying the usage of the simplified Breit-Wigner parametrizations used here.

One case in which the parametrization of the dynamical function in the isobar model proved
to be difficult was the 1+(1−−) 4-pion system. There are two known states: the ρ′(1450) and the
ρ′(1700) which couple strongly to this decay channel. The resonance parameters listed in [1]
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4πmass.

are:
ρ(1450) m = 1465±25 MeV/c 2 Γ= 400±60 MeVc 2

ρ(1700) m = 1720±20 MeVc 2 Γ= 250±100 MeVc 2

The J = 1 (4π)0 system has been studied in electron positron annihilation. In order to fit the
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Figure 3.12: Invariant mass of π+π− selected out of neutral 4-pion system plotted against the
invariant mass of the remaining π+π− subsystem for different 4πmass ranges.

invariant mass spectrum from e+e− → 4π two broad and overlapping resonances have been
required [131]. Both states have later also been seen in high-statistics analyses of τ decays
[132, 133] and in p̄ n annihilation at rest into 5π[117]. A complete review on the status of these
states can be found in the particle data book [1].

In order to find a parametrization of this system an attempt was made to treat both states as un-
correlated isobar resonances in the model. However, due to the strong overlap, this approach
leads to an unphysical correlation of the respective production amplitudes in the low-mass re-
gion. Another approach is to construct a dynamical function containing both resonances. This,
however, leads to a function that may be too rigid since it fixes the relative coupling of both
states to initial system X . Also it does not allow for different couplings to the various decay
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Name I G (J PC ) Candidate Masses (MeV/c 2)
f 0 0+(0++) 1370, 1500, 1700
η′ 0+(0−+) 1295, 1403
ρ′ 1+(1−−) 1450, 1700
b1 1+(1+−) 1235, 1800
f 1 0+(1++) 1285, 1450
η2 0+(2−+) 1645
f 2 0+(2++) 1270, 1565
ρ3 1+(3−−) 1690

Table 3.2: Isobar resonances decaying into π−π+π−π+ used in the present analysis. All these
resonances except the b1(1800) have been observed in other experiments. Their parameters
are taken from [1]. The b1(1800) is included based on calculations in the framework of the
relativistic quark model of mesons [9].

channels of the two states. The parametrization of reference [131]was used for this purpose:

BWρ′ = BW1450− c · BW1700 (3.8)

The relative phase between the two Breit-Wigner amplitudes is π, the relative coupling is c = 3
4 .

As Breit-Wigner parameters the following values from [131] have been used:

ρ(1450) m = 1465 MeV/c 2 Γ= 235 MeVc 2

ρ(1700) m = 1720 MeVc 2 Γ= 220 MeVc 2

Intensity and phase of this amplitude are shown in Figure 3.13.

)2 system (GeV/cπMass of 4

1 1.2 1.4 1.6 1.8 2 2.2

In
te

n
si

ty

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

)2 system (GeV/cπMass of 4

1 1.2 1.4 1.6 1.8 2 2.2

P
h
as

e

0

1

2

3

4

5

6

Figure 3.13: Double Breit-Wigner parametrization of I G (J PC ) = 1+(1−−) amplitude with two
overlapping ρ′ states.

It should be noted that this construction violates analyticity and (elastic) unitarity and does not
take into account mixing between the two states. It thus can only be a coarse approximation
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to the true amplitude. In the future a less model-dependent parametrization is needed here.
Indeed a larger sample might allow to extract phase-shift information on the 4π system directly
from the data. A prototype attempt on such an analysis is presented in section 5.3.
Also the isoscalar-scalar sector plays a big role in the understanding of the 4π system. While
the σ contributes only little to the observed 4π spectrum due to phase space, the higher f 0

resonances all are believed to couple strongly to this system. There are three states that have
been allowed in the model-ansatz in the present analysis. While the f 0(1370) is discussed quite
controversially [65, 66] the relatively narrow f 0(1500) is a well established state. The f 0(1700)
has not been seen in a 4π decay according to [1], nevertheless it has been allowed here.

Decay parametrization of 4π resonances: In the spirit of the isobar model the 4π decay of
an isobar R has been modeled by a two-body decay R → R1 +R2. Table 3.3 lists the possible
isospin decompositions of the 4π system. Isobars for the description of the respective subsys-
tems are also given. A similar decomposition has also been used in [117]. The two different
decay topologies arise because the G -parity even 4π state can decay either into two G -parity
even sub-states, for example ρ0ρ0 or alternatively into two G -parity odd sub-states like πa 1.
Note that for an isospin 1 object with I3 = 0 the decay into two states with I = 1 and I3 = 0 like
ρ0ρ0 is forbidden since the corresponding isospin Clebsch-Gordan coefficient is zero. Conse-
quently a state which decays into ρ0ρ0 has to have isospin 0.

I G I G1
1 I G2

2 Isobars R1, R2

0+ 1− 1− πa 1, ππ(1300),πa 2

1+ 1+ ρ0ρ0

0+ 0+ σσ, f 2 f 2

1+ 1− 1− πa 1, ππ(1300), πa 2

1+ 0+ ρ0σ

Table 3.3: Isospin decomposition of the 2π−2π+ system. The given isobar decay channels are
examples that have been used in the analysis.

Exotic contributions to the 4π system: The (4π)0 system itself is an interesting subject that
should be studied in depth. Apart from the known contributions that have been discussed so
far there is the exciting possibility to find spin-exotic resonances decaying into this final state.
A spin-exotic resonances that has been discussed for some time and has been established in a
previous analysis of COMPASS data [102, 7] is the π1(1600)with I G (J PC ) = 1−(1−+). If this state
truly corresponds to a hybrid meson one would expect by isospin symmetry to find a whole
multiplet of partner states. The establishment of such a multiplet of spin exotic resonances
would be a very convincing argument for the mesonic nature of these states. The isoscalar
partner of the π1(1600) could potentially couple to 4π. It would have the quantum numbers
I G (J PC ) = 0+(1−+) and would be called the η1(1600). The mass of this object is expected to be
close to the one of theπ1(1600). As has been mentioned in section 1.2 recent lattice calculations
indicate the existence of a spin-exotic isoscalar state with a mass that is slightly higher than the
isovector partner [60].
Indeed there have been experiments looking for such a state in p̄ n annihilation at rest into 5
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pions [67, 117]. The detailed analysis of the 4π amplitude as a subsystem of 5π is an extremely
challenging task since there is no simple way to directly measure the mass dependence of the
4-body spin-density matrix, as the invariant 4-body mass is not well defined for a 5-body event
(there are three combinatorial possibilities). In the analysis a Breit-Wigner shape of the ampli-
tude has to be assumed a priory, introducing a model dependence that is very hard to specify.

In [117] 30 016 events in the final state π−4π0 and 19 419 events in π+2π−2π− were available
for analysis. For the initial antibaryon-baryon state only an 1S0 configuration was taken into
account. The 4π systems were modeled by relativistic Breit-Wigner amplitudes. Also a J PC =
1−+ resonance was allowed. However, that search has been focused on a mass region around
1.4 GeV/c 2 since at that time the alleged partner state was believed to be the π1(1400). If the η1

indeed has a higher mass, maybe even slightly above the mass of the π1(1600) which is listed
in [1] as m = 1662+15

−11MeV/c 2 then the small phase space for the production of the state in p̄ n
annihilation at rest might disfavor any attempts to find the state there. This argument is even
enforced a one realizes that the production of the 1−+ 4-pion system together with a bachelor
pion from an 1S0 state, requires a P-wave between the η1 and theπ. Thus there is an additional
damping of the amplitude for small breakup momenta.

No such restrictions apply in principle to the production of a spin exotic 4-pion resonance as a
subsystem in the diffractive 5π production.

Name I G (J PC ) Expected mass range (MeV/c 2)
η1 0+(1−+) 1650 ... 1900
b0 1+(0+−) > 1600
b2 1+(2+−) > 1600

Table 3.4: Possible spin-exotic resonances coupling to the (4π)0 decay channel. The mass
ranges are speculative estimates.

Table 3.4 lists two further spin exotic states that might, if they exist, decay into 4 pions. Since
the 4π system can be in an isovector state with positive G -parity the spin exotic quantum num-
bers J PC = 0+− and 2+− can be realized. A search for resonant states in this sectors would be
very interesting. In this respect the diffractively produced 5π system provides an unique en-
vironment where these partial waves can be produced with a large phase space. Thus in the
present analysis trial amplitudes with exotic quantum numbers have been allowed in the am-
plitude model. Interestingly there are some hints that a 0+(1−+) 4-pion contribution is needed
to describe the data. These results will be discussed in chapter 5.2.

A promising way to tackle the problem of the model-dependent amplitudes mentioned above
is the usage of a very general parametrization of the 4π amplitude in the fit. This method in-
creases the number of free parameters in the amplitude analysis drastically and is only feasible
for larger statistics data samples. A first step in that direction has been taken and will be pre-
sented in section 5.3.

3.2.3 Isospin Symmetry

Isospin symmetry relates many of the conceivable isobar-model decompositions of the decay
amplitude. For light mesons isospin symmetry is quite well realized. We will here especially
use the symmetry between the I3 =±1 states which will be imposed exactly on the amplitudes.
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Similar considerations have also been implemented in the analysis of the ηπ−π+π− system
[63].
Note again, that only isospin 0 and 1 are taken into account in our isobar-model. An interesting
application arises for the decay amplitudes of the (4π)0 system into two charged subsystems
with I G = 1− each (compare table 3.3). In this case there are two possibilities which charge
states are realized in the isobars. As an example serves the decay

R0→π±+a∓1 (1260). (3.9)

Imposing isospin symmetry one can write the amplitude as a sum

〈π∓(3π)± | T |R0〉= 〈π−(3π)+ | T |R0〉+η · 〈π+(3π)− | T |R0〉 (3.10)

The operatorT is a generic transition operator. The relative signη between the two amplitudes
depends on the isospin IR of R0 and can be computed by a careful accounting of the Clebsch-
Gordan coefficients that arise in the isospin decomposition which are given in table 3.5. As will
be shown below, it turns out that (for a fixed decay mode of the 3-pion system) the relative sign
between the two amplitudes is given by the isospin of the 4-pion system. This (anti-)symmetry
of the decay amplitudes can be used to disentangle the two possible isospin states.

J 2 2 1 2 1 0 2 1 2
J3a J3b J3 +2 +1 +1 0 0 0 −1 −1 −2
+1 +1 1

+1 0 1/
p

2 1/
p

2

0 +1 1/
p

2 −1/
p

2

+1 −1 1/
p

6 1/
p

2 1/
p

3

0 0 2/
p

3 0 −1/
p

3

−1 +1 1/
p

6 −1/
p

2 1/
p

3

0 −1 1/
p

2 1/
p

2

−1 0 1/
p

2 −1/
p

2
−1 −1 1

Table 3.5: Clebsch-Gordan coefficients for the coupling of two (iso)spin 1 objects.

In order to proof this result one has to construct an explicit isospin decomposition of the 5-
pion decay amplitude. Let’s define a notation for the isospin part of the decay matrix elements
such that

〈Ia
I3a
n a

; Ib
I3b
nb
| T | I I3

n 〉

denotes the transition matrix element for the decay of an n-pion state with isospin In , G -parity
G = (−1)n and isospin 3-component I3 into two n a ,b -pion isobars (n a +nb = n) with isospins
Ia ,b and its 3-components I3a ,b . Only isospin 0 or 1 are taken into account and I3 can be either
0, +1 or −1.
For the (π+π−) system the decay amplitude can be written in this notation as

〈1±1 ; 1∓1 | T | I
0
2 〉. (3.11)
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Writing the decay in an isospin symmetric way one gets

1
p

c

�

〈1+1 ; 1−1 |+(−1)I 〈1−1 ; 1+1 |
�

T |I 0
2 〉 (3.12)

with c = 3 for I = 0 and c = 2 for I = 1 from the isospin Clebsch-Gordan coefficients (table 3.5).
The factor (−1)I also can be read off from the isospin Clebsch-Gordan coefficients and for I = 1
leads to a relative minus sign between the two terms on the right hand-side of equation 3.12.
The 2-pion amplitude can, however, be simplified by applying the parity operation (assuming
parity to be a good quantum number) on the second term which leads to another factor P =
(−1)` with ` being the orbital angular momentum between the two pions.

1
p

c

�

〈1+1 ; 1−1 |+(−1)I (−1)`〈1+1 ; 1−1 |
�

T |I 0
2 〉

For a system of two spin-less particles the definition of the G -parity leads to

G = (−1)J+I

Since the 2-pion system has J = ` and even G -parity this means that

`+ I = even

so that the final isospin-symmetric 2-pion decay amplitude is

〈1±1 ; 1∓1 | T | I
0
2 〉=

2
p

c
〈1+1 ; 1−1 | T | I

0
2 〉.

For the 3π system this trick is obviously not possible. However, π−π+π± will always be in an
isospin 1 state5. For the decay of the 3-pion system into a pion and an isospin 0 state, such as

〈π±σ | T | I±3 〉

the amplitude does not depend on the isospin 3-component of the 3-pion system, while for the
case where an I = 1 system appears in the decay, like

〈π±ρ0 | T | I±3 〉

an isospin Clebsch-Gordan coefficient is being picked up, which flips the sign between the
π+π−π−→ π−ρ0 and the π+π−π+→ π+ρ0 case. In the following discussion the ρπ decay will
be used but in general this factor has to be respected in the isospin-symmetrization in order to
construct a correct amplitude for a given isospin of the 4-pion system.
The π+π−π+π− system can occur both in I = 0 and I = 1 states as mentioned above. Let’s look
at the isospin decomposition for the example of equation 3.9 which in the notation 3.11 can be
written

〈1±1 ; 1∓3 | T | I
0
4 〉=

1
p

c

�

〈1+1 ; 1−3 |+η〈1
−
1 ; 1+3 |

�

T |I 0
4 〉.

Again from the isospin Clebsch-Gordan coefficients one reads off η= 1 for I = 0 and η=−1 for
I = 1. In this case applying parity does not help. There is, however, another factor which arises

5Recall that I > 1 is excluded from the discussion.
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from the isospin Clebsch-Gordan coefficients of the subsequent decay of the π−π+π− system
(which can only have I=1)

〈1−1 ; 10
2 | T | 1

−
3 〉=−〈1

+
1 ; 10

2 | T | 1
+
3 〉

Putting all this together for the decay of a 4-pion system in an I = 0 state like

f 0(1500)→π±+π∓(1300)→π±+π∓+ρ0

one can write:

〈4π | T | 00
4〉=

1
p

3
〈1−1 ; 1+3 | T | 0

0
4〉 ·

1
p

2
〈1+1 ; 10

2 | T | 1
+
3 〉 ·

2
p

2
〈1+1 ; 1−1 | T | 1

0
2〉

+
1
p

3
〈1+1 ; 1−3 | T | 0

0
4〉 ·
−1
p

2
〈1−1 ; 10

2 | T | 1
−
3 〉 ·

2
p

2
〈1+1 ; 1−1 | T | 1

0
2〉

with a relative minus sign η = −1 between the two sub-amplitudes. While for the case where
the 4π system is in an I = 1 state like

ρ(1450)→π±+a∓1 (1260)→π±+π∓+ρ0

the resulting symmetrized amplitude is

〈4π | T | 10
4〉=

1
p

2
〈1−1 ; 1+3 | T | 1

0
4〉 ·

1
p

2
〈1+1 ; 10

2 | T | 1
+
3 〉 ·

2
p

2
〈1+1 ; 1−1 | T | 1

0
2〉

+
−1
p

2
〈1+1 ; 1−3 | T | 1

0
4〉 ·
−1
p

2
〈1−1 ; 10

2 | T | 1
−
3 〉 ·

2
p

2
〈1+1 ; 1−1 | T | 1

0
2〉

with a relative η = + sign between the two sub-amplitudes. Similar decompositions can be
done for all three 5π decay topologies, but it turns out that the decay of the 4π system explained
above is the only place where the isospin symmetrization has to be done explicitly, taking into
account the relative phases obtained above and taking into account the isospin decomposition
of the 3-pion subsystem as summarized in table 3.6.

I (4π) I (2π) = 1 I (2π) = 0
0 η=−1 η=+1
1 η=+1 η=−1

Table 3.6: Relative sign η between the two isospin-symmetric amplitudes of the 4π→π±(3π)∓
decay amplitudes, dependent on the isospin I (4π) of the 4-pion system and on the decay-mode
of the 3π system, which can be to a I (2π) = 1 isobar (e. g. ρ) plus a pion or a I (2π) = 0 (e. g. σ)
plus a pion.

In practice each of the two amplitudes with definite isospin decomposition is calculated indi-
vidually for a given event and the resulting values are added with the appropriate relative phase
according to the isospin of the 4π subsystem. In principle it is possible to check the assump-
tions by fitting each amplitude individually without imposing isospin symmetry. This cross-
check has been done only for a few cases, however, and should be repeated systematically on a
larger data sample.

68



CHAPTER 3. AMPLITUDE ANALYSIS FOR FIXED 5-BODY MASS

3.2.4 Bose Symmetry

Since the 3π− and the 2π+ in the final state are mutually indistinguishable particles, the de-
cay amplitudes have to be symmetrized with respect to permutations of either π− or π+. As
spin-zero particles the pions obey the Bose symmetrization rules which prescribes an even-
sign summation of the amplitudes evaluated for each permutation of the pion 4-momenta.
Consequently in total there are 3! ·2= 6 terms in the symmetrized amplitude.

3.2.5 Implementation

Much of the work done for the preparation of this thesis concerned the design and implemen-
tation of a new partial wave analysis software called rootpwa .

In order to implement the isobar model for the 5-body final state described above the am-
plitude generator gamp developed at BNL [134] has been used as a starting point. The pro-
gram allows the specification of arbitrary isobar decay chains in a simple scripting language.
Resonance parameters and quantum numbers of the intermediate state can be read in from
a simple custom text file. For the isobar amplitude parametrizations fixed-width, relativistic
Breit-Wigner amplitudes and a (ππ)S−wave amplitude are available. Further parametrizations
can easily be added to the program due to its object oriented design. The amplitudes are cal-
culated using the helicity formalism.

This code has been taken over with only minor modifications into the rootpwa package [135].
In addition a small script has been developed to facilitate the construction and testing of the
decay amplitudes for the 5-pion final state including the transformation into the reflectivity ba-
sis, the Bose- and the isospin symmetrization. Furthermore considerable infrastructure for the
visualization and further analyses of the amplitude analysis results has been created including
several Monte Carlo generators and a ROOT-based graphical user interface.

The software has been cross-checked against another code [136] verifying all basic functional-
ity in the 3π as well as the 5π final state.

The rootpwa program is now being used to analyze COMPASS data in kaon diffraction K − +
p → K −π+π− + p [137], the K +K −π+π− final state produced in pion diffraction and the 5-
pion final state presented in this thesis. The complete code is available from the sourceforge
open-source repository service [135].
In order to provide the community with a tool that is even more versatile especially when it
comes to analyzing data from different production processes, such as muo-productionµ+A→
µ+Hadrons+A and central production p+p = p+Hadrons+p a new framework for amplitude
calculation has been designed and implemented [135]. Being more flexible as well as speed-
optimized even for complex decay chains, the rootpwa amplitude calculator will replace the
old gamp for future projects. It will allow a simple exchange of the spin-formalism used and will
not be limited to isobar-model-like amplitudes. This new calculator has, however, not yet been
used for the analysis presented here.

The calculation of the decay amplitudes are done for each event independently and so can be
trivially parallelized on a cluster of CPUs with only a small book-keeping overhead. Since the
computation of the decay amplitudes is a major effort for a complex case like the 5-body final
state this parallelization is essential in order to keep the turnaround times of the analysis at a
manageable level. As explained below in section 3.4 for the type of amplitude parametrization
used here the decay amplitudes for each event need only be calculated once. If in the future

69



3.3. PARTIAL WAVES EXAMPLES

more complex problems are being attacked, with free fitting parameters inside the decay am-
plitudes, then the speed of the amplitude calculation would have to be increased dramatically.
An example for such a fast, massively parallel partial wave amplitude calculator has been im-
plemented by N. Berger for the BES III collaboration [138].

Suggestions for future research:

• Detailed studies of the subsystems, using different parametrization hypothesis or using
less model-dependent approaches

• Inclusion of dispersive and mixing effects, especially for the 4π system

• Search for exotic resonances in the 4π system

• Implementation of fully covariant two-body decay amplitudes

• Take into account rescattering effects

• Develop fast, parallelizable amplitude calculator, e. g. using GPUs

3.3 Partial Waves Examples

Having defined the parametrization of the decay amplitudes in terms of the isobar model with
the input described in the preceding section, in the following a few examples of decay am-
plitudes are constructed in order to illustrate the typical considerations and to introduce the
reader to some notation used in later chapters.
Let’s choose an amplitude of topology (c) in Figure 3.4. After the isobar states have been chosen
the amplitude construction is mainly a task of applying the rules of the angular momentum al-
gebra and parity conservation at the 2-body decay nodes. Building up the amplitude from the
final to the initial state one starts with a final pion-pair. This system is completely determined
by the orbital angular momentum between the two pions which can be `= 0, 1, 2, ... or in spec-
troscopic notation S, P, D-wave and so forth. The π+π− system is known to exhibit a strong
resonance in its P-wave, the ρ(770) with quantum numbers I G (J PC ) = 1+(1−−). Let’s continue
by assuming the 2-pion system to be a ρ and the final decay node in the tree is written as

ρ(770)→π+
h

`= 1
S = 0

i

π−

where the bracket notation a
h

`
s

i

b indicates the orbital angular momentum ` between isobars

(or final state particles) a and b printed above the spin S to which the two isobars are coupled,
which in the example is 0 since the pions are spin 0 particles. In later formulas this notation is
simplified by leaving away the spin if its choice is unique (when either a or b have spin 0), thus
writing

ρ(770)→π+[1]π−

In particular for the π+π− system the decay is not written out explicitly and only the 2-body
isobar ρ(770) is kept in the notation with its decay into π+π− understood. Note that the par-
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ity of the ρ works out correctly. Both pions have intrinsic uneven parity, however, the orbital
angular momentum contributes another factor (−1)` to the parity of the system. So the 2-pion
system in P-wave has indeed negative parity.
With the same rules it is easy to see what happens if another pion is added to the ρ. For ` = 0
between the pion and the ρ:

J P = 1+→π+
h

`= 0
S = 1

i

ρ(770)

For larger ` up to D-wave one gets the amplitudes

S-wave P-wave D-wave

0−→π+
h

1
1

i

ρ(770) 1+→π+
h

2
1

i

ρ(770)

1+→π+
h

0
1

i

ρ(770) 1−→π+
h

1
1

i

ρ(770) 2+→π+
h

2
1

i

ρ(770)

2−→π+
h

1
1

i

ρ(770) 3+→π+
h

2
1

i

ρ(770)

For definiteness a suitable isobar is inserted for the 3-pion state and the→ might be omitted
for brevity as in

a+1 (1260)π+
h

0
1

i

ρ(770)

It should be clear how to continue for the remaining pions. The 4-pion state for example may
be constructed as

2+→π−
h

1
1

i

a+1 (1260)→ π+
h

0
1

i

ρ(770)

Note that at this stage the isospin of the 2++ 4-pion system is undetermined, it could both be 0
and 1. Only the proper symmetrization with the isospin mirror amplitude

2+→π+
h

1
1

i

a−1 (1260)→ π−
h

0
1

i

ρ(770)

will fix the isospin as discussed in section 3.2.3. For the isospin 0 case there is a well known reso-
nance with I G (J PC ) = 0+(2++) – the f 2(1270). The corresponding isospin 1 state with I G (J PC ) =
1+(2+−) would be the spin-exotic b2. Of course depending on the `−S coupling of the a 1 and
the fourth pion more states can be constructed. The f 2(1270) shall just serve as an example
here.
Finally adding the fifth pion in an S-wave to the f 2 we arrive at an important wave for the
analysis of the diffractively produced 5π system:

I G J PC M ε = 1−2−+0+ π−
�

0
2

�

f 2(1270)→π∓[1]a 1(1269)→π±[0]ρ(770)

Here the f 2πS-wave combines to J PC = 2−+, a partial wave where the well studiedπ2(1670) res-
onance occurs. This decay is a prominent contribution to the 3-pion system with the f 2(1270)
decaying into 2π. Here we have constructed the same amplitude but with the f 2 going into a
(4π)0 final state. The π2(1670) should show up in this wave.
As an alternative example for a 5-pion decay amplitude consider the decay of a 4π system into
twoρ(770) resonances which now allows to couple the spins of the two vector-systems in three
different ways. This, together with a possible orbital angular momentum between the two ρs
gives a wide variety of possible partial waves. As discussed above the ρ0ρ0 system can only be
in an I = 0 state. So the S-wave and P-wave amplitudes are
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S-wave P-wave

0++→ρ(770)
h

0
0

i

ρ(770) 1−+→ρ(770)
h

1
0

i

ρ(770) 1−+→ρ(770)
h

1
2

i

ρ(770)

1++→ρ(770)
h

0
1

i

ρ(770) 0−+→ρ(770)
h

1
1

i

ρ(770) 2−+→ρ(770)
h

1
2

i

ρ(770)

2++→ρ(770)
h

0
2

i

ρ(770) 1−+→ρ(770)
h

1
1

i

ρ(770) 3−+→ρ(770)
h

1
2

i

ρ(770)

2−+→ρ(770)
h

1
1

i

ρ(770)

These 4-body decays can again be implemented as sub-systems of the 5π decay amplitudes in
the topology (b) of Figure 3.4. A prominent example, that will be used later is the partial wave

I G J PC M ε = 1−0−+0+ π−
�

0
0

�

f 0(1500)→ρ(770)
h

0
0

i

ρ(770)

In this fashion a very large number of possible 5-body isobar model amplitudes can be con-
structed. A complete list of amplitudes, that has been used in the present analysis is given in
appendix B. The prominent known resonances and their dominant decay modes are an impor-
tant input not only for the parametrization of the intermediate states but also for the question
which amplitudes to consider at all6. We will return to the question which of these many ampli-
tudes are required to describe the data later in chapter 4. Before we can answer that question,
however, we have to define a procedure to infer the values of the production amplitudes and
thus fit an amplitude-model to the data.

3.4 Extended Log-Likelihood Fit Formalism

This section describes the algorithm that is used to infer the free parameters of the 5-body
isobar model described above from the data. It is based on the maximization of the extended
log-likelihood that can be calculated from the data for a given isobar model. In section 4 this
algorithm will be extended in order to find a solution to the problem of how to truncate the
partial wave expansion on which the isobar model is based.

3.4.1 Derivation of the Log-Likelihood Function

As a starting point the intensity for the diffractive 5-pion production in a fixed 5-body mass bin
is parametrized as (compare to 3.7)

I (τ) =
∑

ε=±1

Nr
∑

r=1

�

�

�

�

�

∑

α

T εαr ψ̄
ε
α(τ)

�

�

�

�

�

2

+T 2
FLAT (3.13)

The intensity function is an incoherent sum of 2 ·Nr terms. Each of the terms is a coherent sum
of amplitudes squared. Nr is called the rank of the fit. Note that only the production amplitudes
T εαr carry the rank-index r . The decay amplitudes do not depend on r . For the analysis of the 5π
production at small momentum transfer, coherent scattering off the lead nucleus is assumed

6For example, apart from a few exceptions, amplitudes which have spin-exotic states occurring as isobars are
not considered for the analysis.
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and the analysis is restricted to rank 1. However, in order to accommodate phase space like,
incoherent background a constant term TFLAT is allowed in the fit. For brevity this term is not
written explicitly in the following formulas.

Amplitudes with different reflectivity quantum number ε (see section 3.1.3) by construction do
not interfere due to parity conservation[105]. They are added incoherently. The coherent sums
are taken over all the partial amplitudes α that are included in the fit. Each decay amplitude
ψα(τ) is characterized by a full set of quantum numbers and a particular set of intermediate
states as explained in section 3.2 on page 56. The ψα(τ) are functions of the measured 5π
phase space variables τ such that for each event the amplitudeψα(τ) is represented by a com-
plex number. Recall that in this parametrization the decay amplitudes do not contain any free
parameters and can be calculated once for each event.

The following normalization is chosen for the decay amplitudes:

ψ̄εα(τ) =
ψεα(τ)

Æ

∫

|ψεα(τ′)|2dρ(τ′)
with dρ(τ)≡ f (τ)dτ (3.14)

Here f (τ)dτ is the phase-space differential and the integration runs over the whole 5-body
phase space. In practice integrals like these are calculated by Monte Carlo integration. The
general formula for the phase space integrals is

I εαβ =

∫

ψεα(τ)ψ
ε∗
β (τ)dρ(τ).

The numerical calculation is achieved through summing over a sample of synthesized events
which are generated with a flat7 probability distribution throughout the 5-body phase space
using the GENBOD [139] algorithm. Calculating the decay amplitudes for this sample of phase
space events and summing over all NMC events yields the phase space integrals

I εαβ
∼=

1

NMC

NMC
∑

i

ψεα(τi )ψε∗β (τi ) (3.15)

Note that all internal 5-body kinematic variables τ are integrated out, but the I εαβ still depend
on the 5-body invariant mass. They have to be calculated in each mX bin separately. Due to the
orthonormality of the D−functions which appear in the partial-wave expansion (see equation
3.5) only off-diagonal terms with α,β belonging to the same J PC M ε survive the integration
over all angles in equation 3.15. The total phase space available for the 5-body final state of
course grows strongly with higher 5-body mass. This opening of the phase space is absorbed
as an overall factor into the production amplitudes at this stage and in each mass-bin an equal
number of Monte Carlo events is generated (see section 6.1 for further discussion).

The numerical approximation requires a certain amount of Monte Carlo events to achieve a
satisfying degree of convergence. For the present analysis 100 000 Monte Carlo events have
been generated in each 60 MeV/c 2 mass bin.

7A flat phase space distribution means equal probability density over all phase space elements. In particular this
results in flat angular distributions. However, of course the available phase space for the 2,3 or 4-body subsystems
will not be flat.
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The diagonal elements of the matrix of phase space integrals are used to perform the normal-
ization in equation 3.14. The normalized phase space integrals are defined through

Ī εαβ =

∫

ψ̄εα(τ)ψ̄
ε∗
β (τ)dρ(τ) =

I εαβ
p

I εααI εββ
.

The normalization procedure described above stabilizes the fit numerically by establishing a
common scale for all terms of the model. This proves to be especially useful with regards to
the stability of the calculation of the covariance matrix. It has the further advantage that in this
case the production amplitudes T εαr have a straight forward interpretation. Namely the spin
density matrix (which has a block-diagonal structure according to the reflectivities) is given by
the production amplitudes as

ρεαβ =
∑

r

T εαr T ε∗βr (3.16)

The diagonal elements of the spin density matrix are the intensities of the individual partial
waves while the off-diagonal elements describe interferences. Note that the intensities are sim-
ply given by the square of the production amplitudes summed over the rank.
With this definition of the spin-density matrix the intensity can be written as:

I (τ) =
∑

ε

∑

α,β

ρεαβ ψ̄
ε
α(τ)ψ̄

ε∗
β (τ) (3.17)

The likelihood L , which is the probability P to observe (a specific set of) N events in a bin
with finite acceptance η(τ) assuming that the data is distributed according to a model M with
parameters T εαr is:

P(Data|T εαr , M ) =L =





N
N

N !
e−N





N
∏

i

I (τi )η(τi ) f (τi )
∫

I (τ)η(τ)dρ(τ)
︸ ︷︷ ︸

=N

(3.18)

The product
∏

i runs over all N events in the data sample and the τi are the measured kine-
matics of the individual events. The inclusion of the Poisson probability to find N events in
equation 3.18 is necessary to implement a finite normalization of the production amplitudes
in the inference procedure (while the decay amplitudes have been normalized according to
equation 3.14). It acts as a constraint to ensure that the average number of events predicted by
the model N is equal to the number of events that have actually been observed. This method
is known under the name of extended likelihood [140].
The notation P(Data|T εαr , M ) for the likelihood has been introduced here in preparation of
chapter 4 to emphasize that any result obtained in an inference procedure, for example the
measurement of the spin-density matrix elements, depends on the model M that is being ap-
plied for the inference. In the present analysis M will always be chosen from the class of isobar-
models. However, there is still the freedom of choosing a specific waveset. In subsequent sec-
tions, when the text refers to a specific model, then an isobar-model with a specific choice of
waveset is meant.
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Noting that the integral of the intensity over the acceptance corrected phase space η(τ)dρ(τ)
equals the expected number of events N , the expression for the likelihood can be rewritten as
follows.

L =





N
N

N !
e−N





N
∏

i

I (τi )

N
η(τi ) f (τi ) =

1

N !

N
∏

i

I (τi ) ·
N
∏

i

η(τi ) f (τi ) · e−N (3.19)

In order to make this expression more manageable for numeric calculations it is useful to take
the logarithm using Stirling’s approximation for ln N ! and to insert the phase-space integral for
N in the last factor of equation 3.19:

lnL =−N ln N +N +
N
∑

i

lnη(τi ) f (τi )+
N
∑

i

lnI (τi )−
∫

I (τ)η(τ)dρ(τ) (3.20)

Since the first three terms do not depend on the free parameters in the model, it is possible to

drop
h

−N ln N +N +
∑N

i lnη(τi ) f (τi )
i

. If one then inserts the intensity parametrization the

extended log-likelihood function is given by

lnL =
Nevents
∑

i=1

ln







∑

ε,r

∑

α,β∈M

T εαr T ε∗βr ψ̄
ε
α(τi )ψ̄ε∗β (τi )






−
∑

ε,r

∑

α,β∈M

T εαr T ε∗βr I Aεαβ (3.21)

with the acceptance-corrected phase space integral

I Aεαβ =

∫

ψ̄εα(τ)ψ̄
ε∗
β (τ)η(τ)dρ.

These integrals include the acceptance effects through the factor η(τ) which is the probability
density to reconstruct an event in the apparatus at the phase space point τ including all ap-
plied data selection cuts. They are calculated with a Monte Carlo integration similar to the raw
phase-space integrals (c. f. equation 3.15)

I Aεαβ =
1

NMC

accepted
events
∑

i

ψ̄εα(τi )ψ̄ε∗β (τi ) (3.22)

To take the finite acceptance η into account the sum in equation 3.22 runs over all Monte Carlo
events that, according to the detector simulation, would be reconstructed and that have sur-
vived all data selection cuts as described in sections 3.6 and 2.2.
The construction of the log-likelihood function as described here offers a clear view onto a
special feature of the chosen parametrization of the partial wave amplitudes. Note that the
decay amplitudes and thus the phase-space integrals do not depend on any free parameters
of the model. They can be computed once in advance and do not have to be recalculated at
any time during the inference procedure which maximizes lnL by varying the production am-
plitudes T εαr . This property is of considerable computational value since the calculation of the
decay amplitudes for the complex 5-body final state is quite expensive in terms of computing
resources.
For the maximization of the extended log-likelihood function the program MINUIT2 [141] has
been used. This program offers several minimization algorithms from which the steepest de-
scent method MIGRAD is the most widely used. The numerical calculations can be greatly
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sped up and improved in accuracy if the gradient of the log-likelihood function ∇ lnL can be
supplied explicitly. Indeed the form of lnL in 3.21 allows a straight forward analytical com-
putation of the gradient. For the real parts of the production amplitudes the gradient function
reads

∂ lnL
∂ ReT εαr

=
N
∑

i=1

∑

β∈M T ε∗βr ψ̄
ε
α(τi )ψ̄ε∗β (τi )+ c.c.

∑

ε,r

∑

α,β∈M T εαr T ε∗βr ψ̄
ε
α(τi )ψ̄ε∗β (τi )

−
∑

β∈M

T ε∗βr I Aεαβ + c.c. (3.23)

The expression for the imaginary parts is obtained analogously.
In terms of computational speed it is obvious from equation 3.21 that the sum over all events
i = 1..N will dominate execution time. However, since this is the same sum for all elements
of the gradient, it has to be run only once and ∇ lnL can be computed in parallel to the value
of lnL itself. Especially since the denominator in the first term of equation 3.23 has to be
calculated only once per event.
For the implementation of log-likelihood function and its gradient in the form described here
the programming interface of ROOT [142] has been used. The object oriented code takes ad-
vantage of theROOT::Math::IGradientFunctionMultiDim function interface which allows
to easily exchange the minimization algorithms for future developments.
In many cases the minimization of a complicated log-likelihood function such as the one con-
structed here is a quite difficult task and gradient search algorithms are known to be prone
to yielding solutions that correspond to local minima rather than the true optimum. For the
partial-wave analysis of the 5π system extensive tests have been performed to ensure proper
behavior of the optimization. In particular it has been tested if fits with different starting pa-
rameters give consistent results. Interestingly, no significant problem with multiple solutions
has been found. This result has also been confirmed in an independent cross-check of the
analysis, which utilized a minimizer that also takes into account the 2nd derivatives of the log-
likelihood function.

3.5 Observable Quantities

The physical content embodied in the production amplitudes is conveniently expressed in
terms of the spin-density matrix defined in equation 3.16 which by construction has real valued
diagonal entries and complex off-diagonal elements.
The intensity of the individual partial-wave amplitudes is given by the diagonal elements:

Intensεα =ρ
ε
αα (3.24)

The off-diagonal entries are the interference terms between two partial waves α and β . They
can be either represented by their real and imaginary parts or by a magnitude N ε

overlapαβ =
2Re(ρεαβ Ī εαβ ) and the phase difference between the two waves

∆φεαβ = arg(ρεαβ ). (3.25)

Through the interference effects one has access to the phase shifts of the individual waves.
Resonant contributions can be identified through characteristic phase shift patterns.
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The total acceptance-corrected intensity is given by the sum of the intensities in all channels
plus the interference terms:

Intens=
∑

ε

∑

αβ

ρεαβ Ī εαβ (3.26)

In addition to the observables described so far for rank r > 1 the coherence can be defined as

Cohεαβ =

Æ

(Reρεαβ )
2+(Imρεαβ )

2

p

ρεαα ·ρ
ε
ββ

(3.27)

which by construction is a number between 0 and 1. For rank r = 1 the coherence is 1 by
definition.
Rules for the calculation of the uncertainties on these observables are given in appendix C.

3.6 Acceptance Corrections

In order to take into account the acceptance effects of the spectrometer in the partial wave
analysis a Monte Carlo simulation is used. We generate 5π events uniformly distributed in
phase space and pass them through the COMGEANT simulation[143]with the 2004 COMPASS
spectrometer geometry and the CORAL reconstruction[144] software (see section 2.1).
For the event generator the TGenPhaseSpace class of ROOT[142] is used which is a C++ imple-
mentation of the well known GENBOD [139] algorithm. We use the measured scattering angle
distribution and the beam and target characteristics (beam spread, slopes) as determined from
the 3π data (cf. [102]). For each 5πmass bin 100 000 events have been generated uniformly dis-
tributed in mass.
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Figure 3.14: Total acceptance for low-t ′ events (t ′ < 0.005 GeV2/c 2) as determined by phase-
space Monte Carlo simulation.

On the simulated and reconstructed pseudo-data the same cuts are applied as to the real data.
It is found that the multiplicity counter and online filter accept conditions are met for every
event in the sample.
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Figure 3.14 shows the overall acceptance for the low-t ′ range as determined from the Monte
Carlo simulation in 28 mass bins. Around a mass of 2 GeV/c 2 the value of ∼ 40% is essentially
determined by the single track reconstruction efficiency of COMPASS and scales accordingly
with respect to the 3π data set, for which an acceptance of ∼ 60% has been determined [102].
At higher 5π-masses, however there are significant acceptance losses down to a value of∼ 25%
at 3 GeV/c 2 which are mainly due to the second veto counter (see section 2.1.3) limiting the
angular acceptance as will be discussed in more detail in the following.
For the partial wave analysis the angular distributions of the different subsystems contain the
information about spin-parity quantum numbers as has been discussed in section 3.2.1. The
acceptance corrections have to take into account any structures in these variables that origi-
nate from the imperfections of the measurement apparatus and the data reconstruction pro-
cedure or that might be introduced by the data selection.
Figure 3.15 shows the projection of Monte Carlo pseudo-data that has been passed through
the apparatus simulation, the reconstruction software and the data selection procedure onto
the different relevant kinematic variables for the interval m5π ∈ [1.84, 2.08]GeV/c 2. Similar
acceptance plots covering the other 5-body mass regions are provided in appendix A. Since the
pseudo-data shown here were generated flat in phase-space, acceptance effects show up as
deviations from a flat distributions in the angles.
The first row of figures shows angular distributions in the Gottfried-Jackson frame. Figure
3.15(a) shows the cosine of the Gottfried-Jackson angle θGJ of the (π−π+π−π+) subsystem. In
this variable the acceptance effects are visible most dramatically. When the 4π subsystem is
going forward in the 5π rest-frame a single pion has to be emitted in backward direction. In
the laboratory frame this single pion will appear relatively slow and under a large angle with a
non-negligible probability to fall out of the acceptance of the spectrometer. The effect becomes
more pronounced at larger 5πmasses and leads to the pronounced dip at large cosθ 4π

GJ . Figure
3.16 shows the development of this acceptance dip for the different 5-body mass regions.
A similar effect appears in Figure 3.15 (c) which shows the corresponding angle for theπ−π+π−

subsystem. However, in this case, due to the distribution of momentum onto a 3π and a 2π sys-
tem the effect on the angular spectrum is washed out. Figure (b) is the Treiman-Young angle
φTY of the 4π subsystem and appears essentially flat (as is the case for the corresponding angle
of the 3π subsystem, which has been omitted from the plots). This behavior is of course ex-
pected for the low-t ′ data, since in this case the scattering plane, against which the azimuthal
angle is measured, is not well defined or at least not measured with enough precision to allow
a reliable determination ofφTY.
The bottom two rows show distributions which have been constructed in the helicity frames
of the respective isobar systems. Figures (d),(e) and (f) show the cosine of the polar angle θHel

for the cases of a 4π system decaying into π−π+ + π+π− (cosθ 22
Hel), a 4π system decaying into

π−π+π+ + π− (cosθ 31
Hel) and a 3π system decaying into π−π+ + π− (cosθ 21

Hel) respectively. The
last row of figures shows – for the same subsystems – the distributions of the azimuthal angles
φHel.
The acceptance correction is performed according to the prescription given in equation 3.21
with the accepted phase-space integrals defined in equation 3.22. Note that this form of accep-
tance correction takes into account the full correlations of the acceptance effects (which are
not visible in projections like those shown in Figure 3.15) for each partial wave separately.
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Figure 3.15: Angular acceptance for the 5-pion final state as determined by Monte Carlo sim-
ulation. The distributions shown are projections of accepted phase-space events. Unmodified
phase-space distributions would be flat in all variables. See text for a detailed description of
the kinematic variables shown. m5π ∈ [1.84, 2.08]GeV/c 2
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Figure 3.16: Angular acceptance for low-t ′ events (0 GeV2/c 2 < t ′ < 5 · 10−3 GeV2/c 2) as deter-
mined by phase space Monte Carlo simulation in different mass bins between 1 and 3 GeV/c 2.
Shown are distributions of cosθGJ – the angle between the beam-axis and the (4π)0 subsys-
tem in the rest frame of the decaying 5π resonance (see section 3.2.1 for a definition of the
Gottfried-Jackson frame). There are 3 entries per event in each plot.
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Chapter 4

Model Selection

They say that Understanding ought to work by the rules of
right reason. These rules are, or ought to be, contained in
Logic; but the actual science of logic is conversant at present
only with things either certain, impossible or entirely
doubtful, none of which (fortunately) we have to reason on.
Therefore the true logic of this world is the calculus of
Probabilities, which takes account of the magnitude of the
probability which is, or should be, in a reasonable man’s
mind.

J. C. Maxwell

IT has already been mentioned in section 3.1.2 that the expansion of the 5-pion amplitude
into its partial waves has to be truncated at some point. Already from the point of view of

statistics the number of wavesψα that can be included in a partial-wave fit (equation (3.21)) is
limited. It is a well-known problem in statistical inference of model parameters from a finite
sample of measurements that in the presence of imperfect measurements it is always possible
to trade predictive power of the model for a better description of the data by including more
free parameters. A trivial example is the fit of a polynomial curve to a set of n points {(x , y )}.
One can obtain a perfect description of the data by using a polynomial of order n . However, it
is highly unlikely that the true distribution from which the sample was drawn really is governed
by the such inferred curve. This problem is known as over-fitting.
Working with the isobar-model fits described in the previous chapter one is tempted to further
maximize the log-likelihood by including more and more partial-wave amplitudes. From log-
likelihood arguments alone it is not possible to judge in a straight-forward manner whether the
data provide significant support for a specific partial wave.
On the other hand the addition or removal of a component to the waveset can indeed have sig-
nificant influence on the results. Thus the decision which waveset should be used is a delicate
one. A prominent example where this issue led to some confusion are the two analyses of the
π+π−π− system presented by the E852 collaboration in [115] and [145]. The use of two different
wavesets in the partial-wave analyses (among other things) led to a different conclusion on the
critical issue of the existence of an exotic meson — the π1(1600). Without an estimate of the
systematic error that is introduced by the choice of a particular waveset it is difficult to draw
meaningful conclusions in such cases.
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4.1. BAYESIAN MODEL EVALUATION

In past analyses the behavior of the log-likelihood when new waves were added has been ex-
amined in order to choose the waveset. The selection was supported by physical arguments or
pre-knowledge such as the optimization of the signals of well known resonances.
For the 5-body problem the number of possible decay amplitudes becomes very large making it
necessary to establish an at least semi-automatic method to determine a suitable set of waves.
The following presuppositions are made in order to constrain the choice of a waveset:

1. The model should yield a good description of the data with an optimal log-likelihood
result.

2. The number of partial waves should be as small as possible. Components with negligible
significance should be dropped from the waveset.

3. Excessive correlations between different waves should be avoided.

In this section a method is developed which fulfills all of these criteria and which can be used
as a tool to find the optimal waveset for the partial-wave analysis. The framework of discussion
is found in Bayesian statistics which formalizes the analysis of the degree to which a model is
supported by data in terms of Bayesian probabilities. Bayesian statistics is discussed in most
modern textbooks on statistics, data analysis and inference such as [146, 147]. There are also
two useful reviews on the topic written by G. Cowan and published in the particle data book
[1].
It should be kept in mind that a certain systematic error is being made already with the adop-
tion of the amplitude parametrization in the isobar model (equations 3.2,3.5 and 3.6), which
cannot be attacked with the methods presented here. Rather the analysis of this section is lim-
ited to the systematics of choosing a particular model out of the class of possible isobar-model
expansions of the amplitude.
For simplicity in this section only the case of rank r = 1 is discussed and the index r will be
skipped from the formulas. Extensions to partial-wave fits with higher rank are straight for-
ward.

4.1 Bayesian Model Evaluation

The free parameters of the isobar partial-wave model are the production amplitudes T εαr . In
general these are complex numbers so that the actual parameters on which the fitting algo-
rithm operates are their real and imaginary parts. In this section for ease of notation all free
parameters in a fixed n-body-mass partial-wave fit are collected into a tuple Ak such that
Ak = (ReT+00, ReT+10, ImT+10, ReT+20...). The index k labels the specific hypotheses for the waveset
M k which is also called a model in this section. The tuples Ak have a dimension d k which
is roughly1 twice the number of partial waves in the waveset k times the rank of the fit. The
maximum likelihood solution for waveset k is written as Ak

ML.
The starting point of the discussion is the application of Bayes’ theorem to the model probabil-
ity:

P(M k |Data) =
P(Data|M k )P(M k )

∑

k ′ P(Data|M k ′ )P(M k ′ )
(4.1)

1Note that due to positivity constraints some of the production amplitudes are real or even zero (cf. section 3.1.3).

82



CHAPTER 4. MODEL SELECTION

Here the posterior model probability P(M k |Data) is a measure for the Bayesian probability of a
particular model hypothesis M k that can be assigned after the specific sample (denoted simply
by “Data” in the formulas) has been observed. The sum runs over all models under considera-
tion. Under the premise of equal a-priory model probabilities P(M k ) = const, it is sufficient to
compare the marginal likelihoods P(Data|M k ) for different models in order to get a measure for
the model quality. It is obtained from the well known likelihoodL = P(Data|Ak , M k ) (compare
equation 3.18) by integrating over the parameter space of the model:

P(Data|M k ) =

∫

P(Data|Ak , M k )
︸ ︷︷ ︸

=L

P(Ak |M k )d Ak (4.2)

This marginal likelihood is the probability of observing a specific data set under the assumption
that the observed data has been generated by the model M k without having precise knowledge
of the values of the model parameters. It is also called the evidence for a model. P(Ak |M k ) is the
prior probability density of the parameters Ak in the model M k which explicitly includes any
kind of pre-knowledge or boundary conditions on the Ak .
Equation 4.2 provides a measure of the quality of a model which is qualitatively different from
the maximum likelihood value P(Data|Ak

ML, M k ) = max, which is the optimal point estimate
for the parameters of model M k but does not make any statement on the model as a whole.
The marginal likelihood, though, takes into account model complexity and provides systematic
means of avoiding the over-fitting problem.
However, there are some difficulties in the direct application of equation 4.2:

1. The marginalization of the likelihood, i.e. calculation of the integral in equation 4.2 is
usually a non-trivial task, especially for high-dimensional problems.

2. In the standard formulation of the amplitude analysis inference problem only the log-
likelihood is available (c. f. equation 3.21). Indeed the likelihood itself quickly becomes
numerically unstable if there are complex models and a lot of data points.

In the following section a formulation of the evidence will be presented that can cope with
these difficulties.

4.1.1 The Occam-Factor Approximation

In the limit of a large data sample Laplace’s method can be used to approximate the integral in
4.2 by the value of the integrand at its maximum [148, 146].

P(Data|M k )≈ P(Data|Ak
ML, M k ) ·P(Ak

ML|M k ) ·
p

(2π)d |CA |D |
︸ ︷︷ ︸

Occam factor

(4.3)

where CA |D is the covariance matrix of the maximum likelihood estimate.
An intuitive interpretation of this formula is given by MacKay [146] as he notes that for a con-
stant prior probability P(Ak |M k ) = const= 1

V k
A

the so called Occam factor

P(Ak |M k ) ·
p

(2π)d |CA |D |=

p

(2π)d |CAk |D |
VAk

=
VAk |D

VAk
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is simply the ratio of the volumes in parameter space that are available before and after taking
the data into account. In other words the Occam factor is the factor by which the allowed
parameter space shrinks on observation of the data set. Over-fitting in this picture corresponds
to an overly strong shrinkage, i. e. error bars that are too small to be justified by the data
(in comparison to another, simpler model). Also the case of strong correlations between two
parameters is dealt with since the allowed parameter volume shrinks with stronger correlation
even if the individual errors are large.
Bringing equation 4.3 into logarithmic form yields an expression where the maximum log-
likelihood is corrected by two terms accounting for the model complexity:

ln P(Data|M k )≈ ln P(Data|Ak
ML, M k )+ ln P(Ak |M k )+ ln

p

(2π)d |CA |D | (4.4)

The last term penalizes models that require excessive correlations between their parameters
while the log–prior-probability ln P(Ak |M k ) puts a penalty on models containing a large num-
ber of parameters. It is thus obvious that the choice of prior distribution is a crucial ingredient
to complete the formalism.

4.1.2 Prior Probabilities

In the majority of practical inference problems the selection of a reference prior is attempted
[149] which avoids any bias towards a certain outcome. As such the reference prior can be
thought of as “merely a formal way of expressing ignorance”[150] (also see [151] for a criti-
cal analysis and comparison to conventional “frequentist’s” approach to statistics). The sim-
plest “non-informative” prior distributions are those which assign a constant probability den-
sity over a closed set of parameter values. For the problem of partial-wave fitting such a prior
probability distribution can be constructed at least approximately by the following arguments.
For a constant prior probability density the volume of the allowed parameter space V k

A acts as
the normalization so that the prior can be written as

P(Ak |M k ) =
1

V k
A

(4.5)

Since the total intensity in one n-body-mass bin is fixed, this volume can indeed be specified.
By construction (see equation 3.26) the number of reconstructed events (including acceptance
effects) is

Nevents =
∑

α,β

TαT ∗β I Aαβ (4.6)

which acts as a constraint on the production amplitudes. Equation 4.6 defines a subset of the
parameter space outside of which the prior can safely be set to zero. Due to the mixed terms in
equation 4.6 the volume in parameter space of this subset is not immediately obvious though.
A simplified choice for the prior can still be constructed by assuming that the off-diagonal ele-
ments of the spin-density matrix are small. Thus neglecting interference effects

∑

α

|Tα|2 ≈Nevents (4.7)

This formula describes a d -dimensional sphere with radius R =
p

Nevents. The volume of such
a sphere is given by

V k
A =Sm−1 =m

πm/2

Γ
�

d
2 +1

�Rd−1
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The above expression is conveniently evaluated in its logarithmic form:

ln V k
A = ln d +

d

2
lnπ+

1

2
(d −1) ln Nevents− lnΓ

�

d

2
+1

�

where for the logarithm of the Γ-function good approximations based on Stirling’s formula are
available.
There is one last problem with the formulation of the evidence so far. The choice of the prior
probability density as a constant over the whole parameter space neglects the assumption (im-
plicit in specifying a finite waveset) that all the selected waves must make significant contribu-
tions to the total intensity. Unfortunately the above formulation of the Occam factor cannot
take this into account, because for a wave with an intensity close to 0 but for which the fit pre-
dicts a large error the contribution to the Occam factor will not disfavor the inclusion of this
wave.
The most general way to deal with this issue is to modify the prior distribution in 4.2 such
that the implicit assumption of non-vanishing waves is realized. In the context of partial-wave
fitting the resulting distribution is nontrivial in the sense that only those parts of the parameter
space have a reduced prior probability which correspond to both real and imaginary part of an
amplitude to be close to zero.
Instead of explicitly specifying such a prior and evaluating the evidence integral 4.2 here a more
practical way is proposed. For each wave the significance Si is the probability of the intensity
of this wave to be more than 5σ larger than zero. Assuming real and imaginary parts of the
production amplitudes have Gaussian errors, then the intensity follows a Rice-distribution. For
simplicity this has been approximated again with a Gaussian.

Sα =

∞
∫

5σα

1
p

2π
exp

�

−
(x − |Tα|2)

2σ2
α

�

d x (4.8)

The error that is being made by the Gaussian assumption depends on the actual significance as
can be seen in Figure 4.1. The Gaussian approximation will slightly over-suppress small values
of intensity. Note that with the lower bound of the integral at 5σα a parameter has been intro-
duced into the prior which in principle allows to tune the degree to which small partial waves
should be suppressed. The sum of all logarithmic significances is added to the log–evidence of
formula 4.4 in order get the the final form for the Occam factor formula which approximates
the evidence for a given partial-wave model as:

ln P(Data|M k )≈ ln P(Data|Ak
ML, M k )+ ln

p

(2π)m |CA |D | − ln V k
A +

∑

α

lnSα (4.9)

It is in this form that the evidence has been coded in the software. For the evaluation of a
complete set of partial-wave fits over the whole n-body-mass range the evidences of the fits in
the individual mass bins are added up.
Figure 4.2 shows the distribution of evidences for a large number of fits as a function of the
respective number of waves in the waveset. Wavesets with more than about 34 waves are pe-
nalized in the evidence, suggesting that this is the statistically supportable number of waves for
the given data set. The set of fits has been generated with the genetic algorithm described in
the following section.
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Figure 4.1: Comparison of 5σ significance as a function of the measured value normalized
to the measured error in the Gaussian approximation (black) to the correct case of the Rice-
Distribution (red).
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Figure 4.2: Evidences for models with different wavesets. Each entry in the plot corresponds to
one model that has been fitted to the data. There is a clear maximum in the evidences around
34 waves. Larger wavesets tend to be penalized in the evidence. The collection of fits was
produced in a run of the genetic algorithm described in section 4.2.
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4.1.3 Quantitative Interpretation of Evidence

The quantitative interpretation of the evidence unfortunately is not as intuitive as the confi-
dence levels that can be defined for a point measurement. Although, when all involved proba-
bility densities are properly normalized, the evidence can in principle be interpreted in terms
of a probability, the resulting values usually do not compare well with standard measures. Also
note, that in the case discussed here already in the definition of the log-likelihood (equation
3.21) terms which do not depend on the model parameters have been dropped in equation
3.20.

In order to compare two models with each other Kass and Raftery [148] define the Bayes-Factor
as the ratio of marginal likelihoods.

B12 =
P(Data|M 1)
P(Data|M 2)

In the equivalent logarithmic form the difference between the log-evidences has to be taken
and all common, model-independent terms cancel.

The following table[148] serves as a rough guideline for the interpretation of the values:

2 ln B12 B12 Evidence
0 to 2 1 to 3 Not worth mentioning
2 to 6 3 to 20 Positive

6 to 10 20 to 150 Stong
> 10 > 150 Very strong

Table 4.1: Interpretation of the Bayes Factor [148].

Suggestions for future research:

• A more rigorous formulation of the prior probability density of the production ampli-
tudes

• The marginalization in equation 4.2 can also be done using monte carlo integration
methods. This would allow a much more detailed study of the shape of the likelihood
function and provide potentially very valuable information on possible correlations of
the model parameters.

4.2 Waveset Evolution

With the tools developed in the previous section it is possible to compare different models,
i. e. wavesets, by evaluating the evidence P(Data|M k ) for each. Equation (4.9) tells how to
weigh them against each other. In the following an algorithm for automatic waveset optimiza-
tion is developed on this basis.
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4.2. WAVESET EVOLUTION

4.2.1 The Genetic Optimization Algorithm

Actually there is a nice analogy between the waveset and a chromosome in a living cell. In
this analogy each possible wave ψα corresponds to a gene on the chromosome. This anal-
ogy suggests the usage of genetic algorithms [152] to implement a search for good wavesets.
Genetic algorithms are a well studied class of optimization procedures [153, 154, 155] which
are especially useful in high-dimensional problems. Inspired by biological evolution they use
competitive selection and genetic mutation as a template to implement efficient search and
optimization schemes. The basic outline of such an algorithm applied to the search for an
optimal waveset is illustrated in Figure 4.3 and can be summarized as follows

1. Specify a pool of possible waves from which to choose. This defines and limits the space
of possible models in which the algorithm operates. A partial-wave amplitude that is not
offered here will not become a part of the final model.

2. Randomly generate a collection of wavesets — the first generation — by drawing subsets
from the pool.

3. Evaluate the fitness of each model:

(a) For each of the wavesets perform a fixed n-body-mass fit.

(b) Evaluate each fit by calculating the evidence as defined in equation 4.9.

(c) Rank the wavesets according to their evidence.

4. Reproduction: Create a new generation out of the previous wavesets such that the high-
est ranking waves are preferred. Apply cross-over and mutation to explore the space of
possible wavesets.

5. Go to step 2 and repeat until a suitable stopping condition is reached.

In the following these individual steps are explained in some more detail.

The Pool of Amplitudes

Ideally the pool of available amplitudes contains all possible partial waves up to high spins. In
practice the allowed spin states have to be limited, relying on the convergence of the partial-
wave expansion. In the present analysis the majority of partial amplitudes that have been in-
cluded in the pool only use ` ∈ {0, 1, 2} at each node in the decay tree. Only the isobar decays
mentioned in section 3.2.2 have been used and often only the most prominent decay mode
(such as a 2(1320)→πρ) has been allowed.
For the analysis of the low-t ′ 5π final state a pool of 284 partial waves has been used. A com-
plete list is given in appendix B. After some tests “by hand” with selected waves have not yielded
significant intensities for M = 1 amplitudes, as would be expected for the low-t ′ data set (see
section 2.2.2 only waves with M = 0 have been included in the pool. Assuming a strong dom-
inance of Pomeron exchange most amplitudes have positive reflectivity. Negative reflectivity
has only been allowed for partial waves that by parity conservation cannot be generated with-
out a spin-flip in pomeron exchange processes (c. f. equation 3.1).
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Figure 4.3: Waveset evolution algorithm. For details see text.

The First Generation

From the pool of partial amplitudes a first generation of wavesets is created. Since the algo-
rithm is free to determine the appropriate number of free parameters in the model on its own,
important starting parameters which are used in this step are the average number of waves per
waveset and the spread of the waveset size.

Two different starting scenarios have been tried out. In one case all initial wavesets have been
generated with a low average number of waves per waveset of N̄ ≈ 10 and a relatively small
spread which results in a collection of wavesets with N ∈ [3, 20].
In a second setup more diverse starting generation has been created using the result for the
expected number of waves from the previous run to set N = 35 and generate wavesets with
very different sizes N ∈ [10, 70]. This second scenario was also used for the final run of the
algorithm which yielded the solution presented below.

For both scenarios the population size was 50 individuals.

In order to provide a good anchor wave for all fits, the amplitude

1−2−+0+ π−
�

0
2

�

f 2(1270)→π∓[1]a 1(1269)→π±[0]ρ(770)
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has been included in every initial model. It has also been protected from being removed from
a model in the course of the optimization.
Note that it is always possible to restart the genetic search using a (possibly modified) genera-
tion from an earlier evolution run.

Fitness Evaluation

For each waveset fixed n-body-mass fits are performed in all mass bins. The goodness of each
model is evaluated through the evidence as given by equation 4.9 summed up over all mass
bins. Consistency between mass bins is required only insofar as the same waveset is fitted over
the whole mass range. In particular at this point no assumptions on the shape of the partial-
wave amplitudes as a function of the n-body-mass, other than the requirement of significant
intensity (equation 4.8) are being applied.
There are several, widely used methods how to implement the essential element of competi-
tion into the genetic algorithm (for a review see [156] and references therein). In the propor-
tionate reproduction scheme the probability for an individual — viz. a waveset — to reproduce
is determined by its fitness. The scheme of ranking selection is a slight variation of proportion-
ate production in the sense that the fitness is not used directly to determine the reproduction
probability but it is used to rank the individuals on a scale from zero to one.
In the current application a linear ranking scheme has been used in order to determine the
probability of reproduction of each waveset. The wavesets are assigned a rank Ri according to
their evidence with the best fit having the highest rank. Only the best Nsurvivors are allowed to
reproduce. In order to exploit the available information at each step in the process in an opti-
mal way all previous fits are included when the ranking is calculated. This means individuals
from “old” generations are not dying out but are allowed to further reproduce if they perform
well.

Reproduction

For the reproduction step two wavesets are chosen according to the following probability dis-
tribution:

P(i ) =
1

Nsurvivors

�

2− s +
2(s −1) ·Ri

Nsurvivors

�

(4.10)

where s ∈ [1, 2] is called the selective pressure. It can easily be seen that a selective pressure s = 1
corresponds to equal probability (no competition) while for s > 1 the reproduction probability
is proportional to the rank Ri of the model and the slope of the proportionality grows with
s. This linear ranking avoids the dominance of a few very well performing individuals at the
beginning of the evolution, which would take over the whole population if the evidence would
be used directly as a measure for the reproduction probability.
A new descendant waveset is built from the two ancestors according to the following rules:

• Although in principle from each pair of ancestors a pair of descendants can be con-
structed only one of them is kept in the program that has been used here in order to
simplify the technical implementation of the algorithm.

• It is possible to specify a range of waves that will not be modified and just copied to the
descendant from the first ancestor. This allows some manual control over the resulting
wavesets and is important to keep the anchor wave in the waveset (cf. section 3.1.3).
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• With an adjustable probability px the descendant can contain components from both
ancestors. This is implemented using the scheme of cross-over, a concept that is modeled
according to how genes are transmitted and mixed in nature. In a cross-over operation
a sequence of component waves in one ancestor waveset is selected randomly (position
and entries in the wavelist, the wavelists are aligned at the first entries) and swapped for
the corresponding sequence in the second ancestor as illustrated in Figure 4.4. Care has
to be taken, when the two models have a different length. In that case, segment to be
crossed over is shortened according to the length of the smaller model. Further care has
to be taken to ensure that every partial amplitude occurs only once per waveset.

Figure 4.4: Illustration of the cross-over operation. In both models (blue and green) the same
randomly chosen sequence is marked (light colors), “cut out” and exchanged. The resulting
descendant model contains a mixture of the blue model and the green model.

• Mutation: with adjustable probability pm a number of waves can be added, dropped
or exchanged from the waveset. This step ensures that all possible waves are tried out
during the evolutionary search.

In summary the algorithm has the following meta-parameters:

Name variable range
Population size Npop > 1
Number of generations to run NGen > 1
Number of survivors Nsurvivors Nsurvivors ∈ [2, N ]
Number of fixed waves Nfix ≥ 0
Selective pressure s s ∈ [1, 2]
Cross-over probability px px ∈ [0, 1]
Mutation probability pm pm ∈ [0, 1]
Exchanged waves Nex Nex ∈ [0, N −Nfix]
Number of waves to add/drop Nadd Nadd ≥−N +1

Implementation

The genetic waveset optimization has been implemented as a set of small C++ programs and
a control script as a part of the rootpwa framework. A flow-diagram of the algorithm is given
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in Figure 4.3. The generation of new models from a ranked list of ancestors and a wave pool
according to the rules described above is implemented in the mutator program. The evalua-
tion of the fitting results and the ranking is implemented in a program called selector. This
tool also takes care about errors that might occur during the process, such as failed fits etc. The
complete algorithm is tied together and controlled through a bash-script wavegenetics.sh.
The computational effort of the algorithm is considerable, since in order to explore the space of
models a large number of fits has to be performed. The decay amplitudes for all partial waves
in the pool as well as the phase-space integrals (with and without acceptance correction) can
be pre-calculated once and stored on a server for reuse in the fitting program. The algorithm
can be parallelized almost trivially by running the independent fits (different wavesets and in-
dependent n-body-mass bins) of one generation in parallel. For the evaluation of a generation
all results have to be collected however, and the algorithm has to wait until all fits have fin-
ished. It thus is important to use an efficient load-balancing scheduling algorithm to make the
best use of the available computing resources. In the implementation used for the analysis pre-
sented in this thesis, the SunTMGrid Engine [157] framework has been used to parallelize the
fitting part of the algorithm on the Linux computing farm at TUM E18. Since the details of the
parallelization very much depend on the particular infrastructure that is being used, I will not
go into more detail here. The interested reader is referred to the source-code for further details,
which is available through the rootpwa repository [135].

4.2.2 Performance of 5πWaveset Evolution

The algorithm described above has been used to find a waveset that describes the data while at
the same time minimizes the number of waves needed. The meta-parameters used to run the
genetic search are listed in table 4.2.

Name variable value
Population size Npop 50
Number of generations to run NGen 100
Number of survivors Nsurvivors 50
Number of fixed waves Nfix 1
Selective pressure s 1.7
Cross-over probability px 0.85
Mutation probability pm 1
Exchanged waves Nex 1
Number of waves to add/drop Nadd ∈ [−5, 5]

Table 4.2: Meta-parameters of the evolutionary search for a 5πwaveset.

A pool of 284 decay amplitudes has been used to draw from. Each generation consisted of
50 wavesets. The fixed-5-body-mass fit was done in 28 bins of (60 MeV/c 2) width. The initial
wavesets have been generated randomly from the pool of waves. Only one wave, the 2−+0+π f 2(1670)
S-wave, has been required for all wavesets as an anchor wave, and only rank 1 (full coherence)
fits have been used in this analysis.
Figure 4.5 shows the evolution of the evidence as the genetic optimization proceeds through
100 generations. Although the mean evidence that is achieved for a generation is leveling off
after about 15 generations, the best fit can be improved far beyond that point.
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Figure 4.5: Evolution of the evidence. The mean evidence of all 50 fits per generation is shown.
The error bar gives the RMS of the evidence distribution.
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Figure 4.6: Evolution of the size of the waveset. See text for details.

Due to the penalty on the model complexity that was introduced above, the optimal number
of waves can be determined by the genetic optimization. For the example presented here the
initial generation contained wavesets with a wide variety of sizes from 10 to about 70 waves.
Figure 4.6 shows how the mean number of components in the model evolves. The observed
behavior can be interpreted in the following way. Due to the penalty on large models, wavesets
with excessive size are quickly eliminated. Then the mean number of waves grows to about 40
as the algorithm discovers wavesets with good combinations of waves. Finally, as only those
wavesets which contain the necessary components to describe the data survive, the algorithm
can further optimize by eliminating unimportant components. Thus the mean size shrinks
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again and levels off at around 34 waves. This value is driven by the amount of data that is
available and the definition of the significance of small waves (equation 4.8).
As a final step in the waveset selection the 20 best fits from the genetic optimization have un-
dergone a closer examination. This corresponds to a range in log-evidence of about 1000 be-
tween the best fit and the 20th fit. Table 4.3 shows which waves have been used in those 20
models. The strong coherence of the results shows the level of convergence that the algorithm
has reached. The average number of waves used in the top20 selection was 33.9.

A Final Breeding Step

Based on these results from the automatic waveset evolution it appeared that the result could
possibly be improved by a dedicated combination of the best performing models. In the metaphor
of biological evolution this would be a breeding intervention. Indeed the construction of a new
waveset from those waves, that were used in more than half of the top20 fits (see table 4.3) al-
lowed to increase the log-evidence once again by 2.7·102 units from 1.83409·106 to 1.83436·106.
This waveset is presented in the next section as the final mass independent partial-wave de-
composition of the diffractively produced 5π system.
The large increase in model performance that could be achieved with the breeding step indi-
cates that the reproduction routine used could probably be improved considerably. However,
care has to be taken to allow the algorithm to explore the space of possible models and to avoid
a premature convergence onto a mediocre solution. How this could be realized optimally re-
mains a question for future research.

4.3 Mini-Conclusion

In the preceding sections an algorithm has been developed that allows to implement a system-
atic, data-driven way of studying different truncation schemes of partial-wave expansions. The
Bayesian formulation of the evidence for a given model, evaluated on the available data, allows
to compare and rank different truncation schemes. This is the key for the implementation of an
automatic evolution of a model that provides a reasonable balance between a good description
of the data and its complexity. For complex problems such as many-body decay processes the
framing of the problem in algorithmic terms provides an indispensable tool to the analyzer.
The systematic approach to the problem is seen as the biggest advantage of the proposed
scheme as it provides a clear and well-founded recipe for the selection of a waveset. Further-
more the comparison of different models allows to study the systematic uncertainties which
are introduced by choosing a specific truncation scheme.
However, it should be kept in mind that the approach ultimately is a statistical one which allows
no conclusion on the validity of a certain class of amplitudes, such as the isobar model, other
than the level to which they are able to describe the data. There may well be other, physical
reasons which could lead to the adoption of a different form of the amplitudes, such as unitar-
ity and analyticity arguments mentioned in section 3.2.2. In this case the Bayesian arguments
would still be valid, however, it may be necessary to include more data sets from different pro-
cesses into the considerations in order to see the virtues of a new model.
At the moment the proposed scheme is seen as a useful tool to facilitate the investigation of
complex decay processes and to extract systematic uncertainties introduced by the truncation
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Used in 20/20
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1−0−+0+rho770_00_a11269=pi−_0_rho770.amp
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1−1++0+rho770_01_pi1300=pi−_1_rho770.amp
1−1++0+sigma_01_a11269=pi−_0_rho770.amp
1−1++0+sigma_01_a11269=pi−_1_sigma.amp
1−1++0+sigma_21_a11269=pi−_0_rho770.amp
1−1++0+sigma_22_a21320=pi−_2_rho770.amp
1−2−+0+pi−_02_f21270=pi−+_1_a11269=pi+−_0_rho770.amp
1−2−+0+rho770_02_a11269=pi−_0_rho770.amp
1−2−+0+rho770_02_a21320=pi−_2_rho770.amp
1−2−+0+rho770_20_a11269=pi−_0_rho770.amp
1−2−+0+sigma_20_pi1800=pi−_0_sigma.amp

Used in 19/20
1−0−+0+rho770_11_pi1300=pi−_00_sigma.amp
1−1++0+pi−_01_eta11600=pi−+_01_a11269=pi+−_01_rho770.amp
1−1++0+rho770_12_a11269=pi−_0_rho770.amp
1−1−+0−rho770_21_a11269=pi−_0_rho770.amp

Used in 17/20
1−1++0+rho770_01_pi1300=pi−_00_sigma.amp

Used in 16/20
1−2−+0+pi−_22_f21270=pi−+_11_a11269=pi+−_01_rho770.amp

Used in 15/20
1−3++0+sigma_21_a11269=pi−_0_rho770.amp

Used in 13/20
1−1++0+rho770_21_pi1300=pi−_1_rho770.amp
1−2−+0+f21270_02_pi21670=pi−_02_f21270.amp
1−2−+0+pi−_11_rho1600=rho770_01_sigma.amp

Used in 12/20
1−1++0+pi−_01_eta11600=pi−+_10_pi1300=pi+−_00_sigma.amp

Used in 11/20
1−1++0+sigma_10_pi1300=pi−_00_sigma.amp

Table 4.3: Usage of partial amplitudes in top20 models from the genetic waveset optimization.
Components which have been used less than 10 times are omitted from the table.
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4.3. MINI-CONCLUSION

of the partial-wave expansion. Future application of these ideas to similar problems should be
straight forward.

Suggestions for future research:

• Enlarge pool of available partial waves

• Try to evolve a waveset in each mass bin independently

• Optimize the genetic algorithm to achieve faster convergence by experimenting with dif-
ferent starting conditions, population sizes, etc.

• Systematic study of meta-parameters and reproduction algorithm

96



Chapter 5

Results of the Partial-Wave
Decomposition in Fixed 5-Body-Mass
Bins

IN this chapter the results of the partial-wave decomposition in individual 5-body-mass bins
are presented. The waveset used to obtain these results has been constructed with the help

of the genetic waveset optimization as explained in chapter 4. It contains the partial-wave am-
plitudes listed in tables 5.1 and 5.2. It should again be stressed that this list of waves has been
determined in a systematic procedure to be the one best supported by the data. Apart from
the large pool of available amplitudes (see appendix B) and the definition of the above men-
tioned anchor wave no assumptions have been imposed on the selection of waves. It is there-
fore remarkable that the waveset shows a structure as would be expected in diffractive pion
dissociation at small momentum transfer, namely that the main occurring quantum numbers
are

J PC M ε = {0−+0+, 1++0+, 2−+0+}

There is also one J PC M ε = 3++0+ wave. Higher spins might be important for the high mass tail
of the spectrum, but recall that the waveset has been optimized for all mass bins together. The
dominant contributions to the evidence come from the region with highest statistics around
mX ≈ 1.9 GeV/c 2 and so with the sample-size currently available higher-spin partial waves are
not well supported by the data. Recall that the model also contains an incoherently treated
amplitude, which is flat in phase space and serves to accommodate structureless background
events in the analysis.

There is one J PC M ε = 1−+0− which has survived the genetic optimization. However, it is the
only wave with negative reflectivity, a fact that casts doubt on the interpretation of this partial
wave as the diffractive production of a resonance. Note, that because of the different reflectivity
there are no interferences of this partial wave with the rest of the waveset. This will discussed
in some more detail below.

The log-evidence achieved with the rank 1 fit using this waveset is 1.83436 ·106.
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5.1. COMPARISON OF FIT RESULTS WITH THE DATA

J PC M ε ` s Isobar1 Isobar2 Decay Isobar2

0−+0+ S 0 π− f 0(1500) ρ(770)
h

0
0

i

ρ(770) •

0−+0+ S 0 π− f 0(1500) (ππ)S
h

0
0

i

(ππ)S

0−+0+ S 0 ρ(770)a 1(1260) π−
h

0
1

i

ρ(770) •

0−+0+ D 2 ρ(770)a 1(1260) π−
h

0
1

i

ρ(770)

0−+0+ S 0 (ππ)Sπ(1300) π−(ππ)S

0−+0+ P 1 ρ(770)π(1300) π−
h

0
0

i

(ππ)S

1++0+ S 1 π−ρ(1600) ρ(770)
h

0
1

i

(ππ)S

1++0+ P 0 π− f 0(1370) ρ(770)
h

0
0

i

ρ(770) •

1++0+ P 0 π−(4π)0++ (ππ)S(ππ)S

1++0+ P 1 π− f 1(1285) π∓
h

1
1

i

a 1(1260) •

1++0+ S 1 ρ(770)π(1300) π−
h

1
1

i

ρ(770) •

1++0+ S 1 ρ(770)π(1300) π−
h

0
0

i

(ππ)S

1++0+ D 1 ρ(770)π(1300) π−
h

1
1

i

ρ(770)

1++0+ S 1 (ππ)Sa 1(1260) π−
h

0
1

i

ρ(770)

1++0+ S 1 (ππ)Sa 1(1260) π−
h

1
0

i

(ππ)S

1++0+ D 1 (ππ)Sa 1(1260) π−
h

0
1

i

ρ(770) •

1++0+ D 2 (ππ)Sa 2(1320) π−
h

2
1

i

ρ(770)

1++0+ P 0 (ππ)Sπ(1300) π−
h

0
0

i

(ππ)S

1++0+ S 1 π−η1(1600) π∓
h

0
1

i

a 1(1260)

1++0+ S 1 π−ρ(1700) π∓
h

1
0

i

π(1300)

1++0+ P 2 ρ(770)a 1(1260) π−
h

0
1

i

ρ(770)

•waves used in mass-dependent fit.

Table 5.1: The final waveset. J PC = 0−+ and 1++ components. The partial waves used in the
mass-dependent fit are marked with a bullet.

5.1 Comparison of Fit Results with the Data

In order to visualize the quality to which the inferred model reproduces the data it is useful to
plot the relevant kinematic distributions together with their respective model solutions. While
the distributions can be plotted directly from the original data, in order to obtain the model dis-
tributions a set of pseudo-data has to be generated. Such a Monte Carlo sample, with all the de-
cay amplitudes used in the model, is already available from the integration of the acceptance-
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CHAPTER 5. RESULTS OF THE PARTIAL-WAVE DECOMPOSITION IN FIXED 5-BODY-MASS BINS

J PC M ε ` s Isobar1 Isobar2 Decay Isobar2

2−+0+ S 2 π− f 2(1270) π∓
h

1
1

i

a 1(1260) •

2−+0+ S 2 ρ(770)a 1(1260) π−
h

0
1

i

ρ(770) •

2−+0+ S 2 ρ(770)a 2(1320) π−
h

2
1

i

ρ(770) •

2−+0+ D 0 ρ(770)a 1(1260) π−
h

0
1

i

ρ(770) •

2−+0+ D 0 (ππ)Sπ(1800) π−
h

0
0

i

(ππ)S

2−+0+ D 2 π− f 2(1270) π∓
h

1
1

i

a 1(1260)

2−+0+ S 2 f 2(1270)π2(1670) π−
h

0
2

i

f 2(1270)

2−+0+ P 1 π−ρ(1600) ρ(770)
h

0
1

i

(ππ)S

3++0+ D 1 (ππ)Sa 1(1260) π−
h

0
1

i

ρ(770)

1−+0− D 1 ρ(770)a 1(1260) π−
h

0
1

i

ρ(770)

FLAT
•waves used in mass-dependent fit.

Table 5.2: The final waveset. J PC = 2−+, 3++ and 1−+ components. The partial waves used in
the mass-dependent fit are marked with a bullet.

corrected phase space integrals (equation 3.22) and can be reused for this task. For each Monte
Carlo event one can calculate a weight w i according to the model prediction for the differential
cross section given by equation 3.13 so that

w i =
∑

ε=±1

Nr
∑

r=1

�

�

�

�

�

∑

α

T εαr ψ̄
ε
α(τi )

�

�

�

�

�

2

+T 2
FLAT (5.1)

Properly weighted kinematic distributions can then be plotted easily as binned histograms, if
the (arbitrary) number of Monte Carlo events is taken into account by an overall normaliza-
tion factor. A comparison of data and model prediction through a set of such distributions is
shown in Figures 5.1–5.7 for different 5-pion-mass ranges. In order to condense the informa-
tion the plots presented here each aggregate the information of four of the 60 MeV/c 2 mass
bins in which the fits have been performed, thus integrating mX over an interval of 240 MeV/c 2

width. The corresponding 5-pion-mass ranges are indicated in the captions of the plots. For
each range the same twelve kinematic distributions are plotted. They correspond to the angu-
lar distributions which enter into the isobar-model amplitudes and which have already been
discussed in sections 3.2.1 and 3.6. In addition the invariant mass distributions of the 4, 3 and
2-pion systems are presented. The seven sets of plots cover the complete 5π-mass range from
1.36 GeV/c 2 to 3.04 GeV/c 2.
It should be kept in mind, that each histogram represents a projection of an 11-dimensional
space onto a one-dimensional variable. Important correlations between the different variables,
which are taken into account in the log-likelihood estimator, are not so easily displayed. Nev-
ertheless, a good fit should of course reproduce the projected distributions.
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5.1. COMPARISON OF FIT RESULTS WITH THE DATA

5.1.1 Discussion of Kinematic Distributions

The first row of Figures 5.1–5.7 shows (a) the π−π+π−π+, (b) the π−π+π− and (c) the π−π+

invariant mass spectra which are quite well reproduced by the model in all mass ranges. Sys-
tematic differences show up in the ρ(770) region which is slightly underestimated by the fit
relative to the rest of the 2πmass distribution. This could be connected with the oversimplified
parametrization of the (ππ)S−wave that has been used as discussed in section 3.2.2.
The angular distributions are shown in the same variables that have already been discussed in
the section 3.6 on acceptance corrections.
The second row shows angular distributions in the Gottfried-Jackson frame. Figure (d) shows
the cosine of the Gottfried-Jackson angle θGJ of the π−π+π−π+ subsystem. The shape shows a
clear variation in the different mass regions which indicates the origin of the 4π system from
different partial waves.
The bottom two rows show distributions which have been constructed in the helicity frames of
the respective isobar systems. Figures (g),(h) and (i) show the cosine of the polar angle θHel for
the cases of a 4π system decaying into π−π+ + π+π−, a 4π system decaying into π−π+π+ + π−

and a 3π system decaying into π−π+ + π− respectively. The last row of figures shows – for the
same subsystems – the distributions of the azimuthal anglesφHe l .
In those 6 angles, in particular Figures (h) and (k) the largest discrepancies of the model show
up especially for m5π ¦ 2 GeV/c 2. The reason could be missing partial waves in this region.
The model can not completely reproduce the detailed structure in φ31

He l . There seem to be
contributions of higher polynomials in this angle, which would indicate the presence of higher
helicity states that are not taken into account by the model. Also the cosθHel distribution at
the edge of the acceptance are not yet completely well described. In order to check for system-
atic errors in the description of the 4π systems several tests have been done, such as changing
the ρ(1600) parametrization to a form with only one resonance, leaving the isospin symmetry
relations as free parameters in the fit (c. f. 3.2.3) and completely removing the amplitudes con-
taining I G (J PC ) = 0+(1−+) spin exotic 4π isobars. None of these operations could improve the
description of the data.
There remains the possibility that at higher 5π masses new 4π systems are being produced
which in turn exhibit more complicated decays involving higher orbital angular momentum
and 2 or 3-body isobars with higher spin. The genetic waveset optimization has been run inte-
grating over all 5πmass bins and thus is dominated by those bins with most statistics. It might
be worthwhile to perform a waveset optimization in each mass-bin individually. In particular, if
there are contributions of multiperipheral processes (see section 2.2.2) the projections of these
amplitudes onto the isobaric partial waves are expected to contain higher angular momentum
components for higher masses. Alternatively one could attempt to directly fit the observed an-
gular distributions with a multiperipheral model, rather than the diffractive excitation model
used here.
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CHAPTER 5. RESULTS OF THE PARTIAL-WAVE DECOMPOSITION IN FIXED 5-BODY-MASS BINS
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Figure 5.1: Comparison of the model (orange) with the data (black). For a detailed description
of the kinematic variables shown, see text. m5π ∈ [1.36, 1.60]GeV/c 2.
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Figure 5.2: Comparison of the model (orange) with the data (black). For a detailed description
of the kinematic variables shown, see text. m5π ∈ [1.60, 1.84]GeV/c 2
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Figure 5.3: Comparison of the model (orange) with the data (black). For a detailed description
of the kinematic variables shown, see text. m5π ∈ [1.84, 2.08]GeV/c 2
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Figure 5.4: Comparison of the model (orange) with the data (black). For a detailed description
of the kinematic variables shown, see text. m5π ∈ [2.08, 2.32]GeV/c 2
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Figure 5.5: Comparison of the model (orange) with the data (black). For a detailed description
of the kinematic variables shown, see text. m5π ∈ [2.32, 2.56]GeV/c 2
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Figure 5.6: Comparison of the model (orange) with the data (black). For a detailed description
of the kinematic variables shown, see text. m5π ∈ [2.56, 2.80]GeV/c 2
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Figure 5.7: Comparison of the model (orange) with the data (black). For a detailed description
of the kinematic variables shown, see text. m5π ∈ [2.80, 3.04]GeV/c 2
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5.2. SPIN-DENSITY MATRIX ELEMENTS

5.1.2 Calculation of Bands of Uncertainty

Of course the inferred model parameters carry uncertainties which translate into uncertainties
for the predictions of the kinematic distributions. Since the latter are generated through the
Monte Carlo method described above, it is not possible to apply an analytical error propaga-
tion. Instead another Monte Carlo sampling approach has been chosen here.
The covariance matrix of the model parameters describes a multidimensional Gaussian1 prob-
ability distribution. By sampling from this distribution a set of slightly different models can be
generated such, that all uncertainties and correlations are preserved. Numerically this prob-
lem is solved (see e. g. [158]) by sampling a vector of uncorrelated normal distributed variables
x with varianceσ= 1 and then performing an affine transformation

x̄ =µ+T x .

T is the Cholesky-decomposition of the covariance matrix

C = T T T

and µ is the expectation value of the multivariate normal distribution. The samples x̄ will then
be distributed according to the full covariances of C .
The pseudo-data weighted with the different predictions of the model samples will yield the
desired distributions in the kinematic variables and thus allow to construct error bands for the
model predictions. The width of an uncertainty band is computed from the variance of the set
of sampled model predictions in a given bin. There also is another source of uncertainty which
comes from the finite number of pseudo-data events that are used to plot the distributions.
The associated error, taking into account the weights of the individual contributions is added
quadratically to the model-error. The error bands constructed in that way are centered at the
maximum-likelihood solution.

5.2 Spin-Density Matrix Elements

Figure 5.8 shows an overview of the complete spin-density matrix as extracted in the mass inde-
pendent partial-wave decomposition. Each row and column respectively corresponds to one
wave. Each subplot in this matrix shows an element of the spin-density matrix as a function of
the 5-pion mass. On the diagonal the intensities are plotted. In the upper right triangle the real
parts of the interference terms are plotted and in the lower left triangle the imaginary parts of
the interference terms.
Although rich structures show up in the partial-wave decomposition, in contrast to the 3π case
for example there are no outstanding “dominant waves” with obvious resonance signals. Also,
the phase motions in the interference terms (which are not shown here) are not easily inter-
preted without further tools. This is not unexpected, since in the mass range under investiga-
tion there are several overlapping resonances which lead to complicated interferences patterns.
The methods used to understand possible resonant contributions and the interference of sev-
eral resonances and the results obtained from that analysis are presented in chapter 6. In the
present section all the partial amplitudes used in the fit are briefly discussed in order to allow

1The Gaussian approximation is used here for simplicity. Strictly speaking it only captures the most important
features of the curvature of the log-likelihood function in the vicinity of the maximum-likelihood solution.
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CHAPTER 5. RESULTS OF THE PARTIAL-WAVE DECOMPOSITION IN FIXED 5-BODY-MASS BINS

the reader to get a broad overview over the partial-wave decomposition which serves as the
basis for the later search for resonances.
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Figure 5.8: Complete overview of the mass independent partial-wave decomposition of the 5π
system. On the diagonal the intensities of 32 waves are shown. In the right upper (left lower)
triangle the real (imaginary) parts of the corresponding interference terms are plotted. The fits
in each mass bin are independent of each other.

In the plots below (Figures 5.9 to 5.16) the intensities of all partial amplitudes in this fit are
shown. Like in the 3π case the main contributions come from the 0−+, 1++ and 2−+ waves.
As discussed above in section 2.2.2 this is expected due to Pomeron dominance and the sup-
pression of helicity flip amplitudes at low t ′. It will become clear from the discussion of the
individual intensities, that contrary to what is known from the 3π system here there are no
clear major waves.

A remark on systematic uncertainties: The necessity to find an objective method to con-
struct the waveset (tables 5.1 and 5.2) was the main motivation to develop the genetic search
described above in chapter 4. Since for this purpose a large number (≈ 5000) of different mod-
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els has been tested on the data, those results can further be used to study the systematic effects
that arise from the choice of a particular waveset. For the spin density matrix elements dis-
cussed below these systematic uncertainties will be indicated by blue error bars. These error
bars show the range of the corresponding observable obtained in the 20 best wavesets found
by the genetic algorithm (see also table 4.3). The systematic range in each bin is spanned by
the lowest and the highest value found in the top 20 fits. They give an indication of the ro-
bustness of the inferred parameter values under small changes in the model. Only the central
values have been used to calculate these systematic error bands, statistical uncertainties are
only shown for the best fit.
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CHAPTER 5. RESULTS OF THE PARTIAL-WAVE DECOMPOSITION IN FIXED 5-BODY-MASS BINS

5.2.1 The FLAT Amplitude

The FLAT amplitude is an incoherent contribution to the intensity, that is isotropic in phase
space (see equation 3.13). It is allowed in the fit in order to absorb any contributions that are
not projected onto the partial waves. In the present analysis the FLAT wave has been present
in all models fitted during the genetic optimization, solutions without this contribution have
not been taken into account. It takes about a quarter of the total intensity. Figure 5.9 shows the
intensity of the FLAT wave as a function of the 5-pion mass.
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Figure 5.9: The intensity of the incoherent, isotropic FLAT contribution to the intensity.

The FLAT wave still shows some slight structures around m5π ∼ 1.9 GeV/c 2 and 2.1 GeV/c 2,
which are the regions where resonances are expected and also seen in other waves. That the
isotropic background shows such fluctuations here might be an indication that the model is
still missing some components. On the other hand it is obvious that partial waves which are
mainly built up of S-wave two body decays can experience strong correlations with the FLAT
wave making it difficult for the fit to distinguish these components of the model. In general
the result obtained here is similar to what has been found in previous multi-body partial wave
analyses like [63].
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(a) π− f 0(1500)→π−ρρ

)2mass (GeV/c
1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

in
te

n
si

ty
­500

0

500

1000

1500

2000

2500

3000

prelim
inary

COMPASS 2004
 Pb

­
π

+
π

­
π

+
π

­
π → Pb 

­
π

 σ [0] σ →(1500) 0f
0
0

 ­π)+0
­+

(0
­

1

/nfs/nas/user/sneubert/PWAFITS/FINAL/fitF6/fitF6.allwFLAT.root

(b) π− f 0(1500)→π−σσ
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Figure 5.10: Intensities of partial waves with J PC = 0−+. Waves (a–d) are S-wave decay modes,
(e) is a P-wave and (f) shows a D-wave. Waves (a) and (c) have been used in the mass-
dependent fit.

5.2.2 J PC = 0−+ Partial-Wave Amplitudes

Figure 5.10 shows the intensity distributions for the 6 partial amplitudes with J PC = 0−+ that
have been used in the fit. The first two figures 5.10(a) and 5.10(b) both correspond to an S-wave
decay of the J PC = 0−+ system into π− f 0(1500). In the former case the f 0 subsequently decays
into ρ0ρ0 while in the latter it goes to (π+π−)S(π+π−)S. Both intensity plots show a peaking
structure around 1.7 GeV/c 2 as does the intensity for the S-wave decay into ρ0 a 1(1260) which
is shown in Figure 5.10(c). In all three spectra there is only a small tail towards higher masses,
however in Figure 5.10(c) one might identify a small shoulder around 2.1 GeV/c 2.

A slightly different picture is displayed for the S-wave decay mode (π+π−)Sπ(1300) in Figure
5.10(d). Here the maximum of the intensity lies at a bit smaller values and after a dip at 1.8 GeV/c 2

there is a clear, broad structure peaking around 2.1 GeV/c 2. A similar picture with a dip around
1.9 GeV/c 2 is obtained for the P-wave decay mode into ρπ(1300) (Figure 5.10(e)). Due to the
orbital angular momentum barrier here the lower mass structure is less pronounced compared
to the S-wave case. It should, however, be noted that these two decay modes, especially for the
S-wave decay of the broadπ(1300) intoπ−(π+π−)S which is used here, has no striking signature
in the angular correlations and thus carries quite some systematic uncertainty.

The last plot in this series shows the intensity for a D-wave decay of the J PC = 0−+ system into
ρ0a 1(1260) in Figure 5.10(f). Here the low-mass part is strongly suppressed and only a broad
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structure around 2.1 GeV/c 2 shows up.
For a more detailed interpretation of these results interferences with other waves have to be
studied. The peaking structure at 1.8 GeV/c 2 can be hypothesized to come from the well known
π(1800) resonance. The dip in Figure 5.10(d) might be due to a destructive interference of that
resonance with some background. Whether the structure at 2.1 GeV/c 2 is of resonant origin
can only be answered by a detailed analysis of the interference terms and the phase-motions
encoded there. These hypotheses will be tested in chapter 6 using the two partial amplitudes
5.10(a) and 5.10(c).
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5.2.3 J PC = 1++ Partial-Wave Amplitudes

The largest portion of partial amplitudes belongs to the J PC = 1++ sector.However as will be
discussed in this section the 15 partial waves show a quite inconsistent picture and a straight
forward interpretation is not possible.
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(c) πρ′→πρσ
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Figure 5.11: Intensities of partial waves with J PC = 1++ and S-wave isobar decays. Wave (e) has
been used in the mass-dependent fit.

Figure 5.11 shows the intensities for partial amplitudes which describe the 1++ system decaying
into two isobars in S-wave. The intensity shapes do not follow a consistent pattern. Only the
intensity for the ρ0π(1300) decay mode, with the π(1300) decaying into ρπ, (Figure 5.11(e))
shows a clean peaking structure around 1.9GeV/c 2. This partial wave has been used for the
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mass-dependent fit. The similar wave in Figure 5.11(d) where theπ(1300) decays intoπ(π−π+)S
does not show such a clean peak. This might be due to the smaller coupling of theπ(1300) to the
latter channel, however due to the larger errors on this partial amplitude a conclusion would
be difficult here without increased statistics.
It is an interesting detail that there is one partial wave (Figure 5.11(f)), which has been re-
quired in the waveset evolution, that contain an I G J PC = 0+1−+ η1(1600) isobar. It has been
parametrized with the same resonance parameters as its possible isospin partner the π1(1600)
(c. f. section 3.2.2). Apparently the data supports such a contribution to the 4π subsystem.
However, it would be premature to conclude that this isobar is really a resonant state. For this
claim it would be necessary to perform more detailed investigations, ideally observing a reso-
nant phase motion of this state. Section 5.3 presents a first attempt at such a study, extracting
phases for the 4π system in I G J PC = 0+1++ and 0+2++ partial waves.
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(b) π(σσ)S−wave
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(c) π f 1(1285)
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Figure 5.12: Intensities of partial waves with J PC = 1++ and P-wave isobar decays. The partial
amplitudes (a) and (c) have been used in the mass-dependent fit.

For the 1++ P-wave decay modes shown in Figure 5.12 the results are much more consistent
compared to the S-wave intensities. Figures 5.12(a) and 5.12(b) both show a P-wave decay into
a pion and a isoscalar, scalar 4π system. The only difference being that the former partial am-
plitude contains a resonant f 0(1370) contribution (which subsequently decays into ρρ, while
in the latter case the 4π system is parametrized through the σ amplitude described in section
3.2.2 and a decay into (π+π−)S(π+π−)S. Both partial waves show a peak at 1.9 GeV/c 2.
Figure 5.12(c) shows the small, but remarkably stable partial wave with the isobars f 1(1285)π−

in a P-wave. Here the intensity is distributed over a quite broad range. A hypothesis, that
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has already been advanced by other experimenters [63], is that there are 2 overlapping states
decaying into this channel. This hypothesis will be tested in the mass-dependent fit.
The lower row in Figure 5.12 shows to small contributions which so far have not been further
analyzed.
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Figure 5.13: Intensities of partial waves with J PC = 1++ and D-wave isobar decays. Partial
amplitude (c) is used in the mass-dependent fit.

The 1++ D-wave partial amplitudes are shown in Figure 5.13. they all feature relatively small
intensities. Remarkable here is the (ππ)Sa 2(1320) partial wave, presented in Figure 5.13(c).
Although strongly damped below 1.9 GeV/c 2 this amplitudes is quite stable at higher masses
and will play an important part in the mass-dependent analysis in chapter 6.
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5.2.4 J PC = 2−+ Partial-Wave Amplitudes
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Figure 5.14: Intensities of partial waves with J PC = 2−+ with S-wave and P-wave (e) decay
modes. Partial waves (a)-(c) have been used in the mass dependent fit.

The J PC = 2−+ sector shows quite interesting and remarkably clear structures. Especially the
S-wave partial amplitudes shown in Figure 5.14 feature small systematic errors (blue). The
prominent 2−+ f 2(1270)π S-wave amplitude, with the 4π decay of the f 2(1270)modeled as an
πa 1(1260) P-wave isobar decay is shown in Figure 5.14(a). It has been used as the anchor wave
(c. f. section 3.1.3) in all the fits performed. The intensity of this wave peaks at 1.7GeV/c 2

in a region where the well known π2(1670) resonance exists. The decay of the π2(1670) into
the f 2(1270)π channel is well studied for the 3π final state since f 2(1270) → ππ is the domi-
nant decay mode with a branching ratio of 84.8+2.4

−1.2% [1]. What is observed here in the 5π final
state is the decay of the f 2(1270) into 4 charged pions for which the Particle Data Group lists a
branching fraction of 2.8±0.4%.
A different picture is obtained for the intensity in the ρa 1(1260) decay channel presented in
Figure 5.14(b). There are two peaking structures visible here, separated by a dip at 1.9 GeV/c 2.
Yet a different behavior is shown in Figure 5.14(c) for the S-wave decay of the 2−+ system into
ρa 2(1320). In the latter intensity spectrum there is no sign of the π2(1670) — in agreement
with earlier experiments [1]. However a rather sharp peak shows up at 1.9 GeV/c 2 with a small
shoulder around 2.2 GeV/c 2. How to interpret these striking patterns will be a major question
for the further analysis. A possible solution will be discussed in chapter 6.
The two partial amplitudes in Figures 5.14(d) and 5.14(e) only make small contributions to the
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spectrum and will not be discussed in more detail here.

)2mass (GeV/c
1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

in
te

n
si

ty

0

50

100

150

200

250

300

350

prelim
inary

COMPASS 2004
 Pb

­
π

+
π

­
π

+
π

­
π → Pb 

­
π

(1269) 1a
1
1 ±π →(1270) 2f

2
2 ­π)+0

­+
(2

­
1

/nfs/nas/user/sneubert/PWAFITS/FINAL/fitF6/fitF6.allwFLAT.root

(a) π f 2(1270)

)2mass (GeV/c
1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

in
te

n
si

ty

0

200

400

600

800

1000

prelim
inary

COMPASS 2004
 Pb

­
π

+
π

­
π

+
π

­
π → Pb 

­
π

(770) ρ [0] ­
π →(1269) 1a

0
2(770) ρ)+0

­+
(2

­
1

/nfs/nas/user/sneubert/PWAFITS/FINAL/fitF6/fitF6.allwFLAT.root

(b) ρa 1(1260)

)2mass (GeV/c
1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

in
te

n
si

ty

0

100

200

300

400

500

600

700

800

prelim
inary

COMPASS 2004
 Pb

­
π

+
π

­
π

+
π

­
π → Pb 

­
π

 σ [0] 
­

π →(1800) π
0
2 σ)+0

­+
(2

­
1

/nfs/nas/user/sneubert/PWAFITS/FINAL/fitF6/fitF6.allwFLAT.root

(c) σπ(1800)

Figure 5.15: Intensities of partial waves with J PC = 2−+ and D-wave isobar decays. Partial
amplitude (b) has been used in the mass dependent fit.

Figure 5.15 shows the 2−+ D-wave amplitudes. In neither of those intensity spectra a clear sig-
nal of the π2(1670) is seen. The f 2π and ρa 1 D-wave decay modes show a rather broad distri-
bution around 2 GeV/c 2. The latter one, showing the largest intensity and smallest systematic
uncertainties, has been included in the mass dependent analysis.
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5.2.5 Further Components

The remaining two components in the partial-wave model are shown here for completeness in
Figure 5.16. The only J PC = 3++ shows a small bump at 2 GeV/c 2. The amount of data seems
too little to draw any further conclusions. The only wave with negative reflectivity, that has
survived the genetic optimization is shown in Figure 5.16(b). Incidentally it has the quantum
numbers 1−+. However, note that negative reflectivities were only allowed in the wave pool for
those amplitudes that cannot be produced without spin flip in positive reflectivity exchange
(c. f. sections 3.1.1 and 4.2). Since there are no other partial waves interfering with this one,
the phase motion cannot be studied. The large systematic uncertainties are another indication
that this amplitude should be interpreted with due skepticism.
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Figure 5.16: Intensities of partial waves with (a) J PC = 3++ and (b) J PC M ε = 1−+0−. (b) is the
only wave with negative reflectivity that has been picked up by the genetic waveset optimiza-
tion.
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5.3 The 4π Subsystem

In section 3.2.2 it has already been discussed that the 4-pion system is as well the least studied
as well as the most interesting of the isobaric systems available in the 5π data set. So far we had
to make assumptions on the structure of the 4-pion amplitudes, in particular on the resonant
contributions. In this section a technique for the extraction of information on these amplitudes
directly from the data is introduced. Some results from a first application of these ideas to the
available data are presented.

5.3.1 A Technique for the Extraction of Isobar Amplitudes

The basic idea of a semi-model-independent isobar analysis is to find a parametrization for
the isobar amplitudes that introduces as little as possible a bias into the analysis. A recent
implementation has been presented by the E791 collaboration [159] in order to parametrize
the K −π+ system in the reaction D+ → K −π+π+. The method that is being proposed here is
quite similar to their approach.
The general structure of the isobar-model decay amplitude as it has been described in sec-
tion 3.2 is left untouched. The only thing that will be changed is the form of the dynamical
function Q(mR , m1, m2) in equation 3.6 for the isobar on which information is going to be ex-
tracted. The Breit-Wigner resonance amplitude, which is usually put in this place, is replaced
by a complex-valued step-function, which is constant over a small interval in the isobar mass
mR . The complex values of this function in the mR bins are free parameters to be determined
by the fit. In this way it is possible to extract the dependence of the amplitude on the isobar
mass.
There are a few caveats to this method, though. First, in order to determine the phase of the
isobar-amplitude one needs the interference with another partial wave and here one is required
to put an ansatz for the form of the corresponding amplitude. In other words, it is only pos-
sible to replace one (or very few) isobar propagators with the flexible representation by a step
function — hence the term semi-model-independent isobar analysis. Furthermore, the num-
ber of fit parameters is considerably increased by adding a free real and imaginary part in each
isobar-mass bin. The method will only yield meaningful results if enough data is available to
support these additional parameters.
The main advantage of the method is, that it can be integrated quite easily in the present repre-
sentation of the decay amplitudes as will be explained below. Also the factorization into a set of
decay amplitudes which contain no unknowns and a set of production amplitudes which are
inferred from the data can be kept. The latter form is computationally very advantageous as
has been discussed in section 3.4.
In order to implement the scheme2 described above one 5-body decay amplitudeψα for exam-
ple

ψ1++ f 1π = 1−1++0+ π−
�

1
1

�

f 1(1285)→π∓[1]a 1(1269)→π±[0]ρ(770)

is replaced by a series of amplitudesψk
1++ f 1π

in which the propagator (c. f. equation 3.6) of the

2The method has only been implemented for rank 1 fits.
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f 1(1285) is replaced3 by

Q(m4π, mπ, m3π) =

¨

1 : m4π ∈ [mk , mk +δm [
0 : else

(5.2)

inside a mass interval which starts at m4π =mk and has a width of δm = 50 MeV/c 2 for exam-
ple.

ψ1
1++ f 1π

= 1−1++0+ π−
�

1
1

�

f 1(700−750)→π∓[1]a 1(1269)→π±[0]ρ(770)

ψ2
1++ f 1π

= 1−1++0+ π−
�

1
1

�

f 1(750−800)→π∓[1]a 1(1269)→π±[0]ρ(770)

ψ1
1++ f 1π

= 1−1++0+ π−
�

1
1

�

f 1(800−850)→π∓[1]a 1(1269)→π±[0]ρ(770)

...

Here the symbols f 1(m low −mhigh) indicate the isobar-mass bin that is covered by the ampli-
tude. Note that the whole angular structure of the amplitude is left unchanged. Indeed it is the
angular correlations which will allow to extract the correct behavior of the isobar amplitude.
Thus the initial amplitude is expanded in the following way:

ψ1++ f 1π ≈
∑

k

f kψ
k
1++ f 1π

Now follows the crucial step: Similar to the treatment of the `S-coupling constants g `S (see
section 3.2.1) the complex f k are absorbed into the production amplitude T k

1++ f 1π
that is asso-

ciated with the k th part of the decay amplitude and thus become part of the fitting parameters.
Otherwise the fit in fixed bins of the 5-body mass is carried out as usual.
In order to analyze the 4-body system one then can select a certain 5-body-mass bin and plot
the results for the production amplitudes T k

1++ f 1π
as a function of the 4-body mass.

5.3.2 Results for Selected 4π Partial Waves

In order to ensure a large-enough data sample all 5π events in the region m5π ∈ [1780, 1960]MeV/c 2

have been combined in the fit. The complete final waveset has been used in this fit, with only
the 1−1++0+ f 1(1285)πP-wave being replaced by the piecewise parametrization.
Figure 5.17 shows the I G (J PC ) = 0+(1++) 4-pion amplitude extracted from the data using the
method described above. There is a very clear peak in the intensity at m4π = 1275 MeV/c 2

which is also associated with a clean phase-motion in the same region. The Argand-plot shows
the amplitude in the complex plane with the numbers on the markers indicating the mass at
which the corresponding measurement has been taken. There is a clear circular, counterclock-
wise motion. These features are exactly what would be expected for the f 1(1285) resonance
decay into four pions. The results thus nicely confirms the initial assumption of the presence
of this resonance and justifies its usage as an isobar.

3Angular momentum barrier factors are taken into account by absorption into the subsystem phase-space fac-
tors.
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Note that the Argand-plot is rotated away from the origin of the complex plane. The reason is,
that the production amplitudes inferred inn the fit also contain the contribution from the 5π
system, which has not been factored out. In principle such a factorization is possible using an
extension [160] of the techniques of the mass-dependent fit (see chapter 6.1).
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Figure 5.17: The 4π amplitude with I G (J PC ) = 0+(1++) decaying via πa 1(1260). The f 1(1285)
resonance is clearly visible in intensity and phase motion. Also the Argand-plot shows a clear
circle.

A second example is displayed in Figure 5.18. Here the I G (J PC ) = 0+(2++) 4-pion subsystem in
the 2−+ f 2(1270)πS-wave has been extracted. The intensity of this 4-pion amplitude also shows
a peak at 1275 MeV/c , albeit with a considerably larger width than the f 1(1285) and a long tail
to higher masses. There is also a clear phase motion and a clear signature of a resonance in the
Argand-plot. These findings are clearly in agreement with the hypothesis that here the decay
of the f 2(1270) into four pions is seen. The signal is not as clean as for the f 1(1285), though.
Whether this has to do with the broad 5πmass range over which the procedure has effectively
integrated here or if there are additional contributions to the 0+(2++ system — beyond the
f 2(1270) resonance — remains to e investigated. For such studies a larger data set would be
extremely valuable.

The preliminary conclusion, which can be drawn from the prototype analyses presented in
this section, is that detailed information on the 4-pion amplitude can indeed be extracted if
enough data on the 5π system is available to permit the binned-isobar ansatz. The method
would allow the investigation of scalar as well as isoscalar 4-pion systems and could be an
indispensable tool for the search for isoscalar spin-exotic states. Also the principal method
can also be applied to subsystems other than the four pions, for example to perform precision
studies of the (ππ)S−wave in the 3π final state. Another interesting possibility is to study the
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Figure 5.18: The 4π amplitude with I G (J PC ) = 0+(2++) decaying via πa 1(1260). The f 2(1270)
resonance is clearly visible.

dependence of the extracted subsystem amplitudes on the mass of the source system.

Suggestions for future research:

• Run binned-isobar fit on larger data sample.

• Perform a mass-dependent parametrization of the extracted isobar amplitudes.

• Investigate isobaric systems in other partial waves.

• Apply method to study isoscalar scalar, and spin-exotic states.
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Chapter 6

Mass Dependent Parametrization of the
Spin Density Matrix

But a knowledge of the positions and intensities of the spectra
does not suffice for the determination of the structure. The
phases with which the diffracted waves vibrate relative to one
another enter in an essential way.

Max von Laue

THIS chapter describes the techniques employed to parametrize the mass dependence of
the spin-density matrix-elements in terms of resonant and non-resonant contributions.

Based on the general discussion of resonance parametrizations given in section 1.3 a simplified
model and its application to the data are described. Finally the results are discussed.

6.1 Mass Dependent Fit Formalism

According to the arguments presented in section 1.3 the spin density matrix is parametrized as
a sum of relativistic Breit-Wigner amplitudes and constant background terms in the following
form:

T εαT ε∗β =ρ
ε
αβ (m ) =

 

∑

k

C εαkAαk (m )
p

ρα(m )

! 

∑

l

C εβ lAβ l (m )
p

ρβ (m )

!∗

·ρ5π(m )F (m )

(6.1)
TheAαk (m ) take a specific form representing either resonances or constant background terms.
The resonant components are described by relativistic Breit-Wigner amplitudes

Aαk (m , M 0,Γ0) =
M 0Γ0

m 2−M 2
0 + iΓ0M 0

k = resonance (6.2)

with a fixed width Γt ot . Due to the lack of knowledge about the coupling of the resonances
to other channels a dynamic width has not been used in the fits presented here. Thresholds
in the region of interest such as those collected in table 1.4 are not yet taken into account in
the analysis. Including such information in the future will lead to an improvement of the fits
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and the extracted resonance parameters. As long as no explicit information on additional open
channels is available experimentally the resonance parameters have to be considered as ap-
proximate values. In each fitted wave a coherent, constant background term is allowed, such
that

Aαk (m ) = cα for k = bkg. (6.3)

The phase space factors

ρα(m ) =

∫

|ψεα|
2dτ (6.4)

are obtained from the phase space integrals used in the mass independent fit (c. f. section 3.4).
The phase space integrals used here already contain the angular momentum barrier factors.
The shape of the five-body phase space ρ5π(m ) as a function of the invariant 5-body mass m
is obtained from a Monte-Carlo simulation, using the GENBOD multi-body event generator
[139]. For ease of use the resulting distribution is parametrized with a function of the following
form:

ρ5π(m ) = a (m −mthresh)5 · [1+b (m −mthresh)] (6.5)

where mthresh = 698 MeV/c 2 is the threshold for the production of five charged pions.

 mass (MeV/c2)π5
800 1000 1200 1400 1600 1800 2000 2200 2400

1

10

210

3
10

410

Figure 6.1: 5 pion phase space. The histogram shows the distribution predicted by the GENBOD
Monte Carlo generator. The red line is the fit according to equation 6.5.

The form of the function 6.5 can be motivated by examining the behavior of the five-body phase
space in the limiting cases close to threshold and for m →∞ respectively [161]. For the former
case ρ5π|5mπ ∼m 5 while for the latter one finds ρ5π|m→∞ ∼m 6. The parameters a and b have
been determined from a fit to the Monte Carlo pseudo-data shown in Figure 6.1. While a is just
an overall normalization to the number of Monte Carlo events, b = 4.859 GeV−1c 2 determines
the shape of this phase space.
In addition it turns out to be necessary to describe the data to include a form factor F (m ) as
described in section 1.3. The functional form has been chosen as a simple exponential damp-
ening

F (m ) = exp (−c ff(m −mthresh))

126



CHAPTER 6. MASS DEPENDENT PARAMETRIZATION OF THE SPIN DENSITY MATRIX

where the dampening factor c has been left free in the fit and is extracted from the data to a
value of

c ff = 1.742±0.025 GeV−1c 2

.
According to the discussion in section 1.3 the coupling constants Cαk are allowed to be com-
plex, such that each component of the model has an overall, mass independent phase, the
value of which is left floating in the fit. Since absolute phases cannot be measured the cou-
pling for the 2−+0+π− f 2(1270)S-wave is restricted to be real valued. Note that by construction
the background is assumed to have no 5-body-mass dependent phase shift. In this model any
phase shift, therefore, can only be explained by resonant contributions. Note that if a reso-
nance is introduced in the model, by default it is allowed to couple to each partial-wave with
the corresponding quantum numbers that is taken into account for the fit.
With this model for the cross-section the χ2 function is written in the following way:

χ2 =
bins
∑

m

waves
∑

αβ

(ρm
αβ −ραβ (m ))

T C−1
αβ (ρ

m
αβ −ραβ (m )) (6.6)

Here ρm
αβ is the spin density matrix element as measured by the mass independent fit in the

mass bin m . The complex number is represented in vector form with the real part being the
first component and the imaginary part being the second component. Cαβ is the 2× 2 covari-
ance matrix of the real and imaginary parts of the spin-density matrix element and ραβ (m )
represents the mass-dependent parametrization. This formulation of the χ2 function neglects
the covariances between different waves. The minimization is done with the ROOT version of
Minuit2 [141]. Each fit is performed in three steps: At the beginning only the coupling con-
stants C εαk and the damping factor c ff are left free in the fit, the resonance parameters are kept
fixed at some reasonably chosen values. In a second step the mass-parameters are released
and only the widths are kept fixed. At last also the widths of the Breit-Wigner amplitudes are
released and the final optimization is performed using the previous iteration as its set of start-
ing values. This approach has proven useful in order to avoid unphysical solutions, where in
the early stages of the optimization the minimizer gets stuck on a solution where one or more
parameters reach the limits of their allowed range. If there are more than one resonance with
the same J PC , the the corresponding mass-parameters have to be limited to well defined, non-
overlapping ranges in order for the parametrization to be uniquely defined. In any given fit it
is therefore predefined by the choice of the parameter ranges how the Breit-Wigner amplitudes
are ordered from the lightest to the heaviest state. Also for the widths limits have been set.
For each individual fit several attempts have been made in order to test the influence of the
choice of starting values and parameter limits.
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6.2 Resonance Extraction Results

In order to restrict the problem to a manageable size, only for a subset of the amplitudes pre-
sented in section 5 will a mass-dependent parametrization be constructed. In order to facilitate
the search for resonances in all three major J PC states that contribute, two 0−+ partial waves,
four 1++ partial waves and four amplitudes with J PC = 2−+ have been picked. These partial
waves have all been used in all of the top-20 partial-wave decomposition models (see table 4.3)
and have been chosen because they display a very good stability with respect to modifications
of the waveset. Also to some extend the choice attempts to include representative waves with
different orbital angular momenta and different decay topologies. A list of the ten selected
amplitudes is given below:

J PC M ε ` s Isobar1 Isobar2 Decay Isobar2

0−+0+ S 0 π− f 0(1500) ρ(770)
h

0
0

i

ρ(770) •

0−+0+ S 0 ρ(770)a 1(1260) π−
h

0
1

i

ρ(770) •

1++0+ P 0 π− f 0(1370) ρ(770)
h

0
0

i

ρ(770) •

1++0+ P 1 π− f 1(1285) π∓
h

1
1

i

a 1(1260) •

1++0+ S 1 ρ(770)π(1300) π−
h

1
1

i

ρ(770) •

1++0+ D 1 (ππ)Sa 1(1260) π−
h

0
1

i

ρ(770) •

2−+0+ S 2 π− f 2(1270) π∓
h

1
1

i

a 1(1260) •

2−+0+ S 2 ρ(770)a 1(1260) π−
h

0
1

i

ρ(770) •

2−+0+ S 2 ρ(770)a 2(1320) π−
h

2
1

i

ρ(770) •

2−+0+ D 0 ρ(770)a 1(1260) π−
h

0
1

i

ρ(770) •

Table 6.1: Partial waves used for the mass-dependent analysis.

There are three waves in this list which have also been studied by other experiments in dif-
ferent final states. These are the 0−+π− f 0(1500)S-wave, the 1++π− f 1(1285)P-wave and the
2−+π− f 2(1270)S−wave.

Analysis Strategy The main questions that arises as one tries to describe the partial waves
and their interference terms as functions of the 5-body mass is the number of resonances which
should be allowed in each J PC channel. The resonance parameters will then be inferred from
the data.
Several hypotheses on the number of resonances have been tested. As a basic assumption
one resonance for each J PC sector was allowed and the model improved from that basis by
adding further resonant terms. It was found that at least 7 resonant terms are needed to achieve
a satisfying description of the data. We first present an overview of this fit before each J PC

sector is being discussed in detail. In particular the motivations for the inclusion of the different
resonant contributions will be explained.
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Figure 6.2: Each entry in this matrix of plots shows an element of the spin-density matrix as
a function of m5π (in black). The light-blue error-bars are the estimates of systematic uncer-
tainties from the choice of waveset for the mass independent partial-wave decomposition. On
the diagonal the intensities of the ten selected partial waves are shown. The partial waves are
ordered from top-left to bottom-right in the same order as they are listed in table 6.1. In the
upper-right (lower-left) triangle the real (imaginary) parts of the corresponding interference
terms are plotted. The red curve shows the fit result of the parametrization with 7 resonances
as described in the text.
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Figure 6.2 shows the result of a mass-dependent fit with seven resonant contributions. This
overview-plot is organized such as to resemble the form of the spin-density matrix with the
intensities being displayed on the diagonal sub-plots and the real and imaginary parts of the
interference terms in the off-diagonal sub-plots in the upper-right and lower-left triangle, re-
spectively. Each graph shows the respective spin-density matrix-element as a function of the
5-body mass. The black data points are the results from the mass-independent partial wave de-
composition, the light-blue error bands indicate the systematic uncertainty from the waveset
selection (see chapter 5). The mass-dependent fit of the parametrization described in section
6.1, including coherent, phase-space-like background in each wave is shown in red.

Parameter Fit PDG

Resonance J PC (MeV/c 2)

π(1300) 0−+ M 1400∗ 1300±100
Γ 500† 200...600

π(1800) 0−+ M 1781±5+1(+8)
−6(−6) 1816±14

Γ 168±9+5(+62)
−14(−15) 208±12

◦ a 1(1900) 1++ M 1853±7+36(+36)
−6(−49)

Γ 443±14+12(+98)
−45(−65)

◦ a 1(2200) 1++ M 2202±8+15(+53)
−8(−11) 2096±17±121

Γ 402±17+41(+125)
−52(−51) 451±41±81

π2(1670) 2−+ M 1719.0† 1672.4±3.2
Γ 251.4† 259±9

π2(1880) 2−+ M 1854±6+6(+6)
−4(−9) 1895±16

Γ 259±13+7(+7)
−17(−31) 235±34

◦ π2(2100) 2−+ M 2133±12+7(+43)
−18(−18) 2090±29

Γ 448±22+60(+80)
−40(−40) 625±50

M 2245±60

Γ 320+100
−40

◦ not established ∗ at limit; † fixed in fit

Table 6.2: Summary of extracted resonance parameters. The first uncertainty is the statisti-
cal error. The second, asymmetric uncertainty is the systematical error of the fit to the final
waveset. The third uncertainties, listed in brackets, include also the systematic uncertainties
from the choice of the final waveset. PDG values are from [1]

All effective coupling constants are taken complex valued except for the coupling of theπ2(1670)
to the π f 2(1270)S-wave partial wave, which is real-valued to fix the overall phase of the ampli-
tude. Since theπ2(1670) is a very well known resonance it has been used as a sort of prerequisite
to stabilize the fit. To achieve this initial fits have been done with the parameters of theπ2(1670)
fixed to their PDG-values [1]. After a stable fit had been achieved in this fashion the parameters
of all other resonances were kept fixed and the π2(1670) parameters were left floating in the fit.
For all further fits these parameters have been kept fixed again, which is why no uncertainties
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on the π2(1670) are given here.

The ability of the relatively simple model to describe even small details in the interference
terms is remarkable. The reasoning behind including seven resonant terms will be discussed
in the sections below. Table 6.2 summarizes the extracted resonance parameters from this fit.
There are two 0−+ resonances, two 1++ and three 2−+ resonances. Of those only the π(1300),
π(1800), and π2(1670) and to some extend the π2(1880) are well established [1]. The π(1300)
is actually lying below the mass range investigated here, however, even at masses as high as
1.8 GeV/c 2 there still seems to be a contribution from the tail of this broad resonance. There
is a clear signal for the π(1800) at a mass and width slightly below the PDG average. In section
6.2.1 these findings will be discussed in some more detail.

The 1++ sector is not very well understood in the mass region under investigation. We need
two very broad and overlapping resonances to fit the data as shown below in section 6.2.2.

In addition to the π2(1670) there are two further 2−+ states needed. The π2(1880) has already
been mentioned in section 1.2 as a possible hybrid meson candidate. We find Breit-Wigner
parameters that compare well to previous findings and a significant coupling especially to the
ρa 1 and ρa 2 decay channels. The third resonance is quite heavy and features a large width of
∼ 450 MeV/c 2. There are two states listed in the PDG with similar resonance parameters (see
table 6.2). The number of π2 states which are needed to describe the data will be discussed in
section 6.2.3.
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Figure 6.3: Extracted resonance parameters for the 7-resonance fit. The systematic errors
shown include the systematics from choosing different fitting-ranges, using or neglecting the
covariances between real and imaginary parts of the interference terms and the choice of
waveset.
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Figure 6.3 collects the extracted resonances in one overview where the width is plotted against
the Breit-Wigner mass of the resonances. The black markers indicate the most likely solu-
tion with statistical uncertainties. The colored boxes indicate the full systematic uncertainties,
which are given in table 6.2. The first set of systematic errors which are listed, are obtained
by varying the mass-range over which the fit is performed. This leads only to small systematic
changes of the extracted resonance parameters. Furthermore, the similar parametrizations
have been obtained by using two different analysis software packages. This cross-check, which
differs in the numerical implementation of many intermediate steps, leads to very similar pa-
rameters. Any differences found here are also taken into account as systematic uncertainties.
The systematic errors listed in brackets are obtained from studying the sensitivity of the results
to variations of the waveset. In addition to the final waveset (tables 5.1 and 5.2) the five best
performing wavesets produced by the genetic algorithm (see chapter 4) have been fitted with
the 7-resonance model. The systematic uncertainties obtained in this way are much larger in
most cases than any other uncertainty in the problem.
The following subsections contain a detailed discussion of the fit results for the different partial
waves and comparisons with published results from other experiments. Note that the following
plots have all been obtained from a simultaneous fit to the complete 10×10 spin-density matrix
shown in figure 6.2. In order to study the finer details we will pick out exemplary elements of
the spin-density matrix.
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6.2.1 J PC M ε= 0−+0+ Partial Waves

In the mass region covered here the dominant state in the J PC = 0−+ sector is the well known
π(1800), which we find clearly in the f 0(1500)π decay mode.
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(a) π f 0(1500) S-wave
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(c) Phase difference.

Figure 6.4: J PC = 0−+ waves with mass-
dependent parametrization. (a) Intensity of
the π f 0(1500) S-wave (b) Intensity of the
ρ(770)a 1(1269) S-wave (c) Phase difference
between these two partial waves. In red the
fit containing two resonances and a coherent
background.

Figure 6.4(a) shows the intensity of the 0−+π f 0(1500) S-wave with the f 0(1500)→ ρ0ρ0 decay
mode. This partial wave exhibits a very clear peak at 1.8 GeV/c 2 which can be described reason-
ably well by the mass-dependent parametrization. The intensity of the 0−+ρ(770)a 1(1260)S-
wave is shown in Figure 6.4(b). The peak in the intensity is at a lower mass than in theπ f 0(1500)
case. Indeed at ∼ 1.8 GeV/c 2 there is a rather sharp drop in the intensity. This is explained in
the fit as being due to a destructive interference of theπ(1800)→ρa 1 decay amplitude with the
ρa 1 background. The phase motion of the 0−+ρ(770)a 1(1260)S-wave relative to 0−+π f 0(1500)
is shown in Figure 6.4(c). At small masses below 1.7 GeV/c 2 there is an additional phase mo-
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tion which is not accounted for in the model, although the π(1300) has been allowed as an
additional contribution coupling to both channels. Note, however, that the threshold for the
f 0(1500)πdecay channel is rather sharp due to the narrow f 0(1500)withΓ f 0(1500) = 109±7 MeV/c 2

and is located at mthr =m f 0(1500)+mπ ≈ 1645 MeV/c 2. Furthermore although both theρ as well
as the a 1(1260) are rather broad states. The region below 1.65 GeV/c 2 is at the edge of the phase
space for a decay into these states with ma 1 +mρ − Γa 1 − Γρ ≈ 1.6 GeV/c 2. A more detailed
model of possible background contributions, especially from multi-peripheral processes may
be needed here to model the behavior at threshold (see also section 2.2.2).
The mass of the π(1800) is fitted to a value of mπ(1800) = 1827 ± 6.9 MeV/c 2 that is in good
agreement with the PDG average value of m PDG

π(1800) = 1816± 14 MeV/c 2 [1]. Also the width of
Γπ(1800) = 224±17.6 MeV/c 2 is in agreement within uncertainties to the PDG value of Γπ(1800) =
208± 12 MeV/c 2. A closer look at the mass values from different analyzes gathered in the PDG
report [1] shows a spread from as low as ∼ 1770 MeV/c 2 to up to ∼ 1870 MeV/c 2. From this
compilation it is clear that the extracted resonance parameters strongly depend on the spe-
cific method used and analyses of different channels tend to give different answers. The result
obtained here is consistent with these previous measurements.
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Figure 6.5: Comparison of the f 0(1500)π s-wave intensity: a) obtained from an analysis of the
ηηπ system at BNL [162]. b) obtained from an analysis of the ηηπ system at VES [163] c) COM-
PASS 5π result. Note the slightly different scaling of the abscissas.

The π f 0(1500) decay mode of the π(1800) has been of special interest since the narrow iso-
scalar f 0(1500) is a prime glueball candidate. Both the BNL E852[162] and VES [163] collab-
orations have studied this partial wave in the ηηπ final state. The intensities that have been
extracted in these 3-body partial wave analyzes are shown in Figure 6.5 in comparison to the
COMPASS 5π result. There is a reasonable qualitative agreement between the three results.
However, in order to study the details of the resonance shape more data will be required and in
particular coupled channel effects will have to be investigated.

π(1300) Contribution

The π(1300) is a very broad resonance that has been observed in the 3π system [1]. Because of
its large width of 200 to 600 MeV/c 2 the state’s parameters are not very well determined. Due to
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the large width the high-mass tail of the resonance might contribute even to the region above
1.6 GeV/c 2 and for that reason it has been included in the fit. The 5π final state with the given
amount of data provides too little coverage in the relevant region to get a credible fit of the
parameters of this state. Note that the π(1300) is also occurring as an isobar in several decay
amplitudes. The analysis is not completely self-consistent in the sense that the parameters
used for the isobars are not synchronized with the parameters found in the mass-dependent fit
to the 5π spin-density matrix.

6.2.2 J PC M ε= 1++0+ Partial Waves

The 1++ sector is the most difficult one to describe in terms of the model used here. If one uses
the ansatz nevertheless, a single resonance is insufficient to describe the observed interfer-
ence patterns. Also, looking at previous analyzes the situation in the region around 1.8 GeV/c 2,
where the 1++ partial waves exhibit an intensity peak is especially unclear and so far just a few
publications have presented fits to these partial waves in this mass-region (see [63] for exam-
ple).
In the 5π data we find a good description with two heavy 1++ states. A prominent signal is
observed in the π f 0(1370) decay mode as shown in Figure 6.6(a). An interesting feature of this
amplitude is the drop to zero intensity at 2.2 GeV/c 2 which in the mass-dependent fit is inter-
preted as a strong destructive interference of the background with a resonance. As mentioned
in section 1.2, a significant branching fraction into this decay mode according to the flux-tube
model contradicts the interpretation of a heavy a 1 resonance as a hybrid meson [34]. Here we
confirm findings of earlier analyses.
A well studied amplitude is the 1++ f 1(1285)π partial wave. The results of the mass-dependent
fit for this wave is shown in Figure 6.6(b). The intensity distribution is broad around 1.8GeV/c 2

and reaches to unusually low masses for a P-Wave, as has also been noted by other experiments
(see for example [63]). Figure 6.6(c) shows the phase difference of the f 1πP-wave to the f 0πP-
wave, which is well reproduced with this parametrization.
Another strong J PC = 1++ amplitude is the decay mode ρ(770)π(1300) in S-wave. The corre-
sponding intensity is shown in 6.7(a). It resembles the shape of the π f 0(1370) P-wave with the
dip at 2.2 GeV/c 2 being not quite as expressed.
The relatively small D-wave has a remarkable influence in the fit. It’s interference terms help to
stabilize the fit in the 1++ sector and allow the separation of the two contributing states. Figure
6.7(b) shows the result. Figure 6.7(c) shows the phase difference between the 1++ρ(770)π(1300)S-
wave and the 1++(ππ)Sa 1(1260)D-wave.
Figure 6.8 finally shows the interference between the 1++π f 1(125)partial wave and the 0−+π f 0(1500)
amplitude. The rising relative phase produced by the π(1800) is clearly visible in this plot, al-
though the magnitude of the effect is greatly reduced by the presence of the two a 1 resonances,
which create considerable phase motion in their respective channels. The fit again fails to de-
scribe the phase at low masses and from this plot we can conclude that this problem has its
roots in the representation of the 0−+π f 0(1500) amplitude (see also discussion in section 6.2.1).
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(a) 1++π f 0(1370) P-wave
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(b) 1++π f 1(1285) P-wave
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Figure 6.6: J PC = 1++ partial waves with
mass-dependent parametrization. (a)
π f 0(1370) P-wave intensity. Note the drop
of this intensity to almost zero around
m5π ∼ 2.2 GeV/c 2 (b) π f 1(1285) P-wave
intensity (c) Phase difference. The red line
shows the fit with two 1++ Breit-Wigner
amplitudes and a coherent background in
each wave.
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(a) 1++ρπ(1300)S-wave
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(b) 1++(ππ)S a 1(1260)D-wave

)2mass (GeV/c
1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

φ
∆

­350

­300

­250

­200

­150

­100

­50

0

)2mass (GeV/c
1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

φ
∆

­350

­300

­250

­200

­150

­100

­50

0

prelim
inary

COMPASS 2004
 Pb­π+π­π+π­π → Pb ­π (770) ρ [0] ­π →(1269) 

1
a

1
2 σ)

+
0

++
(1

­
1

(770) ρ [1] 
­

π →(1300) π
1
0(770) ρ)+0++(1­1

/nfs/nas/user/sneubert/PWAFITS/FINAL/fitF6/MASSDEPNEW/10w.7res.1350.3050.root

(c) Phase difference

Figure 6.7: (a) 1++ρπ(1300)S-wave intensity
(b) (ππ)Sa 1(1260)D-wave intensity (c) Phase
difference. Note that the rapid phase motion
just below m5π ∼ 2.2 GeV/c 2 is not due to a
single narrow resonance but can be explained
with the interference of two broad states.
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(a) 0−+π f 0(1500) S-wave
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(b) 1++π f 1(1285) P-wave
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Figure 6.8: Interference between the
J PC = 0−+π f 0(1500) S-wave (a) and the
1++π f 1(1285) P-wave (b). The phase differ-
ence is shown in (c). The red line shows the
fit with two 1++ and two 0−+ Breit-Wigner
amplitudes and a coherent background in
each wave.
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Fit With Only One a1 Resonance

An alternative scenario would be to fit the 1++ sector with only one resonance and the non-
resonant background. Figure 6.9 shows the fit of such a model to the data. It is apparent
that especially above 2.2 GeV/c 2 the phases and especially the 1++(ππ)Sa 1(1260)D-wave are
not well described. This is the main motivation to parametrize the 1++ waves with two reso-
nances. However, a valid criticism of this ansatz would be that the neglect of mixing terms as
discussed in section 1.3.1 is a problematic simplification in a situation where there is so strong
overlap between two resonances as in the case here with the two a 1 states we have used. For a
better understanding of the system this will definitely have to be taken into account in future
analyses.

Comparison To Other Experiments

Due to the narrow isobar the f 1π system is relatively easy to study, especially in decay channels
where the contributions from other isobars is small, such as f 1 → ηπ+π−. The comparison of
our result to a partial-wave analysis of this final state from the E835 collaboration is shown in
Table 6.3.
The BNL fit [63] requires two a 1 resonances with similar parameters as in the 5π case (see table
6.3). However, the parameters of the lighter state at 1714 MeV/c 2 had to be fixed in that analysis
in order to get a converging fit.

Resonance J PC (MeV/c 2) COMPASS 5π E835 ηπ+π−π−

◦ a 1(1900) 1++ M 1853±7 1714(fixed)
Γ 443±14 308(fixed)

◦ a 1(2160) 1++ M 2202±8 2096±17±121
Γ 402±17 451±41±81

◦ not established

Table 6.3: Comparison of the heavy a 1 resonance parameters extracted in 1++ f 1(1285)π →
ηπ+π−π− [63] and the results obtained in the 5π final state.

It should be noted that the resonant nature of the 1++ wave in the f 1πdecay mode is not only
interesting in itself. The question is significant because in the above mentioned analysis the
two a 1 states have been used as interferometers to claim a spin exotic 1−+π1(2000)meson. An
independent confirmation of the resonance content of the 1++ wave in this mass region would
be a very important check of that approach. The results obtained from the 5π state provide
further evidence on such resonant contributions to the 1++ partial waves, however, mixing
between these two broad states as well as more detailed investigations of the non-resonant
background should be conducted before final conclusions can be made.
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(a) π f 0(1370) P-wave
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(b) ρπ(1300)S-wave
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Figure 6.9: J PC = 1++ partial waves with mass-dependent parametrization containing only one
J PC = 1++ resonance.
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6.2.3 J PC M ε= 2−+0+ Partial Waves

In the 2−+ sector three resonances are needed to describe the data. Apart from the very well
established π2(1670)we find two more resonances: The π2(1880) and a heavy π2(2100).

The π f 2(1270) decay mode of the π2(1670) is well known from the 3π system with the f 2(1270)
decaying into π+π−. The result of the mass dependent fit for the 2−+ f 2(1270)πS-wave, in the
case of a 4-pion decay of the f 2(1270) is shown in Figure 6.10(a). The peak at m5π ∼ 1.7 GeV/c 2

is dominated by the π2(1670). In comparison Figure 6.10(b) shows the 2−+ρa 1 S-wave, which
displays a quite peculiar shape with a prominent dip at m5π ∼ 1.9 GeV/c 2. This dip is due to a
destructive interference of the π2(1880) with the two neighboring states and the background.
The strong second peak in the spectrum can only fully be explained by allowing a third reso-
nance as will be discussed below.
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Figure 6.10: J PC = 2−+ partial waves. (a)
π− f 2(1270)S-wave intensity. (b)ρa 1(1269)S-
wave intensity. (c) Phase difference. The red
line shows the fit with three 2−+ Breit-Wigner
amplitudes and a coherent background in
each wave.
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The phase difference between these two waves is shown in Figure 6.10(c) and is quite well fit
by the parametrization with three Breit-Wigner amplitudes in the 2−+ sector. The rapid phase-
motion around m5π ∼ 1.9GeV/c 2 is quite characteristic and is well above the region where the
π2(1670) is resonating, lending evidence to the existence of a second resonance — theπ2(1880).
This picture is consistently repeated in the other 2−+ partial waves.
One of the most stable amplitudes in the partial-wave decomposition is the 2−+ρ(770)a 2(1320)S-
wave shown in Figure 6.12(a). Both the peak at 1.9GeV/c 2 as well as the shoulder around
2.2 GeV/c 2 are successfully described. The ρa 1(1269) D-wave is shown in Figure 6.12(b). The
fit describes the gross features of this intensity, however, above m5π ∼ 2 GeV/c 2 there are more
sudden intensity fluctuations as can be represented with the parametrization used here. In
the phase difference of these two amplitudes shown in Figure 6.12(c), the situation is reverse.
While it varies smoothly and rather slow between m5π ∼ 1.8 GeV/c 2 and 2.4 GeV/c 2 the fitted
parametrization shows a small kink at m5π ∼ 2.1 GeV/c 2. We will come back to these features
in the discussion on the number of 2−+ resonances required.
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Figure 6.11: (a) Phase difference of 1++π f 0(1370)P-wave to 2−+ρa 2(1320)S-wave. (b) Phase
difference of 2−+ρa 1(1269)D-wave to 2−+ρa 1(1269)S-wave.

Another set of phases is shown in Figure 6.11 illustrating the quality of the fit for these ele-
ments of the spin-density matrix. The interference between the 1++π f 0(1370)P-wave and the
2−+ρa 2(1320)S-wave is shown in Figure 6.11(a). A good representation over the whole mass
range is achieved here. Figure 6.11(b) shows the phase difference between the 2−+ρa 1(1269)D-
wave and the corresponding S-wave.
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Figure 6.12: J PC = 2−+ partial waves. (a)
ρa 2(1320) S-wave intensity. (b) ρa 1(1269)D-
wave intensity. (c) Phase difference
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Number of 2−+ Resonances

With three Breit-Wigner terms in the parametrization of the 2−+ amplitude the natural ques-
tion arises what is the true number of states required to fit the data. Before discussing the
different attempts that have been made to answer this question, a word of caution is in order.
As has been discussed in section 1.3.1 overlapping resonances will mix, leading to amplitudes
that can differ significantly from the parametrization used here. Furthermore an unambiguous
determination of the poles of the amplitude can only be achieved through a proper analyti-
cal continuation into the complex s -plane, which is not possible with the simplified amplitude
used in our fit. Consequently in this analysis we are only searching for a parametrization of the
spin-density matrix elements for physical s =m 2

5π ∈R.
In order to investigate the number of Breit-Wigner terms needed to fit the 2−+ amplitudes fits
with up to four resonances have been performed, while the 0−+ and 1++ sectors of the model
have been kept unchanged but their parameters allowed to be re-optimized.
For an illustration of the outcome of this procedure figures 6.13 to 6.16 show the two S-wave
amplitudes 2−+ρa 1 (a) and 2−+ρa 2 (b) with the real (b) and imaginary (d) parts of their in-
terference term. This is of course just a subset of all the amplitudes that have been fitted si-
multaneously, chosen here because they most clearly show the effect of changing the number
of resonances. In red the inferred mass-dependent parametrization is shown. The different
fits correspond to the cases with one, two, three or four resonances. Each fit also includes a
coherent, phase-space-like background term.
Both the one and two resonance fit give a very bad description of the data. While the peak
at ∼ 1.7 GeV/c 2 in the ρa 1 S-wave can be reproduced reasonably well both fits fail to describe
the high-mass part of the amplitude, the intensity in the ρa 2 S-wave and also the details of the
interference term.
By comparison the three resonance model shown in Figure 6.15 results in a nice fit. In par-
ticular the intermediate step visible in the real part of the interference term (Figure 6.15(b)) at
m5π ∼ 1.9G e V /c 2 can be reproduced in this model. The resulting heavy π2(2100) state has a
fitted mass of m = 2133±12 MeV/c 2 and a width of Γ= 448±22 MeV/c 2. It was this drastic im-
provement of the fit which led to the conclusion that at least three resonant terms are needed
to describe the data.
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Figure 6.13: The 2−+ρa 1 (a) and 2−+ρa 2 (d) amplitudes and their interference (c,b) as de-
scribed by fit with only one π2 resonance.
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Figure 6.14: The 2−+ρa 1 (a) and 2−+ρa 2 (d) amplitudes and their interference (c,b) as de-
scribed by fit with two π2 resonances.
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Figure 6.15: The 2−+ρa 1 (a) and 2−+ρa 2 (d) amplitudes and their interference (c,b) as de-
scribed by the fit with three π2 resonances. This is the reference fit.
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Figure 6.16: The 2−+ρa 1 (a) and 2−+ρa 2 (d) amplitudes and their interference (c,b) as de-
scribed by the fit with four π2 resonances. Note that the this fit is unstable if the allowed pa-
rameter ranges are changed.

The PDG [1], however, in addition to the π2(1670) and the π2(1880) lists two 2−+ candidates
with masses higher than 2 GeV/c 2. The third resonant term required in our fit lies in between
these values and does not obviously fit any of them (see table 6.4). The π2(2100) is listed in the
proper PDG table but omitted from the summary tables and flagged as needs confirmation. The
π2(2245) is listed under further states, which is the least established category of resonances in
the PDG. A recent reanalysis of Crystal Barrel data has revised the mass of this state to the value
of 2285±20±25 [164].

Therefore, in order to test the PDG scenario a fourth 2−+ resonance has been allowed in the fit.
The result for the two example waves is shown in Figure 6.16. Indeed there is some improve-
ment in the finer details of the amplitude. The step in the real part of the interference term is
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Resonance J PC (MeV/c 2)
◦ π2(2100) 2−+ M 2090±29

Γ 625±50
◦ π2(2245) 2−+ M 2285±20±25

Γ 250±20±25
◦ not established

Table 6.4: High mass π2 candidates listed in the PDG [1] in need of confirmation.

even better described and also for the intensities the parametrization follows the data points
very closely. The improvements achieved in this way are even more visible if one compares
the phase difference between the 2−+ρa 2 S-wave and the ρa 1 D-wave as shown in Figure 6.17.
The smooth variation of this phase-difference is well reproduced in the fit with four resonant
terms. Apparently a peculiar cancellation between the different terms takes place to generate
this result.
However, it turns out that the resonance parameters extracted in the model with four Breit-
Wigner terms are not stable and it was not possible to achieve a stable fit with this parametriza-
tion without any parameter hitting the limits of its allowed range. Probably this shows that us-
ing so many terms without taking mixing effects into account really stretches the limitations of
the ansatz too far, especially if there indeed would be an extremely wide π2(2100) with a width
of over 600MeV/c 2 as the Crystal Barrel results imply. More detailed studies therefore require
taking into account mixing effects and also the coupling to other channels as far as possible.
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Figure 6.17: Comparison of the parametrization of the phase-difference between the 2−+ρa 2 S-
wave and theρa 1 D-wave. (a) shows the fit with three π2 resonances. (b) with four resonances.
Note that the latter fit is unstable if the allowed parameter ranges are changed.
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6.2. RESONANCE EXTRACTION RESULTS

Comparison of the results on the 2−+ Partial Wave to other Experiments

As has been mentioned in section 1.2 theπ2(1880) in particular is a strongly debated state since
its mass is so close to the π2(1670) that it seems to be unlikely to be a radial excitation of the
latter. The π2(1880) has been, however, observed by several experiments. As an example figure
6.18 (a) shows the intensity of the 2−+ωρP−wave obtained in [165] using a partial wave anal-
ysis of the ωπ+π− system with ω→ π+π−π0. For comparison the ρa 1(1260)S-wave is shown
again in Figure 6.18(b).
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Figure 6.18: Comparison of the 2−+ intensities: (a) ωρ P-wave obtained from an analysis of
theωπ0π− system at BNL [165]. (b) COMPASS 5π result: a 1(1269)ρ S-wave. Note the different
scales of the abscissas.
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Figure 6.19: Comparison of the 2−+ intensities: (a) ηa 2(1320)S-wave obtained from an analysis
of the η3π system at BNL [63].(b) COMPASS 5π result: a 2(1320)ρ S-wave. Note the different
scales of the abscissas.

Both intensities display a superficially similar structure. A closer inspection of the respective
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mass-scale, however, shows that while the π2(1880) appears as a dip in the 5π final state there
it is visible as a peak in theωρ partial wave. An interesting option for future analysis will be a
combined fit of data from these two final states.
Another example is the shown in Figure 6.19. Here the 2−+ partial waves for ηa−2 (1320) in η3π
[63] and ρ0a−2 (1320) in the 5π final state are compared. The peak at 1.9 GeV/c 2, attributed to
the π2(1880) compares quite well in both final states. At higher masses the prominent shoulder
in the 5π data is not visible in the ηa 2(1320) partial wave. It would be interesting to investigate
how these features can be explained in a coupled channel model.

Mass (MeV/c 2) Experiment Reaction
1929±24±18 E852 π−p →ηηπ−p
1876±11±67 E852 π−p →ωπ−π0p
2003±88±148 E852 π−p →ηπ−π+π−p
1880±20±148 CB p̄ p →ηηπ0π0

1895±12 PDG average
1836±13+0−44 COMPASS π−Pb →π−π+π−Pb
1854±6+6

−9 COMPASS π−Pb →π−π+π−π+π−Pb

Table 6.5: Measured values for the mass of the π2(1880) resonances. As reported in [1] and
compared to the COMPASS results.

A compilation of different results for the mass of the π2(1880) resonances is given in table 6.5
[1]. The data point in the 3π system measured by COMPASS has been obtained in a recent
analysis [102]. The mass and width of the π2(1880) in both COMPASS analyzes is determined
to be a bit lower than the E852 and Crystal Barrel results. Note, however, the large systematic
uncertainties.
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6.3 Search for J PC = 4−+ Resonances

In the introduction section 1.2 we have discussed the question whether there is a J PC = 4−+ at
as mass of 2 GeV/c 2, effectively a parity partner of the well known a 4(2040). In the evolutionary
waveset selection (see chapter 4) several spin 4 partial waves have been tested (see appendix B)
but none has returned sufficient support from the data as to justify its inclusion in the model.
There are several reasons why this might have happened. First, there is an extremely larger
number of possible isobar decay amplitudes for a spin 4 state. Not all possibilities have been
explored yet. Additionally the waveset evolution was dominated by the data in the 1.9 GeV/c 2

region where spin 4 probably plays no big role yet. A bin-wise waveset optimization might
produce a different result. Finally partial waves with high initial angular momentum produce
complicated angular correlations, especially if high orbital angular momentum is involved in
the decay. In order to resolve such correlations the acceptance, especially at the edges of the
phase space has to be understood very well. In the mass region above 2 GeV/c 2 the acceptance
cuts discussed in section 3.6 might hamper the clear identification of such partial waves.
An inspection of the 4−+ partial waves fitted during the waveset evolution indeed confirms that
these amplitudes do only receive a small part of the intensity. The most significant contribu-
tion is observed in the 4−+0+ρ(770)a 1(1260)P-wave. It is possible to allow such a wave in the
fixed 5-body mass partial wave decomposition. The resulting spin density matrix can then be
studied to search for additional resonant signatures.
For this exercise all other partial waves in the mass-independent as well as the mass-dependent
analysis have been used as in the model discussed above. Only the one 4−+0+ρ(770)a 1(1260)P-
wave has been added.
The result is interesting and puzzling at once.
Figure 6.20 shows the 4−+ρa 1 D-wave intensity in subfigure (d) together with the real (b) and
imaginary (c) part of the interference term with the 1++π f 1(1285)P-wave as an example. The
4−+ intensity displays a clear peak at m5π = 2.3 GeV/c 2, which would be in agreement with
the existence of a π4(2250) as it is listed in [1] for the π4 (the Breit Wigner parameters ex-
tracted in our fit are mπ4 = 2239±10 MeV/c 2 and Γπ4 = 309±15 MeV/c 2). The mass-dependent
parametrization shown here contains (in addition to the 7 resonances discussed above) one
resonance with J PC = 4−+. At very high masses there is an excess of events, which might be
due to multiperipheral background processes. There is, however, also one mass bin at 2 GeV/c 2

showing significant excess. In the interference terms the situation is even more dramatic. In
both real and imaginary part there are rapid movements which cannot be reproduced in this
fit. A similar pattern can also be found in other elements of the spin-density matrix.
In face of the question whether there is another state at 2 GeV/c a second attempt including
two 4−+ resonances has been made. The result for the spin-density matrix elements discussed
above for this fit are shown in Figure 6.21.
Indeed the fit manages to describe the amplitudes better at 2 GeV/c 2. Unfortunately, though,
the width of the narrow resonance comes out unphysically small with a value of 9± 3 keV and
the suggested coupling coefficient is abnormally large. This solution thus cannot be taken se-
riously, especially since it also fails to describe the imaginary part of the interference term.
These results suggest the existence of at least one 4−+ resonance and indicate a complicated
structure at 2 GeV/c 2. No satisfying parametrization in terms of the model used here has been
found, however. It should be kept in mind that the partial wave investigated here only carries a
small fraction of the total intensity and further investigations would profit tremendously from
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Figure 6.20: The 1++π f 1(1285) (a) and 4−+ρa 1 (d) amplitudes and their interference (c,b) as
described by the fit with one π4 resonance.

a larger data set. In particular it would be interesting to study 4−+ partial waves in other decay
modes.
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Figure 6.21: The 1++π f 1(1285) (a) and 4−+ρa 1 (d) amplitudes and their interference (c,b) as
described by the fit with two π4 resonances. The narrow structure can only be fitted with un-
physical Breit-Wigner parameters in the model that is used here.
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6.4 Conclusion

In the preceding section a mass-dependent parametrization of a subset of the spin-density
matrix for diffractive production of 5 charged pions has been presented including a set of seven
resonant contributions. It should be pointed out that the feasibility of finding resonances in
the 5π system with the techniques developed in this thesis is an interesting result in itself. For
the first time an amplitude analysis for a 5-body system has been conducted with the goal to
search for 5-pion resonances. The analysis of the diffractively produced 5π system was done in
two steps: First the angular correlations of the pions have been used to perform a partial-wave
decomposition in fixed 5-body mass bins as explained in chapters 3 and 5. In a second step,
presented in chapter 6.1, the mass-dependence of the resulting spin-density matrix elements
has been investigated in order to search for resonant contributions.
The development of an evolutionary model selection algorithm based on a Bayesian analysis
of the mass-independent fit is a crucial computational tool for the analysis of a complex final
state like the five pions. 284 partial waves have been tested against the data in ∼ 5000 different
combinations. A final waveset containing 32 partial waves has been constructed. In addition
the method allowed for the first time to give estimates of the systematic uncertainties, which
are introduced with the choice of a particular waveset. The method as it has been developed in
this thesis can be easily applied to similar analyses in other channels.
It has been found that the 5-pion system is dominated by partial waves with the quantum num-
bers J PC M ε = 0−+0+, 1++0+ and 2−+0+ as would be expected from Regge-theory arguments for
diffractive pion dissociation at Eπ = 190 GeV.
A subset of ten partial waves has been investigated in order to search for resonant contribu-
tions. The mass-dependence of the spin-density matrix has been parametrized with a model
containing seven Breit-Wigner resonances and a coherent background in each wave. Two well
known resonances, the π2(1670) and the π(1800) have been found in good agreement with
known parameters of theses states. These findings provide confidence in the consistency of
the applied methods. Furthermore four additional heavy resonances, two 1++ and two 2−+

states have been identified. The extracted parameters are summarized in table 6.2. For the first
time the quasi-two-body decays of the hybrid meson candidate π2(1880) into ρa 1 and ρa 2

have been observed.
Findings in the 4−+ partial wave are compatible with previous results on the existence of a
π4(2250) resonance. However, the investigated amplitude shows unusual behavior at 2 GeV/c 2

which could not be explained in the Breit-Wigner resonance model.
There are hints in the partial wave decomposition of an isoscalar spin-exotic contribution to
the 4π subsystem. A possible resonant nature of this amplitude has not been investigated yet.
A prototype analysis of the 4-pion subsystem has been performed, confirming the validity of
the isobar-model amplitudes for the selected partial waves. There is evidence for the f 1(1285)
and the f 2(1270) decaying into four charged pions to occur as isobar subsystems of the 5-pion
final state. The methods tested here can be used to investigate the isobaric 4-pion amplitudes
in isoscalar and isovector channels as explained in section 5.3. The techniques might be crucial
to understand the 1−− partial waves and possible spin-exotic isoscalar 1−+ contributions.
In the course of this work an extensive partial-wave analysis software toolkit has been devel-
oped, which is now being used by the COMPASS collaboration for amplitude analyses in the
π−π0π0, K −π+π− and K K̄π+π− channels.
In summary the work presented here demonstrates novel methods for the amplitude analysis
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of multi-body systems and provides new insights into the physics of highly excited light-meson
resonances. In particular it would be interesting to compare the results obtained here with
the chiral-unitary hadronic models mentioned in section 1.1.5. The data analysis techniques
developed here are ready to be applied to a wider variety of final states in order to understand
the coupling effects between different multi-body channels.

Suggestions for future research:

• Improve the amplitude parametrization to account for mixing between resonances.

• Investigate further parts of the spin-density matrix.

• Investigate possible background amplitudes such as multi-peripheral processes (section
2.2.2) and their effects on the phases.

• Include the information available from the 5π channel into coupled channel analyzes.

• Extend the analysis to diffractive dissociation at higher momentum transfer in order to
facilitate the search for spin-exotic contributions to the 5π system.
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Chapter 7

Simulation of a High-Rate GEM-based
Time Projection Chamber

Lack of ambition is for baseline humans.

Skade

THE ability to record large data sets is a key feature of many modern particle physics ex-
periments. This demand is driven not only by the search for rare processes beyond the

standard model, but also the detailed understanding of effects on the amplitude level within
the standard model requires huge data samples with full phase space coverage in many differ-
ent final states as has been discussed in the first part of this thesis. Therefore the development
of efficient detector systems capable of delivering measurements at large luminosities and high
signal rates is needed.
Time Projection Chambers (TPCs) are well developed charged particle tracking detectors em-
ployed by many experiments [166, 167, 168, 169, 170, 171, 172] offering the coverage of very
large detector volumes with precision space point measurements and a low material budget.
The operation of these devices at high rates, however, is still a challenge. This chapter presents
simulation studies that have been undertaken for the development of such a high-rate TPC.
The basic concept of operation of a time projection chamber as illustrated in Figure 7.1 requires
a large, gas filled volume across which a preferably homogeneous electric field of typically a few
hundred V/cm is applied by means of a suitable setup of high-voltage electrodes (the so called
field cage). Charged particles traversing this active volume will ionize the gas molecules along
their path of flight leaving a track of primary electron–ion pairs. In the electric drift field elec-
trons and ions will be separated and will start to drift along the electric field-lines. Due to their
large mass-difference the electrons reach a drift velocity that is typically three orders of magni-
tude larger than the drift velocity of the ions (depending on the composition, temperature and
density of the gas as well as the electric and possible magnetic fields applied). After a time that
depends on the drift velocity and the position at which the free electrons have been created
they reach the anode side of the field cage. This plane is equipped with a position sensitive
charge detector - usually multi-wire proportional chambers [173]. From the combined mea-
surement of the impact position and the arrival time of the electrons at this readout plane the
point in space where the ionization happened can be reconstructed, given that the electric field
and in particular the drift velocity is known at every point inside the drift volume. A constant
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Figure 7.1: Working principle of a time projection chamber.

drift field, perpendicular to the readout plane results in a particularly simple, linear relation
between the drift time and the position of the primary ionization in the chamber. Combining
the measurements of all ionization electrons along a track thus yields a 3D image of the particle
trajectory in space.
In most applications the TPC will be operated inside a magnetic field in order to measure par-
ticle momenta by observing the curvature of the tracks in the magnetic field. If the axis of the
magnetic field is perfectly aligned with the drift direction there will on average act no Lorentz
force on the drifting electrons. However, microscopically the electrons constantly collide with
gas molecules and are thus diffused from the ideal path along the electric field lines. It was the
realization that a parallel magnetic field actually would significantly reduce this diffusion effect
which made the operation of large TPCs possible in the first place [166].
As such TPCs are ideal tracking devices to fulfill the above mentioned requirements for modern
tracking detectors. However, the operation of such a detector at high luminosities until recently
has been a considerable challenge. There are three main problems that need to be overcome
in order to build a true high-rate capable TPC:

1. Gate-less ion backflow suppression: The major factor limiting the rates at which tradi-
tional TPCs could be operated was the need to install a so called ion gate in order to
prevent positively charged ions to propagate back from the wire-chamber readout into
the active volume of the TPC [174]. Otherwise the accumulation of ion space-charge
would distort the drift field in the TPC and thus compromise the imaging capabilities
of the detector. The switching of the high-voltage polarity on the ion gate, which is re-
quired during the measurement process, is limited to a rate of a few kHz. Mircopattern
gaseous detectors and Gas Electron Multipliers (GEM)[175] in particular offer the possi-
bility of an intrinsic ion backflow suppression in the gas-amplification stage of the TPC
[176, 177, 178]. Therefore this technology is being applied to built TPCs with a continu-
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ous, ungated operation [179]. The ion backdrift suppression, however, even under best
conditions is not perfect and the question how to deal with the residual space-charge
effects in the TPC will be discussed below in section 7.5.

2. Another challenge for high rate TPCs is event mixing. Typical time scales on which the
electrons are in drift inside the active volume are of the order of∼ 50µs. For a high lumi-
nosity experiment the rate of primary interactions can easily be of the order of 20MHz1.
Consequently during the time between the primary ionization and the registration of the
corresponding signal in the TPC hundreds of other events may happen with thousands
of particles depositing charge in the detector. The ionization tracks of different events
will be recorded simultaneously. The task to assign a measured track to a physical event
has been called event deconvolution and will be discussed in section 7.4.

3. A final challenge, which will not be discussed in detail in this thesis is the processing of
the large amounts of data which are produced by a continuously running time projection
chamber.

In order to simulate and explore these challenges during the design phase of a high rate TPC
a detailed detector simulation has been created in an earlier work by the author [181]. This
detector model has been since ported to two different software environments in the course of
the PANDA software development project [182]. Section 7.1 summarizes the basic components
of the simulation.
Section 7.2 discusses the methods that have been developed and implemented in order to find
and reconstruct particle trajectories in a TPC. An important outcome of this work is the generic
track fitting software package GENFIT, which has been developed by the author of this thesis in
close collaboration with Christian Höppner [183]. The underlying concept has been published
in [184] and the software is available from the sourceforge online repository [185]. It is now be-
ing used as basic solution for charged particle tracking by several particle physics experiments
in particular PANDA and BELLE II. Section 7.3.2 gives an overview of the design ideas behind
GENFIT.

7.1 TPC Detector Response Simulation

The goal of the detector response simulation is to setup a computer model which accurately
reproduces the data that would be delivered by the actual device when one or several charged
particles traverse the detector.
In order to study the various effects mentioned above a detailed simulation of the GEM-TPC
was created as described in [181]. In the course of this thesis the model has been ported the
BaBar software framework [186] and the FAIRROOT framework [182]. The latter version is the
one which is being currently used for detailed studies and which will be described here.
The TPC detector simulation consists of the following steps:

1. The propagation of particles through the detector geometry, including external mag-
netic fields is simulated using the Virtual Monte Carlo [187] interface with the GEANT3
engine [188] as a backend. The detector geometry includes the specific materials from

1The numbers used here are examples taken from the PANDA experiment [180]
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which the TPC hardware is built. This information is used by the simulation engine to
determine the energy-loss on a given path length in the detector. For the following sim-
ulation of the electron drift it is important to get position information on all individual
ionization events in the TPC. To achieve this the step-size control of the GEANT3 energy-
loss routines has to be overwritten such that each step corresponds to a single ionization
event. The mean ionization energy for the gas which is being used in the simulation has
to be specified as an additional parameter (see [174, 189]). This scheme has first been
proposed by the ALICE TPC group [190].

2. Primary ionization: The deposited energy at a ionization event as calculated in the pre-
vious step is converted into a cluster of individual electrons, taking into account the
mean ionization energy.

3. For each electron the drift through the TPC is simulated taking into account diffusion
effects, electron attachment and possible drift-field distortions.

4. The charge amplification in the GEM readout stage creates an avalanche of electrons
taking into account gain and gain fluctuations in the gas amplification process. For per-
formance reasons from this point on the simulation is not performed in terms of single
electrons anymore but in terms of aggregate avalanche clouds of electrons.

5. Signal induction on the readout electrodes is represented with a simplified model which
is valid for a GEM readout as described in [181] and takes into account the spread of a
Gaussian charged profile over several electrodes. Different shapes of these readout pads
are taken into account.

6. The last step is the electronics simulation which in itself consists of two substeps

(a) At first the analog signal-shape on each readout channel is constructed modeling
the response of the charge sensitive shaping amplifier. Subsequently this pulse-
shape is converted to digitized information with a fixed digitization frequency and
amplitude resolution.

(b) On the time series of the resulting samples a pulse shape analyses is performed
which reconstructs the time and amplitude information of single pulses on each
channel individually.

All parameters of the electronic simulation, as well as the pulse-shape of the employed
shaping amplifier can be easily adjusted in the software to represent a variety of possible
hardware solutions.

7. The result of the detector response simulation are data-structures called digis that con-
tain the time, amplitude and channel-ID of each signal recorded in the device.

7.2 Charged Track Reconstruction

The ultimate goal a tracking detector is to infer the 3-momenta of charged particles and their
points of origin. This process is commonly called the track reconstruction and can roughly be
divided into three steps:
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1. Cluster finding or hit reconstruction is the preparatory step where the electronic signals
recorded by the detector are grouped into distinct spatial measurements.

2. The pattern recognition or track-finding step, which groups those hits together, which
belong to one track. Also the ordering of the hits along the track is solved at this stage.
For performance reasons often a simplified track model will be used in this step.

3. Therefore, in a subsequent track fitting the best estimate on the track-parameters, in-
cluding the momentum will be inferred. In this step also information such as magnetic
field inhomogeneities or the energy-loss of the particle along its flight-path through the
detector material is taken into account.

The two following subsections describe the algorithms and tools that have been developed to
solve cluster finding (section 7.3), pattern recognition (section 7.3.1) and track fitting (section
7.3.2) in a TPC in particular and in complex detector systems in general.

7.3 Cluster Finder

In between the detector-response simulation and the proper track reconstruction the measure-
ments on single channels represented by the digis — containing channel ID, amplitude and a
time stamp — are clustered into space-point hits in the TPC. This step helps to

• remove excessive correlations from the individual measurements,

• thereby improves the spatial resolution,

• allows to estimate uncertainties on the spatial measurements and

• reduces the amount of data that has to be processed in the subsequent steps.

Two cluster finder algorithms have been implemented. The standard version has been focused
on achieving the best resolution results. It has been presented in [183]. Here we will explain
the second version in a bit more detail, focusing on the possibilities to create an algorithm that
could be implemented in a highly parallelized fashion. In order to cope with the huge amounts
of raw data that are collected by high luminosity experiments modern detector concepts fea-
ture powerful readout electronics which are becoming capable of performing advanced data
processing in a very early stage of the readout, enabling data compression but even more im-
portantly providing information for advanced trigger algorithms [191]. Parallelization is one of
the key methods to achieve the required processing speeds for such concepts. Fortunately due
to its very localized nature the clustering problem in the TPC appears to be well suited for a
parallel implementation.
The most basic level of parallelization that is offered by the detector are the individual read-
out channels. The clustering algorithm will combine information from neighboring and only
neighboring channels. Realizing this feature of the problem makes cellular automata [192] the
natural choice for an algorithm blueprint. In such an algorithm the computation is performed
by a set of identical cells which may react on the states of their neighbors as well as to external
signals.
Figure 7.2 illustrates the basic idea of clustering signals in the 2-dimensional readout plane
with a cellular automaton-like algorithm. In brown is shown the projection of a track in the
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Figure 7.2: Principle of the cellular automaton clustering algorithm. The brown line is the pro-
jection of a track onto the readout plane. The blue circles indicate amplitudes measured on the
different pads (black squares). In order to collect the data belonging to one cluster, single hits
are transported to the neighbors with the largest amplitude.

TPC onto the readout plane, which is subdivided into quadratic pads. The blue circles indicate
the amplitudes of signals recorded on each pad. Note that we expect the largest signals to be
induced on those pads that are close to the track. In order to collect the information belonging
to one cluster in one place the amplitudes on neighboring pads are compared to indicate local
maxima and collect data from surrounding pads to the pad with the locally maximal amplitude
as indicated by the red arrows. Indeed the signals also have a distribution in time. This is solved
by processing the digis in slices of time. Adjacent digis are only combined into a cluster if the
time-difference between them is below an adjustable value.

Each pad is assigned an identical state-machine. The operation of each of these so called pad-
processors is shown diagrammatically in Figure 7.3. Each pad-processor begins in the initial
state and is initialized with the measured amplitude on its corresponding pad (which can be
0). All pad-processors without any digi registered in their pad immediately transition into the
passive end state. Those with data transition to the compare state. Here the amplitude and
timestamp comparisons between neighbors are performed and thus data transfer between
neighboring2 pad-processors is necessary. Each pad-processor performs a comparison of its
own amplitude with the amplitudes recorded on all neighbor pads. Also the time-stamps of

2Note that the neighbor relations can be freely defined in the setup of the cluster finder through the pad-plane
configuration file.
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Figure 7.3: Pad-Processor state machine. See text for details.

the digis on the neighboring pads are compared. If there is a neighbor with larger 3 amplitude
and lying within a predefined time-window centered around its own data the pad-processor
transitions into the send state, setting the neighbor with the largest4 amplitude as the destina-
tion pad. Otherwise the pad-processor transitions into the wait state. Pad-processors in the
send state hand all digis which they have stored to their destination pad-processors. This data
set might also include digis from other pads that have previously been handed to them. If a
pad-processor does not receive any data after an adjustable number of cycles it transitions into
the end state. If all pad-processors are in the end state the algorithm processes the digis which
are now sorted into disjunct clusters to extract the 3D position information. It then resets itself,
loads a new time slice of raw data and starts a new super-cycle.
The spatial coordinates of the cluster are calculated using the center of gravity method:

~xcluster =
1

Atot

∑

i

A i ~x i

where the i runs over all digits in the cluster. A i are the individual amplitudes for each digi and
Atot =

∑

i A i is the cluster amplitude. Note, that since the digis still contain time information
it is here that the knowledge on the drift velocity (and potentially the drift direction) is used in

3There is also the possibility to split large clusters by requiring a minimum difference in amplitudes before a
neighbor is considered a valid destination.

4In cases of equal amplitudes on neighboring pads an unambiguous but arbitrary choice is made by using the
PadID.
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order to calculate the position ~x i . The uncertaintiesσ(x ,y ,z ) on each coordinate ~xcluster = (x , y , z )
can be estimated in the following way5.

σ2
x =

∑

i

�

∂ x

∂ x i

�2

σ2
i

=
1

A2
tot

∑

i

A2
iσ

2
i

where σi is the uncertainty of the position measurement on each individual pad. This uncer-
tainty is dominated by the diffusion in the TPC. However, usually several primary electrons are
collected onto one pad. This statistics has to be taken into account as

σ2
i =

1

Ni
σ2

diff(z i )

where Ni is the number o primary electrons contributing to the signal and the single-electron
diffusion uncertaintyσdiff depends on the drift distance z and the transverse6 diffusion coeffi-
cient c t as

σ2
diff(z i ) = c 2

t · z i

Now the number of primary electrons is unknown but it is to good approximation proportional
to the measured amplitude on the pad. One can therefore write

σ2
i =

1

C ·A i
σ2

diff

with C being a universal conversion constant, which primarily depends on the gain of the GEM
but also on the charge-conversion and digitization characteristics of the readout electronics.
The cluster error can finally be written as

σ2
x =

1

A2
tot

∑

i

A2
i

1

C ·A i
σ2

diff

=
1

A2
tot

∑

i

A i

C
σ2

diff

=
1

C Atot
σ2

diff

where in the last step it has been assumed that C and σ2
diff(z ) are the same for each pad. For

the z -coordinate here the already reconstructed cluster-position is used.
This cluster-finder algorithm has been implemented in C++ as a part of the GEM-TPC software
package [182]. The individual components of the algorithm, especially the cellular-automaton
design is reproduced in the object-oriented structure of the code. Only the data-interfaces for
input and output of digis and clusters respectively are done through a centralized facility. Also
there is a central steering module which runs the algorithm in a serialized manner. No true
parallel implementation has been done so far. Yet, the concept can be used as a basis for future
developments on a parallel processing platform.

5Correlations between the coordinates are being neglected here.
6In order to estimate the uncertainty on the z -coordinate of course the longitudinal diffusion coefficient has to

be used.
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7.3.1 Pattern Recognition

Track-finding algorithms can be roughly classified [193] into two types: local track finders make
use of the large correlations that are induced on the spatial measurements along a track to
setup schemes where a track is “grown” based on localized hit-by-hit information. In contrast
global track finders centralize the complete information from a detector (system) in order to
construct a metric that allows the identification of patterns in the data. While the former type
of algorithm promises a straight forward parallelizability and is suitable to problems with large
redundancy in the provided measurements (which is usually the case for a TPC), the latter class
of algorithms can also be employed if a minimal number of measurements is available and
might be more robust to local disturbances (such as track-crossings for example).
For each type of algorithm a case study has been implemented as will be discussed below. All
track finding methods rely on a model and a parametrization of the particle trajectories to iden-
tify those hits that lie along one track. We begin the discussion with the track-model used for
both track-finding algorithms developed here.

Riemann Track Representation

We will treat here the case where the complete detector is embedded into a momentum-analyzing
magnetic field. For the purpose track finding it is then often a good approximation to assume a
constant ~B-field and thus a constant radius of curvature of the trajectories of charged particles
propagating in this field. In this approximation a track has the shape of a helix with its axis
aligned to the direction of ~B and can be parametrized accordingly.
Indeed a helix can be trivially composed of a linear movement along the center axis, which we
will choose to be along the z -coordinate and a circular motion in the x -y -plane. There is a
linear relationship between z and the angular coordinate along the circle which connects the
two motions. It is this latter circle pattern which makes track-fitting even then non-trivial if the
magnetic field is constant, since there is no linear regression formula for the circle fit. A clever
change of variables, however, can be applied to linearize the problem through a conformal
transformation. The particular version of conformal transformation that will be used here has
been first proposed in [194, 195] for fast circle fits.
A point on the x -y -plane with the polar coordinates (R ,φ) is mapped to a sphere with unit
radius through the transformation [194]

x ′ =R cosφ/(1+R2) (7.1a)

y ′ =R sinφ/(1+R2) (7.1b)

z ′ =R2/(1+R2) (7.1c)

as is illustrated in Figure 7.4. Note that this is a transformation from the 2-dimensional plane
onto a 2-dimensional sub-manifold of an auxiliary R3. This increase in dimensionality is the
price to pay for the linearization of the problem. The key property of the transformation 7.1 is
that points which lie on a circle in the plane will be mapped to a circle on the sphere and con-
sequently lie in a plane in the 3-dimensional auxiliary space. Moreover circles will be mapped
uniquely to a plane. A plane, however, can be linearly parametrized and there is also a simple
regression formula for the fit of a plane to a set of points, which needs only one 3× 3 matrix
inversion as explained in [194].
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Also note that while the south pole of the Riemann-sphere is identified with the origin of the
x -y -plane no reference point on the circle is needed to perform the mapping (in contrast to
other conformal transformations), which in practice means that no assumption on the origin
of a track (like coming from the primary vertex) has to be made.

Figure 7.4: Illustration of the conformal mapping of a circular track onto the Riemann sphere.
Graphics courtesy of Felix Böhmer [196].

It is in this form that the helix parametrization has been used for the two track-finding algo-
rithms presented below.

Massively Parallel Hough-Transform on a GPU

The Hough-transform method [197] has been originally developed in order to speed up the
analysis of bubble-chamber photographs [198]. As such it has a tradition in the application to
track-finding although the method is now well established in many pattern recognition con-
texts.
The basic idea of the Hough-transform is best explained with the example of straight-line tracks
in 2-dimensions. Each hit measured in a plane defines a family of lines which intersect at the
hit but have different orientations in the plane. Each of these lines can be described by two pa-
rameters, slope m and intercept t for example. The constraint to pass through the hit induces
a relation between slope and intercept for one family, mapping the point in the x -y -plane to
a line in the m -t -plane. For two hits in x , y there are two lines in the so called Hough space
spanned by m and t . The intersection of these two lines is a point (m1, t1) which describes
the one line in the x -y -plane that connects both hits. Similarly for an arbitrary number of hits
lying on a straight-line track there will be one point in the Hough-space where all lines in the
m -t -plane intersect (although there will be many other intersections with a smaller number of
lines). The problem of finding the parameters of the track is mapped to the problem of finding
the point with the largest number of intersections in the Hough space. If measurement uncer-
tainties are involved the intersection will not be perfectly realized. However, one can define a
density in the Hough space which is build up of properly smeared track families. The search for
intersections is the a search for the maximum density in the Hough space. If several tracks have
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been present then several local maxima will be found in the Hough space. In order to decide
if a hit belongs to a certain track it can be check if that hit can contribute significantly to the
region in Hough space which represents the track candidate. A minimum density in the Hough
space has to be defined in order to define a lower cutoff for the number of hits that are required
to form a track candidate.
The same principles can be applied to more complicated track topologies such as the helix
track in the Riemann-sphere parametrization discussed in the previous section. Since 5 pa-
rameters are required to define such a helix the Hough space in this case will be 5-dimensional
and the problem becomes considerably more involved.
The implementation of a helix Hough-transform has been done by Felix Böhmer and is doc-
umented in the diploma thesis [196]. In order to facilitate an efficient search for local density
maxima in the 5-dimensional Hough space a so called fast Hough transform [199] algorithm
has been employed here. The algorithm also offers the possibility for a massive paralleliza-
tion of the problem and has been implemented on a Graphics Processing Unit (GPU) using the
parallel-processing framework CUDA [200].

Track Following

The second track-finding algorithm, which has been initially designed and implemented by the
author and undergone significant subsequent improvements developed by Johannes Rauch
[201], is a local track finder which is based on the idea to follow the tracks composed of closely
packed hits in the TPC. This track finder exploits the large data redundancy that is offered by
the TPC detector concept allowing to record typically in the order of 20 to 100 hits on a single
track depending on its orientation in the sensitive volume.
Starting from single hits, close neighbors are combined into small track pieces or tracklets
which can further grow until a full track is assembled. Hits are added to a track candidate if they
fulfill a series of proximity criteria in the helix variables. An essential issue in this approach is
the sorting f the hits along the track which needs to be solved in order to avoid artificial gaps in
the tracks and subsequent track-splitting. In [201] a multi-pass pre-sorting method has been
developed, which solves this problem even in situations with high track densities. The track-
follower described there has also been used at high track densities for the event deconvolution
studies described in section 7.4 below.

7.3.2 GENFIT Track fitting Package

The inference of track parameters in particular the 3-momentum and the points where a charged
particle has been produced or undergone a scattering event — the vertices — is a the main
task of the track reconstruction software. In complex detector systems a track usually passes
through several different detector subsystems. A typical sequence would be for example

• A vertex detector close to the interaction point (in a collider-type experiment) or the tar-
get (in a fixed target experiment) provides very high spatial resolution in order to provide
a precise measurement of vertex positions.

• A large volume detector (such as for example a TPC) in combination with a strong mag-
netic field provides a large lever arm for precise momentum measurements. A high gran-
ularity and good spatial resolution allow the separation of close-by tracks and the recon-
struction of secondary decay vertices.
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• The tracking system might be followed by special detectors for particle identification, for
example Cherenkov-radiation based devices such as Ring Imaging Cherenkov Counters
(RICH) [202, 203] or a Detector for Internally Reflected Cherenkov light (DIRC) [204].

• Electromagnetic and hadronic calorimeters specialize on the detection of neutral parti-
cles, however, also charged particles hitting these systems will usually leave usable sig-
nals.

• The outer shell of an experiment might be equipped with mid to low-resolution track-
ing detectors dedicated to muon tracking behind the calorimeters and possible absorber
material.

It is a considerable challenge during the design-phase but also during the operation of such
complex systems to maintain a tracking software that is able to take into account all the technology-
specific traits of such different devices and to extract the best possible track-parameter esti-
mates from the data, while still being flexible enough to adapt to new knowledge becoming
available as the operators learn more and more details about their detectors.
These considerations lead to the development of a Generic Fitting toolbox (GENFIT). The re-
quirements derived for the software can be summarized as the following:

• Allow a detector-specific representation of the type of measurement that is provided by a
device. In essence each detector can define its very specific hit in a coordinate system of
its choice. Templates for commonly used types of hits, such as strip, pixel or space-point
hits are pre-defined.

• Allow an easy exchange of the parametrization used to represent a track. Not only can
special coordinate systems have specific advantages in different parts of the spectrome-
ter, but also it might be desirable to work with various levels of detail for the treatment of
material effects. The options offered by a flexible design in this area are especially useful
during the design of an experiment.

• Allow an easy exchange of the fitting algorithm. A standard Kalman-filter [205] has been
included already in the first version of the package but more advanced algorithms such as
the Deterministic Annealing Filter (DAF) [206] have been added since and are constantly
being updated.

Figure 7.5 illustrates the design that has been adopted in order to fulfill these requirements.
The key idea is to separate the problem into four well defined components. According to the
standard object oriented design philosophy of encapsulation each component carries a well
defined set of responsibilities and only exposes that functionality to the rest of the system that
is necessary for interaction.
All information that is related to the measurement in a particular detector is represented by a
so called reconstruction hit. In principle this is (at least) a position measurement with a cor-
responding covariance matrix. GENFIT provides an abstract interface class AbsRecoHit which
can be used to implement a detector specific version of a hit. This allows the programmer to
tailor the hit object to the specific needs of her chosen detector technology. Several common
types of RecoHits are already predefined inside GENFIT, such as hits representing detectors
with strip, pixel, wire or space-point readout, making it easy to implement different types of
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Figure 7.5: Modular concept of the GENFIT tracking software design.

detectors. However the big advantage of the concept is, that new types of detectors can very
easily be realized and added to the system.

The second concept abstracts the representation of a particle trajectory and its parametriza-
tion. In GENFIT the corresponding objects are called track representations. Similarly to the free
choice in which coordinates to represent the hit also the parameters describing the track can
be chosen freely. For different detector setups specialized track parametrizations can be suit-
able, mainly depending on the magnetic field configurations used. Typical examples are helix
parametrizations in a constant magnetic field or simple straight line representations in field-
free spaces. Of course very general parametrizations taking into account arbitrary magnetic
fields and also various material effects can be used. GENFIT offers the possibility to plug ex-
ternal, standalone track propagation software into the fitting package. The GEANE [207] code,
which is part of the GEANT3 software [188], has been interfaced by the author in this way to be
used with GENFIT. In the frame of the Diploma thesis by Johannes Rauch [201] another self-
contained track extrapolator based on a forth order Runge-Kutta integrator has been imple-
mented. A crucial problem that has to be solved by every such extrapolator is the calculation of
correct estimates for the covariance matrix of the chosen track parametrizations at a given lo-
cation in the presence of multiple scattering events as a charged particle traverses the detector
material. GENFIT’s modular design offers the possibility to continually improve the available
models without the need to make changes to the rest of the fitting code.

With the free choices of coordinate systems that are allowed for the parametrizations of hits as
well as tracks there is the need of a unifying concept in order to allow the calculation of mean-
ingful residuals. This link is provided by the so called detector plane. Following the assumption
that the flight-time coordinate along the track will not be resolved by the detector system it
is clear the the track has to be treated as a 1-dimensional sub-manifold of the 3-dimensional
space. Therefore, each measurement in a tracking detector can contribute at most two degrees
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of freedom to a likelihood function. In other words, the residual along the track at any given
point can not be measured since it is unknown in this direction which point on the track be-
longs to a hit in a detector. It is therefore sufficient to define a 2-dimensional sub-manifold
in which the coordinates of a hit relative to the track will be measured. The most simple such
construction is a plane and arbitrary surfaces can be approximated by a tangential plane in a
sufficiently small region around a given point. A plane will thus be used to setup a coordinate
system in which hit and track coordinates as well as their covariances are measured. In or-
der to keep the flexibility these detector planes are allowed to vary and indeed are constructed
by using information of each individual hit and the track representation in the vicinity of the
respective hit. The procedure how this is done resembles a negotiation between the hit and
the track object. The result depends on the type of hit. For instance, if the detector which is
represented already has a planar geometry (like a silicon strip detector for example) then the
reconstruction hit will return the corresponding plane7. For more complicated hit geometries
such as wires or space-point hits, where no obvious plane is defined by the detector geometry
itself, information from the track is used to construct a so called virtual detector plane. For
example, for a space-point measurement as in the TPC the track is extrapolated to the point of
closest approach to the hit (in global coordinates) and the detector-plane is constructed per-
pendicular to the track at this position. For the orientation of the u , v coordinates in this plane
an additional convention has to be used (for example such that ~u has a zero z -component in
global coordinates).

The concept of the detector plane allows to combine the information from arbitrarily diverse
detector geometries with different track parametrizations in a unified and modular way. It
should be noted that in principle one could generalize the detector plane into a detector-surface,
for example to represent deformed silicon wavers in precision tracker. However, the non-linear
transformations of the covariances involved might lead to asymmetric errors which are not well
handled by most fitting algorithms that are available at the moment. For future developments
exploring such possibilities the modular structure of GENFIT provides a very flexible frame-
work.

The final component of the track reconstruction toolkit is of course the fitting algorithm itself.
There is no abstract fitting interface foreseen in GENFIT, such a thing would only complicate
the design and not add much value since situations where several different fitters are dynam-
ically instantiated in parallel are quite uncommon. The modular design of the components
mentioned above, however, allows a simple implementation of any fitting algorithm desired. A
standard Kalman filter [208, 205] has been implemented as the first example and is being used
now for simulation studies and the reconstruction of data taken by the GEM-TPC collaboration
at the FOPI experiment [179].

Also a deterministic annealing filter [206] has been implemented and due to its improved ro-
bustness against noisy measurements is being under discussion as the standard fitting code for
BELLE II.

The core concepts of GENFIT have also been published in [184]. The code, which is open-
source and constantly being developed is available from [185]. A detailed writeup on the soft-
ware is also available in [183].

7A detector plane is defined by an origin given in a global coordinate system and two unit vectors u , v fixing the
coordinate system in the plane and its orientation in global coordinates.
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7.4 Event Deconvolution

Event mixing is an important issue for the exclusive reconstruction of separate physics events
in high-luminosity experiments. With event mixing we mean any situation when the typical
response time of a detector is equal or larger than the typical time-spacing between two con-
secutive events so that the signals in the detector system cannot be grouped into distinct events
based on their time stamp alone. For a TPC due to the long drift time this challenge is of par-
ticular severity.

7.4.1 Event Mixing Simulation

We will present here a case study for which a TPC with a drift length of 150 cm and a gas mixture
of 90% Ne and 10 % CO2 at a drift field of 400 V/cm has been simulated [181, 201]. The chamber
has an inner cylinder of r = 15 cm radius which provides space for a beam pipe and a silicon
vertex detector. The outer radius of the TPC is 42 cm. The magnetic field assumed in the simu-
lation has a nominal8 flux density of 2 T . The electron drift velocity under these circumstances
is predicted [210] to be vdrift = 2.731 cm/µs resulting in a maximum drift time (a drift-frame)
over the 1.5 m drift length of tmax = 55µs.
In order to simulate a high rate environment antiproton-proton interactions at p p̄ = 3.6772 GeV/c
with rates up to 2 · 107 s−1 have been generated using the DPM [211] Monte Carlo generator.
At the highest rate the average gap between two events will be 50 ns and so about 1000 p p̄ -
interactions typically happen while an ionization electron created in the first event is still drift-
ing towards the TPC readout. The physics channel which has been chosen for this study is

p̄ p →ηc →ΦΦ→ K +K −K +K −

The FAIRROOT [182] software framework used to build the TPC simulation only supports event-
wise data processing. In order to implement the massive event mixing necessary for the TPC
simulation new infrastructure had to be constructed. To keep in line with the basic event-
wise paradigm of the framework a strategy has been adopted where pre-generated background
events are added on top of the data for each physics event. Ideally the event mixing would
be done on the level of the electronic signals, which is the first point in the detector response
simulation where significant non-linear pileup effects are anticipated (such as an ADC going
into saturation). Unfortunately the massive amount of data that is required to realize this level
of detail so far has inhibited an efficient implementation. Instead the mixing is done on the
level of the digits described in section 7.1 so that the clustering is the first step where data from
different events can pile up.
In order to prepare the background sample a standard simulation of the TPC (and surrounding
detectors) with the desired parameters is run up to the output of the digitization. The back-
ground events are stored in a dedicated file. Depending on which rate of primary interactions
should be simulated it is important to generate enough background events to cover the com-
plete drift-frame belonging to one physics event. Thus roughly twice as many background
events are needed as would happen during one drift-frame (∼ 2000 events for the simulation
parameters mentioned above).
During the simulation of the physics events a framework module is called which loads the back-
ground file and adds the data to the current event. The background events are reused but

8The magnetic field maps of the PANDA design studies have been used.[209]
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randomized in time and sequence to generate a unique background pattern for each physics
event. Of course this method only works properly if a large number of background events is
available.
In the present simulation a constant luminosity is assumed. The gaps between the background
events are exponentially distributed according to the event rate. The number of events ob-
served in a given time interval follows the respective Poisson distribution. Fluctuations in-
duced through a bunch-structure of the beam, as well as fluctuations in the target density,
which are possible for internal targets used at storage rings [212], are not taken into account.
More complicated time structuring can, however be easily implemented for future investiga-
tions.
The time t0 when the physics event happens is defined as t0 = 0. The interval for which back-
ground events will be admixed is two drift-frames long:

tbkg ∈ [t0− tmax, t0+ tmax]

Here tbkg is a time when a background event is generated. This ensures a complete coverage of
the drift-frame of the physics event

[t0, t0+ tmax]

with a constant track density. In a more realistic scenario the data stream would extend much
longer before and after an physics event. The task of finding the right drift frame and extracting
the physics event is part of the challenges for the trigger of such an experiment. Here we will
assume that a kind of trigger signal is supplied by detectors outside the TPC so that t0 is known
and also the portion of data which has to be examined for the TPC is well defined.

Figure 7.6: Simulation of 2000 overlapping events in the PANDA TPC. Graphics courtesy of
Johannes Rauch [201]

Figure 7.6 shows the outcome of such a simulation. The gray cylinder indicates the boundaries
of the TPC volume which is filled with the hits of 2000 overlapping events. The color code
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of the individual hits shows the result of the track-following pattern recognition (see section
7.3.1) that has already been performed here and has assigned the hits to helical tracks. The task
of event deconvolution is now to decide which of these tracks originate from the one primary
interaction that has happened at the time t0. Before strategies to accomplish that are discussed
we will comment on an important technical issue for event-mixing simulation studies.

Handling of MC-truth information in mixed events In order to benchmark the various pat-
tern recognition, reconstruction and event deconvolution algorithms the so called Monte Carlo
truth is a vital information. The Monte Carlo truth of any signal, hit or track in the simulation is
a reference which allows to determine which particle in the original, generated event has lead
to this particular detector response. It is also important if one wants to compare the result of
a track-reconstruction program with the input track parameters that seeded the simulation in
order to estimate resolutions and efficiencies of the detector systems under study.
In the presence of pileup or event mixing it is possible that this mapping from the reconstructed
objects back to original particles is not unique anymore. For example if two tracks from differ-
ent events cross in the TPC a cluster containing charge from both tracks might be formed. Sim-
ilarly the pattern recognition might erroneously assign hits originating from different particles
to the same track. It is thus necessary to have an system which keeps track of such complica-
tions.
For the TPC simulations a simple accounting system has been implemented. Its basic entity is a
so called MC identifier which contains the event number (with the convention that the physics
event has number 0 and background events are numbered according to their position in the
background file (numbering starting at 1). For each data-object where mixing can occur a col-
lection of such MCids is stored. The MCIdCollection also offers a weight for each contributing
MCid. The unit for this weight is the proportional to electric charge for all hit-like objects (digis,
clusters) and proportional to the number of hits in a track.
With this system it is possible to measure the degree of pileup at the different processing stages.
It also allows the access to the full original MC truth data for mixed events.

7.4.2 Strategies for Event Deconvolution

There have been two different strategies developed to solve the problem of event deconvolu-
tion. The first works using the TPC standalone without any external information apart from a
time signal defining t0. The second strategy involves correlating measurements in the TPC with
the rest of the detector system in particular with a vertex detector or other tracking chambers.
Combined these methods are able to efficiently reconstruct single events from a highly mixed
data stream as will be demonstrated below.

Target Pointing

In order to understand the reasoning that is behind the standalone event deconvolution it is
useful to recapitulate the characteristics of the data which are delivered by a continuously run-
ning TPC at high rates.
All hits in the TPC will be time-stamped and thus tracks can be reconstructed in 3D as shown
in Figure 7.6. For this reconstruction the event time t0 is not known and not needed since all
times are measured from an arbitrary starting point. The relative z -positions of the hits will be
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correct. However, depending on the t0 of a particular event, the tracks belonging to this event
will appear at an offset in z corresponding to t0. If this offset can be measured one has the
means to determine the t0 of a track. For this to work a reference point on the track is needed
for which the z -position in the chamber is known.
There are two such cases which can be used: if a track penetrates one of the end caps of the
chamber, then the z -position of the last hit is known to a few millimeters precision. It is im-
portant to achieve high efficiency for complete track reconstruction, meaning that all hits be-
longing to a track have to be found by the pattern recognition and attributed to exactly one
track. Obviously this method only works for tracks which pass through one of the end caps of
the TPC.
The second possibility is target pointing. Once a track has been reconstructed in the TPC it
can be extrapolated to the position of the interaction point where the beam hits the target.
If the track indeed originated from the primary vertex, then the z -coordinate of the resulting
extrapolation directly yields the event offset. This method does not work for tracks coming
from the decay of long-lived, neutral particles such as Ks → π+π− or Λ→ pπ−, but will work
for the vast majority of tracks.
With a complete track reconstruction secondary vertices of neutral particles decaying inside
the TPC can of course be identified and by reconstructing the 3-vector of the decay system a
similar target pointing can be done.
If the t0 for an interesting event is already known from an external trigger system then it is suf-
ficient to select those tracks for which the z -offset falls close. All other tracks can be discarded
at this stage of the processing. For the more complicated case that no external event time is
available the target pointing information can still be used to define event times by clustering
the information along the offset direction. However, since for the parameters mentioned above
the average offset per event is only 1.4 mm a vertex resolution of the order of a few 100µm or
better is necessary for this.
In most situations therefore information from other detectors is needed to complete the event
deconvolution.

Adding Information from other Detectors

For most other detector systems the time window in which event mixing can happen will be
much shorter than in the TPC. This can be exploited to further clean up the data from the TPC
by requiring that tracks found in the TPC connect to hits in fast detectors, such as a silicon
vertex detector installed between the interaction point and the TPC.
In the case study presented here it was assumed that an event is well defined in the vertex
detector. Performing the extrapolation and testing for matches between the two detectors is
then mainly a computational issue.

7.4.3 Event Deconvolution Performance

Figure 7.7 show the performance of the combined pattern recognition, reconstruction and
event deconvolution using only the TPC. The three data sets correspond to three different set-
tings of drift distortions in the TPC. Drift distortions will be discussed in section 7.5. The green
data points correspond to the case without drift distortions. Single track efficiency is the num-
ber of reconstructed physics tracks divided by the total number of all physics tracks. It will
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be one if all physics tracks are reconstructed. The event deconvolution purity is the number
of physics tracks which are kept after the event deconvolution cuts divided by the sum of all
tracks (including background) which survive the event deconvolution cuts. It will be one if
only physics tracks are kept in the event. Finally the event deconvolution efficiency is defined
as the fraction of events for which all physics tracks are reconstructed and survive the event
deconvolution cuts.

single track efficiency
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Figure 7.7: TPC standalone event deconvolution performance for the reaction ηc → ΦΦ →
K +K −K +K − with 2000 admixed background events. Single track efficiency, even deconvo-
lution purity and efficiency as functions of the target pointing cut. The different colors corre-
spond to different degrees of drift distortions from 0% (green), 20% (blue) to 100% (red). Drift
distortion are discussed in chapter 7.5. Plot courtesy of Johannes Rauch [201]

These quantities are shown in Figure 7.7 as a function of the cut on the target pointing in the
event deconvolution. With a target cut of around 2 cm a full event efficiency ∼ 75% can be
reached. The event deconvolution purity which is achievable with the TPC in such a mode of
operation is a few %. Distortions of the drift field (see section 7.5) slightly reduce the achievable
full-event efficiency by a about 10% for the case studied here. Even in such a case the applied
methods appear robust enough for a reliable operation of the detector.
As has been explained above the purity of the event deconvolution can be improved by requir-
ing correlations of the found tracks with hits in the vertex detector. By requiring another at least
two hits inside a road width of 3 mm around the extrapolated tracks improves the background
suppression to such a level as to make physics analysis possible.
Figure 7.8 (left) shows the invariant mass of K +K − pairs which have been recovered from 2000
background events per physics event as described above. The clear peak at 1.02 GeV/c 2 corre-
sponds to the φ. Combining two Φ per event yields a nice ηc peak which is practically back-
ground free. This demonstrates the possibility to recover physics events in a continuously run-
ning time projection chamber from a realistic background at high rates.
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Figure 7.8: Event deconvolution performance for the reaction ηc → ΦΦ → K +K −K +K − with
2000 admixed background events. The φ resonance is clearly visible in the invariant-mass
spectrum of K +K − pairs (left). The invariant mass of the φφ system shows a clear peak at the
mass of the ηc (which has been subtracted here). Plot courtesy of Johannes Rauch [201]
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7.5 Space Charge Simulation

The buildup of space charge inside the TPC drift volume and the resulting distortions of the
drift field are serious challenges for a high-rate TPC. Even with the use of ion-backflow sup-
pressing technologies such as a GEM-based readout there will still be residual ion charge flow-
ing back from the gas amplification stage into the drift volume.
In order to investigate the expected drift distortions and to test concepts for possible correction
methods a space-charge simulation has been set up. The details of the methods employed are
being published in a paper [213]. Here we will give a summary of the simulation and the results
obtained.

Simulation of space-charge buildup

In order to simulate the high-rate environment and the charge deposited in the TPC antiproton-
proton annihilations at a momentum of p p̄ = 2.0 GeV/c 2 have been generated, using the DPM
event generator [211]. The primary ionization caused by these events in the TPC drift volume
has been evaluated with a GEANT3 simulation as described in section 7.1.
Although the initial distribution of electrons and ions is equivalent the electrons are quickly re-
moved by the drift field while the ions with a drift velocity of vion = 1.767 cm/ms stay inside the
drift volume three orders of magnitude longer. In the following discussion of the space charge
density the electrons will therefore be treated as reaching the readout detector immediately
after the ionization event in the TPC.
Upon arrival at the gas amplification stage the electrons create an avalanche of ionization pro-
cesses, delivering enough charge to the pickup electrodes to induce a measurable signal but
also liberating a large number of ions. In a GEM detector with asymmetric field configurations
most of these ions are collected at the anode side of the GEM-foil [177, 178]. However, some
ions travel along the drift field lines back into the TPC. The number of ions which escapes from
the GEM detector per incoming electron is called the ion back-flow ε. For the simulations pre-
sented here a value of ε = 4 has been used which is a realistic assumption for a GEM detector
operated in a 2 T magnetic field (see for example [214]).
The time-resolved simulation of the space charge distribution in the TPC is realized in three
steps. Note that the TPC is treated as rotationally symmetric for the purposes of this investiga-
tion. The space-charge density will only be studied in the z -r -plane of the TPC.

1. A template distribution of the primary ionization in the TPC is calculated by integrating
the deposited charge over a short (on the scale of the ion drift) time interval without
taking the intermediate ion drift into account.

2. The template distribution is then used to produce space charge in the TPC volume taking
into account the ion drift and the backflow of ions from the amplification stage which is
obtained by integrating the primary charge deposited in one time-frame over the drift
direction and multiplying the resulting value with the ion back-flow ε. Note that in the
model used here the ion drift is assumed to proceed on straight lines. No attempt at a
self-consistent simulation of the ion drift has been made.

3. After one complete ion drift time an equilibrium is reached and the space charge distri-
bution stabilizes. The fluctuating primary ionization is treated as a small perturbation
on top of the equilibrium charge density and will be neglected here.
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The result of this simulation is a static charge density as shown in Figure 7.9. For an event rate
of 2 ·107 p̄ p annihilations per second peak charge densities of 55 fC/cm3 are found. This value
is comparable to charge densities found in running TPCs at heavy ion colliders [215].
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Figure 7.9: Monte Carlo simulation: Ion space charge density created in a GEM-TPC filled with
Ne/CO2 (90/10) operated with an ion-backflow ε = 4 and exposed to 2 · 107 p̄ p annihilations
per second. The peak charge density found here is about 55 fC/cm3.

.

Drift Distortions

The simulated space charge distribution can be used to calculate the distortions to the (homo-
geneous) drift field. For this purpose the field cage of the TPC has been assumed to be a perfect
conductor. The finite-element software package DOLPHIN [216] has been used to solve the
cylindrical symmetric Poisson’s equation in the z -r dimensions to calculate the electrostatic
potential generated by the (static) space charge distribution from which the resulting electric
field can be easily computed.
Figure 7.10 shows the resulting electric field. Due to the angular symmetry of the TPC there is
no component perpendicular to the z -r -plane. From these results it is clear that deviations in
z -direction are below the %-level so that in good approximation the drift times will not be ef-
fected seriously. However, the field component in r -direction will cause significant distortions
of the drift paths.
In order to convert the field map into a map of drift distortions the macroscopic equations
of motion for a charge in magnetic and electric fields and with a constant friction term [174],
which parametrizes the microscopic multiple collisions of the drifting electrons with the gas
atoms, has been solved for test-charges place at different places throughout the TPC. The re-
sulting map of drift distortions is shown in Figure 7.11. Due to the E ×B effect there are sizable
distortions also in the φ-direction perpendicular to the z -r -plane. The distortions are gener-
ally growing with larger drift paths and are biggest at the inner, forward corner of the chamber
where also the space-charge density peaks.
The predicted distortions are in the order of a few mm and have to be corrected before the final
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Figure 7.10: Electric field created by the ion space charge shown in Figure 7.9 in a field cage
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been superimposed (b).
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Figure 7.11: Electron drift distortions — deviation from a straight line drift — caused by the ion
space charge shown in Figure 7.9. The E × B effect induces drift distortions perpendicular to
the z -r -plane even for azimuthal symmetric TPCs (b).

.

reconstruction of an event. However, it should be noted that for purposes of pattern recogni-
tion and event deconvolution these levels of distortion are acceptable as has been shown in

179



7.5. SPACE CHARGE SIMULATION

section 7.4.2.

Distortion Corrections

For the precise determination of track parameters any drift distortions have to be corrected.
This is possible if the distortions can be measured during operation of the TPC. To this end
high power laser tracks have been used in running TPCs (see for example [217]) in order to
monitor drift velocities and drift distortions. Such a system has been simulated to explore the
possibilities for drift distortion correction in a high-rate GEM-TPC. First studies indicate that a
correction of the drift distortions using laser tracks is indeed feasible [196, 213].
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Appendix A

5π Phase-Space Acceptance

Accepted phase-space Monte Carlo distributions. For details see section 3.6.
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Figure A.1: Angular acceptance for the 5-pion final state as determined by Monte Carlo simu-
lation. The distributions shown are projections of accepted phase-space events. Unmodified
phase-space distributions would be flat in all variables. m5π ∈ [1.36, 1.60]GeV/c 2
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Figure A.2: Angular acceptance for the 5-pion final state as determined by Monte Carlo simu-
lation. The distributions shown are projections of accepted phase-space events. Unmodified
phase-space distributions would be flat in all variables. m5π ∈ [1.60, 1.84]GeV/c 2
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Figure A.3: Angular acceptance for the 5-pion final state as determined by Monte Carlo simu-
lation. The distributions shown are projections of accepted phase-space events. Unmodified
phase-space distributions would be flat in all variables. m5π ∈ [1.84, 2.08]GeV/c 2

184



APPENDIX A. 5π PHASE-SPACE ACCEPTANCE

)+π
­

π+π
­

π(
GJ

θcos 
­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

3
10×

COMPASS 2004
 Pb

­
π

+
π

­
π

+
π

­
π → Pb 

­
π

accepted phase­space MC
2 [2080,2320] MeV/c∈ 

π5m

(a) cosθ 4π
GJ

)+π­π+π­π(
TY

φ
­3 ­2 ­1 0 1 2 3

0

2

4

6

8

10

12

14

16

18

3
10×

COMPASS 2004
 Pb

­
π+π

­
π+π

­
π → Pb 

­
π
accepted phase­space MC

2 [2080,2320] MeV/c∈ π5m

(b) φ4π
TY

)­π
­

π+π(
GJ

θcos 
­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

3
10×

COMPASS 2004
 Pb

­
π

+
π

­
π

+
π

­
π → Pb 

­
π

accepted phase­space MC
2 [2080,2320] MeV/c∈ 

π5m

(c) cosθ 3π
GJ

)+π
­

π)(+π
­

π(
Hel

θcos 
­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

3
10×

COMPASS 2004
 Pb

­
π

+
π

­
π

+
π

­
π → Pb 

­
π

accepted phase­space MC
2 [2080,2320] MeV/c∈ 

π5m

(d) cosθ 22
Hel

)+π)(­
π+π

­
π(

Hel
θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

3
10×

COMPASS 2004
 Pb

­
π

+
π

­
π

+
π

­
π → Pb 

­
π

accepted phase­space MC
2 [2080,2320] MeV/c∈ 

π5m

(e) cosθ 31
Hel

)­π)(+π
­

π(
Hel

θcos 
­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

3
10×

COMPASS 2004
 Pb

­
π

+
π

­
π

+
π

­
π → Pb 

­
π

accepted phase­space MC
2 [2080,2320] MeV/c∈ 

π5m

(f) cosθ 21
Hel

)+π­π)(+π­π(
Hel

φ
­3 ­2 ­1 0 1 2 3

0

10

20

30

40

50

60

70

3
10×

COMPASS 2004
 Pb

­
π+π

­
π+π

­
π → Pb 

­
π
accepted phase­space MC

2 [2080,2320] MeV/c∈ π5m

(g) φ22
Hel

)+π)(­π+π­π(
Hel

φ
­3 ­2 ­1 0 1 2 3

0

5

10

15

20

25

30

35

3
10×

COMPASS 2004
 Pb

­
π+π

­
π+π

­
π → Pb 

­
π
accepted phase­space MC

2 [2080,2320] MeV/c∈ π5m

(h) φ31
Hel

)­π)(+π­π(
Hel

φ
­3 ­2 ­1 0 1 2 3

0

10

20

30

40

50

60

70

3
10×

COMPASS 2004
 Pb

­
π+π

­
π+π

­
π → Pb 

­
π
accepted phase­space MC

2 [2080,2320] MeV/c∈ π5m

(i) φ21
Hel

Figure A.4: Angular acceptance for the 5-pion final state as determined by Monte Carlo simu-
lation. The distributions shown are projections of accepted phase-space events. Unmodified
phase-space distributions would be flat in all variables. m5π ∈ [2.08, 2.32]GeV/c 2

185



)+π
­

π+π
­

π(
GJ

θcos 
­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

3
10×

COMPASS 2004
 Pb

­
π

+
π

­
π

+
π

­
π → Pb 

­
π

accepted phase­space MC
2 [2320,2560] MeV/c∈ 

π5m

(a) cosθ 4π
GJ

)+π­π+π­π(
TY

φ
­3 ­2 ­1 0 1 2 3

0

2

4

6

8

10

12

14

16

3
10×

COMPASS 2004
 Pb

­
π+π

­
π+π

­
π → Pb 

­
π
accepted phase­space MC

2 [2320,2560] MeV/c∈ π5m

(b) φ4π
TY

)­π
­

π+π(
GJ

θcos 
­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

3
10×

COMPASS 2004
 Pb

­
π

+
π

­
π

+
π

­
π → Pb 

­
π

accepted phase­space MC
2 [2320,2560] MeV/c∈ 

π5m

(c) cosθ 3π
GJ

)+π
­

π)(+π
­

π(
Hel

θcos 
­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

3
10×

COMPASS 2004
 Pb

­
π

+
π

­
π

+
π

­
π → Pb 

­
π

accepted phase­space MC
2 [2320,2560] MeV/c∈ 

π5m

(d) cosθ 22
Hel

)+π)(­
π+π

­
π(

Hel
θcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

3
10×

COMPASS 2004
 Pb

­
π

+
π

­
π

+
π

­
π → Pb 

­
π

accepted phase­space MC
2 [2320,2560] MeV/c∈ 

π5m

(e) cosθ 31
Hel

)­π)(+π
­

π(
Hel

θcos 
­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

3
10×

COMPASS 2004
 Pb

­
π

+
π

­
π

+
π

­
π → Pb 

­
π

accepted phase­space MC
2 [2320,2560] MeV/c∈ 

π5m

(f) cosθ 21
Hel

)+π­π)(+π­π(
Hel

φ
­3 ­2 ­1 0 1 2 3

0

10

20

30

40

50

60

3
10×

COMPASS 2004
 Pb

­
π+π

­
π+π

­
π → Pb 

­
π
accepted phase­space MC

2 [2320,2560] MeV/c∈ π5m

(g) φ22
Hel

)+π)(­π+π­π(
Hel

φ
­3 ­2 ­1 0 1 2 3

0

5

10

15

20

25

30

3
10×

COMPASS 2004
 Pb

­
π+π

­
π+π

­
π → Pb 

­
π
accepted phase­space MC

2 [2320,2560] MeV/c∈ π5m

(h) φ31
Hel

)­π)(+π­π(
Hel

φ
­3 ­2 ­1 0 1 2 3

0

10

20

30

40

50

60

3
10×

COMPASS 2004
 Pb

­
π+π

­
π+π

­
π → Pb 

­
π
accepted phase­space MC

2 [2320,2560] MeV/c∈ π5m

(i) φ21
Hel

Figure A.5: Angular acceptance for the 5-pion final state as determined by Monte Carlo simu-
lation. The distributions shown are projections of accepted phase-space events. Unmodified
phase-space distributions would be flat in all variables. m5π ∈ [2.32, 2.56]GeV/c 2
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Figure A.6: Angular acceptance for the 5-pion final state as determined by Monte Carlo simu-
lation. The distributions shown are projections of accepted phase-space events. Unmodified
phase-space distributions would be flat in all variables. m5π ∈ [2.56, 2.800]GeV/c 2
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Figure A.7: Angular acceptance for the 5-pion final state as determined by Monte Carlo simu-
lation. The distributions shown are projections of accepted phase-space events. Unmodified
phase-space distributions would be flat in all variables. m5π ∈ [2.80, 3.04]GeV/c 2
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Appendix B

Pool of Partial Amplitudes

The following partial amplitudes have been used in the genetic optimization (see section 4.2)
to generate the final 5π isobar model and estimate the systematic errors associated with the
choice of waveset.
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Appendix C

Error Propagation of Amplitude
Analysis Observables

In this appendix some rules for the propagation of uncertainties on the observables of the
partial-wave decomposition discussed in section 3.5 are given.
An examination of the Hesse-matrix of the log-likelihood-function 3.21 at the maximum likeli-
hood solution yields an estimate for the covariance matrix of the fit parameters. The fit param-
eters are of course real-valued quantities which correspond to real and imaginary parts of the
production amplitudes. In principle a polar representation of the amplitudes in terms of mag-
nitude and phase would be more natural. However, there exists no minimization algorithm
that the author is aware of that can efficiently deal with the cyclical variables that would be
introduced by such a formulation of the problem.
For complex quantities such as the spin-density matrix elements the propagation of uncer-
tainties is a task that might be unfamiliar to most experimentalists. In order to give the reader
some insight into what is involved, this sections gives the basic formulas needed. The approach
described below has been used by the author to implement the error propagation inside the
rootpwa framework.
The following rules are developed according to the method proposed in the paper by B. D. Hall
[218].

Matrix representation of complex numbers First note that a complex number (as a mea-
sured quantity) can be represented as a 2-tuple:

z = a + ib →
�a

b

�

a =Re(z ) b = Im(z )

The uncertainty on z is not a number but instead is conveniently expressed as a 2×2 covariance
matrix

C =

�

σ2
Re cov(Re, Im)

cov(Im, Re) σ2
Im

�

The goal is to calculate this matrix for a given complex-valued function z = f (T ) which de-
pends on n complex parameters Tα for which the (complex) co-variances are known. When
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the complex numbers are viewed as 2-dimensional vectors we can use standard techniques for
the propagation of multivariate uncertainties with the Jacobian J .

J ( f ) =
�

J1( f )J2( f )...Jn ( f )
�

(C.1)

Where the sub-matrices corresponding to the parameters Tα have been labeled Jα.

Jα( f ) =

 

∂ Re( f )
∂ Re(Tα)

∂ Re( f )
∂ Im(Tα)

∂ Im( f )
∂ Re(Tα)

∂ Im( f )
∂ Im(Tα)

!

(C.2)

Note that J is a 2×2n matrix as expected for a complex valued function of n complex parame-
ters.

For analytic functions one can use complex derivatives to write the sub-matrices more com-
pactly. To show this the matrix representation of complex numbers will be used:

M (z ) =

�

a −b
b a

�

These matrices behave like complex numbers under the usual arithmetic operations, where
division is represented by multiplication with the inverse and the complex conjugate is repre-
sented by the transposition of the matrix.
For an analytic function f (z ) the Cauchy-Riemann relations hold and so we can write the com-
plex derivative in matrix-notation as

M

�

∂ f

∂ z

�

=

 

∂ Re( f )
∂ Re(z )

∂ Re( f )
∂ Im(z )

∂ Im( f )
∂ Re(z )

∂ Im( f )
∂ Im(z )

!

(C.3)

Where ∂ f
∂ z denotes the complex valued partial derivative of f .

So if f is analytic in Tα the corresponding sub-Jacobian can be written as:

Ji ( f ) =M

�

∂ f

∂ Tα

�

One important special case occurs for the non-analytic f (z ) = z ∗. Working out the Jacobian
explicitly for z = a + ib using equation (C.2) gives

�

∂ a
∂ a

∂ a
∂ b

∂ b
∂ a

∂ (−b )
∂ b

�

=

�

1 0
0 −1

�

(C.4)

This obviously does not fulfill the Cauchy-Riemann relations so the complex derivatives cannot
be used to write down the Jacobian. The form of equation C.4 can, however, be used for the
purpose of error propagation without further problems.
With these tools the error propagation law for complex numbers can be written down. Suppose
we have a complex valued function f which depends on a vector of n complex numbers Tα.

z = f (T )

208



APPENDIX C. ERROR PROPAGATION OF AMPLITUDE ANALYSIS OBSERVABLES

For the 2n components of the parameters the covariance matrix shall be given by:

Cαβ = cov(Tα, Tβ )∈R2n×2n

The covariance of z can now be written as

cov(z ) = J ( f )C J T ( f ) (C.5)

with J given in equation C.1.

Error propagation for |z |2 :
Let

C =

�

c11 c12

c21 c22

�

be the covariance of z = a + ib .

f (z ) = z z ∗ is not analytic. Obviously it is not even a complex valued function so the Jacobian
has to be determined explicitly. In order to explore how the different terms of cov(z ) contribute
to the error matrix the general result is given here.

Obviously

Re(z z ∗) = a 2+b 2 Im(z z ∗) = 0

J =

�

2a 2b
0 0

�

So for the error propagation we get:

cov(z z ∗) = J C J T =

�

2a 2b
0 0

��

c11 c12

c21 c22

��

2a 0
2b 0

�

using c12 = c21 we get

cov(z z ∗) = 4

�

a 2c11+2ab c12+b 2c22 0
0 0

�

(C.6)

σ2 = 4(a 2c11+2ab c12+b 2c22)

which is the expected error (squared) for the length of a 2d vector.

Error propagation for z ∗A :
For A = k + i m explicit calculation gives

J =

�

k m
m −k

�

=M (A)

�

1 0
0 −1

�

(C.7)

Note from which side the factor for the complex conjugate has to be multiplied.
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Error propagation for the Intensity Function :
The 2n×2n covariance matrix C for the production amplitudes Tα contains the information on
the errors of the observables defined in section 3.5. In order to propagate these uncertainties
one has to construct the Jacobian of I in the form of equation (C.1).
As an example the error propagation for the intensity 3.26 is shown here. Because of the sum
over the different waves the sub-matrices separate into three terms

Ji = 2

�

Re(Tα) Im(Tα
0 0

�

M (Iαα) +
∑

β 6=α
M (T ∗β Iαβ ) +

∑

β 6=α
M (Tβ Iβα)

�

1 0
0 −1

�

Here the results (C.6) and (C.7) have been used. Realizing that for the normalization integrals
the following relation holds

Iβα = I ∗αβ

and so

Ji = 2

�

Re(Tα) Im(Tα)
0 0

�

M (Iαα) +
∑

α6=β
M T (Tβ Iβα) +M (Iβ Iβα)

�

1 0
0 −1

�

the Jacobian can be further simplified using the rule

M (z )T +M (z )

�

1 0
0 −1

�

=

�

a b
−b a

�

+

�

a −b
b a

��

1 0
0 −1

�

=

�

a b
−b a

�

+

�

a b
b −a

�

= 2

�

a b
0 0

�

The result for the Jacobian with respect to Tα is:

Jα = 2

�

Re(Tα) Im(Tα)
0 0

�

M (Iαα) +
∑

β 6=α
2

�

Re(Tβ Iβα) Im(Tβ Iβα)
0 0

�

(C.8)

Noting that Im(Iαα) = 0 one obtains

Jα = 2
∑

β

�

Re(Tβ Iβα) Im(Tβ Iβα)
0 0

�

(C.9)

From these blocks full Jacobian can be build

J (I ) = (J1 J2 . . . Jn ) (C.10)

Equation (C.5) then gives the final error on the intensity.
Similar arguments can be used to construct covariance matrices for all the observables one is
interested in.
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Own Contributions

The complete analysis from the selection of the data from the COMPASS data summary tapes,
the detector simulation and the two-step amplitude analysis have been done by myself. The
data selection has been cross-checked by Johannes Bernhard. For the initial data handling and
the detector simulation I have used COMPASS software infrastructure. For the main steps of
the data refinement as well as the complete partial wave analysis new software has been devel-
oped by myself. In particular the genetic waveset selection was my own idea and responsibility.
In the later stages of the rootpwa project I collaborated with Boris Grube, who cross-checked
and improved the code of the mass-independent analysis in many places. In the meantime
this software package has been used by several researchers, who also contributed to the code.
The 5-pion analysis has been cross-checked by Dima Ryabchikov who also contributed valu-
able advice to all analysis steps. I also was responsible for the cross-check of the partial wave
analysis of the 3π system using the rootpwa program.
I have defended the results obtained in this analysis in front of the COMPASS collaboration.
In addition during my time as graduate student I have represented the COMPASS hadron-
analysis group several times at international workshops and conferences including group re-
ports, overview talks and workshop lectures.
As part of the GEM group at E18 I was responsible for the operation of the GEM trackers at
COMPASS taking “on call” duties for this subsystem. In addition I did regular shifts for the
complete COMPASS spectrometer. Also I have designed and built a thin foil target for the 2009
COMPASS hadron run, which has been used to record πPb and πW interactions.
As member of the PANDA computing group I was the primary author of the TPC simulation
code. I was also engaged in the working-group on the PANDA software framework(s) and the
tracking subgroup, which I briefly had the honor of chairing. The TPC pattern recognition
algorithms have been designed by me in close exchange with the GEM-TPC group. The im-
plementation was completed by two Diploma students under my supervision. The GENFIT
tracking software has been developed in very close collaboration with Christian Höppner with
an equal-parts sharing of responsibilities. Both the event-deconvolution studies as well as the
space-charge simulations have been designed and supervised by me but have been completed
by Diploma students.
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