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1. Introduction

The field theory of the strong force, quantum chromodynamics, is one of the great
advances in physics. It has been tested successfully from the GeV to the TeV scale.
However, due to its non-abelian structure, the low energy region provides for many
challenges for theorists and experimentalists alike. Because perturbative calculations
are no more possible predictions have to be made in effective models and experimental
backgrounds are hard to predict.
However, it is the soft scale that dominates the matter around us. The properties of
nucleons that make up the visible matter are determined by dynamics at the soft scale.
For example, most of the mass is generated by the field dynamics. And the composition
of the nucleon spin is still unaccounted for. With the advent of the parton model in the
1960s many properties of the nucleon could be understood in a quite simple picture.
However, only the inclusion of QCD and the field theoretical treatment of quarks and
gluons allow for a consistent and complete approach to the description of the structure
of the nucleon.
One finding was, that the spin structure of the nucleon at leading order without con-
sidering quark transverse momenta is determined by three functions that have a proba-
bilistic interpretation in the parton model. These are conventionally named f1, g1 and
h1. The first one describes the distribution of unpolarized quarks in an unpolarized nu-
cleon, whereas the second one describes the distribution of helicity of a longitudinally
polarized parent nucleon among the quarks.
The third one, the so called transversity distribution function h1 was thought to be
negligible in the phenomenology of DIS, since the interpretation in the parton model is
usually done in a frame, where the nucleon is boosted in the longitudinal direction. This
suggest that effects connected to transverse spin and transverse quark momenta can be
neglected. However, since boosts break rotational symmetry, h1 provides independent
information about the spin structure of the nucleon.
If we leave the collinear picture and allow transverse momenta of the quarks, more
distribution functions of quarks exist. One of these, the so called Sivers function f⊥1T ,
describes the distribution of unpolarized quarks in a transversely polarized nucleon. It
is strongly connected to the orbital angular momenta of the quarks, which might be
another contribution to the nucleon spin.
At COMPASS, a fixed target experiment at CERN, transverse spin effects were mea-
sured for the first time on a deuterium target. Due to the chiral structure of h1 and
the näıve T-oddness of the Sivers effect, a measurement in inclusive deep inelastic scat-
tering (DIS) is impossible, which is a reason for the scarce experimental data on these
important functions. Instead, semi inclusive DIS (SIDIS) has to be used, where at least
one hadron in the final state is detected.
Particle identification of these final state hadrons allows for flavor separation. In this
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work Collins and Sivers effects are extracted from the COMPASS data taken in 2003
and 2004. Furthermore, the data is analyzed for a signal of transversity in two hadron
correlations. Chapter 2 gives a theoretical introduction to transversal spin effects. Then
the COMPASS experiment is introduced in chapter 3. For the extraction of the results
novel approaches for asymmetry extraction and particle identification are developed in
chapter 4. They are evaluated on simulated data produced for this thesis. The ex-
tracted results are presented in chapter 5 along with an interpretation and comparison
with other experiments. The work is summarized in chapter 6.



2. Theory

In this chapter, the theory of transverse single spin asymmetries (SSAs) and what they
reveal about quark dynamics will be introduced. There are several good overviews
published and this introduction is guided by the reviews in [1][2][3][4]. After the intro-
duction of the basic notation, the quark-quark correlation matrix will be introduced in
section 2.2. It is a field theoretical description of the quark dynamics in the nucleon
and contains all information about the nucleon structure, which cannot be calculated
perturbatively. Therefore it has to be measured. An appropriate parametrization will
be presented in 2.2.2. It will be based upon a decomposition over a Dirac base. This
base has to be related to measurable quantities as the nucleon spin and hadron mo-
menta. For the parameters a probabilistic interpretation as parton densities in the
parton model can be found as shown in sec. 2.2.3. These findings will be generalized
to the case where quark transverse momenta exist or hadrons are detected in the final
state. The measurement of azimuthal asymmetries will prove to be a way of accessing
the parton densities connected to tensorial structures. Collins and Sivers asymmetries
will be treated in detail as will be azimuthal asymmetries in the fragmentation into
two hadrons, which provide another way to access the transverse spin structure of the
nucleon.

2.1 Deep Inelastic Scattering

The primary tool in the investigation of the structure of the nucleon is Deep Inelastic
Scattering (DIS) where a high-energy pointlike particle, for all practical purposes a
lepton l, scatters off a nucleon N with momentum as depicted in figure 2.1 in the
process

l +N → l′ + X . (2.1)

After scattering the nucleon goes into the unknown hadronic state X . Here it is as-
sumed, that the scattering reaction takes place by one-photon exchange, the so-called
Born approximation. This approximation can be safely used in the kinematic range
covered by the COMPASS experiment. Due to the small wavelength of the photon, the
result of the scattering reaction depends solely on the internal structure of the nucleon
[5]. In this work, the emphasis is on the analysis of the transverse spin structure of the
nucleon. To anticipate this, the momentum and spin vectors of the target nucleon P
and S are introduced, as are the momentum PX of the state X . The four-momenta of
the incoming and outgoing lepton are conventionally called l and l′.
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l

l'

N

q
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X

1

Figure 2.1: Deep Inelastic Scattering

2.1.1 Kinematical Variables

The kinematical degrees of freedom of the reaction are usually described by the set of
lorentz invariant variables Q2, xBj , ν and y that are listed in table 2.1. If no confusion
is possible, the subscript of xBj can be omitted.

Table 2.1: Definition of kinematic variables relevant for the DIS process

mass of the target nucleon MN

4-momentum of the incoming lepton l lµ = (E,~l)
4-momentum of the target nucleon P Pµ = (EN , ~PN )
4-momentum of the outgoing lepton l′ l′µ = (E′, ~l′)
4-momentum of the virtual photon q q = l − l′

4-momentum of an outgoing hadron Ph Pµ
h = (Eh, ~Ph)

neg. squared invariant mass of the virtual photon Q2 Q2 = −qµqµ

energy transfer to the target ν ν = Pµqµ/MN

Bjorken scaling variable xBj xBj = Q2
2MN ν

fractional energy transfer of the virtual photon y y = P µqµ

P µlµ

fraction z of the energy of the virtual photon carried by hadron h z = PµP µ
h

P µqµ

transverse momentum of the hadron w.r.t. the virtual photon Ph
⊥ (not Lorentz-invariant)

Unless otherwise noted, from here on we take ~ = c = 1. The coordinate system
conventionally employed in DIS is a gamma-nucleon (γ∗N) reference system, in which
the z-axis coincides with the virtual photon direction and the x-z plane is the lepton
scattering plane. The y-axis is orthogonal to it, so that a right-handed coordinate
system is obtained (see fig. 2.2). To get a Cartesian coordinate system, there are two
choices for the x-axis. Here it is chosen in such a way, that the direction of the scattered
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l
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Figure 2.2: Coordinate System for the one hadron asymmetries. The hadron scattering plane
is indicated in blue. For the computation of azimuthal asymmetries the projection of the nucleon
spin transverse to the lepton scattering plane is used, which is called ~S⊥.

lepton is positive in x. Azimuthal angles are denominated Φ, whereas polar angles are
called θ. For example, the azimuthal angle of an outgoing hadron h will be Φh.

2.1.2 Deep Inelastic Scattering Cross Section

The Born approximation treats one-photon exchange in the scattering process between
the lepton and the nucleon. The scattering of a lepton interacting with a photon
can be computed at leading order in QED by either computing the Feynman tree level
diagram or considering the electromagnetic current from the scattered lepton Jµ(l−l′) =
ū(l′)γµu(l). Here the u denominate the lepton spinors and γµ Dirac gamma matrices.
Without knowledge about the substructure of the nucleon, the scattering process can
then be expressed as the interaction between the leptonic and the hadronic current.
Following Fermi’s golden rule, the cross-section can be expressed by the squared matrix
element M integrated over the phase space. Separating leptonic and hadronic current
contributions in this expression leads to the description of the squared matrix element
in DIS by the product of the leptonic tensor Lµν and the hadronic tensor Wµν [6]:

|M|2 = 4πM
e4

q4
LµνWµν (2.2)

Since the leptonic tensor describes the purely electromagnetic transition of the lepton,
which is a pointlike particle, it can be computed in QED and the coupling strength is
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given by the elementary charge e. On the other hand the transition of the hadron to
an unknown state, symbolically denoted by X with total momentum PX , is dependent
on soft QCD contributions. These are to be investigated. In terms of the unknown
transition current Jµ the hadronic tensor can be written as

2MWµν(q, P, S) =

1
2π

∑
X

∫
d3PX

(2π)32P 0
X

(2π)4δ(4)(q + P − PX )〈P, S|Jµ(0)|X 〉〈X |Jν(0)|P, S〉 (2.3)

with P , S momentum and spin of the nucleon. For the recasting of the integration
measure see e.g. [7]. Here and in the following, a field theoretical approach is used,
promoting the Jµ to operators. The summation is carried out over all states X and
the four-momentum PX is integrated out. After using the translational invariance, the
Fourier representation of the δ function and completeness relations

2MWµν(q, P, S) =
1
2π

∫
d4ξeiqξ〈P, S|Jµ(ξ)Jν(0)|P, S〉 (2.4)

is obtained [2]. Without an understanding of the internal dynamics of the nucleon it
is impossible to further specify the hadronic tensor and it has to be parametrized by
structure functions.

2.1.3 Factorization

As already realized by Bjorken, the phenomenology of DIS at sufficiently high Q2 can be
explained by assuming that a photon scatters off a massless parton inside the nucleon.
This kinematic regime is the so-called Bjorken limit which is defined by ν,Q2 →∞, with
xBj fixed and is indicated in fig. 2.3. In this regime QCD becomes scale invariant up to
logarithms of Q2 generated by radiative corrections [3]. Factorization theorems show
that the measured soft matrix elements are process independent [8]. They have to be
proven for each process. A consistent set of rules that describes the factorization is called
a factorization scheme. The MS scheme is such a set of rules, which has the advantage,
that the parton distribution functions are defined directly in terms of hadronic matrix
elements [8]. In DIS it is customary to set the factorization scale µ2 at Q2. Evolution of
the quark distribution functions to different scales is done by the DGLAP 1 equations, if
quark transverse momentum is neglected [9][10][11]. Otherwise the evolution equations
have to be changed. At high Q2 the scale dependence becomes small and essentially
logarithmic in Q2, also with the inclusion of quark transverse momenta [3][12]. All
quantities are in principles dependent on this scale. In contrast, at leading order in the
Born approximation, the results are independent of the renormalization scheme.

2.1.4 Field Theoretical Description

The final state X can be split into a quark plus a state X with momentum PX . Using
the MS factorization scheme, the interacting hadronic current can be written in terms
of the quark field2 Ψ as Jµ(κ − k) = 〈P, S|Ψ̄(κ)γµΨ(k)|X〉. The four-vectors k and

1Dokshitzer, Gribov, Lipatov, Altarelli, Parisi
2For both, the quark field and the corresponding operator the same variable Ψ will be used
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Figure 2.3: Kinematic regimes in lepton-nucleon scattering. The Bjorken variable xBj mea-
sures the inelasticity of a process. The energy transferred from the scattered lepton to the
hadronic system can be computed as (P + q)2 −MN = 2Pq(1 − xBj). For elastic processes
xBj equals one. For smaller values of xBj resonances of the nucleon are formed. If even more
energy is transferred, the Bjorken region is reached were in a first approximation deep inelastic
scattering can be treated as the scattering of the virtual photon from quasi free quarks. In
the figure the borders of this region for large xBj and small xBj are indicated. As xBj = 0 is
approached, photoproduction dominates and the so-called Regge regime is entered [3].
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κ designate the quark momenta before and after scattering, mirroring completely the
description of the scattering beam particle. At tree level the hadronic tensor in equation
2.4 can then be expressed as

2MWµν(q, P, S) =
1
2π

∑
qf

e2qf

∑
X

∫
d3 ~PX

(2π)32P 0

∫
d3κ

(2π)3κ0
(2π)4δ(4) (P + q − κ− PX)

〈P, S|Ψ̄(κ)γµΨ(k)|X〉〈X|Ψ̄(k)γνΨ(κ)|P, S〉

=
1
2π

∑
qf

e2qf

∑
X

∫
d3 ~PX

(2π)32P 0

∫
d3κ

(2π)3k0
(2π)4δ(4) (P + q − κ− PX)

〈P, S|Ψ̄i(0)|X〉〈X|Ψ(0)j |P, S〉 (γµ/κγν)ij .

(2.5)

Here and in the following the i,j are Dirac indices, /κ = γµκµ is the Feynman slash
and qf is the quark flavor with charge eqf

. The quark field Ψ contains the quark
dynamics. One can choose to evaluate it at zero instead of k, as done in the last line,
since the product of the unitary operators shifting the fields Ψ and Ψ̄ by −k is unity
[5]. Rewriting equation 2.5 by using completeness relations of the states X and part of
exponential representation of δ(4) to translate the field operator Ψ(0) one arrives at

2MWµν(q, P, S) =∑
qf

e2qf

∫
d4kδ(k + q)2∆(k0 + q0)·

∫
d4ξ

(2π)4
ei(P−k−PX)ξ〈P, S|Ψ̄(ξ)iΨj(0)|P, S〉γµ

ik(/k + /q)klγ
ν
lj

(2.6)

where the relation k = κ−q for the outgoing quark is used and causality is observed due
to the step function ∆. The matrix element 〈P, S|Ψ̄(ξ)iΨj(0)|P, S〉 is now independent
of the unobserved state X. It can be regarded as the unnormalized distribution of
quarks within the nucleon in the state P, S and contains all the information about the
soft part of the inclusive scattering reaction [13].

In addition one has to consider that the quark is propagating in the QCD background
field Aµ of the nucleon. Matrix elements of the form 〈P, S|Ψ̄(ξ)iΨj(0)|P, S〉 are con-
nected to quark propagation from point 0 to point ξ in four-momentum space. In the
case of inclusive DIS, the optical theorem introduced in the next chapter provides an
intuitive explanation for this. The interaction is thus taking place on a path from 0 to
ξ, This can be incorporated by inserting a so-called Wilson link [3]

L(ξ) = P
(

exp i
∫ ξ

0
dζµAµ(ζ)

)
, (2.7)

where P means path ordering. It can be shown that the insertion of the Wilson link
leads also to a gauge invariant expression [4]. However, in a collinear picture, where
quark intrinsic transverse momentum k⊥ is neglected, it is possible to choose a gauge
such that L evaluates to unity; the light cone (LC) gauge. Therefore the link will be
omitted in the following, until effects depending on k⊥ are treated. Then it becomes
important when comparing measurements in the Drell-Yan and DIS processes.
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Figure 2.4: Illustration of the Optical Theorem. Squaring an amplitude is accomplished by
multiplying with the complex conjugate which leads to a mirrored process. The on-shell and
causality conditions for the outgoing particles allow the connection of the amplitude with the
mirrored amplitude.

2.1.5 Optical Theorem and Chiral Odd Amplitudes

Via the optical theorem the hadronic tensor in equation 2.4 is related to the forward
Compton scattering amplitude Tµν by [5]

Wµν ∝
1
π
Im(Tµν). (2.8)

See figure 2.4 for a visualization.
This relationship can also be read from the equation 2.5 by identifying Φ (Φ̄) with
incoming (outgoing) quark lines, γµ, γν with the quark-photon vertices and /κ with the
propagation of a quark on the mass shell.

2.1.6 Independent Contributions to the Forward Compton Scattering

Amplitude

In the helicity basis there are näıvely 16 independent amplitudes contributing to the
forward Compton scattering amplitude. They are written in the following as AλNλ,λ′Nλ′

and λ, λ′ (λN , λ′N ) are quark (nucleon) helicities. From helicity conservation the condi-
tion λN +λ = λ′N +λ′ follows. Parity invariance demands AλNλ,λ′Nλ′ = A−λN−λ,−λ′N−λ′ .
After applying these conditions three independent amplitudes survive.

A++,++, A+−,+−, A+−,−+ (2.9)

They are customary represented by the so-called handbag diagrams shown in fig. 2.5.
Two amplitudes conserve the helicity of the quark line (λ = λ′) but the third involves
a flip of the quark helicity. This is forbidden in leading order inclusive DIS, because
at the given energy scale quark masses can be neglected and then standard model
processes apart from the weak force are chirality conserving. Chirality coincides for
massless quarks with helicity. Therefore A+−,−+ is a chiral odd quantity which can
only be measured in a combination with another chiral odd quantity. The transversity
distribution function to be defined in the following is proportional to the imaginary
part of this amplitude. Already at this point it is clear that it cannot be measured in
inclusive DIS unlike the unpolarized and helicity quark distribution function which are
proportional to Im(A++,++ +A+−,+−) and Im(A++,++ −A+−,+−), respectively.
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Figure 2.5: Handbag diagrams

2.2 The Quark-Quark Correlation Matrix

The hadronic tensor in equation 2.6 contains hard parts that can be calculated pertur-
batively and soft parts that have to be parameterized. If factorization is proven for the
given process, the soft and hard parts can be separated, allowing the measurement of
the soft parts. Putting the soft matrix elements together leads to the definition of the
Quark-Quark Correlation Matrix[1]3.

Φij(k, P, S) =
∫
d4ξeikξ〈P, S|Ψ̄(0)jΨi(ξ)|P, S〉. (2.10)

This allows to write the hadronic tensor in a more compact way, clearly separating the
soft parts contained in Φ and the hard parts [1][2]:

2MWµν =
∑
qf

e2qf

∫
d4k

(2π)4
δ
(
(k + q)2

)
Tr
[
Φγµ(/k + /q)γν

]
. (2.11)

The trace over the correlation matrix Φ is

Tr(ΓΦ) =
∫
d4ξeik·ξ〈PS|Ψ̄(0)ΓΨ(ξ)|PS〉 (2.12)

and its cyclicity can be used to rearrange arguments.

2.2.1 Light Cone Formulation

Deep inelastic scattering is dominated by contributions on the light cone (LC), while
space like distances are excluded due to causality. That is, the hadronic tensor in
equation 2.6 receives only significant contributions for ξ2 ≈ 0. This can be demonstrated
in a simple picture. At high energies the quark mass can be neglected which means,
that the quark moves along the ’handle’ of the handbag diagram with the speed of light.
The separation ξ between the outgoing and incoming quark is thus light like. The quark

3Following the notation in [1] the arguments 0 and ξ have been exchanged together with the sign of

ξ with respect to eq. 2.6. Because of translational invariance this leads to the same result.
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only leaves the light cone if a gluon is emitted along the way. But gluon radiation and
gluon exchange with the target remnant is suppressed. The latter is known as higher
twist contributions. They contain interdependent quark-gluon dynamics. Therefore it
is instructive to look at the leading light cone projections of the quark fields. For this
reason light cone coordinates are defined.

Taking an ordinary 4-vector aµ = (a0, a1, a2, a3), the light cone representation is a =
(a+, a−, a⊥) with a± = 1√

2
(a0±a3) and a⊥ = (a1, a2). The corresponding metric gµν is

given by g+− = g−+ = 1 and gij = −δij4 [3]. Vectors on the light cone are orthogonal
to themselves (aµaµ = 0 if a is on the light cone). The Sudakov-decomposition of a
can be constructed [1] with the two light like vectors pµ and nµ, which contain only
components in the ’+’ and ’-’ direction, respectively:

pµ =
p√
2
(1, 0, 0, 1) (2.13)

nµ =
1√
2p

(1, 0, 0,−1). (2.14)

The factor p selects a specific frame. Examples are p = M
√

2, the target rest frame and
p→∞, which selects the infinite momentum frame [3][4]. By using the decomposition
in terms of pµ and nµ it is not necessary to use a boost to a specific frame. In the
Bjorken limit the momentum of the parent nucleon Pµ and the virtual photon qµ can
be expressed as

Pµ = pµ +
M2

2
nµ ≈ pµ (2.15)

and

lim
Bj

qµ =
(
ν +

1
2
M2xBj

)
nµ − xBjp

µ +O
(

1
Q2

)
≈ −xBjp

µ. (2.16)

The approximate relations are valid in the infinite momentum frame, where they become
scale invariant.

Analogously the Dirac matrices γ± = 1
2(γ0± γ3) are defined. They can be used to con-

struct projectors on the light cone P± = 1
2γ

∓γ±. Due to the choice of the coordinate
system, the sign of the z-component of the outgoing quark momentum changes after
the scattering of the virtual photon. This means that the leading light cone projection
changes from the + to the − direction. Therefore the dominating part of the fragmen-
tation function is determined by the − direction. With the parton model assumption of
small k⊥ and k2 the Bjorken variable x = Q2/(2Pq) can be interpreted as the light cone
momentum fraction of the quark k+/P+ [1] because in this case the on shell condition
δ((k + q)2) becomes 1

Pq δ(k
+ − x). Later also quark transverse momentum k⊥ will be

considered.

2.2.2 Parametrization of Φ

After this introduction the goal is to find a representation of the quark-quark correlation
matrix in terms of measurable quantities. The most general decomposition of Φ is in

4i=1,2
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terms of the Dirac matrices Γ = {1, γµ, γµγ5, iγ5, iσµνγ5} into a scalar, vector, axial-
vector, pseudo-vector and tensorial part. For instance, the vectorial part Vµ is given
by tracing with γµ:

Vµ =
1
2

∫
dξeikξ〈P, S|Ψ̄(0)γµΨ(ξ)|P, S〉 ≡ Tr(γµΦ) (2.17)

Under hermiticity, parity and time reversal invariance, the pseudo-vector part has to be
zero and the kinematical quantities that can be used to build the vector, axial-vector
and tensor part are Pµ, λNP

µ and P [µS
ν]
⊥

5, respectively,where λN is the helicity of the
nucleon and Sν

⊥ the transverse part of the nucleon spin vector. Here, only quantities
that are of leading order in P+ in the infinite momentum frame are of interest. They
can be identified with the leading twist contributions that can be interpreted in the
parton model. Therefore the expansion is contracted with nµ, leading to traces of
the light cone gamma matrices, e.g. /n = γ+. The leading twist contributions to the
quark-quark correlation matrix are thus expansions in the light cone Dirac matrices γ+,
γ+γ5 and iσi+γ5. Taken together with the parton model assumption x = k+/P+ and
δ(x− k+

P+ ) = P+δ(k+ − xP+) the leading twist distribution functions corresponding to
the unsuppressed parts of the quark-quark correlation matrices are6[1]

f1(x) =
1
2

∫
d4k

(2π)4
Tr(γ+Φ)δ(k+ − xP+) ≡ Φ[γ+]

=
1
2

∫
d4k

(2π)4

∫
dξeikξ〈P, S|Ψ̄(0)γ+Ψ(ξ)|P, S〉δ(k+ − xP+)

g1(x) =
1
2

∫
d4k

(2π)4

∫
dξeikξ〈P, S|Ψ̄(0)γ+γ5Ψ(ξ)|P, S〉δ(k+ − xP+)

≡ Φ[γ+γ5]

h1(x) =
1
2

∫
d4k

(2π)4

∫
dξeikξ〈P, S|Ψ̄(0)γ+γ1γ5Ψ(ξ)|P, S〉δ(k+ − xP+)

≡ Φ[γ+γ1γ5]

(2.18)

Note the definition of the integrated traces Φ[Γ], where Γ is an arbitrary Dirac matrix
[14][15]. These projections depending on the fractional momentum x = k+/P+ can
be expressed by densities of partons having the chiral quark field projections defined
by Γ [14]. The next section will show how the specific operator combinations can be
interpreted as parton densities. The projection with the condition k+ = xP+ basically
amounts to integrating out the small components of the quark field, which becomes
apparent when using the Fourier representation of the δ-function together with the
LC-metric k · ξ = k+ξ− + k⊥ξ⊥ + k−ξ+:

Φ[Γ](x) =
∫
dξ−

2π
eixP+ξ−〈P, S|Ψ̄(0)ΓΨ(0, ξ−,~0⊥)|P, S〉 (2.19)

5P [µS
ν]
⊥ := P µSν

⊥ − Sµ
⊥P ν

6setting λN = 1 and S⊥ = (1, 0), thus using only the trace over γ+γ1γ5 for h1, where the trace

over γ+γiγ5 would allow for two equations (i = 1, 2). But only one of those is independent. Note that

iσi+γ5 = γ+γiγ5.
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In terms of the available kinematical variables the quark-quark-correlation matrix in
leading order can now be written as

Φ(x) =
1
2
(
f1(x)/P + λNg1(x)γ5 /P + h1(x)/Pγ5/S⊥

)
(2.20)

Here it becomes obvious that the parent nucleon polarization determines the measura-
bility of a specific quark distribution function. Since the definition of pµ and nµ is only
up to a factor p which depends on the frame of reference (eq. 2.15 ), the same is also
true for Φ.

2.2.3 Parton Model Interpretation

In the parton model interpretation of DIS quasi free quarks on the light cone are in-
teracting with the virtual photon. These independent degrees of freedom of the quark
field Ψ are the so-called “good” components Ψ+. They can be projected out by the
operator P+ = 1

2γ
−γ+ [3]. The dependent degrees of freedom are the “bad” compo-

nents Ψ− = P−Ψ, P− = 1
2γ

+γ−. Since the bad components are connected to more
complicated quark-gluon correlations, they are generally associated with higher twist,
which leads to the dominance of the good components over the bad components as
P+ → ∞. In order to interpret the functions f1(x), g1(x) and h1(x) in the parton
model, they have to be described in terms of good quark fields. Using the identity
γ0γ+ =

√
2P+ =

√
2P+P+ the relevant operator combinations in 2.18 can be rewritten

as

Ψ̄γ+Ψ =
√

2Ψ†
+Ψ+ (2.21)

Ψ̄γ+γ5Ψ =
√

2Ψ†
+γ5Ψ+ (2.22)

Ψ̄γ+γ1γ5Ψ =
√

2Ψ†
+γ

1γ5Ψ+ (2.23)

Lastly, the projectors PR,L = 1
2(1± γ5) and P↑,↓ = 1

2(1± γ1γ5) are used which project
out the helicity and transverse spin state. Now the operators appearing in the definition
of g1(x) and h1(x) can be written as γ5 = PR − PL and γ1γ5 = P↑ − P↓. Inserting
again a complete set of states {|n〉} the formulation of 2.18 that can be interpreted as
parton density functions is

f1(x) =
1√
2

∑
n

δ
(
(1− x)P+ − P+

n

)
|〈P, S|Ψ+(0)|n〉|2

g1(x) =
1√
2

∑
n

δ
(
(1− x)P+ − P+

n

)
·

·
(
|〈P, S|PRΨ+(0)|n〉|2 − |〈P, S|PLΨ+(0)|n〉|2

)
h1(x) =

1√
2

∑
n

δ
(
(1− x)P+ − P+

n

)
·

·
(
|〈P, S|P↑Ψ+(0)|n〉|2 − |〈P, S|P↓Ψ+(0)|n〉|2

)
(2.24)
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From this formulation it can be seen, that f1(x) is the probability to scatter off a quark
with momentum fraction x and g1(x) the probability difference to find a quark with
helicity parallel and anti-parallel to the nucleon helicity.

The third one, h1(x) is the probability difference to scatter off a quark with a transverse
polarization parallel and anti-parallel to the nucleon transverse polarization. It has to
be kept in mind that the assumption is λN = 1 and S⊥ = (1, 0). It contains iσ1+γ5,
which makes it a chiral odd quantity.

Chiral oddness can be seen quite literally, since h1(x) is connected to the third handbag
diagram in fig. 2.5 where the quark flips its chirality between the left and the right
handle. Since the hard part is conserving chirality up to negligible quark mass terms,
h1 cannot be measured in inclusive DIS. Another chiral odd soft partner is needed to
construct a process that is observable in hard scattering. This can be a chiral odd
fragmentation function. Chiral odd parton distribution functions in spin 1

2 hadrons
have also a different evolution behavior than chiral even ones. Because the handbag
diagram corresponding to h1(x) does not exist for gluons, there exists no transversity
distribution for gluons with which h1(x) could mix during evolution. The reason for
the nonexistence of a gluon transversity is, that instead of a quark, a gluon has to go
along the handle of the handbag diagram and flip its helicity. This, however, means a
total spin flip of two units of the parent hadron, which is not possible for spin one half
particles.

2.3 Soffer Bound on Transversity

From the definitions of the parton distribution functions in terms of the forward Comp-
ton scattering amplitudes in eq. 2.9 Soffer derived an inequality relation [16]:

f1(x) + g1(x) ≥ 2|h1(x)| (2.25)

This is an important bound which must be respected by all models describing the
leading twist functions.

2.4 Vector-, Axial- and Tensor Charges

The integration of Φ(x) over x leads to a local matrix element∫
dxΦij(x) = 〈PS|Ψ̄j(0)Ψi(0)|PS〉 (2.26)

which can be parametrized like 2.20:

Φ =
1
2
[
gV /P + gAλNγ

5 /P + gT /Pγ5/S⊥
]

(2.27)

Here gV is the vector charge, gA the axial charge and gT the tensor charge, which gives
the deformation of the quark distribution in a polarized nucleon. Using the definition
of the parton distribution function one gets for the different charges:∫ +1

−1
dxf1(x) = gV (2.28)
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∫ +1

−1
dxg1(x) = gA (2.29)

∫ +1

−1
dxh1(x) = gT (2.30)

This means that for example gV is simply the valence quark number. Due to the
evolution of h1, which is different from the other parton distribution functions, the
tensor charge evolution is also different to the one of gV and gA and it is expected, that
this will lead to a vanishing charge at sufficiently high Q2 [17]. Measured values of the
tensor charge can be compared with model calculations, for example from the lattice
[18][19][20][21][22].

2.5 Quark Transverse Momenta

If one takes into account transverse motion of quarks, i.e. does not integrate over the
quark dynamics inside the nucleon, one obtains extra degrees of freedom. With the
formalism of the previous sections the inclusion of quark transverse momenta k⊥ is
quite straightforward. The quark momentum is now given by

kµ ' xPµ + kµ
⊥ (2.31)

where the part kµ
⊥ is zeroth order in P+ and thus suppressed by one power of P+ with

respect to the longitudinal momentum. The quark-quark correlation matrix Φ(x,~k⊥)
is then also dependent on the transverse momentum. Consequently the projection onto
γ+ has a richer structure and reads

Φ[γ+] = f1(x,~k2
⊥)−

εij⊥k⊥iS⊥j

M
f⊥1T (x,~k2

⊥). (2.32)

The other projections also contain more parton distribution functions than in the
collinear case. They are interesting in themselves, but will not be covered in detail
in this thesis. It shall suffice to mention the additional distribution functions as they
appear in the quark-quark correlation matrix. The leading twist expression for the
correlation matrix expressed in available kinematical variables and parton distribution
functions (PDF) becomes

Φ(x,~k⊥) =

1
2

{
f1(x,~k2

⊥)/P +

(
λNg1L(x,~k2

⊥)−
~k⊥ · ~S⊥
M

g1T (x,~k2
⊥)

)
γ5 /P(

h1T (x,~k2
⊥)γ5/S⊥ /P +

(
λNh

⊥
1L(x,~k2

⊥)− k⊥ · S⊥
M

h⊥1T (x,~k2
⊥)
)
γ5/k⊥ /P

M

)}
+

1
2

(
f⊥1T (x,~k2

⊥)
εijT S⊥j

~ki
⊥ /P

M
+ h⊥1 (x,~k2

⊥)
i/k⊥P

M

)
(2.33)
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where the last line contains the näıvely T-odd contributions and the notation for the
distribution functions follows [14]. From 2.33 the three distribution functions f1, g1
and h1 can be recovered by integration over k⊥. Generalizing from the definition of
the integrated trace of the correlation matrix Φ over Dirac structures Γ, Φ[Γ] defined in
2.19, these traces now also contain the integral over transverse momenta:

Φ[Γ]
=
∫
dξ−d2~ξ⊥
2(2π)3

ei(xP+ξ−−~k⊥·~ξ⊥)〈P, S|Ψ̄(0)ΓΨ(0, ξ−, ~ξ⊥)|P, S〉 (2.34)

It can be seen, that, as before, the different projections define probability distributions
of partons with a specific chiral projection. The projection Φ[γ+] is the probability to
find an unpolarized quark, which can be symbolized by Pq/N to use the notation of [1].
Thus f1(x,~k2

⊥) is the probability of finding an unpolarized parton in an unpolarized
nucleon. Since the occurrence of f⊥1T (x,~k2

⊥) is connected to transverse polarization
of the parent nucleon, S⊥, this PDF can be interpreted as the probability to find an
unpolarized parton in a transversely polarized nucleon. More precisely [23]

Pq/N↑(x,~k⊥)− Pq/N↓(x,~k⊥) = Pq/N↑(x,~k⊥)− Pq/N↑(x,−~k⊥)

= −2
|~k⊥|
MN

sin(Φk − ΦS)f⊥1T (x,~k2
⊥).

(2.35)

This is the so-called Sivers function, which can be measured in the Sivers effect [24][25].
After its proposition in 1990 its existence has been disputed by Collins [26] before it
became widely accepted [27][28]. Due to its connection with generalized parton distri-
butions (GPDs), measurement of the Sivers function might provide insight into quark
orbital angular momentum, which is a part of the proton spin puzzle [29]. The reason

it does not exist in a simple model is the term
εij
⊥k⊥iS⊥j

M . As mentioned, this is forbid-
den by standard T-invariance. However, since the nucleon is a composite system, the
time reversal operator might be realized in a way that allows for these ’näıve’ T-odd
functions to exist [30]. One possibility is, that hadronic initial state interactions might
lead to nontrivial phases, allowing functions like f1(x,~k2

⊥) similarly to näıve T-odd
fragmentation functions. These will be revisited later. But in the case of hadronic
initial state-interactions, the Sivers effect should only be measurable in Hadron-Hadron
interactions. Measurement in semi-inclusive leptoproduction, as claimed by the HER-
MES experiment, favor a different model [31][32]. Another observation obtained from
eq. 2.33 is that due to the presence of transverse momentum, the different PDFs mix in
the probabilistic interpretation. For example the probability to find a quark with the
same helicity as the nucleon is given by the projection on γ+γ5 as in the collinear case.
But in the presence of quark transverse momentum and transverse spin of the nucleon
the relation

Φ[γ+γ5] = Pq/N (x,~kT )λ(x,~k⊥)

= λNg1(x,~k⊥) +
~k⊥~S⊥
M

g1T (x, ~k2⊥)
(2.36)

is obtained.
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DIS observables are implicitly integrated over quark transverse momenta. In order to
measure for example the quantity f⊥1T (x, k⊥) semi inclusive measurements are necessary
which are the topic of the next section. There the transverse momentum of the parton
can be transferred to the transverse momentum of the fragmenting hadron, which is an
observable. This allows the measurement of f⊥1T (x, kT ) through the Sivers-effect.

2.6 Sivers effect in DIS and Drell-Yan

The presence of quark transverse momenta also allows for nontrivial paths of the Wilson
link in eq. 2.7. The Wilson link is equivalent to summing up all gluon contributions
on the quark path from 0 to ξ, and thus making Φ gauge invariant. For this reason
it is also called the gauge link. It can be shown analytical that the link may allow Φ
to be näıve T-odd [4]. Since it is a formal treatment of gluon interactions with the
fragmenting quark, it is also possible to derive this result from models with final- or
initial state interactions with gluons. The fact, that these effects are intrinsically related
to transverse momenta is also intuitively clear, because the emission or absorption of
gluons leads to transverse momentum.

One interesting conclusion of this duality is, that the sign of the Sivers effect is different
in the Drell-Yan (DY) and the DIS process. Formally this result can be derived from the
gauge link, where nontrivial paths are allowed in the presence of transverse momenta,
which are different in DY and DIS. On an intuitive level, it can be explained by the
fact, that in DY the quark gluon interaction is expected in the initial state, since there
are no hadrons left in the final state. In contrast, in DIS the interaction between the
two hadrons is expected in the final state. In principle, the gauge link can differ for
each process, calling in question the generalizability of transverse momentum dependent
parton distribution functions and the factorization for the spin-dependent cross section
in DIS. However, there is reason to believe, that the differences between the processes
can be reduced to simple relations as above. And indeed, recently a set of factorization
formulas was presented for SIDIS and DY at low transverse momentum [33]7.

2.7 Fragmentation in Semi Inclusive DIS

In order to measure the chiral odd transversity function or k⊥ dependent distribution
functions one has to go to semi inclusive DIS, where in addition to the scattered lepton
at least one other hadron is detected in the final state.

As mentioned earlier, chiral odd amplitudes are suppressed in the inclusive DIS cross-
section. For the measurement of the Sivers effect, the reason is twofold. Firstly in the
inclusive DIS cross-section the ~k⊥ dependence is integrated out. Secondly the Sivers
function is näıve T-odd, therefore in most models the wave function of a second hadron
is needed that interferes with the detected one, to obtain a non-vanishing Sivers effect.
The process under consideration is thus

l +N → l′ + h+X (2.37)
7Large transverse momenta lead to large double logarithms in the hard part, which must be re-

summed to make reliable predictions [33]
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where hadron h with momentum Ph in the current fragmentation region is detected
and the final state X remains undetected. It is convenient to work, instead of the
γ∗N collinear frame, in a frame where the produced hadron and the target nucleon
are collinear. Usually the transverse momenta in the first frame are denoted with the
subscript ⊥ whereas for the second frame T is used.

Therefore one has ~P⊥ = ~q⊥ = 0 and ~Ph⊥ ' −z~qT up to 1/Q2 corrections [1]. The two
systems differ by a boost, that introduces effects that can be ignored at leading order
[34].

Analogous to the hadronic tensor for inclusive DIS from eq. 2.5 the hadronic tensor for
the process 2.37 becomes

2MWµν =
1

(2π)4
∑

a

e2a
∑
X

∫
d3 ~PX

(2π)32EX

∫ ∫
d4k

(2π)4

∫
d4κ

(2π)4
·

· (2π)4δ4(P − k − PX)(2π)4δ4(k + q − κ)(2π)4δ4(κ− Ph − PX)·
·
[
Ξ̄(κ;Ph, Sh)γµΦ(k;P, S) ]∗[ Ξ̄(κ;Ph, Sh)γµΦ(k;P, S)

]
(2.38)

where Φ(k;P, S) describes the structure of the nucleon and Ξ(κ;Ph, Sh) the fragmen-
tation of a quark with momentum κ into a hadron h with momentum Ph and spin Sh

plus an undetected state X with energy EX and momentum PX . Ξ(κ;P, S) is given by
the matrix element of the quark field Ψ: Ξ(κ;Ph, Sh) = 〈0|Ψ(0)|Ph, Sh, X〉. Integration
over EX was already carried out.

According to eq. 2.5 the matrix element Φ(k;P, S) is given by 〈X|Ψ(0)|PS〉. If the
helicities of the scattering quark and the parent nucleon are neglected, it represents one
half of a handbag diagram like those shown in figure 2.5

The expression Ξ̄(κ;Ph, Sh)γµΦ(k;P, S) can be seen as the current of the quark which
interacts with the scattered lepton. But in contrast to 2.5 the quark does not go back
into the nucleon. Instead it fragments. In this formula the parton model assumption is
already used, namely, that the current can be divided into two soft parts, described by
the matrix elements Φ and Ξ. These can then be treated independently by assuming
a quasi free quark that scatters and then fragments, if factorization holds. Without
the validity of factorization, parton model quantities lose their generalizability. In the
presence of soft gluon exchanges, factorization becomes difficult to prove and additional
effects have to be taken into account. For example the mentioned sign change of the
Sivers effect in Drell-Yan and SIDIS.

Similarly to the quark-quark correlation matrix, we can form the fragmentation matrix
Ξ(κ;Ph, Sh) (averaging over color and in LC gauge):

Ξ(κ;Ph, Sh)ij =
∑
X

∫
d4ξeiκ·ξ〈0|Ψi(ξ)|PhSh, X〉〈PhSh, X|Ψ̄j(0)|0〉 (2.39)

where the integration over PX (see again eq. 2.5) is contained in
∑

X [14].
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The hadronic tensor at leading order can then be expressed as the product of quark
dynamics inside the nucleon and the fragmentation in the hadronic final state [1][14]:

2MWµν =
∑

a

e2a

∫
dk−d2~k⊥

(2π)4
dκ+d2~κ⊥

(2π)4
δ2(~k⊥ + ~q⊥ − ~κ⊥)Tr[ΦγµΞγν ]|k+=xP+,κ−=P−

h /z

(2.40)
Note the δ-function that ensures the transfer of the outgoing quark momentum to the
fragmentation process, so that transverse momentum dependent parton distribution
functions can be measured in semi inclusive DIS. The light cone momentum fraction
carried by hadron h is denoted by z and is the same variable as in table 2.1. Here one
difference with regard to parton distribution functions, which was already mentioned in
section 2.2.1 can be seen. Due to the change in direction of the fragmenting quark, the
rôles of positive and negative light cone directions and projections have to be exchanged,
when comparing Ξ and Φ. Also γ+ and γ− have to be exchanged.

Equation 2.40 is similar to 2.5 except that /κ describing the propagation of the quark
along the handle is replaced by the fragmentation matrix Ξ. As before γµ and γν are
the vertex factors from the one-photon exchange with the scattered beam particle. A
graphical representation thereof is shown in fig. 2.6 which extends the handbag diagrams
in fig. 2.5 to include fragmentation.

Following the leading order analysis of Φ presented earlier, Ξ can be decomposed over
a Dirac base using the kinematical quantities available in fragmentation. These are in
principle the momentum with regard to the fragmenting quark and the polarization of
the produced hadron. But since it is difficult to measure the polarization of the hadrons
in the final state, the focus is on the production of unpolarized hadrons. Therefore the
fragmentation functions depending on Sh are averaged out.

Analogous to the treatment of Φ in section 2.2, the Dirac structures surviving at leading
order are the vectorial, the axial-vectorial and the tensorial part. They are isolated by
forming the traces over the Dirac structures γ−, γ−γ5 and iσi−γ5. The coefficient
functions are this time the different fragmentation functions, which can be interpreted
in a partonic picture. Since the hadron spin is averaged out, the axial-vector part also
vanishes. In detail, with ~κ′ = z ~κT :

Ξ[γ−] = D1(z,~κ2
T , z) (2.41)

Ξ[iσi−γ5] =
1
Mh

εijT κTjH
⊥
1 (z, κ′T ) (2.42)

The integrated trace over the quark-quark correlation matrix Ξ is defined in analogy
to eq. 2.19 [1]

Ξ[Γ] ≡ 1
4z

∫
dκ+dκ−

(2π)4
Tr(ΓΞ)δ(κ− − P−

h /z)

=
1
4z

∑
X

∫
dξ+d2~ξT
(2π)3

ei(P
i
hξ+/z−~κT ·~ξT )

× Tr(〈0|Ψ(ξ+, 0, 0⊥)|PhSh, X〉〈PhSh, X|Ψ̄(0)Γ|0〉).

(2.43)
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Φ

Ξ

Figure 2.6: Feynman diagram like notation for the spin averaged SIDIS hadronic tensor at
leading twist. The lower blob contains the nucleon dynamics, described by the quark-quark
correlation matrix. The upper blob the fragmentation process, described by the fragmentation
matrix. The lines are the quarks. The two blobs are only connected by the single quark line,
provided fragmentation holds and if only the leading twist contribution is considered in which
there is no gluon radiation from the scattered quark. As in the case of the forward scattering
amplitudes in fig. 2.5, which is the lower blob, the diagrams are symmetric with respect to the
vertical axis and represent the squared matrix element described by the correlation matrices.
Taking advantage of this symmetry allows to find a probabilistic interpretation.



2.7. Fragmentation in Semi Inclusive DIS 21

2.7.1 Collins Effect

As shown in section 2.2.3, the tensorial part at leading twist, given by iσi−γ5 =
γ−γiγ5, can be interpreted in a chiral base for the quark fields by using the projec-
tors on the different chirality states P↑,↓ = 1

2(1 ± γ1γ5). With this follows Ξ[iσi−γ5] =
Nh/q(z,~κ)s′

i
⊥(z,~κ), where ~s′ is the spin of the fragmenting quark and Nh/q(z,~κ) the

probability for a quark q to fragment into a hadron h. The azimuthal angles of the
quark in the initial state and after the interaction with the virtual photon are related
by Φs′ = Φs + π due to the change of direction along the z-axis in the photon-nucleon
system of the quark, for a detailed explanation see [1] . By fixing i for example to 1,
the magnitude of Ξ[iσi−γ5] is given by the component of ~κ that is transversal, here κ2

due to the Levi-Civita-symbol in equation 2.42. The number of transversely polarized
quarks fragmenting into unpolarized hadrons is thus dependent on the azimuthal an-
gle between ~κ and s′. From equation 2.42 a modulation by |~κT |

Mh
sin(Φκ − Φs′) can be

derived. This is called the ’Collins Effect’, since it was first predicted by Collins [26].
The fragmentation function H⊥

1 is called the ’Collins Fragmentation function’. Like the
Sivers distribution function it is T-odd since the corresponding kinematical Dirac struc-
ture would be forbidden under time invariance. However, final state effects may allow
these näıve T-odd functions. The Collins effect has a descriptive interpretation in the
Lund string fragmentation model, as noted by X. Artru [35]: If a transversely polarized
quark fragments to form an unpolarized hadron, it is connected to the color-charged
nucleon remnant by a color flux tube. The flux tube stretches and eventually breaks
down, forming a quark/antiquark pair with the quantum numbers of the vacuum. If
the transverse direction is chosen as the quantization axis, this means orbital angular
momentum Ly = 1 and spin Sy = −1. Together with the fragmenting quark that has
spin sy = 1

2 , the produced antiquark forms a scalar hadron. Due to the conservation of
orbital angular momentum, this scalar particle has a preferred direction of momentum.
This mechanism is illustrated in figure 2.7.

In order to observe the Collins effect, the azimuthal angle of the fragmenting quark spin
Φs′ has to be related to an observable. A first step is to use the relation Φs′ = π −Φs.
Then it can be assumed that the initial quark spin s is parallel to the spin of the parent
nucleon S. The direction of momentum of the detected hadron Ph can be substituted
for the one of the quark momentum κ, so that Φκ = Φh. This leads to a modulation
of the cross section which is dependent on the Collins angle ΦColl = Φh + ΦS − π and
the amplitude of the effect is proportional to the fraction of quarks which is indeed
polarized parallel to the nucleon spin. Here the assumption is a transversely polarized
nucleon.

2.7.2 Sivers Effect

Using the transverse momentum dependent expression for the hadronic tensor in eq. 2.40,
there is another single spin asymmetry which can be observed in SIDIS of an unpolarized
beam off a transversely polarized target. Namely the Sivers effect which is connected
to the Sivers function described in sec. 2.5. The vectorial Dirac structure of the Sivers
function expressed in eq. 2.32 causes the coupling to the corresponding fragmentation
functions which are obtained from the vectorial part of the fragmentation correlation
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Figure 2.7: Illustration of the Collins mechanism from [35].

matrix. This is, as seen in eq. 2.41, at leading order the unpolarized fragmentation
function D1.

Due to the dependence of the amplitude of the Sivers function on
εij
⊥k⊥iS⊥j

M and the
transfer of the initial state quark transverse momentum ~k⊥ to the final state quark
transverse momentum ~κ⊥, which is expressed in the term δ2(~k⊥ + ~q⊥−~κ⊥) of eq. 2.40,
a single spin asymmetry exists. The azimuthal dependence of the cross-section is of the
form sin(Φκ − ΦS). Here ΦS is the azimuthal angle of the parent nucleon and Φκ can
be obtained from the the azimuthal angle of the hadron Φh. The angular combination
Φh − ΦS is called the Sivers angle ΦSiv. Due to the orthogonality with respect to the
Collins effect, described in sec. 2.7.1, the two effects can be disentangled in practice.
One important aspect of the Sivers effect is, that it provides an insight into quark
angular momentum. If the Sivers effect exists, the angular momentum carried by the
quarks has to be non-zero. Furthermore quark angular momentum can explain the
Sivers effect quite nicely as Burhardt noted [29]. If a quark with angular momentum
in the direction of the polarization of the parent nucleon is considered, then this quark
appears shifted in momentum space depending on which side of the axis of rotation
the nucleon is probed by the virtual photon. At a fixed momentum fraction xBj the
unpolarized quark distribution function in a transversely polarized nucleon therefore
appears deformed and shifted. This asymmetry with respect to the transverse axis of
rotation then leads to an azimuthal asymmetry in the produced hadron momenta if
final state interactions between the fragmenting quark and the nucleon remnant are
taken into account. The reason is simply, that the strong force acting on a quark is
higher if it is further away. See figure 2.8.
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Figure 2.8: Illustration of the Sivers effect. The virtual photon comes from the left and in
the photon-nucleon center of mass system the nucleon moves to the left. The polarization
vector points into the plane. This leads to a deformation of the quark distribution function
in impact parameter space. Together with a final state interaction of the outgoing quark, this
causes a left-right asymmetry of the outgoing hadron. Burkardt et. al. christened this effect
“Chromodynamic Lensing” [29]. Here the visualization of the quark distribution in impact
parameter space is taken from [36]. It shows the distribution of the down quarks in the proton
as computed from lattice QCD integrated over xBj . At variance to the other pictograms, the
virtual photon direction points into the plane and the nucleon spin to the right as indicated.
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2.8 Fragmentation into two Hadrons

The Collins effect is probably the most prominent probe of the transversity distribution.
However, due to the explicit dependence on the intrinsic quark transverse momentum, as
seen in eq. 2.41, the analysis of this channel exhibits some difficulties [37]. Subleading
twist has to be included and the modeling of the Collins fragmentation function is
difficult, because an understanding of microscopic phases of channels leading to the
same detected hadron is necessary. Another way that was proposed is to look for a SSA
originating from a channel, where transversity couples to the two hadron interference
fragmentation function H^

1 [38][39][40][41]. This SSA, where two unpolarized hadrons
in the current fragmentation region are detected in SIDIS, is an independent channel in
which to measure transversity. In principle, due to the existence of a second hadron, the
expansion of the fragmentation matrix is richer and there are many more fragmentation
functions possible. But the presence of the additional degree of freedom makes it
possible to integrate over the intrinsic quark κ⊥, and still retain a non-vanishing effect.
This is very advantageous, since now collinear factorization can be used. Moreover, one
can assume that it is enough to describe the residual interaction between the produced
two hadrons to model H^

1 because the interaction between other hadrons occurs at
higher order. This makes modeling much easier [38]. The process in question is thus

l +N → l′ + h1 + h2 +X. (2.44)

It is convenient to parametrize the relevant kinematics by the vectors

Ph = P1 + P2 R =
1
2
(P1 − P2) (2.45)

and the dimensionless variable ζ = 2R−/P−
h , which describes how the total momentum

of the pair is split into the two single hadrons. The light cone momentum fraction
of the fragmenting quark carried by the hadron pair, z = P−

h /k
−, simplifies to z =

(P · Ph)/(P · q) = z1 + z2 in the absence of intrinsic quark momenta.

With these definitions the fragmentation correlation matrix can be written in terms of
matrix elements for the fragmentation into two hadron as [34]

Ξ(z,R) = z2
∑
X

∫
dξ+

2π
〈0|ψ(ξ)|Ph, R;X〉〈X;Ph, R|ψ̄(0)|0〉|

ξ−=~ξT =0
(2.46)

which is analogous to eq. 2.39 for the one hadron case at leading twist and integrated
over transverse momenta. After a decomposition over a Dirac structure, the traces of the
tensorial and vectorial part analogous to eq. 2.41, which play a role in the measurement
of transverse single spin asymmetries, read with the invariant mass of the hadron pair
MInv = |Ph|:

Ξ[γ−] = D1(z, ζ,MInv) (2.47)

Ξ[iσi−γ5] =
εijTRTj

MInv
H^

1 (z, ζ,MInv). (2.48)
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Figure 2.9: Definition of the angle θ in the center of mass system of the hadron pair

By comparing with section 2.7.1 it is obvious, that H^
1 describes the probability for

a transversely polarized quark to fragment into an unpolarized hadron pair. It is also
näıve T-odd and chiral odd and couples to the transversity distribution. As for the
Collins effect, the part of the cross section proportional to h1 ·H^

1 exhibits a dependence
on an azimuthal angle. In the case of the two hadron fragmentation on ΦR of the form
sin(ΦR + ΦS − π) |

~S⊥|| ~RT |
MInv

.

2.8.1 Partial wave analysis of H^
1

Using partial wave analysis, further knowledge about the inner structure of H^
1 can

be gained. To this end, the correlation function Ξ is expressed in the center of mass
parameter cos θ. The polar angle θ is illustrated in fig. 2.9 and gives the angle between
Ph and P1 in the center of mass system (CM) of the two hadrons.

With this angle, ζ in the center of mass system can be written as

ζ
CM=

1
MInv

(√
M2

1 + |~R|2 −
√
M2

2 + |~R|2 − 2|~R| cos θ
)

(2.49)

where
|~R| = 1

2

√
M2

Inv − 2(M2
1 +M2

2 ) + (M2
1 +M2

2 )/M2
Inv. (2.50)

The variable ζ depends in the CM-frame only linearly on cos θ, which allows to expand
a function of ζ in the basis of Legendre polynomials. Expressing the vector ~R in CM
parameters also leads to an introduction of a sin θ factor into eq. 2.48. After expansion
into partial waves, the interference fragmentation function becomes

2|~R|
MInv

H^
1 (z, ζ(cos(θ)),M2

Inv) = H^,sp
1,ut (z,M2

Inv) +H^,pp
1,lt (z,M2

Inv) cos(θ) (2.51)
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Comparing coefficients with the decay matrix D(θ,ΦR)jm,j′m′ = Y m
j Y ′m′

j , where the Y
are spherical harmonics, shows the meaning of the sub- and superscripts. The combi-
nation sp denotes the interference between an “unpolarized” hadron pair in a relative
s-wave and a transversely polarized pair in a relative p-wave, thus the subscript ut. The
combination pp and lt for super- and subscript, respectively, signifies the interference
between hadron pairs that are both in a p-wave, but one longitudinally and the other
transversely polarized. The expansion can be truncated after the first three terms, if one
considers, that at low invariant mass hadron pairs are mainly produced in the s-wave
channel or in the p-wave channel. This set is also the minimal set required to describe
all the polarization states of the system in the CM frame for relative partial waves with
L=0,1. The ss term is unpolarized, i. e. does not depend on the target polarization.
Experimentally relevant at COMPASS is first of all H^,sp

1,ut , which contributes with a
factor of sin θ to the cross section. As shown later (sec. 4.2) the COMPASS acceptance
makes the measurement of the part depending on H^,pp

1,lt much more difficult. The p-
wave term can be seen as the fragmentation of spin-one particles, i.e. the ρ for π-pair
production.

In a visual way, the fragmentation function H^
1 corresponds to the upper blob in fig. 2.6,

its chiral odd nature makes it possible to carry away the quark helicity at the handbag
handles. This is done by having a hadron pair with different relative orbital angular
momentum at each handle. At lowest order, there are two possibilities to do so, giving
the sp and pp interference.

2.8.2 Models for H^
1

Collins and Ladinsky used the linear sigma model to make the first predictions for π-π
correlations as a probe for the fragmentation of polarized quarks [42]. The insights
gained from the partial wave analysis in the previous section then inspired model pre-
dictions for H^

1 based on the interference of meson pairs (pions and kaons) in relative
s- and p-waves [37][43]. Notable is a common strong dependence on the invariant mass
of the hadron pair because the relative partial waves of the meson pairs are determined
by the resonance they were produced from. Exemplarily for predictions of effects at
COMPASS kinematics are the models by Jaffe, Jin and Tang [44] and Radici, Jakob and
Bianconi [37]. Jaffe and collaborators estimate the final state interactions of the meson
pairs from meson-meson phase shift data obtained from [45]. From these it is known,
that s- and p-wave production channels interfere strongly in the mass region around
the ρ, the K∗ and the Φ meson resonances. As an example fig. 2.10 shows the phase
shifts for the experimentally most relevant region around the ρ-meson. Radici et al.
use a quark spectator model to predict the amplitude of H^,sp

1,ut . Figure 2.11 shows the
processes that were considered. Later Bacchetta and Radici refined this model, by us-
ing Monte-Carlo simulations to fix some parameters [46]. The resulting predictions for
asymmetries at COMPASS are shown in fig. 2.12. Compared to a future proton target
(fig. 2.13), the expected asymmetries with the current deuterium target are decreased
due to a cancellation between u- and d-quark contributions.
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Figure 2.10: Phase shifts from p-wave resonances and non-resonant s-wave background [45].
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Figure 2.11: Diagrams considered in the predictions of [37] and [46]. They describe the
interference between two pions produced in a p-wave through a ρ decay and an s-wave. The
quark line labeled q represents the handle of a handbag diagram.
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Figure 2.12: Predictions of [46] for a deuterium target at COMPASS kinematics in xBj , z and
the invariant mass of the hadron pair (Mh). The different lines correspond to different models
of the transversity function: Solid line from [47], dotted line from [48], dash-dotted line from
[49] and dashed line from [50]. In the invariant mass plot, an effect is expected close to the
ρ resonance. In xBj the asymmetry becomes greater in the valence quark region. Compared
to a proton target, the expected magnitude is decreased due to a cancellation between u- and
d-quark contributions.
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Figure 2.13: Predictions of [46] for a proton target at COMPASS kinematics. The different
lines correspond to different models of the transversity function as in fig. 2.12. In comparison
with the predictions for a deuterium target shown in fig. 2.12, the scale is magnified.
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2.9 Single Spin Asymmetries in SIDIS

The last section introduced the basic mechanism for single spin asymmetries due to the
Collins effect, the Sivers effect and the two hadron interference fragmentation function
H^

1 . Now the results are compiled into asymmetries that are expressed in quantities
accessible in an experiment.

2.9.1 One Hadron SSAs

The full SIDIS cross section has been compiled by Mulders and Tangerman [14]. If
only the Collins and Sivers mechanisms are considered, the cross section for one hadron
production can be written as [51]

dσ ∼
∑
qf

e2qf

{
1
2
[1 + (1− y)2]xBj

[
q ⊗D1q + |~S⊥| sin(ΦSiv)q⊥1T ⊗D1q

]
+

+(1− y)|~S⊥| sin(ΦColl)xBjh1q ⊗H1q

}
. (2.52)

Here y is the fractional energy transfer of the lepton as defined in tbl. 2.1, the sum is
performed over all quark flavors and eqf

signifies the charge of a quark of flavor qf , q
its unpolarized distribution function, q1T its Sivers and h1q its transversity distribution
function. The convolution integral is performed over the transverse momentum of the
fragmenting quark. Assuming that a fraction z of the intrinsic transverse momentum
~kT of the quark is transferred to the detected hadron, the convolution between the
transverse momentum dependent (TMD) distribution and fragmentation functions (DF
and FF ) can be written as

DF ⊗ FF =
∫
d2~kTDF (x,~kT ) · FF (z,~κT − z~kT ). (2.53)

With the common Gaussian ansatz for the transverse momentum dependence of the
transversity distribution and the unpolarized fragmentation function, the convolution
can be reduced to a product, with an extra factor depending on the mean transverse
momentum [52][53].

If these are absorbed into the definition of the functions, the following asymmetry can
be build to extract h1(x) ·H1(z, κT ) and f⊥1T ·D1(z).

Ah
T =

dσ(~S⊥)− dσ(−~S⊥)

dσ(~S⊥) + dσ(−~S⊥)

= |~S⊥| ·DNNAColl · sinΦColl + |~S⊥| ·ASiv · sinΦSiv

(2.54)

The factor
DNN =

1− y

1− y + y2/2
(2.55)

is the transverse spin transfer coefficient from the initial to the struck quark [1]. The
azimuthal asymmetries are evaluated in a reference frame, where both, photon and nu-
cleon momenta, are parallel to the z-axis. In this reference system the target spin and
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Figure 2.14: Distribution of the kinematic factor γ = 2MxBj

Q . Depending on the scattering
process kinematics, the target spin and virtual photon vectors are not perpendicular resulting
in a dilution of transverse target spin asymmetries. The size of this effect is given by γ and is
negligible at COMPASS kinematics.

virtual photon vectors are not necessarily perpendicular since the polarization vector of
the nucleon lies in a plane transverse to the z-axis in the lab system, Therefore, depend-
ing on the scattering process kinematics, there could be an effect on |~S⊥|. However,
this is suppressed by a factor of γ = 2MxBj

Q [1]. Figure 2.14 shows the distribution of γ
for COMPASS, which is small.

2.9.2 Two Hadron SSAs

Similar to the one hadron case the two hadron Asymmetry to extract h1(x)·H^
1 (z,MInv)

is

A2h
T =

dσ2h(~S⊥)− dσ2h(−~S⊥)

dσ2h(~S⊥) + dσ2h(−~S⊥)
= |~S⊥| ·DNNA

RS · sin(ΦR + ΦS − π). (2.56)

Here, a slightly different definition of ~R is employed. The reason is that for the
analysis of single spin asymmetries where one looks for azimuthal asymmetries several
coordinate systems are commonly used. They differ by boosts along the z-axis and
have in common that the photon and the nucleon are collinear. Using the Sudakov
decomposition for photon and nucleon momentum as shown in equations 2.13 and 2.14,
the difference in the coordinate systems can be reduced to the choice of the parameter p.
For the extraction of azimuthal asymmetries, this does not make a difference, because
the directions perpendicular to the boost are unaffected by it. This is true for the
extraction of the one hadron asymmetries.
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Figure 2.15: Coordinate System for the two hadron asymmetries.

However, in the two hadron case, using the definition of ~R in eq. 2.45, introduces
a dependence of the asymmetry on a boost along the z-axis, because ~R is a linear
combination of the momentum vectors of the two hadrons. Since these vectors are
affected differently by the boost, ~R will rotate also in the azimuthal plane. So, at
variance to the definition of ~R in sec. 2.8, for the analysis the definition

~R =
z2~p1 − z1~p2

z1 + z2
. (2.57)

is used. The terms ~p1, ~p2 are the momenta of the two hadrons measured again in the
coordinate system of fig. 2.2. The resulting vector ~R is depicted in fig. 2.15. Scaling the
momenta in the given way makes the definition approximately invariant against boosts
along the photon direction, allowing to treat ΦR in the same way as Φh. This becomes
apparent when using the collinear approximation for the fragmenting hadron. Then the
fractional energy z is a good approximation of the fractional momentum of the hadron
in z direction. The normalization of the two hadron momenta to the same momentum
in z direction then leads to invariance with regards to boosts in this direction.

2.10 Parton Model independent Cross Section in the Born

Approximation

The SSAs described so far are effects that can be measured for an unpolarized beam
scattering off a transversely polarized target. In addition to Collins and Sivers asym-
metries, there are more SSAs with one hadron in the final state in this setup which
also depend on the azimuthal angles of spin and hadron momentum. The number of
SSAs gets augmented when considering the experimentally relevant configuration of a
longitudinal polarized beam and a transversely polarized target.
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With the one-photon approximation there are in general eight spin dependent modu-
lations allowed in the one hadron leptoproduction process l + n↑ → l′ + h + X cross
section where a lepton l scatters off a transversely polarized nucleon n↑ to produce one
hadron h and an undetected state X [54][55].

In terms of structure functions F the general cross section can be written as [56]

dσ

dx dy dz dΦh dΦS dP 2
h⊥

= (1− y + y2)
α2

xyQ2{
FUU +Dcos Φh cos ΦhF

cos Φh
UU +Dcos(2Φh) cos(2Φh)F cos 2Φh

UU + λbD
sin Φh sinΦhF

sin Φh
LU

+ |~S⊥|
[
Dsin(Φh−ΦS) sin(Φh − ΦS)F sin(Φh−ΦS)

UT +Dsin(Φh+ΦS) sin(Φh + ΦS)F sin(Φh+ΦS)
UT

+Dsin(3Φh−ΦS) sin(3Φh − ΦS)F sin(3Φh−ΦS)
UT +Dsin ΦS sinΦSF

sin ΦS
UT +

Dsin(2Φh−ΦS) sin(2Φh − ΦS)F sin(2Φh−ΦS)
UT

]
+ |~S⊥|λb

[
Dcos(Φh−ΦS) cos(Φh − ΦS)F cos(Φh−ΦS)

LT + Dcos ΦS cos ΦSF
cos ΦS
LT

+Dcos(2Φh−ΦS) cos(2Φh − ΦS)F cos(2Φ−ΦS)
LT

]}
.

(2.58)

This formulation is independent from the parton model and follows from general sym-
metry arguments. Terms that are only present with a longitudinal polarization of the
target have been omitted as well as terms of the order O(γ = 2Mx

Q ) which are con-
nected to kinematic corrections that are small at COMPASS kinematics, see fig. 2.14.
The different depolarization factors D are functions of y and given as:

• DcosΦh = Dsin ΦS = Dsin(2Φh−ΦS) = (2−y)
√

1−y

1−y+ 1
2
y2

• Dcos(2Φh) = Dsin(Φh+ΦS) = Dsin(3Φh−ΦS) = 1−y

1−y+ 1
2
y2

• Dsin Φh = DcosΦS = Dcos(2Φh−ΦS) = y
√

1−y

1−y+ 1
2
y2

• Dsin(Φh−ΦS) = 1

• Dcos(Φh−ΦS) = y(1− 1
2
y)

1−y+ 1
2
y2

The subscripts of the structure functions indicate the polarization of beam and target
(U unpolarized, T transverse, L longitudinal), α is the fine structure constant, λb the
beam helicity and ~ST the transverse polarization vector of the target.

Since the cross-section describes one hadron production, the structure functions are
dependent on x, z, |PT | and Q2. In the parton picture, the dependence on sin(Φh−ΦS)
is due to the Sivers and the dependence on sin(Φh + ΦS) is due to the Collins effect8.

8Note that the Collins angle is defined as Φh + ΦS − π. This leads to a sign change if the structure

functions are to be interpreted in the parton model.
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That means that at leading twist F sin(Φh−ΦS)
UT can be written as the convolution of

the Sivers function with the unpolarized fragmentation function and F
sin(Φh+ΦS)
UT as

the convolution of the transversity distribution function with the Collins fragmentation
function. However, for the extraction of asymmetries this interpretation does not play
a role.

Since the SSAs are orthogonal angular combinations they should not play a a rôle for
the extraction of Collins and Sivers asymmetries. The situation gets more complicated
when considering the acceptance of the spectrometer. When measuring the SSAs the
acceptance is convoluted with the cross section leading to possible correlations between
the different modulations. This makes a more sophisticated treatment of the extraction
necessary, which will be discussed in detail in sec. 4.6.

Considering the two hadron electroproduction cross section in the process l + n →
l′ + h1 + h2 +X there are also several other modulations allowed. They depend on the
azimuthal angles between the polarization, the angle Φh of one hadron and the vector
RT as defined in sec. 2.8. However, only the modulation with sin(ΦS + ΦR) survives
after integrating out intrinsic transverse momentum [38]. The depolarization factor of
this asymmetry is the same as for the Collins effect. This is because the hard scattering
part of both effects is the same. They differ only in the fragmentation of the struck
quark.

The extraction of Collins, Sivers and two Hadron Asymmetries from COMPASS data
taken in the years 2003 and 2004 will be the topic of the analysis presented in this work.



3. The COMPASS Experiment

The analysis presented in the following chapters is based on data collected during the
years 2003 and 2004 by the COMPASS1 experiment. This experiment is set up at
the end of the M2 beamline of the SPS2 at CERN. COMPASS consists of a large
angle (LAS) and a small angle open field spectrometer (SAS). Each part contains a
dipole magnet, SM1 and SM2, respectively, a set of tracking detectors and calorimetry.
Particle identification capabilities are provided by a Ring Imaging Čherenkov (RICH)
detector. An extensive description of the setup can be found in [57]. Here only a brief
introduction to the main components of the relevant setup, shown in fig. 3.1, will be
given as far as they pertain to the analysis.

3.1 The Polarized Target and Beam

Due to the broad physics program, the COMPASS experiment is dedicated to, there are
setups using muon and hadrons beams. The data analyzed in the following was taken
with a muon beam scattering off a transversely polarized target. This configuration
accounted for about 20% of the effective running time during the years 2003 and 2004.
The muons, originating from the decay of pions and kaons which in turn were produced
by scattering protons off a beryllium target, exhibit a natural longitudinal polarization
[58]. However, as mentioned in sec. 2.9.2, this can be ignored for the purpose of this
analysis. The beam exhibits a typical spill structure, reflecting 4.8s of spill extraction
of protons from the SPS during a 16.8s cycle. Muons in the beam have an average
energy of 160 GeV with a deviation of 3-5% [57]

To achieve a high luminosity a thick solid state target consisting of two oppositely po-
larized cylindrical cells is used [59]. As the target material deuterated lithium (Li6D)
was chosen due to its favorable dilution factor and high polarizability. It can be con-
sidered to be an effective deuterium, thus isoscalar target. To estimate its dilution by
non-polarizable material 6Li is treated as a three body system of α+p+n from which
the p,n pair is aligned with the nuclear 6Li spin 86,6% of the time. So one would expect
the dilution factor to be about 50%. Considering that the target cell also contains
3He/4He cooling mixture fluid and that it is dependent on kinematics of the scattering
process, one arrives at a value of approximately f = 0.38 for this analysis [51][60].

The configuration of two oppositely polarized target cells allows for the cancellation of
beam flux, acceptance effects of the spectrometer and target spin independent asym-
metries. To this end it is also necessary to take data with reversed target polarization.

1COmmon Muon Proton Apparatus for Structure and Spectroscopy
2Super Proton Synchrotron
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Using the technique of dynamic nuclear polarization [61] the polarization of the target
material longitudinal with respect to the beam direction is achieved.

To obtain transverse polarization the target is first brought into a stable longitudinal
mode, where the spin configuration is then held frozen by cooling below 90 mK. Using
a transverse dipole-magnet field of 0.5 T, the target spins are then rotated adiabatically
into the desired configuration. By these techniques polarizations of about 50 % percent
for the target are obtained. Compared to the longitudinal mode, the changeover to
the opposite polarization configuration takes significantly longer, since a spin rotation
by means of magnets is impossible and the target has to be re-polarized. Therefore
it is necessary to mind possible effects due to changes over time in the spectrometer
acceptance when combining data taking periods for asymmetry extraction during data
analysis.

3.2 Particle Identification

For the extraction of single spin asymmetries it is necessary to accurately identify the
particles in a SIDIS event. This section describes the parts of the spectrometer that
are used for particle identification. An accurate identification of the scattered muon
is necessary to reconstruct the inclusive DIS variables whereas the identification of
produced hadrons by calorimetry and the Ring Imaging Čherenkov detector allows to
reconstruct the SIDIS parameters of interest for different hadron types.

3.2.1 Muon Filters

To identify muons COMPASS has two sets of muon wall detectors. They are insulated
from passing hadrons by electromagnetic and hadronic calorimeters and passive µ filters.
These consist of iron absorbers in the LAS and blocks of concrete in the SAS. Both
sets of detectors are installed at the very downstream ends of the small angle and
the large angle parts of the spectrometer. They allow a reliable identification of the
muons, especially the scattered muon required to reconstruct the kinematic variables
of inclusive DIS.

3.2.2 Calorimetry

COMPASS features two hadronic calorimeters which are used to discern hadrons and
non hadronic background. Muons can be identified by using the muon filters described
in sec. 3.2.1. While both, the large and small angle part of the spectrometer are
equipped with a hadronic calorimeter only the small angle part behind the second spec-
trometer magnet (SM2) includes an electromagnetic calorimeter. The electromagnetic
calorimeter was not fully operational during the time the data was taken, therefore it
was not used for this analysis.

3.2.3 The RICH detector

The COMPASS RICH detector RICH-1 is a large size Ring Imaging ČHerenkov detec-
tor. With a length of about 3 m and a Volume of 80 m3 filled with C4F10 gas, it allows
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for the collection of a sufficient number of Čherenkov photons due to its low chromatic-
ity and a high refractive index. Choosing C4F10 as the radiator gas makes the detection
of hadrons up to momenta of about 40 GeV possible. The achieved resolutions on the
Čherenkov angles of the detected photons allow to separate pions and kaons at the 2.5σ
level up to 43 GeV by a maximum likelihood method described in sec. 4.4.
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4. Data Analysis

The extraction of Single Spin Asymmetries from the 2003-2004 transverse data is the
main part of this work. This section presents the event selection and asymmetry ex-
traction along with systematic studies.

Single spin asymmetries were extracted on four distinct samples. Collins and Sivers
asymmetries were extracted on the “all hadron” and “leading hadron” sample. The first
one contains all hadrons in an event, surviving specific cuts, whereas the second one
constitutes a subset of these hadrons for which only the leading hadron in an event
was considered. Here the term leading hadron signifies the hadron carrying the largest
energy fraction from the scattering process. Accordingly, the two hadron asymmetry
defined in eq. 2.56 was extracted from all hadron pairs in an event and a sample con-
sisting only of pairs of leading and subleading hadrons. For these pairs, [39] and [62]
predict an enhancement of the signal.

Furthermore, a Monte Carlo simulation of the detector was set-up and performed as
described in sec. 4.3. Special attention was given to the simulation of the RICH-1
detector and the effects of the magnetic field in the target region for transverse spin
configurations. This was the first time that a Monte Carlo simulation for the COMPASS
setup with transverse setting was performed where both RICH-1 and target magnetic
field were correctly treated.

Using accurately simulated data made the verification of the RICH-1 studies on data
possible. In these studies strategies to arrive at the optimal particle identification
performance based on the available data are tested. They are presented in sec. 4.4.

Simulated events were also used to investigate the performance of different methods of
asymmetry extraction. Here the use of simulated events was especially important to
evaluate the effects of varying acceptances on the measured asymmetries in sec. 4.6.

4.1 Data selection

From the data recorded a subset is selected where quality and kinematics allows reliable
estimation of physical quantities. The quality criteria and kinematic cuts are the topic
of the following sub-sections. They can be divided into event selection and subsequent
hadron selection.

4.1.1 Event Selection

The data taken with transverse target spin is divided in pairs of periods taken closely
together in time with opposite target spin configuration. During each period the target
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Year Period Target polarization

2003 P1G ↓↑
2003 P1H ↑↓
2004 W33 ↑↓
2004 W34 ↓↑
2004 W35 ↓↑
2004 W36 ↑↓

Table 4.1: Data taking periods. For historic reasons the periods taken in the year 2003 are
named P1G and P1H according to the database slots in which they were saved. In the year
2004 a naming scheme was adapted that corresponds roughly to the week of data acquisition.
For the analysis the periods P1G/P1H, W33/W34 and W35/W36 were combined.

spin was stable and corresponds to about one week of data acquisition. Target spin
asymmetries are extracted for each of these pairs and then combined using the weighted
mean. Table 4.1 shows the periods used for this analysis.

From these the good runs and good spills are selected. They are determined by looking
at specific quality monitors [51][63][64][65][66]. From this sample deep inelastic scat-
tering events are selected by using the cut Q2 > 1 GeV2 on the photon virtuality and
the cut W > 5GeV, where W is the mass of the final hadronic state, W 2 = (P + q)2,
to avoid the region of hadronic resonances (see figure 2.3). Further cuts are made to
ensure that from the hadron sample the relevant physics signal can be extracted. Re-
quiring the relative energy in the muon scattering process y to fulfill 0.1 < y < 0.9
limits the corrections necessary due to radiative corrections (higher cut) but warrants
that the energy loss of the scattered beam particle is high enough to allow for reliable
event reconstruction (lower cut).

A track that is reconstructed in the scintillating fibers and silicons upstream of the
target is considered to be a beam track originating from the incoming muon if the
track time is within three standard deviations of the times measured by the beam
momentum station and the trigger time [51]. Its momentum is being reconstructed in
the beam momentum station. If there are several candidates a backtracking algorithm
is employed. As for tracking, also for vertexing a Kalman fit is used [67]. Only so-
called primary vertices that have an ingoing beam track are considered. From these the
vertex with the maximum number of tracks is taken as the “best primary vertex”. If
two candidates for the best primary vertex have the same number of tracks associated
with them, the one with the smallest χ2 value in the vertex fit is utilized. It is also
required that this vertex lies within the target and that the extrapolated beam track
crosses both target cells. This ensures equal flux for both target cells.

Among the outgoing positive tracks, additional candidates to the scattered muon tagged
by CORAL are selected by requiring at least three or five hits after muon wall one or
muon wall two, respectively. Furthermore, the amount of traversed material has to
correspond to at least 30 radiation lengths. There has to be exactly one candidate for
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the scattered muon and the reduced χ2 for the beam and scattered muon candidate has
to be less than 10, otherwise the event is discarded.

In principle candidates for the scattered muon are lost that exited the spectrometer
without crossing sufficient material, a problem described in [68]. If the scattered muon
passed through holes in the hadron absorbers and a particle originating in the primary
vertex is mistaken for the scattered muon, the event is incorrectly reconstructed and
has to be rejected. To solve this problem, tracks are extrapolated to the downstream
end of the spectrometer at 50 m and cuts are made on the extrapolated xe and ye

coordinates based on geometrical considerations. For tracks having the last hit before
SM2 (z position < 20 m), the cut is:√

(xe − 45 cm)2 + y2
e > 10 cm (4.1)

If the track has its last hit after SM2√
(xe − 35 cm)2 + y2

e > 15 cm or
|xe − 55 cm| > 13cm and |ye| > 3 cm

(4.2)

is required.

The laboratory coordinate system used here has its origin at the nominal target position
with the z-axis pointing downstream along the beam, the y-axis upwards and the x-axis
is chosen such that the coordinate system is right handed.

4.1.2 Hadron Selection

For both, the one and two hadron analyses all outgoing particles of the primary vertex,
that were not identified as muons in the preceding step, are considered for the hadron
selection if they survive the following cuts.

• Particles have to be identified as pions or kaons as described in section 4.4.

• The amount of material traversed in the spectrometer has to be smaller than 10
radiation length.

• The last hit of the track has to be after SM1. This rejects tracks that were only
reconstructed in the fringe field of SM1.

• A good resolution in the measured azimuthal angles is ensured by requiring

– in the one hadron analysis the transverse momentum of the particle with
respect to the virtual photon direction to be larger than 0.1 GeV.

– in the two hadron analysis the size of the vector RT , the transverse projection
of ~R defined in eq. 2.45 to be larger than 0.05 GeV.

• The reduced χ2 of the fit of the particle trajectory to the detector hits has to be
less than 10.
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Figure 4.1: MC: Distributions of identified leading hadrons (black curve), correctly identified
leading hadrons (dashed-dotted green curve) and incorrectly identified leading hadrons (blue
dotted curve). The vertical red curve indicates the cut zh > 0.25 for the leading hadron sample.

4.1.2.1 One Hadron Analysis

For the one hadron asymmetries a lower limit of 0.2 for the relative energy z of the
hadron is demanded if all hadrons are considered The underlying reasoning is that in
the string fragmentation process hadrons with a higher energy are more sensitive to the
properties of the struck quark spin [51][69]. Therefore the analysis is also carried out
using only the leading hadron, that is the hadron with the highest z in the event. Here
a lower cut of 0.25 on z is applied. Figure 4.1 shows the z distribution of leading and
non-leading hadrons from Monte Carlo. For z > 0.25 the fraction of leading hadrons
in the sample dominates. The hadronic calorimeters are also used for the selection of
hadrons. As can be seen in the responses of the hadronic calorimeter shown in figures
4.2 and 4.3 there is a contamination of non hadronic particles in the sample of hadrons
which are left after the above cuts were applied. This contamination is removed by
requiring that if a cluster in one of the hadronic calorimeters is associated with a track
of a hadron candidate, the cluster energy has to be above the threshold indicated and
the cluster has to be unique, i.e. there is no other cluster associated with the same
track. Due to the limited acceptance of the calorimeters, particles with no associated
clusters in either calorimeters are also considered to be hadrons. In the leading hadron
analysis the calorimeters are also used to discard events with neutral particles that are
potentially leading but for which a track cannot be reconstructed. To this end, clusters
are searched for in the calorimeters without an associated track. If the maximum energy
of the leading hadron in the event is smaller than the energy of the found cluster with
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Figure 4.2: Correlation between energy measured in HCAL1 and momentum measured in the
spectrometer for all outgoing particles of the primary vertex (left) and for particles tagged as
muons (right). In blue the cut of the two hadron analysis, in red the cut of the one hadron
analysis.

two times the resolution of the cluster energy subtracted, it is assumed that a neutral
hadron in the event has been the leading particle and the event is skipped.

4.1.2.2 Two Hadron Analysis

For the two hadron correlation the cut on the relative energy of the hadrons is z1, z2 >
0.1 and in addition z1 + z2 < 0.9 to avoid the kinematic region of exclusive meson
production. In correspondence to the leading one hadron analysis, the leading two
hadron analysis uses additionally a cut of z1 + z2 > 0.25. Since the cut on z is lower
than for the one hadron analysis there is a considerable amount of soft pions that would
be cut away by the constant cut described previously. Therefore a linear cut is applied
as indicated in figs. 4.2 and 4.3. The selection of the leading hadron pair is analog to
the selection of the leading hadron.

4.2 Kinematic Distributions

After the cuts described previously for the all hadron analysis were applied the remain-
ing events cover the kinematic range in the Q2, xBj domain as shown in fig. 4.4.

4.2.1 One Hadron Analysis

The spectra of the transverse momentum of the produced hadron and the relative energy
transfer of the scattered muon y are shown in figs. 4.5 and and 4.6. Figures 4.11 and
4.12 illustrate the distribution of the factor Dcos(Φh+ΦS), which is the depolarization
factor employed in the Collins and two-hadron analysis. It is a function of y and
therefore correlated with xBj in an event.

The spectrum of the relative momentum fraction z is shown in fig. 4.7. It does not
show an excess of exclusively produced particles.
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Figure 4.3: Correlation between energy measured in HCAL2 and momentum measured in the
spectrometer for all outgoing particles of the primary vertex (left) and for particles tagged as
muons (right). In black the cut of the two hadron analysis, in red the cut of the one hadron
analysis.

4.2.2 Two Hadron Analysis

At variance to the one hadron case, the distribution of the sum of the z of the hadron
pairs in the two hadron analysis (fig. 4.8) shows a peak due to exclusively produced
particles which decay. This motivates the cut on z1 + z2 < 0.9. Figure 4.9 shows the
distribution of RT and fig. 4.13 the distribution of the angle θ for all hadron pairs.
The importance of θ, which is the polar angle in the center of mass system of the
hadron pair is explained by the partial wave expansion explained in sec. 2.8.1, because
at COMPASS kinematics, the two hadron interference fragmentation function H^

1 is
modulated with sin θ. The distribution observed, shows, that COMPASS is sensitive
to the part H^,sp

1,ut of the two-hadron interference fragmentation function and that the
signal is even enhanced by the COMPASS acceptance as compared to a flat acceptance.
A flat sin θ distributions might lead to a cancellation of the effect since the counts used
in the extraction of the asymmetry are integrated over θ. The invariant mass spectra
for the two-hadron analysis are shown in fig. 4.10. In the K+-K− and π+-π− spectra
the peaks corresponding to the ρ and φ vector mesons can be seen clearly. On the other
hand the K∗ peak can be seen in the combinations K+-π− and π+-K−. However, due
to the low cut on z, the background below the vector meson resonances is higher than
for the cuts used in the one hadron analysis. For this case the mass region around the ρ
is shown in fig. 4.19. Since models for H^

1 predict a signal for the interference of a vector
meson resonance with non-resonance background, the invariant mass distributions are
important for a prediction of the size of such an effect.
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Figure 4.4: Q2 vs. xBj distribution of the all one hadron sample
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Figure 4.5: PT spectrum of the all one hadron sample
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Figure 4.7: z spectrum of the all one hadron sample
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Figure 4.8: Distribution of sum of z of the hadron pair before z1+z2 cut. This cut is indicated
by the red line.
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Figure 4.11: Dcos(Φh+ΦS) spectrum of the all one hadron sample
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4.2.3 Statistics of the One Hadron Analysis

As an example for the effect of the various cuts, the tables 4.2-4.4 show the fraction of
events and particles left after each cut for the data taken in weeks 35/36. Tables 4.5
and 4.6 show the number of events left for each data taking period used in this analysis.

Cut events/107 fraction left

No cut 1.49869 1

With best primary vertex 1.49869 1
Beam found 1.49221 0.99
Scattered muon found 1.35197 0.90
Q2 > 1 GeV2 1.35059 0.90
W > 5 GeV 1.26815 0.84
0.1 < y < 0.9 1.22928 0.82
Cross cell 0.939278 0.63
Vertex in target 0.831625 0.55

Table 4.2: Events statistics for the period W35-36

Cut particles/107 fraction left

Number of particles 2.02403 1

Material traversed 2.00682 0.99
Track quality 1.95623 0.97
Hits after SM1 1.8905 0.93
PT > 0.1 GeV 1.63562 0.81
z < 1 1.63503 0.81
z > 0.2 0.528004 0.26
Cluster energy in HCAL 0.494642 0.24
Pos. hadrons. 0.271168 0.13
Neg. hadrons 0.223474 0.11

Table 4.3: Hadron statistics for the period W35-36; the initial number of particles in the first
row is after the application of cuts of table 4.2.
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Cut pos. particles fraction left neg. particles fraction left

Number of particles 2.71168 106 1 2.23474 106 1

No RICH information 133387 0.049 105805 0.047
Identified as pions 2.08439 106 0.769 1.79618 106 0.803
Identified as kaons 411383 0.151 275053 0.123
Protons 82520 0.030 57702 0.026

Pions after cuts 2.02902 106 0.748 1.755 106 0.785
Kaons after cuts 360924 0.133 235140 0.105

Table 4.4: RICH statistics for the period W35-36; the initial number of particles in first row
is after the application of cuts of table 4.3.

Period All π sample Leading π sample

pos. π/106 neg. π/106 pos. π/106 neg. π/106

2003 P1G/P1H 1.71138 1.48719 1.09893 0.92631
2004 W33/W34 1.53985 1.33044 0.98499 0.82454
2004 W35/W36 2.02902 1.755 1.29858 1.08878

Table 4.5: Final statistics for pions for the years 2003, 2004

Period All K sample Leading K sample

pos. K. neg. K pos. K neg. K.

2003 P1G/P1H 310937 203908 236133 143780
2004 W33/W34 273133 177190 208317 125122
2004 W35/W36 360924 235140 274771 165873

Table 4.6: Final statistics for kaons for the years 2003, 2004



4.3. Monte Carlo Simulation 53

4.2.4 Statistics of the Two Hadron Analysis

In the following tables the statistics are given for the identified two hadron analysis
compared with the statistics for the corresponding unidentified two hadron case for the
observed 3 periods (P1G/P1H, W33/W34 and W35/W36).

Unidentified π-π % π-K % K-π % K-K %

P1G-P1H 1802571 1236359 68,6 78123 4,3 101043 5,6 28210 1,6
W33-W34 1508689 1076871 71,4 68477 4,5 87036 5,8 24973 1,7
W35-W36 1953694 1416340 72,5 90885 4,7 115561 5,9 33053 1,7

Total 5264954 3729570 70,8 237485 4,5 303640 5,8 86236 1,6

Table 4.7: Statistics for all identified hadron-pairs in comparison with the statistics for the
unidentified case.

4.2.5 Statistics for the leading Two Hadron Analysis

Table 4.8 and table 4.9 give the statistics for the leading two hadron analysis.

π+/π− π−/π+ π+/π+ π−/π− π+/K− π−/K+ π+/K+ π−/K−

P1G/P1H 301675 296050 175346 138082 11810 14996 9358 6045
W33/W34 274313 268435 158017 122707 10819 13268 8241 5285
W35/W36 361785 353555 206960 162233 14278 17376 11093 7075

Total 937773 918040 540323 423022 36907 45640 28692 18405

Table 4.8: Statistics for leading π/π and π/K pairs

K+/π− K−/π+ K+/π+ K−/π− K+/K− K−/K+ K+/K+ K−/K−

P1G/P1H 43532 31582 25252 14738 10569 9536 1692 906
W33/W34 38414 28541 22390 12930 9397 8822 1445 734
W35/W36 51536 37816 29629 16783 12548 11455 2020 1051

Total 133482 97939 77271 44451 32514 29813 5157 2691

Table 4.9: Statistics for leading K/π and K/K pairs

4.3 Monte Carlo Simulation

The term ’Monte Carlo simulation’ or just Monte Carlo (MC) for short, in this context
designates the simulation of a number of events whose properties are random variables,
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reflecting the quantum mechanical nature of the underlying processes. The correspond-
ing probability densities are taken from calculations where possible, otherwise from
models tuned on data. For example, parton distribution functions are parametrized
using experimental data from a multitude of experiments, see e.g. [8][70]. In contrast,
contributions at the hard scale can be calculated at fixed order. In a second step,
the events are then propagated through the detector, giving rise to detector responses,
which are in a third step used as inputs to the event reconstruction. The whole process
is often called ’Monte Carlo chain’ even though ’Monte Carlo’ in the name designates
only the use of Monte Carlo techniques in the computation, e.g. integration. Since
the detector response can be treated exactly as the detector response during real data
taking, simulated data allows the verification of the reconstruction algorithms and the
comparison between physics inputs and measured signals. Thus MC has become an
essential tool in the understanding of experimental data. It is basically the only vi-
able way to study complicated cuts in phase space. These cuts in the phase space of
the process under study come about due to limited acceptances and efficiencies of the
spectrometer.

4.3.1 Event Generation

For the generation of deep inelastic scattering events two different generators where
used: Lepto [71][72] and Pythia[73]. Both event generators use leading order matrix
elements to determine the cross-section of the elementary hard lepton-quark scattering.
Since this is a simple event topology at an energy high enough to apply perturbative
techniques a computation from first principles is possible, taking the measured parton
distribution functions (PDFs) into account. PDFs are determined by global fits to ex-
perimental data. Necessary evolution in Q2 is done using the DGLAP equations. The
detailed event topology including initial and final state radiation is created by using
heuristic approaches like parton showers and backward evolution, since an approach
from first principles by matrix elements would lead to computational intractable prob-
lems. Sudakov factors, determining the splitting of the partons within a parton shower,
are again computed with the DGLAP kernels. Lastly the fragmentation and decay into
observable hadrons is modeled.

Both Lepto and Pythia use the Lund string model for the later process as imple-
mented in the formerly separately published program Jetset [69]. The Lund string
fragmentation model is very popular and widely used to model the fragmentation pro-
cess. Among its main hallmarks are collinear and infrared safety. Basics of the string
model stem from a quite intuitive picture grounded in the confinement property of
QCD. After the scattering there exists a number of colored quarks generated in the
final and initial state radiation in the parton showers and from the target remnant. De-
pending on the struck parton, the parton remnant can be treated as a diquark object,
or a quark plus diquark. Produced quarks are connected by so-called color flux tubes.
This tube like configuration is again dictated by the confinement properties of QCD.
And the string constant, i.e. the amount of energy per unit length within these tubes is
determined to be about κ ≈ 1GeV/fm by hadron spectroscopy experiments. The value
of κ effectively corresponds to a ’mass density’ along the string [73]. As the q and q̄
move apart, the potential energy stored in the string increases, eventually leading to the
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Figure 4.14: Feynman diagrams contributing to the Born and radiative corrected cross-
sections in lepton-nucleon scattering. The letters denote the four-momenta and polarizations of
corresponding particles. Figure taken from [74]

creation of another qq̄ pair. This process is repeated as long as the invariant mass of the
string is big enough and only colorless, on-shell mesons remain, each corresponding to
a small string with a quark at the one end and an antiquark at the other. Their mass is
generated by the field strength of the remaining string. The required distance between
the quarks is achieved in the Lund model by evoking the idea of quantum mechanical
tunneling. This leads to a flavor invariant transverse momentum spectrum for the qq̄
pairs and a suppression of heavy quark production of u : d : s : c ≈ 1 : 1 : 0.3 : 10−11

[73]. For the creation of baryons, more complicated processes have to be evoked. One
example is the ’popcorn’ scenario, where diquarks as such do not exist but quarks and
antiquarks are produced one after another and then form hadrons [69]. For the analysis
presented here baryons do not play a major role. The specific parameters of the model
are tuned such that it is consistent with fragmentation functions measured mainly in
e+e− collisions.

In the end, the output of the event generator is a list of produced hadrons together
with the corresponding kinematics.

For this analysis, the event kinematics of the respective MC-generator were corrected
with RADGEN to observe the possible radiation of a real photon in the initial or
final state [74][75]. Otherwise the radiative tails from the elastic and quasi-elastic
peaks and the continuous spectrum would not be reproduced correctly. Furthermore
RADGEN incorporates loop corrections coming from effects of vacuum polarization and
exchange of an additional virtual photon. The Feynman diagrams corresponding to the
corrections of the born cross-section are shown in fig. 4.14.

Since MC generators are original work these results are not necessarily identical to what
is present in real physics data and the results should be treated with care. However,
the given generators have been extensively tested with the COMPASS experimental
setup e.g. [76][77] and the agreement of simulated events with data is satisfactory in
the relevant kinematical domain and for attributes important to the PID as illustrated
in fig. 4.15.
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4.3.2 Detector Description and Particle Propagation

Detector description and particle propagation were done using COMGeant [78]. This
is an interface to Geant3.21 which was adapted to the COMPASS experiment [79][80].
Geant1 is a system of detector description and simulation tools which has become the
de-facto standard for high energy experiments and in other fields where the passing of
particles through material has to be simulated. Geant takes the geometry and the
initial set of particles as input. Then the software tracks the particles through the
material given by the detector setup description by sampling the free path from the
mean free path length for each possible physical process in the respective material. The
particle is then moved by the determined distance and the interaction simulated by
computing energy loss, creating new particles etc. Multiple scattering and magnetic
fields are taken into account when moving the particle. If one of the particles hits
active detector material, information required to produce the detector signal has to
be recorded. Examples are the amount of deposited energy and the exact position
of interaction from which the electronics channel can be inferred. In the end enough
information for the digitization of the simulated events is available. The output of
this complicated simulation of the geometry implemented by COMGeant is saved to
so-called ZEBRA files [81], which can then be read by the COMPASS reconstruction
software CORAL described in the next section. It is a modular software package
combining the knowledge about the actual electronics and provides a digitization step.
Thereafter the flow of the simulated data through the software is exactly the same as
for real data. This allows to treat the simulated data in exactly the same way and use
the same tools as with real data. The addition of generator information, the so-called
MC-truth, allows verification of reconstruction and analysis steps.

Putting the actual digitization of the MC-chain into the reconstruction and not the
simulation software allows to test different digitalizations without redoing the time
consuming particle tracking through the detector. As an example, the efficiency of the
RICH-1 CsI photocathodes had to be chosen as to reproduce real data, specifically
the number of photons detected per event. Since these efficiencies are an input to
the reconstruction software, several configurations could be tested without redoing the
simulation.

4.3.3 Reconstruction

The reconstruction software CORAL2[82] combines analysis routines needed to con-
struct events from detector input, real data or MC. These are for example the vertex
reconstruction, beam reconstruction, particle identification and tracking. The recon-
struction scheme for real and MC data is shown in fig. 4.16. After the digitization
or decoding for Monte Carlo or real data, respectively, reconstruction of tracks and
momentum of particles takes place. Several competitive track reconstruction programs
have been used in COMPASS. The RECON algorithm taken from the precursor experi-
ment SMC [83], the program for Track Finding and Fit in COMPASS (TraFFiC) and
also a cellular automaton [84]. For all algorithms, the COMPASS environment provides

1GEometryANdTracking
2COmpass Reconstruction and AnaLysis software
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a challenge due to its geometry aimed to provide large angular acceptance. Because
of this requirement the first spectrometer magnet SM1 was constructed with a large
gap size, thus causing a strong fringe field in the area around the magnet. The pres-
ence of the magnetic field of the target solenoid complicates the task of tracking even
more. This is especially true for the algorithms using straight line models. In the end
a modified version of TraFFiC was adopted, combining the original algorithm with a
track look-up-table called “Dico”. This new algorithm got the name TraFFDiC and
provides excellent performance [85]. Where possible, straight line segments are used to
fit particle tracks in different projections. The use of projections is mandated by the
fact, that most tracking detectors do not give information about space-points but only
points in a specific two-dimensional projection. Track segments of several projections
are combined to a representation in space and then connected in a bridging step. For
fitting and track parameter estimation Kalman filter and fit methods are used where
possible [86]. Kalman fitting was also used for the vertexing in CORAL. Where neces-
sary, e.g. to bridge over difficult regions, the track parameters were determined with
the help of the dictionary.

4.4 PID with RICH-1

The sample of charged hadrons selected so far consists mainly of Pions and Kaons. To
separate them, the output of the Ring Imaging Čherenkov detector RICH-1 is utilized
by the reconstruction software RICHONE, which is part of CORAL. Depending on its
velocity, a charged particle will emit Čherenkov radiation if its velocity is above the
Čherenkov threshold, that is above the speed of light in the radiator. For a particle of
mass m, and radiator refractive index of n the momentum threshold can be computed
as m/

√
n2 − 1. Using the nominal values of RICH-1, pions and kaons have a velocity

above this thresholds for momenta greater then 2.6 GeV and 9.1 GeV respectively.
They then emit radiation under an angle Θ which is dependent on the velocity β of the
particle and the refractive index n of the medium with the relation

cos Θ =
1
nβ

. (4.3)

Together with the momentum obtained by the track curvature measured in the spec-
trometer the mass of the particle can be determined. For 7eV photons the nominal
refractive index of the radiator gas C4F10 is 1.0015 at nominal conditions. It is depen-
dent on the pressure and temperature of the gas, which can change slightly [77][87].
Also, contaminations of the gas degrade and change the optical properties. However,
due to the improved temperature and pressure monitoring and sophisticated cleaning
procedures, computation of the refractive index could be substantially improved for the
data used in this analysis [57]. In a data preproduction step the real refractive index
is computed from pions in saturation (β ≈ 1) from data samples distributed evenly in
time. For the final production these values are corrected based on the measured gas
properties. Since the real refractive index is only known after a production, the particle
likelihoods, which are used for PID, are saved together with their derivatives with re-
spect to the refractive index. For an analysis of a first production these derivatives are
then used to correct the likelihoods. Thereafter the values of the refractive index vary
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only very little from the actual values, on the 0.5% level. So errors introduced by using
the linearly corrected values for the particle likelihoods are negligible. Data taken in
2003 used in this analysis has been reproduced so that the real refractive index could
be used for the new production. For data taken in 2004 small run by run variations are
corrected by using the above mentioned derivatives.

For a fixed refractive index the mirror geometry is such, that photons emitted under a
polar angle Θphoton from a particle track lie on concentric circles on the photon detector
surface. The position of the ring depends on the angle of the incoming track. That
means also, that the detector surface limits the angular acceptance of RICH-1.

After a Hough transformation to the Θphoton, φphoton plane, where φ is the azimuthal
angle of the emitted photon relative to the particle direction, the photons belonging to
the same particles lie on lines, the photons belonging to the same ring can be found by
looking for peaks in the projection on Θphoton. A Gaussian distribution around Θring is
a reasonable signal description in the Θphoton, φphoton plane for fixed φphoton, if Θring is
the expected polar angle for a given mass hypothesis [88].

For a fixed Θphoton the width of the Gaussian G is dependent on φphoton and β. To-
gether with the background parametrization B, the likelihood function for a given mass
hypothesis can therefore be written as

Lphoton
N =

Nphoton∏
k=1

[
(1− ε)G(Θphoton

rec,k , φphoton
rec,k ) + εB(Θphoton

rec,k )
]
. (4.4)

In order to compare likelihood values of different particles, the normalized likelihood

L = Nphoton
√
Lphoton

N is introduced.

An accurate calculation of the likelihood of a given mass hypothesis requires an adequate
background description. This is not an easy task, since in addition to the electronics
noise, which can be assumed to be distributed evenly on the detector surface, there
are a number of other background sources. For example Čherenkov photons emitted
by other particles of the same event and recorded because of the memory time of
the photon chambers and the beam halo. For these sources the description is not so
evident and background models had to be extracted from data and MC. In turn this
background description can be used in the description of the RICH-1 detector during
simulation. Figure 4.17 shows the reconstructed Čherenkov angles versus the particle
momentum. Pion, kaon and proton bands are clearly visible. In order to identify a given
particle the likelihood for the different mass hypotheses π, K or proton is calculated
with eq. 4.4. based on the incoming track parameters [88][89]. For this analysis only
hadrons identified as pions and kaons where used. Of course the likelihoods do have
an error associated with them. Since it is difficult to evaluate it from first principles,
the decision boundaries, or cut values, are chosen such, that a figure of merit (FOM)
is maximized on a sample for which the real particle identity is sufficiently well known.
This will be addressed in the next section.
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4.4.1 Introduction to the Search for Optimized Cuts for PID

For optimal particle identification performance with RICHONE, a set of cuts ~c has to
be found that optimize the particle identification rate with respect to charged pions
and kaons. This subsection sketches the strategies explored to find optimal attributes
to which cuts can be applied and the optimal cut values. The objective function that
has to be maximized is chosen as

f(~c) = S(~c) · S(~c)
S(~c) +B(~c)

. (4.5)

For a fixed number of charged particles passing RICH-1, the signal S(~c) is defined as
the number of particles correctly identified. Accordingly, the background B(~c) is the
number of misclassified particles when applying the cuts ~c. Then the figure of merit
is the fraction of signal events times the number of signal events as defined in eq. 4.5.
It is a trade-off between the demand for a high signal purity on the one hand, and a
high efficiency on the other hand. The curves in 4.18 show the trade-off of these two
indicators for the case of a multivariate method for PID. Two different sets of attributes
were used, which will be explained later. Examples for multivariate methods are neural
networks and decision trees.

In addition to multivariate methods a more traditional cut optimization method was
used, where for the most relevant, physical motivated cuts a grid search is employed.
In the following, these two strategies for optimal PID cuts will be described.

4.4.2 Data Sets

In order to investigate the performance of the PID, it is necessary to correctly label
signal and background events. There are two strategies for this. Firstly, using the
Monte Carlo data described in sec. 4.3, for which the real PID is known, and secondly
using known physical processes. In the last approach, the ρ and φ resonances in the
invariant mass spectrum of two particle combinations are taken as signal events for
pions and kaons, respectively, because the ρ meson decays almost always into π+π−

and the φ into K+K−. The data used was taken in 2004 during the periods W33 and
W34 and the same cuts as used for the all hadron analysis were applied. To obtain a
purer sample, it is possible to use exclusive events. Results obtained from the exclusive
samples have been found to be compatible with the results from non-exclusive data.
However, since the analysis uses semi-inclusive events where the dependence on the
azimuthal angles of spin and hadrons is different from the semi-inclusive case [91] the
PID was optimized on non-exclusive sample. This ensures that the background and the
kinematics will be similar.

4.4.3 Attribute Selection

A priori, the set of attributes to which the cuts ~c are applied in order to maximize f(~c) is
unknown and has to be found. However, the likelihoods computed according to eq. 4.4
are supposed to contain all the knowledge that can be obtained from the kinematical
variables and the RICH-1 signal. In order to investigate if the signal quality can be
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improved, by augmenting the number of parameters on which cuts are defined, well
established strategies are followed. The general approach is described in [92]. Here
only a brief description based on MC data is sketched. The results from data are
similar, and are given in the end for the figure of merit from data.

There are two ways to evaluate if an attribute or feature is valuable for classification.
Either the performance together with a given classifier is measured or by evaluating
how much information is contained in an attribute about the class, independently of
the used classifier. In this case, classes are signal and background.

The classification of pions and kaons can be treated separately. Since an accurate
classification of kaons is more important, due to the lower number of kaons as compared
to pions (about 12% vs. 77% of all identified hadrons after cuts), the focus will be on
the identification of kaons, pions can be treated analogously and for them only the
result will be listed.

An obvious example of criterions used to evaluate the importance of a certain attribute
for classification is the correlation with the class. If for a given attribute value, the given
particle is always a kaon, one should use it for classification. This can be quantified
with a measure from information theory: The information gain that is associated with
an attribute. The information gain is the difference in information that is contained in
the outcome of the classification if the value of the attribute is known as opposed to the
case, where it is not known. Another way to put this is, that one looks at the entropy
difference between the initial set and the sets where the attribute has a specific value,
assuming that a good attribute sorts between the classes of interest [93]. Information
is measured in bit and the maximum information contained in the outcome of a yes/no
decision is 1 bit. The best attribute determines completely the outcome of the decision.
The information contained in the outcome would thus be 0 bit. Here the information
gain is obviously 1 − 0 = 1 bit. In general the information of a random draw with n
possible outcomes vi with probability P (vi) is

Info(P (v1), . . . , P (vn)) =
n∑

i=1

−P (vi) log2 P (vi). (4.6)

Given that an attribute partitions the set of examples that are to be classified into v par-
titions, where each contains pi positive and ni negative examples (signal or background)
and the whole set contains p positive and n negative ones, the remaining information
after the value of the attribute A is determined, is

Remainder(A) = −
∑n

i=1 pi + ni

p+ n
Info

(
pi

p+ n
,
ni

p+ n

)
. (4.7)

This is just the information contained in the subsamples, where the probability for a
negative or positive outcome of a random draw is pi

p+n and ni
p+n , respectively weighted

by the fraction of events in the subsample.

The information contained in the initial sample can be computed with eq. 4.6 as

InfoInit

(
p

p+ n
,

n

p+ n

)
=

−p
p+ n

log2

p

p+ n
− −n
p+ n

log2

n

p+ n
. (4.8)
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Therefore the information gain of the attribute A is InfoInit − Remainder(A).

In order to use attributes in a decision as in cuts or the above information gain com-
putation, a proper discretization has to be chosen. This discretization, of course, also
determines the possible cut values used later in the analysis. Again, there are several
strategies [92]. The most straightforward one is to chose equal discretization steps or
equal frequency in each bin. Since cut points define attributes, the information gain
measure described above can also be used to choose them.

In order to apply these automated methods for the evaluation of the attributes, it is
advisable to normalize the values. Also a decorrelation step can reduce the number of
attributes. An integrated tool that realizes a workbench for the most popular methods
for data mining is the weka environment [94]. This tool was used to evaluate several
methods for attribute selection and optimal cuts. The information gain selection gave
the following values for the information contained in the set of the attributes pion
likelihood (LH), kaon LH, fit angle, ring χ2, proton LH, hadron θ and hadron momentum
with respect to kaon identification, if evaluated on MC data:

• pion LH: 0.16 bit

• kaon LH: 0.14 bit

• fit angle: 0.1 bit

• ring χ2: 0.014 bit

• proton LH: 0.00422 bit

• hadron θ: 0.0007 bit

• hadron momentum: 0.0005 bit

The fit angle is the Čherenkov angle from the fit to the identified ring. Since it is
already used in the computation of the likelihoods, it does not provide significant extra
information. In addition to the aforementioned possible attributes also others that
could have effects on the identification performance like the hadron momenta in x,y
and z direction, the particle multiplicities and other global event properties where used.
These were also combined in a nonlinear way to form attributes that might be useful
for classification. However, they did not allow for a better identification performance
of the classifiers tried and which are described in the following.

4.4.4 Optimal Cuts from Multivariate Analysis

Some popular multivariate methods where tested with the enlarged attribute set as
input parameters.

• The Ripper algorithm for automated cut finding

• Support-Vector Machines (SVMs)
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Figure 4.18: Signal efficiency vs. background rejection curve without (left) and with hadron
momentum, hadron θ, ring χ2 and fit angle (right). Performances were evaluated on Monte Carlo
data using a neural network as an example of a multivariate method. There is no significant
gain from using the enlarged attribute set.

• Multivariate methods as implemented in TMVA3 [95], the most important being

– Neural Networks

– Boosted Decision Trees (normal and decorrelated)

– Principal Component Analysis (PCA)

TMVA is part of the ROOT software for data analysis [96]. To account for the different
frequencies in the occurrence of the pions and kaons in the sample and for the different
weighting of signal and background in eq. 4.5 adequate cost matrices were used. An
in-depth analysis of the strategy used can be found in [92]. The comparison of the per-
formance of the different classifiers implemented in TMVA for a typical set of attributes
is shown in fig. 4.18.

As mentioned earlier, training and test sets are taken from simulated (Monte Carlo) or
experimental data, for which the term ’real data’ will be used. One encounters thus a
typical problem in the use of multivariate methods in high energy physics, namely that
it is very difficult to obtain training data that is correctly labeled and with a correct
distribution in the relevant variables. Real data can be used, but with the trade-off
that many examples are labeled incorrectly. Noisy data can make it unfeasible to use
specific classifiers, e.g. Support-Vector-Machines (SVMs)[97]. Here noisy data leads to
an increased number of support vectors, making training and classification inefficient.
For simulated data the truth is known but the agreement with real data is difficult to
achieve and to evaluate. Thus, when using Monte Carlo, it is important to know, how a
classifier reacts to shifted inputs 4. For both, simulated and real data, it was found that
the best performance is achieved with a small set of attributes, namely the likelihood

3Toolkit for MultiVariate Data Analysis with ROOT
4For a discussion with respect to neural networks and SVMs, see [98].
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Particle LH over BG LH over 2nd Max Momentum Margin [GeV]

π 1.05 1.004 0.2
K 1.1 1.014 1.2

Table 4.10: Optimal parameter set for pions and kaons

values with the hadron θ and the hadron momentum. A further enlargement only leads
to worse performance. Performances were evaluated with the cuts used later on for the
extraction of the single spin asymmetries. Differences between a setup where only the
likelihoods were used as an input to the classification and the use of a bigger parameter
set are minimal. These results are consistent with the results of the information gain
computation.

4.4.5 Optimal Cuts from Grid search on MC

The inclusion of more attributes than the given likelihoods does not merit a significant
improvement of performance. It is of the same order as fluctuations between different
MC versions and uncertainties in the MC, which are difficult to quantify. Therefore
the approach presented in the following aims to optimize simple cuts on the likelihoods
and particle momenta. Physical meaningful cuts to extract pions/kaons are:

• The pion/kaon likelihood has to be the greatest of all likelihoods and bigger than
the background likelihood.

• Cut on the pion/kaon likelihood to suppress background.

• Cut on the ratio between the pion/kaon likelihood and the second highest likeli-
hood for a mass hypothesis in the event.

• Cut on the minimal hadron momentum. The momentum margin between the
Čherenkov threshold and the required hadron momentum ensures that a minimal
number of photons is emitted.

• Cut on the maximal hadron momentum at 43 GeV since for higher momenta the
difference between the expected values for the ring angle for the pion and kaon
mass hypothesis differ by less than 2 σ, where σ is the resolution.

The simplest strategy to find the optimum values with respect to eq. 4.5 is a grid search
in parameter space. In this case the parameter space is three-dimensional: the likelihood
over background for the particle, the momentum over the Čherenkov threshold and the
ratio to the second highest likelihood in the event. To find an optimal parameter set
for pions and kaons, different grids with decreasing grid spacing were used. A coarse
binning was used to find the approximate point of the optimum and finer ones to find
the exact location of the optimum. The parameter set found by this technique is shown
in tbl. 4.10.
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Figure 4.19: Exemplary fit to the ρ and φ signal and background. In blue the vector meson
signal, in black the background. The red line is the combination. For the grid search on data,
the reduced χ2 for the ρ fit is between 1.4 and 1.6. For the fit to the φ signal between 0.95 and
1.1.

The performance of the particle identification on MC data of these cuts is within the
errors compatible with the performance found from the multivariate methods, which
were trained on the same parameter set. It has to be compared with the cuts found
from data.

4.4.6 Optimal Cuts from Grid search on Data

For the estimation of optimal cuts from real data, the strategy employed is quite
straightforward and follows the procedure of cut finding with Monte Carlo data: For
pions and kaons a cut on the likelihood over the background and on the ratio to the
second highest likelihood in the event is made. Furthermore a cut on the margin of the
hadron momentum over the Čherenkov threshold is made which directly reflects on the
number of emitted photons. At variance to Monte Carlo data, the number of correctly
identified particles has to be estimated from the size of the ρ and φ resonances. There-
fore invariant mass spectra are reconstructed separately for all identified pairs of pions
and kaons of opposite charge. Then, to estimate signal and background in the region
of the resonances, the signal is fitted with a Breit-Wigner-function and the background
with an appropriate model. In the case of the ρ another Breit-Wigner-function is used,
whereas for the narrower φ resonance a linear fit is sufficient. Usually finding a model
for the background is quite difficult. In this case, since the signal has to come from the
resonance region, also the background description has to be valid only in this region.
The signal region has been selected by the values for the mass and the width Γ of the ρ
and φ resonances as documented by the particle data group [99]. For the ρ the mass is
taken to be 0.77 GeV and Γ = 0.151 GeV and for the φ 1.02 GeV and Γ = 0.044 GeV
is used. Exemplary, the fit to the ρ and φ resonances are shown in fig. 4.19.

The number of correctly and incorrectly identified particles that is used in the figure
of merit (eq. 4.5) can then be estimated by the area under the background and signal
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Particle Likelihood over BG LH over LH of 2nd Max Momentum Margin [GeV]

π 1.01 1.001 0.35
K 1.06 1.00001 0.8

Table 4.11: Optimal cuts as computed from data.

Particle Likelihood over BG LH over LH of 2nd Max Momentum Margin [GeV]

π 1.03 1.002 0.5
K 1.04 1.003 1

Table 4.12: Cuts used for the analysis.

curves. To this end, the signal is computed by taking the integral over the Breit-Wigner-
function and the background by subtracting the signal from the mass spectrum in a
region corresponding to ±2Γ around the maximum. As in the case where the optimal
cuts were determined from MC data, a grid search is employed. For each point in the
grid a separate fit is performed and the χ2 over the number of degrees of freedom and
figure of merit computed. The error on the figure of merit is computed by assuming that
the error on the signal is to a good approximation given by

√
S, where S is computed

from the area under the fit to the signal. The error on the background B is taken as√
B and the error on the figure of merit obtained by error propagation.

The resulting cuts are shown in table 4.11. For the presented grid search, the reduced
χ2 for the ρ fit is between 1.4 and 1.6. For the fit to the φ signal it is between 0.95 and
1.1.

4.4.7 Results for Different Cuts for PID

In this section, the results on Monte Carlo and real data for the different cut strategies
presented are given. The evaluation on MC has the advantage that purities and effi-
ciencies for the particle identification can be investigated without being restricted to
particles originating from a resonance decay. For example, in the two hadron analysis
the performance of the PID can be evaluated over the full range of the invariant mass
of the produced meson pair. Whereas for real data one is restricted to the masses of
the respective vector mesons. The resulting figures of merit are shown in tbl. 4.13 and
the purities in figs. 4.21 and 4.22. They are consistent with the ones obtained from
real data presented in [100]. However, in [100] the performance of the PID for positive
kaons was better then for negative ones as shown in fig. 4.20.

This trend cannot be reproduced on Monte Carlo data and could be attributed to the
way the purities are evaluated from data or to the suppression of the production of a
pure sea objectK− in comparison toK+ production. Furthermore, the evaluation of the
figure of merit for kaons from non-exclusive φ production is afflicted with large errors,
of the order of 100%. This is because the signal count is low and the background large.
From MC it is possible to enrich the sample with kaons, which reduces the errors. For
the pion identification, the cuts obtained from data and Monte Carlo are compatible
within the errors. But for kaon identification there are differences. Here, the cuts
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Figure 4.20: Purities of kaon identification evaluated on data using the cuts in tbl. 4.12.
The trend is similar to the purities computed from Monte Carlo and presented in this thesis.
However, the dependence of the purity on the kaon charge is not present in simulated data.
Plots from [100].

obtained from MC perform far better on Monte Carlo then the cuts optimized on data,
but worse in the identification of particles in data. This behavior is either rooted in the
inaccurate modeling of kaon production in Monte Carlo, or in the fact that kaons not
originating from φ production are poorly classified by cuts optimized for those from φ
production. Due to the need for a cross-check, a third set of cuts was chosen for the
final analysis (see table 4.12). Results obtained on this set are also listed in tbl. 4.13.
Mostly, the performance is comparable within the errors. An exception is the kaon
identification which is a little bit worse on data and significantly worse on Monte Carlo.

When evaluating multivariate methods one does not only obtain purities and efficiencies
at a single cut value but also so-called ROC5 curves. They show the background
rejection ratio at a given value for the signal efficiency and are produced by cutting
on the output of the classifier, which reflects the confidence of the classification. In
these curves the ideal operating point for the given analysis can be chosen. This is
an advantage with respect to a simple cut-based approach. In this analysis, the best
performance was achieved with neural networks and boosted decision trees. Exemplarily
the results on MC data obtained with a neural network for different attribute sets are
shown in fig. 4.18. From these plots and the ratio of pions to kaons in the training and
test MC file of about 6.5:1 one can easily estimate the possible purities and efficiencies
by multiplying the background rejection at the working point with the fraction of kaons
in the sample. Using cuts on the classifier output as to maximize the figure of merit
in eq. 4.5 one gets purities in the kaon sample of around 70%. Higher efficiencies are
reached for higher values of xBj whereas for the smallest xBj bins the efficiency is only
around 50%. At a cut point on the classifier output corresponding to a signal efficiency
of about 70 % the figure of merit is within the errors equal to the one obtained with
the cuts used in this analysis.. Since the use of multivariate methods does not merit
a significant improvement for the PID, the analysis uses the simple cuts on particle
likelihoods and momentum.

5Receiver Operating Characteristic



70 4. Data Analysis

Bjx
-210 -110

P
u

ri
ty

0.5

0.6

0.7

0.8

0.9

Bjx
-210 -110

P
u

ri
ty

0.4

0.6

0.8

1

z
0.2 0.4 0.6 0.8

P
u

ri
ty

0.7

0.8

0.9

z0.2 0.4 0.6 0.8

P
u

ri
ty

0.4

0.6

0.8

1

All (black squares on the left), positive (red dots) and negative (blue squares) kaons

z
0.2 0.4 0.6 0.8

P
u

ri
ty

0.8

0.9

z
0.2 0.4 0.6 0.8

P
u

ri
ty

0.8

0.9

All (black squares on the left), positive (red dots) and negative (blue squares) pions

Figure 4.21: Purities of kaon and pion samples after PID. Results are obtained from Monte
Carlo data with optimal cuts determined on real data. The purity in PT is constant for pions
(around 85 %) and kaons (around 70%). Binned in xBj , the purity for pions is approximately
constant at 85%. The increase of the purities with z and xBj , which is correlated with Q2, can
be explained with the higher momentum of the detected particle. Because a high momentum
particle emits more Čherenkov photons than a low momentum particle, the PID is also more
reliable.
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Figure 4.22: Purities of pions (left) and kaon (right) samples after PID. Same sample as in
fig. 4.21.

Data Set Method Figure of Merit S*S/(S+B)

Monte Carlo Cuts from MC 3635± 63
Monte Carlo Cuts from Data 2906 ± 59
Monte Carlo Cuts for Cross Check 2590 ± 55

Data Cuts from MC 0.25 ± 0.3
Data Cuts from Data 0.37 ± 0.34
Data Cuts for Cross Check 0.34 ± 0.31

Table 4.13: Results for the different cuts to identify kaons. For the evaluation on data, the
weeks 33 and 34 were used. The cuts for the “all hadron” analysis were applied.
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4.5 Single Spin Asymmetries

From the selected hadron sample, single spin asymmetries are extracted. They are
divided into one hadron asymmetries and two hadron asymmetries. In the first case,
the distribution of single hadrons is analyzed to extract Collins and Sivers asymmetries
and in the second case, the distribution of hadron pairs to access the transversity
distribution. Both can be treated in the same framework, as was demonstrated in
chapter 2.

• One Hadron Asymmetries: The two relevant azimuthal modulations of the cross-
section in the one hadron analysis are dependent on the sin of ΦColl, the Collins
angle and ΦSiv the Sivers angle. This has already been shown with eq. 2.52 on page
30, along with a naive extraction scheme. Both can be written in terms of linear
independent combinations of the azimuthal angles Φh and ΦS : ΦSiv = Φh − ΦS

and ΦColl = Φh − (π − ΦS) = Φh − π + ΦS as was explained in sec. 2.7.1.

• Two Hadron Asymmetries: In the Two Hadron case, the relevant azimuthal
modulation of the cross-section is dependent on sin(ΦS + ΦR). The angle ΦR is
depicted in fig. 2.15. Section 2.9.2 treats the extraction of the asymmetry which
is similar to the extraction of the one hadron Collins asymmetry after exchange
of Φh with ΦR.

4.6 Estimators for Single Spin Asymmetries

After the selection of a hadron sample the amplitudes of the respective asymmetries
have to be extracted. In this section the general framework, challenges and different
estimators for asymmetry extraction are presented. In detail these are

• The standard method: In the presence of stable acceptances that do not influence
the asymmetry extraction, this is the most straightforward method.

• The double ratio method: Its demand for detector stability is not as strict as for
the standard method. In the presence of small asymmetries it gives stable results.
This method is used in the further analysis.

• The weighted double ratio method: In a further development a method is presented
that allows the weighting of events.

• Two dimensional double ratio: This method avoids biases of the extracted asym-
metries due to the detector acceptance by using a binning in two independent
azimuthal angles.

• Two dimensional fit to counts: In addition to the advantages of the two dimen-
sional double ratio, a two dimensional fit to counts allows the incorporation of
Poissonian statistics. Because the fit is directly to counts, statistical effects are
better understood.
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• Unbinned maximum likelihood method: This method is developed from first prin-
ciples. By construction it is unbiased and best suited for low number of counts.

Each of these approaches has different advantages based on the assumptions regarding
expected asymmetries and spectrometer acceptances. For historical reasons, the double
ratio method was selected for this analysis. However, in the light of new analyses which
will be performed on current and future COMPASS data, new and enhanced approaches
like the unbinned maximum likelihood method have been developed and evaluated in
the frame of this thesis. This is done by testing the algorithms on simulated data, in
which arbitrary asymmetries can be injected. Based on these results presented at the
end of this section, the optimal algorithms for a given analysis with respect to expected
bias and complexity can be selected.

4.6.1 General Framework

With respect to the asymmetry extraction procedure, the one and two hadron case
can be treated analogously. Because in both cases two momenta are used, the scattered
muon momentum and ~Ph or ~R6, the cross-sections and asymmetries depend in principle
on six variables. The standard set of variables chosen here are xBj , y, z, |P h

⊥|2, Φs and
Φh in the one hadron case or ΦR in the two hadron case. Then the density of counts
at the kinematics point ~x = (xBj , y, z, |P h

⊥|2) is proportional to the product of detector
acceptance and effective physical cross-section:

d

d~x dΦk dΦS
Ncell,↑↓(~x,Φk,ΦS) ∝

ncell ·Acell,↑↓(~x,Φk,ΦS)
d

d~x dΦk dΦS
σ↑↓(~x,Φk,ΦS , f, PTarget)

(4.9)

where Φk = Φh in the one hadron case and Φk = ΦR in the two hadron case and
f ,PTarget designate dilution factor and target polarization respectively. Since the flux
is the same on both target cells during one period of data taking, only the number of
target nucleons for the respective cell ncell appears. One distinguishes count rates for
upstream and downstream cell (cell=u,d) and polarizations up and down (↑↓). Usually
the dependence on one kinematic variable is of interest, the other ones are integrated
out. Let w.l.o.g.7 the remaining kinematic variable be xBj , and one considers a bin
with xk < xBj < xk+1, then the count density depends only on the azimuthal angles
Φk and ΦS . If the acceptance dependence on ~x is neglected eq. 4.9 becomes:

d

dΦk dΦS
Ncell,↑↓(Φk,ΦS) ∝

Acell,↑↓(Φk,ΦS)
∫

y,z,|P h
⊥|2

∫ xk+1

xk

ncell
d

d~x dΦk dΦS
σ↑↓(~x,Φk,ΦS , f, PTarget)

(4.10)

The above expression will be the starting point for all estimators of azimuthal spin
modulations of the polarized cross-section developed in the following. In the so-called

6At variance with ~Ph, ~R depends on two momenta measured in the final state. However, in the

extraction of the asymmetries, they can be treated analogously.
7without loss of generality
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“binned” methods, the modulations are extracted by fitting to histograms. These con-
tain counts in angular bins Φi

k and Φj
S with a fixed width:

Ncell,↑↓(Φi
k,Φ

j
S) =

∫ Φi+1
k

Φi
k

∫ Φj+1
S

Φj
S

d

Φk dΦS
Ncell,↑↓(Φk,Φs) (4.11)

Since the modulations due to Collins and Sivers asymmetries are orthogonal functions
of Φh and ΦS , it is also possible to extract each separately, integrating out the other
one. Therefore the Collins and Sivers angles are used as parameters and w.l.o.g. the
Sivers dependence is integrated out:

Ncell,↑↓(Φi
Coll) =

∫ Φi+1
Coll

Φi
Coll

∫
ΦSiv

d

ΦColl dΦSiv
Ncell,↑↓(ΦColl,ΦSiv) (4.12)

If the binning is in two azimuthal angles, the method will be called “two-dimensional”
or 2D for short. In the later case, where one angular dependence is integrated out, the
method is called a 1D method. Then it is assumed, that the acceptance is not only
approximately constant in one angular bin, but also that its dependence on the angle
that is integrated out does lead to a bias of the extracted amplitude.
Before integrating over any kinematic variable count rates and counts are proportional
to the effective cross-section, which can be divided into a target spin independent and
a target spin dependent part:

σ↑↓(~x,Φk,ΦS , f, PTarget) = σXO(x, y, z, |P h
⊥|,Φk)± fPTargetσXT (x, y, z, |P h

⊥|,Φk,ΦS),
(4.13)

since the COMPASS beam exhibits a natural longitudinal polarization X ∈ {O,L}.
The target spin dependent part comprises the dilution factor and the polarization of
the target PTarget. That this splitting is correct becomes clear from looking again at
eq. 2.58. Since the spin dependent modulations contain the term ΦS , rotating ΦS by π
leads to a change in the sign of the modulation while the acceptance factor stays. This
implies, that the angle ΦS is computed assuming a fixed target polarization, here spin
up. Consequently the ratio of effective cross-section and unpolarized cross-section can
be written as

σ↑↓(~x,Φk,ΦS , f, PTarget)
σXO(x, y, z, |P h

⊥|,Φk)
= 1±

fPTargetσXT (x, y, z, |P h
⊥|,Φk,ΦS)

σXO(x, y, z, |P h
⊥|,Φk)

= 1±
8∑

i=0

fPTargetD
modi(y)modi(Φk,ΦS)Amodi

≡ g↑↓

(4.14)

if the terms depending only on Φh (e.g. Cahn asymmetry) are neglected.

Here g↑↓ is defined for convenience. It will be used later on to refer to the ratio σ↑↓/σXO.
The modi are the polarization dependent functions with which the cross-section is
modulated. In the one hadron case these are: mod{1,2,..,8} = {sin(Φh−ΦS), sin(Φh+ΦS),
sin(3Φh − ΦS), sin(ΦS), sin(2Φh − ΦS), cos(Φh − ΦS), cos(ΦS) ,cos(2Φh − ΦS)}. The
asymmetries Amodi are the amplitudes of these modulations. They contain the structure
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functions Fmodi divided by the spin independent part of eq. 2.58. Omitted is the factor
of proportionality, which contains the global kinematic factor. But if for the extraction
of asymmetries only ratios of counts are used, this can be neglected, otherwise, if the
counts are used directly, it has to be accounted for. The estimators presented in the
following compute Amodi from which transversity or the Sivers function can only be
extracted, if the unpolarized part is known.

But before using the measured number of counts, the dependence on the unknown
acceptance function has to be considered, which is generally expressed by equations
4.9-4.12. For different estimators the assumptions about the separability of convoluted
acceptance and cross-section functions are different. If the acceptance function depends
on a variable that is integrated out it can give contributions to the physical asymmetries
which are to be extracted. In the following N(Φi) is defined as in eq. 4.12 and N(Φi,Φj)
as in eq. 4.11.

4.6.1.1 Influence of Detector Acceptances on the Extraction of Physical
Amplitudes

When using eq. 4.12 to project the counts on one azimuthal angle the dependence of the
detector acceptance on the angle that is integrated out may lead to biased results [101].
The acceptance of the COMPASS spectrometer, which can be estimated from charged
hadron production, exhibits a strong dependence on ΦS as shown in fig. 4.23. When
Fourier transforming the acceptance functions, the sinΦs and cos(2Φs) (s1 and c2)
components are of the order of 0.2, each corresponding to 40% effects on the measured
asymmetries. When applying the addition theorems of trigonometric functions one can
show analytically, that this leads to a mixing of the different asymmetries extracted with
a 1D fit. For instance, when extracting Collins asymmetries, the extracted values are
shifted by c2 times the value for the Sivers asymmetry and vice versa. If the expected
values for both asymmetries are large, this can become a problem.

4.6.1.2 Corrections due to Kinematics and Experimental Setup

The extracted asymmetry has to be corrected for the respective depolarization factor
Dmodi , PTarget the target polarization and f , the dilution factor, which accounts for the
fact that not every virtual photon scatters off a transversely polarized nucleon. It can
naively be thought of as the fraction of polarizable nucleons in the target. As described
in section 3.1 the COMPASS deuteron target consists of 6LiD with a dilution factor of
about f ≈ 0.38, which is dependent on the kinematics of the event and the position
of the primary vertex for a non isotropic target. In principle the dilution factor can
be computed for each event by considering the ratio of the F2 structure functions of
deuteron and other isotopes together with radiative corrections [60]. However, as will
be shown in this section, there is no significant effect on the results.
In all schemes presented in the following the extracted asymmetry is corrected with the
mean depolarization, target polarization and dilution factors. Only the weighted double
ratio method investigates the influence of these factors in an event-by-event weighting.
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Figure 4.23: Distribution of ΦS for all events after cuts in the weeks 33 and 34.

4.6.1.3 Corrections due to Finite Bin Size

For any “binned” method, that is a method that uses a binned histogram to which the
azimuthal modulations are fitted, one has to account for effects due to the finite bin
size [54]. Because the fit is done to the value at the center of the bin or at the center
of gravity, one has to compare the mean value of the fit function over the bin range
with the value of the function at the point of evaluation. Alternatively the value of the
integral of the fit function can be fitted to the value of the bin. But since the relation
of the integral to the value of the function in the middle of the bin can be determined
analytically the added complexity can be avoided by correcting the obtained amplitudes
with the “true” value of the function at the point of evaluation divided by the mean
value. The “true” value is chosen such that the integral over the bin equals the bin
content. For the one dimensional case this approach can be illustrated by considering
the function

f(Φ) = 1 + a cos(Φ) + b sin(Φ) (4.15)

The mean value of f(Φ) in a bin (Φi,Φi+1) is

〈f(Φ)〉i,i+1 =
1

∆Φ

∫ Φi+1

Φi

f(Φ)dΦ. (4.16)

For n bins, the bin width is ∆Φ = 2π/n. The standard fit is done to the mean value
of f(Φ) at the center of the bin. But the “true” height of the function at the center of
the bin is given by

f(Φi + ∆Φ/2) = 1 + a cos(Φi + ∆Φ/2) + b sin(Φi + ∆Φ/2). (4.17)

The two values 〈f(Φ)〉i,i+1 and f(Φi + ∆Φ/2) are not equal. Their difference depends
on the number of bins. For the limiting case n→∞ the difference vanishes and for the
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other cases the relation between the real amplitudes, a and b, and the amplitudes as
extracted from the fit, afit and bfit, can be analytically determined to be:

afit = a
2

∆Φ
sin

∆Φ
2

bfit = b
2

∆Φ
sin

∆Φ
2
. (4.18)

Evaluating these relations leads to a correction factor afit/a = bfit/b in the one dimen-
sional case with 16 bins of 0.9936. Albeit the correction is very small, this changes for
the two dimensional fits presented in sec. 4.6.5. Here, due to the higher overall bin
number, the number of bins in each direction is chosen as eight. This corresponds to
64 bins overall. Then the amplitudes given in the full cross-section in eq. 2.58 can be
described in the general form [54]

f(Φh,ΦS) = 1 +
3∑

k=−1

(ak sin(kΦh − ΦS) + bk cos(kΦh − ΦS)). (4.19)

Using the same logic as before the correction factors can be extracted as

ak,fit = ak
2

k∆Φh
sin

k∆Φh

2
2

∆ΦS
sin

∆ΦS

2

bk,fit = bk
2

k∆Φh
sin

k∆Φh

2
2

∆ΦS
sin

∆ΦS

2
.

(4.20)

For the eight times eight binning used in the following, the correction factor evaluates
to 0.87735. If the center of gravity of a bin no longer corresponds to the middle of the
bin, extra caution has to be taken. Then in principle the calculation has to be redone
with respect to the center of gravity of each bin.

4.6.2 Standard Method

Assuming independence of the acceptances of Φh, ΦS and ~x the spin dependent asym-
metries can be extracted by taking the normalized difference of the counting rates:

N↑
cell(Φk)− rcellN

↓
cell(Φk)

N↑
cell(Φk) + rcellN↓(Φk)

= 1 +Amodi
cell

〈
DmodifPTarget

〉
(Φk) (4.21)

〈
Dmodi(y)fPTarget

〉
denotes the average of the corresponding correction factors due to

kinematics and experimental conditions. Additionally, one has to assume independence
of the structure functions on Q2. The fit is performed for each function of interest modi

and the weighted average of the result in each cell is computed. To balance differing
counting rates, the factor rcell is chosen as N↑

total/N↓
total. Since the modi are orthogonal,

the different asymmetries can be extracted by fitting with the respective function. For
the fit, the data is binned in 16 equidistant bins of Φk and then fitted by sinΦ{Coll,Siv,RS}
at the bin center. Using 16 bins ensures, that binning effect can be neglected (see 4.6.1.3
and [54]).

Using eq. 4.21 is the so-called standard method which has been used for the very first
analysis of azimuthal asymmetries by the COMPASS collaboration.
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4.6.3 Double Ratio Method

For this analysis, the so-called double-ratio method is used, where one does not use the
difference of the counting rates in the numerator of eq. 4.21 but the product of ratios

DR(Φk) =
N↑

U (Φk)N
↑
D(Φk)

N↓
U (Φk)N

↓
D(Φk)

(4.22)

where it is assumed, that the counts are in kinematic bins. Using the double ratio
has the advantage, that it is robust against changes in the acceptance as long as the
acceptance stays constant in one bin of Φk and the ratio of acceptances stays constant
between two periods of opposite polarization, that is

a↑U

a↓U
= R ·

a↑D

a↓D
. (4.23)

for each bin of Φk. Here apolarization
cell stands for the acceptance in one bin for the specified

cell and polarization configuration. Eq. 4.23 is a reasonable assumption because for
the extraction of single spin asymmetries two periods are combined during which the
spectrometer can be assumed to be stable and which are close together in time. For
a constant R-ratio there are no systematic effects expected using the standard or the
double ratio method [102]. If the R-ratio changes in the different Φk bins, this is not
the case anymore for the standard method. But if the asymmetries are small it is still
true for the double ratio method.

The double ratio method exhibits a somewhat higher statistical error then the standard
one, if the counts between the two periods are unbalanced. However this is outweighed
by the better stability. The validity of eq. 4.23 is called the R-test and is monitored for
the analyzed data and was found to be well within the statistical errors [102].

The expectation value of the double ratio is obviously E{DR} = 1. This can be used
to extract one specific modulation modi by Taylor expanding DR:

DR(Φk) =
N↑

U (Φk) ·N↑
D(Φk)

N↓
U (Φk) ·N↓

D(Φk)

=
c↑U · c

↑
D

c↓U · c
↓
D

·
a↑U (Φk) · a↑D(Φk)

a↓U (Φk) · a↓D(Φk)
· (1 +Amodi sinΦk)2

(1−Amodi sinΦk)2

≈ C ·
a↑U (Φk) · a↑D(Φk)

a↓U (Φk) · a↓D(Φk)
· (1 + 4Amodi sinΦk)

(4.24)

The cpolarization
cell are the respective factors of proportionality and Amodi the asymmetry

that is to be extracted. Standard and double ratio method are described in detail in
[102].

4.6.4 Weighted Double Ratio Method

Since the fit is done to binned data, where each event has a different weight in the
asymmetry extraction, there is a somewhat more clever way to extract the asymmetries.
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Instead of using the mean values for f, PTarget and depolarization factor one can weight
each event with the respective factor. Looking at equation 2.58 for the full cross-section
there is also a factor of 1−y+y2

xyQ2 which varies from event to event for both, the polarized
and the unpolarized part. If a kinematical binning other than in x is chosen, this means,
that events with low xQ2 have a higher weight in the evaluation of the asymmetries.
This is not ideal since Collins and Sivers effects are expected to be higher for partons
in the valence region. With the restriction to the correction factors that pertain only
to the polarized cross-section σXT the double ratio can be written as

DR(Φk) =
N↑

U (Φk) ·N↑
D(Φk)

N↓
U (Φk) ·N↓

D(Φk)

≈
(1 + (

P
DfPTarget)

↑
U

N↑
U

Amodi sinΦk)(1 + (
P

DfPTarget)
↑
D

N↑
D

Amodi sinΦk)

(1− (
P

DfPTarget)
↓
U

N↓
U

Amodi sinΦk)(1−
(
P

DfPTarget)
↓
D

N↓
D

Amodi sinΦk)
.

(4.25)

The relative depolarization factor D is given by the ratio of the depolarization factor
of the Sivers and Collins asymmetries, respectively (Dsin(Φh−ΦS) and Dsin(Φh+ΦS)) and
the global factor 1 − y + y2. Here it is assumed, that the global factors cancel in the
double ratio and they are not included, leading to a less cumbersome notation. For the
distribution of the double ratio of the factor 1

xyQ2 over all Φk bins, see fig. 4.26. If the

coefficients N j
i /(
∑
DfPTarget)

j
i are called kj

i and the function Amodi sinΦ that is to be
extracted x, the above equation can be written in a shorthand notation:

DR
k↑Uk

↑
D

k↓Uk
↓
D

=
(k↑U + x)(k↑D + x)

(k↓U − x)(k↓D − x)
(4.26)

When solving for x one can take advantage of the fact that the expectation value of DR

is 1 as is the expectation value of k↑Uk↑D
k↓Uk↓D

. So one can assume that (DRk↑Uk↑D
k↓Uk↓D

− 1)x2 = 0,

especially for small asymmetries Amodi which means, that the above equation reduces
to a linear one which can easily be solved for x. See fig. 4.24 for the distribution of

DRk↑Uk↑D
k↓Uk↓D

.

The solution x is a function of the azimuthal angle Φ and is then fitted with Amodi sinΦ
to extract the asymmetry. The difference with respect to the normal double ratio
method, where the mean value of each correction factor is used, is dependent on the
deviation of this factor in the respective bin. Since for each Φk bin an individual weight
is computed, an improvement of the statistical error is expected. The size of this effect
is dependent on the deviation of the weights. To get an idea of the sizes of the effect,
a more straightforward way to extract the asymmetry is considered. Eq. 4.26 can be
solved for x = Amodi sinΦk. Each bin in Φi gives one value for Amodi . These can
then be averaged to get an estimate of the asymmetry Amodi . Since in the weighted
method, each measurement of xi at an angle of Φi is weighted, the error is smaller
than for the standard method, where each measurement is assigned the same weight.
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Figure 4.25: Normalized difference of errors on the asymmetry between weighted and standard
method. For this sample the ordered two hadron asymmetries extracted from the data taken
in the weeks 33 and 34 was considered
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For this sample the ordered two hadron asymmetries extracted from the data taken in the weeks
33 and 34 was considered. A minimum number of events of ten for each N j

i was required.

However, taking into account only different polarizations and relative depolarization
factors as indicated in eq. 4.25 amounts only to a 1.2% reduction in the statistical error
as shown in fig. 4.25. However, there are also other variables that play a rôle in the
asymmetry extraction and that vary from event to event, for example the depolarization
factor. But since each event can be weighted individually, not only the appropriate
kinematics for each event can be taken into account but also the acceptance function
of the spectrometer to cancel the impact on the extraction of the physical amplitudes.

4.6.5 Two Dimensional Fit to Double Ratios

Section 4.6.1.1 addressed the possibility of a bias introduced in the results of one di-
mensional methods due to effects between physical modulations of the cross-section
and modulations due to the spectrometer acceptance function. One way to solve this
problem is to appropriately weigh the events, which makes knowledge about the spec-
trometer acceptance necessary. Another way is to use a two dimensional fit in Φh

and ΦS . Here the additional degree of freedom in the cross-section given by a sec-
ond angle is not integrated out and the bias introduced by this integration is avoided.
Counting the degrees of freedom of the differential cross-section and comparing with
the number of variables with respect to which the asymmetry extraction procedure is
kept differential shows, that all degrees are conserved. For binned methods, the degrees
of freedom equates to the number of variables with respect to which the counts are
binned. Additionally, only with two dimensional methods one has access to the cor-
relation coefficients between different asymmetries. These correlations are introduced
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on variables which are independent on the physical level, like the Collins and Sivers
asymmetries, by the convolution with the spectrometer acceptance. In a way, using
one dimensional methods for asymmetry extraction has to be justified by evaluating
the correlation coefficients by means of a two dimensional approach. This has been
done in [51][54]. Following this argumentation, the two hadron asymmetries have to
be extracted with a binning in three angles. Conventionally the angles ΦS , ΦR and
Φh, the azimuthal angle of one of the hadron is chosen. Considering all three angles
would make the extraction of the asymmetries of interest for this analysis much more
complicated. These depend only on ΦR and ΦS . Since in addition, the dependence of
the cross-section on the other angular combinations vanishes after intrinsic transverse
momentum is integrated out, the two hadron asymmetry is extracted with a one di-
mensional fit [2][38]. Thus also avoiding problems with low number of counts due to
the requirement of a specific hadron pair in the final state.

4.6.6 Two Dimensional Fit to Counts

When using the double ratio method in the one or two dimensional case, the errors on
the extracted asymmetries are determined assuming Gaussian distribution of the counts
in one bin and Gaussian error propagation. However, the distribution of the double
ratio does not have to follow a Gaussian distribution. This is especially true in the
case of a low number of counts, where even the Gaussian assumption for the individual
factors does not hold anymore. One possibility is to not consider such events in the fit.
Another way is to fit directly to counts [103]. Using a two dimensional binning in Φh

and ΦS , the number of counts in a given bin j can be described by

N↑↓
j,cell = F ↑↓

cellncellσ0ã
↑↓
j,cellg

↑↓
j ( ~A, PTarget, f). (4.27)

Here F is the muon flux, n the number of target nucleons, σ0 the unpolarized cross-
section, ã the acceptance, ~A the vector of asymmetry amplitudes, f the dilution factor,
g↑↓ the normalized cross-section defined in eq. 4.14 and PTarget the target polarization.
The target cell is designated by cell = {u, d}. Both cells can be in one of the two
configurations ↑ or ↓. The bin number is j = {1, 2, ..64} for a eight by eight binning.
According to eq. 4.14, g↑↓j gives the modulation of the cross-section in each bin j. It
can be parametrized as:

g↑↓j = 1±
∑

i

Ai sin(Φi
j) (4.28)

Ai and Φi
j correspond to the eight modulations of the cross-section in eq. 2.58 evaluated

for the bin j. Because the fit is performed to counts instead of double ratios, the
unpolarized asymmetries only depending on Φh can also be included, leading to

g↑↓j = 1 +
∑

i

Ai′ sin(Φi′
j )±

∑
i

Ai sin(Φi
j). (4.29)

However, discriminating a modulation due to a physical asymmetry only depending
on the angle Φh from a modulation of the acceptance is difficult because the analytic
difference is only in the cross term

∑
i′ Ai′ sin(Φi

j)
∑

iAi sin(Φi
j) which would be present

in the later case. Since the measured polarized asymmetries are small this is a not a
significant correction.
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If the sign of the polarized amplitude is positive or negative depends on the polarization
in the corresponding cell and period. The dependence of g↑↓j on f and PTarget will be
omitted in the following, because the correction for the attenuation of the amplitudes
will be done separately as in the methods described before. Left is the dependence on
the sign of the polarization, that is on ↑↓. Since from the number of counts one cannot
discern ncell, σ0 and ã↑↓j,cell the normed acceptance

a↑↓j,cell = ncellσ0ã
↑↓
j,cell (4.30)

is defined. This leaves for a m by m binning 4m2 + 12 free parameters and 4m2 data
points.

That more constraints are needed to determine the asymmetries becomes clear by the
fact, that there are no constraints on the acceptances in each bin. Therefore modula-
tions of the cross-section and acceptance effects cannot be distinguished. The necessary
constraints on the acceptance are given by the double ratio as defined before. A rea-
sonable assumption implies that the ratio

C =
a↑jua

↑
jd

a↓jua
↓
jd

(4.31)

stays constant for all bins j. An even stricter constraint is that the ratio of acceptances
stays constant for each cell, resulting in the constraints

Cu =
a↑ju

a↓ju
Cd =

a↑jd

a↓jd
. (4.32)

The flux parameter is linear dependent on the other parameters, thus there are four
types of equations left to describe the number of counts for the two cells in each polar-
ization state, when using the constraints from eq. 4.31:

N↑
ju = C

a↓jda
↓
ju

a↑jd
g↑j ( ~A) N↓

jd = a↓jdg
↓
j ( ~A)

N↓
ju = a↓jug

↓
j ( ~A) N↑

jd = a↑jdg
↑
j ( ~A)

(4.33)

For the constraints in eq. 4.32 there exist a similar system of equations, but with less
free parameters:

N↑
ju = Cua

↓
jug

↑
j ( ~A) N↓

jd = Cda
↑
jdg

↓
j ( ~A)

N↓
ju = a↓jug

↓
j ( ~A) N↑

jd = a↑jdg
↑
j ( ~A)

(4.34)

Both, eqs. 4.33 and 4.34 are a nonlinear system of equations. A well known way to
find a solution of these is the Levenberg-Marquardt (LM) algorithm [104][105]. The
LM-algorithm solves the problem of minimizing ‖~F (~a)‖2, with respect to the vector
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of arguments ~a of the general function ~F (~a). This is done iteratively by solving the
linearized version of the problem

min
~a
‖~F (~ak)J(~ak)(~a− ~ak)‖2. (4.35)

Here J denotes the Jacobian of F . A solution can be found by rearranging eq. 4.35 to

JTJ(~ak − ~a) = JTF (~ak). (4.36)

Solving eq. 4.36 iteratively amounts to the well known Gauss-Newton method. A better
convergence in regions further away from the minimum can be obtained by using the
form (

JTJ + λI
)
(~ak − ~a) = JTF (~ak). (4.37)

The term λI is a damping term, where I is the identity matrix. For high values of λ the
LM algorithm is effectively a gradient-descent method. Additionally, the algorithm op-
erates only in a trust-region to improve stability [106][107]. Equation 4.37 can be solved
without performing the computationally costly matrix inversion by using the pseudo
inverse. For this analysis the implementation of the Levenberg-Marquardt algorithm
of the GNU Scientific Library (GSL) has been used [108]. The choice of F has to be
taken, such that a solution of 4.35 is also a solution of 4.33 and 4.34, respectively, in the
maximum likelihood sense. Assuming a Gaussian distribution of the number of counts,
this is achieved by using a least squares fit [109]. If Nj is the number of counts in one
bin and the fit function evaluated in that bin is fj(~a) the target function is chosen as

Fj = (Nj − fj(~a))/σj , (4.38)

where σj is the error on the number of counts Nj . With the Gaussian assumption, the
error can be approximated for sufficiently high number of counts by σj =

√
N . Then

4.35 is equal to a least squares fit of fj(~a) toNj . Since the assumption is, thatNj follows
a normal distribution with the mean fj(~a), minimizing the sum of the squares of the
difference

∑
‖(Nj − fj(~a))/σj‖ is equivalent to the maximization of the log likelihood:

The probability of Nj given the parameters ~a is given by

P (~a) =
1

σ
√

2π
e−(Nj−fj(~a))2/(2σ2

j ). (4.39)

Assuming independence of the distributions in each bin, the log likelihood of ~a is given
by ∑

j

−(Nj − fj(~a))2

2σ2
j

+ const. (4.40)

Minimizing 4.35 thus corresponds to maximizing the likelihood of the parameter vector
~a. With the Gaussian assumption and the factor -2 the log likelihood in eq. 4.40
corresponds to the deviance and follows a χ2 distribution. If the number of counts in
one bin is too low to make this assumption, the derivation of the Fj has to be made
with the Poisson probability. This is given for bin number i as

P (~a) =
e−fj(~a)fj(~a)Nj

Nj !
. (4.41)
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Computing the log likelihood with this probability distribution instead of eq. 4.39 leads
to the minimization of the corresponding deviance given as∑

j

2(fj(~a)−Nj) + 2Nj ln(Nj/fj(~a)). (4.42)

Because eq. 4.42 follows also a χ2 distribution, eqs. 4.42 and 4.39 are “compatible”with
each other [99]. The target function Fj can be chosen appropriately for the observed
number of counts in one bin. For the analysis a threshold of ten events is chosen.
Above, Fj = fj(~a) − Nj and below Fj =

√
2
√
fj(~a)−Nj −Nj ln(fj(~a)/Nj) is used.

Using this term ensures that minimizing Fj in the quadratic sense as in eq. 4.35 also
minimizes eq. 4.42 and that the relation between the two forms is the same as in the
case of a Gaussian distribution. In the later case the minimization of 4.39 is replaced
by a minimization of 4.38. The prediction for the number of counts in a specific bin fj

is dependent on the cell and the polarization as in eqs. 4.33 and 4.34

4.6.7 Analytic Description of the Acceptance with the Fourier Series

In the previously described asymmetry extraction method the spectrometer acceptance
was described by a coefficient in each angular bin. This description makes it necessary
to fit to binned histograms. It is also counterintuitive, since the resulting acceptance
function is discontinuous8 and each acceptance coefficient is independent from the ones
in neighboring bins.

From data it is known, that the acceptance can efficiently be described by trigonometric
functions, for example by a Fourier series. There are numerous advantages to this ap-
proach: Firstly the influence on the physical asymmetries extracted from the measured
asymmetries can be taken into account. The analysis done in [101] shows that only the
Fourier coefficients up to the order two, meaning up to the frequency 2/(2π) lead to
a significant bias when extracting asymmetries with a one dimensional fit. Secondly
there are less parameters in the fit. Instead of having to fit 3m2 amplitude coefficients
to solve eqs. 4.33, only the relevant Fourier coefficients have to be fitted. As before, m
is the number of bins in one dimension. Good results have already been obtained by
including the coefficients up to the third order, so up to the frequency 3/(2π). Then
the number of parameters is independent of m and equals 3(1 + 32), which will become
clear in the following.

The solution of eqs. 4.33 and 4.34 requires that the number of equations is equal or
greater than the number of parameters. The number of equations can decrease if the
number of counts is too low. If the fit relies on the Gaussian assumption this would be
the case for a number of counts less than ten. Then the equations for the respective bin
and the corresponding acceptances are deleted because even if the number of counts in
this angular bin is high enough there are not enough constraints left to determine the
acceptance coefficients related to the angular bin and provide information about the
physical amplitudes. Therefore the equations and parameters related to that bin are
deleted. Since for each angular bin four equations and three parameters are deleted, it
can happen, that there are not enough equations left to solve for the parameters.

8It is described by a coefficient in each angular bin



86 4. Data Analysis

This problem is overcome by the Fourier ansatz for the acceptance. First of all, the
number of parameters is far less, allowing the deletion of far more equations. Further-
more each coefficient is related to all angular bins. Therefore only the one equation has
to be deleted for which there were not enough events counted. Less parameters should
also mean faster and better convergence. However, the aforementioned dependence of
the estimated number of counts in each bin on many Fourier coefficients leads to less
non-zero entries in the Jacobian in eq. 4.37. The high correlation between the parame-
ters makes the solution harder.
For the one hadron analysis, two distinct approaches were used for the description of
the acceptance with Fourier coefficients. In the first factorizibility of the acceptance
dependence on Φh and the dependence on ΦS was assumed. Then the acceptance in
each angular bin can be described as the product of the acceptance functions in Φh and
ΦS which are in turn described by one-dimensional Fourier series:

Acc(chk , s
h
k , c

S
k , s

S
k ,Φh,ΦS) =

1√
2π

(
ch0 +

MAXF∑
k=1

(
chk cos(kΦh) + sh

k sin(Φh)
))

·

1√
2π

(
cS0 +

MAXF∑
k=1

(
cSk cos(kΦS) + sS

k sin(ΦS)
)) (4.43)

The normalization chosen here is such that it is the same for the Fourier transformation
and the inverse operation. Plancherel’s and Parseval’s theorem can then also be written
without prefactors. At this point the normalization can be chosen arbitrarily. But when
using the Fourier series for the spectrometer acceptance description in the unbinned
maximum likelihood fit, described in the next section, this is not the case anymore.
A more general formulation is the two-dimensional discrete Fourier transform (DFT)
leading to the following form:

Acc(a0, ckl, skl,Φh,ΦS) =

1
2π

a0 +
MAXF∑
k=0,l=0
k 6=0∨l6=0

ckl (cos(k · Φh) cos(l · ΦS)− sin(k · Φh) sin(l · ΦS))+

skl (sin(k · Φh) cos(l · ΦS) + cos(k · Φh) sin(l · ΦS))

) (4.44)

The number of coefficients MAXF has to be chosen such that the acceptance can be
described adequately. And it has to exceed the frequency of the acceptance modulation
mainly causing the correlation effects between the different physical amplitudes. Section
4.6.9 covers the results for asymmetry extraction on Monte Carlo data for different
values of MAXF .

4.6.8 Unbinned Maximum Likelihood Estimator

The asymmetry extraction methods presented previously are approximations of the
maximum likelihood estimator [109]. They are valid in the limit of high number of
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counts. For low number of counts, either the Gaussian assumption is not valid or the
number of angular bins has to be chosen so low, that binning effects cannot be excluded
anymore. A solution is to form the extended maximum likelihood for the asymmetry
values ~A. The probability density function (PDF)9 of finding an event at the angular
coordinate (Φh,ΦS) is Acc(Φh,ΦS)g↑↓( ~A). The normalization of Acc is chosen in the
sense of eqs. 4.33, that is including all terms that are independent from the physical
asymmetries. With this the extended likelihood can be formed:

L( ~A) =
N∏
j

Acc(Φj
h,Φ

j
S)g↑↓( ~A)

e−µµN

N !
(4.45)

The product goes over all N observed events j with angular coordinates
(
Φj

h,Φ
j
S

)
. For

a given choice of Acc and ~A the number of expected events is µ. Thus the additional
term e−µµN

N ! extending the regular likelihood function is the Poissonian probability of
finding N events with µ events theoretically expected. Without this term, L would
go to infinity for Acc → ∞. For a given acceptance function Acc(Φh,ΦS) µ can be
computed as

µ =
∫ 2π

0

∫ 2π

0
Acc(Φh,ΦS)g↑↓(Φh,ΦS , ~A)dΦhdΦS (4.46)

With Acc(a0, ckl, skl,Φh,ΦS) from the DFT in eq. 4.44, neglecting cross terms with the
physical modulations, one obtains for µ:

µ ≈ 2πa0 (4.47)

because the integral over the non-constant parts is zero when integrated from 0 to 2π. If
the cross terms are considered, these have to be computed for each physical modulation
modi(Φh,ΦS) as µmodi = Amodi

∫ 2π
0

∫ 2π
0 Acc(Φh,ΦS)modi(Φh,ΦS).

However, due to the simple form of the modi this can be done in a straightforward
manner. If w.l.o.g. only the physical relevant cases of the Collins and Sivers asymmetry
are considered, then modi ∈ {sin(ΦS +Φh), sin(ΦS−Φh)}. Using the addition theorems

sin(Φh ± ΦS) = sin(Φh) cos(ΦS)± cos(Φh) sin(ΦS) (4.48)

for the Collins and Sivers modulations the problem reduces to the computation of
integrals of the form

cklAColl/Siv

∫ 2π

0

∫ 2π

0
([cos(kΦh) cos(lΦS)− sin(kΦh) sin(lΦS)] ·

[sin(Φh) cos(ΦS)± cos(Φh) sin(ΦS)]) dΦhdΦS

(4.49)

and

sklAColl/Siv

∫ 2π

0

∫ 2π

0
([sin(kΦh) cos(lΦS) + cos(kΦh) sin(lΦS)] ·

[sin(Φh) cos(ΦS)± cos(Φh) sin(ΦS)]) dΦhdΦS .

(4.50)

9the difference to parton distribution function will be clear from the context
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Since all terms which contain cos(Φi) sin(Φi) or for which k, l 6= 1 evaluate to zero only
the product of the modulation sin(Φh + ΦS) with the terms in the acceptance function
of eq. 4.44 connected to the coefficient s11 contributes. Using the above relations, one
arrives at µColl = 1

2πAColls112π2. Generally, all modulations that depend on the differ-
ence of mΦh and nΦS lead to a vanishing effect on µ. If modulations only depending
on one angle are taken into account additional terms µmod(nΦi) appear. They are

• µcos(ΦS) = 1
2πA

cos(ΦS)2π2(c01 + s01)

• µsin(ΦS) = 1
2πA

sin(ΦS)2π2(s01 − c01)

for the polarized asymmetries and

• µcos(Φh) = 1
2πA

cos(Φh)2π2(c10 + s10)

• µcos(2Φh) = 1
2πA

cos(2Φh)2π2(c20 + s20)

• µsin(Φh) = 1
2πA

sin(Φh)2π2(s10 − c10)

for the unpolarized ones.

Instead of maximizing eq. 4.45 it is computationally easier to minimize the normalized
logarithmic likelihood:

− lnL( ~A, a0, ckl, skl, Cu, Cd) =
∑

i

(− ln (Acc(Φh,ΦS , a0, ckl, skl, Cu, Cd)

− ln
(
g↑↓(Φh,ΦS , ~A)

)
+ µ(a0, Cu, Cd)− ln(µ(a0, Cu, Cd)) ·N

))
.

(4.51)

Depending on the index i the correct form of µ, Acc and g has to be chosen. For the
implementation corresponding to the acceptances relying on the assumption in eq. 4.32
the acceptances in one polarization depend on the acceptances of the same cell in the
other polarization configuration via the proportionality factor Cu,d. This relation is also
valid for the expected number of events in one cell. For the minimization of eq. 4.51
the Fletcher-Reeves conjugate gradient method was chosen [110]. This is a popular
example of a conjugate gradient algorithm using line searches to avoid the solution of
a quadratic problem in each step. For the solution the minimum is iteratively searched
for along a line. The direction of the line is defined by conjugate gradients. At the
starting point the gradient of the function is chosen as the direction in which to search.
For subsequent steps, the new direction is a conjugate of the old one and the gradient
of the function at the new point. This method is only slightly more complicated than
usual gradient descent methods, but converges much faster.

4.6.9 Performance on Monte Carlo Data

Different strategies for asymmetry extraction can be studied and compared using Monte
Carlo data with artificial asymmetries. The data was already presented in this chapter.
In order to impose artificial asymmetries, the events were weighted according to the
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generated kinematics. For the extraction the reconstructed kinematics were used. Then
the extracted asymmetries were compared with the injected ones. According to eq. 2.58,
the weighting function was chosen as

w(Φh,ΦS) =

1± fPTarget

Dupol

(
Dsin(Φh−ΦS) sin(Φh − ΦS)Asin(Φh−ΦS)

Collins +Dsin(Φh+ΦS) sin(Φh + ΦS) +

A
sin(Φh+ΦS)
Sivers +Dsin(3Φh−ΦS) sin(3Φh − ΦS)Asin(3Φh−ΦS) +Dsin ΦS sinΦSA

sin ΦS+

Dsin(2Φh−ΦS) sin(2Φh − ΦS)Asin(2Φh−ΦS)Dcos(Φh−ΦS) cos(Φh − ΦS)Acos(Φh−ΦS)+

DcosΦS cos ΦSA
cos ΦS +Dcos(2Φh−ΦS) cos(2Φh − ΦS)Acos(2Φ−ΦS)

)
.

(4.52)

The depolarization factors Df are dependent on y, the fractional energy transfer from
the scattered muon, for which the generated value was used, too. In the case of the
unbinned maximum likelihood method weights are more complicated to implement.
Therefore this method was tested with a simpler data generation method:

• Values for Φh and ΦS were generated in the interval [0, 2π) randomly according
to a uniform distribution.

• For each event (Φh,ΦS) a random number v in the interval [0, 2] was generated
according to a uniform distribution.

• If the evaluation of w(Φh,ΦS) · Acc(Φh,ΦS) was smaller than v, the event was
discarded, otherwise kept.

The acceptance function Acc(Φh,ΦS) was first taken to be constant and in a second set
of tests to be

1 + c · cos(2ΦS) + s · sin(ΦS) (4.53)

with c = 0.25 and s = 0.6. This function is plotted in fig. 4.27. It reproduces qual-
itatively the experimental acceptance function in ΦS which is also shown in fig. 4.27.
The acceptance dependence on Φh is rather weak. So it is expected, that a function of
the above form will allow to check for unwanted effects due to the convolution of the
physical amplitudes with the acceptance. Since the approach, of fitting the acceptance
approximately with a truncated Fourier series is the same in the maximum likelihood
approach and the least squares fit described above, the validity of this form can be
tested on the full Monte Carlo data. Supplementary checking the maximum likelihood
on the simplified Monte Carlo data gives additional confidence in this approach.

Results for the different Fit Methods

Twelve Monte Carlo runs with about 106 events each were taken to extract the asymme-
tries for pions, kaons, protons and unidentified particles with three bins in xBj and two
bins in z and Pt. In order to ensure, that the Gaussian assumption for the event counts
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Figure 4.27: Artificial acceptance function generated by 1 + 0.25 · cos(2ΦS) + 0.6 sin(φS) and
ΦS distribution of all events after cuts in the weeks 33 and 34.

can be used, a minimum count of five10 was required. Only those asymmetries were
considered in the evaluation, that could be reconstructed with all methods, leaving 320
asymmetries. Even though there are no asymmetries expected for protons, the Collins
asymmetry was injected there as well. Subsequently the distribution of the deviations
between the reconstructed asymmetries and the injected ones normalized to the error
on the reconstructed asymmetry for different methods was plotted. In a somewhat loose
terminology they are called “pulls” in the following and are defined as

Pull :=
AReconstructed −AInjected

σReconstructed
. (4.54)

The correlation between the deviations is expected to be small, since they all depend
on different data, the distribution is expected to be Gaussian. A mean different from
zero hints to a bias in the method, whereas a root mean square error (RMS) of the
distribution different from one to wrongly assigned errors. The RMS approximates
the standard deviation of the distribution and will therefore also be called σ in the
following. As expected all methods presented were able to extract an injected Collins
signal correctly if all other physical amplitudes were set to zero. In a second run,
Sivers and other possible asymmetries were injected to test the predicted correlation
between the two amplitudes due to the detector acceptance. Figure 4.28 shows the pull
distributions for the 1D, 2D and least squares method in the case of 20% Collins and a
30% Sivers asymmetry.

As can be seen, a significant deviation of the mean can be observed for the one-
dimensional method. The magnitude of this effect is consistent with the magnitude

10Instead of ten as for real data due to the limited statistics
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Figure 4.28: Results for 1D double ratio (top), 2D double ratio (middle) and least squares fit
to counts. A 20% Collins asymmetry and 30% Sivers asymmetry was injected.
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Figure 4.29: Acceptances computed with assumptions 4.32 extracted from least squares fit for
the xBj bin 0.05− 1 and the upstream cell . The y-axis is in an arbitrary scale. It was summed
over the angle φS so that the result can be compared with the acceptance function extracted in
an independent analysis [90]. The agreement is reasonable.

predicted in [101]. Furthermore, the least squares method seems to be performing bet-
ter than the standard double ratio two-dimensional fit. The RMS is closer to one and
the deviation from the mean smaller. A special test was done for low statistics, there-
fore the pulls were additionally computed with twice as many kinematic bins, leaving
about 30% of the event counts below the limit of five events. Of course, these low event
counts are distributed unevenly between the different particle species.
Pulls were also computed for the method described in section 4.6.6. Again, the cases
with high and low number of counts are considered. If low numbers of events are al-
lowed, the least squares fit using Gaussian errors is biased with a mean of −0.11±0.06.
A similar bias can be observed for the standard two-dimensional method (−0.14±0.07)
This bias can be removed if Poissonian errors are used and the mean is compatible with
zero (0.03 ± 0.07). Since the fit also gives the coefficients for the acceptances in each
bin an additional check can be done. Results were computed for both assumptions 4.31
and 4.32 about the relation of the acceptance functions in the two cells for the different
polarization. In Monte Carlo data both constraints are fulfilled by construction. Thus
any conclusions taken from the results depend on the fulfillment of the constraints in
real data. Fig. 4.29 shows the results for these coefficients, which can be compared with
the acceptances extracted from data.

The tests have also been carried out for the least squares fit with acceptances described
by truncated Fourier series, for both, the acceptance described by a factorized discrete
Fourier transformation (DFT) and a full DFT. They show that already a maximal
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Figure 4.30: Deviation of the mean of φh (left) and φS from the center of each bin. The bin
width is ∆Φ = 2π/8. The units on the x-axis is radian.

frequency MaxF of three is sufficient to obtain similar results as in the least squares
method, where the acceptance is described by a coefficient in each angular bin. However
the results using the factorized description of eq. 4.43 exhibit a bias of around one
standard deviation, which is not present in the method using the full DFT. So it can
be concluded, that the acceptance description cannot be factorized. For all tests the
corrections for finite bin sizes as described in sec. 4.6.1.3 were used. Furthermore,
the fits were not performed at the center of the bin, but at the mean value of the
entries. Without this procedure, biases of about 1.5 σ were observed. Fig. 4.30 shows
the deviation of the mean value of Φh and ΦS for Monte Carlo data used.

Results for Unbinned Maximum Likelihood Fit

According to the findings of the previous paragraph, the full DFT is chosen as the
appropriate description of the acceptance. Using this in the unbinned maximum like-
lihood fit described in section 4.6.8 leads to the accurate extraction of the injected 10
% Collins asymmetry if a flat acceptance was choosen. If the acceptance function 4.53
was used, the mean was one standard deviation away from zero. Even though this is
still acceptable, a possible bias could have been introduced due to the non-convergence
to the global minimum because the starting values for the acceptance coefficients were
not optimal. Since the physical asymmetry is only a small correction to the detector ac-
ceptance good starting values can be obtained by Fourier transforming the given count
rates. If there are still problems with the convergence, an EM11-algorithm can be used
to iteratively find the correct values. For the given results only fixed starting values
were used, which were oriented at the acceptance function. Another possible source of
a bias is the use of the simplified expression for the expected number of events µ in
eq. 4.47.

11Expectation-Maximization
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Summary of Results on Monte Carlo Data

A multitude of different methods to extract the physical asymmetries was presented.
As shown, each can be used to produce reliable results, given that the necessary pre-
conditions are fulfilled. In the presence of enough statistics and small asymmetries, the
one-dimensional method can be used. The drawback here is, that in principle, a two
dimensional fit has to be made to extract the magnitude of the correlations between the
parameters. This way, biases introduced by the detector acceptance can be excluded.
If the correlations are small, the one dimensional fit has the advantage of being well
understood and having only small binning effects, because the bin size can be chosen
smaller than in a two dimensional method. With the two dimensional method using the
double ratio in eq. 4.22 the correlation coefficients can be determined. In the presence of
large amplitudes, a two dimensional method is necessary unless the acceptance is known
exactly. The least squares fit has the advantage, that the distribution of the target val-
ues can be easily incorporated. Because the fit is directly to the number of counts, one
can assume Gaussian or Poissonian distribution as necessary. In the presence of small
numbers of counts the maximum likelihood method can be used. The feasibility of the
Fourier approach in the description of the spectrometer acceptance was demonstrated.
Due to the lower number of parameters as opposed to the use of coefficients in each
angular bin, this approach can also be used when the number of equations in the least
squares fit is reduced due to low statistics. Furthermore, the description of the accep-
tance in terms of trigonometric functions is more natural, considering that the physical
modulations to be extracted are of the same form.



5. Results

This section will present the results obtained from data taken in the years 2003 and
2004. Data taking was divided in periods of about one week of effective beam time. Pe-
riods, in which the target cells were in opposite polarization configurations and which
have been taken close together in time, were combined to extract raw asymmetries.
Due to the smallness of the extracted asymmetries and therefore small correlation be-
tween the different asymmetries [51] the use of the one-dimensional fit is justified. The
raw asymmetries were corrected with the mean values for depolarization factor, target
polarization and dilution factor of the target to compute the final asymmetries. To
produce the results a weighted mean of asymmetries from combinations taken close in
time was computed. These were the periods P1H and P1G taken in 2003 and the com-
bination of the periods W33/W34 and W35/W36 respectively taken in the year 2004.
Results were obtained for Collins and Sivers asymmetries for all hadrons and leading
hadrons. As described in chapter 4, the reasoning for the leading hadron analysis is the
expectancy, that the leading hadron is more sensitive to the properties of the struck
quark than the other hadrons in the event to which less energy was transferred. For the
two hadron case results were obtained for all pairs in which one particle was positive
and the other one negative. Since the computation of the two hadron asymmetries
requires the ordering of the pair, the positively charged particle was taken as the first
and the negatively charged particle as the second particle. Another possibility to im-
pose ordering is according to the kinematic variable z of each hadron. Much like in the
one hadron case, combining the leading and subleading hadron in each event can lead
to an enhancement of the signal as compared with all oppositely charged combinations
[39][62]. It also leads to more possible combinations. The binning chosen and numerical
values for the asymmetries are listed in the appendix. In figs. 5.1-5.12 asymmetries
for one hadron asymmetries are shown. Two hadron asymmetries are depicted in figs.
5.13-5.15 for all hadron pairs and in figs. 5.16-5.21 for leading pairs.
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5.3 Systematic Studies

To exclude any sizable systematic error a multitude of studies was performed [51][111].
The most important among these are listed in the following. They can be divided into
studies that yield real asymmetries and which are:

• Compatibility of sub-periods

• Compatibility of different estimators

• Splitting the target cells so that real asymmetries are preserved

• Splitting the detector in segments

• Splitting periods in time

• Trigger dependent asymmetries

In these studies, the data was combined in a way so that physical asymmetries are
expected. Studies which were performed that give false asymmetries are:

• Scrambling data

• Splitting the target cell so that real asymmetries are canceled

For these studies the data was combined such that no asymmetry is expected. Fur-
thermore the double ratio, given in eq. 4.22 was monitored. Only a double ratio value,
that stays constant in time for each angular bin can give the confidence that systematic
effects due to varying spectrometer acceptances can be neglected. For all the above
tests, it was ensured that all deviations from the expected values agree well within the
statistical errors. The combined results of all systematic studies performed is, that the
systematic errors are considerably smaller than the statistical errors.

5.4 Discussion and Comparison with other Experiments

In the beginning of this chapter, the COMPASS results for transverse single spin asym-
metries with particle identification were shown. Collins and Sivers asymmetries were
extracted separately for identified π+/π− and K+/K− and two hadron asymmetries
for identified pairs of charged pions and kaons. The measured asymmetries are within
the statistical errors compatible with zero. To be more sensitive to the properties of the
fragmenting quark, the same asymmetries were also extracted for subsamples contain-
ing only the leading hadrons in the event. No significant differences can be observed
between the leading sample and the sample containing all hadrons in an event. Since
the asymmetries can be expressed as a convolution of quark distribution function and
fragmentation function their smallness can be caused either by a small distribution or
fragmentation function. Because the COMPASS collaboration uses a deuterium target
another interpretation is a cancellation between contributions from neutron and pro-
ton. This will be discussed in sec. 5.5. To investigate if the fragmentation function
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or respective distribution function is small compared with the statistical errors, mea-
surements by other experiments can give valuable input. Fragmentation functions are
measured by the BELLE experiment. BELLE uses colliding e+e− beams at a center of
mass energy of about 10 GeV and investigates the fragmentation into hadrons. Figure
5.22 shows asymmetries computed from charged pion pair production which correspond
to the product of the Collins fragmentation functions of quark and antiquark.

5.4.1 Collins and Sivers Asymmetries

Experiments measuring Collins and Sivers asymmetries are performed at Jefferson Lab
(JLab) and DESY1. The experiments at RHIC situated at Brookhaven National Lab
also aim at a transversity measurement albeit using collisions of polarized protons.
Both, the RHIC and JLab experiments are still at an early stage thus leaving the
HERMES2 experiment at DESY for a comparison. HERMES uses a gaseous target of
polarized protons off which an electron beam scatters. The experiment benefited of a
beam with a momentum of 27.6 GeV. Therefore HERMES measures at higher values
of xBj at a comparable mean 4-momentum transfer than COMPASS. But the most
important difference is the use of a proton target instead of a deuterium one. With this
target, the HERMES collaboration extracted the transverse single spin asymmetries
shown in figs. 5.23 and 5.24.

They show significant Collins and Sivers effects. If these asymmetries are not attributed
to higher twist effects, one can conclude, that the convolution of the transversity dis-
tribution function of the proton and Collins fragmentation function exists. Because
the Sivers effect is connected to the unpolarized fragmentation function, the measure-
ments point to a Sivers distribution function with a significantly higher amplitude than
measured at COMPASS. In contrast to the results presented in this work, HERMES’
kinematical range is limited. For low values of xBj the statistic is limited which be-
comes apparent in the number of kinematic bins. Furthermore an analysis of the leading
subsample has not been done. For a comparison between the two experiments it is in-
structive to look at the extracted Collins and Sivers asymmetries for identified kaons.
The K− asymmetries are expected to depend only on kinematics, because in both cases
its constituent quarks can only originate from the sea. In contrast, the K+ contains
a u-quark and the u-quark distribution is not the same in proton and deuteron. The
comparison for Collins asymmetries is shown in fig. 5.25 and for Sivers in fig. 5.26. As
expected the K+ asymmetries differ. The difference is more pronounced for the Sivers
asymmetries. Here it seems as if the COMPASS data are a good continuation in the
xBj region dominated by sea quarks. The agreement of the K− asymmetries is very
good, which is an exciting result because it shows, that both experiments measure the
same effect in the sea-quark region.

5.4.2 Two Hadron Asymmetries

The measurement of single spin asymmetries with two hadrons in the final state probes
the convolution of the transversity distribution function with the two hadron interfer-
ence fragmentation function. The later was also measured at BELLE and analysis has

1Deutsches Elektronen SYnchrotron
2HERa MEasurement of Spin
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Figure 5.22: Collins fragmentation function measured by the BELLE experiment. The two
plots correspond to two techniques to extract the asymmetries. In the upper one the product
of the Collins fragmentation functions for quarks and antiquarks is measured. In the lower one
a convolution of the two functions over transverse momenta is measured but unlike the first,
this measurement does not require knowledge of the thrust axis of the measured jets. The lower
scales show the boundaries of the bins in z1 and z2. The shaded band shows the size of the
systematic errors. Figure taken from [112].
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Figure 5.23: Collins asymmetries for identified pions measured by the HERMES experiment.
In addition to the error bars, representing the statistical errors, there is a 8.1% scale uncertainty
due to the target polarization uncertainty. The error bands represent the maximal systematic
uncertainty. For historical reasons, the definition of the Collins angle by the HERMES collabo-
ration differs by π from the definition used by the COMPASS collaboration. This causes a sign
change of the extracted asymmetries. The asymmetries are extracted by computing moments
which have to be multiplied by the indicated factor of 2 to compare them to the COMPASS
results. Figure taken from [113].
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Figure 5.24: Sivers asymmetries for identified pions measured by the HERMES experiment.
In addition to the error bars, representing the statistical errors, there is a 8.1% scale uncertainty
due to the target polarization uncertainty. The error bands represent the maximal systematic
uncertainty. The asymmetries are extracted by computing moments which have to be multiplied
by the indicated factor of 2 to compare them to the COMPASS results. Figure taken from [113].
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Figure 5.25: Collins asymmetries for identified K+ (top) and K− (bottom) measured by
HERMES and COMPASS. The sign of the HERMES asymmetries has been reversed to match
COMPASS conventions and only statistical errors are shown. They have been shown at DIS07
[113].
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Figure 5.26: Sivers asymmetries for identified K+ (top) and K− (bottom) measured by
HERMES and COMPASS. Only statistical errors are shown. The HERMES asymmetries have
been shown at DIS07 [113].
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started [114]. HERMES found first hints for two hadron single spin asymmetries, thus
confirming the existence of the fragmentation function. These are shown in fig. 5.27.
Compared with the COMPASS results, the collected statistics is again significantly
lower. Furthermore, only identified pions could be used, limiting the possibilities for
a flavor decomposition. Concluding, experimental evidence suggests, that the most
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Figure 5.27: Measurement of two hadron single spin asymmetries by the HERMES experiment.
The top panel shows the two hadron asymmetry. In comparison with the asymmetry extracted
in this work, which is defined in eq. 2.56, the sin θ term originating from the partial wave
expansion introduced in sec. 2.8.1 is not considered part of the asymmetry and θ is fitted
separately. The lower panel shows the mean values of the variables that were integrated out.
The variable z is defined as the sum of z1 and z2. Figure taken from [115].

promising way in the interpretation of the COMPASS results will be to consider a can-
cellation between contributions from neutron and proton within the deuterium. This
will be done in the next section.
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5.5 Interpretation and Conclusion

The results shown in chapter 5 and listed in the appendix all show small asymmetries,
they can even be considered compatible with zero. Even though this was not expected,
the results can be explained and interpreted by certain simplifying assumptions, by
taking into account the data on the quark helicity distributions e.g. from [99], which
coincide with the transversity distribution in the non-relativistic case. Then it can be
expected, that the contribution of the strange quarks is very small and that the u- and
d-quark distribution have opposite signs. Furthermore, the transversity of nucleons
will be dominated by the valence quarks. Following this line of thought the Collins
asymmetry of pions on a deuteron target can be written as

Aπ+

Coll ≈
4h1uH

1
1 + h1dH

2
1 + 4h1dH

1
1 + h1uH

2
1

4uD1 + dD2 + 4dD2 + uD2
=
h1u + h1d

u+ d

4H1
1 +H2

1

4D1 +D2
(5.1)

and

Aπ−
Coll ≈

h1u + h1d

u+ d

H1
1 + 4H2

1

D1 + 4D2
. (5.2)

In the above equations, H1
1 and H2

1 signify the favored and unfavored Collins fragmen-
tation function, respectively. A fragmentation function is favored, if the quark content
of the produced meson contains the fragmenting quark. The unpolarized fragmentation
functions are called D1 and D2. For the transversity distribution functions of u and
d quarks, h1u and h1d are used, whereas u and d signify the unpolarized distribution
functions. The K− meson is a pure sea object, therefore no significant asymmetry is
expected and the K+ can be treated similarly to the π+ because it consists also of a
valence and a sea quark. Equations 5.1 and 5.2 suggest two possible sources for the
small asymmetries measured by COMPASS. Firstly, the isoscalar deuteron target leads
to a cancellation between u- and d-quark contributions. But considering the ampli-
tudes of u- and d-quark helicity amplitudes, also the favored and unfavored Collins
fragmentation function should partially cancel, which implies opposite signs. This is an
interesting result, since in the unpolarized case the favored and unfavored fragmenta-
tion functions are not of the same magnitude. These findings are supported by recent
fits to COMPASS, HERMES and BELLE data, which are shown in fig. 5.28 [52][116].
Figure 5.29 depicts the Collins fragmentation function which was extracted by [116]
and fig. 5.30 the extracted transversity function. In these fits Gaussian factorization
of the quark transverse momentum3 was assumed. The ansatz for the transversity dis-
tribution function is based on a polynomial fit and a linear dependence on (f1 + g1).
The values for quark intrinsic transverse momentum and the unpolarized and helicity
distribution functions are taken from the literature. Similarly, the model for the Collins
fragmentation function is based on the unpolarized fragmentation function.

COMPASS measurements contribute significantly to this result, especially to determine
the d-quark contribution to the Collins effect [118].
If two hadrons are detected, models for the two hadron interference fragmentation func-
tion H^

1 that were presented in sec. 2.8.2, predict, that a signal can be measured, if

3A mean square value of quark transverse momentum of 0.25 GeV2 in the PDF and of 0.2 GeV2 in

the fragmentation was assumed.
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Figure 5.28: Global fit of [116] to Collins asymmetries measured by HERMES and COMPASS
and Collins fragmentation function measured by BELLE. COMPASS data is shown. The fit
was performed to the unidentified hadron sample, which consists mainly of pions. The shaded
area represents the theoretical uncertainties.
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Figure 5.29: Collins fragmentation function normalized by two times the unpolarized frag-
mentation function extracted by [116]. Positivity requires |∆NDh/q↑ | ≤ |2Dh/q| therefore with
this normalization the positivity bound plotted in blue is unity. The upper plots show the
favored, the lower the unfavored function. Notice the sign change. In the plots on the left, P⊥
was integrated out to obtain the z dependence. On the right the P⊥ dependence is shown at
a fixed value of z. The dashed lines are obtained by using the model of [52], the dotted line
by using [117]. The shaded area represents the theoretical uncertainties. Instead of H1 the
notation ∆ND is used for the Collins and D for the unpolarized fragmentation function.
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the two hadrons come from the decay of a vector meson. In this case the interfer-
ence between p- and s-wave background can allow a chiral odd fragmentation function.
Looking at the quark content of the resonances that are relevant in the kinematic range
covered by the COMPASS experiment, ρ, K∗ and Φ, the similar arguments can be
made as for pions and kaons using the simple valence quark model from above. The
different resonances are visible in the invariant mass plots shown in fig. 4.10.
For the Sivers asymmetry the same approach can be used. The difference to the Collins
case is, that signal and background hadrons fragment via the same function. Therefore
the Sivers asymmetry in the simple valence quark model can be written as

Aπ+

Siv =
u⊥1T + d⊥1T

u+ d
(5.3)

and

Aπ−
Siv =

u⊥1T + d⊥1T

u+ d
. (5.4)

Thus it is suggested, that the Sivers functions for u and d quarks, u⊥1T and d⊥1T , are of
equal magnitude and have opposite signs. This behavior is affirmed by recent global
fits to COMPASS and HERMES data shown in fig. 5.31 from which the Sivers function
in fig. 5.32 was extracted [119]. Like the approach for the transversity distribution
function, the model for the Sivers function uses Gaussian factorization for the depen-
dence on the quark intrinsic transverse momentum and a linear dependence on the
unpolarized distribution function taken from the literature.

The opposite signs of u and d quark contributions could be a consequence of the opposite
charges of the quarks: Since the Sivers effect is connected to quark orbital angular
momentum, it is reasonable to assume, that the dependence on the polarization of
the parent nucleon is due to the orientation of the magnetic momentum of the quark
parallel to the spin of the nucleon. However, this is dependent on the charge of the
quark. Moreover, the smallness of the effect measured by COMPASS points to a small
Sivers effect for gluons [120] and therefore suggest that the contribution from gluon
orbital angular momentum to the nucleon spin is small. This finding can be made
plausible in a simple picture: Due to the isoscalar nature of the target, the contribution
of the valence quarks is canceled, leaving the contribution from the sea. If the gluons
carried a sizable fraction of orbital angular momentum, this would be transferred to the
sea quarks in the splitting of a gluon into two quarks. The gluon contribution to the
nucleon spin puzzle can thus only be by its spin. This contribution is currently being
measured by COMPASS and other experiments [121][122].

The contribution of the d-quark to the asymmetries measured by COMPASS with a
deuterium target is higher than for experiments using a proton target. In addition, the
precision of the measurements is significantly higher than measurements published by
other experiments so far. Therefore the importance of the COMPASS data especially
to the precise determination of the d-quark contribution to the Sivers effect is obvious.

Both, the global fits to the Collins and Sivers asymmetries fit the data well. Since
the identified asymmetries, which were presented in this thesis, were not published
at the time the global fits were performed, unidentified asymmetries were taken as
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Figure 5.31: Global fit of [119] to Sivers asymmetries measured by the HERMES and
COMPASS collaborations. The COMPASS data is shown. Theoretical uncertainties are rep-
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4MN

q⊥1T (x, k⊥).

input. It was assumed, that the unidentified hadron sample consists mainly of pions,
which is true to almost 80% as shown in table 4.4 in the identified all single hadron
case. Therefore, one can be confident, that the identified asymmetries presented here
will further our understanding of the nucleon structure even more. In the year 2007
COMPASS started taking data with a proton target. The collected statistics will lead
to statistical errors which are of the same order as the ones for the deuterium target.
By the time this thesis is written, the analysis of this data is well under way. From the
fits to COMPASS and Sivers asymmetries presented at the beginning of this section, it
is possible to make predictions for the amplitudes of the respective asymmetries. These
predictions are again taken from [116] and [119] and are shown in figs. 5.33 and 5.34.
They show significant asymmetries in the COMPASS data for both, Collins and Sivers
asymmetries.
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Figure 5.33: Predictions of [116] for Collins asymmetries at current COMPASS kinematics
with a proton target.
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Figure 5.34: Predictions of [119] for Sivers asymmetries at current COMPASS kinematics
with a proton target.
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6. Summary

In the years 2003-2004 the COMPASS experiment collected data from DIS events from
a high energy muon beam scattering off a deuterium target. From this data Collins
and Sivers asymmetries have been extracted in samples containing identified pions and
kaons. To access the transversity distribution of the nucleon also identified two hadron
correlations were measured. Since, based on the string fragmentation model, an en-
hanced signal is expected for leading hadrons and hadron pairs, the analyses were
additionally performed for particles only with the highest energy in an event. The ex-
tracted Collins asymmetries are small, suggesting a cancellation of the u- and d-quark
contributions. Measured Sivers asymmetries are also small which can be attributed to
the isoscalar deuterium target. The smallness of the Sivers asymmetries also constrain
the contribution of gluon orbital angular momentum to the nucleon spin. With the
current statistical errors it is not possible to verify predictions of recent models of the
fragmentation into two hadrons, in which a signal is expected in the invariant mass
region of vector meson production.

Only recently first global fits to results by COMPASS and other experiments have
been made to extract Sivers and transversity distribution functions along with the
Collins fragmentation function. Here, the precise COMPASS measurements are an
indispensable constraint due to its deuterium target and kinematic domain which are
complementary to other experiments. For the Collins asymmetry, the data supports
the finding, that unfavored and favored Collins fragmentation functions are of equal
magnitude and of opposite signs. Thus COMPASS data is very important for the
understanding of the nucleon structure.

The topic of this work was the first extraction of the above mentioned single spin asym-
metries. To this end several estimators have been developed that ensure a bias-free
extraction of the physical signal from data even in the presence of low count rates. In
addition to binned methods implementing Gaussian and Poissonian statistics a descrip-
tion of the spectrometer acceptance by Fourier series was devised. This allowed the
formulation and construction of an unbinned maximum likelihood estimator. With this
novel approach, the groundwork for future analyses has been laid. On specially pre-
pared simulated data, the performance of the new estimators has been demonstrated.
Another focus of this analysis was the identification of pions and kaons. Several ap-
proaches have been implemented to arrive at the optimal solution. Attribute selection
has been done by information gain and in connection with several multivariate methods.
A grid search for optimal cuts has been performed on Monte Carlo data and real data.
To this end the first full detector simulation with a correct treatment of particle identi-
fication and transversely polarized target has been done. The findings were consistent
and stable.
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A. Appendix

A.1 One Hadron Asymmetries

A.1.1 Binning

The one hadron asymmetries were computed in bins of xBj , z and PT . In the following,
the respective bin borders are listed:

xBj

0 < xBj < 0.008
0.008 ≤ xBj < 0.013
0.013 ≤ xBj < 0.020
0.020 ≤ xBj < 0.032
0.032 ≤ xBj < 0.050
0.050 ≤ xBj < 0.080
0.080 ≤ xBj < 0.130
0.130 ≤ xBj < 0.210
0.210 ≤ xBj < 1.000

z

0.20 ≤ z < 0.25
0.25 ≤ z < 0.30
0.30 ≤ z < 0.35
0.35 ≤ z < 0.40
0.40 ≤ z < 0.50
0.50 ≤ z < 0.65
0.65 ≤ z < 0.80
0.80 ≤ z < 1.00

PT

0.10 < PT [GeV] ≤ 0.20
0.20 < PT [GeV] ≤ 0.30
0.30 < PT [GeV] ≤ 0.40
0.40 < PT [GeV] ≤ 0.50
0.50 < PT [GeV] ≤ 0.60
0.60 < PT [GeV] ≤ 0.75
0.75 < PT [GeV] ≤ 0.90
0.90 < PT [GeV] ≤ 1.30
1.30 < PT [GeV] ≤ ∞
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A.1.2 Sivers Asymmetries

A.1.2.1 Leading one Hadron

〈xBj〉 Number of Events Asymmetry Error

0.0065 141339 -0.03 0.02
0.0106 372610 -0.023 0.013
0.0165 570183 -0.01 0.011
0.0257 793655 0.001 0.009
0.0397 655286 0.005 0.01
0.0625 424801 0.007 0.012
0.1005 255415 -0.02 0.016
0.1608 123427 -0.03 0.02
0.2796 45763 0 0.04

Table A.1: π+ asymmetries in xBj binning

〈xBj〉 Number of Events Asymmetry Error

0.0065 137617 0.01 0.02
0.0106 346614 -0.012 0.014
0.0164 503167 -0.019 0.011
0.0256 673310 -0.004 0.01
0.0396 536305 0 0.011
0.0625 334453 0.002 0.014
0.1003 190991 -0.025 0.019
0.1605 86647 -0.02 0.03
0.2803 30518 -0.04 0.05

Table A.2: π− asymmetries in xBj binning
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〈PT 〉 [GeV] Number of Events Asymmetry Error

0.155 356313 0.016 0.014
0.252 510867 -0.009 0.011
0.35 569159 -0.007 0.011
0.449 523591 -0.011 0.011
0.548 428756 0.002 0.013
0.669 447153 -0.01 0.012
0.817 258494 0.001 0.016
1.044 236563 -0.036 0.017
1.553 51583 -0.02 0.04

Table A.3: π+ asymmetries in PT binning

〈PT 〉 [GeV] Number of Events Asymmetry Error

0.154 301551 0.018 0.015
0.252 431346 -0.02 0.012
0.35 478663 -0.009 0.012
0.449 437282 -0.012 0.012
0.548 358760 -0.008 0.014
0.669 373099 -0.01 0.013
0.818 215493 0.008 0.018
1.044 198538 -0.024 0.018
1.557 44890 -0.05 0.04

Table A.4: π− asymmetries in PT binning

〈z〉 Number of Events Asymmetry Error

0.274 781359 -0.017 0.009
0.324 638742 -0.013 0.01
0.374 495100 -0.009 0.012
0.445 643518 -0.002 0.01
0.565 481092 0.014 0.012
0.717 223306 0.007 0.017
0.873 119362 -0.02 0.02

Table A.5: π+ asymmetries in z binning
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〈z〉 Number of Events Asymmetry Error

0.274 683037 -0.01 0.01
0.324 545096 -0.006 0.011
0.374 415056 0.008 0.013
0.445 526464 -0.026 0.011
0.564 388788 0.001 0.013
0.717 180659 -0.036 0.019
0.873 100522 0.03 0.02

Table A.6: π− asymmetries in z binning

〈xBj〉 Number of Events Asymmetry Error

0.0065 42799 -0.06 0.04
0.0106 104506 -0.04 0.02
0.0164 139937 0.02 0.02
0.0254 152172 0.03 0.02
0.0398 111051 0.01 0.02
0.0629 79958 0.03 0.03
0.1008 52312 -0.01 0.04
0.1608 25731 -0.01 0.05
0.2885 10744 0.03 0.09

Table A.7: K+ asymmetries in xBj binning
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〈xBj〉 Number of Events Asymmetry Error

0.0065 35480 -0.02 0.04
0.0105 79693 -0.03 0.03
0.0163 95559 -0.04 0.03
0.0253 91757 0.01 0.03
0.0397 60018 -0.1 0.03
0.0625 38752 -0.03 0.04
0.0999 21623 0.06 0.05
0.1598 8714 -0.01 0.08
0.2846 3178 0.24 0.15

Table A.8: K− asymmetries in xBj binning

〈PT 〉 Number of Events Asymmetry Error

0.154 61835 0.03 0.03
0.252 88259 0.02 0.03
0.351 101347 -0.01 0.02
0.449 100831 -0.01 0.03
0.549 90027 0.04 0.03
0.671 106434 -0.01 0.02
0.819 70731 0.02 0.03
1.052 77593 -0.01 0.03
1.574 22153 -0.01 0.06

Table A.9: K+ asymmetries in PT binning

〈PT 〉 [GeV] Number of Events Asymmetry Error

0.154 38440 -0.02 0.04
0.252 54457 0.01 0.03
0.35 62675 -0.03 0.03
0.449 61040 0.01 0.03
0.549 54061 0.03 0.04
0.67 62916 -0.04 0.03
0.819 41519 0 0.04
1.053 46023 -0.14 0.04
1.578 13643 -0.15 0.06

Table A.10: K− asymmetries in PT binning
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〈z〉 Number of Events Asymmetry Error

0.275 113359 -0.04 0.02
0.325 113441 0 0.02
0.374 102611 0.06 0.03
0.447 159221 0 0.02
0.566 143600 0.01 0.02
0.714 62128 0 0.03
0.869 24850 0.04 0.05

Table A.11: K+ asymmetries in z binning

〈z〉 Number of Events Asymmetry Error

0.275 82876 -0.01 0.03
0.325 78371 -0.03 0.03
0.374 66796 -0.02 0.03
0.446 95401 -0.03 0.03
0.563 77023 -0.01 0.03
0.711 26278 -0.14 0.05
0.865 8029 0.1 0.09

Table A.12: K− asymmetries in z binning
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A.1.2.2 All one Hadron

〈xBj〉 Number of Events Asymmetry Error

0.0065 271477 -0.012 0.016
0.0106 645537 -0.014 0.01
0.0164 937539 -0.008 0.008
0.0256 1220507 0.003 0.007
0.0397 959170 -0.001 0.008
0.0625 622601 -0.001 0.01
0.1005 374620 -0.018 0.014
0.1608 179942 -0.03 0.02
0.2814 68810 0 0.03

Table A.13: π+ asymmetries in xBj binning

〈xBj〉 Number of Events Asymmetry Error

0.0065 265812 0.003 0.016
0.0106 606322 -0.003 0.01
0.0164 844904 -0.023 0.009
0.0255 1062497 -0.008 0.008
0.0396 809273 -0.006 0.009
0.0625 508454 -0.01 0.011
0.1003 293522 -0.017 0.015
0.1606 132972 0 0.02
0.2818 48831 -0.03 0.04

Table A.14: π− asymmetries in xBj binning
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〈PT 〉 [GeV] Number of Events Asymmetry Error

0.155 606398 0 0.01
0.252 875289 -0.011 0.009
0.35 955097 -0.006 0.008
0.448 838004 -0.003 0.009
0.547 651557 0.001 0.01
0.668 640763 -0.008 0.01
0.817 348993 0.008 0.014
1.042 301295 -0.033 0.015
1.55 62807 -0.01 0.03

Table A.15: π+ asymmetries in PT binning

〈PT 〉 [GeV] Number of Events Asymmetry Error

0.155 523662 0.006 0.011
0.252 757068 -0.01 0.009
0.35 828375 -0.015 0.009
0.448 726528 -0.018 0.01
0.547 565991 -0.002 0.011
0.668 555322 -0.018 0.011
0.817 300511 -0.003 0.015
1.042 259899 -0.01 0.016
1.552 55231 -0.03 0.03

Table A.16: π− asymmetries in PT binning

〈z〉 Number of Events Asymmetry Error

0.224 1436744 -0.011 0.007
0.274 1038609 -0.003 0.008
0.324 754822 -0.013 0.009
0.374 546584 -0.011 0.011
0.445 678115 -0.004 0.01
0.564 482569 0.015 0.012
0.717 223383 0.007 0.017
0.873 119377 -0.02 0.02

Table A.17: π+ asymmetries in z binning
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〈z〉 Number of Events Asymmetry Error

0.224 1303614 -0.014 0.007
0.274 921384 -0.012 0.008
0.324 653027 -0.004 0.01
0.374 463590 0.007 0.012
0.444 559433 -0.024 0.011
0.564 390265 0.002 0.013
0.717 180735 -0.034 0.019
0.873 100539 0.03 0.02

Table A.18: π− asymmetries in z binning

〈xBj〉 Number of Events Asymmetry Error

0.0065 72842 -0.03 0.03
0.0105 158627 -0.009 0.02
0.0163 187628 0.017 0.018
0.0253 187823 0.038 0.019
0.0398 134384 0.01 0.02
0.0628 96867 0.01 0.03
0.1006 62676 -0.02 0.03
0.1609 30826 0 0.05
0.2897 13306 0.01 0.08

Table A.19: K+ asymmetries in xBj binning
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〈xBj〉 Number of Events Asymmetry Error

0.0064 61235 -0.03 0.03
0.0105 125011 -0.02 0.02
0.0162 134722 -0.01 0.02
0.0252 120860 -0.01 0.02
0.0397 78010 -0.1 0.03
0.0625 51302 0.01 0.04
0.0999 28522 0.02 0.05
0.1602 11824 0 0.07
0.2882 4742 0.05 0.13

Table A.20: K− asymmetries in xBj binning

〈PT 〉 [GeV] Number of Events Asymmetry Error

0.154 87499 0.01 0.03
0.252 122630 0.01 0.02
0.35 138527 -0.01 0.02
0.449 134383 0.01 0.02
0.549 117352 0.04 0.02
0.67 135534 -0.02 0.02
0.819 87941 0.02 0.03
1.051 94718 0.01 0.03
1.57 26395 0.01 0.05

Table A.21: K+ asymmetries in PT binning

〈PT 〉 [GeV] Number of Events Asymmetry Error

0.154 58895 -0.03 0.03
0.252 82550 -0.01 0.03
0.35 92673 -0.03 0.03
0.449 87683 0.01 0.03
0.549 76065 0.03 0.03
0.67 86616 -0.03 0.03
0.819 55565 -0.03 0.03
1.051 59348 -0.08 0.03
1.571 16833 -0.14 0.06

Table A.22: K− asymmetries in PT binning
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〈z〉 Number of Events Asymmetry Error

0.225 155104 0.01 0.02
0.275 147432 -0.02 0.02
0.324 131899 0 0.02
0.374 112572 0.06 0.02
0.446 167074 -0.001 0.02
0.566 143898 0.01 0.02
0.714 62146 0 0.03
0.869 24854 0.04 0.05

Table A.23: K+ asymmetries in z binning

〈z〉 Number of Events Asymmetry Error

0.225 123840 -0.01 0.02
0.274 110237 -0.02 0.02
0.324 93156 -0.02 0.03
0.374 74795 -0.02 0.03
0.445 102583 -0.03 0.03
0.563 77289 0 0.03
0.711 26295 -0.13 0.05
0.865 8033 0.1 0.09

Table A.24: K− asymmetries in z binning
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A.1.3 Collins Asymmetries

A.1.3.1 Leading Hadrons

〈xBj〉 Number of Events Asymmetry Error

0.0065 141339 -0.08 0.03
0.0106 372610 -0.009 0.016
0.0165 570183 0.015 0.012
0.0257 793655 0.004 0.01
0.0397 655286 0.008 0.011
0.0625 424801 0.012 0.013
0.1005 255415 0.001 0.017
0.1608 123427 0.03 0.03
0.2796 45763 0 0.05

Table A.25: π+ asymmetries in xBj binning

〈xBj〉 Number of Events Asymmetry Error

0.0065 137617 0.04 0.04
0.0106 346614 0.002 0.017
0.0164 503167 0.014 0.013
0.0256 673310 -0.003 0.01
0.0396 536305 -0.004 0.012
0.0625 334453 0.001 0.015
0.1003 190991 0.014 0.02
0.1605 86647 0.01 0.03
0.2803 30518 -0.01 0.06

Table A.26: π− asymmetries in xBj binning
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〈PT 〉 [GeV] Number of Events Asymmetry Error

0.155 356313 0.031 0.015
0.252 510867 -0.005 0.012
0.35 569159 -0.006 0.012
0.449 523591 -0.001 0.012
0.548 428756 -0.004 0.014
0.669 447153 -0.001 0.013
0.817 258494 0.024 0.018
1.044 236563 0.031 0.019
1.553 51583 -0.03 0.04

Table A.27: π+ asymmetries in PT binning

〈PT 〉 [GeV] Number of Events Asymmetry Error

0.154 301551 -0.023 0.016
0.252 431346 -0.001 0.013
0.35 478663 -0.018 0.013
0.449 437282 0.014 0.014
0.548 358760 0.003 0.015
0.669 373099 0.02 0.015
0.818 215493 0.029 0.02
1.044 198538 0.01 0.02
1.557 44890 0.13 0.05

Table A.28: π− asymmetries in PT binning

〈z〉 Number of Events Asymmetry Error

0.274 781359 0.004 0.01
0.324 638742 -0.004 0.011
0.374 495100 0.011 0.013
0.445 643518 0.008 0.011
0.565 481092 0.01 0.012
0.717 223306 -0.005 0.018
0.873 119362 -0.01 0.02

Table A.29: π+ asymmetries in z binning
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〈z〉 Number of Events Asymmetry Error

0.274 683037 0.018 0.011
0.324 545096 0.002 0.012
0.374 415056 -0.007 0.014
0.445 526464 -0.009 0.012
0.564 388788 0.009 0.014
0.717 180659 0.012 0.02
0.873 100522 -0.02 0.03

Table A.30: π− asymmetries in z binning

〈xBj〉 Number of Events Asymmetry Error

0.0065 42799 0.02 0.06
0.0106 104506 -0.02 0.03
0.0164 139937 0.03 0.02
0.0254 152172 0.03 0.02
0.0398 111051 -0.03 0.03
0.0629 79958 -0.03 0.03
0.1008 52312 -0.03 0.04
0.1608 25731 -0.18 0.06
0.2885 10744 -0.09 0.09

Table A.31: K+ asymmetries in xBj binning

〈xBj〉 Number of Events Asymmetry Error

0.0065 35480 0.05 0.07
0.0105 79693 -0.03 0.04
0.0163 95559 0.01 0.03
0.0253 91757 0.03 0.03
0.0397 60018 0.01 0.04
0.0625 38752 0.01 0.04
0.0999 21623 -0.07 0.06
0.1598 8714 -0.16 0.09
0.2846 3178 0.07 0.17

Table A.32: K− asymmetries in xBj binning
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〈PT 〉 [GeV] Number of Events Asymmetry Error

0.154 61835 -0.07 0.04
0.252 88259 0.02 0.03
0.351 101347 -0.01 0.03
0.449 100831 -0.03 0.03
0.549 90027 0.02 0.03
0.671 106434 0.01 0.03
0.819 70731 -0.05 0.03
1.052 77593 0.04 0.03
1.574 22153 -0.04 0.07

Table A.33: K+ asymmetries in PT binning

〈PT 〉 [GeV] Number of Events Asymmetry Error

0.154 38440 0 0.05
0.252 54457 -0.08 0.04
0.35 62675 0.04 0.04
0.449 61040 -0.02 0.04
0.549 54061 0 0.04
0.67 62916 0.02 0.04
0.819 41519 0 0.04
1.053 46023 0.09 0.04
1.578 13643 -0.03 0.08

Table A.34: K− asymmetries in PT binning

〈z〉 Number of Events Asymmetry Error

0.275 113359 0 0.03
0.325 113441 0.01 0.03
0.374 102611 -0.01 0.03
0.447 159221 -0.02 0.02
0.566 143600 0 0.02
0.714 62128 -0.01 0.03
0.869 24850 -0.05 0.05

Table A.35: K+ asymmetries in z binning
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〈z〉 Number of Events Asymmetry Error

0.275 82876 -0.02 0.04
0.325 78371 0.03 0.03
0.374 66796 0.03 0.04
0.446 95401 -0.05 0.03
0.563 77023 0.02 0.03
0.711 26278 0.07 0.05
0.865 8029 0.08 0.09

Table A.36: K− asymmetries in z binning
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A.1.3.2 All Hadrons

〈xBj〉 Number of Events Asymmetry Error

0.0065 271477 -0.06 0.03
0.0106 645537 -0.004 0.012
0.0164 937539 0.008 0.009
0.0256 1220507 -0.001 0.008
0.0397 959170 0.013 0.009
0.0625 622601 0.008 0.011
0.1005 374620 0.002 0.015
0.1608 179942 0.02 0.02
0.2814 68810 -0.01 0.04

Table A.37: π+ asymmetries in xBj binning

〈xBj〉 Number of Events Asymmetry Error

0.0065 265812 0.03 0.03
0.0106 606322 0.013 0.013
0.0164 844904 0.019 0.01
0.0255 1062497 -0.002 0.008
0.0396 809273 -0.012 0.01
0.0625 508454 0.015 0.012
0.1003 293522 0.002 0.016
0.1606 132972 0.01 0.03
0.2818 48831 0.01 0.05

Table A.38: π− asymmetries in xBj binning
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〈PT 〉 [GeV] Number of Events Asymmetry Error

0.155 606398 0.021 0.011
0.252 875289 0 0.01
0.35 955097 -0.005 0.009
0.448 838004 -0.003 0.01
0.547 651557 -0.004 0.011
0.668 640763 -0.004 0.011
0.817 348993 0.024 0.016
1.042 301295 0.026 0.017
1.55 62807 -0.04 0.04

Table A.39: π+ asymmetries in PT binning

〈PT 〉 [GeV] Number of Events Asymmetry Error

0.155 523662 -0.006 0.012
0.252 757068 -0.001 0.01
0.35 828375 -0.011 0.01
0.448 726528 0.014 0.011
0.547 565991 0.003 0.012
0.668 555322 0.014 0.012
0.817 300511 0.037 0.017
1.042 259899 0.014 0.019
1.552 55231 0.12 0.04

Table A.40: π− asymmetries in PT binning

〈z〉 Number of Events Asymmetry Error

0.224 1436744 0.001 0.008
0.274 1038609 -0.005 0.009
0.324 754822 0.001 0.011
0.374 546584 0.013 0.012
0.445 678115 0.009 0.011
0.564 482569 0.011 0.012
0.717 223383 -0.005 0.018
0.873 119377 -0.01 0.02

Table A.41: π+ asymmetries in z binning
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〈z〉 Number of Events Asymmetry Error

0.224 1303614 0.014 0.008
0.274 921384 0.014 0.01
0.324 653027 0 0.011
0.374 463590 -0.006 0.013
0.444 559433 -0.011 0.012
0.564 390265 0.009 0.014
0.717 180735 0.012 0.02
0.873 100539 -0.02 0.03

Table A.42: π− asymmetries in z binning

〈xBj〉 Number of Events Asymmetry Error

0.0065 72842 0.02 0.05
0.0105 158627 0 0.02
0.0163 187628 0 0.02
0.0253 187823 0.02 0.02
0.0398 134384 -0.02 0.02
0.0628 96867 -0.03 0.03
0.1006 62676 -0.02 0.04
0.1609 30826 -0.13 0.05
0.2897 13306 -0.06 0.08

Table A.43: K+ asymmetries in xBj binning

〈xBj〉 Number of Events Asymmetry Error

0.0064 61235 0.06 0.05
0.0105 125011 -0.02 0.03
0.0162 134722 0.01 0.03
0.0252 120860 0.03 0.03
0.0397 78010 0.02 0.03
0.0625 51302 -0.04 0.04
0.0999 28522 -0.08 0.05
0.1602 11824 -0.19 0.08
0.2882 4742 0.02 0.15

Table A.44: K− asymmetries in xBj binning
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〈PT 〉 [GeV] Number of Events Asymmetry Error

0.154 87499 -0.11 0.03
0.252 122630 0.03 0.03
0.35 138527 0 0.03
0.449 134383 -0.02 0.03
0.549 117352 0 0.03
0.67 135534 0.03 0.03
0.819 87941 -0.03 0.03
1.051 94718 0.02 0.03
1.57 26395 -0.04 0.06

Table A.45: K+ asymmetries in PT binning

〈PT 〉 [GeV] Number of Events Asymmetry Error

0.154 58895 -0.02 0.04
0.252 82550 -0.05 0.03
0.35 92673 0.04 0.03
0.449 87683 -0.02 0.03
0.549 76065 -0.01 0.03
0.67 86616 0.01 0.03
0.819 55565 0 0.04
1.051 59348 0.08 0.04
1.571 16833 -0.08 0.08

Table A.46: K− asymmetries in PT binning

〈z〉 Number of Events Asymmetry Error

0.225 155104 -0.01 0.03
0.275 147432 -0.01 0.03
0.324 131899 0 0.03
0.374 112572 0 0.03
0.446 167074 -0.01 0.02
0.566 143898 0 0.02
0.714 62146 -0.01 0.03
0.869 24854 -0.05 0.05

Table A.47: K+ asymmetries in z binning
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〈z〉 Number of Events Asymmetry Error

0.225 123840 -0.01 0.03
0.274 110237 -0.03 0.03
0.324 93156 0.03 0.03
0.374 74795 0.03 0.04
0.445 102583 -0.05 0.03
0.563 77289 0.02 0.03
0.711 26295 0.08 0.05
0.865 8033 0.08 0.09

Table A.48: K− asymmetries in z binning
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A.2 Two Hadron Asymmetries

A.2.1 All Two Hadron pairs

A.2.1.1 Binning

The asymmetries represent the product of a z and MInv-dependent fragmentation func-
tion and an x-dependent quark distribution function. The asymmetry is calculated
separately in bins over the range of xBj , z and Minv. The selected binning for the
identified pion-pion analysis in xBj , z and Minv is:

xBj

0 < xBj < 0.008
0.008 ≤ xBj < 0.013
0.013 ≤ xBj < 0.020
0.020 ≤ xBj < 0.032
0.032 ≤ xBj < 0.050
0.050 ≤ xBj < 0.080
0.080 ≤ xBj < 0.130
0.130 ≤ xBj < 0.210
0.210 ≤ xBj < 1.000

z

0.20 ≤ z < 0.30
0.30 ≤ z < 0.35
0.35 ≤ z < 0.40
0.40 ≤ z < 0.50
0.50 ≤ z < 0.65
0.65 ≤ z < 0.80
0.80 ≤ z < 0.90

MInv [Gev]

0.00 < MInv < 0.40
0.40 ≤ MInv < 0.50
0.50 ≤ MInv < 0.60
0.60 ≤ MInv < 0.70
0.70 ≤ MInv < 0.80
0.80 ≤ MInv < 0.90
0.90 ≤ MInv < 1.00
1.00 ≤ MInv < 1.10
1.10 ≤ MInv < 1.20
1.20 ≤ MInv < 1.30
1.30 ≤ MInv < 1.40
1.40 ≤ MInv < 1.50
1.50 ≤ MInv < 1.60
1.60 ≤ MInv < 1.80
2.00 ≤ MInv <∞

Because models for H^
1 are sensitive to the shape of the dependence on the invariant

mass, the binning in MInv is choosen finer than for the other kinematic dependencies.
For example the model by Jaffe and collaborators predicts a change of sign for the
asymmetry. For pion-kaon and kaon-pion analysis a different z and Minv binning was
choosen due to the higher invariant mass and the higher relative hadron momentum
sum z. choosen:
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z

0.00 ≤ z < 0.35
0.35 ≤ z < 0.40
0.40 ≤ z < 0.50
0.50 ≤ z < 0.65
0.65 ≤ z < 0.80
0.80 ≤ z < 0.90

MInv [GeV]

0.00 ≤ MInv < 0.70
0.70 ≤ MInv < 0.80
0.80 ≤ MInv < 0.90
0.90 ≤ MInv < 1.00
1.00 ≤ MInv < 1.10
1.10 ≤ MInv < 1.20
1.20 ≤ MInv < 1.30
1.30 ≤ MInv < 1.40
1.40 ≤ MInv < 1.50
1.50 ≤ MInv < 1.60
1.60 ≤ MInv < 1.80
1.80 ≤ MInv < 2.00
2.00 ≤ MInv <∞

For the kaon-kaon analysis the corresponding z and Minv binning is:

z

0.20 ≤ z < 0.40
0.40 ≤ z < 0.50
0.50 ≤ z < 0.60
0.60 ≤ z < 0.70
0.70 ≤ z < 0.80
0.80 ≤ z < 0.90

MInv [GeV]

0.00 ≤ MInv < 1.10
1.10 ≤ MInv < 1.20
1.20 ≤ MInv < 1.30
1.30 ≤ MInv < 1.40
1.40 ≤ MInv < 1.50
1.50 ≤ MInv < 1.60
1.60 ≤ MInv < 1.80
1.80 ≤ MInv < 2.20
2.20 ≤ MInv <∞
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A.2.1.2 Asymmetries

〈xBj〉 Number of Events Asymmetry Error

0.0065 252029 -0.02 0.03
0.0106 590365 0.011 0.013
0.0164 780868 -0.03 0.01
0.0253 847815 0.004 0.01
0.0396 568096 0.005 0.012
0.0625 364587 0.026 0.015

0.1 207139 0.04 0.02
0.1602 86304 -0.03 0.04
0.2833 32355 -0.08 0.06

Table A.49: All π+/π− pairs asymmetries in xBj binning

〈z〉 Number of Events Asymmetry Error

0.238 100344 0.03 0.03
0.277 431522 -0.014 0.015
0.325 568722 0.017 0.013
0.375 557233 -0.003 0.013
0.447 892495 -0.008 0.01
0.565 761570 -0.003 0.011
0.714 319335 0.008 0.016
0.846 98337 0.01 0.03

Table A.50: All π+/π− pairs asymmetries in z binning
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〈MInv〉 [GeV] Number of Events Asymmetry Error

0.354 539823 0.005 0.013
0.45 617925 0.004 0.012
0.549 578257 -0.009 0.012
0.649 499303 0.017 0.013
0.749 502309 -0.012 0.014
0.846 332048 -0.016 0.017
0.947 217930 -0.02 0.02
1.046 136909 0.01 0.03
1.147 95578 -0.01 0.03
1.247 70277 0.04 0.04
1.346 45671 0 0.05
1.446 28885 -0.02 0.06
1.547 18928 0.03 0.07
1.687 22936 0.01 0.07
2.112 22779 -0.02 0.07

Table A.51: All π+/π− pairs asymmetries in MInv binning

〈xBj〉 Number of Events Asymmetry Error

0.0064 31588 0 0.08
0.0104 54821 -0.05 0.05
0.0161 51291 0.02 0.04
0.0251 41454 -0.04 0.05
0.0397 25848 -0.04 0.06
0.0624 17168 -0.05 0.07
0.0995 9690 0.13 0.09
0.16 3916 0.26 0.16

0.2906 1706 0.1 0.2

Table A.52: All π+/K− pairs asymmetries in xBj binning
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〈z〉 Number of Events Asymmetry Error

0.306 44487 0.06 0.06
0.375 32135 0.06 0.06
0.449 62442 -0.02 0.04
0.567 62475 -0.02 0.04
0.714 28112 -0.13 0.05
0.844 7831 -0.08 0.1

Table A.53: All π+/K− pairs asymmetries in z binning

〈MInv〉 [GeV] Number of Events Asymmetry Error

0.752 42202 -0.06 0.05
0.854 52676 -0.01 0.05
0.944 42154 0.02 0.05
1.047 25974 0.08 0.06
1.147 18019 0.12 0.07
1.247 12972 -0.03 0.09
1.349 9563 -0.3 0.1
1.447 7224 -0.13 0.11
1.547 4545 0 0.15
1.688 5243 -0.19 0.13
2.113 5887 -0.15 0.15

Table A.54: All π+/K− pairs asymmetries in MInv binning

〈xBj〉 Number of Events Asymmetry Error

0.0064 36222 0.03 0.07
0.0104 64212 0.01 0.04
0.0162 63935 -0.06 0.04
0.0252 53631 -0.01 0.04
0.0398 35223 0.04 0.05
0.0628 25042 0.04 0.06
0.1003 15353 -0.02 0.07
0.161 6986 -0.11 0.12
0.2884 3032 -0.51 0.19

Table A.55: All K+/π− pairs asymmetries in xBj binning
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〈z〉 Number of Events Asymmetry Error

0.307 49313 -0.05 0.05
0.376 38254 0.03 0.06
0.449 78214 0.04 0.04
0.568 84946 -0.04 0.03
0.714 41062 0 0.04
0.844 11847 -0.1 0.07

Table A.56: All K+/π− pairs asymmetries in z binning

〈MInv〉 [GeV] Number of Events Asymmetry Error

0.752 51385 -0.01 0.04
0.855 66565 0.02 0.04
0.944 53926 -0.09 0.04
1.047 33367 0.03 0.06
1.147 23304 -0.03 0.07
1.247 16960 0.17 0.08
1.348 12777 -0.08 0.09
1.446 9705 0.04 0.1
1.546 6012 -0.03 0.12
1.688 7095 0.1 0.13
2.117 7897 0.08 0.11

Table A.57: All K+/π− pairs asymmetries in MInv binning

〈xBj〉 Number of Events Asymmetry Error

0.0089 32193 -0.01 0.07
0.0161 17479 0.06 0.08
0.0252 13471 0.03 0.09
0.0399 9058 -0.03 0.1
0.0627 6769 0.02 0.12
0.1005 4113 0.06 0.14
0.2074 3154 0.39 0.18

Table A.58: All K+/K− pairs asymmetries in xBj binning
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〈z〉 Number of Events Asymmetry Error

0.343 16288 0.05 0.1
0.45 18814 -0.02 0.08
0.549 18598 0.28 0.08
0.648 15026 -0.15 0.08
0.747 10411 -0.07 0.09
0.847 7100 0.08 0.11

Table A.59: All K+/K− pairs asymmetries in z binning

〈MInv〉 [GeV] Number of Events Asymmetry Error

1.041 25859 -0.02 0.07
1.148 15535 -0.02 0.08
1.249 12224 0.22 0.1
1.347 8947 0.06 0.1
1.448 6357 0.1 0.13
1.547 4929 0.01 0.15
1.685 5941 0.1 0.13
1.961 4444 -0.01 0.16
2.559 2001 -0.3 0.2

Table A.60: All K+/K− pairs asymmetries in MInv binning
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A.2.2 Leading Two Hadron Asymmetries

A.2.2.1 Binning

If only pairs of leading and subleading hadron in an event are considered, the statistics
is considerably lower. Therefore the binning for this analysis is choosen in the following
way for the π−π combinations:

xBj

0 < xBj < 0.008
0.008 ≤ xBj < 0.013
0.013 ≤ xBj < 0.020
0.020 ≤ xBj < 0.032
0.032 ≤ xBj < 0.050
0.050 ≤ xBj < 0.080
0.080 ≤ xBj < 0.130
0.130 ≤ xBj < 0.210
0.210 ≤ xBj < 1.000

z

0.25 ≤ z < 0.35
0.35 ≤ z < 0.40
0.40 ≤ z < 0.50
0.50 ≤ z < 0.65
0.65 ≤ z < 0.80
0.80 ≤ z < 0.90

MInv

0.00 ≤ MInv < 0.40
0.40 ≤ MInv < 0.50
0.50 ≤ MInv < 0.60
0.60 ≤ MInv < 0.70
0.70 ≤ MInv < 0.80
0.80 ≤ MInv < 0.90
0.90 ≤ MInv < 1.00
1.00 ≤ MInv < 1.10
1.10 ≤ MInv < 1.20
1.20 ≤ MInv < 1.30
1.30 ≤ MInv < 1.40
1.40 ≤ MInv < 1.50
1.50 ≤ MInv < 1.60
1.60 ≤ MInv < 2.00
2.00 ≤ MInv <∞

For π-kaon and kaon-π analysis the binning is:

xBj

0 < xBj < 0.008
0.008 ≤ xBj < 0.013
0.013 ≤ xBj < 0.020
0.020 ≤ xBj < 0.032
0.210 ≤ xBj < 1.000

z

0.25 ≤ z < 0.35
0.35 ≤ z < 0.40
0.40 ≤ z < 0.50
0.50 ≤ z < 0.65
0.65 ≤ z < 0.80
0.80 ≤ z < 0.90

MInv

0.70 ≤ MInv < 0.80
0.80 ≤ MInv < 0.90
0.90 ≤ MInv < 1.00
1.00 ≤ MInv < 1.10
1.10 ≤ MInv < 1.20
1.20 ≤ MInv < 1.30
1.30 ≤ MInv < 1.40
1.40 ≤ MInv < 1.50
1.50 ≤ MInv < 1.60
1.60 ≤ MInv < 1.80
1.80 ≤ MInv <∞

For the kaon-kaon analysis, the statistics is sufficient only to compute a single asym-
metry for each combination, shown in table A.97 for each charge combination.
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A.2.2.2 Asymmetries

〈xBj〉 Number of Events Asymmetry Error

0.0065 67058 -0.05 0.05
0.0106 161130 -0.01 0.02
0.0164 221863 -0.029 0.019
0.0254 256401 -0.008 0.018
0.0396 178128 0.01 0.02
0.0625 113778 0.04 0.03
0.1001 65524 0.09 0.04
0.16 27500 -0.06 0.06

0.2812 9712 0.08 0.1

Table A.61: Leading π+/π− pairs asymmetries in xBj binning

〈z〉 Number of Events Asymmetry Error

0.278 74164 -0.03 0.04
0.326 120038 -0.01 0.03
0.375 140633 -0.02 0.03
0.449 274447 -0.012 0.018
0.568 295908 0.017 0.017
0.715 147572 0.01 0.02
0.846 48332 -0.01 0.04

Table A.62: Leading π+/π− pairs asymmetries in z binning
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〈MInv〉 [GeV] Number of Events Asymmetry Error

0.354 144438 0.02 0.02
0.451 169954 -0.01 0.02
0.549 162439 0 0.02
0.65 142696 0 0.02
0.75 149476 -0.01 0.02
0.846 103285 0 0.03
0.947 70318 -0.02 0.04
1.047 46188 0.02 0.05
1.148 33017 0.01 0.05
1.247 25329 0.07 0.06
1.346 17061 0.07 0.08
1.446 10931 -0.16 0.09
1.547 7272 -0.08 0.11
1.755 13692 -0.17 0.09
2.332 4998 0.01 0.15

Table A.63: Leading π+/π− pairs asymmetries in MInv binning

〈xBj〉 Number of Events Asymmetry Error

0.0064 7230 -0.29 0.15
0.0103 11016 -0.07 0.1
0.016 8702 0.22 0.1
0.025 6178 -0.08 0.12
0.0733 8908 -0.04 0.09

Table A.64: Leading π+/K− pairs asymmetries in xBj binning

〈z〉 Number of Events Asymmetry Error

0.312 5549 -0.09 0.17
0.376 4911 0.02 0.16
0.45 10972 -0.02 0.1
0.569 12741 -0.1 0.08
0.74 7861 0.02 0.1

Table A.65: Leading π+/K− pairs asymmetries in z binning



168 A. Appendix

〈MInv〉 [GeV] Number of Events Asymmetry Error

0.776 2638 -0.08 0.16
0.856 9279 0.03 0.11
0.945 8216 0.07 0.11
1.048 5834 -0.09 0.12
1.147 4204 -0.1 0.15
1.247 3125 -0.18 0.16
1.349 2334 -0.1 0.2
1.447 1802 -0.1 0.2
1.547 1228 0 0.3
1.688 1476 0.3 0.2
2.136 1898 -0.1 0.2

Table A.66: Leading π+/K− pairs asymmetries in MInv binning

〈xBj〉 Number of Events Asymmetry Error

0.0065 13680 0.12 0.12
0.0105 28490 -0.04 0.06
0.0163 33048 -0.09 0.05
0.0252 30394 -0.06 0.05
0.075 48278 0 0.04

Table A.67: Leading K+/π− pairs asymmetries in xBj binning

〈z〉 Number of Events Asymmetry Error

0.312 14554 -0.03 0.09
0.376 14452 -0.02 0.09
0.451 36039 0.01 0.05
0.571 50152 -0.09 0.04
0.746 38693 -0.01 0.04

Table A.68: Leading K+/π− pairs asymmetries in z binning
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〈MInv〉 [GeV] Number of Events Asymmetry Error

0.75 29650 -0.09 0.05
0.854 32355 0.02 0.05
0.943 25621 -0.12 0.06
1.047 15916 0.06 0.07
1.147 11170 -0.02 0.09
1.248 8376 0.03 0.1
1.348 6416 -0.05 0.13
1.445 4884 -0.03 0.14
1.547 3011 -0.3 0.14
1.688 3550 -0.09 0.16
2.114 3844 0.12 0.15

Table A.69: Leading K+/π− pairs asymmetries in MInv binning

〈xBj〉 Number of Events Asymmetry Error

0.0065 68434 -0.02 0.05
0.0106 162250 -0.02 0.02
0.0164 217815 0.03 0.019
0.0254 249273 0.02 0.018
0.0396 172063 -0.03 0.02
0.0625 108669 -0.01 0.03
0.1001 61283 0.05 0.04
0.16 25760 0.08 0.06

0.2804 9151 -0.03 0.1

Table A.70: Leading π−/π+ pairs asymmetries in xBj binning

〈z〉 Number of Events Asymmetry Error

0.278 73670 0.04 0.04
0.326 118132 -0.01 0.03
0.375 136730 0.03 0.03
0.449 267739 0.009 0.018
0.568 284609 0.008 0.017
0.715 145238 -0.01 0.02
0.847 48580 -0.03 0.04

Table A.71: Leading π−/π+ pairs asymmetries in z binning
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〈MInv〉 [GeV] Number of Events Asymmetry Error

0.354 139429 0.03 0.02
0.451 164963 0.01 0.02
0.549 158365 0.01 0.02
0.65 139526 -0.02 0.02
0.75 148663 0.01 0.02
0.846 101523 0.04 0.03
0.947 68839 0.06 0.04
1.047 44589 -0.04 0.05
1.148 32508 0.01 0.05
1.247 24349 0 0.06
1.346 16149 -0.01 0.08
1.447 10627 -0.15 0.1
1.547 7074 -0.22 0.11
1.756 13234 -0.03 0.08
2.339 4860 -0.1 0.16

Table A.72: Leading π−/π+ pairs asymmetries in MInv binning

〈xBj〉 Number of Events Asymmetry Error

0.0064 8537 -0.26 0.14
0.0104 13153 -0.05 0.09
0.0161 10378 0.04 0.1
0.0251 7587 -0.1 0.11
0.077 11906 -0.06 0.09

Table A.73: Leading π−/K+ pairs asymmetries in xBj binning
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〈z〉 Number of Events Asymmetry Error

0.312 6106 0.06 0.15
0.376 5646 -0.11 0.15
0.45 13001 -0.27 0.1
0.57 15971 -0.07 0.08
0.744 10837 0.19 0.09

Table A.74: Leading π−/K+ pairs asymmetries in z binning
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〈MInv〉 [GeV] Number of Events Asymmetry Error

0.776 2905 0.06 0.16
0.857 10894 0.01 0.1
0.944 10185 -0.02 0.11
1.048 6933 0.02 0.14
1.148 5210 0.11 0.14
1.247 3785 -0.46 0.16
1.349 3002 -0.02 0.18
1.447 2397 -0.17 0.18
1.547 1573 0 0.2
1.687 2000 -0.1 0.2
2.148 2677 -0.49 0.19

Table A.75: Leading π−/K+ pairs asymmetries in MInv [GeV]binning

〈xBj〉 Number of Events Asymmetry Error

0.0065 11759 0.05 0.12
0.0105 23788 0.09 0.07
0.0162 25544 0.01 0.06
0.0252 22304 0.06 0.06
0.0695 30388 0.08 0.05

Table A.76: Leading K−/π+ pairs asymmetries in xBj binning
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〈z〉 Number of Events Asymmetry Error

0.311 12654 -0.04 0.11
0.376 11829 0.07 0.09
0.451 28102 0.08 0.06
0.569 35431 -0.01 0.05
0.746 25767 0.15 0.06

Table A.77: Leading K−/π+ pairs asymmetries in z binning
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〈MInv〉 [GeV] Number of Events Asymmetry Error

0.75 23016 0.09 0.06
0.854 23891 0.03 0.06
0.944 18820 0.07 0.07
1.046 11546 -0.05 0.09
1.148 8270 -0.15 0.11
1.248 6042 -0.05 0.12
1.348 4483 0.22 0.13
1.446 3448 0.15 0.14
1.547 2177 0.11 0.18
1.687 2560 0.68 0.14
2.119 2901 0.42 0.2

Table A.78: Leading K−/π+ pairs asymmetries in MInv binning

〈xBj〉 Number of Events Asymmetry Error

0.0065 37473 0.03 0.07
0.0106 90643 0.04 0.03
0.0164 124180 -0.01 0.03
0.0254 142274 -0.01 0.02
0.0397 101194 -0.01 0.03
0.0626 67667 0.07 0.03
0.1004 41139 0 0.05
0.1605 18787 -0.1 0.07
0.28 6862 0.06 0.13

Table A.79: Leading π+/π+ pairs asymmetries in xBj binning
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〈z〉 Number of Events Asymmetry Error

0.278 52284 0.02 0.04
0.326 80739 0.03 0.03
0.375 90497 -0.03 0.03
0.448 167206 0 0.02
0.566 160425 0.02 0.02
0.711 65262 0.03 0.03
0.84 13806 0.03 0.07

Table A.80: Leading π+/π+ pairs asymmetries in z binning
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〈MInv〉 [GeV] Number of Events Asymmetry Error

0.352 109010 0.02 0.03
0.449 109023 0.02 0.03
0.549 98538 0.05 0.03
0.648 83660 -0.04 0.03
0.748 65090 -0.04 0.04
0.848 48498 -0.03 0.04
0.947 35211 0.01 0.05
1.047 24918 -0.02 0.06
1.147 17057 -0.04 0.07
1.247 11722 0.04 0.09
1.347 8173 0.14 0.1
1.447 5639 0.15 0.11
1.547 3886 -0.02 0.15
1.755 7091 0.12 0.12
2.358 2703 0.08 0.19

Table A.81: Leading π+/π+ pairs asymmetries in MInv binning

〈xBj〉 Number of Events Asymmetry Error

0.0064 4981 0.12 0.17
0.0104 7719 0.26 0.12
0.016 6324 0.15 0.12
0.0251 4606 -0.02 0.13
0.0802 8374 -0.19 0.1

Table A.82: Leading π+/K+ pairs asymmetries in xBj binning
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〈z〉 Number of Events Asymmetry Error

0.313 4132 -0.01 0.18
0.376 3758 0.16 0.18
0.45 8504 0.21 0.12
0.569 9996 0.04 0.09
0.733 5614 0.04 0.13

Table A.83: Leading π+/K+ pairs asymmetries in z binning

〈MInv〉 [GeV] Number of Events Asymmetry Error

0.776 2335 -0.4 0.18
0.85 6368 0.09 0.12
0.948 5787 0.28 0.13
1.047 4687 0.18 0.15
1.147 3368 -0.23 0.15
1.247 2511 -0.07 0.18
1.347 1723 -0.2 0.2
1.447 1258 0.3 0.2
1.546 956 -0.1 0.3
1.69 1337 0.1 0.2
2.167 1674 0.2 0.2

Table A.84: Leading π+/K+ pairs asymmetries in MInv binning

〈xBj〉 Number of Events Asymmetry Error

0.0064 8155 -0.43 0.14
0.0105 16819 -0.09 0.08
0.0162 18591 0.08 0.07
0.0252 16604 0.11 0.07
0.0781 28131 0.04 0.05

Table A.85: Leading K+/π+ pairs asymmetries in xBj binning
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〈z〉 Number of Events Asymmetry Error

0.312 10027 0.13 0.11
0.376 9459 0.04 0.1
0.451 22899 -0.02 0.06
0.569 28820 0.04 0.05
0.735 17095 -0.04 0.07

Table A.86: Leading K+/π+ pairs asymmetries in z binning

〈MInv〉 [GeV] Number of Events Asymmetry Error

0.75 20208 -0.08 0.07
0.848 16626 -0.01 0.08
0.948 12840 0.18 0.08
1.048 9655 0.05 0.09
1.147 7013 -0.02 0.11
1.247 4712 -0.04 0.14
1.347 3269 0.14 0.15
1.446 2296 0.05 0.18
1.547 1634 -0.2 0.2
1.69 1924 0.2 0.2
2.142 2206 0.1 0.2

Table A.87: Leading K+/π+ pairs asymmetries in MInv binning

〈xBj〉 Number of Events Asymmetry Error

0.0065 35829 0 0.07
0.0105 79514 0 0.04
0.0163 101954 0.05 0.03
0.0253 110028 0.01 0.03
0.0397 74982 0.02 0.03
0.0626 48026 -0.05 0.04

0.1 26851 0.11 0.05
0.1597 11075 -0.19 0.09
0.28 3827 -0.04 0.15

Table A.88: Leading π−/π− pairs asymmetries in xBj binning
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〈z〉 Number of Events Asymmetry Error

0.278 45211 -0.07 0.05
0.326 67555 -0.04 0.04
0.375 74201 0.06 0.03
0.448 130925 0.01 0.03
0.565 118141 0.04 0.03
0.711 46358 0 0.04
0.84 9695 0.01 0.08

Table A.89: Leading π−/π− pairs asymmetries in z binning

〈MInv〉 [GeV] Number of Events Asymmetry Error

0.351 86254 -0.03 0.03
0.449 85698 0 0.03
0.549 76042 0.01 0.03
0.648 64154 -0.03 0.04
0.748 50313 0.01 0.04
0.847 37932 0.06 0.05
0.948 27469 0.04 0.06
1.047 19343 -0.01 0.07
1.147 13399 0.14 0.08
1.247 9283 0.27 0.1
1.347 6428 0.06 0.13
1.447 4518 0.14 0.13
1.547 3105 0.02 0.16
1.758 5798 -0.01 0.13
2.35 2350 0.3 0.2

Table A.90: Leading π−/π− pairs asymmetries in MInv binning

〈xBj〉 Number of Events Asymmetry Error

0.0064 3985 -0.1 0.2
0.0103 5678 0.03 0.15
0.016 4196 0.03 0.14
0.0251 2912 0 0.2
0.069 3867 -0.12 0.15

Table A.91: Leading π−/K− pairs asymmetries in xBj binning
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〈z〉 Number of Events Asymmetry Error

0.311 3381 0.36 0.19
0.375 2823 0.09 0.19
0.45 5772 0.03 0.16
0.567 6073 -0.13 0.12
0.727 2589 -0.09 0.18

Table A.92: Leading π−/K− pairs asymmetries in z binning

〈MInv〉 [GeV] Number of Events Asymmetry Error

0.776 1577 -0.1 0.2
0.85 4170 -0.09 0.16
0.949 3807 0.09 0.16
1.047 3007 0.01 0.17
1.146 2167 -0.36 0.2
1.246 1608 0.1 0.3
1.348 1063 -0.3 0.3
1.444 768 -0.1 0.2
1.547 597 -1.7 0.4
1.691 796 0.2 0.3
2.17 1078 0.1 0.3

Table A.93: Leading π−/K− pairs asymmetries in MInv binning

〈xBj〉 Number of Events Asymmetry Error

0.0064 6604 0.06 0.16
0.0105 11710 -0.03 0.09
0.0162 11445 0.14 0.09
0.0251 9235 -0.07 0.09
0.0682 12050 0 0.08

Table A.94: Leading K−/π− pairs asymmetries in xBj binning
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〈z〉 Number of Events Asymmetry Error

0.311 7416 -0.14 0.13
0.376 6472 0.1 0.13
0.449 14069 0.03 0.08
0.566 15310 0.12 0.08
0.731 7777 -0.06 0.09

Table A.95: Leading K−/π− pairs asymmetries in z binning

〈MInv〉 [GeV] Number of Events Asymmetry Error

0.75 11729 0.12 0.09
0.848 9632 0.04 0.09
0.948 7369 0.11 0.11
1.047 5577 0.08 0.13
1.147 3887 0.04 0.14
1.248 2861 -0.03 0.2
1.348 1898 -0.11 0.17
1.447 1376 0.25 0.19
1.547 907 0.2 0.3
1.69 1262 -0.47 0.19
2.141 1390 0.3 0.2

Table A.96: Leading K−/π− pairs asymmetries in MInv binning

Charge Combination 〈xBj〉 〈z〉 〈MInv〉 [GeV] Number of Events Asymmetry Error

-/+ 0.0314 0.586 1.312 32450 -0.09 0.06
+/- 0.0336 0.588 1.321 35549 0.03 0.06
+/+ 0.0312 0.518 1.347 5857 0.25 0.14
-/- 0.022 0.489 1.329 3042 0.43 0.18

Table A.97: Asymmetries for leading kaon pairs



182 A. Appendix



List of Figures

2.1 Deep Inelastic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Coordinate System for the one hadron asymmetries . . . . . . . . . . . . 5

2.3 Kinematic regimes in lepton-nucleon scattering . . . . . . . . . . . . . . 7

2.4 Illustration of the Optical Theorem . . . . . . . . . . . . . . . . . . . . . 9

2.5 Handbag diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Symbolic denotation of the spin averaged SIDIS hadronic tensor . . . . 20

2.7 Illustration of the Collins mechanism . . . . . . . . . . . . . . . . . . . . 22

2.8 Illustration of the Sivers effect . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9 Definition of the angle θ in the center of mass system of the hadron pair 25

2.10 Phase shifts from p-wave resonances and non-resonant s-wave background 27

2.11 Diagrams considered in the predictions for H^,sp
1,ut . . . . . . . . . . . . . 27

2.12 Predictions for H^
1 for a deuterium target . . . . . . . . . . . . . . . . . 28

2.13 Predictions for H^
1 for a proton target . . . . . . . . . . . . . . . . . . . 29

2.14 Distribution of the kinematic factor γ . . . . . . . . . . . . . . . . . . . 31

2.15 Coordinate System for the two hadron asymmetries . . . . . . . . . . . 32

3.1 COMPASS setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 zh Distributions for correctly and incorrectly identified leading hadrons 42

4.2 Correlation between energy measured in HCAL1 and momentum mea-
sured in the spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Correlation between energy measured in HCAL2 and momentum mea-
sured in the spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Q2 vs. xBj distribution of the all one hadron sample . . . . . . . . . . . 45

4.5 PT spectrum of the all one hadron sample . . . . . . . . . . . . . . . . . 45



184 List of Figures

4.6 y spectrum of the all one hadron sample . . . . . . . . . . . . . . . . . . 46

4.7 z spectrum of the all one hadron sample . . . . . . . . . . . . . . . . . . 46

4.8 Distribution of sum of z of the hadron pair before z1 + z2 cut . . . . . . 47

4.9 RT spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.10 Invariant mass spectrum of the two hadron analysis for different particle
combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.11 Dcos(Φh+ΦS) spectrum of the all one hadron sample . . . . . . . . . . . . 49

4.12 Dcos(Φh+ΦS) Vs. xBj distribution of the all one hadron sample . . . . . . 49

4.13 sin2(θ) spectrum for different particle combinations . . . . . . . . . . . . 50

4.14 Feynman diagrams contributing to the Born and radiative corrected
cross-sections in lepton-nucleon scattering . . . . . . . . . . . . . . . . . 55

4.15 Comparison of data and Monte Carlo for values important to the PID . 56

4.16 CORAL reconstruction scheme . . . . . . . . . . . . . . . . . . . . . . . 59
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ment. Ph.d. thesis, Università degli studi di Trieste, 2001.

[67] V. Alexakhin et al. Vertex reconstruction in the COMPASS spectrometer. Part I.
Monte Carlo studies. December 2001, COMPASS-note 2001-17.

[68] A. Bressan. Origin and cure of the peak in y. April 2007, COMPASS-note 2006-13.

[69] B. Andersson. The Lund Model. Cambridge University Press, 1998. Contributor
T. Ericson, P.Y. Landshoff, ISBN 0521420946.

[70] H. L. Lai et al. Global QCD analysis of parton structure of the nucleon: CTEQ5
parton distributions. The European Physical Journal C - Particles and Fields,
12(3), 2000.

[71] G. Ingelman, A. Edin, and J. Rathsman. LEPTO 6.5 A Monte - Carlo generator
for Deep Inelastic Lepton Nucleon Scattering.

[72] G. Ingelman, A. Edin, and J. Rathsman. lepto web page http: // www. isv. uu.

se/ thep/ MC/ lepto/ .

[73] T. Sjostrand et al. Pythia 6.3, physics and manual. Journal of High Energy
Physics, 0605:026, 2006. arXiv:0308153 [hep-ex].
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