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Chapter 1

Introduction

Deep-inelastic scattering of leptons from nucleons has revealed most of what we know about
the nucleon structure in terms of quarks and gluons. It played a key rôle in establishing
the existence of quarks and in the development of Quantum Chromodymamics (QCD). In
the late 1960’s scaling of the structure functions in terms of ω = 1/x was found [1, 2] in
the scattering experiments at the 20 GeV electron beam at SLAC. The scaling behaviour
had been predicted by Bjorken [3] in the limit of infinite momentum transfers, but it
came as a surprise at momentum transfers of a few GeV2. The observation of scaling
revealed the existence of point-like constituents in the nucleon, the partons, and thus
gave real existence to the quarks. Quarks had been postulated in 1964 by Gell–Mann
and by Zweig [4] based on the symmetries observed in the hadron spectrum. Scaling is
easily understood in the quark parton model devised by Feynman [5]. It describes the
nucleon as a stream of point-like spin-12 partons, which as far as the scattering process
is concerned behave like free particles. The nucleon scattering cross section is then the
incoherent sum of the parton cross sections. The nucleon structure is parametrised by the
parton distribution functions, q(x), which are related to the probability to find a parton
of a certain type carrying the faction, x, of the nucleon’s momentum. Subsequently, deep-
inelastic scattering experiments showed that the longitudinal-to-transverse cross section
ratio, R, is small as expected for spin-12 particles. Experiments with (anti)neutrino beams
confirmed that the nucleon contains three valence quarks and that the difference of up
and down valence quarks in the proton is one. Finally, combining data from charged-
lepton and neutrino scattering experiments the averaged square charge of up and down
quarks was determined to be in good agreement with the expected value of 5/18. Thus an
overwhelming evidence was collected that the charged partons and the quarks are identical.

With the development of QCD in 1973 [6] the asymptotic freedom of the partons
could be understood. In QCD logarithmic scaling violations in the structure functions are
predicted due to gluon radiation [7]. These have been mapped out with high precision
at the high energetic electron, muon, and neutrino beams of SLAC, CERN, and FNAL.
From these measurements the momentum distribution of the gluons in the nucleon could
be determined. Recently, the measurements were extended to the very small-x region at
the HERA electron-proton collider. The fractions of the nucleon’s momentum carried by
the gluons and by the quarks consistently add up to unity. Both carry roughly 50 % of
the nucleon’s momentum.

The history of deep-inelastic scattering is full of surprises starting with the discovery of
scaling. The classical EMC effect [8] tells us that even at high momentum transfers bound
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nucleons are quite different from free nucleons. Later the European Muon Collaboration
(EMC) discovered the violation of the Ellis–Jaffe sum rule [9], which implies that the
nucleon spin is not primarily carried by the quark spins. Finally the violation of the
Gottfried sum rule [10] taught us that the light quark sea is not flavour symmetric.

Polarised deep-inelastic scattering experiments began at SLAC shortly after the dis-
covery of scaling. They started in 1972 with the Yale-SLAC experiment E-80 [11] and con-
tinued with the E-130 experiment [12,13]. From the beginning the Bjorken sum rule [14],
which was derived already in 1966, was one of the main objectives of the experiments [15].
However, the proposed deuteron experiments where never carried out. The proton results
were consistent with quark-model predictions for the asymmetry and with the Ellis–Jaffe
sum rule [16] derived in 1974 “to give the experiments something to shoot at”. The SLAC
experiments were limited to the kinematic range 0.1 < x. In 1984/85 the EMC proton
experiments at the 200 GeV CERN muon beam extended the kinematic range down to
0.01 < x. The surprising result [9,17] announced in 1987 was that the Ellis–Jaffe sum rule
is violated with the implication that only (12 ± 16) % of the nucleon’s spin is carried by
the quark spins (Fig. 1.1). Now it had become inevitable to test the Bjorken sum rule,
which Bjorken initially dismissed as “worthless relation” because it is so hard to access
experimentally.

The EMC result triggered a new round of experiments by the Spin Muon Collaboration
(SMC) at CERN [18–22], by the E-142 [23] and E-143 [24–27] collaborations at SLAC,
and by the HERMES collaboration [28] at DESY. Also an enormous theoretical effort was
made to understand the implications of this measurement. It lead to new insight in the rôle
of the axial anomaly and demonstrated again that “spin is an essential complication” [29].
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This work originated in the Spin Muon Collaboration, of which I am a member since
its beginnings in 1988. Many ideas arising from the discussions within the collaboration
found the way into this paper, which is organised as follows. After this introduction a
summary of some theoretical aspects is given in Chapter 2. In Chapters 3 and 4 the
experiments and data analysis of the SMC are discussed in some detail. The discussion of
the physics implications of the SMC results is defered to the following chapter. A review
of the present status of spin structure functions, including the results from the SLAC
experiments and recent developments in theory is presented in Chapter 5. The main goals
of the present experiments are now achieved and further progress in the understanding
of the nucleon’s spin structure requires a direct measurement of the gluon polarisation.
The prospects of two such projects, the COMPASS experiment at CERN and a polarised
proton beam at HERA, are discussed in the last chapter before we conclude.



Chapter 2

Review of some theoretical aspects

Many good reviews and lectures on deep-inelastic scattering and structure functions exist
[30–34]. Also many text books treat this subject in some detail, e.g. [35–38]. The probably
most comprehensive text is the book of R. G. Roberts [39] which is entirely dedicated to
this topic. In this chapter only a summary of the essential points is given.

2.1 Kinematics

In a typical fixed-target deep-inelastic scattering experiment a lepton of energy E scatters
from a nucleon or nuclear target at rest under an angle ϑ and with a final energy E′. The
target remnants are not observed. Three Lorentz invariants can be constructed from these
laboratory variables and the target nucleon’s momentum P = (M, 0, 0, 0),

q2 = (k − k′)2
lab
= −4EE′ sin2

ϑ

2
, (2.1)

P · q lab= Mν =M(E − E′), (2.2)

P · k lab
= ME, (2.3)

where k and k′ are respectively the four-momenta of the incoming and scattered lepton and
M is the nucleon’s mass. In Eq. 2.1 the lepton mass was neglected as it will be throughout
this paper. The cross section can then be written as a function of the dimensionless scaling
variables 0 ≤ x, y ≤ 1,

x =
−q2
2P · q

lab
=

Q2

2Mν
, (2.4)

y =
P · q
P · k

lab
=

ν

E
. (2.5)

This choice of variables is particularly well suited to perform the deep-inelastic limit
(Bjorken limit), where both the momentum transfer, Q2 = −q2 > 0, and the energy
transfer, ν, go to infinity keeping their ratio, x, constant. Other characteristic variables
of the scattering process are the centre-of-mass (c.m.) energy,

√
s, and the c.m. energy of

the hadronic final state, W ,

s = (k + P )2 =
Q2

xy
+M2, (2.6)

4
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Figure 2.1: Schematic view of the deep-inelastic scattering process.

W 2 = (q + P )2 =
1− x

x
Q2 +M2. (2.7)

For our experiments with 190 GeV muons the c.m. energy is
√
s = 19 GeV and W

ranges from 18 GeV at x = 0.003 to W = 5–15 GeV at x = 0.7. Thus the region of
nucleon resonances, W ≤ 2.5 GeV, is well outside the entire kinematic range of the SMC
experiment.

2.2 The deep-inelastic cross section

At the momentum transfers of the SMC experiment Z exchange can safely be neglected
and in the following we therefore shall only consider photon exchange (Fig. 2.1). The
Born cross section for inclusive inelastic scattering of a charged lepton from a nucleon
ℓN → ℓ′X, can be expressed as a product of a leptonic tensor, lµν , and a hadronic tensor,
W µν ,

d3σ

dxdy dϕ
=
α2

Q4

y

2
lµνW

µν , (2.8)

with the electromagnetic fine-structure constant α. The differential cross section can be
expressed in other kinematic variables using

d3σ

dxdy dϕ
=
Mν

E′
d3σ

dE′ dΩlab
= ν(s−M2)

d3σ

dν dQ2 dϕ
= x(s−M2)

d3σ

dxdQ2 dϕ
, (2.9)

where Ωlab is the solid angle in the laboratory frame.

The tensors lµν and W µν involve the leptonic and hadronic electromagnetic currents,
respectively. While the leptonic current is well known from QED, the hadronic current
contains the unknown non-perturbative structure of the nucleon, which is the subject of



6 CHAPTER 2. REVIEW OF SOME THEORETICAL ASPECTS

our experiments. Summing over the lepton spin in the final state one obtains

lµν(s, k; k
′) =

∑

s′

[ū(k′, s′)γµu(k, s)]
⋆ [ū(k′, s′)γνu(k, s)] (2.10)

= 2(kµk
′
ν + k′µkν)− 2gµν(k · k′ −m2) + 2imǫµναβs

αqβ (2.11)

= l (S)µν (k; k′) + il (A)
µν (s, k; k′) (2.12)

with m being the lepton mass, gµν the metric tensor, and ǫµναβ the fully antisymmetric
Levi–Civita tensor. The polarisation vector of the lepton in its rest frame, s = (0, ~s ), can
be generalised to an arbitrary Lorentz frame by

2msµ = ū(k, s)γµγ5u(k, s) (2.13)

with ~s 2 = 1, s2 = −1, and s · k = 0. The hadronic tensor is defined by

W µν(S,P ; q) =
1

2π

∑

X

〈P, S|Jµ(0)|X〉〈X|Jν (0)|P, S〉(2π)4δ4(P + q − pX) (2.14)

=
1

2π

∫
d4ξeiqξ〈P, S|[Jµ(ξ), Jν(0)]|P, S〉 (2.15)

= W µν(S)(P ; q) + iW µν(A)(S,P ; q), (2.16)

where S is the nucleon’s polarisation vector and pX is the total momentum of the final
hadronic state, X. The step from Eq. 2.14 to 2.15 involves the completeness relation for
the final states, X, re-writing of the delta function as a Fourier integral, and translating
the hadronic current, Jµ, from 0 to ξ by the factor eiξ(P−pX). The term Jν(0)Jµ(ξ), which
is subtracted in order to obtain the commutator in Eq. 2.15, vanishes. It corresponds to
interchanging P and pX in the delta function of Eq. 2.14, which implies the unphysical
relation EX = M − ν. The scale of the distance probed in deep-inelastic scattering is
determined by the space-time interval, ξ, between the points where the currents act, see
Sect. 2.6. Both tensors, lµν and W µν , can be split in a part symmetric (S) under exchange
of the indices and an antisymmetric part (A).

Requiring Lorentz invariance, P and T invariance, and conservation of the lepton
current, qµlµν = 0, the general form of the hadronic tensor for a spin-12 target is

1

2
W µν(S) = −

(
gµν − qµqν

q2

)
F1 +

(
Pµ − P · q

q2
qµ
)(

P ν − P · q
q2

qν
)

F2

P · q ,

1

2
W µν(A) = −iǫµναβqα

(
MSβ
P · q (g1 + g2)−

M(S · q)Pβ
P · q g2

)
. (2.17)

The dimensionless structure functions F1, F2, g1, g2 are in general functions of P · q and
Q2. They are related to another commonly used set of structure functions by

MW1 ≡ F1, νW2 ≡ F2, M2νG1 ≡ g1, Mν2G2 ≡ g2. (2.18)

The differential cross section is then given by

d3σ

dxdy dϕ
=

α2

Q4

y

2

(
l (S)µν W

µν(S) − l (A)
µν W

µν(A)
)
, (2.19)
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Figure 2.2: Kinematics of polarised deep-inelastic lepton-nucleon scattering.

where the first term in the parentheses corresponds to the spin-averaged and the second
term to the spin-dependent part of the cross section involving both, the lepton’s and the
nucleon’s polarisation vectors. Therefore spin dependent effects can only occur if both,
the lepton and the hadron are polarised.

From now on we only consider longitudinal polarisation of the incoming lepton, i.e.
msµ = Hℓ (|~k|, 0, 0, E) ≃ Hℓk with Hℓ = ±1 for right and left-handed incident leptons.
In contrast to the longitudinal polarisation vector, which acquires a factor E/m by the
Lorentz boost from the rest frame to laboratory frame, the transverse polarisation vector,
s = (0, sx, sy, 0), lacks this factor and is therefore suppressed like m/E → 0. Finally the
Born cross section has the form [40]

d3σ

dxdy dϕ
=

d3σ

dxdy dϕ
−Hℓ cos β

d3∆‖σ

dxdy dϕ
−Hℓ sin β cosϕ

d3∆⊥σ

dxdy dϕ
, (2.20)

where σ refers to the spin-averaged cross section and σ‖ and σ⊥ denote the cross section for
longitudinal and transverse orientation of the target spin, respectively. The angle between
the lepton momentum and the target spin is 0 ≤ β ≤ π and the azimuthal angle between
the scattering plane and the plane containing the lepton and target spins is 0 ≤ ϕ ≤ 2π
(Fig. 2.2). Only ∆⊥σ explicitly depends on ϕ. The exact formulæ for the three terms
(apart from the neglect of the lepton mass) are [40]

d3σ

dxdy dϕ
=

4α2

Q2

{
y

2
F1 +

1

2xy

(
1− y − y2γ2

4

)
F2

}
, (2.21)

d3∆‖σ

dxdy dϕ
=

4α2

Q2

{(
1− y

2
− y2γ2

4

)
g1 −

y

2
γ2g2

}
, (2.22)
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d3∆⊥σ

dxdy dϕ
=

4α2

Q2



γ

√

1− y − y2γ2

4

(
y

2
g1 + g2

)
 . (2.23)

The kinematic factor γ2 = Q2/ν2 = 4x2M2/Q2 vanishes for Q2 → ∞. Thus for longi-
tudinal target polarisation (β = 0◦) the structure function g1 can be studied, while for
transverse polarisation (β = 90◦) the combination y

2g1 + g2 can be measured. Note that
the transverse cross section ∆σ⊥ is suppressed by a factor γ ∝ M/Q, which means that
g2 relates to “higher-twist” effects. Polarised deep-inelastic scattering is an ideal place
to study such effects at high Q2. They can directly be determined from the difference of
longitudinal and transverse cross sections, while in most other cases they appear on top
of large leading-twist contributions.

2.3 Photoabsorption

Although the equations given in the previous section are sufficient to determine the struc-
ture functions experimentally, it is illustrating to look at the scattering process in an
alternative way. The differential spin-averaged cross section can be written as a product
of the transverse (helicity λ = ±1) and the scalar (or longitudinal, λ = 0) virtual-photon
flux, ΓT and ΓS = εΓT , and the transverse and scalar virtual-photoabsorption cross sec-
tions, σT and σS ,

dσ

dE′ dΩlab
= ΓT (σT + εσS), (2.24)

with

ΓT =
α

2π2
E′

E

K

Q2(1− ε)
, ε−1 = 1 + 2

(
1 +

ν2

Q2

)
tan2

ϑ

2
. (2.25)

The normalisation factor, K, which according to Hand’s convention [41] is K = (ν −
Q2/2M), also appears in the nominator of the unphysical cross section for the absorption
of virtual photons

σλ =
2π2α

MK
ǫµ⋆λ (q)Wµν(S,P ; q)ǫ

ν
λ(q), (2.26)

and thus cancels in the physical cross section. The hadronic tensor, W µν , is the one
discussed in the previous section. For a virtual photon with ~q along the z-axis, i.e. qµ =
(ν, 0, 0,

√
ν2 +Q2), the polarisation vectors for scalar and transverse photons are

ǫµ0 =
1√
Q2

(
√
ν2 +Q2, 0, 0, ν) and ǫµ± = ∓ 1√

2
(0, 1,±i, 0). (2.27)

For the interaction of scalar and left and right circularly polarised photons with a spin-12
hadron one finds the cross sections,

σ0S =
4π2α

MK

(
−F1 +

F2

2x
(1 + γ2)

)
=

2πα

MK
ImA( 0, ↑; 0, ↑), (2.28)

σ
1

2

T =
4π2α

MK

(
F1 + g1 − γ2g2

)
=

2πα

MK
ImA(+, ↓; +, ↓), (2.29)

σ
3

2

T =
4π2α

MK

(
F1 − g1 + γ2 g2

)
=

2πα

MK
ImA(+, ↑; +, ↑), (2.30)

σ
1

2

TS =
4π2α

MK
γ (g1 + g2) =

√
2πα

MK
ImA(+, ↓; 0, ↑), (2.31)
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where 1
2 and 3

2 denote the initial state angular momentum along the direction of the virtual
photon. It is useful to define the total transverse cross section,

σT =
1

2
(σ

1/2
T + σ

3/2
T ) =

4π2α

MK
F1, (2.32)

which is entirely given by F1. The term σTS corresponds to the interference of transverse
and scalar photons interacting with a transversely polarised hadron. The virtual-photon
cross sections are via the optical theorem related to the imaginary part of the helicity
amplitudes for forward Compton scattering, γλNH → γλ′NH′ ,

A(λ,H;λ′,H ′) = ǫµ⋆λ′ ǫ
ν
λTµν(S), (2.33)

where H and S denote the hadron’s helicity and polarisation vector. The tensor Tµν ,

T µν = i

∫
d4ξeiqξ〈PS|T Jµ(ξ)Jν(0)|PS〉, (2.34)

involves the time-ordered product T of the hadronic electromagnetic currents and has the
same structure as Wµν ,

W µν =
1

π
ImT µν . (2.35)

The number of independent helicity amplitudes corresponds to the number of structure
function. The interference term σTS relates to a spin-flip amplitude, which is suppressed
by a factor γ ∝M/Q.

It is usual to call the combination of F1 and F2 in Eq. 2.28 the longitudinal structure
function, FL, and to introduce the longitudinal-to-transverse cross-section ratio, R,

FL = F2(1 + γ2)− 2xF1, R =
σS
σT

=
FL
2xF1

(2.36)

and

F1 =
F2(1 + γ2)

2x(1 +R)
. (2.37)

2.4 Cross-section asymmetries

The observable spin-dependent effects in experiments are small and appear on top of the
unpolarised cross section. They must be determined from differences of cross sections,
which are vulnerable to small changes of the apparatus’ acceptance. These systematic
uncertainties largely cancel in the cross-section asymmetries

A‖(x,Q
2;E) =

∆‖σ

σ
=
σ

→
⇐ − σ

→
⇒

σ
→
⇐ + σ

→
⇒
, (2.38)

A⊥(x,Q
2;E) =

∆⊥σ

σ
=

Hℓ

cosϕ
· σ(ϕ) − σ(π ± ϕ)

σ(ϕ) + σ(π ± ϕ)
, (2.39)

where → and ⇒ indicate the beam and target polarisation, respectively and σ denotes
the differential cross section (Eq. 2.20). To obtain A‖ the longitudinal lepton or target
polarisation must be inverted, while for A⊥ the angle between the spin and scattering
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planes, ϕ, must be changed to π±ϕ (Fig. 2.2). This can be performed by either inverting
the transverse target polarisation and compare events in the same part of the detector
(π + ϕ), or by comparing events in the upper and lower part of the detector for the same
upward or downward-pointing target polarisation (π − ϕ).

The parallel and perpendicular lepton asymmetries, A‖ and A⊥, do not have a straight
forward physics interpretation and in addition they strongly depend on E or y. Hence,
asymmetries obtained in experiments performed at different lepton incident energies can-
not be compared directly. Therefore it is customary to express the lepton asymmetries in
terms of the virtual-photon asymmetries (Sect. 2.3),

A1 =
σ
1/2
T − σ

3/2
T

2σT
and A2 =

σTS
σT

, (2.40)

which are functions of x and Q2 only. They fulfil the following positivity constraints

0 ≤ |A1| ≤ 1 and |A2| ≤
√
R, (2.41)

where the relation for A2 [42] corresponds to |σTS | ≤
√
σSσT . Note that R and therefore

A2 is small at large Q2 and not too small x.

From Eqs. 2.28–2.31 one finds for the the photon asymmetries in terms of the structure
functions g1 and g2 (

A1

A2

)
=

1

F1

(
1 −γ2
γ γ

)(
g1
g2

)
. (2.42)

Several kinematic factors appear in the relation of the photon and lepton asymmetries.
The depolarisation factor, D, describes the polarisation transfer from the incident lepton
to the virtual photon and depends on the angle between their momenta. It also accounts
for the contribution of scalar photons to the nominator in Eq. 2.38 and therefore it depends
on the ratio R = σS/σT ,

D =
y(2− y)(1 + γ2y

2 )

(1 + γ2)y2 + 2
(
1− y − γ2y2

4

)
(1 +R)

. (2.43)

The depolarisation factor, D, (better polarisation factor) vanishes for y = 0 and becomes
unity for y = 1 assuming R = 0. Therefore events with high energy transfer, ν = yE, are
most sensitive to longitudinal spin effects, while the kinematic factor for transverse spin,
d, has a maximum around y = 0.8 and vanishes for y = 1. With the kinematic factors1 d,
η, and ξ,

d =

√
1− y − y2γ2

4

1− y
2

D, η = γ
1− y − γ2y2

4

(1− y
2 )(1 +

γ2y
2 )

, ξ = γ
1− y

2

1 + γ2y
2

, (2.44)

we obtain (
A‖/D

A⊥/d

)
=

(
1 η
−ξ 1

)(
A1

A2

)
. (2.45)

1The kinematic factors as function of ε (Eq. 2.25) are given in Appendix A of Ref. [31]
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Combining the inverse of this equation and that of Eq. 2.42,
(
g1
g2

)
=

F1

1 + γ2

(
1 γ
−1 1/γ

)(
A1

A2

)
, (2.46)

yields for the structure functions in terms of the lepton asymmetries
(
g1
g2

)
=

F1

(1 + γ2)(1 + ηξ)

(
1 + γξ γ − η

−1 + ξ/γ η + 1/γ

)(
A‖/D

A⊥/d

)
. (2.47)

Thus in general both, the parallel and the perpendicular asymmetry, are needed to deter-
mine the g1 and/or g2. However, until recently no measurements of A⊥ were available.
Therefore it is useful to express the structure functions in terms of the longitudinal lepton
asymmetry, A‖, and the photon asymmetry, A2, which is bounded by

√
R (Eq. 2.41),

(
g1
g2

)
=

F1

1 + γ2

(
1 γ − η
−1 η + 1/γ

)(
A‖/D

A2

)
. (2.48)

Note that the small contribution of A2 to g1 is further suppressed by the small kinematic
factor γ − η. Neglecting A2 we obtain

g1 =
F1

1 + γ2
A‖
D

=
F2

2x(1 +R)

A‖
D

and g2 = −g1. (2.49)

Although in Eq. 2.49 the structure functions F2 and R appear explicitly, it is important to
note that only the spin-averaged cross section, i.e. F1, is needed. Therefore the dependence
of g1 on R cancels when the spin-averaged cross sections were determined for the same
kinematics and when the same values for R are used in both, the g1 and the F2 analysis.

2.5 Generalisation for deuteron targets

The representation of the cross sections by helicity amplitudes in Eqs. 2.28–2.31 can be gen-
eralised to hadrons with spin greater than 1

2 [43,44]. For spin-1 targets, like the deuteron,
one finds four additional helicity amplitudes and thus four new structure functions [43],
usual called b1, . . . , b4, of which b3 and b4 are like g2 “higher-twist” contributions sup-
pressed by M/Q and b2 = 2xb1 +O(M2/Q2), leaving b1 as the only new twist-2 structure
function. The scalar and transverse cross sections take the form

σS =
1

2

(
σ0S + σ1S

)
, σT =

1

3

(
σ0T + σ1T + σ2T

)
, σTS =

1

2

(
σ0TS + σ1TS

)
(2.50)

and an additional cross section, σ0TT ∝ M2/Q2, appears which corresponds to a double
helicity-flip amplitude. For a spin-1 nucleus the contribution to b1 from nucleons in an
S-state vanishes in general [43], while for the deuteron a small contribution can arise from
the D-state admixture in its wave function. The structure function b1,

b1
F1

=
1

2

2σ1T − σ0T − σ2T
σT

=
3

2

σ1T − σT
σT

, (2.51)

can be measured with an unpolarised beam as the cross-section difference for scattering
from an unpolarised and a longitudinally a polarised target. With a polarised beam the
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average cross section for a parallel and an antiparallel polarised target must be taken, to
cancel the contribution of g1. In all analyses up to now bd1 ≡ 0 is assumed yielding for g1

g1
F1

=
1

2

σ0T − σ2T
σT

=
3

2

σ0T − σ2T
σ0T + σ1T + σ2T

b1=0
=

σ0T − σ2T
σ0T + σ2T

. (2.52)

Under this assumption it is sufficient to measure with parallel and antiparallel orientation
of the target spins and to evaluate g1 as in the proton case using Eqs. 2.38 and 2.49.

In Ref. [45] an additional double helicity-flip structure function, ∆, for targets with
spin greater than 1

2 is discussed. It is related to gluons not associated with individual
nucleons in a nucleus and could be measured with a transversely polarised target and an
unpolarised lepton beam. Both structure functions, b1 [46] and ∆, are expected to be very
small and their measurement is out of the scope of the SMC experiment. A measurement
will be attempted in the HERMES experiment [28] at HERA.

2.6 Distance scales in deep-inelastic scattering

To investigate the distances relevant in deep-inelastic scattering [30, 38] we start from
Eq. 2.15 (p. 6) for the hadronic tensor W µν . The space-time region probed is determined
by the distance ξ between the two points where the currents Jµ(ξ) and Jν(0) act. In
the Fourier integral the region, q̃ξ ∼ 1, where the integrand does not oscillate rapidly,
dominates. Here we use q̃± instead of q± to avoid a confusion with the helicity distribution
function, q±(x), defined in the next section. In light-cone variables, which are defined by
a± = (a0 ± a3)/

√
2 with the scalar product a · b = a+b−+ a−b+ −~a⊥ ·~b⊥, the momentum

transfer in the target rest fame becomes in the Bjorken limit

q̃+ =
1√
2

(
ν −

√
ν2 +Q2

)
→ − 1√

2
Mx,

q̃− =
1√
2

(
ν +

√
ν2 +Q2

)
→ 1√

2

Q2

Mx
. (2.53)

Thus, the limit, x fixed, Q2 → ∞, corresponds to q̃+ fixed and q̃− → ∞. The condition,
q̃ξ ∼ 1, requires for the light-cone separations

|ξ+| ≤
√
2Mx/Q2 and |ξ−| ≤

√
2/Mx. (2.54)

Causality implies ξ2 = 2ξ+ξ− − ~ξ 2⊥ ≥ 0 and thus ~ξ 2⊥ ∼ 1/Q2. In the Bjorken limit deep-
inelastic scattering is therefore dominated by the space-time region close to the light-cone,
ξ2 = 0, and the relevant longitudinal and transverse distance scales are

ξ3 ∼ 1

Mx
and ξ⊥ ∼ 1√

Q2
. (2.55)

Note that already for x ≃ 0.2 the longitudinal scale is in the order of the nucleon’s radius.
The proper time, τ , available to the parton to interact with its companions is

τ =
√
(ξ0)2 − (ξ3)2 ∼ 1√

Q2
, (2.56)

justifying the incoherence assumption of the quark parton model.
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2.7 The quark parton model

The quark parton model [5, 47] allows us to understand structure functions in terms of
quarks and in the QCD-improved form [7, 48] also of gluons. Deep-inelastic lepton scat-
tering was one of the corner stones in establishing the partonic structure of hadrons [2]
and thus in the development of QCD. Due to the asymptotic freedom of QCD at high
momentum transfers, Q2, in deep-inelastic scattering a hadron behaves like an incoherent
superposition of free partons. If the hit parton, q, carries the fraction ξ of the hadron’s
4-momentum, pq = ξP , the energy in the hadronic final state, W , is

W 2 = (q + pq)
2 = q2 + ξ2P 2 + 2ξP · q = Q2

(
ξ

x
− 1

)
+ ξ2M2, (2.57)

with the hadron mass, M , and x = Q2/2P · q. For a structureless parton only elastic
scattering can occur requiring W 2 = ξ2M2 or ξ = x. Thus the Bjorken variable, x,
has a very intuitive interpretation as the fraction of hadron’s momentum carried by the
parton. The unphysical x dependence of the parton mass vanishes in the Breit–frame,
where the hadron moves very fast towards a virtual photon with energy ν = 0. In this
frame all masses and transverse momenta can be neglected and x becomes the fraction of
the hadron’s longitudinal momentum carried by the struck parton.

For scattering from a free massless spin-12 parton inside a hadron, the hadronic tensor,
W µν , can easily be calculated and one finds the structure functions [34]

F̂1 =
1

2
e2P δ(ξ − x), F̂2 = e2P ξδ(ξ − x), ĝ1 = λ

1

2
e2P δ(ξ − x), ĝ2 = 0, (2.58)

where eP is the parton’s charge. The factor λ = ±1 accounts for the fact that g1 is defined
using the hadron’s spin orientation and therefore an additional minus sign is needed when
the parton’s spin is oriented opposite to the one of the hadron. From Eq. 2.58 it follows
that g2 does not have a simple interpretation in the quark parton model. The probability
to find inside a hadron a parton of a certain type carrying a momentum fraction, ξ, is
parametrised by the parton distribution functions, qλi (ξ). These functions are number
densities normalised to the total number of partons of the considered type in the hadron.
For the quarks we use qi = u, d, s, . . . and for the gluon qi = g. For a longitudinally
polarised hadron, parallel and antiparallel orientation of the parton spin with respect to
the hadron spin are denoted by λ = ±1. For a transversely polarised hadron, parallel and
antiparallel orientation of the parton spin with respect to the hadron spin are denoted
by λ = (↑, ↓). Usually the qi(x) are understood as the sum of the distribution functions
of quarks and antiquarks in both helicity states. For clarity we therefore introduce q̂ for
quarks and q for antiquarks and denote the difference of the helicity states by ∆q,

q = q̂ + q, q = q+ + q−, ∆q = q+ − q−, ∆T q = q↑ − q↓. (2.59)

The hadron structure functions are then given by

F(x) =
∑

i,λ

∫ 1

0
qλi (ξ)F̂λ

i (x, ξ) dξ, (2.60)

where i runs over all quark flavours and F = F1, F2, g1, and g2, yielding

F1(x) =
1

2

∑

i

e2i

{
q+i (x) + q−i (x)

}
, (2.61)
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F2(x) = x
∑

i

e2i

{
q+i (x) + q−i (x)

}
, (2.62)

g1(x) =
1

2

∑

i

e2i

{
q+i (x)− q−i (x)

}
, (2.63)

h1(x) =
1

2

∑

i

e2i

{
q↑i (x)− q↓i (x)

}
, (2.64)

g2(x) = 0, (2.65)

with the quark charges, ei, in units of e. An important result is the scaling of the structure
functions first pointed out by Bjorken [3]. In the limit Q2 → ∞, where the quark parton
model is applicable, the structure functions do not depend on ν and Q2 separately, but
become functions of x only. In QCD gluon radiation causes a logarithmic Q2 dependence
known as scaling violations, which is discussed in Sect. 2.9. Another consequence of the
quark parton model is the Callan–Gross relation [49],

F2(x) = 2xF1(x), i.e. FL ≡ 0, R ≡ 0, (2.66)

expressing the fact that massless spin-12 particles cannot absorb scalar photons. This
relation receives corrections in order αs in QCD.

Other combinations of the quark distribution functions appear in the structure func-
tions for weak interactions. In particular charged-current neutrino scattering has con-
tributed much of what we know about the parton distribution functions. From the cross
sections for neutrino and antineutrino-nucleon scattering one obtains the parity-violating
structure functions,

FW−

3 (x) = 2{û(x) + ĉ(x)− d(x)− s(x)}, (2.67)

FW+

3 (x) = 2{d̂(x) + ŝ(x)− u(x)− c(x)}. (2.68)

Their average measures the valence-quark distribution functions, qv = q̂− q. If the proton
beam at HERA can be polarised, one might have access to similar structure functions in
the polarised case [31,50] at large Q2 and thus rather large x,

gW
−

5 (x) = ∆û(x) + ∆ĉ(x)−∆d(x)−∆s(x),

gW
+

5 (x) = ∆d̂(x) + ∆ŝ(x)−∆u(x)−∆c(x), (2.69)

and also

gW
−

1 (x) = ∆û(x) + ∆ĉ(x) + ∆d(x) + ∆s(x),

gW
+

1 (x) = ∆d̂(x) + ∆ŝ(x) + ∆u(x) + ∆c(x). (2.70)

The structure functions for W− and W+ exchange can be measured using electron and
positron beams, respectively. Note that gW

+

1 + gW−1 yields directly the sum of all quark
and antiquark polarisations, ∆Σ (Eq. 2.72).

At present only semi-inclusive scattering can provide insight into other flavour com-
binations of polarised parton distribution functions through the additional weights intro-
duced by the fragmentation functions, see Sect. 5.7.

Parton distribution functions are universal in the sense that a distribution function
determined in one process can be used to calculate other processes. Thus, the parton dis-
tribution functions determined in deep-inelastic scattering are the basis for the prediction
of hadron-hadron cross sections, e.g. at RHIC and LHC.
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2.8 Sum rules in the quark parton model

The Ellis-Jaffe [16] and Bjorken sum rules [14] for the first moment of g1,

Γ1 =

∫ 1

0
g1(x) dx (2.71)

follow — in the quark parton model — immeadiately from Eq. 2.63. We introduce the
somewhat unprecise but widely used notation

∆q =

∫ 1

0
∆q(x) dx, (2.72)

for the spin carried by the quarks and antiquarks of a certain flavour in units of h̄/2. For
the proton we then can write

Γp
1 =

1

2

{
4

9
∆u+

1

9
∆d+

1

9
∆s

}
(2.73)

=
1

12
(∆u−∆d)︸ ︷︷ ︸

a3

+
1

36
(∆u+∆d− 2∆s)︸ ︷︷ ︸√

3a8

+
1

9
(∆u+∆d+∆s)︸ ︷︷ ︸

a0

. (2.74)

Using isospin symmetry the same formula holds for the neutron with u↔ d, i.e. a3 ↔ −a3,
exchanged

Γp,n
1 =

1

12

(
±a3 +

1√
3
a8

)
+

1

9
a0. (2.75)

The difference, ∆q, of right and left-handed quarks in a proton with momentum P and
spin S is obtained with the projection operators (1± γ5)/2 as

2MSµ∆q = 〈P, S|q̄γµγ5q|P, S〉, (2.76)

where Sµ is the covariant spin vector (Eq. 2.13). The proton matrix elements, a0 and ai,
are then given by

〈P, S|J i5µ|P, S〉 = MSµai (i = 1, 2, . . . , 8) (2.77)

〈P, S|J0
5µ|P, S〉 = 2MSµa0, (2.78)

with the flavour-singlet axial-vector current

J0
5µ = ψγµγ5ψ with ψ =



ψu
ψd
ψs


 , (2.79)

and the octet of axial-vector currents

J i5µ = ψγµγ5
λi
2
ψ, with (i = 1, 2, . . . , 8). (2.80)

The matrices λi are the generators of flavour SU(3) in the Gell–Mann standard representa-
tion. The nonsinglet axial-vector currents also describe together with the vector currents,
J iµ, the weak decays of the hyperons in the spin-12 baryon octet consisting of n, p, Σ±,
Σ0, Λ, Ξ−, and the Ξ0. Assuming SU(3) flavour symmetry, all matrix elements of the
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axial currents in this octet are given by two coupling constants, F and D, which were
determined experimentally, for details see [31] and references therein.

For a3 and a8 one obtains

a3 = F +D = ga,
√
3a8 = 3F −D. (2.81)

No decay is related to the singlet matrix element a0. The matrix element a3 is given by
the neutron decay constant, ga = |GA/GV | = 1.2573±0.0028 [51]. Only isospin symmetry
has to be assumed for the relation a3 = ga. From Eq. 2.75 we thus find the Bjorken sum
rule [14]

Γp
1 − Γn

1 =
1

6
ga (Bjorken sum rule). (2.82)

To obtain separate sum rules for the proton and the neutron a value for a0 is needed,
which cannot be fixed from hyperon decay data. Ellis and Jaffe [16] assumed that the
strange quarks are not polarised, ∆s ≡ 0, leading to a0 =

√
3a8 and thus

Γp,n
1 =

1

12
ga

{
±1 +

5

3

3F/D − 1

F/D + 1

}
(Ellis–Jaffe sum rules). (2.83)

The QCD corrections to these sum rules are discussed in Sect. 2.11.

In the quark parton model the total contributions of the quarks to the nucleon’s spin
is given by

∆Σ = ∆u+∆d+∆s = a0. (2.84)

Näıvely one expects ∆Σ = 1. The value obtained from
√
3a8 is ∆Σ = 0.579 ± 0.026 [52].

A reduction from unity is expected from relativistic effects and in line with the fraction of
the longitudinal momentum of the nucleon carried by the quarks of about 0.5. The value
of ∆Σ = 0.12 ± 0.16 found in the EMC experiment [17] therefore came as a big surprise.

2.9 Scaling violations

In QCD partons can radiate other partons, leading to a cloud of gluons and a sea of quark-
antiquark pairs surrounding each quark. The shortest distance, which can be resolved
by a photon with 4-momentum q, is proportional to 1/

√
Q2 with Q2 = −q2. Hence,

with increasing Q2 the one finds more and more partons in the nucleon. This implies
that the average momentum fraction carried by each parton decreases with increasing Q2

leading to a depletion of the spin-averaged parton distribution functions at large x and a
corresponding enhancement at small x. The situation for the spin-dependent distribution
functions is not as straight forward.

The probability to radiate from a parton i with momentum p a parton j with momen-
tum zp is described by the so-called splitting function, Pij(z), where i and j stand for
quarks or gluons, i, j = q, g. The splitting functions can be calculated using Feynman’s
rules. In the process γ⋆q → qg the integration over the gluon phase space results in a
logarithmic Q2 dependence of the cross section. This Q2 dependence can be absorbed into
the definition of the parton distribution functions, q(x) → q(x,Q2) and g(x) → g(x,Q2),
leading to the famous Altarelli–Parisi equations [7, 48,53,54].

Apart from the splitting functions the equations for the spin-averaged and spin-dependent
case are identical. The flavour-singlet combination, i.e. the sum of all quark distribution
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functions,

∆Σ(x,Q2) =

nf∑

i=1

∆q(x,Q2) (2.85)

evolves together with the gluon distribution function, ∆g(x,Q2). Flavour-nonsinglet com-
binations, i.e. differences of quark distribution functions, evolve independently from the
gluons. Following Ref. [55] we use

∆qns(x,Q2) =

nf∑

i=1

(
e2i
〈e2〉 − 1

)
∆qi(x,Q

2) (2.86)

with 〈e2〉 =
∑
e2i /nf . In the Q2 range for the present experiments only up, down, and

strange quarks contribute significantly and the number of active flavours, nf , is three.
With these definitions and the notation,

(a⊗ b)(x) :=

∫ 1

x

dy

y
a

(
x

y

)
b(y), (2.87)

the Altarelli–Parisi equations read for the spin-dependent case [7]

d

d lnQ2
∆qns =

αs
2π

∆P ns
qq ⊗∆qns, (2.88)

d

d lnQ2

(
∆Σ
∆g

)
=

αs
2π

(
∆P s

qq 2nf∆P
s
qg

∆P s
gq ∆P s

gg

)
⊗
(

∆Σ
∆g

)
, (2.89)

with the obvious notation ∆Pab = Pa+b+ − Pa+b− . The structure function g1 is given by
a convolution of the singlet and nonsinglet coefficient functions, Cs and Cns, and Cg with
the parton distribution functions

g1 =
1

2
〈e2〉 {Cns ⊗∆qns +Cs ⊗∆Σ+ 2nfCg ⊗∆g} . (2.90)

The coefficient functions are discussed in Sect. 2.10. The splitting and coefficient functions,
P and C, depend on x and αs and can be expanded in a power series in αs,

C(x, αs) = C(0)(x) +
αs
2π
C(1) +O(α2

s) (2.91)

P (x, αs) = P (0)(x) +
αs
2π
P (1) +O(α2

s). (2.92)

With the leading-order coefficient functions C
(0)
s = C

(0)
ns = δ(1−x) and C(0)

g = 0 the parton
model formula Eq. 2.63 is recovered. The next-to-leading order coefficient functions were
calculated by Kodaira et al. [56] in 1979. However, full next-to-leading order calculations
became only possible after the determination of the two-loop splitting functions, P (1),
by Mertig and van Neerven [57] and by Vogelsang [58] in 1995. In next-to-leading order
the separation between ∆Σ and ∆g becomes factorisation scheme dependent and thus in
principle ambiguous.

Similarities and differences of the spin-dependent and spin-averaged splitting functions
are discussed e.g. in Refs. [59,60]. Due to helicity conservation for massless quarks at the
quark-gluon vertex the polarised and unpolarised leading-order splitting functions, ∆Pqq
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and Pqq, are similar. The spin of the emitted gluon is compensated by orbital angular
momentum. Therefore, one expects a similar Q2 dependence of the structure functions g1
and F1 in the large-x region, where the nonsinglet valence-quark content dominates. The
unpolarised structure function, F1, grows at small x due to soft gluon emission, which
causes singularities in the singlet splitting functions, Pgq and Pgg. In the polarised case
however, the process g → qq̄ leads to a quark pair with opposite helicity of the quark and
the antiquark due to helicity conservation at the vertex. Thus, no increase in g1 can be
expected from this process.

2.10 The operator-product expansion

The theoretical basis of the quark parton model in QCD is Wilson’s operator-product
expansion [61]. For short distances, ξ, the product of two local operators can be expanded
into a sum of nonsingular local operators multiplied by singular complex coefficient func-
tions, C(ξ2). They are functions of the space-time separation of the points where the two
operators act. The operator-product expansion cannot be applied directly to the product
of the hadronic electromagnetic currents Jµ(ξ)Jν(0) in Eq. 2.15 (p. 6), because as discussed
in Sect. 2.6 the Bjorken limit is not a short distance limit, in which all components of q
become large. However, the operator-product expansion is applicable to forward Compton
scattering of a virtual photon in Eq. 2.34 (p. 9) and can be carried over to the hadronic
tensor W µν and hence the structure functions using the optical theorem and dispersion
relations. It is important to realise, that Eq. 2.15 and thus the relation to the forward
Compton amplitude, Eq. 2.35, is only valid for truly inclusive scattering. The observation
of a particular final state invalidates the completeness relation, used in the derivation of
Eq. 2.15.

The application of the operator-product expansion to deep-inelastic scattering is sketched
in this section following the discussion by Kodaira [62]. More details can also be found
there and e.g. in Refs. [30, 34, 38]. We start from Eq. 2.34, which dropping the Lorentz
indices for simplicity, takes the form

T (x,Q2) = i

∫
d4ξeiqξ〈P |T J(ξ)J(0)|P 〉. (2.93)

The operator-product expansion of the time-ordered product of the two currents yields

T J(ξ)J(0) ∼
∑

i,n

Cni (ξ
2)ξµ1 · · · ξµnOi

µ1···µn(0), (2.94)

where the operators are labelled by their spin, n. The superscript, i, distinguishes different
operators with the same spin. To see the relative importance of the terms, we study their
mass dimensions. The coordinate ξ has mass dimension −1 yielding dimension −n for the
factors ξµi . Taking into account the mass dimensions of the currents on the left-hand side,
dJ = 3, and that of the operator itself, din, the mass dimension of the coefficient function
is given by

Cni (ξ
2) ∼

(
ξ2
)(din−n−2dJ )/2

. (2.95)

Thus the dominant effects for ξ2 → 0 are ordered by the twist,

t = d− n, (2.96)
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of the related operators, i.e. the difference of their mass dimension and spin. The lowest
twist operators in QCD have twist two, involving e.g. two quark fields with spin 1/2 and
mass dimension 3/2.

The matrix elements of the operators Oi
µ1···µn needed when inserting Eq. 2.94 into

Eq. 2.93 can be written in the form

〈P |Oi
µ1···µn(0)|P 〉 = 2ainPµ1 · · ·Pµn . (2.97)

With this definition of the reduced matrix elements, ain, and the Fourier transform of
Eq. 2.94

i

∫
d4ξeiqξT J(ξ)J(0) ∼

∑

i,n

Cni (Q
2)

(
2

Q2

)n
qµ1 · · · qµnOi

µ1···µn(0) (2.98)

one obtains

T (x,Q2) = 2
∑

i,n

(
1

x

)n
ainC

n
i (Q

2), (2.99)

with x = Q2/2Pq. Using contour integration of T in the complex 1/x plane and W =
1
π ImT (Eq. 2.35) one obtains for the nth moment of W

Mn(Q2) =

∫ 1

0
dxxn−1W (x,Q2) =

∑

i

ainC
n
i (Q

2). (2.100)

Thus, the nth moment of a structure function is given by operators with spin n only.
The important point is that the moments factorise in a calculable perturbative part, the
coefficient functions, and a non-perturbative part containing the hadron structure, the ain.

The coefficient functions Cni
(
Q2/µ2, αs(µ

2)
)
depend on the renormalisation scheme

and on the renormalisation point µ2. Also the operators, and thus the matrix elements
ain can depend on µ2. Physical quantities like the moments of structure functions must
be independent of the renormalisation point. This requirement leads to the renormalisa-
tion group equations, which couple the µ2 dependence of the fundamental fields and of
the strong coupling constant, αs(µ

2). The variation of the coupling constant with µ2 is
described by the beta-function of QCD

β(as) = µ2
∂as
∂µ2

= −β0a2s − β1a
3
s − · · · with as =

αs
4π
, (2.101)

where β0 = 11 − 2
3nf , β1 = 102 − 38

3 nf , and nf is the number of active quark flavours.
Following Ref. [63] we use as = αs/4π. The µ2 dependence of the renormalised operator
is given by its so-called anomalous dimension γnO

γnO = µ2
d

dµ2
logZnO = γ(0)as + γ(1)a2s · · · , (2.102)

where ZnO is the renormalisation constant and O0
n is the bare operator

On(µ
2) = O0

n/Z
n
O(µ

2). (2.103)

Operators corresponding to physical quantities have vanishing anomalous dimension, i.e.
are independent of the renormalisation point µ2. Both, the beta function and the anoma-
lous dimension can be expanded in power series in as and the coefficients can be calculated
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in perturbative QCD. The renormalisation group equations for the coefficient functions
read

µ2
d

dµ2
Mn(Q2) ≡ 0 ⇒

(
µ2

∂

∂µ2
+ β(as)

∂

∂as
− γnO

)
Cn = 0 (2.104)

with the solution

Cn
(
Q2

µ2
, as(Q

2)

)
= Cn(1, as(Q

2)) exp

{∫ as(Q2)

as(µ2)

γnO(a
′
s)

β(a′s)
da′s

}
. (2.105)

By construction the moments, Mn, are now independent of µ2. However, for operators
with non-vanishing anomalous dimension the matrix elements, ain, depend on µ2. This
applies in particular to the matrix element, ∆Σ(µ2), of the flavour-singlet axial-vector
current, J0

5µ, which we discuss here as an example. The natural scale in deep-inelastic
scattering is µ2 = Q2. For this choice the renormalisation group exponent in Eq. 2.105 is
unity and the µ2 dependence turns into a Q2 dependence, ∆Σ(Q2). It is also possible to
split the exponent into a µ2 and a Q2-dependent part and to define the µ2-independent
quantity [63]

∆Σinv = exp

{
−
∫ as(µ2) γs(a′s)

β(a′s)
da′s

}
∆Σ(µ2). (2.106)

In this case the Q2 dependent part of the exponent

1− as(Q
2)
γ(1)

β0
+O(a2s) (2.107)

must be accounted for in C(Q2/µ2, as). The Q
2 dependence of ∆Σ appears beyond leading

order and is due to the axial anomaly.

2.11 Sum rules for the moments of g1 and g2

When the Lorentz structure of the currents is kept and the operator mixing in renormal-
isation is taken into account, the operator product expansion yields for the moment sum
rules of g1 and g2 [64]

∫ 1

0
xn−1g1(x,Q

2) dx =
1

2

∑

i

εia
i
nC

n
1,i(Q

2), n = 1, 3, . . . (2.108)

∫ 1

0
xn−1g2(x,Q

2) dx =
1− n

2n

∑

i

εi
[
ainC

n
1,i(Q

2)− dinC
n
2,i(Q

2)
]
, n = 3, 5, . . . (2.109)

where i = 1, . . . , 8, ψ, g runs over the flavour nonsinglet operators (i = 1 . . . 8) and the
quark flavour-singlet and gluon operators (i = ψ, g). Following the notation of Ref. [31]
the constants εi account for the charge and the isospin structure of the involved currents.
For the proton they are given by

ε3 =
1

3
, ε8 =

1

3
√
3
, εψ = εg =

2

9
, εi = 0 for i 6= 3, 8, ψ, g. (2.110)

The coefficient functions, Cn1,i, and the matrix elements, ain, refer to twist-2 operators,

while Cn2,i and d
i
n correspond to twist-3 operators.
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Table 2.1: Higher-order coefficients of the flavour-singlet and nonsinglet coefficient functions,
Cns and Cs, in the MS scheme. The coefficients cns4 and cs3 are estimates; cs3 is unknown for
nf = 4 flavours.

nf nonsinglet singlet (∆Σinv) singlet (∆Σ(Q2))
cns1 cns2 cns3 cns4 cs1 cs2 cs3 cs1 cs2 cs3

3 1 3.5833 20.2153 130 0.3333 0.5496 2 1 1.0959 3.7
4 1 3.2500 13.8503 68 0.0400 −1.0815 — 1 −0.0666 —

The Ellis–Jaffe and Bjorken sum rules follow immeadiately from Eq. 2.108 for n = 1.
No gluon operator exist for spin n = 1 and hence there is no direct gluon contribution, ag1,
to the first moment of g1. The remaining matrix elements, ain, are those of the singlet and
nonsinglet axial vector currents, a0, a3, and a8. The definitions of the ain differ slightly
from those of in Eqs. 2.77 leading to the following identities

2a31 = a3 = ga, 2a81 = a8 =
1√
3
(3F −D), aψ1 = a0 = ∆Σ. (2.111)

With these relations we obtain the QCD-corrected Ellis–Jaffe sum rules

Γp,n
1 (Q2) =

1

12

{
±ga +

1

3
(3F −D)

}
Cns(Q2) +

1

9
∆ΣCs(Q2) (2.112)

and the Bjorken sum rule

Γp
1(Q

2)− Γn
1(Q

2) =
1

6
gaC

ns(Q2). (2.113)

The singlet and nonsinglet coefficient functions, Cs and Cns, can be expanded into a power
series in αs/π

C(αs) = 1− c1

(
αs
π

)
− c2

(
αs
π

)2

− c3

(
αs
π

)3

− · · · (2.114)

The coefficients, cs,ns1 were calculated in the MS scheme in the original work by Kodaira
et al. [56, 64] back in 1979/80. Recently, also the coefficients up to cns3 [65] for the non-
singlet and up to cs2 [63] for the singlet coefficient function were calculated. The results
are summarised for the case of three and four active quark flavours in Table 2.1 together
with estimates of the constants cns4 and cs3 [66]. The two sets given for the singlet coeffi-
cients correspond to the two possible choices, ∆Σinv and ∆Σ(Q2), discussed at the end of
Sect. 2.10 (Eq. 2.106, p. 20). The nonsinglet currents are conserved and thus the matrix
elements a3 and a8 are Q2 independent.

We now turn to the second spin dependent structure function, g2. For n = 1 one
obtains from Eq. 2.109 the Burkhardt–Cottingham sum rule, first derived in 1975 using
dispersion relations and Regge theory [67]

∫ 1

0
g2(x,Q

2) dx = 0. (2.115)

However, none of the operators corresponding to n = 1 in Eq. 2.109 exists and therefore
this sum rule does not follow from the operator product expansion [40]. There has been
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γ γ5µ

Figure 2.3: Triangle graph causing the anomalous gluon contribution to the singlet axial vector
current.

some controversy in the literature about the validity of the Burkhardt–Cottingham sum
rule [31, 40, 68–70] and an experimental determination of the integral would be of high
interest.

A relation between the structure functions g1 and g2 can be obtained by considering
the sum of Eqs. 2.108 and 2.109,

∫ 1

0
xn−1

{
g1(x,Q

2) + g2(x,Q
2)
}
dx =

∑

i

εi

{
1

2
ainC

n
1,i(Q

2) +
n− 1

2n
dinC

n
2,i(Q

2)

}
.

(2.116)
If this relation is assumed to be valid also for n = 1, i.e. assuming the validity of the
Burkhardt–Cottingham sum rule, it can by an inverse Mellin transformation be cast in
the form

g2(x,Q
2) = gww

2 (x,Q2) + ḡ2(x,Q
2) (2.117)

with the twist-2 part

gww
2 (x,Q2) = −g1(x,Q2) +

∫ 1

x

g1(y,Q
2)

y
dy. (2.118)

The twist-2 part, gww
2 , was first derived by Wandzura and Wilczek [71] in 1977 assuming

ḡ2(x,Q
2) to vanish. The pure twist-3 part, ḡ2(x,Q

2), describes quark-gluon correlations
and arises from the din in Eq. 2.116 while the ain correspond to gww

2 . In addition to the
contributions given here, g2 also receives a twist-2 contribution from transverse quark
polarisation [72,73], which in deep-inelastic scattering is suppressed by the quark-to-gluon
mass ratio.

2.12 The axial anomaly

In contrast to the conserved vector currents the axial currents are expected to be conserved
only in the limit of massless quarks,

∂µψ̄fγ
µγ5ψf = 2miψ̄fγ5ψf

m→0→ 0. (2.119)
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However, this relation breaks down in quantum theory due to an additional anomalous
gluon contribution [74–76] owing to the triangle graph shown in Fig. 2.3. Originally
this was found by Adler and by Bell and Jackiw [77] in the context of QED, where an
analogous graph is responsible for the decay π0 → 2γ. The anomalous gluon contribution
affects only the singlet axial current, while it cancels between flavours in the conserved
nonsinglet currents. Anomalies are e.g. discussed in Refs. [78, 79] and for a review in
the context of polarised scattering see Ref. [31]. Also for massless quarks one finds a
non-vanishing divergence

∂µψ̄γ
µγ5ψ =

α

2π
nfTr

(
GµνG̃

µν
)
, (2.120)

where Gµν is the gluon field tensor and nf = 3 the number of active (light) flavours.
The actual result for the anomalous contribution depends on the quark-to-gluon mass
ratio [31]. In obtaining the result of Eq. 2.120 it was assumed that the mass of bound,
slightly off-shell gluons is large compared to the up, down, and strange quark masses and
small compared to the charm, bottom, and top quark masses. It is widely believed [31]
that higher order graphs do not contribute to the anomaly [80]. Then a conserved current
can be constructed by subtracting an axial gluon current, Kµ, from the quark current

J̃0
5µ = J0

5µ − nf
αs
2π
Kµ, with ∂µK

µ = Tr
(
GµνG̃

µν
)
. (2.121)

The modified current, J̃0
5µ, is independent of the renormalisation point, µ2, and the cor-

responding matrix element (Eq. 2.78, p. 15) is thus independent of Q2,

ã0 = a0 + nf
αs
2π

∆g. (2.122)

It is attractive to re-interpret now ã0 as the fraction of the nucleon’s spin carried by quarks
and to ‘explain’ the small value found in experiments for ∆Σ by a large negative gluon
contribution

∆Σ = ∆̃Σ− nf
αs
2π

∆g. (2.123)

However, the axial gluon current, Kµ, is not gauge invariant and corresponds to the
gluon polarisation only in a certain gauge. Therefore this interpretation is not commonly
accepted and has been criticised [81]. In this paper we use ∆Σ and a0 as synonyms and
always denote the quantities ‘corrected’ for the anomalous gluon contribution by a tilde.
Normally one would expect the term, αs∆g, to vanish in the limit Q2 → ∞. However, to
first order perturbation theory the product, αs(Q

2)∆g(Q2), is Q2 independent implying
that ∆g grows like α−1s . This can be seen from the leading-order evolution equations for
the first moments,

d

d lnQ2

(
∆Σ
∆g

)
=
αs
2π

(
0 0
2 1

2β0

)(
∆Σ
∆g

)
, (2.124)

together with the renormalisation group equation 2.101 (p. 19) Therefore, in this case
the usually small ambiguity in the separation of singlet quark and gluon contributions
becomes large.



Chapter 3

The SMC experiment

In the NA47 experiment we measure the cross-section asymmetries for scattering of po-
larised muons from polarised proton and deuteron targets. The main elements of experi-
mental setup are the polarised muon beam, the polarised target, and the scattered muon
forward spectrometer. Magnetic spectrometers and tracking devices upstream and down-
stream of the polarised target determine the momenta of the incoming and scattered muon
and the scattering angle. At the end of the apparatus the scattered muon is identified by
its ability to penetrate a hadron absorber. Downstream of the scattering experiment the
polarisation of the muon beam is measured in a dedicated apparatus. The polarisation of
the muon beam cannot be inverted efficiently unlike that of an electron beam, which can
be flipped from pulse to pulse. Therefore, the double cell structure of the polarised target
is essential to the experimental method. The two cells contain the same target material
polarised in opposite directions.

The geometric acceptance of the spectrometer is about 0.28 leading to a nominal
luminosity of L = 4 × 1031cm−2s−1 or 400 pb−1 for a standard year of data taking. The
effective luminosity is lower by the square of the beam and target polarisations and of the
fraction of unpolarised nucleons resulting in Leff = 3× 1029cm−2s−1.

3.1 The muon beam

A schematic layout of the CERN muon beam line [82,83] is shown in Fig. 3.1. The muon
beam is produced by a primary 450 GeV proton beam from the Super Proton Synchrotron
(SPS), which operates with a period of 14.4 s and an extraction time (spill time) of about
2 s. The proton beam with an intensity of typically 5× 1012/spill impinges on a 500 mm
long and 3 mm thick beryllium plate. Secondary pions and kaons with a momentum band
of about 5 % are selected by the first bending magnet and are then transported through
a 500 m long structure of focusing and defocusing quadruples along with the lower energy
decay muons. At the end of the hadron section the beam is focused onto a 9.9 m long
hadron absorber made of beryllium and located 700 m downstream of the production
target. At this point the beam contains a muon fraction of about 6 % for the standard
pion energy of 208 GeV. Upstream of the absorber the hadron contamination of the beam
is less than 10−6. The absorber is located inside the bending magnet, which selects a
muon momentum band of about 3 %. In the subsequent 300 m long muon section the
beam is cleaned and focused onto the experiment. The original beam line as used for

24
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Figure 3.1: Layout of the CERN muon beam line.

the EMC, BCDMS, and NMC experiments was modified for the SMC experiments to
optimise the muon flux and polarisation and to provide an almost dispersion free beam
with a sufficiently small beam spot throughout the about 100 m long experimental setup.
At the position of the polarised target the beam spot has an root-mean-square width of
about 1.6 cm2.

The muons from the parity violating pion decay π → µν are naturally longitudinally
polarised [84]. The polarisation depends on the decay angle in the pion rest frame with
respect to its direction of flight in the laboratory frame. Positive forward (backward)
muons are polarised antiparallel (parallel) to their momentum in the laboratory frame.
Highest polarisation is obtained for a muon to pion energy ratio close to unity. As a
compromise of muon flux and polarisation an operating point of Eµ/Eπ = 0.91 was chosen
at which a polarisation of −0.8 for positive muons was obtained. With the beam line
setting used during data taking the resulting intensity of positive muons is 4.5× 107/spill
corresponding to about 10−5 muons per incident proton. The maximum muon intensity
at 190 GeV is actually limited by the chambers of the spectrometer and/or the sharing
of protons between different experiments rather than by the tolerable proton intensity
for the production target of about 1013/spill. The SPS can deliver more than 2.5 × 1013

protons/spill to the experiments.
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Figure 3.2: Setup of the beam polarimeter: a) for the muon decay experiments and b) for the
muon-electron scattering experiments.

3.2 The beam-polarisation measurement

The polarisation of the incoming muon beam, Pµ, is measured with a dedicated spectro-
meter installed downstream of the main spectrometer and operated simultaneously with
it. Two independent methods are used. The first method exploits the dependence of
the energy of the decay positron on the polarisation of the parent muon. In the second
method the muon polarisation is obtained from the cross-section asymmetry for scatter-
ing polarised muons from polarised electrons in a magnetised iron foil. The experimental
setups used for the two methods are similar and the analysing magnet and most detectors
are in common (Fig. 3.2).
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In the muon rest frame the positron from the decay µ+ → e++νe+ ν̄µ is preferentially
emitted in the direction of the muon spin and its energy distribution was calculated by
Michel [85]. For decays in flight the Lorentz boost translates the angular dependence in
the rest frame into an energy dependence in the laboratory frame, which is given by [86,87]

dN

dy
= N0

{
5

3
− 3y2 +

4

3
y3 − Pµ

[
1

3
− 3y2 +

8

3
y3
]}

, (3.1)

where y = Ee/Eµ is the positron-to-muon energy ratio and N0 is the number of muon
decays. The positron energy spectrum is shown for three different muon polarisations in
Fig. 3.3. Our determination of the muon polarisation is based on a measurement of the
y slope in the region y ≈ 0.4, where the sensitivity is largest. A detailed description of
the method is given in Ref. [88] and the Ph. D. theses [89–91]. The experimental setup
defines a 30 m long muon decay region in which a fraction of 2.5 × 10−5 of the 190 GeV
muons decay. It starts downstream of an 8 mm thick lead radiator followed by the shower
veto detector, a highly segmented scintillator hodoscope with a horizontal and a vertical
plane. Hits in both planes are required in the trigger and the pulse height information is
used off line to discriminate positrons produced upstream. In the decay region the muon
and the decay positron are tracked by 1 mm pitch multi-wire proportional chambers. In
the decay the positron is emitted under angles smaller than 2 mrad and a determination
of the decay vertex is not attempted. The decay region ends with the 6 m long analysing
magnet, providing a bending power of up to 8.5 Tm. Downstream the positron is tracked
by multi-wire proportional chambers with 2 mm pitch and finally its energy is measured
in a lead-glass array. An energy deposition larger than 15 GeV is required in the trigger.
The momentum measurement of the positron and that of the incident muon, which is in
common with the main experiment (Sect. 3.4), were intercalibrated in dedicated runs to
reduce the systematic uncertainty in the determination of y. In the off-line reconstruc-
tion single tracks are required upstream and downstream of the magnet intersecting in
its centre. The latter requirement eliminates muon decays occurring inside the magnet.
Positrons are identified by comparing the momentum obtained from the tracking to the
energy measured in the lead-glass calorimeter.

Before the muon polarisation can be derived from the positron energy spectrum using
Eq. 3.1 the measured raw spectrum must be corrected for the apparatus’ acceptance and
higher order QED processes. These corrections were determined using a Monte Carlo
simulation involving a detailed description of the apparatus and radiative corrections to
the muon decay [87]. In terms of the polarisation the radiative corrections amount to
0.07, decreasing the value of |Pµ|. The muon polarisation was then fitted to the corrected
spectrum in the range 0.34 ≤ y ≤ 0.6 for the 100 GeV data and 0.29 ≤ y ≤ 0.48 [89] for
190 GeV data. In these regions the apparatus’ acceptance varies by less than 5 %. The
largest contributions to the systematic error come from the spectrometer description and
from the uncertainty in the radiative corrections.

The results for the polarisation of the 100 GeV [20,88] and 190 GeV muon beams [19,21]
are

P 100 GeV
µ = −0.82 ± 0.06 (total)

P 190 GeV
µ = −0.807 ± 0.021 (stat.) ± 0.029 (syst.).

The analysis of the data from the polarised muon-electron scattering experiments is
still in progress. With the longitudinal polarisations of the muon Pµ (→) and the electron
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Figure 3.3: Theoretical positron energy spectrum dN/dy as function of the positron-to-muon
energy ratio y for three different longitudinal polarisations of the muon.

Pe (⇒) the counting rate asymmetry reads

Aexp
µe (y) =

N
→
⇐ −N

→
⇒

N
→
⇐ +N

→
⇒

= PµPeAµe(y). (3.2)

A polarisation measurement is obtained for each bin in y = E′e/Eµ, where E
′
e is the out-

going electron energy and Eµ is the incident muon energy. The cross-section asymmetry,
Aµe, is given by [92]

Aµe(y) = y
1− y/Y + y/2

1− y/Y + y2/2
, (3.3)

where Y = (1+m2
µ/2meEµ)

−1 ≈ 1 is the maximum kinematic limit for y. The apparatus
is largely the same as for the muon decay measurements. The main new element is the
polarised electron target, located upstream of the analysing magnet in the former decay
region. Additional beam chambers track particles upstream and downstream of the target.
The analysing magnet is operated with reversed field and the e− is detected in the lead-
glass calorimeter. The scattered muon is bend to the opposite direction, where it is tracked
in a second spectrometer arm and finally identified by a hodoscope located upstream of a
2 m thick iron absorber. The polarised electron target is a 2.7 mm thick foil made of a
ferromagnetic alloy in a saturated field of 2.3 T. The field along the foil is generated by
a conventional magnet system [93] and reversed in every pause between the beam spills.
The foil is put under an angle of ±25◦ with respect to the beam to keep the magnet
yokes out of the beam region. Runs with opposite angles are combined to cancel the effect
of the transverse field component. The average polarisation of the electrons in the foil
was obtained from the field using a measurement of the magneto-mechanical ratio for a
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similar alloy [94]. The component of the polarisation along the beam direction is found
to be |Pe| = 0.0756 ± 0.008. The relative normalisation of the beam flux for the two
polarisation directions in the target foil is determined using a random trigger technique.
A possibly different acceptance for the unpolarised K-shell electrons due to their higher
momentum [95] was investigated and the effect was found to be negligible. The largest
contributions to the systematic error come from the uncertainty in the flux normalisation,
false asymmetries, and the uncertainties in the target polarisation and the subtraction of
background arising from muons creating electron-positron pairs. The preliminary result
for the polarisation of the 190 GeV muon beam from muon-electron scattering is

P 190 GeV
µ = −0.78 ± 0.03 (stat.) ± 0.02 (syst.).

The cross-section asymmetries were obtained with a preliminary average of P 190 GeV
µ =

0.79 ± 0.03 and the value from the muon decay experiment for the 100 GeV data.
The muon polarisation can also be estimated using a Monte Carlo simulation of the

beam transport [96]. The uncertainty in such a calculation arises from the uncertainties in
the parent pion and in particular the parent kaon distribution, and in the beam phase over
which is integrated. The calculations [83] are in good agreement with the measurements
and the quoted uncertainty is 0.05.

3.3 The polarised target

High luminosities with present day muon beams can only be achieved using thick solid
state targets. Due to the smallness of the nuclear magneton the proton and deuteron
polarisations generated by the Zeeman splitting of the magnetic sublevels in a magnetic
field, B, are small, even for strong fields at low temperatures, T . The (vector) polarisations
are given by the Curie law, which for spin-12 and spin-1 particles reads

P 1

2

=
N 1

2

−N− 1

2

N 1

2

+N− 1

2

= tanh

(
h̄ω

2kT

)
(3.4)

and

P1 =
N1 −N−1

N−1 +N0 +N1
=

4 tanh
(
h̄ω
2kT

)

3 + tanh2
(
h̄ω
2kT

) , (3.5)

with ω = µB/h̄ being the Larmor frequency, µ the magnetic moment of the particle, k the
Boltzmann constant, and Nm is the population of the magnetic sublevel m. For a typical
field of B = 2.5 T and a thermal equilibrium temperature of T = 0.5 K the polarisations
amount to 0.0011, 0.0051, and 0.998 for the deuteron, the proton, and the electron, respec-
tively. The technique of dynamic nuclear polarisation [97] applied in our target systems
transfers part of the under these conditions almost complete electron polarisation to the
nucleons using microwave irradiation.

The principle of dynamic nuclear polarisation can be illustrated in the simple model
of an electron-proton pair in a strong magnetic field, B. In Fig. 3.4 the spin directions
of the electron (↑) and the proton (⇑) in the four possible states are shown. The energy
splitting is given by the Larmor frequencies of the electron, ωe/2π = 70 GHz, and the
proton, ωp/2π = 106 MHz, for B = 2.5 T. At temperature of 0.5 K basically only the two
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Figure 3.4: Energy levels of an electron-proton pair in a strong magnetic field, B. The arrows
indicate the direction of the proton ⇑ and electron ↑ spins.

low lying states are populated where the electron’s magnetic moment is aligned with the
field. The transitions | ↓⇑〉 → |↑⇓〉 and | ↓⇓〉 → |↑⇑〉 shown in Fig. 3.4 can be induced by
microwaves with a frequency of ωe+ωp and of ωe−ωp, respectively. They are followed by
immediate relaxation of the electron spin within milliseconds while the relaxation of the
proton spin is about 106 times slower. This leads to a build-up of a negative (positive)
proton polarisation for ωe + ωp (ωe − ωp). The forbidden double spin-flip transitions can
only occur at a considerable rate because of a mixing of the pure states due to the spin-
spin interaction (the solid effect). In real materials paramagnetic centres function as ‘free’
electrons. Protons not close to such a centre are polarised by the mechanism of spin
diffusion, which arises from spin-spin interactions between protons.

In 1991/92 the NA47 experiments started out with a deuteron target using the up-
graded polarised target system originally designed and constructed by the EMC [17, 98].
An additional dipole coil wound on the microwave cavity enabled us to reverse the target
spin orientations by the rotation of the magnetic field vector as described below. However,
the dipole field of 0.2 T was not strong enough to hold the polarisation in transverse ori-
entation over a longer period. In parallel a new polarised target system with larger target
cells, a more powerful dipole magnet, and a more homogeneous magnetic field was designed
and constructed. The new target (Fig. 3.5) was put into operation for the proton experi-
ments in May 1993. This complex target system comprises the target materials located in
the target cells, the 3He/4He dilution refrigerator, the microwave system, the supercon-
ducting magnet system, and the NMR system for the polarisation measurement. These
components are shortly discussed below. Many details of the construction, operation, and
performance are given in the Ph. D. theses [99–102].

Materials for which dynamic nuclear polarisation is known to work well include alcohols
and ammonia. Both of them contain large fractions of unpolarisable nucleons bound in
the carbon, oxygen, and nitrogen nuclei. The paramagnetic centres are in the case of
butanol added in form of a chemical dopant, whereas in ammonia they must be generated
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Figure 3.5: Schematic drawing of the SMC polarised target. The muon beam enters from the
left side.

by irradiation with particle beams at low temperatures. While NH3 can be irradiated in
a liquid nitrogen cryostat at an external accelerator, the deuterated material, ND3, must
be irradiated in situ at liquid helium temperatures. At the SLAC electron beam ND3 was
used successfully [25], but the energy deposited by the muon beam is not sufficient to create
enough of these centres. Therefore, ND3 was not an option for the SMC experiments. In
order to have the same chemical material for both, the proton and the deuteron targets
and because of its in general simpler handling, butanol, C4H9OH, and deuterated butanol
were chosen as target materials initially. The error on the cross-section asymmetry is
for the same amount of raw data inversely proportional to the fraction of polarisable
nucleons in the target material and their polarisation. This fraction is about 1.3 times
larger for ammonia than for butanol, roughly 3/17 versus 10/74. Therefore, for our final
1996 proton run an ammonia target was selected, which was produced by and irradiated
at the University of Bonn.

The target material is contained in two 650 mm long cylindric cells with a diameter
of 50 mm. For the 1993 proton run 600 mm long cells were used. The material in the
upstream and the downstream cell has opposite polarisation. In beam direction the two
cells are separated by 200 mm. Thus, events can be attributed to a particular target cell
using the reconstructed interaction point. The target cells form the innermost part of
the target system. The next layers are formed by the mixing chamber, followed by the
microwave cavity, and finally by the magnet coils and their cryostat.

The principle of the 3He/4He dilution refrigerator is based on the fact that at temper-
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Figure 3.6: Superposition of the solenoid and dipole magnetic fields, B(t), during a reversal
of the target spins by a field rotation, starting e.g. at point A and ending at point B.

atures below 0.87 K a mixture of 3He and 4He separates into a 3He rich phase and a 4He
rich phase, usually called the dilute phase. The lighter 3He rich phase swims on top of the
dilute phase. Pumping on the dilute phase reduces the 3He concentration in it due to the
higher vapour pressure of 3He. Cooling occurs by the transition of the more energetic 3He
atoms from the 3He rich phase to the dilute phase. The principle is similar to that of an
evaporation refrigerator where the part of the vapour phase is taken by the dilute phase.
However, the decisive difference is that the 3He concentration in the dilute phase does not
vanish at zero temperature, but approaches a value of 6.5 %. Thus, a dilution refrigerator
works down to very low temperatures, while a 4He evaporation refrigerator is limited to
about 1 K due to the decreasing vapour pressure. In the SMC dilution refrigerator [103]
the 3He rich phase and the dilute phase coexist in the mixing chamber, which contains the
target cells. The pumping on the dilute phase occurs in the still, which is heated to about
1 K and is connected to the mixing chamber via a heat exchanger. The helium vapour
is then compressed by eight roots blower pumps, precooled using an external 4He supply,
and finally fed back via the heat exchanger into the upper 3He rich phase in the mixing
chamber. The cooling power is determined by the rate at which the phase transition of
the 3He occurs, i.e. the pumping speed. With the pumping rate of 13500 m3/h a cooling
power of about 1 W is obtained at 400 mK, which is a typical temperature in the polarising
mode with microwave irradiation. When the microwave power is switched off, the target
can be operated in “frozen spin” mode at 30–50 mK.

Two independent microwave sources of the extended-interaction-oscillator type pro-
vide the different microwave frequencies needed to generate opposite polarisations in the
two target cells. One of them is connected to the upstream part and the other to the
downstream part of the 1700 mm long and 210 mm wide microwave cavity. The two parts
of the cavity are separated by microwave stoppers providing an attenuation of 20–30 dB.
The inner part of the microwave stopper is located in the gap between the target cells
inside the mixing chamber and was constructed in a way that a free flow of the helium
coolant is not hindered. During the process of polarisation the polarisation increase is
monitored continuously and the microwave frequencies are adjusted to obtain fastest po-
larisation growth. Typical polarisation build-up times are a few hours, but to obtain the
maximum value takes several days. During the 1992 deuteron run we found accidentally
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Figure 3.7: NMR signal S as function of the oscillator frequency ν = ω/2π for the deuteron
(left) and the proton (right). The calibration signals in the upper row are taken with the
natural polarisation at 1 K and the signals from the highly polarised nuclei in the bottom row
were taken at Pd = −0.48 and Pp = 0.77. For the proton an ammonia signal is shown.

that a modulation of the microwave frequency with an amplitude of 30 MHz and a fre-
quency in the order of 1 kHz has a dramatic effect on the polarisation of deuterons in
butanol, increasing the final value from 0.2 to above 0.4 [104,105]. Only a small increase
of 0.05 in the already high polarisation of the proton material was observed.

The superconducting magnet system [106] comprises the main solenoid, 16 correction
coils, and a saddle-type dipole coil. The solenoid together with the correction coils provides
a longitudinal field of 2.5 T with a homogeneity of ∆B/B = ±3.5 × 10−5 over the target
volume of 1500 mm length and 50 mm diameter. To invert the spin directions in the
target material the solenoid field is first ramped down to 0.5 T and then varied together
with the dipole field in a way that the resulting field vector rotates slowly from the initial
orientation, e.g. antiparallel to the beam, to the final parallel orientation (Fig. 3.6). The
procedure is performed in frozen spin mode at about 50 mK were the spin-lattice relaxation
time exceeds 1000 h for the maximum dipole field of 0.5 T. For the measurement of the
structure function g2 the rotation can be interrupted at the intermediate state, where the
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target is transversely polarised. For the computer controlled reversal procedure [107] the
beam has to be interrupted for only about 10 min.

The polarisation is measured by an 10-channel continuous wave NMR system [104,108].
Five NMR coils connected to series Q-meter circuits [109] were placed in each of the target
cells. The coils were embedded in the target material except for the 1994 deuteron run,
where they were mounted on the outer surface of the target cells. The oscillator frequency
is swept over a full range of 400–600 Hz around the proton’s (deuteron’s) Larmor frequency,
ωp/2π = 106 MHz (ωd/2π = 16 MHz). The signal is a superposition of the parabola-
shaped Q-curve given by the characteristics of the circuit and the NMR signal. The
Q-curve is measured in dedicated runs, where the Larmor frequency is shifted out of the
resonance of the circuit by increasing the solenoid field by 5 %. This is usually done when
ramping up the solenoid at the end of a field rotation. After subtraction of the Q-curve
the area under the signal is proportional to the wanted polarisation. The area is calibrated
about three times per year by dedicated measurements of the small natural polarisation
in thermal equilibrium, where the polarisation is well known from the Curie law, Eq. 3.5.
A stable temperature is guaranteed by performing the calibration at T = 1 K with 4He
rather than in the dilution mode. In Fig. 3.7 the calibration signals and the signals from the
polarised material are shown for both, the proton and the deuteron. The measurement of
the deuteron signal is particularly difficult because of the small polarisation of 0.0005 and
the broadening of the signal due to the interaction of the deuteron’s quadrupol moment
with the electric field gradient in the C–D and O–D bonds.

The radial homogeneity of the deuteron polarisation was investigated using small coils
placed in the inner and outer target regions at the same longitudinal position. No sig-
nificant radial dependence was found and the uncertainty is included in the errors. The
final accuracy of the target polarisation measurements is ∆P/P = 0.03 for the proton and
0.054 for the deuteron.

The spin directions in the target cells were reversed by rotation of the magnetic field
three or five times per day. The polarisation was also reversed by microwaves every few
weeks, to cancel possible systematic effects connected to the direction of the solenoid
field. Within the statistical precision, such effects were never observed. The average
polarisations are 0.86 for the proton and 0.48 for the deuteron (in 1994) with maximum
polarisations of 0.94 and 0.61, respectively.

3.4 The spectrometer and event reconstruction

The most upstream part of the spectrometer is the beam momentum station (BMS) at the
end of the beam line tunnel close to the experimental area. The momentum of the incident
muon is measured using two telescopes of scintillator hodoscopes located upstream and
downstream of the last vertical bending magnet as indicated in Fig. 3.1. The hits in the
four planes are correlated by their time information. For the standard muon energy of
190 GeV the precision of the momentum measurement is ∆p/p = 5× 10−3.

The general layout of the NA47 spectrometer is shown in Figs. 3.8 and 3.9 and the
detector properties summarised in Table 3.1. It was originally designed by the EMC [110]
and then used by the NMC. Upstream of the polarised target the beam is tracked by
two scintillator hodoscopes stations (BHA and BHB) with a lever arm of 10 m. The
in total 16 planes in 4 orientations are made of 20 scintillator strips each covering an
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Table 3.1: Detectors of the main spectrometer.
Hodo- Modules Pitch Size Wire- Modules Pitch Size Dead
scope ×Planes (cm) (cm) chamber ×Planes (cm) (cm) zone(cm)

BHA-B 2×8 0.4 8×8 P0A-E 5×8 0.1 ⊘ 14 —
V123 5×1 — various PV1 1×4 0.2 150×94 —
H1 2 7.0 250×130 PV2 1×6 0.2 154×100 ⊘ 8
H2 cal 4 28.0 560×280 P1ab23 4×3 0.2 180×80 ⊘ 13
H3 2 15.0 750×340 W12 2×8 2.0 220×120 ⊘ 12
H4 1 15.0 996×435 W45 6×4 4.0 530×260 ⊘ 13–25
H1’,3’,4’ 1 1.4 50×50 P45 5×2 0.2 ⊘ 90 ⊘ 12
S1,2,4 1 — various ST67 4×8 1.0 410×410 ⊘ 16

P67 4×2 0.2 ⊘ 90 ⊘ 12
DT67 3×4 5.2 500×420 83×83

area of 80 × 80 mm2. Planes of the same orientation are staggered yielding an effective
resolution of 2/

√
12 mm. The spatial resolution is improved by a multi-wire proportional

chamber, P0B, of the so-called P0-type with eight staggered planes of 1 mm pitch in four
orientations installed close to the second hodoscope station (BHB) just upstream of the
polarised target. From 1995 onwards the resolution was further improved by micro-strip
gas chamber telescopes located upstream and downstream of the polarised target [111].

The event reconstruction starts with the trajectory of the beam muon, which is deter-
mined with a precision of about 0.1 mrad. No tracking is performed in the about 70 m
long region between the beam momentum station and the first beam hodoscope (BHA).
The beam track is correlated to the momentum measurement by timing. To hold the
target spins in transverse orientation the dipole field of the polarised target is turned on
during the g2 measurements performed at 100 GeV. To compensate the bending power of
1.05 Tm an additional dipole magnet, B11, upstream of the target deflects the beam in a
way that it is brought back to its nominal position by the target’s dipole field.

Downstream of the polarised target the scattered muon spectrometer determines the
muon’s trajectory and momentum, using more than 100 planes of tracking devices up-
stream and downstream of a conventional large-aperture forward spectrometer magnet,
the FSM. We start the description of this part of the spectrometer at the downstream
end, where the reconstruction procedure for the scattered muon begins, and proceed from
there to the target. A two metre thick hadron absorber made of iron filters out the muon,
which is then tracked downstream by 16 planes of plastic streamer tubes of 1 cm cell size
equipped with a 32-plane strip read-out [112–115]. Because of the high particle flux the
streamer tubes cannot be operated in the high voltage plateau. This causes a strong de-
pendence of the chamber efficiencies on the temperature and pressure of the chamber gas.
Therefore a feedback loop was developed [112,114] stabilising the streamer charge and thus
the chamber efficiency by adjusting the high voltage. The streamer charge is measured on
the sense wires of a small dedicated chamber connected to the same gas system and placed
in the beam halo. Close to the beam multi-wire proportional chambers, P67, back up the
detection system. The outer region is also covered by drift tube detectors, DT67. There
is no need of a high spatial resolution in this region because of the multiple scattering
in the absorber. Once the scattered muon is found its track is extrapolated backward
through the absorber and the 2 m thick calorimeter, H2, consisting of an electromagnetic
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Figure 3.10: Reconstructed interaction vertices along the beam direction. The vertices between
the two target cells arise from the 3He/4He coolant.
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Figure 3.11: Reconstructed interaction vertices perpendicular to the beam direction. Also
visible is a cross section through a one-loop NMR coil made from a thin hollow tube.

and a hadronic section. The information from the chambers downstream of the absorber
is discarded because of its limited precision once an upstream continuation of the track is
found.

The next step is to search for tracks in the field free region between the spectrometer
magnet and the calorimeter within in a certain road width around the extrapolated muon
track. The large drift chambers, W12, with 16 planes at the upstream end and W45 with
24 planes at the downstream end of this region, are deadened in the beam region and
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are backed up by the multi-wire proportional chambers, P0E with 8 planes and P45 with
10 planes. It is also searched for tracks not having a continuation behind the absorber,
belonging to electrons or hadrons, which can be distinguished by the ratio of energy
deposited in the electromagnetic part of the calorimeter to the total deposited energy.
The hadron tracks are used in the analysis of semi-inclusive data, see Sect. 4.2.3.

Next towards the target is the spectrometer magnet with an aperture of 2 × 1 m2,
which was operated with bending powers of 2.3 Tm and 4.4 Tm for the two beam energies
of 100 GeV and 190 GeV, respectively. For the pattern recognition the detection of the
particle trajectories inside the 4 m long spectrometer magnet is mandatory because of
the high particle multiplicities of the events and the length of the magnet. Initially three
multi-wire proportional chambers, P1, P2, and P3, with three planes each were located
inside the magnet, but it turned out that the redundancy of this system was marginal
and caused the largest contributions to the false asymmetries due to efficiency variations.
Therefore a fourth chamber and a feedback system similar to the one discussed for the
streamer tubes were installed in 1993 [116]. The gain of the gas amplification is monitored
in a dedicated small chamber in which a 55Fe source is incorporated. The 5.9 keV photons
are absorbed by the K-shell electrons of argon and the emitted photo-electrons provide a
constant number of electron-ion pairs. The reconstruction in the field volume is the most
complicated part and the addition of the fourth chamber required major modifications
in the complex pattern recognition algorithm [112]. The reconstruction starts with the
non-dispersive vertical projection, where the tracks are straight lines. In the dispersive
plane the tracks downstream of the magnet are connected by arcs to the various hits in
the magnet chambers demanding that the resulting upstream track points to the target.
If enough hits are found on the arc the particle’s momentum is determined in a spline
fit [117] using a detailed map of the magnetic field. When several possible continuations
are found, the one with the best chi-square value of the fit is kept.

The scattering angle is mainly determined by the chambers between the polarised
target and the spectrometer magnet. Apart from the microstrip gas chambers in use since
1995, in this region only multi-wire proportional chambers are used. Large 2 mm pitch
chambers, PV1 and PV2 with together 10 planes, cover the upstream magnet aperture,
beam chambers of the P0-type, P0C and P0D with 8 planes each, cover the beam region.
The final trajectory is refitted using the information from all track segments between the
polarised target and the hadron absorber. In this fit the momentum of the scattered
muon and its direction are determined with an average precision of ∆p′µ/p

′
µ = 1 % and of

0.4 mrad, respectively.

The final step is the vertex finding in which the scattered muon track and the beam
track are propagated into the target field using a Runge–Kutta integration. The aver-
age energy loss and the increasing uncertainty of the track parameters due to multiple
scattering in the target material are taken into account. Average uncertainties in the
reconstruction of the interaction vertex are 0.3 mm transverse to the beam and 30 mm in
beam direction, the latter depending strongly on the scattering angle. The reconstructed
interaction vertices are shown in Figs. 3.10 and 3.11. The interaction point defines the
target cell and thus the polarisation of the target nucleon.

The trigger logics is shown in Fig. 3.12. It is based on the recognition of the scattered
muon and does not include the beam muon. Due to the high flux of halo muons compared
to the interaction rate a sophisticated veto system is indispensable to avoid that halo muons
are confused with scattered muons. Altogether five veto scintillator walls, located between



3.4. The spectrometer and event reconstruction 39

Target

M3

Scatteredµ

Iron Wall
Absorber

Angle

H1H

C1

Clip Line

H3VΣ

Σ V

H1V

Cut

M2

Matrix

T1
C2

H1V

Pointing
Target

Pointing
Target

Vertical
H3V

Scaling

H4H
Horizontal

M7

M0

H3H

H3H

H3V

H1H

M1

H3V
H1V

H2

M6

Veto
FSM

H3H

H3H

H4H

s

and
Kinematic

Figure 3.12: Logics of the main physics trigger.



40 CHAPTER 3. THE SMC EXPERIMENT

Table 3.2: Data taking of the SMC experiment.
Year Beam Experi- Target Events

energy ment material polari- after cuts
(GeV) sation (106)

1991 100 setup deuteron butanol 0.20 —
1992 100 A‖ deuteron butanol 0.22–0.38 3.5

1993 190 A‖ proton butanol 0.86 4.5

100 A⊥ proton butanol 0.80 0.9
1994 190 A‖ deuteron butanol 0.49 6.4

1995 190 A‖ deuteron butanol 0.50 8.5

190 A⊥ deuteron butanol 0.44 2.5
1996 190 A‖ proton ammonia 0.89

the beam momentum station and the polarised target, cover areas ranging from 6× 4 m2

to 25× 25 cm2. The one closest to the target has the smallest beam hole with a diameter
of about 7 cm. The trigger uses coincidences between five planes of scintillator hodoscopes
located upstream of the spectrometer magnet (H1), downstream of the hadron absorber
(H3) and downstream of a second 40 cm thick absorber at the very end of the spectrometer
(H4). In the first two locations two planes with vertical and horizontal strips of 10–15 cm
width are installed, while the last detector consists of only horizontal strips, sensitive to
the non-dispersive coordinate. The coincidences between the strips of different planes are
programmable and optimised using Monte Carlo simulations. The patterns provide target
pointing in the non-dispersive and to some extend in the dispersive coordinate, a minimum
angle cut, and a cut on the fraction of radiative events. The trigger is reasonably clean
and about 60 % of the registered events can be fully reconstructed. In addition to the
main physics trigger, there are dedicated triggers for small scattering angles and the small
x region [118], as well as a calorimetric trigger and triggers for calibration purposes and
online monitoring.

3.5 Data taking

The NA47 experiment was set up in 1991 with a deuteron target and the modified polarised
target system of the EMC. Data taking started in 1992 and in 1993 the SMC polarised
target was put into operation with a proton target. Table 3.2 summarises the operation
of the NA47 experiment from 1991–1996. The experiment was running during the full
SPS proton operation period, typically 120 days per year. The combined availibitity
of spectrometer and target was above 90 %. In Fig. 3.13 the integerated beam flux
(accumulated H5) and the accumulated data runs are shown together with the polarisation
in the two target cells and the beam intensity (H5) as a function of time for the entire
1993 operation.
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Figure 3.13: Integrated muon flux, accumulated data runs, target polarisation, and beam
intensity as a function of time (1 shift = 8 h) for the entire 1993 data taking.



Chapter 4

Analysis of the SMC data

In this chapter we discuss the technical details of the analysis. At the end the main SMC
results are given. However, the comparison with data from other experiments and the
discussion of the physics implications are deferred to chapter 5, where these topics are
discussed in a broader context.

4.1 Evaluation of the asymmetries

The evaluation of the cross-section asymmetries from the event numbers takes full advan-
tage of the double-cell target setup. In the evaluation of the longitudinal asymmetry, A1,
the asymmetry A2 is assumed to vanish, which for the SMC kinematics is a good approx-
imation. The asymmetries are determined in bins of x averaging over the Q2 range of the
data in the x bin. We assume that the ratio g1/F1 scales rather than A1 and therefore
average the quantity A1 defined by

A1 :=
A‖

D ≈ A1

1 + γ2
≈ g1
F1
, (4.1)

with D = D(1 + γ2) and γ2 = Q2/ν2. For the SMC kinematics the factor 1 + γ2 deviates
at most by 1.5 % from unity at large x and thus D ≃ D and A1 ≃ A1. The asymmetries
are also analysed in (x,Q2) bins to study Q2 dependences.

In the following sections the asymmetries for the proton and the deuteron are discussed
together. If different, formulæ and examples refer to the proton case unless otherwise
stated.

4.1.1 Event yields

The number of events, N , from a target cell is given by

N = a

{(
Φ→n⇒p +Φ←n⇐p

)
σ

→
⇒ +

(
Φ→n⇐p +Φ←n⇒p

)
σ

→
⇐ +Φ

∑

A

nAσA

}
, (4.2)

with the acceptance, a, the integrated muon flux, Φ = Φ→+Φ←, the number of polarisable
protons per unit area, np = n⇒p + n⇐p , and the differential cross sections integrated over
the x and Q2 interval, σ. The sum runs over all nuclei, A, in which the unpolarisable

42
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nucleons are bound, and nA and σA are the corresponding number of nucleons and cross
sections. With the beam and target polarisations and the cross-section asymmetry

Pµ =
Φ→ − Φ←

Φ→ +Φ←
, Pt =

n⇒p − n⇐p
n⇒p + n⇐p

, A‖ =
σ

→
⇐ − σ

→
⇒

σ
→
⇐ + σ

→
⇒
, (4.3)

we can cast Eq. 4.2 in the form

N = aΦn̂σ̂
{
1− PµPtfA‖

}
. (4.4)

For positive polarisations the spins point along the beam direction. The average cross
section for the unpolarised target material is given by σ̂ = (npσ̄ +

∑
A nAσA)/n̂, with the

total number of nucleons per unit area, n̂ = np +
∑
A nA and the spin-averaged proton

cross section, σ̄ = 1
2(σ

→
⇐ + σ

→
⇒ ). The dilution factor, f , accounts for the unpolarisable

nucleons and is given by

f =
npσ̄

npσ̄ +
∑
A nAσA

. (4.5)

Equation 4.4, which is the starting point for the evaluation of the cross-section asymmetry
A‖, also holds for the deuteron with the polarisation defined in Eq. 3.5 and assuming that

the structure function bd1 vanishes (Eq. 2.52).

4.1.2 Asymmetry evaluation

Several methods to determine the asymmetry A‖ from Eq. 4.4 were investigated [119,120].
The questions addressed are the stability with respect to possible false asymmetries arising
from time-varying acceptances, the treatment of the time variation of the polarisations,
and the different analysing power of events in the same x bin due to the variation of the
(modified) depolarisation factor, D, and the dilution factor, f , with Q2. The latter varies
due to the strong sensitivity of the radiative corrections on y = Q2/(2xME). The splitting
into too small (x,Q2) bins causes biases owing to small event numbers in a single bin.
The method finally adopted [121] weights each event with its analysing power, fD. The
asymmetries obtained from two consecutive data sets with opposite target polarisations
are averaged to cancel the different acceptances for the two target cells. The method
is derived as the weighted average of the asymmetries obtained in hypothetical Q2 bins
for fixed x in the limit of infinitesimally small bin sizes. It can also be obtained from a
maximum likelihood principle [111, 122]. Possible biases introduced by the method were
studied using Monte Carlo simulations [120] with the actual size and kinematics of our
data sets. Within the accuracy of these studies no bias was found. In a refined re-analysis
presently being carried out [123] the weighting is extended to include the variation of
the beam polarisation with the incident muon energy on an event-by-event basis. Such a
dependence in the order as expected for a fixed parent-pion energy was found in a recent
still preliminary analysis of the beam polarisation [91].

In the counting rate asymmetry constructed from the event numbers originating in the
upstream and downstream target cells,

AN =
Nu −Nd

Nu +Nd
, (4.6)
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the average cross section, σ̂, and the integrated muon flux Φ, cancel. This asymmetry
ranges from 0.004 at small x to 0.02 at large x. From Eq. 4.4 we find

AN =
tu − td − PµfA‖ (tuPu − tdPd)

tu + td − PµfA‖ (tuPu + tdPd)
, (4.7)

with t = an̂. Each of the factors Pµ, f , and A‖ is smaller than one and in our setup
Pu ≃ −Pd and tu ≃ td. Therefore the last term in the denominator is in the order of 10−3

of the first term tu+td and will be neglected in the following. Now we consider the mean of
two counting rate asymmetries, e.g. Ai

N measured with inward pointing polarisations for
the two target cells, ( ⇒ ⇐ ), and Ao

N with outward pointing polarisations, ( ⇐ ⇒ ).
In their mean, the ratio (tu − td)/(tu + td) cancels to the extent that tiu,d = tou,d and we
obtain

A1 = − 1

2PµPtfD
(
Ai
N −Ao

N

)
−Afalse (4.8)

with the “false” asymmetry due to acceptance variations

Afalse = − 1

2PtPµfD

{(
tu − td
tu + td

)i

−
(
tu − td
tu + td

)o
}
. (4.9)

The average target polarisation (P i
u ≃ −P o

u , etc.) is given by

Pt =
1

2

{(
tuPu − tdPd

tu + td

)i

−
(
tuPu − tdPd

tu + td

)o
}
. (4.10)

To take into account the variation of Q2 and thus of f and D within a particular x bin,
the procedure can be generalised to the weighted average of the AN/fD values for in-
finitesimally small Q2 bins. The variation of AN/fD with Q2 within an x bin is small.
For small asymmetries the number of events from the two target cells is similar and the
statistical error of AN becomes (Nu +Nd)

−1/2. It is convenient to introduce the weights,
w = (fD)2, and the subscripts, u and d, which run over the events from the upstream and
the downstream target cell, respectively. With these definitions the weighted average of
AN/fD takes the form

〈
AN
fD

〉
=

∑
w

1/2
u −∑w

1/2
d∑

wu +
∑
wd

. (4.11)

The asymmetry A1 is then obtained by replacing AN/fD in Eq. 4.8 by 〈AN/fD〉

A1 = − 1

2PµPt





(∑
w

1/2
u −∑w

1/2
d∑

wu +
∑
wd

)i

−
(∑

w
1/2
u −∑w

1/2
d∑

wu +
∑
wd

)o


−Afalse. (4.12)

An analogous replacement has to be made in the “false” asymmetry, Eq. 4.9 for the ratio
(tu− td)/(tu+ td). The average target polarisation remains unchanged. Note that in order
to cancel the different acceptances for the two target cells in Eq. 4.9 only quantities which
do not change from one target polarisation to the next may be included in the weight w.
Therefore w can be defined to also include Pµ. However, including the target polarisation
generates an artificial “false” asymmetry even if the acceptances and target thickness for
the two cells are equal.
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For transverse up or downward pointing target polarisation the event yields are given
by a formula similar to Eq. 4.4

N(ϕ) = aΦn̂σ̂ {1− Pµ|Pt|f cosϕA⊥} . (4.13)

involving the perpendicular asymmetry, A⊥, (Eq. 2.38), and the azimuth angle, ϕ, between
the scattering and the polarisation plane. The definition of ϕ accounts already for the
polarisation direction and therefore only the absolute value |Pt| appears in Eq. 4.13. The
analysing power is proportional to cosϕ and hence the weight becomes w = (fd cosϕ)2.
The rôle of the events from the two target cells is now played by events in the top (t)
and the bottom (b) part of the detector and the counting rate asymmetry AN (ϕ) =
(N(ϕ)−N(π−ϕ))/(N(ϕ)+N(π−ϕ)) can be determined from each target cell separately.
As for the longitudinal case the different acceptances, here for the top and bottom parts,
cancel in the average of two opposite polarisations (up, down)

A⊥
d

= − 1

2Pµ|Pt|





(∑
t w

1/2
t −∑b w

1/2
b∑

twt +
∑
bwb

)up

−
(∑

t w
1/2
t −∑b w

1/2
b∑

t wt +
∑
bwb

)down


−A⊥false,

(4.14)
where the combinations (up, t) and (down, b) include events with −π/2 ≤ ϕ < π/2, while
the combinations (up, b) and (down, t) include the events with −π/2 ≤ π − ϕ < π/2.

The average of a kinematic variable, ξ, over all events i in an x bin is calculated using
the appropriate weights, 〈ξ〉 =∑

iwiξi/
∑
i wi.

4.1.3 Time-dependent acceptance variations

As discussed in the previous section the different acceptances for the two target cells and
those for muons scattered into the upper and lower part of the spectrometer cancel in
the evaluation of the parallel and perpendicular asymmetries, respectively. This assumes
that the acceptance ratios, tu/td, in Eq. 4.9 are the same for the two measurements
combined. Note that it is not required that the acceptances themselves are stable. Because
of the smallness of the counting rate asymmetries the stability of this ratio was a major
concern, which triggered several upgrades in the spectrometer, discussed in Sect. 3.4. In
the grouping of data sets care is taken that large efficiency changes and other changes in
the apparatus and the beam did not occur.

The study of the remaining false asymmetries is based on data and starts from a
detailed description of the time variations of the chamber plane efficiencies. The average
plane efficiencies of some detectors along the spectrometer are shown in Fig. 4.1 as a
function of time. The false asymmetry for an asymmetry obtained from two data sets, A
and B, with target polarisations PA

u,d and PB
u,d is estimated by the following method. The

data of one set, A, are analysed twice, once assuming the correct polarisation PA (analysis
AA) and once assuming the polarisation after reversal, PB, (analysis AB). Obviously the
resulting asymmetry must vanish. Now the measured changes of all plane efficiencies
from measurement A to measurement B are imposed in the following way. If an efficiency
decreased, hits are dropped randomly in analysis AB, while for increasing efficiency hits are
dropped in analysis AA. An event is discarded, when after dropping of the hits the event
would not have been found by the reconstruction algorithm anymore. This procedure and
the whole method was crosschecked using a Monte Carlo simulation [112].



46 CHAPTER 4. ANALYSIS OF THE SMC DATA

0.9

0.95

e
ff
ic

ie
n

cy

0.85

0.9

0.85

0.9

0.9

0.95

0.8

0.85

50 100 150 200 250 300 350

time [orientations]

Figure 4.1: Plane efficiencies for several detectors as a function of time. Between two entries
the target polarisations were inverted; from Ref. [116].

For the A1 measurement the false asymmetries, Afalse, are found to be smaller than
0.003 for both, the proton [116] and the deuteron [102]. For A⊥/d the effect of the
by cosϕ reduced analysing power is compensated by a partial cancellation of the false
asymmetries in the averaged asymmetry obtained from the upstream and the downstream
target cell [112]. This leads to a similar false asymmetries as in the case of A1.

4.1.4 The dilution due to unpolarisable nucleons

The dilution factor, f , which accounts for the unpolarisable nucleons, is defined in terms
of the total differential cross sections for the different target nuclei by Eq. 4.5. Apart
from the target material there are the NMR coils and the 3He/4He coolant in the target
volume. In addition vertex smearing can cause contributions from the support structure
of the target cells and the microwave stoppers. Since the materials are not distributed
homogeneously over the target volume, their contribution is weighted with the distribution
of interaction vertices in the plane perpendicular to the beam.

The ratios of the total differential cross sections of the proton and different nuclei to
that of the deuteron, σp/σd and σA/σd, were measured in several experiments studying



4.1. Evaluation of the asymmetries 47

0.8

0.9

1

10
-4

10
-3

10
-2

10
-1

1

F2
C/F2

d

x

NMC

Figure 4.2: Carbon-to-deuteron structure
function ratio, FC

2 /F
d
2 , as a function of x.

0.2

0.4

0.6

0.8

1

10
-2

10
-1

1

F2
n/F2

p

x

NMC

Figure 4.3: Neutron-to-proton structure func-
tion ratio, F n

2 /F
p
2 , as a function of x.

0.05

0.1

0.15

0.2

0.25

10
-2

10
-1

x

f
deuteron

proton

Figure 4.4: Average dilution factor, f , for the
proton and deuteron target as function of x.

-0.01

-0.005

0

0.005

0.01

10
-2

10
-1

x

∆rcA1

deuteron

proton

Figure 4.5: Additive radiative corrections,
∆rcA1, for the proton and deuteron asymme-
tries as a function of x.



48 CHAPTER 4. ANALYSIS OF THE SMC DATA

the classical EMC effect [8]. The most precise results are those from the NMC, which
were obtained at about the same kinematics, and actually with the same spectrometer
and beam. They are published in the form of structure function ratios, F n

2 /F
p
2 [124] and

FA2 /F
d
2 for A = He, 6Li, C, and Ca [125, 126]. As an example the carbon-to-deuteron

structure function ratio is shown in Fig. 4.2. A significant, although small, Q2 dependence
was only observed for the ratio F n

2 /F
p
2 for which a parametrisation in x and Q2 is available.

For the other nuclei present in the target volume, 3He, O, F, Na, Cr, Ni, and Cu, an A-
dependent parametrisation of the structure function ratios is used based on the data from
the NMC and the SLAC experiment E-139 [127].

The cross-section ratios can be recovered by using exactly the inverse procedure which
led from the cross section ratios to the structure function ratios in the first place. The
radiative corrections are recalculated using the same computer code, TERAD [128], and
the same inputs as in Ref. [125]. Also taken out are corrections made for the difference of
the proton and neutron structure functions in non-isoscalar targets

σA1γ

σd1γ
=
FA2
F d
2

(
2Z

A
+
A− 2Z

A

F n
2

F d
2

)
, (4.15)

where the Born cross sections, σ1γ , are defined per nucleon. The resulting average dilution
factors for the proton and the deuteron are shown in Fig. 4.4. The drop at small x is due
to the large number of radiative events in the high-Z nuclei and the rise at large x for the
proton is due to the ratio F n

2 /F
p
2 (Fig. 4.3) which drops from about unity at x = 0, where

the sea quarks dominate, to about 0.3 at x = 0.8.

4.1.5 Radiative corrections

Structure functions are defined for the one-photon-exchange process. Contributions to
the cross section from higher-order electromagnetic processes must be subtracted from
the experimental results. For the spin asymmetries radiative corrections come in at two
places, namely for the spin-averaged cross sections in the dilution factor and for the spin-
dependent cross sections in the asymmetry itself.

For the spin-averaged part the computer code TERAD is used, based on the method
of Akhundov, Bardin, and Shumeiko [128]. It calculates electromagnetic corrections up to
order α4 and corrections due to the electroweak γZ interference of order αGF and higher
order electroweak processes. Corrections to the exchanged boson, to the lepton current,
and to the hadron current are considered. The latter are small and are calculated in the
framework of the quark parton model. The radiative corrections are largest for small x
and large y = ν/E, where they are dominated by the corrections to the lepton current.
The emission of a photon from the incident or scattered lepton changes the kinematics
at the scattering vertex. Hence an apparently deep-inelastic event can be due to elastic
scattering from a nucleus, to quasi-elastic scattering from a bound nucleon, or to deep-
inelastic scattering from a quark for a different kinematics. To the cross section at a point
(x0, y0) tails from the whole kinematic region x ≥ x0 and y ≤ y0 contribute. For the same
x and y the corrections are largely independent of the energy of the incident lepton.

The radiative corrections to the asymmetries are calculated with the computer code
POLRAD [129], which treats the first order spin-dependent electromagnetic corrections
exactly. Multiple soft-photon emission in the elastic and inelastic tails is accounted for
by an exponentiation procedure. Corrections to the hadron current are not applied. Due
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to the smallness of the correction there is no need to include higher-order processes. The
calculation of spin-averaged and spin-dependent corrections is based on the same method.
A characteristic feature is that the divergences appearing in the corrections for the inelastic
tail for vanishing photon energy and those in the vertex correction are treated analytically
leading to a finite result for their sum. This avoids a dependence on a cut-off parameter
for the minimum photon energy. The full differential cross section, σ, can be split in a
part proportional to the Born cross section, σ1γ , and an additive part, σt,

σ = aσ1γ + σt. (4.16)

The first term accounts for the factorising part of the vertex and inelastic tail corrections
and the second term for the remaining contribution from the inelastic tail and the quasi-
elastic and elastic tails. The factor a is independent of the orientations of the lepton and
nucleon spins. For the asymmetry, A = ∆σ/σ̄, we define an additive radiative correction
by, ∆rcA = A−A(1γ). Using Eq. 4.16 for both, ∆σ and σ̄, we find

∆rcA =
σ̄t
σ̄

(
∆σt
σ̄t

−A(1γ)

)
. (4.17)

The factorising part cancels in the correction for the asymmetry and the correction from
the tails vanishs if the tail asymmetry, ∆σt/σ̄t, is identical to that of the one-photon
events. To compute the tails of the inelatic cross section the structure functions g1 and g2
are needed as input in addition to the spin-averaged structure functions F2 and R. For the
correction to A1 a parametrisation of the available g1 data was used and the contribution
of g2 was neglected. The correction ∆rcA1 is shown for the proton and the deuteron in
Fig. 4.5 and does not exceed 0.005 in the full x range, when the standard cut y < 0.9 is
applied. For A⊥ it was assumed that g2 = gww

2 as defined in Eq. 2.117. The corrections
found are much smaller than the statistical error of A⊥ and were neglected.

Radiative events do not contribute to the statistical accuracy of the one-gamma asym-
metry. In the first x bin with 〈x〉 = 0.005 the contribution from the tails accounts for
90 % of the total spin-averaged correction. The correction amounts to σt/σ1γ = 0.17 for
the inelastic tail and to 0.27 (0.14) for the elastic tail for the proton (deuteron, including
the quasi-elastic tail). In the calculation of the statistical error the radiative events are
treated as background, which carries no information on the asymmetry. This is correct for
the elastic tails, but the asymmetry of the tail from the inelastic cross section at a point
(x, y) is correlated with that of the one-gamma cross section at a point close in x and y.
Therefore this procedure might lead to a slight overestimate of the statistical error.

4.2 Results

The results presented here are preliminary and represent the status of the analysis as
shown at the “Rencontres de Moriond” meeting in Les Arcs, France, in March 1996 [130].
In addition to the proton data taken in 1993 [19, 20] and the deuteron data taken in
1992/94 [18,21] the 1995 deuteron data are included in the analysis. With respect to the
published results data from an additional small-x trigger were added for the proton and
the stability cuts for the proton and 1992 deuteron data were tightened. The calculation of
the statistical error was modified to account for the background from the elastic radiative
tails. The previous method led to an underestimate of the statistical error in the first x
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Table 4.1: Kinematic cuts applied in the analysis.
Kinematic Data taken at muon energies of
variable 100 GeV 190 GeV

pµ ≥ 15 GeV ≥ 19 GeV
ν ≥ 10 GeV ≥ 15 GeV
ϑ ≥ 13 mrad ≥ 7 mrad
y ≤ 0.9 ≤ 0.9

bin of about 30 % for the proton. The publication of the refined analysis of the proton
data [123] and the analysis of all deuteron data [131] is in preparation.

The semi-inclusive results [22] do not yet include the 1995 deuteron data. The radiative
corrections are smaller for this class of events because the elastic tail does not contribute.
Therefore the statistical error of these data is at most underestimated by 15 % in the first
x bin.

Cuts on kinematic variables were applied in the analysis to reduce the background from
muons originating from hadron decays (pµ), kinematical smearing (ν), vertex smearing (ϑ),
and the size of radiative corrections (y). In addition to the cuts summarised in Table 4.1
a cut of Q2 ≥ 1 GeV2 was applied unless stated otherwise.

The comparison with other experiments and a discussion of the physics implications
is deferred to Chapter 5.

4.2.1 Virtual-photon asymmetries

The results for the proton and the deuteron asymmetries are shown in Fig. 4.6 and are
summarised in Table 4.2. The data cover for Q2 > 1 GeV2 the range 0.003 ≤ x ≤ 0.7.

The systematic error comprises the uncertainties of the beam and target polarisations,
of the dilution factor, of the radiative corrections, and of the cross section ratio R (Eq. 2.36)
as well as contributions due to the time variation of the apparatus’ acceptance and the
neglect of A2. For the upper limit of A2 we used our measurements and at high x,
where it is more stringent, the limit

√
R (Eq. 2.41). At small x the uncertainty of the

radiative corrections dominates the systematic error. The uncertainties arising from the
beam and target polarisations and the dilution factor are proportional to the asymmetry
and dominate at large x. They are more important for the larger proton asymmetry than
for the smaller deuteron asymmetry.

The proton data were also analysed for Q2 < 1 GeV2. With the lowered cut one gains
three additional bins in the range 0.0008 ≤ x < 0.003 with average Q2 of 0.29, 0.45, and
0.70 GeV2. Some low-Q2 data also enter the bins in the range 0.003 ≤ x < 0.01. Special
care went into the study of vertex smearing corrections and the contamination by events
from muon-electron scattering [118], which appears at x = 0.00054. The contamination in
the first bin 0.0008 ≤ x < 0.0012 was estimated to (5 ± 1) %. The resulting asymmetries
in the three additional small-x bins are compatible with zero and are shown in Fig. 4.7.
These low-Q2 data are not used in the further analysis of the structure functions and their
moments.

The A2 data are obtained using Eq. 2.45 (p. 10) from the measured transverse asym-
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Table 4.2: The asymmetry A1 and its statistical and systematic errors for the proton and the
deuteron.

Proton Deuteron

x range 〈x〉 〈Q2〉 A1 〈Q2〉 A1

0.003–0.006 0.005 1.3 0.068 (39) (8) 1.3 0.001 (20) (4)
0.006–0.010 0.008 2.1 0.050 (35) (5) 2.1 −0.010 (18) (4)
0.010–0.020 0.014 3.6 0.056 (30) (5) 3.5 −0.025 (15) (4)
0.020–0.030 0.025 5.9 0.057 (41) (4) 5.7 0.000 (20) (3)
0.030–0.040 0.035 8.0 0.043 (50) (3) 7.7 −0.013 (25) (3)
0.040–0.060 0.049 10.7 0.105 (43) (7) 10.4 0.061 (21) (5)
0.060–0.100 0.077 15.4 0.176 (42) (12) 14.8 0.020 (21) (3)
0.100–0.150 0.122 21.9 0.275 (55) (17) 21.1 0.074 (29) (6)
0.150–0.200 0.172 28.3 0.265 (77) (17) 27.3 0.178 (41) (13)
0.200–0.300 0.241 36.0 0.242 (79) (16) 34.7 0.229 (43) (16)
0.300–0.400 0.342 45.9 0.490 (130) (35) 44.3 0.186 (75) (14)
0.400–0.700 0.481 57.2 0.532 (171) (46) 54.9 0.343 (103) (26)

Table 4.3: The structure function g1(x,Q
2) and its statistical and systematic errors for the

proton and the deuteron. For the 〈Q2〉 values see Table 4.2.

Proton Deuteron

x range 〈x〉 g1(x,Q
2) g1(x,Q

2)

0.003–0.006 0.005 1.637 (937) (189) 0.027 (476) (107)
0.006–0.010 0.008 0.827 (584) (93) −0.162 (292) (62)
0.010–0.020 0.014 0.583 (310) (47) −0.256 (151) (38)
0.020–0.030 0.025 0.384 (273) (27) −0.001 (131) (18)
0.030–0.040 0.035 0.213 (249) (15) −0.061 (119) (14)
0.040–0.060 0.049 0.384 (156) (22) 0.213 (74) (16)
0.060–0.100 0.077 0.410 (98) (22) 0.043 (46) (6)
0.100–0.150 0.122 0.393 (79) (21) 0.096 (37) (7)
0.150–0.200 0.172 0.251 (74) (14) 0.147 (34) (9)
0.200–0.300 0.241 0.143 (47) (8) 0.114 (22) (7)
0.300–0.400 0.341 0.152 (40) (9) 0.046 (18) (3)
0.400–0.700 0.478 0.061 (20) (4) 0.031 (9) (2)
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Figure 4.6: The virtual-photon asymmetry A1 for the proton (top) and the deuteron (bottom)
as a function of x.

metries, A⊥, and a parametrisation of the available A‖/D data. For the averaging over

Q2 in a given x bin we assumed that
√
Q2A2 scales instead of A2. Such behaviour follows

from Eq. 2.42 and scaling of g1 and g2. The total systematic error of A2(x) is much smaller
than the statistical one. The proton [20] and deuteron data [132] were taken at 100 GeV
and 190 GeV incident muon energy, respectively. The results are shown and discussed in
Sect. 5.3.1.

4.2.2 Structure functions and first moments

From the asymmetries, A1, the structure function, g1, is determined using Eq. 2.49 and
again neglecting a possible contribution from A2. For the spin-averaged structure functions
F2(x,Q

2) and R(x,Q2) we use the parametrisations by the NMC [133] and by SLAC [134],
respectively. The uncertainty of R cancels in g1 if the same parametrisation of R is used as
in the extraction of F2 from the measured unpolarised cross sections and if the kinematics
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Figure 4.7: The virtual-photon asymmetry A1 of the proton as a function of x. The points
shown as open circles include data in the range 0.2 < Q2 < 1 GeV2.

is the same. This is largely the case since F2 was measured by the NMC with the same
spectrometer and muon beam and the same parametrisation of R was used. The results
for g1 of the proton and the deuteron are shown in Fig. 4.8 and listed in Table 4.3. Also
shown are the neutron data obtained by combining our the proton and neutron results.

For the evaluation of the first moments we choose Q2
0 = 10 GeV2 which represents a

typical value for the data sets. Experimentally no Q2 dependence of the asymmetry data
is found (Sect. 5.2.2). From the theoretical considerations discussed in Sect. 2.9 we choose
to assume scaling of g1/F1 rather than of A1. For the measured region 0.003 ≤ x ≤ 0.7
we obtain the integrals

∫ 0.7

0.003
g1(x,Q

2
0) = 0.130 ± 0.014 ± 0.009 (proton)

∫ 0.7

0.003
g1(x,Q

2
0) = 0.038 ± 0.007 ± 0.004 (deuteron).

The extrapolation to x = 0 is performed using the average of the first two small-x data
points. Such a form is motivated by Regge theory. This yields for the range 0 ≤ x < 0.003
a contribution of 0.004 ± 0.002 for the proton and of 0 ± 0.001 for the deuteron. The
extrapolations to x = 1 make use of the limit |A1| ≤ 1. Finally we obtain the first
moments at Q2

0 = 10 GeV2 assuming scaling of g1/F1

∫ 1

0
g1(x,Q

2
0) = 0.137 ± 0.014 ± 0.010 (proton)
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Table 4.4: Contributions to the error of Γ1.
Source Contribution

proton deuteron

Extrapolation at low x 0.0038 0.0009
Beam polarisation 0.0037 0.0015
Target polarisation 0.0035 0.0013
Dilution factor 0.0032 0.0006
Uncertainty of F2 0.0029 0.0012
Acceptance variation 0.0020 0.0014
Momentum measurement 0.0014 0.0014
Radiative corrections 0.0013 0.0008
Kinematic resolution 0.0010 0.0010
Extrapolation at high x 0.0008 0.0009
Proton background – 0.0006
Neglect of A2 0.0004 0.0005

Total systematic error 0.0100 0.0050

Statistical error 0.0140 0.0070

∫ 1

0
g1(x,Q

2
0) = 0.038 ± 0.007 ± 0.005 (deuteron).

The contribution of the different sources to the systematic errors of the first moments is
detailed in Table 4.4. Both, the proton and the deuteron results violate the Ellis–Jaffe
sum rule, which predicts 0.170 ± 0.005 and 0.071 ± 0.04, respectively.

From these results we find for the Bjorken sum rule

Γp
1 − Γn

1 = 0.191 ± 0.036 (Q2 = 10 GeV2),

which is in excellent agreement with the theoretical prediction of 0.0187 ± 0.003. For
the spin content and the strange-sea polarisation we find from the combined proton and
deuteron data

∆Σinv = 0.25± 0.06 ∆s = −0.11± 0.02,

confirming the EMC result that the quark spins contribute little to the nucleon’s spin in
the quark parton model.

4.2.3 Semi-inclusive data

The fragmentation of the struck quark into hadrons, in which it is contained as valence
quark is favoured. Thus positive pions tag up quarks and down antiquarks. Using in
addition proton and deuteron targets a complete up-down spin-flavour decomposition of
the nucleon structure is in principle possible. This information is exploited in the semi-
inclusive analysis of the 1992/94 deuteron data and the 1993 proton data [22]. To dis-
criminate between electrons and hadrons the information from the H2 calorimeter [110] is
used. Its electromagnetic part corresponds to 20 radiation lengths and entirely contains
electromagnetic showers. The total thickness of the electromagnetic and hadronic sections
of the calorimeter amounts to 5.5 nuclear interaction lengths. Electrons are rejected by a
cut on the ratio of the energy deposited in the electromagnetic part to the total deposited
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energy. An identification of pions, kaons, and protons is not attempted. In addition to
the standard kinematic cuts listed in Table 4.1 an energy fraction of z ≥ 0.2 is required
in the analysis. This leaves us with 1.4 × 106 and 1.6 × 106 charged hadrons for the two
deuteron data sets and with 1.2 × 106 for the proton data set. The evaluation of the
asymmetries for positive and negative hadrons, A±1 , proceeds in principle like in the in-
clusive case, however separately for events with positive and negative hadrons. The effect
of secondary interactions in the thick target on the asymmetries was studied and found
to be negligible. The results are shown and discussed in Sect. 5.7. It is found that the
polarisation of the up valence quarks is positive and that of the down valence quarks is
negative. The light-quark sea is not strongly polarised.



Chapter 5

Present status of spin structure

functions

From the SMC and E-143 experiments a clear picture has emerged. The Ellis–Jaffe sum
rules are violated for both, the proton and the deuteron and the Bjorken sum rule is
satisfied. The fraction of the nucleon’s spin carried by the quark spins thus remains small.
In this chapter we review the experimental data as well as some of the recent theoretical
developments. In particular lattice gauge theory has become a very useful tool in the
understanding of the nucleon’s spin structure. Progress has also been made concerning g2
and higher-twist contributions.

5.1 Other recent spin-structure-function experiments

Apart from the SMC experiments, which are described in detail in Chapter 3 and are
summarised in Table 3.2 (p. 40), the SLAC experiments provided new data on g1 and g2.
Recently, preliminary data on the neutron structure function, gn1 , were reported from the
HERMES experiment at DESY which started data taking in 1995.

The three experiments are complementary in several respects. In particular in the
incident lepton energy, E, and thus in the x range covered for Q2 > 1 GeV2 and in the
average Q2 of the data:

experiment beam E/GeV Q2/GeV2 x range

EMC p CERN µ 200 10.7 0.01 ≤x≤ 0.7
SMC CERN µ 190 10 0.003≤ x≤ 0.7
SLAC e 29 3 0.03 ≤x≤ 0.8
HERMES DESY e 27 3 0.03 ≤x≤ 0.8 .

The main domains of the experiments are:

• The SMC experiment is unique in covering high Q2 and small x. The small-x
region is decisive for the extrapolation of g1(x) to x = 0 in the evaluation of the
Bjorken and Ellis–Jaffe sums and for determining the polarised gluon distribution
function, ∆g, in the QCD analyses of the g1 data. The statistical precision of the
SMC data is moderate, while the systematic error is similar to that of the SLAC
data. The statistical error of the first moments is presently slightly larger than
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the systematic error, which dominates for the SLAC data. In the SMC experiment
produced hadrons are also detected.

• The SLAC experiments are unique concerning their high luminosity. They provide
data with a high statistical precision at a lower value of Q2 for x ≥ 0.03. The E-154
and E-155 experiments will extend the x range to x ≥ 0.01 and increase average
value of Q2 to about 5 GeV2. In addition to the experiments with proton and
deuteron targets, experiments performed with a 3He target provide an alternative
and in principle more direct determination of the neutron structure function, gn1 .

• The HERMES experiment is unique in the combination of particle identification
and high luminosity. The internal gas target makes it possible to use pure proton
and deuteron targets without a dilution due to other nuclei in the target material.
The experiment cannot extend the kinematic range covered by the present SLAC
experiments, but will provide high precision semi-inclusive data.

The kinematic domains covered by the SMC and E-143 experiments are shown in Fig. 5.1.
The kinematic range of the HERMES experiment is similar to that of the E-143 experiment
but also covers the gap caused by the two spectrometer arms. This gap is also covered by
E-143 data taken at lower incident electron energies.
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Figure 5.1: Kinematic domains covered by the SMC and E-143 experiments.
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Table 5.1: Recent and future SLAC and HERMES experiments.
Year Experiment Beam Target

Energy Polarisation Material Polarisation
GeV % %

1992 E-142 [23] 25.5 39 3He 30–40
1993 E-143 [24] 29.1 84 15NH3 65–80

[25] 15ND3 25
1995 E-154 48.3 82 3He 38
1997 E-155 48.3 ≈ 80 15NH3 ≈ 75

6LiD ≈ 30

1995 HERMES [135] 27 ≈ 50 3He ≈ 50
1996– HERMES 27 ≈ 50 H, D ≈ 90

5.1.1 The SLAC experiments

The recent and future SLAC experiments on polarised structure functions are summarised
in Table 5.1. Between the 1992 and 1993 experiments the polarised electron source was
largely improved. While in 1992 photo-emission from a AlGaAs photocathode provided
an average beam polarisation of 39 %, in 1993 polarisations in excess of 80 % were reached
with strained-lattice GaAs photocathodes. The beam operated with a pulse width of 2 µs
(1 µs for E-142) and a repetition rate of 120 Hz. The longitudinal beam polarisation was
varied randomly on a pulse-by-pulse basis and measured by Møller scattering from thin
ferromagnetic foils. In the E-142 experiment a single arm polarimeter was used, yielding a
precision of ∆P/P = 0.04. For the E-143 experiment an additional double arm polarimeter
was installed, which measured the beam polarisation with a precision of ∆P/P = 0.025.
Incident electron energies of 19.4, 22.7, and 25.5 GeV (9.7, 16.2, 29.1 GeV) were used in
the E-142 (E-143) experiments.

The 3He target gas in the E-142 experiment was contained in a 30 cm long glass cell with
0.1 mm thick entrance and exit windows sitting in a 30 G holding field. The target [136] was
operated at 8.6 bar and 0 ◦C temperature resulting in a density of 2.3× 1020 atoms/cm3.
The helium gas was polarised in a separate chamber by spin-exchange collisions with
rubidium vapour at 65 ◦C, which was optically pumped by a 20 W CW laser system. The
polarisation was measured in the scattering chamber by an NMR system with a precision
of ∆P/P = 0.07 and ranged from 30 % to 40 %. Beam intensities of (0.5–2.0) × 1011

electrons were used with this target.

The 15N-ammonia targets of the E-143 experiment make use the same principle as
applied in the SMC target (Sect. 3.3). The 3 cm long, 2.5 diameter solid-state targets were
polarised by microwave irradiation using the mechanism of dynamic nuclear polarisation
in a 4.8 T magnetic field. The targets were cooled to 1 K by a 4He evaporation refrigerator.
Proton polarisations of 65–80 % were reached within 10–20 min, which then decayed slowly
to about 50 % over 8–12 h due to radiation damage. The average deuteron polarisation was
25 % with a maximum of greater than 40 %. After having taken data with both targets,
which are stacked on top of each other, they were annealed at 80 K and repolarised.
To minimise the radiation damage the electron beam was rastered over the target cross
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Figure 5.2: Layout of the spectrometers used in the SLAC experiments E-142 and E-143.

section of 4.9 cm2. The polarisation was measured using NMR coils embedded in the
target material and applying a similar technique as in the SMC target. The accuracy
of the measurements were ∆P/P = 0.025 and 0.04 for the proton and deuteron targets,
respectively. The data have to be corrected for the nitrogen polarisation. The isotope
15N was chosen because of its spin 1

2 which yields a narrow proton-like NMR signal. The
signal from the spin-1 14N nucleus is very broad and difficult to measure. For the solid
targets beam intensities of (2–4) × 109 electrons per pulse were used.

The momentum of the scattered electron was analysed in the range 6–25 GeV/c using
two independent magnetic spectrometers [137] positioned under angles of 4.5◦ and 7.0◦

with respect to the incident beam (Fig. 5.2). The solid angles covered were 0.097 msr and
0.435 msr, respectively. To reject pions the detector system of each spectrometer com-
prised two gas Cherenkov counters operated at pion thresholds of 9 GeV/c and 13 GeV/c.
Hodoscopes between and after the Cherenkov counters tracked the scattered electron. Its
energy was measured in a lead-glass array at the end of the setup. The momentum re-
solution was better than 2.5 % in the full range of acceptance. For the E-154 and E-155
experiments the spectrometers are placed at 2.75◦ and 4.5◦, respectively.

An additional 10◦ spectrometer will be installed for the E-155 experiment scheduled
for 1997. In this experiment also a new target material, 6LiD, will be employed. The
spin-1 6Li nucleus can be understood as composed of an alpha particle and a deuteron (or
proton and neutron) [138] resulting in a very advantageous dilution factor of 0.5, see also
Sect. 6.1.

5.1.2 The HERMES experiment at DESY

The HERMES experiment [28] at DESY uses an internal gas target in the 27 GeV electron
ring of HERA. The main advantage of this technique is that the asymmetry is not diluted
by additional unpolarised materials as in the case of solid targets. A comprehensive
description of the design and performance can be found in Ref. [139]. The experiment can
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run simultaneously with the H1 and ZEUS experiments. Results from the first run in 1995
with unpolarised protons and deuterons and polarised 3He were presented in the DIS’96
conference in Rome [135]. For 1996 experiments with polarised protons and deuterons are
scheduled and further measurements are planned for the following years.

Electrons in storage rings slowly acquire a transverse polarisation due to an asymmetry
in the spin-flip amplitudes for synchrotron radiation as predicted by Sokolov and Ternov
[140]. Spin rotators were installed before and after the HERMES detector to obtain
longitudinal electron polarisation. With spin matching and fine tuning against depolarising
resonances maximum longitudinal polarisations of about 60 % were achieved in May 1994
[141]. The polarisation rise time is about 20 minutes. The transverse beam polarisation is
measured by Compton back scattering of circularly polarised laser light from the electron
beam with a precision of presently ∆P/P = 0.1.

The polarised target gas is contained in a 40 cm long windowless open storage cell
as shown in Fig. 5.3. It is fed with up to 1017 atoms/s from a polarised gas source.
The gas density in the cell ranges from 1014 atoms/cm2 for hydrogen and deuterium
at 100 K to 3.5 × 1014 atoms/cm2 for 3He at 20 K. The gas is pumped away on both
ends of the storage cell. Magnetic fields of 0.35 T and 0.15 T hold the longitudinal
and transverse polarisations, respectively. For the 3He a holding field in the order of
1 mT is sufficient. The polarised hydrogen and deuterium is delivered by an atomic beam
source [142] with typical polarisations of 90 %. The polarisation can be changed within
milliseconds by a change of the radio frequency. It is measured in a Breit–Rabi apparatus
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on gas samples extracted from the target cell. The anticipated precision is ∆P/P = 0.03.
The 3He is provided by a laser driven polarised source [143], which presently reaches 50 %
polarisation. It takes about 20 s after changing the polarisation of the laser light before
equilibrium is reached in the pumping cell, where the polarisation is measured using the
polarisation of the light emitted by the 3He atoms. The polarisation in the storage cell
can be measured with moderate precision by the so-called target optical monitor, which
analyses the polarisation of the light emitted by the 3He atoms in the storage cell.

The scattered electron (or positron) is analysed in an open forward spectrometer,
which accepts scattering angles greater than 40 mrad. The spectrometer magnet pro-
vides a bending power of 1.3 Tm. Micro-strip gas chambers close to the target and drift
chambers upstream and downstream of the spectrometer magnet determine the interac-
tion point, the scattering angle, and the momentum of the scattered electron. Inside the
magnet proportional chambers are installed to improve the pattern recognition. Particle
identification is performed by combining the information from a transition-radiation de-
tector, a threshold Cherenkov counter, a preshower counter, and a lead-glass calorimeter.
Pion-kaon separation is possible below 15.8 GeV/c.

5.2 Cross-section asymmetry data

5.2.1 The longitudinal asymmetry A1

In Figure 5.4 all available proton, deuteron, and neutron data for the virtual-photon
asymmetry, A1, with Q

2 > 1 GeV2 are shown. For the proton they comprise those from
the pioneering YALE–SLAC experiments E-80 and E-130 [11, 12], from the CERN muon
experiments of the EMC [9,17] and the SMC [19], and from the SLAC experiment E-143
[24]. For the E-143 proton data g1/F1 is shown as published instead of A1, see Eq. 2.46.
For the kinematics of the SLAC experiments the two quantities differ considerably only
at large x, while for the SMC data their difference never exceeds 1.4 %. For the deuteron
presently only data from the SMC [21] and E-143 [25] experiments and for the neutron
only those from the E-142 experiment [23] are available. For the deuteron and for the
neutron A1 is shown. The SMC data contain the preliminary 1995 data set as shown in
Moriond [130]. The previously observed trend of the deuteron asymmetry to be negative
[21] is less pronounced when the new data set is included.

In the evaluation of A1 from the measured cross-section asymmetry, A‖ = D(A1+ηA2),
(Eq. 2.45) the contribution from A2 was neglected in the EMC and SMC analyses, while
in the E-142 and E-143 analyses the A2 data measured in these experiments were used.
The contribution of A2 is suppressed by the kinematical factor η which is small in the
kinematic region of EMC and SMC experiments. In addition the measurements of A2

itself are compatible with zero for x < 0.2, see Sect. 5.3.1. The neglect of A2 is accounted
for in the systematic uncertainties of the SMC and EMC data.

The agreement of the data sets is excellent, although the average Q2 of the SMC and
EMC data in a given x bin is about seven times larger than that of the E-143 data in the
same bin. Above x > 0.03, which is the lower x limit of the E-143 data, no significant Q2

dependence of A1 is seen. For smaller x, where only the SMC data exist, no appreciable
range in Q2 is covered. A considerable Q2 dependence of A1 in this region cannot be
excluded, see Sect. 5.2.2.

The present discussion focuses on the behaviour of the asymmetries and of the structure
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Figure 5.4: Virtual-photon asymmetry, A1, for the proton (top), the deuteron (middle), and
the neutron (bottom) as a function of x. For the E-143 proton data g1/F1 is shown instead
of A1. The shaded bands indicate the systematic errors of the SMC, E-143, and E-142 data,
respectively.
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Figure 5.5: The structure function ratio g1/F1 ≃ A1 for the deuteron as a function of Q2

separate for each x bin. The data are preliminary.

functions for x < 0.1. However, it should be kept in mind that in the large-x region, the
predictions from valence quark models [144, 145] describe the data well as stressed in
Ref. [52]. For both, the proton and the neutron and thus for the deuteron the asymmetry
is predicted to approach unity for x → 1, a trend which clearly is visible in the proton
data. Taking into account that the u-quark distribution function dominates at large x, as
known from the structure function ratio F n

2 /F
p
2 [124], this implies that those up quarks,

which carry a large fraction of the proton’s longitudinal momentum, are highly polarised
in direction of the proton spin [31]. For the deuteron and even more so for the neutron it
is not obvious from the data that the asymmetry approaches unity for x → 1. However,
the valence quark models predict a zero crossing of the neutron asymmetry only around
x ≃ 0.35 followed by a fast rise to unity [52]. For the deuteron this results in an asymmetry
of about 0.4 at x = 0.5 which is in good agreement with the present data. A measurement
of the neutron or deuteron asymmetry at large x ≥ 0.8 is needed to test these predictions.
The additional 10◦ spectrometer of the SLAC experiment E-155 could possibly provide
such data.

5.2.2 The Q2 dependence of A1

In Figure 5.5 the ratio g1/F1 for the deuteron as measured by the SMC is shown as a func-
tion of Q2 for several fixed values of x [130]. The first three bins contain exclusively data
with Q2 < 1 GeV2. Within the experimental precision no Q2 dependence is seen. At small
x, where a considerable Q2 slope is expected from perturbative QCD, the asymmetries
are small and in the order of the experimental uncertainties. Therefore, even for the bin
with the most precise data, x = 0.0143, a large relative variation of the asymmetry with
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Figure 5.6: The structure function ratio g1/F1 for the proton (left) and the deuteron (right) a
function of Q2 for several x bins. Only statistical errors are shown. The data are from E-143
(full circles), E-130 (triangles), E-80 (diamonds), the EMC (squares), and the SMC (open
circles). The NLO QCD fits form Refs. [146] and [55] are shown as dotted and dot-dashed
lines, respectively. The solid and dashed lines represent a phenomenological fit and a constant,
respectively.

Q2 cannot be excluded from the data. At higher x, where only a weak Q2 dependence
of A1 is expected, the data limit somewhat the size of the Q2 dependence, particularly
for the larger proton asymmetry not shown here. However, the precision is insufficient to
detect slopes of the size predicted by QCD. This can be seen in Fig. 5.6, which is taken
from a combined analysis of all proton and deuteron data [26] recently published by the
E-143 collaboration. In this analysis additional data from E-143 runs with 9.7 GeV and
16.2 GeV incident-electron energy and data with 0.3 ≤ Q2 < 1 GeV2 were also included.
From the SMC data only one point per x bin was used at the average Q2 of the bin.

Together with the data, two next-to-leading order QCD fits are shown. Both, the fit
by Glück, Reya, Stratmann, and Vogelsang [146] (standard scenario) and that by Ball,
Forte, and Ridolfi [55] indicate a rise of the ratio g1/F1 for the proton and the deuteron
in the region 0.03 < x < 0.3. The radiatively generated parton distribution functions
of Ref. [146] are valid down to Q2

0 = 0.34 GeV2 and show a decrease of g1/F1 below
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Figure 5.7: The parameters Ci as a function of x for the proton (a) and the deuteron (b).
The fits were performed for two Q2 ranges, Q2 > 0.3 GeV2 (full circles) and for Q2 > 1 GeV2
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Q2 = 1 GeV2 in agreement with the data. The data in this region were not used in the
analysis. The fit of Ref. [55] is valid only for Q2 > 1 GeV2. For more details of these QCD
analyses see Sect. 5.6. The E-143 collaboration also performed several phenomenological
fits to the g1/F1 =: A1 data using the functional forms

A1(xi, Q
2) = bi, Q2 > 1.0 GeV2 and

A1(xi, Q
2) = ai

(
1 +

Ci
Q2

)
, Q2 > 0.3 GeV2.

These fits are also shown in Fig. 5.6. It is obvious that the data are well described by
the fitted constants, bi. The parameters Ci resulting from the Q2-dependent fit are shown
in Fig. 5.7 as a function of x. While for the range Q2 > 0.3 GeV2 they show a negative
trend, those obtained for Q2 > 1 GeV2 are clearly compatible with zero.

In summary, the data with Q2 > 1 GeV2 are compatible with no Q2 dependence and
the small Q2 slopes predicted by next-to-leading QCD fits in the range x > 0.03 cannot
be detected with the present experimental precision. For Q2 < 1 GeV2 the data indicate
a positive Q2 slope in some x bins.
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5.3 The structure functions g1 and g2

5.3.1 The asymmetry A2 and the structure function g2

The interest in the virtual-photon asymmetry A2 from an experimentalist’s point of view is
twofold. On one hand, A2 contributes to the measured parallel asymmetry, A‖. Therefore,
in principle a determination of A1 requires the measurement of both asymmetries, A‖ and
A⊥. For convenience we repeat Eqs. 2.45 and 2.42 (p. 10),

A‖ = D(A1 + ηA2), A⊥ = d(A2 − ξA1), A2 = γ
g1 + g2
F1

. (5.1)

Using the bound |A2| ≤
√
R as uncertainty for A2 in the determination of A1 leads to

substantial contributions to the systematic error. On the other hand, there is a great
physics interest in determining the nontrivial twist-3 part, ḡ2, of the structure function g2,
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Figure 5.9: The structure function g2 as a function of x for the proton (top) and the deuteron
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2 (solid line) and bag-model calculations from Refs. [147] (dotted)
and [148,149] (dashed).

which involves quark-gluon correlations and appears here in leading order

g2(x,Q
2) = gww

2 (x,Q2) + ḡ2(x,Q
2). (5.2)

The Wandzura–Wilczek term [71], gww
2 , is of twist-2 and can be calculated from g1

(Eq. 2.118, p. 22).

The SMC measurements of A2 for the proton [20] and the deuteron [132] were mainly
motivated by the goal to reduce the uncertainty in A1. A determination of the structure
functions g2 and ḡ2 was not attempted. The structure functions gp2 and gd2 were determined
by the E-143 collaboration from their measurements of A2 for x > 0.03 [27]. To compare
the two measurements performed at different Q2 one can either assume that A2(x,Q

2) or
that

√
Q2A2(x,Q

2) is independent of Q2. The latter choice is motivated by Eq. 5.1 with
γ ∝

√
Q2 and assuming scaling for g1 and g2. The comparison of the data is shown in
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Fig. 5.8 for both choices. The systematic uncertainties are small and only the statistical
errors are shown. The data do not saturate the bound

√
R and are compatible with zero

with the possible exception of the proton data for x > 0.2.
Figure 5.9 shows the nucleon’s second spin dependent structure function, xg2, as de-

termined in the SLAC experiment E-143. Also shown are the Wandzura–Wilczek contri-
bution, gww

2 , calculated from g1 and two bag-model calculations of g2 for Q2 = 5 GeV2

by Stratmann [147] and by Song and McCarthy [148,149]. The proton data show a trend
to be negative for x > 0.2 in agreement with the expectation from gww

2 . The deuteron
data are compatible with both, gww

2 and zero. Within the present precision the data are
also compatible with the two bag-model predictions. Large twist-3 contributions can be
excluded. Therefore, it will be unfortunately very difficult to assess ḡ2 experimentally.

To test the Burkhardt–Cottingham sum rule [67],
∫ 1
0 g2(x) dx = 0, (Eq. 2.115, p. 21),

the integrals were calculated for the range 0.03 ≤ x ≤ 1 and Q2 = 5 GeV2

∫ 1

0.03
g2(x) dx = −0.013 ± 0.028 (proton)

∫ 1

0.03
g2(x) dx = −0.033 ± 0.082 (deuteron).

The results are compatible with zero. The results for the higher moments of g2 will be
discussed in the context of higher-twist contributions to the first moment of g1 in Sect. 5.9.

5.3.2 Evaluation of g1 from the asymmetries

Some confusion was generated by the different ways the SMC data and some of the SLAC
data were analysed. For clarity we shortly discuss the two approaches. The structure
function g1 is obtained from the asymmetry A1 or from A1 = g1/F1 using Eq. 2.46 (p. 11)

g1(x,Q
2) =

F1

1 + γ2

{
A1(x,Q

2) + γA2(x,Q
2)
}
.

In the SMC analysis A2 was neglected in both, the evaluation of A1 from A‖ and in that
of g1 from A1. For the SLAC data, where the contribution of A2 is much larger, A2 is
already entirely accounted for in the evaluation of A1 from A‖ and thus does not appear
in the evaluation of g1 from A1 anymore. Of course the two methods are equivalent for
vanishing A2 as far as g1 is concerned, however two different formulæ must be used to
derive g1 from the intermediate results, A1 and A1, respectively

g1(x,Q
2) ≃ F2(x,Q

2)

2x (1 +R(x,Q2))

{
A1(x,Q

2)
(1 + γ2)A1(x,Q

2)
(SMC)
(SLAC g1/F1).

(5.3)

In all experimental analyses the parametrisations of F2(x,Q
2) by the NMC [133] and of

R(x,Q2) by SLAC [134] were used. The kinematics of the SMC data agrees largely with
that of the NMC data, which were actually taken with the same spectrometer. Since the
NMC also used the SLAC parametrisation of R(x,Q2) in their evaluation of F2(x,Q

2) from
the deep-inelastic cross sections the uncertainty due to R effectively cancels in g1(x,Q

2).
In Figure 5.10 all available g1 data for the proton, the deuteron, and the neutron are

shown. The SMC data were obtained with F2 and R evaluated at the average Q2 of
the data in the considered x bin, ranging from 1.3 GeV2 at small x to 50 GeV2 at large
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Figure 5.10: The structure function g1(x,Q
2) as a function of x for the proton, the deuteron,

and the neutron. For the neutron also data obtained from proton and deuteron measurements
of the SMC and E-143 are shown. The systematic uncertainties of the SMC, E-142, and E-143
data are shown as shaded bands.
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x. The SLAC data are shown as published for a fixed Q2 = 3 GeV2 (proton, deuteron)
and 2 GeV2 (neutron). Often comparisons are presented with all data “evolved” to a
common Q2 assuming scaling of A1 or g1/F1. Such a procedure introduces additional
uncertainties and is not justified at small x, where the Q2 dependences of F1 and g1 are
certainly different. In particular the first gp1 data point from the SMC moves up by almost
a factor two when “evolved” from 1.3 to 10 GeV2 assuming scaling of A1. This may
lead to wrong estimates of the small-x behaviour of g1. The agreement of the data sets
assuming scaling for A1 can better be judged from the asymmetries themselves (Fig. 5.4).
We therefore prefer to show the structure-function data as published. For the evaluation
of the first moment an evolution to a common Q2 is inevitable. However, in this case
the main contribution comes from a region where scaling of A1 is not an unreasonable
assumption.

Interesting is the small-x behaviour of gp1 and gn1 in Fig. 5.10. While in the unpolarised
case the ratio F n

2 /F
p
2 approaches unity [124, 150], the ratio gn1/g

p
1 is close to −1 at x ≃

0.005. In terms of quark distribution functions the difference gp1 (x)− gn1 (x) is given by

gp1 (x)− gn1 (x) =
1

6
{∆u(x)−∆d(x)} (5.4)

and becomes equal to the difference of the valence quark distribution functions under the
assumption of an isospin-symmetric quark sea, ∆ū(x) = ∆d̄(x). Thus the behaviour of the
structure functions either indicates that the isospin symmetry in the quark sea is broken
or that the valence quarks also dominate at small x as far as polarisation is concerned.
The latter scenario is in agreement with the analysis of the semi-inclusive data of the
SMC [22] (Sect. 5.7) which yields ∆uv(x) > 0 and ∆dv(x) < 0.

5.3.3 Neutron data from proton, deuteron, and 3He experiments

The neutron structure functions were determined from the combination of deuteron and
proton data and from 3He data assuming independent scattering from the individual nu-
cleons in the nucleus. While the deuteron represents the sum of a proton and a neutron,
3He is basically a ‘pure’ neutron target because the spins of the two protons are coupled
to zero most of the time. The following points must be discussed in the analysis of data
from nuclear targets.

• The average polarisation of the nucleons must be known and taken into account.

• For nuclei with spin ≥ 1 additional structure functions appear.

• The parton distribution functions of bound nucleons differ from those of free nucle-
ons.

In the deuteron both, the proton and neutron spin, point in direction of the deuteron spin
for the S state and opposite to it for the D state. The average polarisations of the proton
and the neutron in the deuteron are thus equal and given by

P d
p = P d

n =

(
1− 3

2
ωD

)
, (5.5)

where ωD ≃ 0.05± 0.01 [151] is the probability for the deuteron to be in the D state. The
factor 3/2 is due to the Clebsch–Gordan coefficients. For the structure function we obtain

gd1 (x,Q
2) =

1

2

{
gp1 (x,Q

2) + gn1 (x,Q
2)
}(

1− 3

2
ωD

)
. (5.6)
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For 3He many components exist in the wave function. The dominant one is an S wave
with the proton spins coupled to zero. Taking all contributions into account one finds
[31,152,153]

P
3He
n = 0.087 ± 0.02, and P

3He
p = −0.025 ± 0.003 (5.7)

yielding

g
3He
1 (x,Q2) =

1

3

{
(0.87 ± 0.02)gn1 (x,Q

2)− (0.050 ± 0.006)gp1 (x,Q
2)
}
. (5.8)

More correctly, the nuclear structure function is a convolution of the nucleon structure
function and the nucleon momentum distribution in the nucleus leading to an x-dependent
relation between the nucleon and nucleus structure functions. A detailed study of the
convolution ansatz starting from a covariant framework is given in Ref. [154]. The authors
find for the deuteron, that the simple formula of Eq. 5.6 gives reliable results for x < 0.6.
This also applies for gT = g1 + g2.

The second point in the list above only concerns the deuteron data and is discussed in
some detail in Sect. 2.5. Contributions from the b1 structure function are expected to be
small and out of reach for the present experiments. In the analysis of the deuteron data
from E-143 and the SMC such contributions were neglected.

The third point is more complicated. From unpolarised scattering we know that the
parton distribution functions of bound and free nucleons differ considerably (Fig. 4.2). The
parton distribution functions of the bound nucleon are depleted for x ≤ 0.1 (shadowing)
and around x ≃ 0.6 (original EMC effect), while a strong enhancement due to Fermi
motion is found for x > 0.8. The latter effect is not important for the first moments
since g1 is very small in this region. The depletion in the intermediate region is related
to the pion cloud in the nucleus and might be smaller in the polarised case because pions
are spinless. These nuclear effects increase with the nuclear mass, A, and are small for
the deuteron and helium. The structure function ratio F n

2 /F
p
2 as determined from proton

and deuteron data never exceeds the value 0.96 [124, 150] (Fig. 4.3). For small x, where
the quark sea dominates, one expects that F n

2 /F
p
2 approaches unity. This 4 % difference

corresponds to a 2 % shadowing effect in the deuteron. The structure function ratio
F

4He
2 /F d

2 was measured by the NMC [125, 155] and at larger x by the SLAC experiment
E-139 [127]. At x = 0.005 a shadowing effect of about (5± 2) % was found [125]. Helium-
3 data exist [156], however only outside of the deep-inelastic kinematic region. Nuclear
effects were studied in a quark-cluster model, which takes into account six-quark bags in
addition to the nucleon [157]. These models usually describe the unpolarised data well,
but are also very flexible. Both, the first moments Γd

1 and Γ
3He
1 were predicted to receive

about the same additive correction in the order of δΓ1 ≃ 0.005 due to the presence of
six-quark bags. However, the paper emphasises the fact that the correction is about the
same for both nuclei rather than its absolute size.

If the nuclear effects in the polarised case are of a similar size as those in the unpo-
larised case, their neglect is justified given the present accuracy of the data, but might
become a concern in more precise future experiments. An interesting experiment would
be to determine the proton structure function, gp1 , using a polarised tritium target and to
compared it to that of the free proton.
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5.3.4 The small-x behaviour of g1

From Regge theory it is expected that for moderate fixed Q2 and for ν → ∞, i.e. x → 0,
the iso-triplet part of g1 behaves like [158]

1

12
(∆u(x)−∆d(x)) = g

(3)
1 (x) ∝ x−α, x→ 0. (5.9)

The lowest contributing Regge trajectory is that of the pseudovector meson a1. Its in-
tercept is expected to be in the range −0.5 < α < 0 [159]. In most analyses of the first
moment of g1 a small-x behaviour according to Eq. 5.9 was assumed for the extrapo-
lation, often with α = 0, i.e. g1(x) = const, which gives the largest contribution. The
error estimates for the extrapolations usually include the quoted range of α. Although the
deuteron is a pure iso-singlet combination, the iso-triplet shape is usually also assumed for
the extrapolation of deuteron data. Another reason to apply Regge behaviour with care
is that the spin-averaged structure function F2 rises with decreasing x down to x = 10−4,
even at Q2 as small as 1.5 GeV2 [160]. A behaviour which Regge-inspired models fail to
reproduce.

The behaviour of the flavour-singlet part of g1 was studied by Bass and Landshoff [161].
They find a contribution from the exchange of two non-perturbative gluons which behaves
like 1

9
(∆u(x) + ∆d(x) + ∆s(x)) = g

(0)
1 (x) ∝ (2 ln

1

x
− 1), x→ 0. (5.10)

It was suggested that the flavour-singlet part is responsible for the tendency of gp1 to
rise at small x, see Fig. 5.10. However, for gd1 , which is almost a pure flavour-singlet
combination, such a rise is not observed. This rather suggests that the rise is caused by
the iso-triplet part of g1, which is absent in the pure iso-singlet combination gd1 . The drop
in gn1 towards small x expresses the same observation. For the Bjorken sum as a pure

iso-triplet combination only the behaviour of g
(3)
1 is relevant.

Several other approaches were discussed by Close and Roberts [162], the most extreme
being

g1(x) ∝
1

x ln2 x
, x→ 0. (5.11)

A behaviour of this form was criticised by Anselmino, Ioffe, and Leader [163] and such a
rise is incompatoble with the deuteron data.

From perturbative QCD it is expected that |g1| rises as x→ 0 [164,165]. For a positive
gluon polarisation, g1 will eventually at small x and high Q2 become negative. The growth
is exponential in the variables ξ = ln(x0/x) and ζ = ln(t/t0) with t = ln(Q2/Λ2) for
ξζ → ∞. The exact form of the small-x behaviour depends on the parton distribution
functions at the starting scale of the evolution. In all cases the growth is faster than any
power of ln(1/x). For higher Q2 this rise is likely to mask any intrinsic Regge-like low-Q2

behaviour. The HERA data for F2 indeed show the predicted double logarithmic scaling
behaviour predicted on the same grounds [166].

The small-x behaviour as obtained from a QCD analysis [55] using the GLAP equations
in next-to-leading order is just opposite to the scenario [161] discussed above. The QCD
analysis favours a Regge-like behaviour of the flavour-singlet parton distribution for Q2 =
1 GeV2. The nonsinglet parton distribution is found to grow approximately like 1/

√
x,

causing a rise of gp1 towards small x. However, at Q2 = 10 GeV2 the singlet part has
evolved to large negative values and dominates the behaviour of gp1 , causing a strong drop
towards small x, see also Sect. 5.6. Thus the actual behaviour of gp1 crucially depends
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on the delicate interplay of the opposite behaviours of the singlet and nonsinglet part,
making small x a very interesting but hard-to-predict region. The deuteron is an almost
pure flavour-singlet combination and therefore no rise is expected here towards small x in
agreement with the data.

In summary, presently the predictions for the small-x behaviour of g1 vary widely.
A particular difficulty lies in defining the x and Q2 domain where a certain model is
applicable. Therefore, it is mandatory to measure to as low values of x as possible. More
precise data at somewhat larger x may also help to narrow the range of the predictions.
Recently, also the g1 behaviour at very small x in the HERA kinematic domain was studied,
see Sect. 6.2.

5.4 The first moment of g1

5.4.1 The first moment of g1 and the Ellis–Jaffe sum rules

The first moment,

Γ1(Q
2
0) =

∫ 1

0
g1(x,Q

2
0)dx, (5.12)

must be evaluated at the same fixed Q2
0 for all x. The Q2

0 values chosen for the SMC, the
E-143, and the E-142 data are 10, 3, and 2 GeV2, respectively. They represent typical
average values for the data sets. The following procedure was used in the experimental
analyses up to now. To evolve the g1 data from Q2

m, where the measurement was per-
formed, to Q2

0, scaling of either A1 or g1/F1 is assumed, i.e. A1(x,Q
2
0) = A1(x,Q

2
m). Then

g1(x,Q
2
0) is calculated from Eq. 5.3 using F2(x,Q

2
0) and R(x,Q2

0). Then g1 must be ex-
trapolated into the unmeasured regions. The extrapolation to x = 1 is uncritical, because
of the smallness of g1 in this region. The extrapolation to x = 0 is performed assuming
a Regge-like behaviour, g1(x) ∝ x−α with −0.5 ≤ α ≤ 0. For the SMC data such an
extrapolation is only needed for x < 0.003 and the quoted uncertainties cover most of
the scenarios for the small-x behaviour of g1 discussed in Sect. 5.3.4. For the SLAC data
the unmeasured region is ten times larger. The combination of the high statistics data
at x > 0.03 with a specific functional form assumed for g1(x → 0) can easily lead to an
underestimate of the extrapolation errors. This is in particular true since in none of the
models the onset of the predicted behaviour in x and Q2 is well defined. The errors quoted
for the extrapolations of the E-142 and E-142 data to x = 0 are smaller than the errors of
the integrals obtained from the SMC data in the region 0.003 ≤ x ≤ 0.03. The difficulty
to correctly extrapolate to x = 0 is most evident for g1 of the neutron (Fig. 5.10) [167].
A constant fitted to the E-143 or E-142 data misses all three SMC small-x points by one
to two standard deviations. Due to the smallness of Γn

1 the extrapolation can contribute
a considerable fraction of the first moment.

The results for the first moments Γp
1 , Γ

d
1 , and Γn

1 from the EMC, SMC, SLAC, and
HERMES experiments are summarised in Table 5.2 together with the predictions of the
Ellis–Jaffe sum rules. The latter were calculated using ga = 1.2573 ± 0.0028 [51], F/D =
0.575 ± 0.016 [52], and including QCD corrections up to O(α3

s). They were evaluated
with nf = 3 and αs(M

2
Z) = 0.117 ± 0.005 [51], corresponding to αs(Q

2) = 0.35, 0.31, and
0.24 for Q2 = 2, 3, and 10 GeV2, respectively. A comparison of the predictions and the
experimental results is shown in Fig. 5.11. All proton and deuteron data show a violation
of the Ellis–Jaffe sum rules. The most significant results are obtained for the deuteron,
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Figure 5.11: Comparison of the experimental results for Γ1(Q
2) and the Ellis–Jaffe sum-rule

predictions (shaded bands) as a function of Q2 for the proton, the deuteron, and the neutron.
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Table 5.2: Results for the first moments of the proton, the deuteron, and the neutron.

experiment Q2
0 Γ1(Q

2)

GeV2 proton deuteron neutron

EMC 10.7 0.126 (10) (15)

SMC 10 0.137 (14) (10) 0.038 (7) (5) −0 .055 (24)
SMCa 10 0.130 0.037 −0 .050

E-143b 3 0.127 (4) (10) 0.042 (3) (4) −0 .037 (8) (11)
E-143c 3 0.121 (4) (10) 0.040 (3) (4) −0 .035 (8) (11)
E-142 2 −0.022 (11)
E-142d 2 −0.032 (6) (9)
E-142d/SMCe 2 −0.053 (13)

Hermes 3 −0.032 (13) (17)

Ellis–Jaffe 10 0.170 (5) 0.071 (4) −0.016 (5)
sum rule 3 0.164 (6) 0.070 (4) −0.013 (5)

2 −0.011 (5)

The SMC deuteron data and the Hermes neutron data are preliminary. Statistical and sys-
tematic errors are given separately where available. The neutron data in italics were obtained
combining proton and deuteron data. a) Using a preliminary NLO pQCD analysis to evolve
the data. b) Assuming g1/F1 scales, as published [24,25] and c) assuming A1, A2 scale [168].
d) Data from the Ph. D. thesis of Kawall [169]. e) Using the SMC ’neutron’ data below
x = 0.03.

where the iso-triplet part cancels in the first moment. The SMC and E-143 deuteron
data lie 3.5 and 4.6 standard deviations below the sum-rule prediction. The apparent
small difference between the EMC and SMC proton results arises entirely from the region,
0.003 ≤ x ≤ 0.01, unmeasured by the EMC. For the overlap region, 0.01 ≤ x ≤ 1, the
integrals are 0.123±0.018 and 0.120±0.016 for the EMC and the SMC data, respectively.

An error for the evolution of the g1 data to the common Q2
0 is not included in any of

the data for the first moment. However, the size of a possible effect can be estimated from
the entries labled SMCa and E-143c in Table 5.2. The SMC evaluated the first moments
also using the Q2 evolution as obtained from a next-to-leading order QCD analysis. The
parton distribution functions were fitted at a starting scale of Q2 = 1 GeV2 to all proton
and deuteron data using the computer code of Ball, Forte, and Ridolfi [55], see Sect. 5.6.
The result is similar to the one obtained in Ref. [55] using only the SMC and E-143 data.
Then gfit1 at Q2

m and at Q2
0 = 10 GeV2 was calculated from the fitted parton distribution

functions. The difference was added to the corresponding data point to obtain

g1(x,Q
2
0) = g1(x,Q

2
m) +

{
gfit1 (x,Q2

0)− gfit1 (x,Q2
m)
}
. (5.13)

For the proton the result for Γ1 is lower by half the statistical error while for the deuteron
the effect is negligable. The different behaviour for the proton and the deuteron is due
to the nonsinglet quark distribution, which causes the strong variation of g1 with Q2 at
small x and which is almost absent in the deuteron.

The E-143 data were also analysed assuming scaling behaviour for A1 and A2 instead
for g1/F1 [168]. Again for Γp

1 a lower result is obtained. The difference of 1.5 times
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the statistical error is still covered by — although not included in — the systematic
uncertainty. This clearly demonstrates, that the uncertainty in the Q2 evolution cannot
be ignored. Although the recent QCD analyses of the g1 data provide a solid ground to
perform the evolution, a careful assessment of the uncertainties still has to be performed.
This is presently carried out for the SMC data [123].

In the original publication of the E-142 neutron result [23] an experimental value of
Γn
1 = −0.022± 0.011 was compared to a prediction of the Ellis-Jaffe sum rule of −0.021±

0.018. However, when higher order corrections are included, the Ellis–Jaffe sum rule
rather yields Γn

1 = −0.011 ± 0.005 at Q2 = 2 GeV2. In the meanwhile the E-142 data
were re-analysed yielding a quite different value of Γn

1 = −0.032± 0.011 as reported in the
Ph. D. thesis of Kawall [169]. This value is 1.7 standard deviations below the Ellis–Jaffe
prediction and in good agreement with the E-143 result as obtained from their proton and
deuteron data.

The lower neutron first moment, Γn
1 = −0.55 ± 0.024, obtained from the SMC proton

and deuteron data is entirely due to the decrease of gn1 for x < 0.03 outside the region
accessible to the SLAC experiments (Fig. 5.10). The integral for the region 0 ≤ x < 0.03
from the first four SMC gn1 points and an extrapolation to x = 0 amounts to −0.027±0.009.
The points were measured at Q2

m = 1.3, 2.1, 3.6, and 5.9 GeV2, respectively, close to
Q2

0 = 2 GeV2 of the E-142 data. In this x region g1 is expected to vary only slowly with
Q2. Replacing in the updated E-142 result the extrapolation of −0.0065 for x < 0.03
by value from the SMC data yields Γn

1 = −0.053 ± 0.013 similar to the SMC result at
10 GeV2.

Until a re-analysis of the E-142 neutron data is published these data must be considered
as preliminary and to some extend as unreliable given the high precision quoted. Therefore,
presently only the neutron data obtained from the proton and deuteron data of E-143 and
SMC experiments should be used, e.g. in the evaluation of the Bjorken sum rule. Further
input for this region will come from the SMC proton experiments in 1996 and the SLAC
experiments E-1541 and E-155 at 48 GeV.

5.4.2 Test of the Bjorken sum rule

The results for the Bjorken sum, Γp
1 − Γn

1 , are summarised in Table 5.3 and shown in
Fig. 5.12. The predictions were calculated including corrections up to O(α3

s). Note that
the only two independent determinations of the Bjorken sum are those by the SMC and
the E-143 collaboration from their proton and deuteron data using

Γp
1 − Γn

1 = 2

{
Γp
1 − Γd

1

1

1− 3
2ωD

}
. (5.14)

The E-142 data were included for completeness and the given errors should be taken with
care (see Sect. 5.4.1). All results and their various combinations agree with the Bjorken

1After this paper was finished we received a preliminary gn1 result from the E-154 experiment shown
by E. Hughes at the Int. Conf. of High Energy Physics, Warsaw, Poland, July 25, 1996. For x > 0.014
it confirms with an impressive statistical accuracy the decreasing trend of gn1 towards small x seen in the
SMC data. A reliable extrapolation from these data appears to be very difficult. The integral is therefore
only given in the measured range 0.014 ≤ x ≤ 0.7 and amounts to −0.037±0.004±0.010 at Q2 = 5 GeV2.
A power-law fit in the region x < 0.1 yields gn1 = −0.02x−0.8 which would contribute −0.043 for the small
x extrapolation.
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Table 5.3: Results for the Bjorken sum.

experiment Q2
0 (Γp

1 − Γn
1)(Q

2
0)

GeV2 experiment sum rule

SMC 10 0.191 (36) 0.187 (3)
SMCa 10 0.180 (34)

E-143b 3 0.163 (19) 0.177 (6)
E-143c 3 0.156 (19)
E-142 (n) & E-143 (p) 3 0.149 (14)
E-142d (n) & E-143 (p) 3 0.160 (14)
E-142d (n) & E-143 (p) & SMCe 3 0.181 (16)

For the superscripts see Table 5.2 (p. 76).

0.1

0.2

2 3 4 5 6 7 8 9 10

SMC
E143

E143/E142

Q2(GeV2)

Γ1
p-Γ1

n

Figure 5.12: Comparison of the experimental results for the Bjorken sum and the sum-rule
prediction (shaded band) as a function of Q2. The data points correspond to the entries
labelled SMC, E-143b, and E142 (n) & E-143 (p) in Table 5.3. For clarity the E-142 & E-143
point is shown at a sightly lower value of Q2.



5.4. The first moment of g1 79
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Figure 5.13: Comparison of the experimental results for the Bjorken sum evolved to Q2 = ∞.
For the various data point see text and Table 5.3 (p. 76).

sum-rule prediction within about one standard deviation, apart from the combination of
the E-142 neutron data with the E-143 proton data which yields a value 1.8 standard
deviations below the prediction. To compare the experimental results directly they were
converted to the corresponding leading order values, i.e. to the Bjorken sum for Q2 = ∞.
The experimental uncertainty and the one due to αs were added in quadrature for this
comparison which is shown in Fig. 5.13.

A combined analysis of all data on the level of the structure functions is presently
being carried out by the SMC [123]. This analysis will take into account the correlations
between the different data sets and use a next-to-leading QCD analysis for the evolution
to a common value of Q2.
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5.4.3 The Bjorken sum rule and the strong coupling constant

Recently a determination of the strong coupling constant, αs, from the Bjorken-sum data
was published by Ellis et al. [170, 171]. The emphasis of this paper is on a study of the
perturbation series, f(a), using the technique of Padé approximants, where

Γp
1 − Γn

1 =
1

6
gaf(a) (5.15)

and

f(a) =
∞∑

n=0

cna
n, with a =

αs
π
. (5.16)

It is known that the coefficients cn eventually show a factorial (n!) growth. This is due
to an exponential decrease of the average virtuality of the involved gluons with increasing
n in certain Feynman graphs related to the running of αs. Re-expressing the low-scale
coupling constant relevant for these gluons by that at the large external scale, Q2, causes
the growth of the coefficients cn [172].

In order to obtain a reliable determination of αs from the Bjorken sum one either
has to stay in a regime, where αs is small and where using the perturbative series up to
n ≃ 1/αs is sufficient, or one has to estimate the full perturbation series reliably. The
latter approach is studied in Ref. [171], in which the perturbation series, f(a), for the
Bjorken sum is approximated for nf = 3 by

fPA(a) =
1− 8.805a + 11.974a2

1− 7.805a + 7.763a2
. (5.17)

Using this result and an experimental value of Γp
1 − Γn

1 = 0.164 ± 0.011 at Q2
0 = 3 GeV2

they obtain
αs(M

2
Z) = 0.116+0.003

−0.005 ± 0.003, (5.18)

where the second error accounts for the theoretical uncertainty including higher-twist
contributions, see Sect. 5.9. The values for αs at Q2 = 3 GeV2 differ considerably when
evaluated using the perturbation series up to third and fourth order and using Eq. 5.17

α(3)
s = 0.390+0.053

−0.063, α(4)
s = 0.364+0.044

−0.057, αPA
s = 0.328+0.026

−0.037. (5.19)

The error on αPA
s is smaller by about a factor two than that on α

(3)
s . This is due to the

larger sensitivity dfPA/da = −4.7 at a = 0.1 compared to that for the perturbation series
up to third and fourth order of −2.3 and −2.8, respectively.

The coefficients of the perturbation series are known up to c3 and the coefficient c4
was estimated (Table 2.1) (p. 21). A more conservative approach is therefore to include
the difference between the third order and the Padé result in the error on αs. As discussed
in Sect. 5.4.1 at low Q2 ≃ 3 GeV2 only the E-143 result for the Bjorken sum with an
error of 0.019 should be used. This error may still be underestimated as far as the small-x
extrapolation is concerned. Such a procedure yields an uncertainty in αs(3 GeV2) in the
order of 0.12 corresponding to a probably more realistic error of

δαs(M
2
Z) ≃ +0.012

−0.020, (5.20)

about four times larger than the one quoted in Eq. 5.18.
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Table 5.4: Results for ∆Σinv and corresponding values of ∆s
experiment target ∆Σinv ∆s

SMC deuteron 0.25 (8) −0.11 (3)
E-143b deuteron 0.30 (5) −0.09 (2)

SMC proton 0.27 (16) −0.10 (5)
E-143b proton 0.24 (10) −0.11 (3)

SMCa proton 0.21 (16) −0.12 (5)
E-143c proton 0.18 (10) −0.13 (3)

For the superscripts see Table 5.2 (p. 76).

Also target-mass corrections [173] need to be considered which for the polarised case
were studied in Ref. [174]. For the Bjorken sum they are related to gp2−gn2 and upper limits
were given by Kawamura and Uematsu [175]. These limits correspond to an uncertainty
in the Bjorken sum of 0.013 using the SMC Ap

2 data only. With the new E-143 A2 data
and the SMC Ad

2 data these limits need to be re-evaluated and target-mass effects will be
smaller and maybe negligible.

In addition to the points raised above, there remains the question of consistency of
the Q2 evolutions of g1 and of the Bjorken sum. On one hand the g1 data are at best
evolved in next-to-leading order involving Q2 slopes of order α2

s, on the other hand the
Bjorken sum is evolved in order α4

s or higher when using the Padé estimate. Clearly the
evolutions of Γ1 obtained in the two ways are different. This must lead to a dependence
of the extracted αs value on the Q2

0 value chosen for the evaluation of Γ1. This problem
was discussed by Chýla and Rameš [176] for the very similar case of the Gross–Llewelyn
Smith sum rule [177], where the evolution of the structure function, xF3, is known much
better. From their (anti)neutrino-scattering data the CCFR collaboration finds for the
Gross–Llewelyn Smith sum rule at Q2 = 3 GeV2 [178]

∫ 1

0
F3(x,Q

2) dx = 2.50 ± 0.018(stat.) ± 0.078(syst.). (5.21)

Including information from several other data sets and using correction up to O(α3
s) and

a higher-twist contribution of −0.27 ± 0.14 GeV2/Q2 they obtain for the strong coupling
constant [179],

αs(M
2
Z) = 0.108 ±0.003

0.005 ±0.004±0.004
0.006, (5.22)

where the third error accounts for the uncertainty of higher-twist contribution. This
corresponds to αs(3 GeV2) = 0.26 ±0.02

0.03 ±0.02± 0.03.

5.5 The spin structure of the nucleon

The Ellis–Jaffe sum rules (Eq. 2.112, p. 21)

Γp,n
1 (Q2) =

1

12

{
±ga +

1√
3
a8

}
CNS(Q2) +

1

9
∆ΣCS(Q2) (5.23)
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were originally derived without the QCD corrections and assuming that the polarisation of
the strange quarks vanishes, or — more precisely — that the nucleon matrix elements of the
flavour-singlet and nonsinglet axial-vector currents are related by ∆Σ =

√
3a8 = 3F −D.

The violation of the Ellis–Jaffe sum rules tells us that this relation does not hold. In
turn one can now determine ∆Σ and thus ∆s from the measurements of Γ1. The results
for ∆Σinv (Eq. 2.106, p. 20) and ∆s from the SMC and E-143 data are summarised in
Table 5.4. They were evaluated with the same values for αs, F/D, ga, and nf as used
in Sect. 5.4.1. The value of ∆Σ at the Q2 of the measurement can be obtained using
∆Σ(Q2)/∆Σinv = 1.08 (1.06) for Q2 = 3 GeV2 (10 GeV2).

The data from both experiments and from the proton and deuteron targets are in good
agreement. The most significant results come from the deuteron data, which also have the
advantage of being less sensitive to the assumptions made for the Q2 evolution of the g1
data. The flavour-singlet matrix element ∆Σinv is small and the strange sea is negatively
polarised

∆Σinv ≃ 0.28 ± 0.07 and ∆s ≃ −0.10 ± 0.03 (5.24)

very much in line with the original findings of the EMC. The error given here also covers
an estimated uncertainty of 0.06 due to the Q2 evolution of the data, where the value for
the proton data was taken as an upper limit to be conservative. The results of Eq. 5.24
imply

∆u = 0.77± 0.03, ∆d = −0.49± 0.03, ∆s = −0.10 ± 0.03. (5.25)

The negative value for ∆s is supported by elastic (anti)neutrino scattering, νp → νp,
data [180]. The data corresponds to ∆s = −0.15 ± 0.09 [159].

The E-142 collaboration reported from their neutron data [23] a value of ∆Σ(Q2) =
0.57 ± 0.11 at Q2 = 2 GeV2 corresponding to ∆Σinv = 0.53. Including QCD corrections
up to O(α3

s) this values becomes ∆Σinv = 0.47, while the re-analysed data [169] yield
∆Σinv = 0.31 in good agreement with the results from the SMC and the E-143 experiment.

All new data confirm the EMC result that in the quark parton model interpretation
the quarks contribute little to the nucleon spin. This still puzzling result led over the last
eight years to many speculations of how to reconcile the parton-model expectation with
the experimental results. The behaviour of g1 for x→ 0 is now much more bound by the
SMC data and early suggestions [181] that the Ellis–Jaffe sum rules may be accounted for
at small x seem now very unlikely, in particular because the Bjorken sum rule is confirmed
by the same data.

The validity of SU(3) flavour symmetry, needed to obtain a8 from hyperon decay data,
was questioned and discussed by many authors [52, 81, 182–187]. The direct contribution
of a8 to the first moment of g1 is small. Therefore, a modification of a8 primarily affects
the Ellis–Jaffe prediction via the assumption, ∆Σ =

√
3a8. This implies that changing a8

changes in the first place the expectation for ∆Σ rather than its value as derived from the
measurements. If the expectation is made small enough, the Ellis–Jaffe sum rule is – of
course – fulfilled, with the main difference that now ∆s ≃ 0. For the central values given
above a relative change in a8 causes roughly half (double) that change with opposite sign
in ∆Σ (∆s). Thus a small modification of a8 due to SU(3) breaking mainly causes a re-
distribution of ∆q between valence and sea quarks, keeping the sum, ∆Σ, about constant.
One proposal for a possible SU(3) breaking is to extrapolate the ratio F/D to zero mass
difference of the initial and final hyperon in the weak decay [186]. The extrapolation used
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yields F/D = 0.40 ± 0.07 instead of 0.575 ± 0.016. With such a low value the Ellis–Jaffe
predictions agree with the experimental results. This approach was criticised in Ref. [187]
because it changes F/D strongly while keeping “miraculously” F +D = ga fixed. Apart
from the neutron decay this combination also governs the decay Ξ− → Σ0eν, where SU(3)
breaking as defined in Ref. [186] should be very large due to the mass differences involved.

The Skyrme model [188] of the nucleon implies in lowest order ∆Σ = 0 [189] and the
nucleon spin is carried by orbital angular momentum [159]. In this model the number of
colours, Nc, is a free parameter and the results are obtained in the limit Nc → ∞. In a
model using a generalised Skyrme Lagrangian [190,191] values of ∆Σ = 0.18–0.32 can be
accommodated.

Because of the axial anomaly (Sect. 2.12) it was suggested [74–76] that not ∆Σ as
obtained above should be compared to the parton-model expectation, but the modified
quantity (Eq. 2.123, p. 23)

∆̃Σ = ∆Σ(Q2) + nf
αs(Q

2)

2π
∆g(Q2). (5.26)

In the scale-independent quantity ∆̃Σ the negative gluon contribution to ∆Σ(Q2) due to
the axial anomaly is added back. If ∆̃Σ is interpreted as the fraction of the nucleon’s
spin carried by the quark spins, this fraction can again be equal to 3F −D and the entire
violation of the Ellis–Jaffe sum rules can be attributed to the anomalous gluon contribution
to Γ1. This requires a large first moment of the polarised gluon distribution function of
∆g = 1.6 and 2.5 for Q2 = 3 GeV2 and 10 GeV2, respectively. Beyond leading order
the separation of quark singlet and gluon contributions is in general ambiguous and can
be redefined. However, there is no agreement [192] in the literature whether there is any
advantage in using ∆̃Σ over ∆Σ.

The two options correspond to two renormalisation/factorisation schemes, which differ
in the renormalisation prescription for γ5. This is an additional ambiguity in the polarised
case and both schemes correspond to the MS scheme in the unpolarised case. The physics
pictures behind the two schemes differ in which soft gluon contributions are absorbed in
the parton distribution functions [193, 194]. A discussion of the two pictures can also be
found in Ref. [195]. Following Ref. [55] we will keep the notation MS for the scheme,
where the singlet quark distribution corresponds to ∆Σ, and refer to the scheme, where
the quark singlet distribution corresponds to ∆̃Σ, as Adler–Bardeen scheme. The name
is motivated by the Adler–Bardeen theorem [80] originally derived in the context of QED
which states the scale independence of ∆̃Σ to all orders.

In leading order there is no direct gluon contribution to Γ1. In next-to-leading order
the gluon contribution vanishes in the MS scheme because the first moment of the relevant
coefficient function, Cg, vanishes. In the Adler–Bardeen scheme the gluon contribution is
given by Eq. 5.26. There is a prescription of how to convert ∆Σ and ∆g from one scheme
to the other [55, 196]. It turns out that the first moment of the gluon distribution, ∆g,
is the same in both schemes and that only ∆Σ gets modified. As far as g1 and Γ1 are
concerned all the schemes are on equal footing.

The key question is what to use in the helicity sum rule,

Sz =
1

2
∆Σ+ Lq +∆g + Lg =

1

2
, (5.27)

where ∆Σ and ∆g denote the quark and gluon helicities and Lq and Lg their orbital
angular momentum. Or maybe better: What are Lq and Lg in the two schemes? This
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question was recently addressed by Ji et al. [197]. The authors derive a leading-order
evolution equation for the quark and gluon orbital angular momenta, which couples them
with each other and with the quark and gluon helicities. For Q2 → ∞ the solution yields
asymptotic spin fractions carried by the quarks and gluons of

∆Σ + 2Lq =
3nf

16 + 3nf
= 2Jq = 0.43

2∆g + 2Lg =
16

16 + 3nf
= 2Jg = 0.57, (nf = 4) (5.28)

which are exactly the same as the asymptotic momentum fractions [39]. The authors argue
that in next-to-leading order the anomalous gluon contribution to ∆Σ must be cancelled
by a similar contribution to Lq with opposite sign and that Jq is anomaly free and invariant
under such redefinitions. If the spin fractions given in Eqs. 5.28 are still valid at the scale
where the experiments are performed, Q2 = 3–10 GeV2, we obtain from the result in
Eq. 5.24 a value of Lq = 0.075.

The operator description of the gluon spin contribution to the nucleon spin was recently
studied by Jaffe [198]. The author finds a significant negative contribution to ∆g in contrast
to what is expected in the anomaly interpretation of the sum rule violations.

To my knowledge the only proposal to access the orbital momentum of quarks experi-
mentally is based on a semi-classical model, in which Lq leads to an azimuthal asymmetry
in the distribution of hadrons produced by an unpolarised beam from a transversely po-
larised target [199]. The signal should show a periodicity with 2ϕ, where ϕ is the azimuth
angle in the plane perpendicular to the momentum transfer. However, the azimuthal dis-
tribution of hadrons as obtained from an analysis of the hadronic tensor up to order 1/Q
is very complicated [200] and involves terms periodic in ϕ, 2ϕ and 3ϕ.

5.6 QCD analyses of the g1 data

After the complete next-to-leading order calculation of the two-loop splitting functions by
Mertig and van Neerven [57] and by Vogelsang [58] three analyses of the g1 data in the
framework of the next-to-leading order Altarelli–Parisi equations (Eqs. 2.88, 2.89, p. 17)
were published by Glück, Reya, Stratmann, and Vogelsang (GRSV) [201], by Gehrmann
and Stirling (GS) [202], and by Ball, Forte, and Ridolfi (BFR) [55]. In two of them
(GRSV, GS) the MS scheme was used and the BFR analysis was performed in the Adler–
Bardeen scheme (AB), see Sect. 5.5. The parton distribution functions are parametrised at
a starting scale Q2

0, and their normalisation is contrained by the nonsinglet combinations

ga = ∆u−∆d = 1.2573 ± 0.0028,

3F −D = ∆u+∆d− 2∆s = 0.579 ± 0.025. (5.29)

The asymptotic behaviour of the parton distribution functions [204] is used to fix some of
the parameters. From the parton distribution functions evolved to Q2 the prediction for
each g1(x,Q

2) data point is calculated using Eq. 2.90 and the best set of parameters is
obtained by minimising χ2. All fits describe the data well and as an example the BFR fits
to the proton and deuteron data are shown in Fig. 5.14. The curves show the fitted g1 for
1 and 10 GeV2 and for the Q2 of the measurements for both, the SMC and E-143 data.
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Figure 5.14: Next-to-leading order QCD analysis of the SMC and the E-143 proton (top) and
deuteron data (bottom) [55].
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Table 5.5: Results from NLO pQCD analyses

group fit Ref. scheme Q2
0 ∆g data used

GeV2 Q2
0 10 GeV2

GRSV standard [146] MS 0.34 0.5 1.7 all p,d,n
GS Gluon B [202] MS 4.0 1.6 1.9 all p,d,n
BFR [55] AB 1.0 1.5 2.8 SMC, E-143, p,d
BFR Rome [203] AB 1.0 1.0 1.9 all p,d

The values for ∆g(10 GeV2) for GS and BFR were scaled from Q2
0 with αs(Q

2
0)/αs(10 GeV2).

Some characteristic parameters of the analsyses and the results for ∆g are summarised
in Table 5.5. In all analyses positive values for ∆g are found, however the sensitivity to ∆g
is rather weak. Only for the BFR analysis an error on ∆g is given. The original result is
∆g(Q2

0) = 1.5±0.8 and an extented analysis yields ∆g(Q2
0) = 1.0±0.4 [203], both for Q2

0 =
1 GeV2. In the GRSV and GS analyses three quark distribution functions are fitted apart
from ∆g(x), namely ∆uv(x), ∆dv(x), and ∆q̄(x). In the BFR analysis only two, the singlet
and nonsinglet quark distribution function, ∆qns(x) and ∆qs(x), are fitted. The difference
of the proton and neutron nonsinglet distribution functions as defined in Eq. 2.86 is only
taken into account concerning different normalisations according to Eq. 5.29. However,
the same x shape is assumed for both to limit the number of free parameters in view
of the limited precision of the data. Assuming that the antiquark distribution functions
are the same for all quark flavours, this leads to an unphysical relation between the up
and down-quark valence distribution functions, (2a+1)∆uv(x) = −(2 + a)∆dv(x), where
a = −0.73 is the ratio of the neutron and proton nonsinglet normalisations. If this can
lead to an underestimate of the error of ∆g has to be investigated.

In the GRSV and BFR analyses ∆Σ(Q2
0), is determined in the fit, while it is fixed to the

experimental value in the GS analysis. The results at Q2 = 10 GeV2 are ∆Σ(Q2) = 0.29
(GRSV) and ∆̃Σ = 0.5 ± 0.1 (BFR). The latter corresponds to ∆Σ = 0.14 ± 0.10+0.12

−0.05,
where the first error is statistical and the second accounts for theoretical uncertainties.2

The rather low value is coming from the small values found for the first moments of g1,
which are

Γp
1 = 0.122 ± 0.013+0.011

−0.005 proton

Γd
1 = 0.025 ± 0.013+0.012

−0.004 deuteron.

This is most likely due to the steep drop of g1 at Q2 = 10 GeV2 at small x, see Fig. 5.14.
The first moments obtained in the GRSV analysis are 0.143 and 0.042 for the proton and
the deuteron, respectively.

5.7 Semi-inclusive deep-inelastic scattering

The interest in semi-inclusive data is due to the fact that the produced hadron carries
information on the flavour of the initially struck quark, particularly when it carries a large

2Note that in the notation of Ref. [55] (BFR) ∆̃Σ is ∆Σ and ∆Σ is a0.
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fraction of the energy transfer, z = Eh/ν. Presently the only semi-inclusive data are
those from the SMC [22], apart from older EMC data [17] which were not analysed in
terms of parton distribution functions. Only the fully inclusive process can be treated in
the operator product expansion (Sect. 2.10). Therefore, the interpretation of the semi-
inclusive data, where at least one hadron is observed, makes explicit use of the quark
parton model. In the fragmentation process of a quark q into a hadron h, q → h, hadrons
containing the initial quark as valence quark are favoured. Therefore u and d̄ quarks
preferentially fragment into positive pions while d and ū quarks fragment dominantly into
negative pions. Combining data from proton and deuteron targets for the production of
positive and negative pions the helicity distribution functions for up and down quarks and
antiquarks can be determined. In the unpolarised case this can be done with high precision
by combining data from charged-lepton and from charged-current neutrino scattering.
Because neutrino experiments require targets of several hundred tons no such experiments
can be performed in the polarised case and semi-inclusive data provide presently the
only direct information on the valence-quark helicity distribution functions, ∆qv(x) =
∆q(x) − ∆q̄(x). At high momentum transfers charged-current events can be studied in
ep collisions at HERA. With a polarised proton beam and high luminosity the parity
violating structure functions could be studied there, see Sect. 6.2.

The differential cross section for the production of hadrons factorises and can in the
quark parton model be written in the terms of the parton distribution and the fragmen-
tation functions, q(x,Q2) and Dh

q (z,Q
2). The latter is related to the probability for a

quark q to fragment into a hadron, h, carrying the fraction z of the quark’s energy, which
is taken to be the energy transfer ν. For charged hadrons, which were studied in the SMC
analysis, we obtain

1

σµ
dσ±

dz
=

1

Nµ

dN±

dz
=

∑
q e

2
q q(x,Q

2)Dh±
q (z,Q2)

∑
q e

2
q q(x,Q

2)
, (5.30)

where N± is the number of produced hadrons, Nµ the is the number of deep-inelastic
events, and σ± and σµ are the corresponding differential cross sections. The sums run
over q = u,d, s, ū, d̄, s̄ and eq are the quark charges. The fragmentation function, Dh±

q ,
accounts for the fragmentation into positive and negative hadrons, respectively. In the
SMC analysis contributions from pions, kaons, and protons and their antiparticles were
considered.

The asymmetries obtained in the SMC analysis [22] for the production positive and
negative hadrons from proton and deuteron targets are shown in Fig. 5.15. In the quark
parton model these asymmetries are given by

A±1 (x,Q
2) =

∑
q e

2
q∆q(x,Q

2)D±q (Q
2)

∑
q e

2
qq(x,Q

2)D±q (Q2)
, (5.31)

where D±q (Q
2) =

∑
h±
∫ 1
zmin

Dh±
q (z,Q2)dz with zmin = 0.2 in the SMC analysis. The

fragmentation functions in Eq. 5.31 are the same for the polarised and unpolarised case,
provided the final state hadrons are spinless or it is summed over their spin orientations.
These functions were measured by the EMC for up and down quarks fragmenting into
charged pions, kaons, and protons [205]. The only substantial contributions to the sums
in Eq. 5.31 arise from the fragmentation of light quarks into pions.
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Figure 5.15: Virtual-photon asymmetries for the production of charged hadrons, A±1 , as a
function of x, for (a,c) positive and (b,d) negative hadrons from (c,d) proton and (a,b) deuteron
targets. The data are from the SMC (full circles) [22] and the EMC (open circles) [17].
Statistical errors are shown on the data points and systematic errors for the SMC data are
indicated by the shaded areas.

The quark helicity distribution functions are determined from the measured hadron
asymmetries, Eq. 5.31, and and the inclusive asymmetries

A1(x,Q
2) =

∑
q e

2
q∆q(x,Q

2)
∑
q e

2
qq(x,Q

2)
. (5.32)

The correlation between the data sets is taken into account in the SMC analysis. For the
unpolarised quark distribution functions the parametrisations of the Durham group [206]
and the Dortmund group [207] are used to estimate the uncertainty. The results given
here refer to the Durham parametrisation. The quark distributions and the fragmentation
functions are evaluated for Q2 = 10 GeV2 and it is assumed that the asymmetries do
not depend on Q2. In principle all six quark and antiquark helicity distributions can be
determined from the six measured asymmetries for positive and negative hadrons from
proton and deuteron targets plus the two inclusive asymmetries. However, the sensitivity
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Figure 5.16: SMC results for x∆q(x) as a function of x at Q2 = 10 GeV2 for (a) the up
valence quarks, (b) the down valence quarks, (c) the light sea quarks (see text).

to the strange quark and antiquark distribution functions is very weak and they are there-
fore fixed in the analysis. Their shape is assumed to be equal to that of the unpolarised
distribution functions and the normalisation is taken from the analysis of the Ellis–Jaffe
sum using the inclusive data,

∫ 0.7
0.003(∆s+∆s̄)dx = −0.12. In addition the light-antiquark

distribution functions are assumed to be equal, ∆q̄(x) := ∆ū(x) = ∆d̄(x). This is neces-
sary because of the limited statistics of the data and may be released in a future analysis
including the SMC data from the 1995 deuteron and 1996 proton experiments. From
the violation of the Gottfried sum rule [10, 208] and the result from Drell–Yan dimuon
production [209] it is well known that this assumption is unjustified in the unpolarised
case.

The SMC results for the valence-quark and antiquark helicity distribution functions,
∆qv(x) and ∆q̄(x), are shown in Fig. 5.16 for Q2 = 10 GeV2. The polarisations of the
valence quarks are within the statistical accuracy independent of x and amount to

∆uv(x)

uv(x)
= 0.5± 0.1,

∆dv(x)

dv(x)
= −0.6± 0.2. (5.33)

As expected in the constituent quark model the polarisation of the up valence quarks
is positive and that of the down valence quarks is negative. The polarisation of the
light-quark sea is compatible with zero. Also shown as solid lines are the limits from
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the unpolarised parton distributions, |∆q(x)| ≤ q(x). The open points at large x are
obtained when the antiquark distributions are set to zero for x > 0.2. For these points
the systematic error covers the range ∆q(x) = ±q(x).

The valence-quark helicity distribution functions can also be determined from an asym-
metry constructed from the differences of the cross sections for the production of positive
and negative hadrons [210]. The advantage of this method is that the fragmentation func-
tions cancel and that the asymmetry only depends on the valence quarks. However, an
experimental problem is that the sightly different spectrometer acceptances for negative
and positive hadrons do not cancel in these asymmetries. These acceptances were studied
in dedicated runs with opposite-sign beam muons and reversed spectrometer-magnet field.
The semi-inclusive data were also analysed using the method of Ref. [210] and the results
from both methods agree. A direct comparison is shown in Ref. [22].

To evaluate the contribution of the valence quarks to the nucleon spin the helicity
distribution functions must be integrated over the entire x range, ∆q =

∫ 1
0 ∆q(x)dx.

Outside the measured region 0.003 ≤ x ≤ 0.7 the polarisation of the valence quarks,
∆qv(x)/qv(x) was assumed to be constant, while for the sea quarks ∆q̄(x) was assumed
to be constant. Only the extrapolations to x → 0 give sizable contributions to the first
moments amounting to 0.11 ± 0.11, −0.06 ± 0.06, and 0 ± 0.02 for ∆uv, ∆dv, and ∆q̄,
respectively. The results for the entire x region are

∆uv = 1.01 ± 0.19 ± 0.14

∆dv = −0.57 ± 0.22 ± 0.11 (5.34)

∆ū = ∆d̄ = −0.02 ± 0.09 ± 0.03.

Assuming that the first moments for up, down, and strange antiquarks are equal, one
obtains 2∆q̄(x) = ∆s + ∆s̄ = −0.10. Within the error margins this relation is fulfilled.
Note that this analysis does not make explicit use of the matrix elements obtained from
hyperon decays and of SU(3) flavour symmetry apart from how the normalisation of the
strange quark distribution functions is fixed.

In the quark parton model we have the relation

gp1 (x)− gn1 (x) =
1

6
{∆u(x)−∆d(x)}

=
1

6
{∆uv −∆dv}+

1

3

{
∆ū(x)−∆d̄(x)

}
. (5.35)

Assuming isospin symmetry for the quark sea, ∆ū(x) = ∆d̄(x), as in the present analysis
of the semi-inclusive data the last term vanishes and we obtain a relation between the
structure functions and the valence distribution functions. To compare the two quantities
the SMC repeated the analysis of the semi-inclusive data without using the inclusive
asymmetries. The two analyses shown in Fig. 5.17 are in good agreement demonstrating
the internal consistency of the two methods.

The question of how the anomaly contributes in semi-inclusive scattering was addressed
in Ref. [211]. Theoretically the situation is unclear and arguments exist for an unchanged
contribution as well as for a suppression of the anomalous contribution in the semi-inclusive
channel. The SMC results are compatible with both scenarios. In the future the HERMES
experiment will contribute precise data for 0.01 < x to this kind of studies. Lower x values
can be reached with high precision by the COMPASS experiment (Sect. 6.1).
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from semi-inclusive asymmetries from the SMC data. Only statistical errors are shown.

5.8 Results from lattice gauge theory

A successful theory of strong interactions must eventually be able to predict such funda-
mental quantities as structure functions and their moments from first principles. Such an
attempt is made in lattice gauge theories [212]. Considerable progress has been made in the
last years partly due to the developments in computer technology. Now reliable calcula-
tions of the moments of structure functions begin to emerge. Recently, three groups from
Germany [213], Japan [213], and Kentucky [214] published results for the axial charge,
∆Σ. They obtain ∆Σ = 0.18 ± 0.02 [213], 0.18 ± 0.10 [215], and 0.25 ± 0.10 [214], re-
spectively. The agreement between the calculations and with the experimental value of
0.28 ± 0.07 is remarkable. The first and the two latter calculations use different meth-
ods. Recently, a partial calculation of ∆Σ by the German group using a similar technique
as in Refs. [214, 215] became available [216]. In the following we refer to these results.
The calculations were performed in so-called “quenched” QCD neglecting internal quark
loops [214, 215]. Typical parameters are a lattice size of 163 × 20 and a lattice spacing
of a = 0.14 fm [215]. The relevant scale is a−2. The results for the chiral limit, mq = 0,
are extrapolated from calculations for several quark masses around 100–300 MeV. The
heavier strange quark is treated separately. The German group used a somewhat larger
lattice in the time coordinate, 163×32 [216]. However, in this work only the contributions
from operators directly coupled to the valence quarks in the nucleon (connected part) were
calculated. The calculation of the disconnected part related to sea quarks is in progress.
The results from the three groups are in good agreement and are summarised in Table 5.6.
It is found that the connected part reproduces about the value expected for ∆Σ from the
Ellis–Jaffe sum rule, while the disconnected part is responsible for the small total value of
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Table 5.6: Results from lattice QCD for the axial charges.
Part Ref. ∆u ∆d ∆s ∆Σ

conn. [216] 0.83 (7) −0.24 (2) – 0.59 (7)

conn. [215] 0.76 (4) −0.23 (2) – 0.53 (4)
disc. −0.12 (4) −0.12 (4) −0.11 (3) −0.35 (4)

total 0.64 (5) −0.35 (5) −0.11 (3) 0.18 (10)

conn. [214] 0.91 (11) −0.30 (11) – 0.62 (9)
disc. −0.12 (1) −0.12 (1) −0.12 (1) −0.37 (3)

total 0.79 (11) −0.42 (11) −0.12 (1) 0.25 (12)

Experiment 0.77 (3) −0.49 (3) −0.10 (3) 0.28 (7)

∆Σ.

The axial vector coupling constant, gn→p
a = F + D = ∆u − ∆d, is often difficult to

reproduce in lattice QCD. This nonsinglet combination should receive no or only small
contributions from the disconnected part. The values obtained by the three groups are
1.07± 0.09 [216], 0.985± 0.025 [215], and 1.20± 0.11 [217]. The first two fall short of the
experimental value 1.2573± 0.0028 [51], while the result from the Kentucky group is only
4 % below. This calculation also gives the ∆Σ value closest to the experimental result.
The results of the German group for the higher moments of g1 and g2 are discussed in the
context of higher-twist effects in Sect. 5.9.

Recently a calculation of the tensor charge, δΣ

2(SµPν − SνPµ)δΣ = 〈P, S|ψ̄iσµνγ5ψ|P, S〉, (5.36)

was reported [218]. The tensor charge is given by the difference of the first moments of
the transversity structure function, h1, for quarks and antiquarks. Gluon operators do not
contribute to h1 in any order and the tensor charge is therefore anomaly free. The lattice
calculation shows a large value for the tensor charge

δΣ(Q2) = 0.56 (13) compared to ∆Σ(Q2) = 0.18 (10), (5.37)

at Q2 = 3 GeV2. This is an interesting result in view of the measurements of h1 foreseen
for HERMES and proposed by the COMPASS collaboration at CERN and the RHIC spin
collaboration at Brookhaven.

5.9 Higher-twist contributions to the first moments

In addition to the QCD corrections given by the perturbative series also higher-twist
contributions proportional to 1/Q2n must be considered for the Ellis–Jaffe and Bjorken
sum rules. There are in principle two kinds of such power contributions, which appear in
the Bjorken sum rule like

Γn
1 − Γn

1 =
ga
6

(
1− αs(Q

2)

π
+ · · · ± CR

Q2

)
+
CHT

Q2
+O

(
M4

Q4

)
, (5.38)
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Table 5.7: Higher twist reduced matrix elements

Ref. a(2) × 103 d(2) × 103

proton deuteron Bjorken proton deuteron Bjorken

E-143 [27] 24.2 (2.0) 8.0 (1.6) 31 (5) 5.4 (5.0) 3.9 (9.2) 2 (22)

sum [219] −3 (3) −13 (5) 22 (10)
rules [220] −6 (3) −17 (5) 26 (10)

lattice [216] 30 (6) 13 (4) 33 (8) −48 (5) −24 (3) −44 (6)

bag [147] 6 2.9 6
models [221] 59 27 59 21 10 21

[149] 21.0 8.7 6 17.4 6.8 6
[222,223] 10 5 9

f (2) × 103

sum [219] −49 (10) −18 (10) −60 (10)
rules [224] −37 (6) −23 (6) −23 (7)

bag m. [221] 35 16 35

with the nucleon mass M . The term with CR arises from ambiguities in the summation of
the perturbative series and is often referred to as “renormalon ambiguity”. This ambiguity
must be cancelled in the physical result by a corresponding ambiguity in the second term
involving CHT. The latter describes “genuine” higher-twist effects arising from parton-
parton correlations in the nucleon, while CR is target independent. In a recent review
by Braun [172] the size of the two terms was estimated to (ga/6)C

R = 0.004–0.015 GeV2

and CHT = −0.015 ± 0.010 GeV2 with the conclusion that the “true” higher-twist effects
are about a factor of two larger than the renormalon ambiguity. A quite different value
of (ga/6)C

R = 0.040 ± 0.016 GeV2 was reported in Ref. [171]. Thus the estimates for the
size of the “true” higher-twist effects are in the order of the renormalon ambiguities. The
difference between the third and fourth order correction to the Bjorken sum rule evaluated
at 3 GeV2 corresponds to 0.008 GeV2 more in line with the smaller value given by Braun.
In the remaining part of this section, we focus on the genuine higher-twist term, CHT.

Neglecting perturbative QCD corrections, the first moment of g1 is given by the oper-
ator product expansion in the form [225,226]

Γ1(Q
2) =

1

2
a(0) +

1

9

{
a(2) + 4d(2) + 4f (2)

}M2

Q2
+O

(
M4

Q4

)
. (5.39)

The matrix elements a, d, and f , refer to operators of twist two, three, and four, respec-
tively. Two of them, a and d, are related to moments of g1 and g2 by

∫ 1

0
g1(x,Q

2) dx =
1

2
a(0), (5.40)

∫ 1

0
x2g1(x,Q

2) dx =
1

2
a(2), (5.41)

∫ 1

0
x2g2(x,Q

2) dx =
1

3

(
d(2) − a(2)

)
, (5.42)
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ignoring terms of O(M2/Q2). These formulæ can be obtained from Eqs. 2.108 and 2.109
(p. 20) with h(n) =

∑
i εih

i
n+1 for h = a, d. No such relation is known for f (2). It is

interesting to note that d(2) corresponds to the twist-3 part, g2, of g2,

∫ 1

0
x2g2(x,Q

2) dx =
1

3
d(2), (5.43)

and a(2) corresponds to the Wandzura–Wilczek contribution (Eq. 2.118). Usually twist-3
contributions appear on top of large twist-2 contributions. The case of g2, where a twist-3
part can directly be determined from the difference of measurable quantities, g2 − gww

2 , is
probably unique.

The matrix element, a(2) and d(2) were recently determined from the E-143 measure-
ments of gp2 and gd2 [27], see Sect. 5.3.1. These results are summarised in Table 5.7 together
with calculations using QCD sum rules [219,220,224], bag models [147,149,221], and lattice
QCD [216]. The predictions for d(2) and f (2) vary widely and opposite signs are obtained
from QCD sum rules and lattice QCD on one hand and from bag models on the other
hand. Bag models are based on the movement of single quarks in a mean-field. It has been
questioned [227] that such models can give reliable predictions for matrix elements related
to quark-gluon correlations like d(2). The QCD-based methods, QCD sum rules and lat-
tice QCD, should a priori be in a much better position to describe parton correlations.
Therefore it is to some extend surprising that the data favour positive values of d(2) as
predicted in the bag models. The large negative lattice-QCD value of d(2) = −0.048 for the
proton can be excluded. This result was obtained in a quenched calculation not containing
possible contributions from “disconnected” diagrams corresponding to sea quarks, which
might reduce the result. The predictions from lattice QCD for a(2) are in good agreement
with the measurements.

To estimate the possible correction of the Bjorken sum rule, we combine the experi-
mental result for a(2) with the predictions from those calculations, where also the twist-4
term, f (2), is available. From the QCD sum rule calculation of Braun et al. [219] and that
of Stein et al. [220, 224], and the MIT bag model result of Ji and Unrau [221] we obtain
CHT
Bj = −0.012, 0.003, 0.023 GeV2, respectively. Thus the present status of higher-twist

corrections to the Bjorken sum rule can be summarised as

∆HTΓBj =
CHT
Bj

Q2
=

0.004 ± 0.020 GeV2

Q2
, (5.44)

where the central value comes from the experimental results ignoring the contribution of

f (2). The experimental value for d
(2)
Bj is compatible with the three predictions used to

obtain the estimate in Eq.5.44 and thus does not further limit the uncertainty of CHT
Bj .

For Q2 = 3 GeV2 the uncertainty due to higher-twist contributions is in the order of one
third of the present experimental error.

When applying higher-twist corrections to sum rules it is unclear which value of Q2

should be used. Experimentally the structure functions are measured at different Q2 for
each value of x. Therefore, the x dependence of higher-twist corrections is needed in
principle to correct the data. It does not make sense to apply a higher-twist correction
evaluated at e.g. 3 GeV2 to the high-x data, which were taken in the E-143 experiment
at 9 GeV2, or the small-x data taken at 1.3 GeV2. The subsequent evolution of the data
to 3 GeV2 does not take into account higher-twist effects. For the spin-averaged structure



5.9. Higher-twist contributions to the first moments 95

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

   0

– 0.2

– 0.4
   0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

 x

C
H

T
 (

 G
eV

2  
)

H2

D2

Figure 5.18: Higher-twist coefficients, c, for F2

of the proton and the deuteron as a function
of x from the BCDMS and SLAC data [228].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
X

NMC + BCDMS + SLAC

0.50

0.75

0.25

0

-0.25

-0.50

-0.75

-1

C
p

n
- 

C
/G

eV
   2

Figure 5.19: Difference of the higher-twist co-
efficients, cp − cn, for F2 of the proton and
the neutron as a function of x from the NMC,
BCDMS and SLAC data [124].

function, F2, a separation of perturbative and 1/Q2 scaling violations was attempted in a
common analysis [228] of the BCDMS and SLAC F2 data using the following form

F2(x,Q
2) = F̂2(x,Q

2)

(
1 +

c(x)

Q2

)
, (5.45)

where F̂2 accounts for next-to-leading order perturbative Q2 evolution and target mass
corrections. The resulting parameters, c(xi), for each x bin are shown in Fig. 5.18. Large
effects are observed at large x. However, this rise with x is partly due to the parametri-
sation in Eq. 5.45. The relative importance of the higher-twist contributions increases
due to the drop of F2. The difference, cp − cn, of the proton and neutron higher-twist
contributions was studied by the NMC [124] using their data for the structure function
ratio F n

2 /F
p
2 together with data from SLAC and BCDMS. The result of this analysis in

shown in Fig. 5.19. Using these results the higher-twist contribution to the Gottfried sum
rule [229]

SG =

∫
F p
2 − F n

2

x
dx =

1

3

∫ 1

0
(uv − dv) dx+

2

3

∫ 1

0
(ū− d̄) dx, (5.46)

was studied, which is equal to 1/3 for two up and one down valence quark and an isospin-
symmetric quark sea, ū = d̄. The experimental is result is SG(4 GeV2) = 0.235 ± 0.026
[208]. The difference of the higher-twist contributions from the proton and the neutron
amounts to 0.01, which is a 5 % effect.



Chapter 6

Prospects of future experiments

Several new experiments were proposed to further investigate the spin structure of the
nucleon. The emphasis is on the polarisation of the gluons and on the transversity structure
function h1. A key issue is high luminosity. Apart from the RHIC spin programme at
Brookhaven, which is approved, the COMPASS project at CERN is most advanced. A
polarisation of the HERA proton beam would open up a new kinematic domain of spin
physics, provided an integrated luminosity larger than 100 pb−1 can be reached.

6.1 The COMPASS experiment at CERN

An unambiguous determination of the gluon polarisation, ∆g, can only be obtained from a
process involving the gluon in leading-order. Such a process receives corrections in next-to-
leading order proportional to αs∆q, which vanish for Q2 → ∞. A particularly clean such
case is charm production, where in leading order only the photon-gluon fusion process,
shown in Figs. 6.1 and 6.2, contributes. Quark contributions can be neglected because
there is no or only a small intrinsic charm quark content in the nucleon. The interpretation
of data from open charm production [230–233] is more direct than that of data from J/ψ
production. In the latter a model for the formation of the (cc̄) colour-singlet state must
be assumed, see analyses in Refs. [155,234,235] and references therein.

In this section we discuss a measurement of the cross-section asymmetry for open charm
muoproduction proposed at CERN based on the identification of D0 mesons via their D →
Kπ decay channels. The COMPASS experiment will also provide high statistics data for
g1, semi-inclusive muon scattering, and for the third twist-2 nucleon structure function, h1,
often called transversity. The experiment is on the level of a proposal and was favourably
discussed by the programme committee. If approved later this year, measurements could
start in 1999.

6.1.1 Open charm leptoproduction

For real or quasi-real photons the charm-production cross section for the photon-gluon
fusion process, γg → cc̄, can be written as

σγg→cc̄ = σ(ŝ) + λγλg∆σ(ŝ), (6.1)

where ŝ = (q + k)2 is the energy squared and λγ,g are the helicities in the photon-gluon
c.m. system (Fig. 6.2). The spin-averaged part, σ(ŝ), and the spin-dependent part, ∆σ(ŝ),

96
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are given in leading order by [230,231]

∆σ(ŝ) =
4

9

2παeαs(ŝ)

ŝ

{
3β − ln

1 + β

1− β

}
,

σ(ŝ) =
4

9

2παeαs(ŝ)

ŝ

{
−β(2− β2) +

1

2
(3− β4) ln

1 + β

1− β

}
, (6.2)

where β =
√
1− 4m2

c/ŝ is the c.m. velocity of the charmed quarks and antiquarks. Both
terms, σ and ∆σ, rise sharply at the threshold, ŝ = 4m2

c , and ∆σ changes sign at about four
times the threshold (Fig. 6.3). For the discussion below we assume a charm-quark mass
of mc = 1.5 GeV and use the parametrisation of the polarised gluon distribution function,
∆g(x), from Gehrmann and Stirling [236] (set B). From coherence arguments [204] it is
expected that the gluon polarisation behaves like ∆g(x)/g(x) ∝ x for x → 0. Such a
behaviour is used in most parametrisations of the polarised gluon distribution function.
Therefore, ∆g/g is expected to be large only at rather large values of x. For x ≥ 0.15
the gluon polarisation can be as large as 0.5. A collection of polarised parton distribution
functions can be found in Ref. [237].

The photon-nucleon cross-section asymmetry, Acc̄
γN, for the process γN → cc̄ is obtained

by integrating the cross sections over xmin
g ≤ xg ≤ 1

Acc̄
γN(ν) =

∆σγN→cc̄X

σγN→cc̄X
=

∫ 2Mν
4m2

c
dŝ∆σ(ŝ)∆g(xg, ŝ)

∫ 2Mν
4m2

c
dŝ σ(ŝ) g(xg, ŝ)

. (6.3)

Here xg = ŝ/2Mν denotes the nucleon momentum fraction carried by the gluon, which
in this process is different from the kinematic variable, x = Q2/2Mν. Large photon
energies, ν, correspond to small xmin

g = 4m2
c/2Mν. Due to the rise of the unpolarised gluon

distribution function towards small xg and the change-over in sign of ∆σ(ŝ) (Fig. 6.3) the
asymmetry Acc̄

γN drops with increasing ν (Fig. 6.4). To obtain a large asymmetry a large



98 CHAPTER 6. PROSPECTS OF FUTURE EXPERIMENTS

0

50

100
(nb)

(GeV2)ŝ
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overlap of ∆g with ∆σ on one hand and an as-small-as-possible overlap of g with σ on the
other hand is desirable. Depending on the actual shape of ∆g and g this requires a photon
energy of order 50–80 GeV. For ν = 50 GeV the ŝ and xg axes in Fig. 6.3 correspond to
each other.

Presently, only leading-order QCD calculations of the polarised photon-gluon fusion
process exist. For the unpolarised process considerable next-to-leading order corrections
were found, however they are smaller than those for charm hadroproduction [238]. In
the polarised case some corrections could also have opposite sign and thus reduce the
asymmetry [239]. For the analysis of ∆g/g a next-to-leading order calculation is needed.

The cross section for muoproduction of open charm is given by

d2σµN→cc̄X

dQ2dν
= Γ(E;Q2, ν)σγ

⋆N→cc̄X(Q2, ν) (6.4)

with the virtual photon flux Γ

Γ(E;Q2, ν) =
αe
2π

2(1 − y) + y2 +Q2/2E2

Q2(Q2 + ν2)1/2
. (6.5)

The virtual-photon cross section for charm production, σγ
⋆N→cc̄X(Q2, ν), is related to the

photoproduction cross section, σγN→cc̄X(ν), by

σγ
⋆N→cc̄X(Q2, ν) =

σγN→cc̄X(ν)

(1 +Q2/M2
0 )

2
. (6.6)

The mass parameter M0 = 3.9 GeV is known from a fit to experimental data [240]
and the photoproduction cross sections σγN→cc̄X(ν) were measured in several experi-
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Figure 6.5: The COMPASS spectrometer as used for the muon programme.

ments (see Ref. [241] and references therein). They agree well with next-to-leading or-
der QCD calculations involving the unpolarised gluon distribution function [238]. The
charm-leptoproduction cross section is dominated by quasi-real photons and the proposed
experiment takes advantage of the entire photon spectrum down to Q2

min = m2
µy

2/(1− y).

6.1.2 The COMPASS experiment

COMPASS is a fixed-target experiment proposed at the CERN SPS using a “Common
Muon and Proton Apparatus for Structure and Spectroscopy” [242]. The COMPASS
physics programme is a merger of the nucleon spin structure programme with a muon
beam as originally outlined in the “HMC” Letter of Intent [243] and the programme of
the CHEOPS Letter of Intent [244], which focuses on charm production and light meson
spectroscopy with pion, proton, and hyperon beams. Here, only the programme relevant
to spin physics is discussed.

The apparatus for the muon programme (Fig. 6.5) is similar to the one of the SMC,
however most components have to be rebuilt due to their age and to the rate and read-
out requirements of the new experiment. The main differences in the layout are the new
hadron spectrometer stage upstream of the present Forward Spectrometer Magnet (FSM)
and the detectors for particle identification. The hadron stage of the spectrometer has
an acceptance of ±200 mrad for particles originating from the target centre and its new
large-aperture dipole magnet provides a bending power of 1 Tm. Particle identification will
be performed by ring-imaging Cherenkov counters and by electromagnetic and hadronic
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calorimeters in each of the two spectrometer stages. The upstream and downstream RICH
provide pion-kaon separation in the momentum range 3–65 GeV/c and 30–120 GeV/c,
respectively. For the photon detection multi-wire proportional chambers with CsI photo-
cathodes will be employed. Existing lead-glass arrays will be used for the electromagnetic
calorimeters. The hadronic calorimeters will in the muon programme mainly serve trigger
purposes and tag deep-inelastic events. Both spectrometer stages end with a muon wall
consisting of a hadron absorber followed by tracking chambers and trigger hodoscopes.
The tracking in the beam region will be performed by scintillating fibre detectors. The
large angles of the produced hadrons with respect to the incoming beam also require a
new polarised target solenoid with an opening of about ±200 mrad matching that of the
first spectrometer stage. As target materials lithium deuteride, 6LiD, for the deuteron
and ammonia, NH3, for the proton are foreseen, polarised to 50 % and 85 %, respectively.
The latter is being used successfully by the SMC in the 1996 run with polarisations of
89 %. The nuclear structure of 6LiD is well described by the “alpha + deuteron” picture,
which results in the favourable dilution factor (Eq. 4.5), of f = 0.50 compared to f = 0.16
for ammonia. Recently, the average polarisations of the neutron and the proton in 6LiD
were calculated assuming a three-body bound state of “α+p+n” [138]. The authors find
polarisations of 92 % parallel to the 6Li spin, which is the same as for the deuteron. The
choice of the muon energy is driven by the maximum photon energy, ν, in Eq. 6.3, i.e. the
minimum xg value one wants to access. The muon energy should only be slightly larger
than ν, in order to obtain a large average depolarisation factor, D, (Eq. 2.43). Along
these lines a muon energy of 100 GeV appears to be the optimal choice given the present
predictions for the shape of ∆g(x)/g(x). A muon intensity of 2× 108 positive muons per
spill of 2.4 s and a repetition rate of 1/14.4 s provides together with the 120 cm long
double-cell target a luminosity of about L = 5× 1032cm−2s−1.

Charm quarks fragment preferentially into D mesons. For the kinematics of the COM-
PASS experiment we find in average 1.2 D0 mesons per initial cc̄ pair and about 0.3 D±

mesons. This includes the contribution from D⋆ mesons which decay into D mesons. The
cleanest D0 decay channels are

D0(cū) → K−π+ and D
0
(c̄u) → K+π−

with a branching ratio of 0.0401 ± 0.0014. Mainly these channels will be used for the
D identification. A major concern is the combinatorial background of kaon-pion pairs
unrelated to D decays. Often the distance between the production and the decay vertex
is used in charm experiments to clean up the kaon-pion sample. This technique cannot
be applied in the COMPASS experiment, because this distance of 0.6–5 mm cannot be
resolved due to multiple scattering in the target. Also the definition of the primary vertex
is difficult because of the small scattering angle of the muon. In the D rest frame the kaon
and the pion have large momenta of 861 MeV/c. For decays with large kaon angles in this
reference frame with respect to the D direction in the laboratory frame, θ∗K, this leads to
rather large transverse momenta, e.g. pT = 750 MeV/c for cos θ∗K = 0.5. Kaon-pion pairs
from ordinary fragmentation have small transverse momenta and thus dominantly mimic
decays with small θ∗K. In Figure 6.6 the distribution of decay and of background events
is shown as a function of cos θ∗K and of the energy fraction zD = ED/ν obtained for a
40 MeV window around the D0 mass. These distributions were obtained by Monte-Carlo
simulations using the AROMA event generator [245] for the photon-gluon fusion process,
for which it was particularly designed following Ref. [246]. The best result is obtained with
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Figure 6.6: Monte-Carlo simulation: a) D → Kπ and b) combinatorial background versus zD
and | cos θ⋆K|. The lines indicates the cuts used in the rate estimates.

the requirements | cos θ∗K| ≤ 0.5 and zD ≥ 0.25, which improve the signal-to-background
ratio by a factor 1750 on the expense of loosing 65 % of the D mesons.

As in the inclusive case the event-number asymmetry is reduced from the virtual-
photon asymmetry by the depolarisation factor, D, the beam and target polarisations, Pµ
and Pt, and the target dilution factor, f ,

N
→
⇐ −N

→
⇒

N
→
⇐ +N

→
⇒

= PµPtfA
cc̄
µN with Acc̄

γN ≃
Acc̄
µN

D
(6.7)

where (
→⇒,
→⇐) indicate parallel and antiparallel longitudinal polarisation of the muon and

target spins, respectively. The error on the asymmetry is then given by,

δAcc̄
µN =

1

PtPµfD

1√
N cc̄

√

1 +
NB

N cc̄
, (6.8)

with the charm and background event numbers, N cc̄ and NB. From Eq. 6.4 we find an
integrated cross section of 1.9 nb for charm leptoproduction in the range 35 ≤ ν ≤ 85 GeV.
The average depolarisation factor is D = 0.66. For the background we use the total quasi-
real photon-nucleon cross section of 100 µb/(1 + Q2/0.31 GeV2) [247]. This leads with
the cuts discussed above to NB/N cc̄ ≃ 3.8. For a running time of 2 1/2 years with
150 days/year and assuming a combined efficiency of 0.25 for the muon beam and the
experimental apparatus the statistical error of the measured asymmetry is δAcc̄

γN = 0.076.
This can be improved using D⋆ tagging by the soft pion in the decay

D⋆+ → D0π+s → (K−π+)π+s . (6.9)

The small D⋆+–D0 mass difference of 145.4 MeV is almost entirely accounted for by the
pion mass of 139.6 MeV. Even with a moderate resolution the mass difference ∆M =
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m(K−π+π+s ) − m(K−π+) can be measured to a precision of 2.5 MeV providing a very
clean tag for the D⋆ meson. Considering only the soft pions with momenta larger than
1 GeV/c and taking possible re-interaction in the target into account the statistical error
of the asymmetry reduces to

δAcc̄
γN = 0.05 corresponding to δ

∆g

g
= 0.14. (6.10)

This result is shown in Fig. 6.7. The sensitivity to ∆g/g peaks at xg = 0.14 and covers
the range 0.07 ≤ xg ≤ 0.4 (Fig. 6.8). Apart from the c.m. energy, ŝ, the asymmetry

for the elementary photon-gluon fusion process, ∆σ(ŝ, θ̂)/σ(ŝ), also depends on t̂ or on
the c.m. angle, θ̂, between the photon-gluon axis and the cc̄ axis (Fig. 6.2) [239, 248].
The sensitivity is larger for small angles corresponding in the laboratory frame to small
transverse momenta, pT . Rejecting D mesons with pT > 1 GeV/c thus leads to a smaller
uncertainty of

δAcc̄
γN = 0.04 corresponding to δ

∆g

g
= 0.11. (6.11)

The three and four-body decay channels

D0 → K−π+π◦ (13.8 %)
D0 → K−π+π+π− ( 8.1 %)
D+ → K−π+π+ ( 9.1 %)

may further improve the precision, in particular if the D⋆ tagging can be used. This is
still under investigation.

A measurement of the transversity structure function, h1(x), is also foreseen using a
transversely polarised target. In the quark parton model h1(x) is given by

h1(x) =
1

2

∑

i

e2i {∆T q(x) + ∆T q̄(x)} . (6.12)

The parton distribution functions, ∆T q(x), are related to the difference of the probabil-
ities to find in a transversely polarised nucleon partons with a polarisation parallel and
antiparallel to the nucleon spin. This twist-two structure function involves tensor currents
and has an odd-chirality structure related to a spin-flip amplitude. In inclusive electro-
magnetic scattering it is suppressed by a factor mq/

√
Q2 because the chirality along the

quark line in the corresponding “hand-bag diagram” can only be flipped by a quark-mass
insertion. The insertion of the fragmentation process interrupts the quark line and h1 can
thus contribute in semi-inclusive scattering weighted by the corresponding fragmentation
function. Also in Drell–Yan production of lepton pairs h1 can be measured because the left
and the right-handed quarks exchanged between the two nucleons follow different lines. A
systematic discussion of the twist and chirality structure of the fragmentation and struc-
ture functions is given in Ref. [30]. In non-relativistic quark models g1 and h1 are identical.
Bag model predictions indicate that h1 could even be larger than g1 [249]. Recently, also a
calculation of the tensor charge — the difference of the quark and antiquark first moments
of h1 — was performed in lattice QCD [218]. The result also indicates that h1 is large,
see Sect. 5.8.

The proposed measurement of h1 makes use of the spin dependence of the fragmen-
tation process to obtain information on the polarisation of the struck quark. A complete
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classification of all distribution and fragmentation functions up to twist three and includ-
ing the intrinsic transverse momenta of the quarks is given in Ref. [200]. Maybe the most
promising observable is the azimuthal distribution of leading pions in the plane perpen-
dicular to the momentum transfer as originally suggested by Collins [250]. The analysing
power, ac, of this effect is unknown, however calculations in several models indicate that
it should be large. The model of Ref. [251], which reproduces the pion asymmetries as
measured by the E704 collaboration [252], was used in the COMPASS proposal. The
amplitude of the azimuthal modulation is given by the asymmetry

ǫ ≃ fPtDnnac
h1(x)

F1(x)
, (6.13)

with the dilution factor, f , the target polarisation, Pt, and the calculable parton-level
spin-transfer coefficient, Dnn. In Figure 6.9 a projected 30 day measurement of ǫ(x) with
an NH3 target is shown. For this projection an h1(x) parametrisation similar to g1(x) and
an analysing power in the order of ac = 0.2 were assumed.

Simultaneously with the measurement of ∆g with longitudinal target polarisation
inclusive and semi-inclusive cross-section asymmetries for π+,−, K+,−,0 will be studied.
Apart from the additional information on the particle identity, a reduction of the statis-
tical error bars by about a factor three (four) for the proton (deuteron) data is projected
compared to the final SMC result at the end of 1996. For the first moments of the valence
quark and antiquark distribution functions we project the errors

δ∆uv = 0.05,
δ∆dv = 0.07,
δ∆q̄ = 0.02,
δ∆s̄ = 0.11.

(6.14)

The values are compatible with those aimed at in the HERMES experiment [28], however
the accessible x range extends to about a factor five smaller values for 100 GeV muon
energy. This reduces the extrapolation error, which will dominate in the HERMES results.

The polarisation of lambda hyperons in both, the target and current fragmentation
regions will also be studied. Large negative lambda polarisations are expected in the target
fragmentation region in the polarised ss̄ model [253]. In the current fragmentation region
the spin transfer function from the struck quark to the lambda hyperon can be measured.

In summary, the COMPASS fixed-target experiment offers a rich spin-physics pro-
gramme at high Q2 with a high luminosity. Apart from the two major missing pieces
of the nucleon spin structure, the gluon polarisation and the transversity structure func-
tion, many detailed questions including spin-averaged quantities like the strange-quark
distribution functions can be studied.

6.2 Polarised protons at HERA

A very interesting longer-term project is a possible polarisation of the HERA 820 GeV
proton beam. Self-polarisations of up to 70 % were reached for the electron beam due to
the Sokolov–Ternov effect [140], which is proportional to (E/m)5. However, no technique
is known to polarise high-energy protons efficiently. Therefore, polarised protons must be
transported through the entire accelerator chain at DESY. The feasibility of polarising the
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proton beam is presently studied by a joined working group from DESY, Russia, and the
USA, in the context of the “Future Physics at HERA” Workshop. Such a project would
involve a powerful polarised H− source, Sibirian snakes in DESY III, Petra, and HERA,
and spin rotators to change from transverse to longitudinal polarisation. In addition beam
polarimeters must be developed. Presently the focus is to study if a “God-given” high
energetic polarised proton beam can be kept polarised in HERA for a reasonable amount
of time.

Apart from polarisation, high luminosity is central issue for a possible spin-physics
programme at the HERA collider as it is for future experiments with unpolarised beams.
In 1995 an integrated luminosity of 12 pb−1 was collected, the luminosity projected for
the time after a machine upgrade in 1998 is 170 pb−1 per year. A polarised proton beam
programme could start in 2004 if technically feasible. Due to the small magnetic moment
of the deuteron a polarised deuteron beam is considered to be infeasible, while a 3He beam
might be possible.

Three experiments are particularly promising

• a determination of ∆g from jet production,

• a measurement of g1 at high Q2 and small x, and

• parity violating structure functions.

The H1 collaboration has determined the unpolarised gluon distribution function from
so-called (2+1) jet events [254]. The notation “+1” refers to the target jet, which dis-
appears undetected in the beam pipe. The Feynman diagrams contributing in leading
order to the cross section are shown in Fig. 6.10. Like in the COMPASS experiment the
photon-gluon fusion process is exploited, however in a different kinematic region and not
particularly focused on charm production. The quark-antiquark pair is produced at c.m.
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energies, ŝ ≥ 100 GeV2, far above threshold leading to an opposite-sign asymmetry com-
pared to the COMPASS kinematics. This can be seen in Fig. 6.3 for the case of a charm
quark pair. In contrast to the COMPASS experiment, where normally only one charmed
meson will be detected, with the H1 and ZEUS detectors both jets arising from the quark
pair can be detected. From the momenta of the particles in the jets the c.m. energy of the
photon-gluon subsystem,

√
ŝ, can be determined and the momentum fraction carried by

the gluon, xg, can be recontructed using

xg = x

(
1 +

ŝ

Q2

)
, (6.15)

where x is Bjorken’s scaling variable. The kinematics covered by the unpolarised ex-
periments is 0.002 ≤ xg ≤ 0.2 with 0.0003 ≤ x ≤ 0.0015. The background from the
QCD-Compton process (Fig. 6.10b) accounts for about 25 % of the cross section within
the analysis cuts. The result for the gluon distribution function is shown in Fig. 6.11
together with several other measurements. The data correspond to an integrated lumi-
nosity of 0.24 pb−1. First leading-order Monte–Carlo simulations of polarised (2+1)-jet
events [255] using the polarised gluon distribution from Gehrmann and Stirling (set A)
show a large sensitivity to the gluon polarisation peaking around xg ≃ 0.008. After ana-
lysis cuts the accessable region is about 0.004 ≤ xg ≤ 0.08 with cross-section asymmetries
in the order of 2–4 %. With an integrated luminosity of 100 pb−1 and beam polarisa-
tions of 0.7 such an asymmetry could be measured with about seven standard deviation
significance [256].

More demanding in terms of luminosity is a measurement of g1(x,Q
2) at HERA. A

detailed study of the impact of additional g1 data was performed [257] by extending a
next-to-leading order analysis [55] of existing g1 data to projected data in the kinematic
domain of HERA. Compared to fixed-target experiments the precision of the structure
function measurements at HERA is moderate and suffers in the polarised case in addition
from an unfavourable depolarisation factor. In this respect an experiment at lower energies
is more favourable. This is presently being studied in a workshop at the GSI, Darmstadt,
where a scenario of a 5 GeV electron versus 50 GeV proton collider is duscussed. A similar
project was discussed at KEK in Japan. The asymmetries at small x are expected to be
very small due to the rise of F1. Therefore the false asymmetries must be controlled at
least to the 10−4 level. This seems feasible when bunch trains with alternating proton
polarisations can be used. With an integrated luminosity in the range of 200–1000 pb−1

a sensible measurement could be performed in the kinematic range 5 × 10−5 < x < 0.6
and 1.8 GeV2 < Q2 < 1.8× 104GeV2. With the present g1 data an error on ∆g of 0.4 at
Q2 = 1 GeV2 is obtained in this analysis [203], which could be reduced to about 0.2 with
HERA data corresponding to 1000 pb−1 [257].

Probably a stronger motivation for a g1 measurement at HERA is the interest in the
small-x behaviour of structure functions, which has attracted much attention since the
observation of the strong increase of F2 towards small x at HERA [258, 259]. In this
respect the small-x behaviour of g1 is as fundamental as that of F2, although different. A
study of this behaviour in the double-logarithmic approximation of perturbative QCD for
the nonsinglet and singlet parts of g1 is presented in Refs. [260,261]. It is concluded that g1
is strongly enhanced compared to the growth expected from the Gribov–Lipatov–Altarelli–
Parisi (GLAP) evolution and that the difference is larger than the one expected in the
unpolarised case between the GLAP and the Balitskij–Fadin–Kuraev–Lipatov behaviour
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Finally at high Q2 the charged-current processes e−p → νX and e+p → ν̄X open up
the possibility to access new flavour combinations and new structure functions like gW

±

5

(Eq. 2.69). Using electron and positron beams one could measure the combinations

gW
−

1 + gW
+

1 = ∆u+∆d+∆s+∆c,

gW
−

1 − gW
+

1 = ∆uv −∆vv, (6.16)

gW
−

5 + gW
+

5 = ∆uv +∆dv,

where ∆qv denotes the valence distribution functions and the (x,Q2) dependence is omit-
ted for simplicity. These events were studied [256, 262] for a polarised proton beam at
HERA requiring a missing transverse momentum of pT > 25 GeV/c for the (anti)neutrino.
Due to the large asymmetries involved such a measurement is very promising for integrated
luministites in excess of 100 pb−1. Thus a polarised HERA is a unique tool to study the
spin-flavour structure of the nucleon.
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Conclusions

In 1987 the EMC discovered that the matrix element of the axial singlet current, ∆Σ,
which in the quark parton model is the fraction of the nucleon’s spin carried by the quark
spins, is much smaller than predicted by the Ellis–Jaffe sum rules. Triggered by this
discovery the Spin Muon Collaboration, the HERMES collaboration, and later the SLAC
collaborations E-142 and E-143 started out with two main goals, namely the confirmation
of the EMC result for the proton and the test of the fundamental Bjorken sum rule. This
required an extension of the measurements of gp1 to lower x and a measurement of the
neutron structure function, gn1 .

These objectives are now largely achieved and there remains no doubt that the Ellis–
Jaffe sum rules for the proton and for the neutron are violated in a way as to satisfy the
Bjorken sum rule. These conclusions are obtained independently from the SMC and the
E-143 data for the proton and the deuteron. The SMC data cover the range 0.003 < x <
0.7 with an average Q2 of 10 GeV2 and those from the E-143 experiment 0.029 < x < 0.8
with Q2 = 3 GeV2. The data from the two experiments are in excellent agreement and
yield ∆Σ ≃ 0.28± 0.07 and ∆s ≃ −0.1± 0.03. A simple averaging of the SMC and E-143
result for the Bjorken sum yields for Q2 = ∞ a value of 0.198 ± 0.020 compared to the
prediction of 0.2096± 0.004. Thus, once again the QCD predictions are found to be valid,
while the nonperturbative structure of the nucleon holds surprises.

Now that the smallness of ∆Σ is firmly established and rather precise data are available
the interest has shifted towards the rôle of the gluon polarisation and its anomalous con-
tribution to ∆Σ. The gluons contribute to the structure function only in next-to-leading
order. In the unpolarised case the gluon distribution function was successfully determined
in next-to-leading order QCD analyses of structure function data. Such analyses became
possible also for the polarised case after the calculation of the two-loop splitting functions
last year. Although, the precision of the polarised data is at the verge of constraining
the gluon distribution function the precision and the coverage of the kinematic plane are
still far from those of the unpolarised structure function data. The QCD analyses largely
rely on the different average Q2 of the SMC and SLAC data and on the very small-x
data points from the SMC, where the structure functions are particularly sensitive to the
gluons.

The gluon polarisation can only be determined unambiguously in processes where it
appears in leading order. The measurement of such a process must be the next step in
understanding the nucleon spin structure. The best candidate is the photon-gluon fusion
process leading to open charm, J/ψ, or dijet production. Several activities go in this
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direction. Presently the most advanced proposal is that of the COMPASS collaboration at
CERN, in which the gluon polarisation is accessed via open charm production. The charm
quarks are tagged by their fragmentation into D mesons and the subsequent decay into
kaon-pion pairs. The projected precision for the measurement in the range 0.07 < x < 0.4
is δ∆g/g = 0.11.

If feasible also the option of polarising the HERA proton beam together with a con-
siderable increase in the luminosity beyond 100 pb−1/year is very exciting. The gluon
polarisation could be measured from the asymmetries in dijet production. Measurements
of charged-current structure functions like gW

±

5 could provide valuable input for the spin-
flavour decomposition of the nucleon structure. Otherwise, such information can only be
obtained rather indirectly via semi-inclusive scattering, where the flavour of the struck
quark is tagged by the hadrons it fragments into. Precise semi-inclusive data are expected
from the HERMES experiment and at a higher energy, where the factorisation ansatz is
maybe better justified, from the COMPASS experiment.

A complementary approach is followed by the RHIC Spin Collaboration at the Rel-
ativistic Heavy Ion Collider in Brookhaven [263]. Here ∆g/g will be determined from
prompt-photon and jet production in polarised proton-proton collisions. The measured
asymmetries always involve two parton distribution functions, e.g. ∆g(x) and ∆q(x),
where ∆q(x) must be known from other experiments. The covered range in xg is about
0.03 < xg ≤ 0.1 with a maximum at 0.06. A precision in the order of δ∆g/g = 0.07 was
projected neglecting the uncertainty in ∆q(x).

Finally, for an understanding of the nucleon spin structure also the knowledge of the
third twist-2 structure function, h1, which describes the transverse polarisation of quarks
in a transversely polarised nucleon, is mandatory. This structure function will be addressed
by the HERMES and COMPASS experiments in semi-inclusive deep-inelastic scattering
and by the RHIC Spin Collaboration in Drell–Yan dilepton production.

A clarification of the nucleon’s spin-flavour structure can only be achieved by new high
luminosity experiments accessing the gluon polarisation and the transversity structure
function, which became the new objectives in spin structure physics. Polarised deep-
inelastic scattering thus remains an exciting and most active field.
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[191] G. Kälbermann and J. M. Eisenberg, Nucl. Phys. A587 (1995) 609.



116 BIBLIOGRAPHY

[192] R. D. Carlitz and A. V. Manohar, Theoretical interpretation of the EMC results:
Summary of the round-table discussion., Proceedings Workshop “Colliders with
Polarized Beams”, Penn State, November, 1990.

[193] G. Altarelli and B. Lampe, Z. Phys. C47 (1990) 315.

[194] W. Vogelsang, Z. Phys. C50 (1991) 275.

[195] H.-Y. Cheng, Preprint IP-ASTP-25-95, Academia Sinica (Taipei, Taiwan,
December 1995), hep–ph/9512267.

[196] W. Furmanski and R. Petronzio, Z. Phys. C11 (1982) 293.

[197] X. Ji, J. Tang, and P. Hoodbhoy, Phys. Rev. Lett. 76 (1996) 740.

[198] R. L. Jaffe, Preprint MIT-CTP-2466 (Cambridge, MA, October 1995),
hep–ph/9509279.

[199] T. C. Meng et al., Phys. Rev. D40 (1989) 769.

[200] P. J. Mulders and R. D. Tangerman, Nucl. Phys. B461 (1996) 197.

[201] M. Glück, E. Reya, M. Stratmann, and W. Vogelsang, Phys. Rev. D53 (1996)
4775.

[202] T. Gehrmann and W. J. Stirling, Phys. Rev. D53 (1996) 6100.

[203] S. Forte, Contribution to Int. Workshop on Deep Inelastic Scattering and related
Phenomena (DIS96), Roma, Italy, April 15–19, 1996; R. Ball, S. Forte, G. Ridolfi,
A. Deshpande, V. W. Hughes, and J. Lichtenstadt, Private Communication.

[204] S. J. Brodsky, M. Burkardt, and I. Schmidt, Nucl. Phys. B441 (1994) 197.

[205] The EM Collaboration, M. Arneodo et al., Nucl. Phys. B321 (1989) 541.

[206] A. D. Martin, W. J. Stirling, and R. G. Roberts, Phys. Lett. B306 (1993) 145.

[207] M. Glück, E. Reya, and A. Vogt, Phys. Lett. B306 (1993) 391.

[208] The NM Collaboration, M. Arneodo et al., Phys. Rev. D50 (1994) R1.

[209] The NA51 Collaboration, A. Baldit et al., Phys. Lett. B332 (1994) 244.

[210] L. L. Frankfurt et al., Phys. Lett. B230 (1989) 141.
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[214] S. J. Dong, J.-F. Lagaë, and K. F. Liu, Phys. Rev. Lett. 75 (1995) 2096.

[215] M. Fukugita et al., Phys. Rev. Lett. 75 (1995) 2092.
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