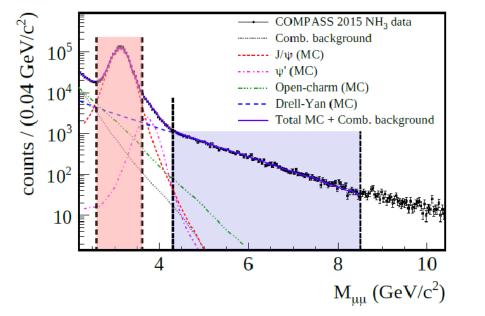
Drell-Yan and charmonium results from COMPASS

Catarina Quintans, LIP-Lisbon on behalf of the COMPASS Collaboration

Mass in Huelva, 09/01/2025

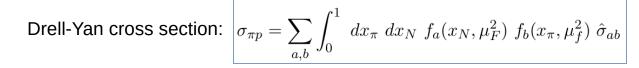

OE, FCT-Portugal, CERN/FIS-PAR/0016/2021

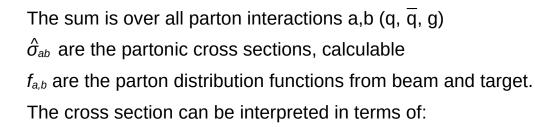
LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Goals of the COMPASS Drell-Yan programme

Pion-induced Drell-Yan:

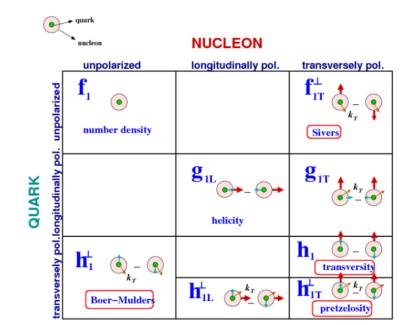
- Transversely polarized target (NH3)
- Unpolarized targets (NH3+He; AI; W)


Charmonium production:


- Cross section
- Polarization
- J/psi pair production

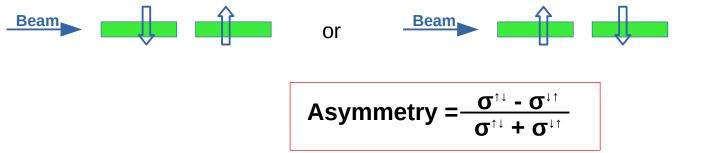
- Studies of the transversely polarized TMD PDFs of the nucleon, complementary to SIDIS ones.
- Unique access to the (TMD) PDFs of the pion.
- Charmonium production at intermediate energies study of production mechanisms.

COMPASS Drell-Yan measurement


- $f_{a,b}(X_{N,\pi}, \mu_f^2) \rightarrow \mathsf{PDFs}$
- $f_{a,b}(x_{N,\pi}, k_T, \mu_f^2) \rightarrow \text{TMD PDFs}$

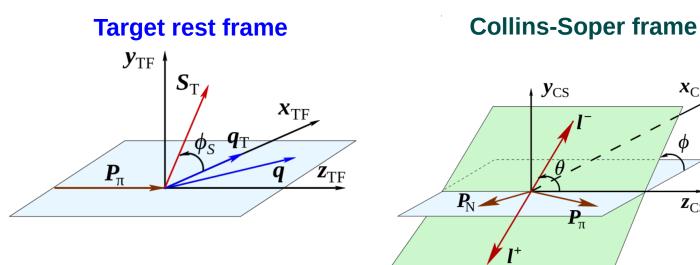
3 collinear PDFs used to describe the proton and its dependences (x, Q²): Unpolarized; Helicity; Transversity.

If considering also the transverse motion, at leading twist **8 quark TMD PDFs** are needed to describe the proton (x, k_T , Q^2).


C. Quintans, MASS 2025

π

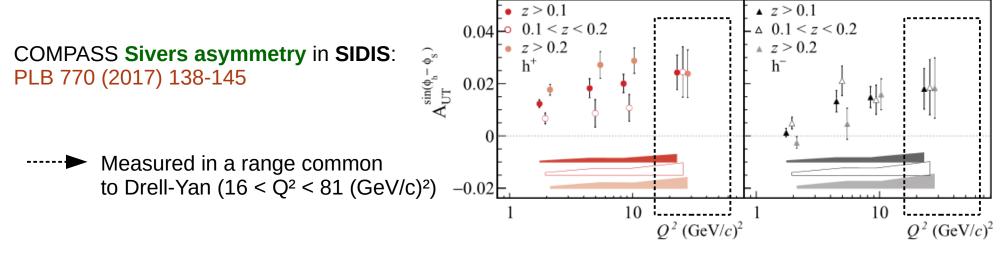
Spin Asymmetries



Transversely polarized target in 2 different spin configurations

 $x_{\rm CS}$

 \mathbf{Z}_{CS}


C. Quintans, MASS 2025

Transverse Momentum Dependent PDFs

Sivers and the expected sign-change between SIDIS and DY

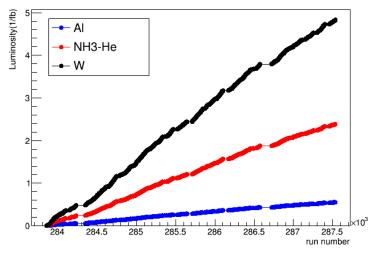
- Sivers function: if non-zero then orbital angular momentum is non-vanishing
- Sivers and Boer-Mulders are time-reversal odd: opportunity for a crucial test of the TMD approach of QCD (q_T << Q):

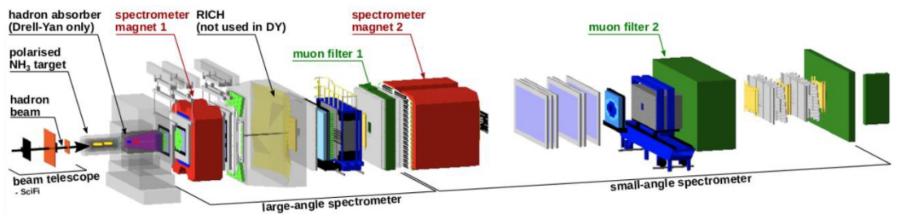
In Drell-Yan, q_T is the transverse momentum of the final state dimuon, while Q is the dimuon invariant mass.

 h_1^{\perp} (SIDIS) = - h_1^{\perp} (DY)

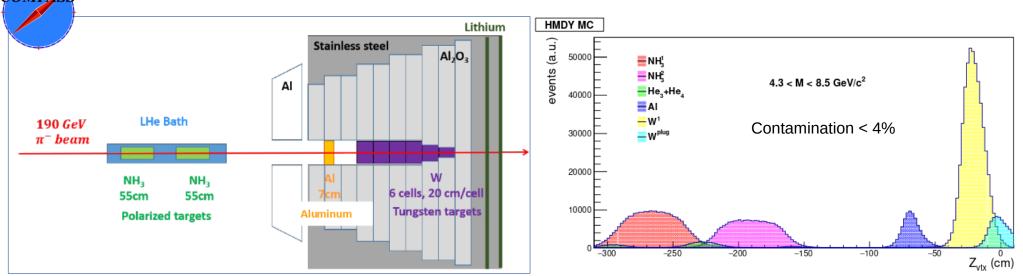
 $\mathbf{f}_{1\mathsf{T}}^{\perp}\left(\mathsf{SIDIS}\right) = -\mathbf{f}_{1\mathsf{T}}^{\perp}\left(\mathsf{DY}\right)$

Drell-Yan measurements at COMPASS

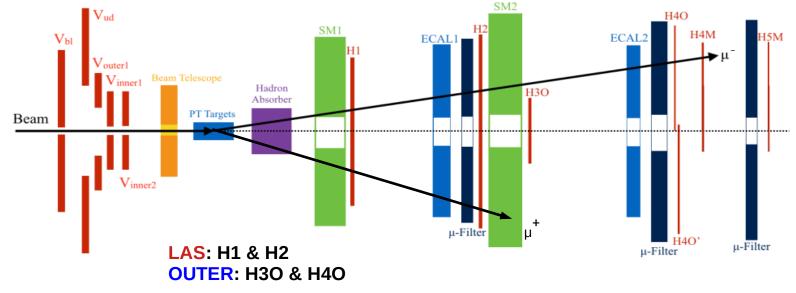

At the M2 beamline @ CERN


Negative hadron beam, 190 GeV/c:

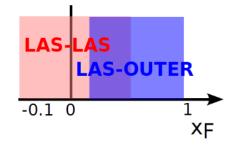
- 96.8% π⁻
- 2.4% K⁻
- < 1% p


No beam PID. All beam is considered as pions, beam contamination accounted for in the systematics for π -induced Drell-Yan cross section.

2018 integrated luminosity, per target


COMPASS targets

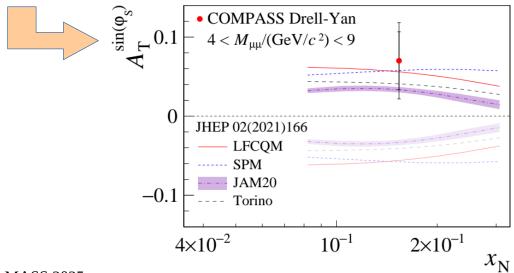
- Transversely polarized target: a mixture of NH₃ beads immersed in He.
- The 2 ammonia target cells are oppositely polarized.
- Spin asymmetries are sensitive to the polarizable part only: roughly, the 3 protons in the hydrogen from NH₃
- The sum of events from both ammonia cells over the entire year is effectively unpolarized.
- In absolute cross section measurement, all nucleons contribute: for the ammonia mix, consider the molar fractions: 15.7 % H, 11.1 % ⁴He, 73.2 % ¹⁴N
- The contamination from other materials into the considered volumes for each target is <4% .

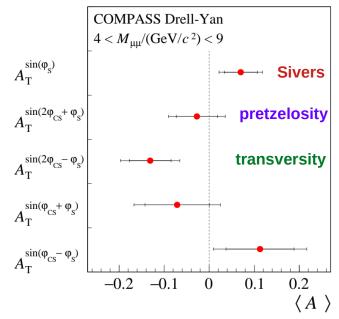

Dimuon trigger system

2 triggers, based on the time coincidence of hodoscope pairs:

- 2 muons emitted at large angle (LAS-LAS)
- 1 muon at large angle, 1 muon at small angle (LAS-OUTER)

Transverse Spin Asymmetries from DY


Final results now in: PRL 133 (2024) 071902


Extended mass range: 4 - 9 GeV/c². Contamination from other processes is taken into account as a dilution effect to the asymmetries.

Theory curves based on S. Bastami et al, JHEP 02 (2021) 166.

Sivers asymmetry in SIDIS measured by COMPASS, with nearly same spectrometer, and also in the same Q^2 range.

Data favors the sign change scenario of the Sivers TMD PDF, between SIDIS and DY


These asymmetries relate to convolutions of the TMD PDFs:

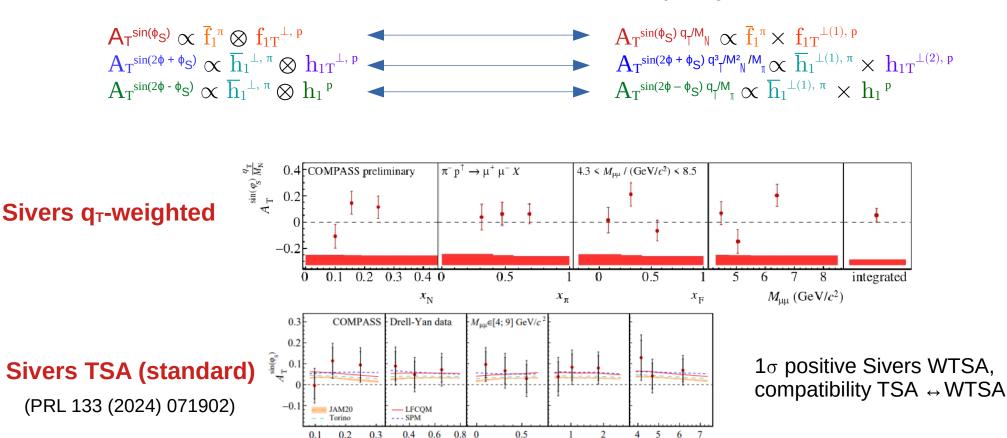
$$\begin{split} &\mathsf{A}_{\mathsf{T}^{\mathsf{sin}(\phi_{\mathsf{S}})} \propto \, \overline{f}_{1}^{\, \pi}(x_{\pi},\,k_{T,\,\pi}) \otimes \, f_{1T}^{\, \bot,\, p}(x_{\mathsf{N}},\,k_{\mathsf{T},\,p}) \\ & \mathsf{A}_{\mathsf{T}^{\mathsf{sin}(2\phi\,+\,\phi_{\mathsf{S}})} \propto \, \overline{h}_{1}^{\, \bot,\, \pi}(x_{\pi},\,k_{\mathsf{T},\,\pi}) \otimes \, h_{1T}^{\, \bot,\, p}(x_{\mathsf{N}},\,k_{\mathsf{T},\,p}) \\ & \mathsf{A}_{\mathsf{T}^{\mathsf{sin}(2\phi\,-\,\phi_{\mathsf{S}})} \propto \, \overline{h}_{1}^{\, \bot,\, \pi}(x_{\pi},\,k_{\mathsf{T},\,\pi}) \otimes \, h_{1}^{\, p}(x_{\mathsf{N}},\,k_{\mathsf{T},\,p}) \end{split}$$

Drell-Yan TSAs (standard)

Final results now in: PRL 133 (2024) 071902

Full data samples: 2015 + 2018


~100K dimuon events, after selection

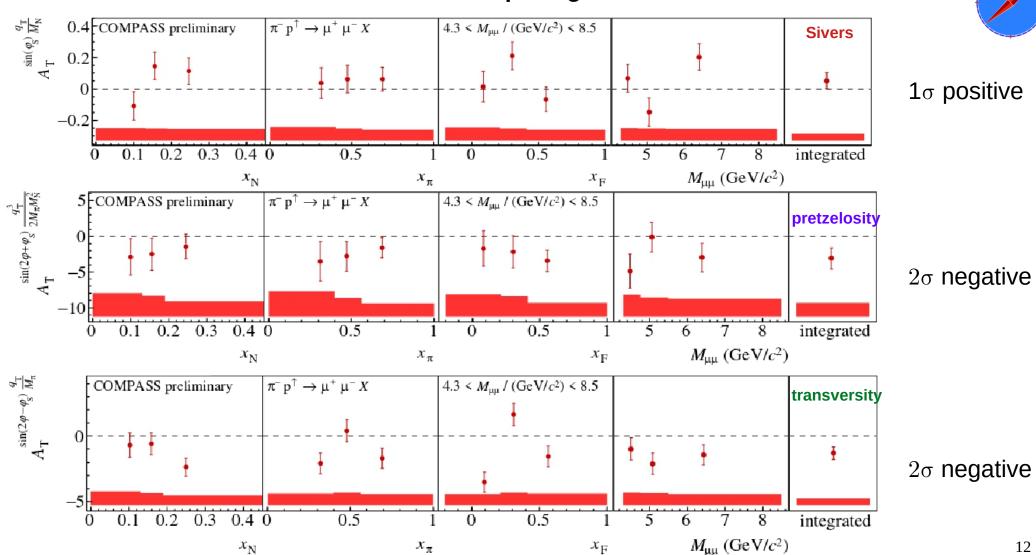

Extended mass range: $4 < M_{\mu\mu}/(GeV/c^2) < 9$

Results consistent with first publication (based on 2015 data only) PRL 119 (2017) 112002.

q_T-weighted transverse Spin Asymmetries from DY

 x_{π}

 x_{N}

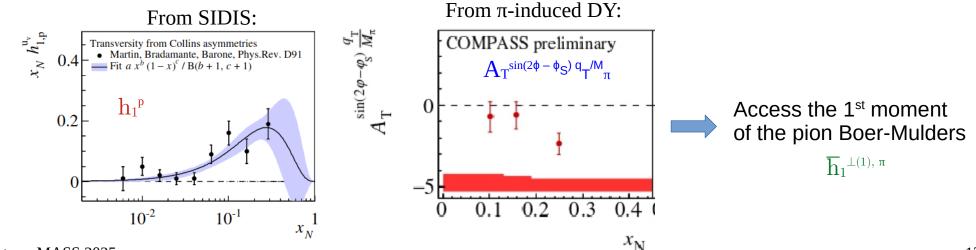

 $x_{\rm F}$

C. Quintans, MASS 2025

 $q_{\rm T}$ (GeV/c) $M_{\rm uu}$ (GeV/c²)

Drell-Yan q_⊤-weighted TSAs

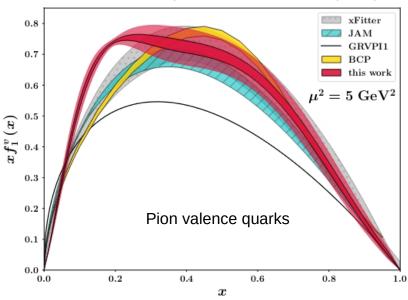
OMPASS


Pion Boer-Mulders TMD PDF: a recipe

Transversity-related WTSA: $A_T^{sin(2\phi - \phi_S) q} T^{M}_{\pi} \propto \overline{h}_1^{\perp(1), \pi} \times h_1^p$

$$\approx -2 \frac{e_{\rm u}^2 h_{1,\pi}^{\perp(1)\bar{\rm u}}(x_{\pi}) h_{1,\rm p}^{\rm u}(x_N)}{\sum_{q={\rm u},{\rm d},{\rm s}} e_q^2 \left[f_{1,\pi}^{\bar{q}}(x_{\pi}) f_{1,\rm p}^q(x_N) + (q \leftrightarrow \bar{q}) \right]}$$

- f_1^p and f_1^{π} are the unpolarized TMD PDFs of nucleon and pion, taken from CTEQ5D and GRV-PI, respectively.
- h₁^p is the transversity TMD PDF of the nucleon, interpolated by a simple fit to the Collins asymmetry A. Martin et al, PRD 91 (2015) 014034
- $\overline{h}_1^{\perp(1), \pi}$ is $1^{st} k_T^2$ moment of the Boer-Mulders TMD PDF of the pion.


Pion structure

$$\sigma_{\pi p} = \sum_{a,b} \int_0^1 dx_\pi dx_N f_a(x_N, \mu_F^2) f_b(x_\pi, \mu_f^2) \hat{\sigma}_{ab}$$

Pion-induced Drell-Yan provides an access to both proton and pion structure.

In COMPASS Drell-Yan there is mostly sensitivity to the u-quark PDFs in the valence region.

Proton PDFs are known to a good accuracy. Not the case for pion PDFs!

MAP Coll., Phys.Rev.D 107, 114023 (2023)

Available pion-induced DY data is more than 30 years old

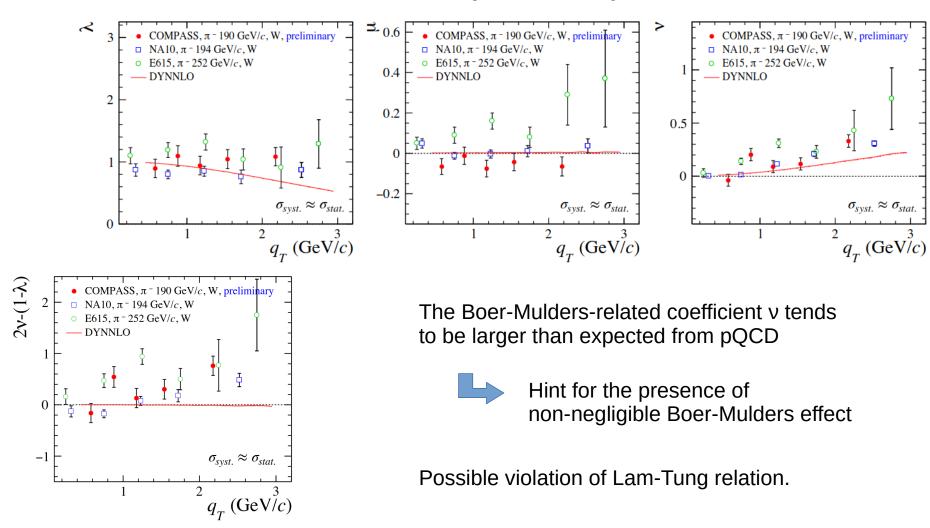
Most relevant statistics from E615 (Fermilab) and NA10 (CERN), but using W target – non-negligible nuclear effects.

Very limited information on systematic uncertainties was provided by past experiments.

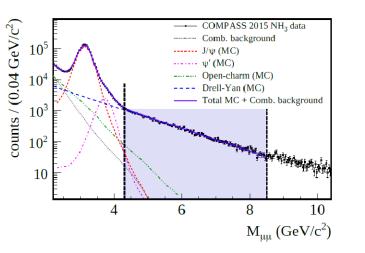
Only π^- beam, thus little sensitivity to sea quarks.

Boer-Mulders TMD PDF

The <u>unpolarized</u> Drell-Yan cross section angular dependence gives us also an access to the Boer-Mulders TMD PDFs:


$$\frac{\mathrm{d}\sigma}{\mathrm{d}q^4\mathrm{d}\Omega} \propto \hat{\sigma}_U \left\{ 1 + A_U^1 \cos^2\theta_{CS} + \sin 2\theta_{CS} A_U^{\cos\varphi_{CS}} \cos \varphi_{CS} + \sin^2\theta_{CS} A_U^{\cos 2\varphi_{CS}} \cos 2\varphi_{CS} \right\}$$

or


$$\frac{d\sigma}{d\Omega} \propto \frac{3}{4\pi} \frac{1}{\lambda+3} \left[1 + \lambda \cos^2 \theta_{CS} + \mu \sin 2\theta_{CS} \cos \varphi_{CS} + \frac{\nu}{2} \sin^2 \theta_{CS} \cos 2\varphi_{CS} \right]$$

where: $\lambda = A_U^1$, $\mu = A_u^{\cos \phi}$, $\nu = 2 A_U^{\cos 2\phi}$ \longrightarrow $A_U^{\cos 2\phi_{CS}} \propto h_{1,\pi}^{\perp q} \otimes h_{1,p}^{\perp q}$ Convolution of the Boer-Mulders TMD PDFs of pion and nucleon

- In the naive Drell-Yan parton model , expect $\lambda = 1$, $v = \mu = 0$ (LO)
- At NLO, there might be a non-zero v (cos $2\phi_{CS}$ dependence)
- Lam-Tung relation: $1 \lambda = 2v$

Drell-Yan unpolarized asymmetries

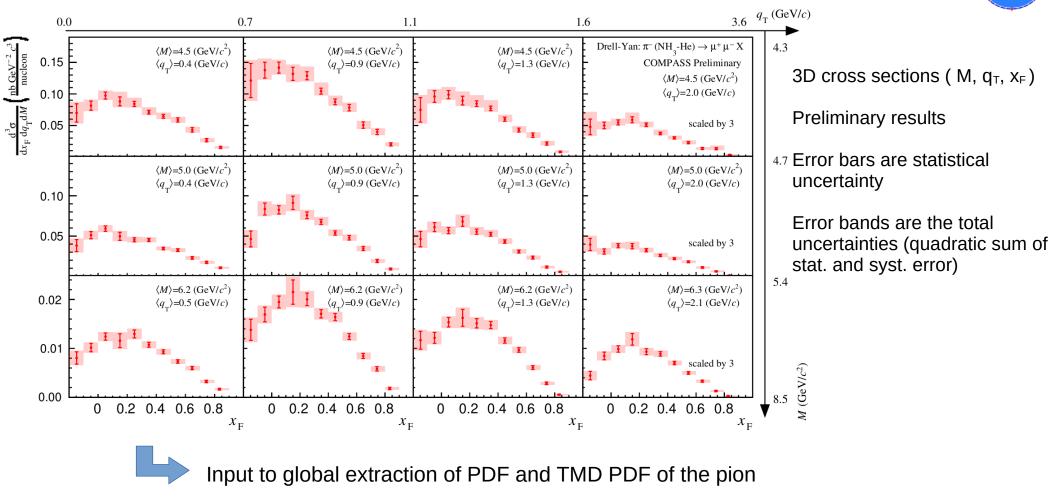
Differential Drell-Yan cross sections

$$\frac{d^n \sigma}{dx_n} = \frac{1}{\mathcal{L}} \times \frac{1}{\varepsilon} \times \frac{d^n N_{\mu\mu}}{dx_n}$$

L is the luminosity

 ϵ contains efficiencies, acceptance and lifetimes x_n are the different observables

The dimuon mass range $4.3 < M_{\mu\mu}/(GeV/c^2) < 8.5$ is considered as Drell-Yan dominated.

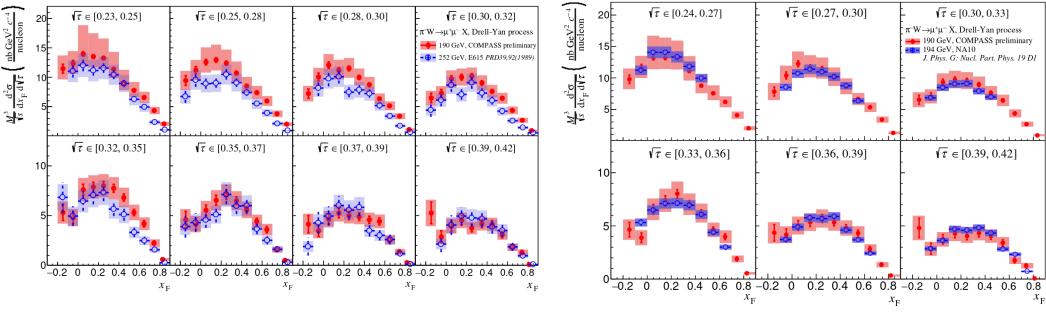

Measurement of cross section requires good control of luminosity and efficiencies systematics. For this reason, **only 2018 data** is used in the cross-section analysis.

Acceptance ranges from ~1% to ~15%. It varies mostly with x_F (weak dependence with q_T and mass).

Contamination from other physics processes (purity) is taken into account.

 $\tau = M_{\mu\mu}^2/s = x_{\pi}x_N$ $\begin{cases} q_T \\ q_L \end{cases}$ Transverse and longitudinal momentum of the dimuon in the Hadrons collision frame $x_F = \mathsf{q}_L/(\sqrt{s}/2)$ $x_{\pi} = [x_F + \sqrt{x_F^2 + 4\tau}]/2$ $x_N = [-x_F + \sqrt{x_F^2 + 4\tau}]/2$

Drell-Yan cross section per nucleon from the **ammonia-mix target** in bins of mass and q_T , as function of Feynman-x



Drell-Yan cross section per nucleon from the **tungsten target** in bins of $\sqrt{\tau}$, as function of Feynman-x

COMPASS versus E615

E615 coll., Phys. Rev. D 39, 92-122 (1989)

NA10 coll., Z. Phys. C 28, 9 (1985)

 $\sqrt{\tau} = M/\sqrt{s}$

Beam energy-independent DY cross section: M³/√s factor

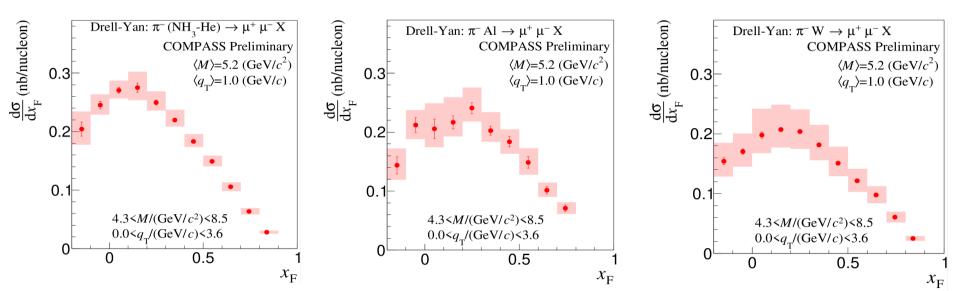
Better agreement with NA10 than with E615, namely at lower masses.

Drell-Yan cross section statistics and systematics

The systematics of the COMPASS measurement include:

- Luminosity uncertainty ~4% (normalization uncertainty)
- Trigger, purity and acceptance-related uncertainties depending on target and kinematics

		Statistics (#events)	Systematic uncertainty	#datapoints in (M, x⊧)
COMPASS	NH3-He Al W	36000 6000 43000	~5% ~15% ~15%	110 50 50
NA10	W	155000	6.5%	59
E615	W	36000	16%	168


Ongoing work to evaluate the fraction of correlated and uncorrelated systematics.

Drell-Yan cross section per nucleon as a function of Feynman-x

AI

W

Preliminary results. Error bars are the statistical uncertainties. Error bands are the total uncertainties (quadratic sum of stat. and syst. error)

Input for the extraction of nuclear PDFs and study of nuclear effects

C. Quintans, MASS 2025

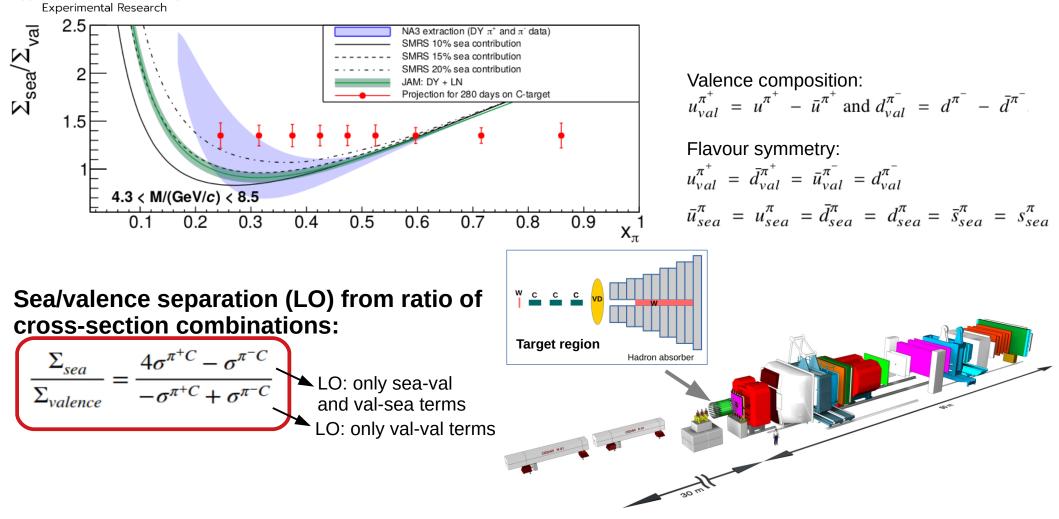
NH₃-He

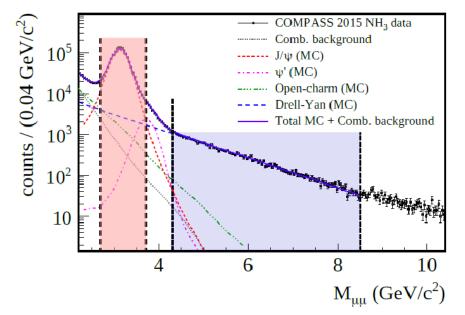
From COMPASS to AMBER

COMPASS is providing much-awaited pion-induced Drell-Yan data (after a gap of 30 years).

At COMPASS Drell-Yan, mostly valence quarks are probed – u-quark dominance, since π^- beam.

AMBER is the next step to learn about pion structure:


- Pion beam of both charges → **sea-valence separation**
- Benefit from the gained experience at COMPASS:
 - Light isoscalar target: carbon
 - > Thinner and isolated tungsten target
 - Beam particle identification: CEDARs at beam high intensity
 - > Improve vertexing and resolutions: vertex detector
 - > Triggerless DAQ, with higher-level dimuon trigger including online trigger efficiency control



\bigcirc Future: π -induced Drell-Yan with both beam charges

Apparatus for Meson and Baryon

Hadro-production of charmonium in COMPASS

 J/ψ and $\psi(2S)$ data collected simultaneously with Drell-Yan.

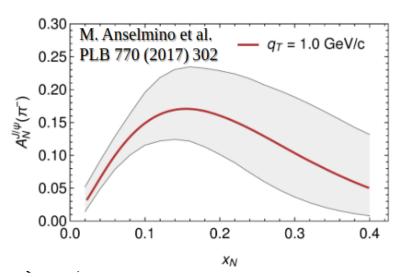
Due to the limited mass resolution, $\psi(2S)$ is hardly visible.

Due to the presence of hadron absorber, only access inclusive charmonium production.

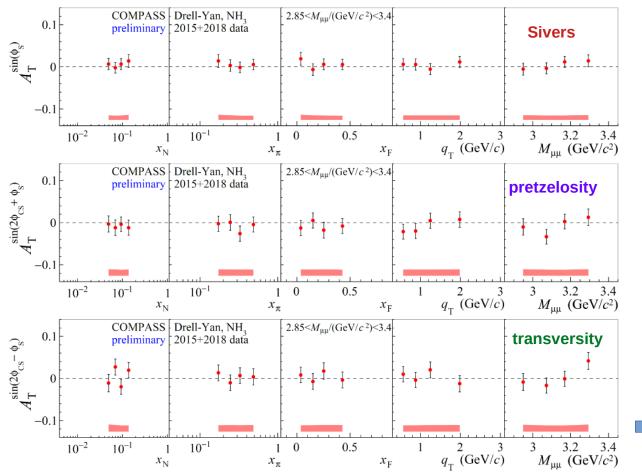
 $\pi^{-} \; A \; \rightarrow \; J/\psi \; X \; \rightarrow \; \mu^{+} \mu^{-} \; X$

 J/ψ -related analyses in COMPASS:

- Transverse spin asymmetries
- Unpolarized asymmetries (not yet released)
- Differential cross sections
- J/ψ -pair production


Charmonium production mechanisms

...and also qg contributions possible.


At COMPASS energies, the $q\bar{q}$ mechanism is expected to contribute significantly, while at LHCb gluon-gluon fusion is dominant.

Assuming qq annihilation dominance, M. Anselmino et al, PLB 770 (2017) 302

predicted large J/ψ transverse spin asymmetry and sensitivity to u-quark Sivers TMD PDF of the nucleon.

Transverse spin asymmetries in the J/ψ mass range

 J/ψ -dominated dimuon mass interval:

 $2.85 < M_{\mu\mu}/(GeV/c^2) < 3.4$

Lower $\langle x_{\text{N}} \rangle$ and $\langle x_{\pi} \rangle$ as compared to high mass Drell-Yan

Worse position resolution as compared to high mass Drell-Yan – small leakage from one cell into another.

All TSAs compatible with zero

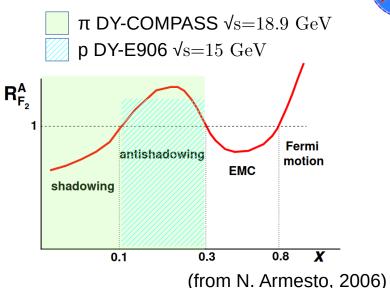
Study of "cold nuclear matter" effects

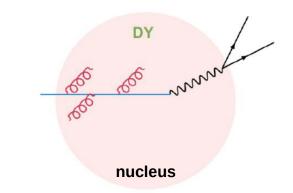
 dN_{i}^{J}

 $R_{hA} =$

Different phenomena observed. At low x driven by partons multiple scattering.

A useful observable is the **Nuclear modification factor:**

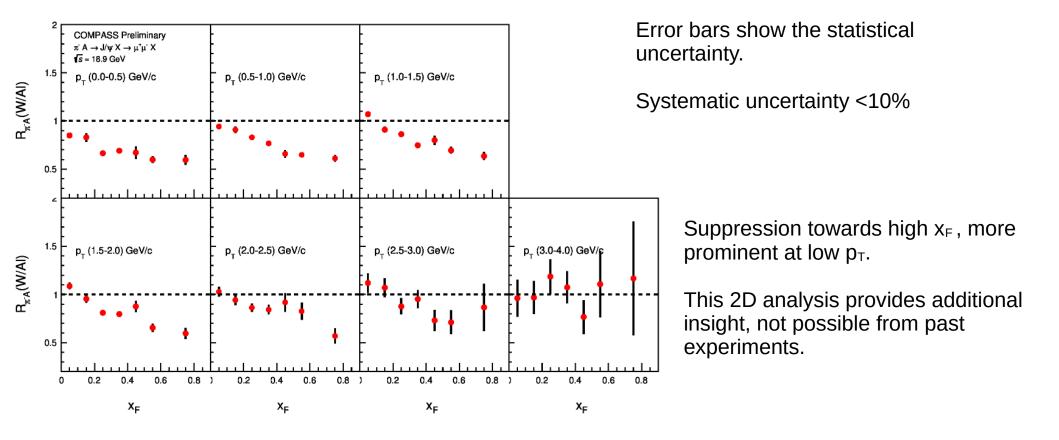

If no nuclear effects: $R_{hA} = 1$


Try to encode it all in process-independent **nPDF**s

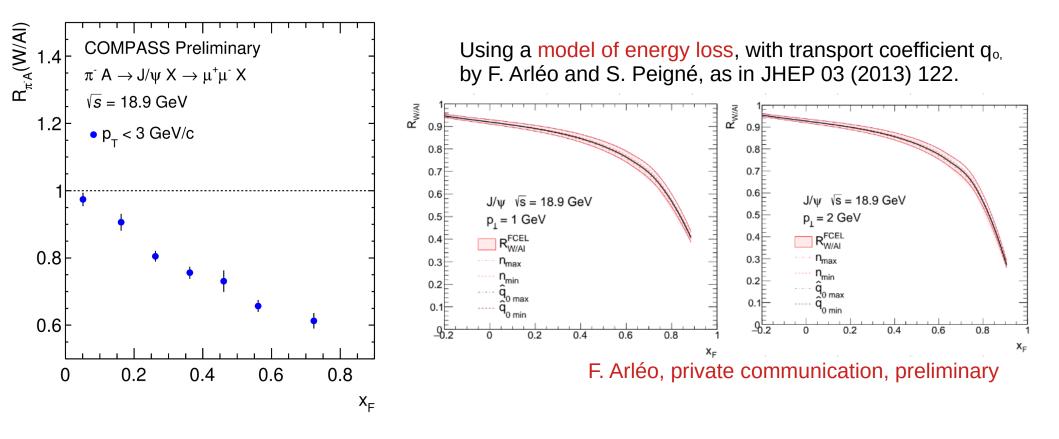
Partons may also lose energy via soft gluon emissions when crossing the cold nuclear matter

Different hard processes allow to study the **energy loss effect**:

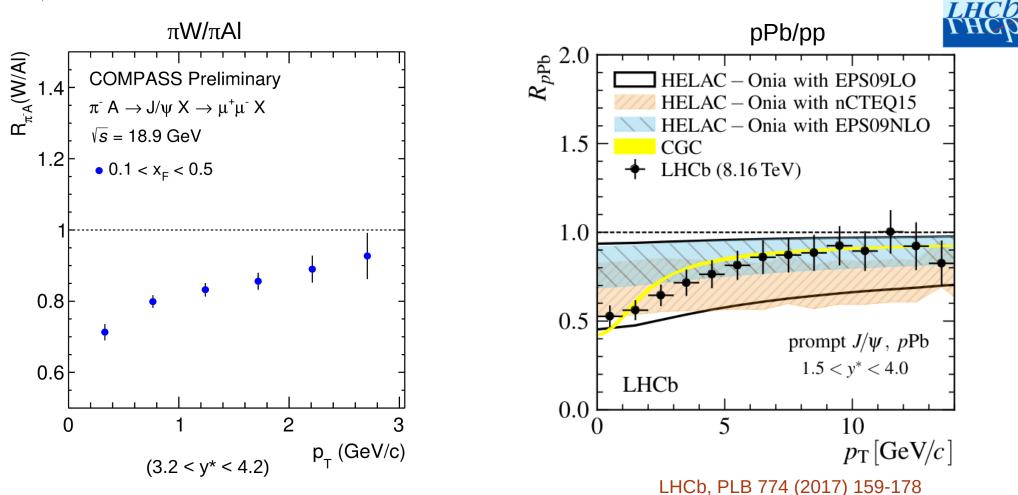
- Drell-Yan \rightarrow initial state radiation
- J/ψ production \rightarrow initial and final state radiation, interference

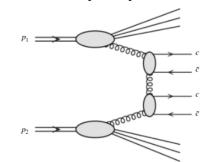


J/ψ production cross-section ratios



 $R_{\pi A}(W/AI)$ (x_F, p_T) : ratio of J/ ψ production cross sections per nucleon between W and AI targets in (x_F, p_T) bins.


J/ψ nuclear modification factor and parton energy loss



J/ψ nuclear modification factor: Comparing to LHCb

C. Quintans, MASS 2025

Single parton scattering (SPS)

ucle(

 $\frac{d\sigma_{2J/\psi}}{d|\Delta x_{||}}$

80

60

20

 $x_{F}^{J/\psi} > 0$

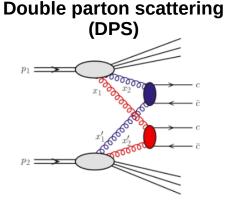
0.5

0.6

0.7

 $\frac{d\sigma_{2J/\psi}}{dx_{1,2J/\psi}} \left(\frac{pb}{nucleon} \right)$

60 مراجع مراجع


30

20

10

ŏ.4

SPS expected to dominate at COMPASS energies

J/ψ pair production

COMPASS, PLB 838 (2023) 137702

SPS+IC+Background

IC with 1₀ confidence band

 $x_{||} =$

0.9

 $p_{Z 2J/\psi}$


 p_{beam}

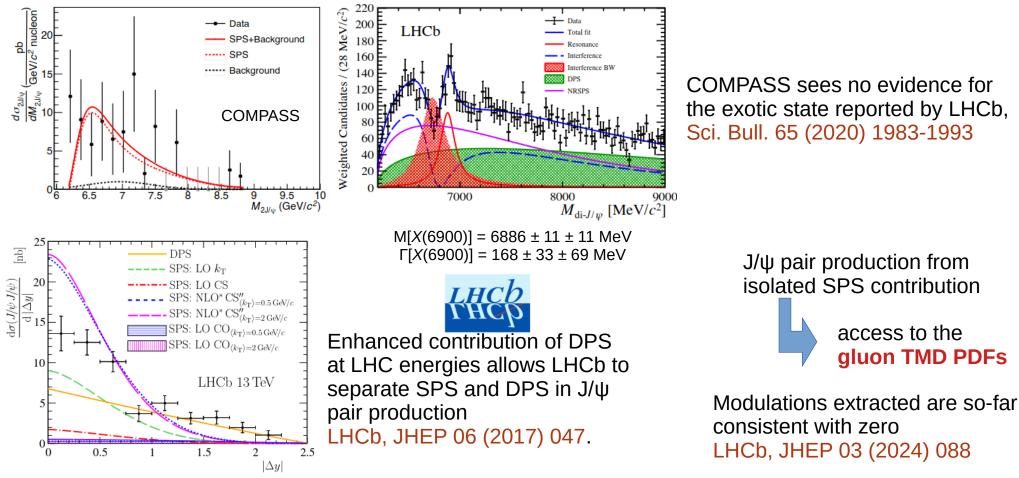
x_{II 2J/ψ}

SPS

---- Background

0.8

COMPASS results are consistent with pure SPS hypothesis


An upper limit on intrinsic charm (IC) production mechanism is obtained:

$$\sigma_{2J/\psi}^{IC} / \sigma_{2J/\psi} \Big|_{x_F > 0} < 0.24 \ (CL = 90\%)$$

J/ψ pair production

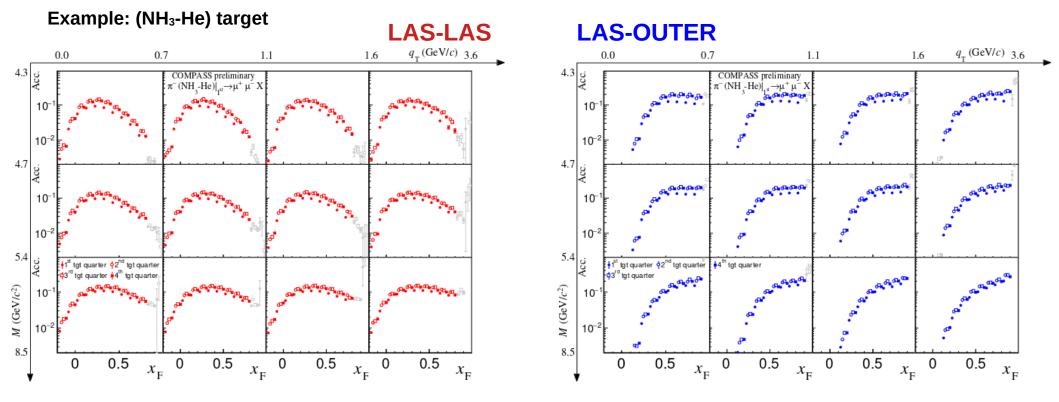
COMPASS, PLB 838 (2023) 137702

In summary:

- COMPASS studied for the first time the transversely polarized Drell-Yan process, collecting data in 2015 and 2018.
- The measured Sivers asymmetry in Drell-Yan is compatible with the sign-change hypothesis with respect to SIDIS, (also measured in COMPASS).
- The pion-induced Drell-Yan cross section is measured from the 2018 data, in a multidimensional analysis (M, q_T , x_F).
- Visible hint for a non-zero Boer-Mulders effect in the angular dependence of the Drell-Yan cross section.
- Inclusive J/ψ production is studied in parallel. All measured transverse spin asymmetries are compatible with zero.
- Evidence for cold nuclear matter effects, visible in the J/ ψ cross-section ratio W/AI.
- J/ψ pair production in COMPASS is measured to be compatible with pure SPS contribution.
- No evidence in COMPASS for the X(6900) exotic previously observed by LHCb.

Good harvest of results from the COMPASS Drell-Yan campaign.

Most of these are not yet published \rightarrow publications should follow soon!


Learning curve getting steeper, with many ideas on how one could improve experimentally \rightarrow AMBER

SPARES

High mass Drell-Yan Acceptance

Evaluated in 4 dimensions (M, q_T , x_F , Z_{vertex}) and separately per dimuon trigger

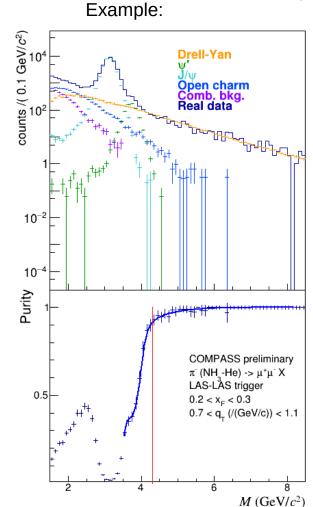
Measurement restricted to the range where the acceptance relative accuracy is better than 10%

Acceptance ranges from ~1% to ~15%

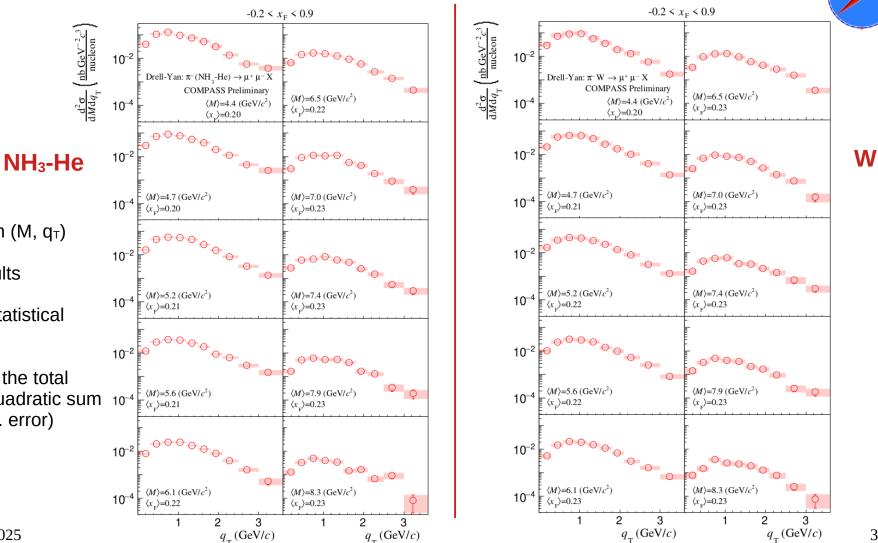
Drell-Yan process purity

The DY purity in the mass range 4.3 - 8.5 GeV/c² is evaluated from a cocktail fit to the dimuon mass spectrum, and taken into account in the final cross section.

Study done in (q_T, x_F) bins, separately per target and trigger.


The purity is above 90% for:

- NH3-He : M > 4.3 GeV/c²
- Al: M > 4.7 GeV/c²
- W: M > 5.5 GeV/c²


The purity is affected by the mass resolution, worse for W.

The resolutions are also evaluated from Monte Carlo:

Target	δx_{F}	$\delta q_{T} \; (MeV/c)$	$\delta M/M$
NH3-	0.03	150	3.5%
He	0.03	245	4.5%
W	0.03	340	6.5%

Drell-Yan cross section per nucleon, in bins of mass, as function of q_{T}

2D cross section (M, q_T)

Preliminary results

Error bars are statistical Uncertainty

Error bands are the total uncertainties (quadratic sum 10-4 of stat. and syst. error)

C. Quintans, MASS 2025

OMPAS