Spectroscopy of Strange Mesons and First Observation of a Strange Crypto-Exotic State with $J^P=0^-$ with COMPASS

Stefan Wallner for the COMPASS collaboration (swallner@mpp.mpg.de)

Technical University of Munich, present address Max Planck Institute for Physics

CERN EP Seminar May 20, 2025

Understanding the meson spectrum \overline{q}

Input to other fields of physics

Light-Meson Spectroscopy Hydrogen Spectroscopy and QED

- Study excitation spectrum of electromagnetically bound system (hydrogen atom)
 - Improve our understanding of QED
- High-precision spectroscopy measurement of fine and hyperfine structure

ALP DIFFE

Hydrogen Spectroscopy and QED

- Study excitation spectrum of electromagnetically bound system (hydrogen atom)
- High-precision spectroscopy measurement of fine and hyperfine structure

[DJIndica], [Adriferr]

Light-Meson Spectroscopy Quark-Model States

- Study systems bound by strong interaction
 - → Improve our understanding of QCD at low energies
- Simplest system: quark-antiquark state
 - ► Total spin: J
 - ▶ Parity: $P = (-1)^{L+1}$
 - ▶ Charge-conjugation: $C = (-1)^{L+S}$
 - ► Isospin: *I*
 - Mass and width
 - Light mesons: q = u, d, s
 - ► Strange-mesons: One s quark
 - ► Strange mesons are not *C*-parity Eigenstates
- Light-mesons form nonets for each $J^{P(C)}$

Light-Meson Spectroscopy Quark-Model States

- Study systems bound by strong interaction
 - → Improve our understanding of QCD at low energies
- ► Simplest system: quark-antiquark state ⇒ meson
 - ► Total spin: *J*
 - ▶ Parity: $P = (-1)^{L+1}$
 - ▶ Charge-conjugation: $C = (-1)^{L+S}$
 - ► Isospin: *I*
 - Mass and width
 - Light mesons: q = u, d, s
 - ► Strange-mesons: One s quark
 - ► Strange mesons are not *C*-parity Eigenstates
- Light-mesons form nonets for each $J^{P(C)}$

Light-Meson Spectroscopy Quark-Model States

- Study systems bound by strong interaction
 - → Improve our understanding of QCD at low energies
- ► Simplest system: quark-antiquark state ⇒ meson
 - ► Total spin: *J*
 - ▶ Parity: $P = (-1)^{L+1}$
 - ► Charge-conjugation: $C = (-1)^{L+S}$
 - ► Isospin: *I*
 - Mass and width
 - ▶ Light mesons: q = u, d, s
 - Strange-mesons: One s quark
 - Strange mesons are not C-parity Eigenstates
- Light-mesons form nonets for each $J^{P(C)}$

Light-Meson Spectroscopy Exotic States

- QCD permits more configurations
 - ► Gluonic excitations, multi-quark states, ...
- ▶ Some J^{PC} combinations not possible for $q\overline{q}'$
 - Spin-exotic quantum numbers
 - Unambiguously identify states beyond $q\overline{q}'$
 - $\pi_1(1600)$ with $J^{PC}=1^{-+}$ studied by COMPASS
 - Predicted by Lattice QCD calculations

Quarkonia —

Light-Meson Spectroscopy Exotic States

- ▶ QCD permits more configurations
 - ► Gluonic excitations, multi-quark states, ...
 - Exotic mesons
 - ► Real meson can be superposition
- lacktriangle Some J^{PC} combinations not possible for $q\overline{q}'$
 - Spin-exotic quantum numbers
 - ightharpoonup Unambiguously identify states beyond $q\overline{q}'$
 - \blacktriangleright $\pi_1(1600)$ with $J^{PC}=1^{-+}$ studied by COMPASS
 - Predicted by Lattice QCD calculations

Quarkonia	•	$ qar{q}\rangle$
Hybrids	•	$ q\bar{q}g\rangle$
Glueballs	0	$ gg\rangle$
Multi-		$ q^2\bar{q}^2\rangle$

quarks

Light-Meson Spectroscopy Exotic States

- ► QCD permits more configurations
 - ► Gluonic excitations, multi-quark states, ...
 - Exotic mesons
 - ► Real meson can be superposition
- ightharpoonup Some J^{PC} combinations not possible for $q\overline{q}'$
 - ► Spin-exotic quantum numbers
 - ▶ Unambiguously identify states beyond $q\overline{q}'$
 - \blacktriangleright $\pi_1(1600)$ with $J^{PC}=1^{-+}$ studied by COMPASS
 - Predicted by Lattice QCD calculations

Light-Meson Spectroscopy Exotic States

- ► QCD permits more configurations
 - ► Gluonic excitations, multi-guark states, ...
 - Exotic mesons
 - Real meson can be superposition
- ▶ Some J^{PC} combinations not possible for $q\overline{q}'$
 - Spin-exotic quantum numbers
 - lacktriangle Unambiguously identify states beyond $q\overline{q}'$
 - \blacktriangleright $\pi_1(1600)$ with $J^{PC}=1^{-+}$ studied by COMPASS
 - Predicted by Lattice QCD calculations

Lattice QCD prediction of non-strange light-meson spectrum

Lattice QCD prediction of non-strange light-meson spectrum

Understanding the meson spectrum \overline{q}

- Light mesons appear as resonances in multi-body hadronic decays of heavy mesons or τ leptons
- Studied in searches for
 - ► *CP* violation
 - physics beyond the Standard Model
- Often rare decays
 - Small data samples
 - Large backgrounds
- Precise knowledge of the light-meson spectrum needed as input for decay models

- Light mesons appear as resonances in multi-body hadronic decays of heavy mesons or τ leptons
- Studied in searches for
 - ► CP violation
 - physics beyond the Standard Model
- Often rare decays
 - Small data samples
 - Large backgrounds
- Precise knowledge of the light-meson spectrum needed as input for decay models

Box heights indicate mass uncertainties

- ▶ PDG lists 17 established states, 8 need further confirmation
- ▶ Dense spectrum of expected quark-model states
- Many predicted states have not yet been observed

Box heights indicate mass uncertainties

- ▶ No exotic quantum numbers for strange mesons
 - → Appear only as supernumerary states, so-called crypto-exotic states
- ▶ No clear candidates for crypto-exotic strange mesons except for $K_0^*(700)/\kappa$

Production of Strange Mesons

- ▶ Diffractive scattering of high-energy kaon beam
- ▶ Beam kaon excited to intermediate strange-meson resonances X[−]
- Decay to multi-body hadronic final states
- $ightharpoonup K^-\pi^-\pi^+$ final state allows us to study
 - > wide mass range
 - a wide mass range
 - different decay modes

Production of Strange Mesons

- ▶ Diffractive scattering of high-energy kaon beam
- \blacktriangleright Beam kaon excited to intermediate strange-meson resonances X^-
- Decay to multi-body hadronic final states
- $ightharpoonup K^-\pi^-\pi^+$ final state allows us to study
 - ▶ in principle all strange mesons
 - a wide mass range
 - different decay modes

Strange-Meson Spectroscopy with COMPASS The COMPASS Experiment

► Fixed-target experiment at M2 beam line in CERN North Area

Strange-Meson Spectroscopy with COMPASS

- ▶ World's largest data set of about 720 k events
 - ► About 3.5× larger then ACCMOR data (1981)
- \triangleright Rich spectrum of overlapping and interfering X^-
 - Dominant well-known states
 - States with lower intensity are "hidden"

Partial-Wave Decomposition

- ▶ Rich structures in 5D phase-space distribution of $K^-\pi^-\pi^+$ final state
 - $-\pi^-\pi^+$ and $K^-\pi^+$ subsystems dominated by known two-body resonances
 - ► Complex angular distributions
- Characteristic for the quantum numbers and decay paths of X⁻ resonances

Partial-Wave Decomposition

- ▶ Rich structures in 5D phase-space distribution of $K^-\pi^-\pi^+$ final state
 - \blacktriangleright $\pi^-\pi^+$ and $K^-\pi^+$ subsystems dominated by known two-body resonances
 - ► Complex angular distributions
- ► Characteristic for the quantum numbers and decay paths of *X*[−] resonances

- ▶ J^P spin and parity
- $ightharpoonup M^{\varepsilon}$ spin projection
- ▶ *E* two-body resonance
- ▶ b[−] spectator particle
- L orbital angular momentum

- $ightharpoonup J^P$ spin and parity
- $ightharpoonup M^{\varepsilon}$ spin projection
- ▶ *E* two-body resonance
- ▶ b[−] spectator particle
- L orbital angular momentum

- $ightharpoonup J^P$ spin and parity
- $ightharpoonup M^{\varepsilon}$ spin projection
- ▶ *E* two-body resonance
- ▶ b[−] spectator particle
- L orbital angular momentum

- $ightharpoonup J^P$ spin and parity
- $ightharpoonup M^{\varepsilon}$ spin projection
- ▶ *E* two-body resonance
- ▶ b[−] spectator particle
- L orbital angular momentum

Partial-Wave Analysis of the $K^-\pi^-\pi^+$ Final State Partial-Wave Decomposition

Partial-Wave Analysis of the $K^-\pi^-\pi^+$ Final State Partial-Wave Decomposition

Partial-Wave Decomposition

- Model intensity distribution in $K^-\pi^-\pi^+$ phase-space τ
- ▶ Various partial waves a contribute to data and interfere
- ► Factorize transition and decay of X
 - ightharpoonup Decay amplitude $\psi_a(\tau)$ known
 - ► Transition amplitude 7

contains information on X⁻⁻ resonance
 measured from data using unbinned
 maximum-likelihood fit to 5D phase-space distribution

Set of considered waves in \sum_a determined using regularization-based model-selection techniques

$$I(\tau) = |\mathcal{A}|^2$$

Partial-Wave Decomposition

- Model intensity distribution in $K^-\pi^-\pi^+$ phase-space τ
- ▶ Various partial waves a contribute to data and interfere
- Factorize transition and decay of X
 - ightharpoonup Decay amplitude $\psi_a(au)$ known
 - ightharpoonup Transition amplitude \mathcal{T}_a

measured from data using unbinned maximum-likelihood fit to 5D phase-space distributionned

Set of considered waves in \sum_a determined using regularization-based model-selection techniques

$$I(\tau) = |\mathcal{A}|^2 = \left|\sum_a \mathcal{A}_a\right|^2$$

Partial-Wave Decomposition

- Model intensity distribution in $K^-\pi^-\pi^+$ phase-space τ
- ▶ Various partial waves a contribute to data and interfere
- ► Factorize transition and decay of X⁻
 - ▶ Decay amplitude $\psi_a(\tau)$ known
 - ► Transition amplitude T_a
 - contains information on X⁻ resonance
 - measured from data using unbinned maximum-likelihood fit to 5D phase-space distribution
- Set of considered waves in \sum_a determined using regularization-based model-selection techniques

$$I(au) = |\mathcal{A}|^2 = \left|\sum_a \mathcal{A}_a\right|^2 = \left|\sum_a \mathcal{T}_a \psi_a(au)\right|^2$$

Partial-Wave Decomposition

- Model intensity distribution in $K^-\pi^-\pi^+$ phase-space τ
- ▶ Various partial waves a contribute to data and interfere
- ► Factorize transition and decay of X⁻
 - ▶ Decay amplitude $\psi_a(\tau)$ known
 - ► Transition amplitude T_a
 - contains information on X⁻ resonance
 - measured from data using unbinned maximum-likelihood fit to 5D phase-space distribution
- Set of considered waves in \sum_a determined using regularization-based model-selection techniques

$$I(au) = |\mathcal{A}|^2 = \left| \sum_a \mathcal{A}_a \right|^2 = \left| \sum_a \mathcal{T}_a \psi_a(au) \right|^2$$

(I) Partial-Wave Decomposition

Performed independently in narrow $(m_{K\pi\pi},t')$ cells No assumption about $K\pi\pi$ resonances

Partial waves: Intensities and relative phases as a function of $(m_{K\pi\pi}, t')$

(I) Partial-Wave Decomposition

Performed independently in narrow $(m_{K\pi\pi},t')$ cells

No assumption about $K\pi\pi$ resonances

Partial waves: Intensities and relative phases as a function of $(m_{K\pi\pi}, t')$

(I) Partial-Wave Decomposition

Performed independently in narrow $(m_{K\pi\pi},t')$ cells

No assumption about $K\pi\pi$ resonances

Partial waves: Intensities and relative phases as a function of $(m_{K\pi\pi}, t')$

Analysis Scheme

Data: 720 k diffractively produced $K^-\pi^-\pi^+$ candidates

(I) Partial-Wave Decomposition

Performed independently in narrow $(m_{K\pi\pi},t')$ cells

No assumption about $K\pi\pi$ resonances

Partial waves: Intensities and relative phases as a function of $(m_{K\pi\pi}, t')$

(II) Resonance-Model Fit

Model $m_{K\pi\pi}$ dependence of partial waves $K\pi\pi$ resonances and background

Resonance parameters: Masses and widths of the strange-meson resonances

▶ Partial-wave amplitudes in $(m_{K\pi\pi}, t')$ bins

- ightharpoonup Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- ▶ Breit-Wigner amplitudes for $K^-\pi^-\pi^+$ resonance components
- Coherent non-resonant component accounts for other $K^-\pi^-\pi^+$ production mechanisms
- Developed scheme to handle incoherent backgrounds

Partial-wave amplitudes in $(m_{K\pi\pi}, t')$ bins

- ▶ Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- ▶ Breit-Wigner amplitudes for $K^-\pi^-\pi^+$ resonance components
- ▶ Coherent non-resonant component accounts for other $K^-\pi^-\pi^+$ production mechanisms
- Developed scheme to handle incoherent backgrounds

hD) \$40.591£

- Partial-wave amplitudes in $(m_{K\pi\pi}, t')$ bins
- ▶ Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- ▶ Breit-Wigner amplitudes for $K^-\pi^-\pi^+$ resonance components
- Coherent non-resonant component accounts for other $K^-\pi^-\pi^+$ production mechanisms
- Developed scheme to handle incoherent backgrounds

hD) 7/4-01>16

- ▶ Partial-wave amplitudes in $(m_{K\pi\pi}, t')$ bins
- ▶ Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- ▶ Breit-Wigner amplitudes for $K^-\pi^-\pi^+$ resonance components
- Coherent non-resonant component accounts for other $K^-\pi^-\pi^+$ production mechanisms
- Developed scheme to handle incoherent backgrounds

Partial-wave amplitudes in $(m_{K\pi\pi}, t')$ bins

- ▶ Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- ▶ Breit-Wigner amplitudes for $K^-\pi^-\pi^+$ resonance components
- Coherent non-resonant component accounts for other $K^-\pi^-\pi^+$ production mechanisms
- Developed scheme to handle incoherent backgrounds
 - Incoherent background from π^- diffraction to $\pi^-\pi^-\pi^+$ explicitly modeled by COMPASS $\pi^-\pi^-\pi^+$ analysis
 - Incoherent effective background component parameterizing other background processes

 $0.10 \le t' < 0.15 \, (\text{GeV}/c)^2$

- ► Modeled by 13 strange-meson resonances
- Model parameters constrained by partial-wave intensities and interference terms (relative phases)

- Simultaneously fit 14 partial waves
- Modeled by 13 strange-meson resonances
- Model parameters constrained by partial-wave intensities and interference terms (relative phases)

[SW PhD] 7/4+ 45 > 1#

Ambiguous Identification of Final-State Particles

- Analysis requires to identify one of the two negative particles
- ► Limited acceptance due to limited kinematic range of final-state PID
 - Reduced distinguishability of certain partial waves
 - Analysis artifacts in some waves for $m_{K--} \le 1.6 \,\text{GeV}/c^2$
- ► Only a sub-set of partial waves affected
 - Verified in extensive systematic and Monte Carlo input-output studies

Partial-Wave Analysis of the $K^-\pi^-\pi^+$ Final State Ambiguous Identification of Final-State Particles

- Analysis requires to identify one of the two negative particles
- ► Limited acceptance due to limited kinematic range of final-state PID
- ▶ Reduced distinguishability of certain partial waves
 ▶ Analysis artifacts in some waves
- Only a sub-set of partial waves affected
 - Verified in extensive systematic and Monte Carlo input-output studies

SW PhD Tapajest

Ambiguous Identification of Final-State Particles

- Analysis requires to identify one of the two negative particles
- Limited acceptance due to limited kinematic range of final-state PID
 - Reduced distinguishability of certain partial waves
 - Analysis artifacts in some waves for $m_{K\pi\pi} \lesssim 1.6 \, {\rm GeV}/c^2$
- Only a sub-set of partial waves affected
 - Verified in extensive systematic and Monte Carlo input-output studies

- Analysis requires to identify one of the two negative particles
- Limited acceptance due to limited kinematic range of final-state PID
 - Reduced distinguishability of certain partial waves
 - Analysis artifacts in some waves for $m_{K\pi\pi} \lesssim 1.6 \, {\rm GeV}/c^2$
- Only a sub-set of partial waves affected

- Analysis requires to identify one of the two negative particles
- Limited acceptance due to limited kinematic range of final-state PID
 - Reduced distinguishability of certain partial waves
 - Analysis artifacts in some waves for $m_{K\pi\pi} \lesssim 1.6 \, {\rm GeV}/c^2$
- Only a sub-set of partial waves affected
 - Verified in extensive systematic and Monte Carlo input-output studies

- $X K_1$ Mesons with $J^P = 1^+$
 - $X K_4^*$ Mesons with $J^P = 4^+$
 - **X** K_3 Mesons with $J^P=3^+$ and K_4 Mesons with $J^P=4^-$
 - X K Mesons with $J^P = 0^-$

K_1 Mesons

- **X** K_1 Mesons with $J^P = 1^+$
 - $X K_4^*$ Mesons with $J^P = 4^+$
 - $X K_3$ Mesons with $J^P = 3^+$ and K_4 Mesons with $J^P = 4^-$
 - X K Mesons with $J^P = 0^-$

PDG (202

- ▶ Two near-by states $K_1(1270)$ and $K_1(1400)$
- ► Excited *K*₁(1650)

- Study K_1 states in $\rho(770)K$ decay with $M^{\varepsilon}=0^+$
- ▶ Dominated by $K_1(1270)$
- ▶ Indications for excited K'_1

- Study K_1 states in $\rho(770)K$ decay with $M^{\varepsilon}=0^+$
- ▶ Dominated by $K_1(1270)$
- ightharpoonup Indications for excited K'_1
 - in high-mass tail
 - ightharpoonup mainly in $M^{\varepsilon}=1^+$ wave

- Study K_1 states in $\rho(770)K$ decay with $M^{\varepsilon}=0^+$
- ▶ Dominated by $K_1(1270)$
- ▶ Indications for excited K'_1
 - in high-mass tail
 - ightharpoonup mainly in $M^{\varepsilon}=1^+$ wave

K_1 Mesons

$K_1(1270)$

▶ Resonance parameters in agreement with previous measurements

K_1 Mesons

 K_1'

 \blacktriangleright Larger mass and width compared to $K_1(1650)$ from single measurement

▶ Our estimates consistent with recent measurement in $B^+ \to J/\psi \phi K^+$ at LHCb

NPB 276 (1986) 667

[PRL 127 (2021) 082001]

- ✓ K_1 Mesons with $J^P = 1^+$
 - $X K_4^*$ Mesons with $J^P = 4^+$
 - $X K_3$ Mesons with $J^P = 3^+$ and K_4 Mesons with $J^P = 4^-$
 - X K Mesons with $J^P = 0^-$

PDG

 $ightharpoonup K_4^*(2045)$ established state

- $ightharpoonup K_4^*(2045)$ signal at per-mil level
 - ▶ in $K^*(892)$ π decay
 - ightharpoonup in $\rho(770)$ K decay
- ► Interference terms described well
- Accompanied by rising phase

- $ightharpoonup K_4^*(2045)$ signal at per-mil level
 - ▶ in $K^*(892)$ π decay
 - ightharpoonup in $\rho(770)$ K decay
- ► Interference terms described well
- Accompanied by rising phase

total resonance model, resonances, non-resonant, $\pi\pi\pi$ background, effective background

- $ightharpoonup K_4^*(2045)$ signal at per-mil level
 - ▶ in $K^*(892)$ π decay
 - ▶ in $\rho(770)$ K decay
- ► Interference terms described well
- Accompanied by rising phase

- $ightharpoonup K_4^*(2045)$ signal at per-mil level
 - ▶ in $K^*(892)$ π decay
 - $\blacktriangleright \ \ \text{in} \ \rho(770) \ K \ \text{decay}$
- Interference terms described well
- Accompanied by rising phase

K_3 and K_4 Mesons

- ✓ K_1 Mesons with $J^P = 1^+$
 - ✓ K_4^* Mesons with $J^P = 4^+$
 - **X** K_3 Mesons with $J^P=3^+$ and K_4 Mesons with $J^P=4^-$
 - X K Mesons with $J^P = 0^-$

- \blacktriangleright $K_3(2320)$ and $K_4(2500)$ listed by the PDG
- Need further confirmation
- ightharpoonup Seen only in $\Lambda \overline{p}$ final state by few experiments

- ▶ Observe K_3 signal at about $2.1 \,\text{GeV}/c^2$
 - ▶ in $K_3^*(1780)\pi$ and $K_2^*(1430)\pi$ decays
- ightharpoonup Evidence for K_4 signal at about 2.2 GeV/ c^2
 - ▶ in $K_2^*(1430)\pi$ decay

- ▶ Observe K_3 signal at about $2.1 \,\text{GeV}/c^2$
 - in $K_3^*(1780)\pi$ and $K_2^*(1430)\pi$ decays
- ▶ Evidence for K_4 signal at about 2.2 GeV/ c^2
 - ightharpoonup in $K_2^*(1430)\pi$ decay

K_3 and K_4 Mesons

- Widths of both states in agreement with previous observations
- Masses significantly lower, however in good agreement with quark-model predictions for ground states
 - ightharpoonup Potential first observation of K_3 and K_4 ground states, while excited states observed in $\Lambda \overline{p}$ decay

- ✓ K_1 Mesons with $J^P = 1^+$
 - ✓ K_4^* Mesons with $J^P = 4^+$
 - ✓ K_3 Mesons with $J^P = 3^+$ and K_4 Mesons with $J^P = 4^-$
 - **X** K Mesons with $J^P = 0^-$

- ightharpoonup K(1460) established
- ightharpoonup K(1830) needs further confirmation

- ▶ Peak at about $1.4 \, \mathrm{GeV}/c^2$
 - ► Established K(1460)
 - ▶ But, $m_{K\pi\pi} \lesssim 1.5 \, {\rm GeV}/c^2$ region weakly affected by known analysis artifacts
- ► Second peak at about 1.7 GeV/c²
 - ightharpoonup Excited K(1690) signal
 - ightharpoonup About 8σ statistical significance

Third signal at about 2 0 GeV/c²

▶ K(1830) signal, about 5σ statistical significance ▶ Most precise measurement of K(1830) resonance

- ▶ Peak at about $1.4 \, \text{GeV}/c^2$
 - ► Established K(1460)
 - ▶ But, $m_{K\pi\pi} \lesssim 1.5 \, \text{GeV}/c^2$ region weakly affected by known analysis artifacts
- ► Second peak at about $1.7 \,\mathrm{GeV}/\mathit{c}^2$
 - Excited K(1690) signal
 - ightharpoonup About 8σ statistical significance
 - Accompanied by rising phase
 - Measured width inconsistent with "K(1630)" in PDG [PAN 61 (1998) 252]
- ▶ Third signal at about $2.0 \, \text{GeV}/c^2$
 - ightharpoonup K(1830) signal, about $5\,\sigma$ statistical significance
 - Most precise measurement of K(1830) resonance parameters

- ▶ Peak at about $1.4 \, \text{GeV}/c^2$
 - ► Established K(1460)
 - ▶ But, $m_{K\pi\pi} \lesssim 1.5 \, \text{GeV}/c^2$ region weakly affected by known analysis artifacts
- ► Second peak at about 1.7 GeV/c²
 - ► Excited K(1690) signal
 - \blacktriangleright About 8σ statistical significance
 - Accompanied by rising phase
 - Measured width inconsistent with "K(1630)" in PDG [PAN 61 (1998) 252]
- ► Third signal at about 2.0 GeV/ c^2

- ▶ Peak at about $1.4 \, \text{GeV}/c^2$
 - ► Established K(1460)
 - ▶ But, $m_{K\pi\pi} \lesssim 1.5 \, \text{GeV}/c^2$ region weakly affected by known analysis artifacts
- ► Second peak at about 1.7 GeV/c²
 - ► Excited K(1690) signal
 - ightharpoonup About 8σ statistical significance
 - Accompanied by rising phase
 - Measured width inconsistent with "K(1630)" in PDG [PAN 61 (1998) 252]
- ▶ Third signal at about 2.0 GeV/ c^2
 - \blacktriangleright K(1830) signal, about $5\,\sigma$ statistical significance
 - lacktriangle Most precise measurement of K(1830) resonance parameters

- ▶ Peak at about $1.4 \, \text{GeV}/c^2$
 - ► Established K(1460)
 - ▶ But, $m_{K\pi\pi} \lesssim 1.5 \, \text{GeV}/c^2$ region weakly affected by known analysis artifacts
- ► Second peak at about 1.7 GeV/c²
 - ► Excited K(1690) signal
 - \blacktriangleright About 8σ statistical significance
 - Accompanied by rising phase
 - Measured width inconsistent with "K(1630)" in PDG [PAN 61 (1998) 252]
- ▶ Third signal at about 2.0 GeV/ c^2
 - \blacktriangleright K(1830) signal, about $5\,\sigma$ statistical significance
 - lacktriangle Most precise measurement of K(1830) resonance parameters

- Indications for 3 excited K from a single analysis; while quark model predicts only two states
- ightharpoonup Supernumerary K(1690) signal
 - for crypto-exotic non- $q\overline{q}$ state; other explanations possible $(K^*(892)\ \omega$ threshold nearby)

- ▶ Indications for 3 excited K from a single analysis; while quark model predicts only two states
- ightharpoonup Supernumerary K(1690) signa
- ightharpoonup Candidate for crypto-exotic non- $q\overline{q}$ state; other explanations possible ($K^*(892)$ ω threshold nearby)

- ▶ Indications for 3 excited K from a single analysis; while quark model predicts only two states
 - ightharpoonup Supernumerary K(1690) signal
 - ightharpoonup Candidate for crypto-exotic non- $q\overline{q}$ state; other explanations possible $(K^*(892)\ \omega$ threshold nearby)

- ▶ Indications for 3 excited K from a single analysis; while quark model predicts only two states
 - ightharpoonup Supernumerary K(1690) signal
 - ightharpoonup Candidate for crypto-exotic non- $q\overline{q}$ state; other explanations possible ($K^*(892)$ ω threshold nearby)

Lattice QCD prediction of non-strange light-meson spectrum

Lattice QCD prediction of non-strange light-meson spectrum

- AMBER: QCD facility at M2 beam line
 - Approved phase-1 currently ongoing [CERN-SPSC-2019-022]
 - Plans for Phase-2 beyond long shutdown 3 of LHC [arXiv:1808.00848]
 - High-precision strange-meson spectroscopy measurement
- ► Efficient final-state particle identification
 - Reduce the beam momentum to fit the current momentum range
- ► High intensity and high energy kaon beam
- Overcome limitations of COMPASS data sample
 - Access to all decay modes in $K^-\pi^-\pi^+$ final state
 - ▶ 30× larger sample

- ► AMBER: QCD facility at M2 beam line
 - ► Approved phase-1 currently ongoing [CERN-SPSC-2019-022]
 - Plans for Phase-2 beyond long shutdown 3 of LHC [arXiv:1808.00848]
 - High-precision strange-meson spectroscopy measurement
- ► Efficient final-state particle identification
 - Reduce the beam momentum to fit the current momentum range
- ► High intensity and high energy kaon beam
- Overcome limitations of COMPASS data sample
 - ightharpoonup Access to all decay modes in $K^-\pi^-\pi^+$ final state
 - ► 30× larger sample

$p_{ m beam} = 190\,{ m GeV}/c$

- ► AMBER: QCD facility at M2 beam line
 - ► Approved phase-1 currently ongoing [CERN-SPSC-2019-022]
 - Plans for Phase-2 beyond long shutdown 3 of LHC [arXiv:1808.00848]
 - High-precision strange-meson spectroscopy measurement
- ► Efficient final-state particle identification
 - Reduce the beam momentum to fit the current momentum range
- ► High intensity and high energy kaon beam
- Overcome limitations of COMPASS data sample
 - \blacktriangleright Access to all decay modes in $K^-\pi^-\pi^+$ final state
 - ► 30× larger sample

$p_{ m beam} = 100\,{ m GeV}/c$

- ► AMBER: QCD facility at M2 beam line
 - ► Approved phase-1 currently ongoing [CERN-SPSC-2019-022]
 - ▶ Plans for Phase-2 beyond long shutdown 3 of LHC [arXiv:1808.00848]
 - High-precision strange-meson spectroscopy measurement
- Efficient final-state particle identification
 - Reduce the beam momentum to fit the current momentum range
- High intensity and high energy kaon beam
- Overcome limitations of COMPASS data sample
 - ► Access to all decay modes in $K^-\pi^-\pi^+$ final state
 - ► 30× larger sample

K^- beam

- AMBER: QCD facility at M2 beam line
 - Approved phase-1 currently ongoing [CERN-SPSC-2019-022]
 - ▶ Plans for Phase-2 beyond long shutdown 3 of LHC [arXiv:1808.00848]
 - ► High-precision strange-meson spectroscopy measurement
- Efficient final-state particle identification
 - Reduce the beam momentum to fit the current momentum range
- High intensity and high energy kaon beam
- Overcome limitations of COMPASS data sample
 - Access to all decay modes in $K^-\pi^-\pi^+$ final state
 - ► 30× larger sample

The Strange-Meson Spectrum

- ► Many strange mesons require further confirmation
- ▶ Search for strange partners of exotic non-strange light mesons

COMPASS [arXiv:2504.09470]

- ▶ World's largest data sample on $K^-\pi^-\pi^+$ \Rightarrow Most detailed and comprehensive analysis
- First candidate for exotic strange-meson signal with $J^P = 0^-$

COMPASS [arXiv:2504.09470]

- lackbox World's largest data sample on $K^-\pi^-\pi^+ \Rightarrow$ Most detailed and comprehensive analysis
- lacktriangle First candidate for exotic strange-meson signal with $J^P=0^-$

Outlook

- ightharpoonup Future measurements using heavy-meson and au lepton decays at LHCb, Belle II, BES, ...
- ▶ AMBER at CERN: Proposal for high-precision strange-meson spectroscopy measurement