

Exclusive Reactions at COMPASS

CIPANP 2025

Madison, Wisconsin June 10, 2025

Po-Ju Lin Department of Physics, National Central University On behalf of the COMPASS Collaboration

Multi-dimensional Partonic Structures

http://www.int.washington.edu/PROGRAMS/17-3/

COMPASS investigates the multi-dimensional structure of nucleon via various processes

COMPASS Experiment

Versatile facility with hadron (π^{\pm} , K[±], p ...) & lepton (polarized μ^{\pm}) beams of energy 100 to 200 GeV North Area CMS

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

COMPASS Experimental Setup

- Priamary beam 400 GeV p from SPS
 - Impinging on Be production target
- 190 GeV secondary hadron beams
 - h^- beam: 97% π^- , 2% K^- , 1% p
 - h^+ beam: 75% π^+ , 24% p, 1% K^+
- 160 GeV tertiary muon beams
 - μ^{\pm} longitudinally polarized

Large-acceptance forward spectrometer

- Precise tracking (350 planes)
 SciFi, Silicon, MicroMegas, GEM, MWPC, DC, straw
- PID CEDARs, RICH, calorimeters, Muon Walls Various targets:
- Polarized soild-state NH₃ or ⁶LiD
- Liquid H₂
- Solid-state nuclear targets
- NIM A 577 (2007) & NIM A 779 (2015) 69

COMPASS Experimental Setup

COMPASS Setup for Exclusive Processes

- Priamary beam 400 GeV p from SPS
 - Impinging on Be production target
- 190 GeV secondary hadron beams
 - h^- beam: 97% π^- , 2% K^- , 1% p
 - h^+ beam: 75% π^+ , 24% p, 1% K^+
- > 160 GeV tertiary muon beams
 - μ^{\pm} longitudinally polarized

COMPASS Setup for Exclusive Processes

COMPASS Setup for Exclusive Processes

CAMERA recoil proton detector

Exclusive Muoproduction

COMPASS Experiment

_						
<u>ක</u>	2002-2004	DIS & SIDIS, μ ⁺ -d, 160 GeV, L & T polarized target		Study hadron structure with		
	2005	CERN accelerator shutdown, increase of COMPASS acceptant	се	complmentary tools:		
IVILADD Uala lan	2006 2007 2008-2009 2010 2011 2012 2012 pilot run	DIS & SIDIS, μ^+ -d, 160 GeV, L polarized target DIS & SIDIS, μ^+ -p, 160 GeV, L & T polarized target Hadron spectroscopy & Primakoff reaction, $\pi/K/p$ beam SIDIS, μ^+ -p, 160 GeV, T polarized target DIS & SIDIS, μ^+ -p, 200 GeV, L polarized target Primakoff reaction, $\pi/K/p$ beam DVCS/HEMP/SIDIS, μ^+ & μ^- -p, 160 GeV, unpolarized target	• •	COMPASS holds the record for the longest-running CERN experiment		
ך כ	2013	CERN accelerator shutdown, LS1				
7707-70	2014-2015 2016-2017 2018	Drell-Yan, π- - p , T polarized target DVCS/HEMP/SIDIS, μ ⁺ & μ ⁻ - p , 160 GeV, unpolarized target Drell-Yan, π- - p , T polarized target	•			
	2019-2020	CERN accelerator shutdown, LS2	•	2012 pilot run with 4-week data taking		
	2021-2022	SIDIS, μ ⁺ -d, 160 GeV, T polarized target	•	2016-17 dedicated run. 2 x 6 months.		

Lanscape – Global Programs of DVCS

Х

COMPASS

25 years 1997 - 2022

DVCS

- The GPDs depend on the following variables:
 - x: average longitudinal momentum frac.
 - ξ : longitudinal momentum diff.
 - t: four momentum transfer
 - (correlated to b via Fourier transform)
 - Q²: virtuality of γ^{*}

DVCS: $l + p \rightarrow l' + p' + \gamma$

As the golden channel to access GPDs, DVCS has been the workhorse for GPD Extraction.
 Its interference with the well-understood Bethe-Heitler process gives access to more info.

DVCS

DVCS: $l + p \rightarrow l' + p' + \gamma$

- With LH₂ target and small x_B coverage
 focuses on H at COMPASS
- > The variables measured in the experiment: $E_{\ell}, Q^2, x_{Bj} \sim 2\xi / (1+\xi),$ $t (or \theta_{\gamma*\gamma}) and \phi (\ell\ell' plane/\gamma\gamma* plane)$

Transverse Imaging and Pressure Distribution

BH

Im $I \propto s_1^I \sin \phi + s_2^I \sin 2\phi$

COMPASS 2016 Preliminary Results

COMPASS

18

 \rightarrow The transverse-size evolution as a function of $x_{Bi} \rightarrow$ Expect at least 3 x_{Bi} bins from 2016-17 data

GPDs in Hard Exclusive Meson Production

4 chiral-even GPDs: helicity of parton unchanged

 $\begin{aligned} & \mathsf{H}^{q}(x, \xi, \mathsf{t}) & \mathsf{E}^{q}(x, \xi, \mathsf{t}) & \rightarrow \text{Vector Meson} \\ & \widetilde{\mathsf{H}}^{q}(x, \xi, \mathsf{t}) & \widetilde{\mathsf{E}}^{q}(x, \xi, \mathsf{t}) & \rightarrow \text{Pseudo-Scalar Meson} \end{aligned}$

+ 4 chiral-odd (transversity) GPDs: helicity of parton changed (not possible in DVCS)

$$\begin{array}{ll} \mathbf{H}_{T}^{q}(x,\,\xi,\,t) & \mathbf{E}_{T}^{q}(x,\,\xi,\,t) \\ \widetilde{\mathbf{H}}_{T}^{q}(x,\,\xi,\,t) & \widetilde{\mathbf{E}}_{T}^{q}(x,\,\xi,\,t) & \overline{\mathbf{E}}_{T}^{q}=\mathbf{2} \ \widetilde{\mathbf{H}}_{T}^{q}+\mathbf{E}_{T}^{q} \end{array}$$

- Ability to probe the chiral-odd GPDs.
- Universality of GPDs, quark flavor filter
- In addition to nuclear structure, provide insights into reaction mechanism.
- Additional non-perturbative term from meson wave function.

Exclusive π^0 Production on Unpolarized Proton

$$\mu \mathbf{p} \rightarrow \mu \pi^{0} \mathbf{p} \qquad \frac{d^{2}\sigma}{dt d\phi_{\pi}} = \frac{1}{2\pi} \left[\left(\frac{d\sigma_{T}}{dt} + \epsilon \frac{d\sigma_{L}}{dt} \right) + \epsilon \cos 2\phi_{\pi} \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{\pi} \frac{d\sigma_{LT}}{dt} \right]$$

COMPASS

21

$$\frac{d\sigma_L}{dt} = \frac{4\pi\alpha}{k'} \frac{1}{Q^6} \left\{ \left(1 - \xi^2\right) \left| \langle \tilde{H} \rangle \right|^2 - 2\xi^2 \operatorname{Re} \left[\langle \tilde{H} \rangle^* \langle \tilde{E} \rangle \right] - \frac{t'}{4m^2} \xi^2 \left| \langle \tilde{E} \rangle \right|^2 \right\}$$
Leading twist expected be dominant
But measured as \approx only a few % of $\frac{d\sigma_T}{dt}$

The other contributions arise from coupling between chiral-odd (quark helicity flip) GPDs to the twist-3 pion amplitude

$$\frac{d\sigma_T}{dt} = \frac{4\pi\alpha}{2k'} \frac{\mu_\pi^2}{Q^8} \left[\left(1 - \xi^2 \left(|\langle H_T \rangle|^2 - \frac{t'}{8m^2} \left(|\langle \bar{E}_T \rangle|^2\right)\right)^2 \right] \right]$$
$$\frac{\sigma_{LT}}{dt} = \frac{4\pi\alpha}{\sqrt{2}k'} \frac{\mu_\pi}{Q^7} \xi \sqrt{1 - \xi^2} \frac{\sqrt{-t'}}{2m} \operatorname{Re}\left[\langle H_T \rangle^* \langle \tilde{E} \rangle \right]$$
$$\frac{\sigma_{TT}}{dt} = \frac{4\pi\alpha}{k'} \frac{\mu_\pi^2}{Q^8} \frac{t'}{16m^2} \left(|\langle \bar{E}_T \rangle|^2\right)^2$$

S. Goloskokov and P. Kroll (Eur.Phys.J A47, 112(2011))

 $[\]epsilon$: degree of longitudinal polarization

New 2016 Exclusive π^0 Prod. on Unpolarized Proton

► Kinematic domain: $\nu \in [6.4, 40]$ GeV and $Q^2 \in [1,8]$ GeV²/ c^2 , $\langle x_B \rangle = 0.134$

New 2016 Exclusive π^0 Prod. on Unpolarized Proton

► Kinematic domain: $\nu \in [6.4, 40]$ GeV and $Q^2 \in [1,8]$ GeV²/ c^2 , $\langle x_B \rangle = 0.134$

2012–16 Exclusive π^0 Prod. Comparison

COMPASS preliminary

2012 data (PLB 805 (2020) 135454)

0.5

0.6

 $|t| (\text{GeV}/c)^2$

Goloskokov-Kroll model (2016)

 $\gamma^* \mathrm{p} \to \pi^0 \mathrm{p}'$ $\nu \in [8.5, 28] \text{ GeV}$ $Q^2 \in [1, 5] \; (\text{GeV}/c)^2$ $|t| \in [0.08, 0.64] (\text{GeV}/c)^2$

2016 data

0.4

0.3

Kinematic domain: $\nu \in [8.5, 28]$ GeV and $Q^2 \in [1,5]$ GeV²/ c^2 , $\langle x_B \rangle = 0.10$

New 2016 Exclusive π^0 Cross-section Evolution with ν

\succ Cross section decreases with increasing ν

	$\langle \nu \rangle$ [GeV]	$\langle Q^2 \rangle [\text{GeV}^2/c^2]$	$\langle x_B \rangle$	$\langle \epsilon \rangle$
$\nu \in [6.4, 8.5]$	7.35	2.15	0.156	0.999
$ u \in \llbracket 8.5, 13.9 \rrbracket$	10.32	2.50	0.131	0.998
$ u \in [13.9, 40.0] $	21.08	2.09	0.057	0.989

New 2016 Exclusive π^0 Cross-section Evolution with Q^2

COMPASS

25 years 1997 - 202:

New 2016 Evolution of the Structure Functions

COMPASS

25 years 1997 - 202:

2007 & 2010 HEMP with Transversely Polarized Target

2007 & 2010 HEMP with Transversely Polarized Target

Exclusive $\boldsymbol{\omega}$ Production on Unpolarized Proton

Experimental angular distributions

$$\mathcal{W}^{U+L}(\Phi, \phi, \cos \Theta) = \mathcal{W}^{U}(\Phi, \phi, \cos \Theta) + P_b \mathcal{W}^{L}(\Phi, \phi, \cos \Theta)$$

15 unpolarized SDMEs in \mathcal{W}^U and 8 polarized in \mathcal{W}^L

$$\begin{split} \mathcal{W}^{U}(\Phi,\phi,\cos\Theta) &= \frac{3}{8\pi^{2}} \Bigg[\frac{1}{2} (1-r_{00}^{04}) + \frac{1}{2} (3r_{00}^{04}-1)\cos^{2}\Theta - \sqrt{2} \operatorname{Re}\{r_{10}^{04}\}\sin 2\Theta\cos\phi - r_{1-1}^{04}\sin^{2}\Theta\cos2\phi \right] \\ &-\epsilon\cos 2\Phi \Big(r_{11}^{1}\sin^{2}\Theta + r_{00}^{1}\cos^{2}\Theta - \sqrt{2} \operatorname{Re}\{r_{10}^{1}\}\sin 2\Theta\cos\phi - r_{1-1}^{1}\sin^{2}\Theta\cos2\phi \Big) \\ &-\epsilon\sin 2\Phi \Big(\sqrt{2} \operatorname{Im}\{r_{10}^{2}\}\sin 2\Theta\sin\phi + \operatorname{Im}\{r_{1-1}^{2}\}\sin^{2}\Theta\sin2\phi \Big) \\ &+ \sqrt{2\epsilon(1+\epsilon)}\cos\Phi \Big(r_{11}^{5}\sin^{2}\Theta + r_{00}^{5}\cos^{2}\Theta - \sqrt{2} \operatorname{Re}\{r_{10}^{5}\}\sin 2\Theta\cos\phi - r_{1-1}^{5}\sin^{2}\Theta\cos2\phi \Big) \\ &+ \sqrt{2\epsilon(1+\epsilon)}\sin\Phi \Big(\sqrt{2} \operatorname{Im}\{r_{10}^{6}\}\sin 2\Theta\sin\phi + \operatorname{Im}\{r_{1-1}^{6}\}\sin2\phi \Big) \\ &+ \sqrt{2\epsilon(1+\epsilon)}\sin\Phi \Big(\sqrt{2} \operatorname{Im}\{r_{10}^{3}\}\sin 2\Theta\sin\phi + \operatorname{Im}\{r_{1-1}^{3}\}\sin^{2}\Theta\sin2\phi \Big) \\ &+ \sqrt{2\epsilon(1-\epsilon)}\cos\Phi \Big(\sqrt{2} \operatorname{Im}\{r_{10}^{7}\}\sin 2\Theta\sin\phi + \operatorname{Im}\{r_{1-1}^{7}\}\sin^{2}\Theta\sin2\phi \Big) \\ &+ \sqrt{2\epsilon(1-\epsilon)}\cos\Phi \Big(\sqrt{2} \operatorname{Im}\{r_{10}^{7}\}\sin2\Theta\sin\phi + \operatorname{Im}\{r_{1-1}^{7}\}\sin^{2}\Theta\sin2\phi \Big) \\ &+ \sqrt{2\epsilon(1-\epsilon)}\sin\Phi \Big(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2} \operatorname{Re}\{r_{10}^{8}\}\sin2\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos2\phi \Big) \\ &+ \sqrt{2\epsilon(1-\epsilon)}\sin\Phi \Big(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2} \operatorname{Re}\{r_{10}^{8}\}\sin2\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos2\phi \Big) \\ &+ \sqrt{2\epsilon(1-\epsilon)}\sin\Phi \Big(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2} \operatorname{Re}\{r_{10}^{8}\}\sin2\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos2\phi \Big) \\ &+ \sqrt{2\epsilon(1-\epsilon)}\sin\Phi \Big(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2} \operatorname{Re}\{r_{10}^{8}\}\sin2\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos2\phi \Big) \\ &+ \sqrt{2\epsilon(1-\epsilon)}\sin\Phi \Big(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2} \operatorname{Re}\{r_{10}^{8}\}\sin2\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos2\phi \Big) \\ &+ \sqrt{2\epsilon(1-\epsilon)}\sin\Phi \Big(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2} \operatorname{Re}\{r_{10}^{8}\}\sin2\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos2\phi \Big) \\ &+ \sqrt{2\epsilon(1-\epsilon)}\sin\Phi \Big(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2} \operatorname{Re}\{r_{10}^{8}\}\sin2\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos\phi \Big) \\ &+ \sqrt{2\epsilon(1-\epsilon)}\cos\Phi \Big(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2} \operatorname{Re}\{r_{10}^{8}\}\sin2\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos\phi \Big) \\ &+ \sqrt{2\epsilon(1-\epsilon)}\cos\Phi \Big(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2} \operatorname{Re}\{r_{10}^{8}\}\sin2\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos\phi \Big) \\ &+ \sqrt{2\epsilon(1-\epsilon)}\cos\Phi \Big(r_{11}^{8}\cos^{2}\Theta - \sqrt{2} \operatorname{Re}\{r_{10}^{8}\}\sin^{2}\Theta - r_{10}^{8}\cos^{2}\Theta \Big) \\ &+ \sqrt{2\epsilon(1-\epsilon)}\cos\Phi \Big(r_{11}^{8}\cos^{2}\Theta - r_{11}^{8}\cos^{2}\Theta \Big) \\ &+ \sqrt{2\epsilon(1-\epsilon)}\cos\Phi \Big(r_{11}^{8}\cos^{2}\Theta - r_{11}^{8}\cos^{2}\Theta \Big) \\ &+ \sqrt{2\epsilon(1-\epsilon)}\cos\Phi \Big(r_{11}^{8}\cos^{2}\Theta \Big) \\ &+$$

$$\succ \epsilon \rightarrow 1$$
, small \mathcal{W}^L

2012 Exclusive $\boldsymbol{\omega}$ Prod. on Unpolarized Proton

2012 Exclusive ρ^0 Prod. on Unpolarized Proton

DVCS cross sections with polarized μ + and μ -

- Beam charge-spin sum $\rightarrow Im \mathcal{H}(\xi,t) \rightarrow Transverse$ extension of partons as a function of x_{Bj}
- Beam charge-spin difference $\rightarrow \operatorname{Re}\mathcal{H}(\xi,t) \rightarrow D$ -term, pressure distribution

HEMP of π^0 , ρ , ω , ϕ , J/ ψ

- Cross setion of $\pi^0 \rightarrow$ Submitted to Physics Letters B
- SDME of $\rho \& \omega \rightarrow$ Transversity GPDs & Flavor Decomposition
- ϕ , J/ ψ \rightarrow underway

More results are coming!

Backup Slides

COMPASS 2016 Preliminary Results

COMPASS 2016 Preliminary Results

> Main background of exclusive single photon events: π^0 decay

> Visible (both γ detected) – subtracted

A high-energy DVCS photon candidate is combined with all detected photons with energies lower than the DVCS threshold: (4,5) GeV in Ecal (0,1) respectively

> Invisible (one γ lost) – estimated by MC

- Semi-inclusive LEPTO 6.1
- Exclusive HEPGEN π^0 (GK model)

The sum of LEPTO and HEPGEN contributions is normalized to the π^0 peak in $M_{\gamma\gamma}$ of the real data

Visible π^0 candidates

Beam Charge-spin Difference

Exclusive π^0 Selection and Background Estimation

- Exclusivity ensured by cuts on *exclusivity variables, similar to DVCS*.
- Background fraction determined by fitting the exclusivity variables with Monte Carlo simulations.

Д.

- *LEPTO* for non-exclusive background _
- *HEPGEN* of exclusive π^0 for signal _

2012 NPE-to-UPE Asymmetry

39

NPE-to-UPE asymmetry of cross sections for transitions $\gamma_T^* \rightarrow V_T$

NPE: Natural Parity Exchange UPE: Unnatural Parity Exchange

COMPASS, Eur.Phys.J.C 83 (2023) 924

COMPASS, Eur.Phys.J.C 81 (2021) 126

UPE Dominance at small W and p_T^2

+ Pion pole (dominant)

NPE Dominance

ω

NPE \rightarrow GPDs *E*, *H*

NPE \approx **UPE** on average

UPE \rightarrow GPDs \widetilde{E} , \widetilde{H}

2012 $R = \sigma_L / \sigma_T$ for Exclusive ρ^0 Production

- Longitudinal-to-transverse
 γ* cross section ratio:
- Commonly used "effective" ratio (R' = R only if SCHC):

$$=\frac{1}{\epsilon}\frac{r_{00}^{04}}{1-r_{00}^{04}}$$

 $R = \frac{\sigma_L(\gamma_L^* \to V)}{\sigma_T(\gamma_T^* \to V)}$

R'

• Use of \tilde{R} , which takes SCHC violation into consideration, is preferred.

Results of all experiments with $Q^2 > 1 (\text{GeV}/c)^2$

 \blacktriangleright Leading-order pQCD predction: $Q^2/M_{\rho}^2 \rightarrow$ deviation due to effect of QCD evolution and q_T

Possible RPD for COMPASS++/AMBER

A recoil proton detector (RPD) is mandatory to ensure the exclusivity. A Silicon detector is included *between* the target surrounded by the modified MW cavity *and* the polarizing magnet

A technology developed at JINR for NICA for the BM@N experiment

No possibility for ToF \rightarrow PID of p/ π with dE/dx Momentum and trajectory measurments $|t|_{min} \sim 0.1 \text{ GeV}$