Overview of the spin programme of COMPASS

Barbara Badelek University of Warsaw

Hotel Tonnara Trabia, Palermo, Italy 8-14 September, 2024

Barbara Badelek (University of Warsaw)

Spin programme of COMPASS

Diffraction and Low-x 2024 1/28

5 4 E 5 4

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

A fixed-target experiment at the SPS at CERN (~ 210 physicists, 28 institutes from 14 countries)

Muon programme		2002 – 2004	nucleon structure μ -d, 160 GeV, L and T polarised target
Spin dependent structure functions g_1 Gluon polarisation in the nucleon Quark polarisation distributions	2 - 2011	2005	CERN accelerator shutdown, increase of acceptance
Transversity Vector meson production Λ polarisation DVCS/GPD	ASE I (2005	2006 2007 2008 – 2009 2010	nucleon structure μ -d, 160 GeV, L polarised target nucleon structure μ -p, 160 GeV, L and T polarised target hadron spectroscopy; Primakoff reaction nucleon structure μ -p, 160 GeV, T polarised target
Hadron programme		2011	nucleon structure μ -p, 200 GeV, L polarised target
Primakoff effect, π and K polarisabilities Exotic (multiquark) states, glueballs (Double) charmed barions		2012	CERN accelerator shutdown, LS1
Precision studies of light meson spectrum Drell-Yan process on a polarised target	2 - 2023)	2014 2015 2016 - 2017	Drell-Yan π -p reaction with T polarised target (test) Drell-Yan π -p reaction with T polarised target DVCS/SIDIS μ -p, 160 GeV, unpolarised target
	2012	2018	Drell-Yan π -p reaction with T polarised target
	Ŭ	2019 - 2020	CERN accelerator shutdown, LS2

2021 – 2023 nucleon structure μ –d, 160 GeV, T polarised target

PHASE II

nan

Polarised SIDIS

DVCS (GPDs) + unp. SIDIS

Polarised Drell-Yan

COMPASS-II 2012-2018

Barbara Badelek (University of Warsaw)

Spin programme of COMPASS

Diffraction and Low-x 2024 3/28

Dac

-

EN A EN

Versatile COMPASS facility

Barbara Badelek (University of Warsaw)

Spin programme of COMPASS

Diffraction and Low-x 2024 4/28

Observables in a $\vec{\mu}\vec{N}$ (h \vec{N}) fixed-target experiment

• Inclusive asymmetry, $A_{meas}(x, Q^2)$; γ^* -N asymmetry, $A_1(x, Q^2)$:

$$A_{meas} = \frac{1}{fP_T P_B} \left(\frac{N^{\ddagger} - N^{\ddagger}}{N^{\ddagger} + N^{\ddagger}} \right) \approx DA_1 = D \; \frac{g_1(x, Q^2)}{F_1(x, Q^2)} \stackrel{\text{LO}}{=} \; D \; \frac{\sum_{q} e_q^2 \Delta q(x, Q^2)}{\sum_{q} e_q^2 q(x, Q^2)}$$

 $\underline{\mu}$

≥2006

f, D: dilution and depolarisation factors; P_T, P_B : target and beam polarisations; $N^{\ominus, \leftarrow}$: number of $\vec{\mu}$ interactions in each target cell: (upstream, downstream) or (outer, central)

• At LO, semi–inclusive asymmetry, A_1^h :

Usive asymmetry,
$$A_1^h$$
:

$$(x, z, Q^2) \approx \frac{\sum_{q} e_q^2 \Delta q(x, Q^2) D_q^h(z, Q^2)}{\sum_{q} e_q^2 q(x, Q^2) D_q^h(z, Q^2)} \qquad z = \frac{E_h}{\nu} \qquad D_q^h \in \mathbb{R}$$

 A_1^h

3

 $\sum 2 \cdot (-2)$

 $\neq D^h_{\bar{a}}$

化口压 化塑胶 化医医水合胶

Nucleon in 1-D

\implies Longitudinal spin structure

3

Barbara Badelek (University of Warsaw)

Partonic structure of the nucleon; distribution functions

Three twist-two quark distributions in QCD (momentum, helicity & transversity) after integrating over the quark intrinsic k_t

Quark momentum DF; well known (unpolarised DIS $\rightarrow \mathbf{F}_{1,2}(\mathbf{x}, \mathbf{Q}^2)$).

Difference in DF of quarks with spin parallel or antiparallel to the nucleon's spin in a longitudinaly polarised nucleon; less well known (polarised DIS $\rightarrow g_1(x, Q^2)$).

Difference in DF of quarks with spin parallel or antiparallel to the nucleon's spin in a transversely polarised nucleon; poorly known (polarised DIS $\rightarrow h_1(x, Q^2)$).

Nonrelativistically: $\Delta_T q(x, Q^2) \equiv \Delta q(x, Q^2)$. OBS.! $\Delta_T q(x, Q^2)$ are C-odd and chiral-odd ; may only be measured with another chiral-odd partner, e.g. fragmentation function \implies SIDIS.

COMPASS and world data: g_1^p and g_1^d , $Q^2 > 1$ (GeV/c)²

COMPASS NLO QCD fit to the world data at $W^2 > 10$ (GeV/ c^2)²; dashed line: extrapolation to $W^2 < 10$ (GeV/ c^2)²

Phys.Lett.B753(2016)18

COMPASS PL B769 (2017) 034

COMPASS measurements at high Q^2 important for the QCD analysis! but little sensitive to Δg

Barbara Badelek (University of Warsaw)

Spin programme of COMPASS

Diffraction and Low-x 2024 8/28

COMPASS NLO QCD fit to p, d, ³He world data

• $-1.5 < \Delta G < 0.5$, poorly constraint \implies "direct methods" • $\sigma_{stat.}$ (dark bands) $\ll \sigma_{syst.}$ (light bands)

Spin programme of COMPASS

nac

-

化口压 化塑料 化管压 化管压

Direct measurements of $\Delta g(x)$

Direct measurements – *via* the cross section asymmetry for the photon–gluon fusion (PGF) with subsequent fragmentation into $c\bar{c}$ (LO, NLO) or $q\bar{q}$ (high $p_{\rm T}$ hadron pair (LO)): $A_{\gamma \rm N}^{\rm PGF} \approx \langle a_{\rm LL}^{\rm PGF} \rangle \frac{\Delta g}{q}$

COMPASS from SIDIS on d for any $(p_T)_h$ and at LO:

 $\Delta g/g = 0.113 \pm 0.038 (\text{stat.}) \pm 0.036 (\text{syst.}) \text{ at } \langle Q^2 \rangle \approx 3 (\text{GeV}/c)^2, \quad \langle x_g \rangle \approx 0.10$ Clearly positive gluon polarisation but not large!
COMPASS, EPJC 77(2017) 209

Barbara Badelek (University of Warsaw)

Semi-inclusive asymmetries and parton distributions

• COMPASS: measured on both proton and deuteron targets for identified π^+, π^- and (for the first time) K⁺, K⁻

COMPASS: LO DSS fragm. functions and LO unpolarised MRST assumed here.

NLO parameterisation of DSSV (without these results) describes the data well.

Barbara Badelek (University of Warsaw)

Spin programme of COMPASS

 $\ell(k,\lambda)$

 $\ell'(k')$

$g_1^{ m N}$ in the nonperturbative (Q^2 < 1 (GeV/c) 2 region)

At low x and Q^2 : nonperturbative effects and suitable extension of parton mechanisms must be considered

Barbara Badelek (University of Warsaw)

Spin programme of COMPASS

Diffraction and Low-x 2024 12/28

Nucleon in 3-D

\implies Transverse Momentum Distributions (TMD)

Dac

-

イロト イポト イヨト イヨト

Partonic structure of the nucleon; distribution functions

- In LT and considering $k_{\rm T}$, 8 PDF describe the nucleon \implies Transverse Momentum Dependent PDF
- QCD-TMD approach valid $k_{\mathrm{T}} \ll \sqrt{Q^2}$
- After integrating over $k_{\rm T}$ only 3 survive: f_1, g_1, h_1
- TMD accessed in SIDIS and DY by measuring azimuthal asymmetries with different angular modulations
- SIDIS: e.g. $A_{\text{Sivers}} \propto \text{PDF} \otimes \text{FF}$
- DY: e.g. $A_{\text{Sivers}} \propto \mathsf{PDF}^{\text{beam}} \otimes \mathsf{PDF}^{\text{target}}$
- OBS! Boer-Mulders and Sivers PDF are T-odd, i.e. process dependent

 $h_1^{\perp}(\text{SIDIS}) = -h_1^{\perp}(\text{DY})$ $f_{1\mathrm{T}}^{\perp}(\text{SIDIS}) = -f_{1\mathrm{T}}^{\perp}(\text{DY})$

(follows from QCD gauge invariance)

- OBS! transversity PDF is chiral-odd; may only be measured with another chiral-odd partner, e.g. fragmentation funct.
- TMD parton distributions need TMD Fragmentation Functions!

Barbara Badelek (University of Warsaw)

Spin programme of COMPASS

Diffraction and Low-x 2024 14/28

化口压 化塑胶 化连环 化连环 二连一

Transversity (h_1^q) measurements in SIDIS

Properties of h_1^q :

- is chiral-odd
- simple QCD evolution (no gluons involved)
- sum rule for transverse spin
- first moment gives a tensor charge (important!)

Measured *e.g. via* Collins asymmetry (spin asymmetry in the azimuthal distribution of hadrons):

$$N_h^{\pm}(\phi_c) = N_h^0 \left[1 \pm f P_T D_{NN} A_{Coll} \sin \phi_c\right]$$

$$\phi_C = \phi_h + \phi_S - \pi$$

 $(f, P_T; D_{NN};$ target dilution, polarisation; \perp spin transfer coeff) At LO:

$$A_{Coll} = \frac{F_{UT}^{\sin(\phi_C)}}{F_{UU}} = \frac{\sum_{q} e_q^2 \cdot h_1^q(x) \otimes H_1^{\perp q}(z)}{\sum_{q} e_q^2 \cdot f_1^q(x) \otimes D_1^q(z)}$$

Transverse fragmentation functions $H_1^{\perp q}$ needed to extract h_1^q ; recently measured by BELLE, BaBar, BESIII.

COMPASS results for Collins and Sivers asymmetries for protons

- Collins asymmetries for proton measured for +/- unidentified and identified hadrons...
- ...are large at $x \gtrsim 0.03$ and consistent with HERMES (in spite of different Q^2 !)
- Transversity also obtained from 2-hadron asymmetries (and "Interference Fragmentation Function") Barbara Badelek (University of Warsaw)
 Spin progr

- Sivers asymmetries for proton measured for +/- identified hadrons are large for π⁺, K⁺...
- ...and even larger at smaller Q^2 (HERMES)
- COMPASS deuteron data show very small asymmetry

COMPASS, Phys.Lett. B744 (2015) 250

nac

NEW A_{Coll}, A_{Siv} measurements for deuteron $\Longrightarrow xh_1^q, xf_{1T}^{\perp(1)}$

New point-by-point determination of $xh_1^{u_v}, xh_1^{d_v}$ and of the first k_T^2 moments of the Sivers functions, $xf_{1T}^{\perp(1)}$ (NEW COMPASS p,d SIDIS data, Belle e⁺e⁻ \rightarrow hadrons data)

Several global fits e.g. xh_1^q , Boglione et al., PL B 854 (2024) 138712

 $O^2 = 4 \text{ GeV}^2$

イロト イポト イラト イラ

x

- A_{Coll} at high x similar to that on the proton
- A_{Siv} compatible with zero

Spin programme of COMPASS

-

Fundamental nucleon charges: g_A/g_V and improved g_T measurement

- The nonsinglet structure function: $g_1^{NS} = g_1^{P}(x, Q^2) g_1^{n}(x, Q^2)$ and its moment connected to the Bjorken sum rule: $\int_{0}^{1} g_1^{NS}(x, Q^2) dx = \frac{1}{6} \left| \frac{g_A}{g_V} \right| C_1^{NS}(Q^2), \text{ NLO QCD fitted and fit-extrapolated } x \to 0, 1 \text{ gave}$ $\left| \frac{g_A}{g_V} \right| = 1.29 \pm 0.05_{\text{stat.}} \pm 0.10_{\text{syst.}} \implies \text{validation of Bjorken sum rule to 9\%}$ (neutron β decay: $|g_A/g_V| = 1.2701 \pm 0.002$)
 COMPASS PLB 753 (2016) 18
- New 2022 deuteron data: equalised statistics collected on d (⁶LiD) and p (NH₃) targets \implies optimal separation of d and u quark TMDs \implies better determination of the (truncated) nucleon tensor charge, $g_T = \delta u \delta d$ where $\delta q(Q^2) = \int_{x_{min}}^{x_{max}} dx \left[h_1^q(x, Q^2) h_1^{\bar{q}}(x, Q^2) \right],$

data	$\delta u = \int_{0.008}^{0.210} \mathrm{d}x h_1^{u_v}(x)$	$\delta d = \int_{0.008}^{0.210} \mathrm{d}x h_1^{d_v}(x)$	$g_{\rm T} = \delta u - \delta d$
previous [25, 28, 29]	0.187 ± 0.030	-0.178 ± 0.097	0.365 ± 0.078
previous [25, 28, 29] and present	0.214 ± 0.020	-0.070 ± 0.043	0.284 ± 0.045

This is a very important measurement as g_T is least known and fundamental for nucleon 3D \otimes BSM \otimes LQCD!

COMPASS, PRL 133 (2024) 101903

化口压 化塑胶 化连环 化连环 二连一

First ever

polarised Drell-Yan reaction measurements

 π^- beam of 190 GeV/c, CERN SPS $\langle I \rangle \approx 7 \times 10^7 {
m s}^{-1}, \sim$ 97% π^-

 Transversely polarized NH₃ target (2×55 cm) + Al target (7 cm) + W beam plug (120 cm)

SIDIS and Drell-Yan compatibility; unique access to TMD PDFs of π

(courtesy of R. Longo, COMPASS)

COMPASS Drell-Yan results

 $2^2/(\text{GeV}/c)^2$

10

10

- Events of $4.3 < M_{\mu\mu}/(\text{GeV}/c^2) < 8.5$ are DY events with background: ~4%
- DY events in the valence regions of π and N $\langle x_{\pi} \rangle$ =0.50, $\langle x_{N} \rangle$ =0.17
- Here Q is the $\mu\mu$ invariant mass, $M_{\mu\mu}$

Final COMPASS results on TSAs extended mass range: $4 < M_{\mu\mu}/(\text{GeV}/c^2) < 9$

Theory: S. Bastami et al., JHEP 02 (2021) 166.

Barbara Badelek (University of Warsaw)

23/28

Diffraction and Low-x 2024

Sivers TSA in DY and SIDIS

Barbara Badelek (University of Warsaw)

Spin programme of COMPASS

Diffraction and Low-x 2024 24/28

э

nac

q_T -weighted TSAs in DY

Resolving convolutions in asymmetries requires assumptions about k_T distributions in PDFs; avoiding these assumptions and accessing n-th moments of the TMD PDFs

 $f^{(n)}(x) = \int d^2 \mathbf{k_T} \left(\frac{k_T^2}{2M^2}\right)^n f(x, k_T^2) \text{ possible if asymmetries weighed with powers of } q_T$

TSA

WTSA

$\mathbf{A}^{\sin(arphi_{\mathbf{S}})}_{\mathbf{T}} \propto \mathbf{f}^{\mathbf{q}}_{1,\pi} \otimes \mathbf{f}^{\mathbf{q}\perp}_{\mathbf{1T},\mathbf{N}}$	Sivers	$\mathbf{A}_{\mathbf{T}}^{\sin(\varphi_{\mathbf{S}})\frac{\mathbf{q}_{\mathbf{T}}}{\mathbf{M}_{\mathbf{N}}}}\propto\mathbf{f}_{1,\pi}^{\mathbf{q}}\times\mathbf{f}_{\mathbf{1T},\mathbf{N}}^{\mathbf{q}\perp}$
$\mathbf{A}_{\mathbf{T}}^{\sin(2arphi_{\mathbf{CS}}+arphi_{\mathbf{S}})} \propto \mathbf{h}_{1,\pi}^{\mathbf{q}\perp} \otimes \mathbf{h}_{\mathbf{1T},\mathbf{N}}^{\mathbf{q}\perp}$	pretzelosity	$\mathbf{A}_{\mathbf{T}}^{\sin(2\varphi_{\mathbf{CS}}+\varphi_{\mathbf{S}})\frac{\mathbf{q}_{\mathbf{T}}^{3}}{2\mathbf{M}_{\mathbf{N}}^{2}\mathbf{M}_{\pi}}}\propto\mathbf{h}_{1,\pi}^{\mathbf{q}\perp(1)}\times\mathbf{h}_{\mathbf{1T},\mathbf{N}}^{\mathbf{q}\perp(2)}$
$\mathbf{A}_{\mathbf{T}}^{\sin(2arphi_{\mathbf{CS}}-arphi_{\mathbf{S}})} \propto \mathbf{h}_{1,\pi}^{\mathbf{q}\perp} \otimes \mathbf{h}_{1,\mathbf{N}}^{\mathbf{q}}$	transversity	$\mathbf{A}_{\mathbf{T}}^{\sin(2arphi_{\mathbf{CS}}-arphi_{\mathbf{S}})rac{\mathbf{q}_{\mathbf{T}}}{\mathbf{M}_{\pi}}} \propto \mathbf{h}_{1,\pi}^{\mathbf{q}\perp(1)} imes \mathbf{h}_{1,\mathbf{N}}^{\mathbf{q}}$

q_T -weighted TSAs in DY,... cont'd

26/28

COMPASS DY results: universality of TMDs

COMPASS DY result for **Sivers** asymmetry, $A_T^{\sin(\phi_S)}$ consistent with (predicted) sign change of the Sivers TMD, f_{1T}^{\perp}

Boer-Mulders TMD PDF ?

COMPASS, PRL 133 (2024) 071902

化口压 化塑料 化管压 化管压

Barbara Badelek (University of Warsaw)

Spin programme of COMPASS

Diffraction and Low-x 2024 27/28

Summary of COMPASS spin programme

- COMPASS is the longest running CERN experiment 20 years of data taking!
- Since 2023 in an analysing phase; lots of data awaiting analysis (3 new groups joined recently)
- Many important measurements concerning the nucleon structure in wide and unique (x, Q^2) ranges:
 - inclusive and semi-inclusive (polarised and unpolarised) reactions
 - polarised Drell-Yan process (first ever)
 - DVCS
- Will remain unique at least in a decade
- A successor of CERN family of nucleon structure experiments with M2 beam in the EHN2:
 EMC ⇒ NMC ⇒ SMC ⇒ COMPASS... ⇒ AMBER!