Use of positive and negative polarized muon beams to study exclusive reactions at COMPASS at CERN.

Positron beams at JLab

Beryllium target

Proton reaction products:
- p, π^+, K^+, μ^+
- $\bar{p}, \pi^-, K^-, \bar{\mu}^-$
COMPASS: a fixed target exp. at SPS, a versatile facility with hadron (π^\pm, K^\pm, p ...) & lepton (~80% polarized μ^+) beams of high energy ~160 GeV
Positive and Negative Polarized Muon Beam at COMPASS

Weak decay \(\pi^+ \rightarrow \mu^+ + \nu_\mu \)
Parity violation and helicity conservation the muons are 100% polarized in the pion rest frame

Left-handed \(\nu_\mu \) and \(\mu^+ \)
Right-handed \(\bar{\nu}_\mu \) and \(\mu^- \)

In the lab the muon polarization of the muon depends on momenta of both meson and muon

Optimisation of both polarization & muon fluxes: 160 GeV/c ~80% polarization

500mm Be 20 \(10^7\mu^+\)/spill but only 7.4 \(10^7\mu^+\)/spill
to get about 7.4 \(10^7\mu^+\)/spill
Advantage of positive and negative polarized muon beams for:

1. Deeply Virtual Compton Scattering (DVCS)

2. Exclusive π^0 production
Measurement of exclusive cross sections at COMPASS

DVCS : $\mu \ p \rightarrow \mu' \ p' \ \gamma$ at small transfer

Both μ^+ and μ^- beams
Polarisation $\sim \pm 80\%$
Momentum 160 GeV/c

COMPASS: Two stage magnetic spectrometer for large angular & momentum acceptance
Particle identification with RICH, HCALs, ECALs and muon filters

CAMERA recoil proton detector surrounding the 2.5m long LH2 target

2012:
1 month pilot run

2016 -17:
2 x 6 month data taking
Deeply virtual Compton scattering (DVCS)

The GPDs depend on the following variables:
- x: average quark longitudinal momentum fraction
- ξ: transferred momentum fraction
- t: proton momentum transfer squared related to b_\perp via Fourier transform
- Q^2: virtuality of the virtual photon

The variables measured in the experiment:
- E_ℓ, Q^2, x_B $\sim 2\xi/(1+\xi)$
- t (or $\theta_{\gamma^*\gamma}$) and ϕ ($\ell\ell'$ plane/γ^* plane)

DVCS: $\ell p \rightarrow \ell' p' \gamma$
the golden channel because it interferes with the Bethe-Heitler process
also meson production $\ell p \rightarrow \ell' p' \pi^0, \rho, \omega$ or ϕ or J/ψ...

The variables measured in the experiment:
- E_ℓ, Q^2, x_B $\sim 2\xi/(1+\xi)$
- t (or $\theta_{\gamma^*\gamma}$) and ϕ ($\ell\ell'$ plane/γ^* plane)
Deeply virtual Compton scattering (DVCS)

after talks given by Sebastian, Hervé, Pierre...

The amplitude DVCS at LT & LO in α_s (GPD H):

$$
\mathcal{H} = \int_{-1}^{+1} dx \frac{H(x, \xi, t)}{x - \xi + i \epsilon} = P \int_{-1}^{+1} dx \frac{H(x, \xi, t)}{x - \xi} - i \pi H(x = \pm \xi, \xi, t)
$$

In an experiment we measure Compton Form Factor \mathcal{H}
Deeply virtual Compton scattering (DVCS)

M. Burkardt, PRD66(2002)

Mapping in the transverse plane

\[q(x, b_{\perp}) \]

The amplitude DVCS at LT & LO in \(\alpha_S \) (GPD \(\mathcal{H} \)) :

\[\mathcal{H} = \int_{-1}^{+1} dx \frac{H(x, \xi, t)}{x - \xi + i \varepsilon} = \mathcal{P} \int_{-1}^{+1} dx \frac{H(x, \xi, t)}{x - \xi} - i \pi H(x = \pm \xi, \xi, t) \]

In an experiment we measure Compton Form Factor \(\mathcal{H} \)

\[\text{Re} \mathcal{H}(\xi, t) = \pi^{-1} \int_0^1 dx \frac{2x \text{Im} \mathcal{H}(x, t)}{x^2 - \xi^2} + \Delta(t) \]

Pressure Distribution

\[r^2 p(r) \text{ in GeV fm}^{-1} \]

The integral \(\int_0^\infty dr \ r^2 p(r) = 0 \)
Deeply virtual Compton scattering (DVCS)

With unpolarized target:

Belitsky, Müller, Kirner, NPB629 (2002)

\[
\frac{d^4 \sigma(\ell p \to \ell p' \gamma)}{dx_B dQ^2 dl d\phi} = \frac{d\sigma_{BH}^{\text{BH}}}{\text{Well known}} + \left(d\sigma_{\text{DVCS}}^{\text{DVCS}} + P_\ell d\sigma_{\text{DVCS}}^{\text{DVCS pol}} \right) - (e_\ell \Re I + e_\ell P_\ell \Im I)
\]

\[
\begin{align*}
\sigma_{BH}^{\text{BH}} & \propto c_0^{BH} + c_1^{BH} \cos \phi + c_2^{BH} \cos 2\phi \\
\sigma_{\text{DVCS}}^{\text{DVCS unpol}} & \propto c_0^{\text{DVCS}} + c_1^{\text{DVCS}} \cos \phi + c_2^{\text{DVCS}} \cos 2\phi \\
\sigma_{\text{DVCS pol}} & \propto s_1^{\text{DVCS}} \sin \phi \\
\Re I & \propto c_0^I + c_1^I \cos \phi + c_2^I \cos 2\phi + c_3^I \cos 3\phi \\
\Im I & \propto s_1^I \sin \phi + s_2^I \sin 2\phi
\end{align*}
\]
Deeply virtual Compton scattering (DVCS)

Well known lepton \((P_\ell, e_\ell)\) and \(\phi\)

\[
\frac{d^4\sigma(\ell p \rightarrow \ell p\gamma)}{dx_B dQ^2 dl d\phi} = d\sigma^{BH} + \left(d\sigma^{DVCS}_{unpol} + P_\ell d\sigma^{DVCS}_{pol} \right) - (e_\ell \text{Re } I + e_\ell P_\ell \text{Im } I)
\]

Interference Term

Deeply virtual Compton scattering (DVCS)

With unpolarized target:

Belitsky, Müller, Kirner, NPB629 (2002)

\[
\begin{align*}
 d\sigma^{BH} &\propto c_0^{BH} + c_1^{BH} \cos \phi + c_2^{BH} \cos 2\phi \\
 d\sigma^{DVCS}_{unpol} &\propto c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi \\
 d\sigma^{DVCS}_{pol} &\propto s_1^{DVCS} \sin \phi \\
 \text{Re } I &\propto c_0^I + c_1^I \cos \phi + c_2^I \cos 2\phi + c_3^I \cos 3\phi \\
 \text{Im } I &\propto s_1^I \sin \phi + s_2^I \sin 2\phi
\end{align*}
\]

With polarized electrons

\(d\sigma^{\leftarrow} - d\sigma^{\rightarrow}\)

With electrons and positrons

\(d\sigma^{+} - d\sigma^{-}\)
Deeply virtual Compton scattering (DVCS)

With both μ^+ and μ^- beams we can build:

1. **beam charge-spin sum**
 \[\sum \equiv d\sigma^+ + d\sigma^- \]
 \[\sum \equiv d\sigma^+ + d\sigma^- \Rightarrow s_1^I \propto \text{Im } F \]
 and \(c_0^{\text{DVCS}} \propto (\text{Im } H)^2 \)

2. **difference**
 \[\Delta \equiv d\sigma^+ - d\sigma^- \]
 \[\Delta \equiv d\sigma^+ - d\sigma^- \Rightarrow c_1^I \propto \text{Re } F \]

for proton

at small \(x_B \)

\[F = F_1 H + \xi \left(F_1 + F_2 \right) \tilde{H} - \frac{t}{4m^2} F_2 E \]

\[\text{COMPASS domain} \]
COMPASS 2016 data Selection of exclusive single photon production

Comparison between the observables given by the spectro or by CAMERA

DVCS: $\mu p \rightarrow \mu' p \gamma$

1) $\Delta \varphi = \varphi^{\text{cam}} - \varphi^{\text{spec}}$

2) $\Delta p_T = p_T^{\text{cam}} - p_T^{\text{spec}}$

3) $\Delta z_A = z_A^{\text{cam}} - z_A^{\text{spec}}$ and vertex

4) $M_{X=0}^2 = (p_{\mu \text{in}} + p_{\mu \text{out}} - p_{\mu \text{in}} - p_{\mu \text{out}})^2$

Good agreement between μ^+ and μ^- yields

Important achievement for:

1) $\sum \equiv d\sigma^+ - d\sigma^-$ \text{ Easier, done first}

2) $\Delta \equiv d\sigma^+ - d\sigma^-$ \text{ Challenging, but promising}

Necessity to use the same μ^+ and μ^- flux
COMPASS 2016 data

DVCS+BH cross section at \(E\mu=160\) GeV

\[\sum = d\sigma (\mu^+) + d\sigma (\mu^-) \]

\[d\sigma \propto |T_{BH}|^2 + \text{Interference Term} + |T_{DVCS}|^2 \]

Pure BH contribution

- \(x_{Bj} \approx 0.0085\)
- \(Q^2 \approx 1.8 \text{ GeV}^2\)
- \(y \approx 0.75\)

Data/BH=98.6 ±1±4%

MC: BH contribution evaluated for the integrated luminosity

\(\pi^0\) background contribution from SIDIS (LEPTO) + exclusive production (HEPGEN)

DVCS above the BH contrib.
At COMPASS using polarized positive and negative muon beams:

\[
\sum \equiv d\sigma^+ + d\sigma^- = 2[d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + \text{Im } I]
\]

\[
= 2[d\sigma^{BH} + c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi + s_1 \sin \phi + s_2 \sin 2\phi]
\]

calculable

can be subtracted

All the other terms are cancelled in the integration over \(\phi \)

\[\frac{d^3\sigma_{\mu p}^{\mu p}}{dQ^2 d\nu dt} = \int_{-\pi}^{\pi} d\phi \left(d\sigma - d\sigma^{BH} \right) \propto c_0^{DVCS} \]

\[\frac{d\sigma^{* \mu}}{dt} = \frac{1}{\Gamma(Q^2, \nu, E_\mu)} \frac{d^3\sigma_{\mu p}^{\mu p}}{dQ^2 d\nu dt} \]

Flux for transverse virtual photons

COMPASS preliminary

\[e^{-|t|} \]

\[B = 6.6 \pm 0.6_{\text{stat}} \pm 0.3_{\text{syst}} \left(\frac{\text{GeV/c}}{c^2} \right) \]

given by a binned maximum likelihood technique
COMPASS 12-16 Transverse extension of partons in the sea quark range

\[\frac{d\sigma^{DVCS}}{dt} = e^{-B|t|} = c_0^{DVCS} \propto (\text{Im}\mathcal{H})^2 \]

\[\langle b_{\perp}^2(x) \rangle \approx 2B(\xi) \]

3\(\sigma\) difference between 2012 and 2016 data

- more advanced analysis with 2016 data
- \(\pi^0\) contamination with different thresholds
- binning with 3 variables \((t,Q^2,\nu)\) or 4 variables \((t,\phi,Q^2,\nu)\)

2012 statistics = Ref
2016 analysed statistics = \(2.3 \times\) Ref
2016+2017 expected statistics = \(10 \times\) Ref

Graph:
- **2012**
- **2016**

- COMPASS: \(<Q^2> = 1.8\ (GeV/c)^2\)
- COMPASS: \(<Q^2> = 1.8\ (GeV/c)^2\)
- ZEUS: \(<Q^2> = 3.2\ (GeV/c)^2\)
- H1: \(<Q^2> = 4.0\ (GeV/c)^2\)
- H1: \(<Q^2> = 8.0\ (GeV/c)^2\)
- H1: \(<Q^2> = 10.\ (GeV/c)^2\)

Models:
- KM15 model from Kumericki & Mueller
- GK model from Goloskokov & Kroll

Reference:
- PLB793
Possible next steps for DVCS

✓ DVCS and the sum \[\Sigma \equiv d\sigma^+ + d\sigma^- \]

\[c_0 \sim (\text{Im}\ H)^2 \] final conclusion using all the data sets 2012, 2016, 2017

\[s_1 \sim \text{Im}\ H \]

constrain on \text{Im}\ H and Transverse extension of partons

✓ DVCS and the difference \[\Delta \equiv d\sigma^+ - d\sigma^- \]

\[c_1 \text{ and constrain on } \text{Re}\ H \ (>0 \text{ as } H1 \text{ or } <0 \text{ as HERMES}) \]

for D-term and pressure distribution
ImH and ReH using global fits of the world data

Global Fit KM15
Compared to GK Model GK

Global Fits using PARTONS framework
Compared to GK and VGG Models

Reminder with BCA: \(\text{ReH} < 0 \) at HERMES
> 0 at H1 (but not used in PARTONS?)

\(\text{ReH} \) is still poorly known (importance of DVCS with \(\mu^{\pm} \) at COMPASS, \(e^{\pm} \) at JLab or TCS at JLab and EIC)

\[
\frac{x \text{ImH}}{t} = \begin{array}{ll}
\text{GK} & \text{KM15} \\
Q^2 = 2 \text{GeV}^2 \\
t = 0 & t = -0.3 \text{GeV}^2
\end{array}
\]

\[
\frac{x \text{ReH}}{t} = \begin{array}{ll}
\text{H1, ZEUS} & \text{COMPASS} & \text{HERMES} & \text{JLab} \\
\text{t = 0} & t = -0.3 \text{GeV}^2
\end{array}
\]

\[
\xi \sim \frac{x_B/(2-x_B)}{t = -0.3 \text{ GeV}^2 \text{ and } Q^2 = 2 \text{ GeV}^2}
\]
GPDs and Hard Exclusive Meson Production

For Pseudo-Scalar Meson, as π^0

- Chiral-even GPDs: helicity of parton unchanged
 \[\widetilde{H}^q(x, \xi, t) + \widetilde{E}^q(x, \xi, t) \]

- Chiral-odd or transversity GPDs: helicity of parton changed
 \[\tilde{H}_T^q(x, \xi, t) \text{ (as the transversity TMD)} \]
 related to the transverse spin structure and to the tensor charge

 \[\widetilde{E}_T^q = 2 \widetilde{H}_T^q + E_T^q \text{ (as the Boer-Mulders TMD)} \]
 related to the distortion of the polarized quark distribution in the transverse plane for an unpolarized nucleon

\(\sigma_T\) is asymptotically suppressed by \(1/Q^2\) but large contribution observed

GK model: \(k_T\) of \(q\) and \(\overline{q}\) and Sudakov suppression factor are considered

Chiral-odd GPDs with a twist-3 meson wave function

Factorisation proven only for \(\sigma_L\)
The meson wave function
Is an additional non-perturbative term

Quark contribution

Meson qq

The meson wave function
Is an additional non-perturbative term

p

p'
With both μ^+ and μ^- beams we can build:

1. The beam charge-spin sum, or spin-independent cross section

$$\Sigma \equiv \frac{d^2\sigma_{\gamma^*P}}{dt\,d\phi} = \frac{1}{2} \left(\frac{d^2\sigma_{\gamma^*P}^+}{dt\,d\phi} + \frac{d^2\sigma_{\gamma^*P}^-}{dt\,d\phi} \right)$$

2. The difference

$$\Delta \equiv \left(\frac{d^2\sigma_{\gamma^*P}^+}{dt\,d\phi} - \frac{d^2\sigma_{\gamma^*P}^-}{dt\,d\phi} \right)$$
Comparison between the observables given by the spectro or by CAMERA

$$\mu^+ p \rightarrow \mu'^+ p \pi^0$$

\[\Delta \phi = \phi_{\text{cam}} - \phi_{\text{spec}}\]
\[\Delta p_T = p_{T_{\text{cam}}} - p_{T_{\text{spec}}}\]

Good description of the data with MC including

Exclusive π^0 production (HEPGEN)
+ Semi-inclusive π^0 production (LEPTO)

Good agreement between $\vec{\mu}^+$ and $\vec{\mu}^-$ yields
\(\mu^\pm p \rightarrow \mu^\pm \pi^0 p \)

\(\mu^\pm \) beams with opposite polarization

\[
\frac{1}{2} \left(\frac{d^2 \sigma^+}{dt d\phi_\pi} + \frac{d^2 \sigma^-}{dt d\phi_\pi} \right) = \frac{1}{2\pi} \left[\epsilon \frac{d\sigma_L}{dt} + \epsilon \cos 2\phi_\pi \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon) \cos \phi_\pi} \frac{d\sigma_{LT}}{dt} \right]
\]

COMPASS 2012 - 16 spin-independent cross section for exclusive \(\pi^0 \)

\(\langle x_B \rangle = 0.10 \)

\(\epsilon \) close to 1

NEW Oct 2023

Models: GK Kroll Goloskokov EPJC47 (2011)

Also GGL: Golstein Gonzalez Liuti PRD91 (2015)
μ± p → μ± π⁰ p
μ± beams with opposite polarization

\[
\frac{1}{2} \left(\frac{d^2 \sigma^+}{dt d\phi_\pi} + \frac{d^2 \sigma^-}{dt d\phi_\pi} \right) = \frac{1}{2\pi} \left[\left(\epsilon \frac{d\sigma_L}{dt} \right) + \left(\epsilon \cos 2\phi_\pi \right) \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)\cos \phi_\pi} \frac{d\sigma_{LT}}{dt} \right]
\]

\[
\frac{d\sigma_L}{dt} \propto |\langle \vec{H} \rangle|^2 - \frac{t'}{4m^2} |\langle \vec{E} \rangle|^2
\]

\[
\frac{d\sigma_T}{dt} \propto |\langle HT \rangle|^2 - \frac{t'}{8m^2} |\langle ET \rangle|^2
\]

\[
\frac{\sigma_{TT}}{dt} \propto \frac{t'}{16m^2} |\langle ET \rangle|^2
\]

\[
\frac{\sigma_{LT}}{dt} \propto \frac{\sqrt{-t'}}{2m} \text{Re} \langle HT^* \langle \vec{E} \rangle \rangle
\]

NEW Oct 2023

2016 data

COMPASS preliminary

\[\gamma^* p \rightarrow \pi^0 p' \]

ν ∈ [6.4, 40] GeV

Q² ∈ [1, 8] GeV²/c²

In a larger (ν, Q²) domain

NEW Oct 2023

2016 data

COMPASS preliminary

\[\gamma^* p \rightarrow \pi^0 p' \]

ν ∈ [6.4, 40] GeV

Q² ∈ [1, 8] GeV²/c²

| ∈ [0.08, 0.64] GeV²/c²
$\mu^\pm p \rightarrow \mu^\pm \pi^0 p$

μ^\pm beams with opposite polarization

\[
\frac{1}{2} \left(\frac{d^2 \sigma^+}{dt d\phi_\pi} + \frac{d^2 \sigma^-}{dt d\phi_\pi} \right) = \frac{1}{2\pi} \left[\left(\frac{d\sigma_L}{dt} \right) + \frac{d\sigma_T}{dt} \right] + \epsilon \cos 2\phi_\pi \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_\pi \frac{d\sigma_{LT}}{dt}
\]

\[
\frac{d\sigma_L}{dt} \propto \left| \langle \bar{H} \rangle \right|^2 - \frac{t'}{4m^2} \left| \langle E \rangle \right|^2
\]

\[
\frac{d\sigma_T}{dt} \propto \left| \langle H_T \rangle \right|^2 - \frac{t'}{8m^2} \left| \langle E_T \rangle \right|^2
\]

\[
\frac{d\sigma_{TT}}{dt} \propto \frac{t'}{16m^2} \left| \langle E_T \rangle \right|^2
\]

\[
\frac{d\sigma_{LT}}{dt} \propto \frac{\sqrt{-t'}}{2m} \text{Re} \left[\langle H_T \rangle \langle E \rangle^* \right]
\]

NEW Oct 2023

$$\langle \sigma_T \rangle + \epsilon \frac{\sigma_L}{|t|} = (6.9 \pm 0.3_{\text{stat}} \pm 0.8_{\text{syst}}) \frac{\text{nb}}{(\text{GeV}/c)^2}$$

$$\langle \sigma_{TT} \rangle = (-4.5 \pm 0.5_{\text{stat}} \pm 0.2_{\text{syst}}) \frac{\text{nb}}{(\text{GeV}/c)^2}$$

$$\langle \sigma_{LT} \rangle = (0.06 \pm 0.2_{\text{stat}} \pm 0.1_{\text{syst}}) \frac{\text{nb}}{(\text{GeV}/c)^2}$$

σ_{TT} is negative and large comparatively to $\sigma_T + \epsilon \sigma_L$

\Rightarrow impact of E_T

σ_{LT} rather small

We will present soon the evolution in 3 bins in ν and 4 bins in Q^2

The 2017 data set will still increase the statistics

COMPASS

$\langle x_B \rangle = 0.13$

ϵ close to 1

$v \in [6.4, 40] \text{ GeV}$

$Q^2 \in [1, 8] \text{ GeV}^2/c^2$

$|t| \in [0.08, 0.64] \text{ GeV}^2/c^2$
Lessons on experiments with data collected with ℓ+ and ℓ- beams

For ex: \(\sigma^\pm = (\varepsilon \sigma_L + \sigma_T) + a \cos 2\phi \sigma_{TT} + b \cos \phi \sigma_{LT} + c \sin \phi \sigma_{LT'} \)

With polarized electron beams we change continuously from one to the other polarization to build directly only 1 observable: asymmetry = \((N^+ - N^-) / (N^+ + N^-)\) gives the \(\sin \phi\) term with small systematic errors

Richness but complexity dealing with runs with ℓ+ and ℓ- beams \(\Rightarrow\) we build 4 correlated observables or 4 cross sections:

- \(\sigma^+\) \(\Rightarrow\) Constant, \(\cos \phi\), \(\cos 2\phi\) and \(\sin \phi\) terms
- \(\sigma^-\) \(\Rightarrow\) Constant, \(\cos \phi\), \(\cos 2\phi\) and \(\sin \phi\) terms
- \(\sigma^+ + \sigma^-\) \(\Rightarrow\) Constant, \(\cos \phi\), \(\cos 2\phi\) terms
- \(\sigma^+ - \sigma^-\) \(\Rightarrow\) \(\sin \phi\) term

✓ Necessity of accurate acceptance and efficiency determination

✓ Requirement of detector stability for ℓ+ and ℓ- runs not taken at the same time

✓ Background depending on the lepton flux (recommendation to use the same lepton flux)

✓ Relative positions of background (mainly electrons) and signal are not located at the same place in the detectors with ℓ+ and ℓ- beams \(\Rightarrow\) precise MC description

✓ Radiative corrections of opposite sign for ℓ+ and ℓ- for the 2 photon exchange (see Andrei Afanasev....)
ImH and ReH using global fits of the world data

Reminder with BCA: $\text{ReH} < 0$ at HERMES, > 0 at H1 not used?

Table 2: DVCS data used in this analysis.

<table>
<thead>
<tr>
<th>No.</th>
<th>Collab.</th>
<th>Year</th>
<th>Ref.</th>
<th>Observable</th>
<th>Kinematic dependence</th>
<th>No. of points used / all</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HERMES</td>
<td>2001</td>
<td>[40]</td>
<td>A_{LU}^T</td>
<td>ϕ</td>
<td>10 / 10</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2006</td>
<td>[41]</td>
<td>$A_{LU}^{\sin \phi}$</td>
<td>t</td>
<td>4 / 4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2008</td>
<td>[42]</td>
<td>$A_{LU}^{\cos \phi}$</td>
<td>x_{BJ}</td>
<td>18 / 24</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2009</td>
<td>[43]</td>
<td>$A_{LU}^{\sin \phi}$</td>
<td>x_{BJ}</td>
<td>35 / 42</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2010</td>
<td>[44]</td>
<td>$A_{LU}^{\cos \phi}$</td>
<td>x_{BJ}</td>
<td>18 / 24</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2011</td>
<td>[45]</td>
<td>$A_{LU}^{\sin \phi}$</td>
<td>x_{BJ}</td>
<td>24 / 32</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>2012</td>
<td>[46]</td>
<td>$A_{LU}^{\cos \phi}$</td>
<td>x_{BJ}</td>
<td>35 / 42</td>
</tr>
<tr>
<td>8</td>
<td>CLAS</td>
<td>2001</td>
<td>[47]</td>
<td>$A_{LU}^{\sin \phi}$</td>
<td>$i = 1.2$</td>
<td>0 / 2</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>2006</td>
<td>[48]</td>
<td>$A_{LU}^{\cos \phi}$</td>
<td>$i = 1.2$</td>
<td>2 / 2</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>2008</td>
<td>[49]</td>
<td>$A_{LU}^{\sin \phi}$</td>
<td>$i = 1.2$</td>
<td>ϕ</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>2009</td>
<td>[50]</td>
<td>$A_{LU}^{\cos \phi}$</td>
<td>$i = 1.2$</td>
<td>ϕ</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>2015</td>
<td>[51]</td>
<td>$A_{LU}^{\sin \phi}$</td>
<td>$i = 1.2$</td>
<td>311 / 497</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>2015</td>
<td>[52]</td>
<td>$A_{LU}^{\cos \phi}$</td>
<td>$i = 1.2$</td>
<td>1333 / 1933</td>
</tr>
<tr>
<td>14</td>
<td>Hall-A</td>
<td>2015</td>
<td>[53]</td>
<td>$A_{LU}^{\sin \phi}$</td>
<td>$i = 1.2$</td>
<td>228 / 228</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>2017</td>
<td>[54]</td>
<td>$A_{LU}^{\cos \phi}$</td>
<td>$i = 1.2$</td>
<td>276 / 358</td>
</tr>
<tr>
<td>16</td>
<td>COMPASS</td>
<td>2018</td>
<td>[55]</td>
<td>$A_{LU}^{\sin \phi}$</td>
<td>$i = 1.2$</td>
<td>2 / 4</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>2009</td>
<td>[56]</td>
<td>$A_{LU}^{\cos \phi}$</td>
<td>$i = 1.2$</td>
<td>4 / 4</td>
</tr>
<tr>
<td>18</td>
<td>ZEUS</td>
<td>2005</td>
<td>[57]</td>
<td>$A_{LU}^{\sin \phi}$</td>
<td>$i = 1.2$</td>
<td>7 / 8</td>
</tr>
<tr>
<td>19</td>
<td>H1</td>
<td>2009</td>
<td>[58]</td>
<td>$A_{LU}^{\cos \phi}$</td>
<td>$i = 1.2$</td>
<td>12 / 12</td>
</tr>
</tbody>
</table>

SUM: 2624 / 3996