### Use of positive and negative polarized muon beams to study exclusive reactions at COMPASS at CERN



Hadron Physics 2030, 21/10/2024 Nicole d'Hose, CEA, UniversitéParis-Saclay

# Use of positive and negative polarized muon beams to study exclusive reactions at COMPASS at CERN Positron beams at JLab





### COMPASS

RANC

FRI

CMS

ХX

**CERN** Prévessin

ATLAS

a fixed target exp. at SPS, a versatile facility with hadron (π<sup>±</sup>, K<sup>±</sup>, p ...) & lepton (~80% polarized μ<sup>±</sup>) beams of high energy ~160 GeV

LHC 27 km

## **Positive and Negative Polarized Muon Beam at COMPASS**

![](_page_3_Figure_1.jpeg)

Parity violation and helicity conservation the muons are 100% polarized in the pion rest frame

![](_page_3_Figure_3.jpeg)

Left-handed  $v_{\mu}$  and  $\mu^{+}$ Right-handed  $\overline{v_{\mu}}$  and  $\mu^{-}$ 

![](_page_3_Figure_5.jpeg)

In the lab the muon polarization depends on momenta of both meson and muon **Optimisation of both polarization & muon fluxes:** 160 GeV/c ~80% polarization 500mm Be 20 10<sup>7</sup>u<sup>+</sup>/spill but only 7.4 10<sup>7</sup>u<sup>-</sup>/spill

100mm Be

20  $10^7 \mu^+$ /spill but only 7.4  $10^7 \mu^-$ /spill to get about 7.4  $10^7 \mu^+$ /spill

**Discussed in this talk:** 

## **Advantage of positive and negative polarized muon beams for:**

**1. Deeply Virtual Compton Scattering (DVCS)** 

**2. Exclusive**  $\pi^{0}$  production with new results

![](_page_4_Picture_4.jpeg)

#### **Measurement of exclusive cross sections at COMPASS**

![](_page_5_Figure_1.jpeg)

CAMERA recoil proton detector surrounding the 2.5m long LH2 target

ET UI

**ECALO** 

+ SIDIS on unpolarized protons

**2012:** 1 month pilot run

**2016 -17:** 2 x 6 month data taking

### **Deeply virtual Compton scattering (DVCS)**

![](_page_7_Figure_1.jpeg)

The GPDs depend on the following variables:  $x: average \rightarrow quark longitudinal$ 

- $\xi$ : transferred  $\int$  momentum fraction
- t: proton momentum transfer squared related to b<sub>⊥</sub> via Fourier transform
   Q<sup>2</sup>: virtuality of the virtual photon

D. Mueller *et al*, Fortsch. Phys. 42 (1994)
X.D. Ji, PRL 78 (1997), PRD 55 (1997)
A. V. Radyushkin, PLB 385 (1996), PRD 56 (1997)

DVCS: **ℓp**→ **ℓ' p' γ** the golden channel because it interferes with the Bethe-Heitler process

also meson production  $\ell p \rightarrow \ell' p' \pi^0, \rho, \omega \text{ or } \phi \text{ or } J/\psi...$ 

The variables measured in the experiment:  $E_{\ell}, Q^2, x_B \sim 2\xi / (1+\xi),$  $t (or \theta_{\gamma*\gamma}) and \phi (\ell\ell' plane/\gamma\gamma* plane)$ 

### **Deeply virtual Compton scattering (DVCS)**

![](_page_8_Figure_1.jpeg)

The amplitude DVCS at LT & LO in  $\alpha_{s}$  (GPD **H**): **Real part Imaginary part**  $\mathcal{H} = \int_{t, \xi \text{ fixed}}^{+1} dx \ \frac{\mathrm{H}(x,\xi,t)}{x-\xi+i\varepsilon} = \mathcal{P} \int_{-1}^{+1} dx \ \frac{\mathrm{H}(x,\xi,t)}{x-\xi} - i \ \pi \ \mathrm{H}(x = \pm \xi, \xi, t)$ 

In an experiment we measure Compton Form Factor  ${\mathcal H}$ 

## **Deeply virtual Compton scattering (DVCS)**

M. Burkardt, PRD66(2002)

![](_page_9_Figure_2.jpeg)

M. Polyakov, P. Schweitzer, Int.J.Mod.Phys. A33 (2018)

## **Exclusive single photon production (BH + DVCS)**

![](_page_10_Figure_1.jpeg)

With unpolarized target:

Belitsky, Müller, Kirner, NPB629 (2002)

$$\begin{aligned} d\sigma^{BH} &\propto c_0^{BH} + c_1^{BH} \cos \phi + c_2^{BH} \cos 2\phi \\ d\sigma^{DVCS}_{unpol} &\propto c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi \\ d\sigma^{DVCS}_{pol} &\propto s_1^{DVCS} \sin \phi \\ \text{Re } I &\propto c_0^I + c_1^I \cos \phi + c_2^I \cos 2\phi + c_3^I \cos 3\phi \\ \text{Im } I &\propto s_1^I \sin \phi + s_2^I \sin 2\phi \end{aligned}$$

![](_page_10_Picture_5.jpeg)

## **Exclusive single photon production (BH + DVCS)**

![](_page_11_Figure_1.jpeg)

**NLO,Twist-2** double helicity flip suppressed by α<sub>c</sub>

## **Exclusive single photon production (BH + DVCS)**

With both  $\mu^{+}$  and  $\mu^{-}$  beams we can build:

**1** beam charge-spin sum  

$$\sum = d\sigma^{+} + d\sigma^{-}$$
**2** difference  

$$\Delta = d\sigma^{+} - d\sigma^{-}$$
**3** 
$$\frac{d\sigma^{BH} \propto c_{0}^{BH} + c_{1}^{BH} \cos \phi + c_{2}^{BH} \cos 2\phi}{d\sigma_{unpol}^{DVCS} \propto c_{0}^{DVCS} + c_{1}^{DVCS} \cos \phi + c_{2}^{DVCS} \cos 2\phi}$$

$$\frac{d\sigma^{DVCS} \propto c_{0}^{DVCS} \propto c_{0}^{DVCS} \sin \phi}{(m I - \alpha c_{0}^{-} + c_{1}^{-} \cos \phi + c_{2}^{-} \cos 2\phi + c_{3}^{-} \cos 3\phi)}$$

$$\frac{\Delta = d\sigma^{+} - d\sigma^{-}}{(m I - \alpha c_{0}^{-} + c_{0}^{-} + c_{0}^{-} + c_{1}^{-} \cos \phi + c_{2}^{-} \cos 2\phi + c_{3}^{-} \cos 3\phi}{(m I - \alpha c_{0}^{-} + c_{1}^{-} \cos \phi + c_{2}^{-} \cos 2\phi + c_{3}^{-} \cos 3\phi}$$

$$\frac{\Delta = d\sigma^{+} - d\sigma^{-} + d\sigma^{-} + c_{0}^{-} + c_{1}^{-} \cos \phi + c_{2}^{-} \cos 2\phi + c_{3}^{-} \cos 3\phi}{(m I - \alpha c_{0}^{-} + c_{0}^{-} + c_{1}^{-} \cos \phi + c_{2}^{-} \cos 2\phi + c_{3}^{-} \cos 3\phi}$$

$$\frac{\Delta = d\sigma^{+} - d\sigma^{-} + c_{1}^{-} \cos \phi + c_{2}^{-} \cos 2\phi + c_{3}^{-} \cos 3\phi}{(m I - \alpha c_{0}^{-} + c_{1}^{-} - c_{$$

#### **COMPASS 2016 data** Selection of exclusive single photon production

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

#### **COMPASS 2016 data**

#### DVCS+BH cross section at Eµ=160 GeV

![](_page_14_Figure_2.jpeg)

 $\pi^{\circ}$  background contribution from SIDIS (LEPTO) + exclusive production (HEPGEN)

## COMPASS 2016 DVCS cross section for 10 < υ < 32 GeV

#### At COMPASS using polarized positive and negative muon beams:

$$\sum = d\sigma \stackrel{+}{\leftarrow} + d\sigma \stackrel{-}{\rightarrow} = 2[d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + \operatorname{Im} I]$$
  
=  $2[d\sigma^{BH} + (c_0^{DVCS}) + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi + s_1^I \sin \phi + s_2^I \sin 2\phi]$ 

calculable can be subtracted

All the other terms are cancelled in the integration over  $\phi$ 

$$\frac{\mathrm{d}^3 \sigma^{\mu p}_{\mathrm{T}}}{\mathrm{d}Q^2 \mathrm{d}\nu dt} = \int_{-\pi}^{\pi} \mathrm{d}\phi \, \left(\mathrm{d}\sigma - \mathrm{d}\sigma^{BH}\right) \propto c_0^{DVCS}$$

$$\frac{\mathrm{d}\sigma^{\gamma^* p}}{\mathrm{d}t} = \frac{1}{\Gamma(Q^2, \nu, E_{\mu})} \frac{\mathrm{d}^3 \sigma_{\mathrm{T}}^{\mu p}}{\mathrm{d}Q^2 \mathrm{d}\nu dt}$$

Flux for transverse virtual photons

![](_page_15_Figure_8.jpeg)

#### COMPASS 12-16 Transverse extention of partons in the sea quark range

![](_page_16_Figure_1.jpeg)

Improvements in 2016 analysis compared to 2012:

- ➤ same intensity with 🛛 + and 🖾 beam in 2016
- more advanced analysis with 2016 data
- $\succ$   $\pi^0$  contamination with different thresholds
- > binning with 3 variables  $(t,Q^2,v)$  or 4 variables  $(t,\phi,Q^2,v)$
- Different bining in t

2016+2017 expected statistics =  $10 \times \text{Ref}$ لی<sub>2</sub> 6.0 **COMPASS** preliminary 2016 Prelim. 0.4 2012 0.3 COMPASS:  $<Q^2> = 1.8 (GeV/c)^2$ This Analysis 0.2 COMPASS:  $<Q^2> = 1.8 (GeV/c)^2$ Phys. Lett. B793 (2019) 188  $<Q^2> = 3.2 (GeV/c)^2$ ZEUS: JHEP 0905 (2009) 108  $<Q^{2}> = 4.0 (GeV/c)^{2}$ H1: Eur. Phys. C44 (2005) 1 0.1  $<Q^2> = 8.0 (GeV/c)^2$ H1:  $<Q^{2}> = 10. (GeV/c)^{2}$ Phys. Lett. B681 (2009) 391 H1: 0 10<sup>-3</sup> 10<sup>-1</sup> x<sub>Bi</sub> / 2 10<sup>-2</sup> 10-4  $<Q^2> = 1.8 (GeV/c)^2$  $<Q^2> = 10. (GeV/c)^2$ KM15 model from Kumericki & Mueller  $<Q^{2}> = 1.8 (GeV/c)^{2}$ from Goloskokov & Kroll  $<Q^2> = 10. (GeV/c)^2$ 

2012 statistics = Ref

2016 analysed statistics =  $2.3 \times \text{Ref}$ 

#### **Possible next steps for DVCS**

✓ DVCS and the sum  $\sum \equiv d\sigma \stackrel{-}{\leftarrow} + d\sigma \stackrel{-}{\rightarrow}$ →  $c_0 \sim (Im \mathcal{H})^2$  final conclusion using all the data sets 2012, 2016, 2017 →  $s_1 \sim Im \mathcal{H}$ 

constrain on  $Im \mathcal{H}$  and Transverse extension of partons

- ✓ DVCS and the difference  $\Delta = d\sigma \stackrel{+}{\leftarrow} d\sigma \stackrel{-}{\rightarrow}$ 
  - $rightarrow c_1$  and constrain on  $\mathbf{Re}\mathcal{H}$  (>0 as H1 or <0 as HERMES) for D-term and pressure distribution

## ImH and ReH using global fits of the world data

#### **Global Fit KM15** Compared to GK Model GK

**Global Fits using PARTONS framework** Compared to GK and VGG Models

Kumericki, Mueller, NPB (2010) 841, private com.

Moutarde, Sznajder, Wagner, Eur. Phys. J. C 79 (2019) 7, 614

![](_page_18_Figure_5.jpeg)

Reminder with BCA: **ReH < 0** at **HERMES** 

> 0 at H1 (but not used in PARTONS?)

**ReH** is still poorly known (importance of **DVCS** with  $\mu^{\pm}$  at COMPASS,  $e^{\pm}$  at JLab or **TCS** at JLab and EIC)

## **GPDs and Hard Exclusive Meson Production**

#### Factorisation proven only for $\sigma_{\text{L}}$

The meson wave function Is an additional non-perturbative term

#### **Quark contribution**

![](_page_19_Figure_4.jpeg)

## For Pseudo-Scalar Meson, as $\pi^0$

chiral-even GPDs: helicity of parton unchanged  $\widetilde{\mathbf{H}}^{q}(x, \xi, t) \quad \widetilde{\mathbf{E}}^{q}(x, \xi, t)$ 

+ chiral-odd or transversity GPDs: helicity of parton changed

 $H^q(x, \xi, t)$  (as the transversity TMD)

related in the forward limit to transversity and the tensor charge

 $\mathbf{\overline{E}}_{\mathbf{T}}^{q} = \mathbf{2} \, \mathbf{\widetilde{H}}_{\mathbf{T}}^{q} + \mathbf{E}_{\mathbf{T}}^{q}$  (as the Boer-Mulders TMD)

related to the distortion of the transversely polarized quark distribution in the unpolarized proton and to its transverse anomalous magnetic moment

 $\sigma_{T}$  is asymptotically suppressed by  $1/Q^2$  but large contribution observed GK model:  $k_{T}$  of q and  $\overline{q}$  and Sudakov suppression factor are considered Chiral-odd GPDs with a twist-3 meson wave function

## **GPDs and Hard Exclusive** $\pi^0$ **Production**

$$\frac{\mathrm{d}^{4}\sigma_{\mu \mathrm{p}}^{\leftrightarrows}}{\mathrm{d}Q^{2}\mathrm{d}\nu\mathrm{d}|t|\mathrm{d}\phi} = \Gamma(Q^{2},\nu,E_{\mu}) \frac{\mathrm{d}^{2}\sigma_{\gamma^{*}\mathrm{p}}^{\hookrightarrow}}{\mathrm{d}|t|\mathrm{d}\phi} \qquad \frac{\mathrm{d}^{2}\sigma_{\gamma^{*}\mathrm{p}}^{\hookrightarrow}}{\mathrm{d}|t|\mathrm{d}\phi} = \frac{1}{2\pi} \left[ \frac{\mathrm{d}\sigma_{\mathrm{T}}}{\mathrm{d}t} + \epsilon \frac{\mathrm{d}\sigma_{\mathrm{L}}}{\mathrm{d}t} + \epsilon \cos\left(2\phi\right) \frac{\mathrm{d}\sigma_{\mathrm{TT}}}{\mathrm{d}t} + \sqrt{2\epsilon\left(1+\epsilon\right)} \cos\phi \frac{\mathrm{d}\sigma_{\mathrm{LT}}}{\mathrm{d}t} = |P_{l}|\sqrt{2\epsilon(1-\epsilon)} \sin\phi \frac{\mathrm{d}\sigma_{\mathrm{LT}'}}{\mathrm{d}t} \right]$$

With both  $\overleftarrow{\mu}^+$  and  $\overrightarrow{\mu}^-$  beams we can build:

#### • the beam charge-spin sum, or spin-independent cross section

$$\Sigma \equiv \frac{\mathrm{d}^2 \sigma_{\gamma^* \mathrm{p}}}{\mathrm{d}t \mathrm{d}\phi} = \frac{1}{2} \left( \frac{\mathrm{d}^2 \sigma_{\gamma^* \mathrm{p}}^{\leftarrow}}{\mathrm{d}t \mathrm{d}\phi} + \frac{\mathrm{d}^2 \sigma_{\gamma^* \mathrm{p}}^{\rightarrow}}{\mathrm{d}t \mathrm{d}\phi} \right).$$

**2** the difference

$$\Delta \equiv \left(\frac{\mathrm{d}^2 \sigma_{\gamma^* \mathrm{p}}^{\leftarrow}}{\mathrm{d}t \mathrm{d}\phi} - \frac{\mathrm{d}^2 \sigma_{\gamma^* \mathrm{p}}^{\rightarrow}}{\mathrm{d}t \mathrm{d}\phi}\right)$$

At COMPASS 
$$\langle \epsilon \rangle = 0.997$$
  $|P_l| \sqrt{2\epsilon(1-\epsilon)} \simeq 0.06$ 

$$\begin{aligned} \frac{\mathrm{d}\sigma_{\mathrm{L}}}{\mathrm{d}t} &\propto \left[ (1-\xi^2) \big| \langle \widetilde{H} \rangle \big|^2 - 2\xi^2 \operatorname{Re} \left[ \langle \widetilde{H} \rangle^* \langle \widetilde{E} \rangle \right] - \frac{t'}{4M^2} \xi^2 \big| \langle \widetilde{E} \rangle \big|^2 \right], \\ \frac{\mathrm{d}\sigma_{\mathrm{T}}}{\mathrm{d}t} &\propto \left[ (1-\xi^2) \big| \langle H_T \rangle \big|^2 - \frac{t'}{8M^2} \big| \langle \overline{E}_{\mathrm{T}} \rangle \big|^2 \right], \\ \frac{\mathrm{d}\sigma_{\mathrm{TT}}}{\mathrm{d}t} &\propto \frac{t'}{16M^2} \big| \langle \overline{E}_{\mathrm{T}} \rangle \big|^2, \\ \frac{\mathrm{d}\sigma_{\mathrm{LT}}}{\mathrm{d}t} &\propto \xi \sqrt{1-\xi^2} \sqrt{-t'} \operatorname{Re} \left[ \langle H_{\mathrm{T}} \rangle^* \langle \widetilde{E} \rangle + \langle \overline{E}_{\mathrm{T}} \rangle^* \langle \widetilde{H} \rangle \right], \\ \frac{\mathrm{d}\sigma_{\mathrm{LT'}}}{\mathrm{d}t} &\propto \xi \sqrt{1-\xi^2} \sqrt{-t'} \operatorname{Im} \left[ \langle H_{\mathrm{T}} \rangle^* \langle \widetilde{E} \rangle + \langle \overline{E}_{\mathrm{T}} \rangle^* \langle \widetilde{H} \rangle \right]. \end{aligned}$$

## **COMPASS 2016** Exclusive $\pi^0$ production on unpolarized proton

Comparison between the observables given by the spectro or by CAMERA

μ p → μ' p π<sup>0</sup>

1)  $\Delta arphi = arphi^{ ext{cam}}$  -  $arphi^{ ext{spec}}$ 

2)  $\Delta \mathbf{p}_{\mathrm{T}} = \mathbf{p}_{\mathrm{T}}^{\mathrm{cam}} - \mathbf{p}_{\mathrm{T}}^{\mathrm{spec}}$ 

Good description of the data with MC including Exclusive π<sup>0</sup> production (HEPGEN) + Semi-inclusive π<sup>0</sup> production (LEPTO)

Good agreement between  $\vec{\mu}^+$  and  $\vec{\mu}^-$  yields

![](_page_21_Figure_6.jpeg)

![](_page_21_Figure_7.jpeg)

0.1

0.2

 $\Delta p_{\tau}^{0.3}$  (GeV/c)

μ

-0.3

-0.1

### **COMPASS 2016** Exclusive $\pi^0$ production on unpolarized proton

![](_page_22_Figure_1.jpeg)

### Exclusive $\pi^0$ production on unpolarized proton

![](_page_23_Figure_1.jpeg)

**COMPASS 2016** 

#### **COMPASS 2012-16** Exclusive $\pi^0$ production on unpolarized proton

2016 kinematic domain: Cross section for  $\upsilon \in [6.4, 40]$  GeV and  $Q^2 \in [1, 8]$  GeV<sup>2</sup>  $\langle x_B \rangle = 0.13$ 2012 kinematic domain for comparison:  $\upsilon \in [8.5, 28]$  GeV and  $Q^2 \in [1, 5]$  GeV<sup>2</sup>  $\langle x_B \rangle = 0.10$ 

![](_page_24_Figure_2.jpeg)

### **COMPASS 2016** Exclusive $\pi^0$ production on unpolarized proton

Evolution of the cross section with  $\upsilon$ :  $\sigma >$  when  $\upsilon \nearrow$ 

![](_page_25_Figure_2.jpeg)

![](_page_25_Figure_3.jpeg)

→ Extraction of  $σ_T + ε σ_L$   $σ_{TT}$   $σ_{LT}$ in 3 υ bins

|                       | $\langle  u  angle$ [GeV] | $\langle Q^2 \rangle$ [GeV <sup>2</sup> / $c^2$ ] | $\langle x_B \rangle$ | $\langle \epsilon \rangle$ |
|-----------------------|---------------------------|---------------------------------------------------|-----------------------|----------------------------|
| $\nu \in [6.4, 8.5]$  | 7.35                      | 2.15                                              | 0.156                 | 0.999                      |
| $ u \in [8.5, 13.9] $ | 10.32                     | 2.50                                              | 0.131                 | 0.998                      |
| $ u\in$ [13.9, 40.0]  | 21.08                     | 2.09                                              | 0.057                 | 0.989                      |
|                       |                           |                                                   |                       |                            |

#### 27/30

### Exclusive $\pi^0$ production on unpolarized proton

Evolution of the cross section with  $Q^2$ :  $\sigma > when Q^2 \nearrow$ 

COMPASS 2016

![](_page_26_Figure_3.jpeg)

|                      | $\langle Q^2 \rangle$ [GeV <sup>2</sup> / $c^2$ ] | $\langle \nu \rangle$ [GeV] | $\langle x_B \rangle$ | $\langle \epsilon \rangle$ |
|----------------------|---------------------------------------------------|-----------------------------|-----------------------|----------------------------|
| $Q^2 \in [1.0, 1.5]$ | 1.22                                              | 10.54                       | 0.072                 | 0.997                      |
| $Q^2 \in [1.5, 2.1]$ | 1.77                                              | 9.81                        | 0.109                 | 0.997                      |
| $Q^2 \in [2.1, 3.2]$ | 2.58                                              | 9.82                        | 0.157                 | 0.997                      |
| $Q^2 \in [3.2, 8.0]$ | 4.33                                              | 10.39                       | 0.247                 | 0.997                      |

![](_page_26_Picture_5.jpeg)

→ Extraction of  $\sigma_T + \varepsilon \sigma_L$   $\sigma_{TT}$   $\sigma_{LT}$ in 4 Q<sup>2</sup> bins

## **COMPASS 2016** Exclusive $\pi^0$ production on unpolarized proton

#### Evolution of the structure functions with $\upsilon$ and $Q^2$

![](_page_27_Figure_2.jpeg)

![](_page_27_Picture_3.jpeg)

#### $\sigma_{LT}$ close to 0

## **COMPASS 2016** Exclusive $\pi^0$ production on unpolarized proton

![](_page_28_Figure_1.jpeg)

Both  $\sigma_T + \varepsilon \sigma_L$  and  $\sigma_{TT}$ large evolution with  $\upsilon$ small evolution with  $Q^2$ 

Impact of these data for modeling  $\overline{E_T}$  (and other GPDs) contributions at twist-3 and NLO

Recent work on twist-3 contribution G. Duplančić, P. Kroll and K. Passek-Kumerički, PRD109 (2024)

Also S. Golosgokov et al. S. Liuti et al.

#### Lessons on experiments with data collected with *l*+ and *l*- beams

#### For ex: $\sigma^{\pm} = (\varepsilon \sigma_{L} + \sigma_{T}) + a \cos 2\phi \sigma_{TT} + b \cos \phi \sigma_{LT} + c \sin \phi \sigma_{LT'}$

With polarized electron beams we change continously from one to the other polarization to build directly only <u>1 observable</u>: <u>asymmetry</u> = (N+ - N-) / (N+ + N-) gives the sin $\phi$  term with small systematic errors

Richness but complexity dealing with runs with  $\ell$ + and  $\ell$ - beams  $\rightarrow$  we build <u>4 correlated observables</u> or <u>cross sections</u>:

| $\sigma^{+}$ | $\rightarrow$ Constant, cos $\phi$ , cos 2 $\phi$ | and sin $\phi$              | terms |
|--------------|---------------------------------------------------|-----------------------------|-------|
| σ            | ➔ Constant, cos \u00f6, cos 2 \u00f6              | and sin $\boldsymbol{\phi}$ | terms |
| σ+ + σ-      | ➔ Constant, cos \u00f3, cos 2 \u00f3              |                             | terms |
| σ+ - σ-      | →                                                 | sin φ                       | term  |

- ✓ Necessity of accurate acceptance and efficiency determination
- ✓ Requirement of detector stability for  $\ell$ + and  $\ell$  runs not taken at the same time
- ✓ Background depending on the lepton flux (recommendation to use the same lepton flux)
- ✓ Relative positions of background (mainly electrons) and signal are not located at the same place in the detectors with ℓ+ and ℓ- beams → precise MC description
- ✓ Radiative corrections of opposite sign for ℓ+ and ℓ- for the 2 photon exchange (to be discussed with A. Afanasev....)