COMPASS Results on Pion, Kaon and Unidentified Hadrons Multiplicities from SIDIS on Proton Target

M. Stolarski
LIP

On behalf of the COMPASS Collaboration

10 IV 2024
COMPASS Spectrometer 2016

COLLABORATION
- about 210 physicists
- 27 institutes

DETECTOR
- two stage spectrometer
- 60 m length
- about 350 detector planes

BEAM & TARGET
- \(\mu^\pm \) at 160 GeV/c
- Liquid H target, 250 cm

FEATURES
- angular acceptance: \(\pm 180 \) mrad
- track reconstruction:
 - \(p > 0.5 \) GeV/c
- identification \(h, e, \mu \): calorimeters and muon filters
- identification: \(\pi, K, p \) (RICH)
 - \(p > 2, 9, 18 \) GeV/c respectively
Motivation

- Fragmentation functions (FF(s), D^h_q) describe parton fragmentation into hadrons.
- In Leading Order pQCD, D^h_q describes probability density for a quark of flavour q to fragment into a hadron of type h.
- The cleanest way to access FFs is in e^+e^- annihilation. However,
 - only sensitive to the sum of $q + \bar{q}$ fragmentation,
 - flavour separation possibilities are limited.
- In the SIDIS, $\mu^\pm + p(d) \rightarrow \mu^{\pm'} + h + X$
 - possibility to separate fragmentation from q and \bar{q},
 - full flavour separation possible.
- FF are convoluted with PDFs.
- By studying pp collisions with high p_T hadrons, access to gluon fragmentation functions.
- SIDIS data are crucial to understand quark fragmentation process.
Multiplicity Measurement

- Fragmentation studies in SIDIS can be done using hadron multiplicity data
- Hadron multiplicities are defined as number of observed hadrons per DIS event
 \[
 \frac{dM^h(x,z,Q^2)}{dz} = \frac{d^3\sigma^h(x,z,Q^2)/dx dQ^2 dz}{d^2\sigma^{DIS}(x,Q^2)/dx dQ^2}
 \]
- Experimentally measured hadron multiplicities need to be corrected for e.g.
 - spectrometer acceptance and reconstruction program efficiency
 - RICH efficiency and purity (for π and K)
 - QED radiative effects
 - diffractive vector meson production
- COMPASS already published several articles based on isoscalar target data
 - PLB 764 (2017) 001
 - PLB 767 (2017) 133
 - PRD 97 (2018) 032006
 - PLB 786 (2018) 390
 - PLB 807 (2020) 135600
- Today, preliminary results from the proton target are presented
Correction due to radiative effects is a multiplicative factor to the multiplicity itself, and can be large, especially at low x and high y.

The DJANGOH programme is used for RC simulations.

It was tested against COMPASS data and the TERAD program.

As an example of the comparison, charged tracks transverse momentum squared w.r.t. μ, μ' and γ^* directions are shown below.
COMPASS was always showing results with and without our estimate for RC.

Thus, new RC results can be easily implemented to older COMPASS multiplicity papers.

Note: according to our present knowledge the data from PLB 764 (2017) 001 (π^\pm, h^\pm) need correction sometimes above 10%.
Data Selection and Kinematic Distributions

- DIS selection:
 - Reconstructed μ and μ',
 - $Q^2 > 1$ (GeV/c)2, $W > 5$ GeV/c2,
 - $0.1 < y < 0.7$, fraction of beam energy carried by virtual gamma

- Hadron cuts:
 - $0.2 < z < 0.85$, fraction of the virtual photon energy carried by a hadron
 - 12 GeV/c < p < 40 GeV/c, $\theta < 0.12$, $|dy/dz| < 0.08$, PID cuts

- Analysis is performed in 9 bins of Bjorken x, 5 bins of y and 12 bins of z

- Total sample: unidentified hadrons: 1.7M, π: 1.3M, K: 280k
Multiplicities of Unidentified Hadrons

COMPASS proton data preliminary

- h^+
- h^-

$x<0.01$

$0.10<y<0.15$

$0.01<x<0.02$

$0.02<x<0.03$

$0.03<x<0.04$

$0.04<x<0.06$

$0.06<x<0.10$

$0.10<x<0.14$

$0.14<x<0.18$

$x>0.18$

$0.15<y<0.20$

$0.20<y<0.30$

$0.30<y<0.50$

$0.50<y<0.70$

z/d h M d

$y<0.10$

$0.10<y<0.2$

$0.2<y<0.3$

$0.3<y<0.4$

$0.4<y<0.5$

$0.5<y<0.6$

$0.6<y<0.7$

$0.7<y<0.8$

$0.8<y<1.0$

$z/0.2$ 0.4 0.6 0.8 $z/0.4$ 0.6 0.8 $z/0.8$ 0.2 0.4 0.6 0.8 $z/2$ 0.4 0.6 0.8 $z/4$ 0.4 0.6 0.8 $z/8$ 0.2 0.4 0.6 0.8 $z/16$ 0.2 0.4 0.6 0.8 $z/32$ 0.2 0.4 0.6 0.8 $z/64$ 0.2 0.4 0.6 0.8 $z/128$ 0.2 0.4 0.6 0.8
Multiplicities of π^+

COMPASS proton data
preliminary

M. Stolarski (LIP)
Multiplicities of π^-

COMPASS proton data preliminary

- $0.50 < y < 0.70, \alpha = 1.2$
- $0.30 < y < 0.50, \alpha = 0.9$
- $0.20 < y < 0.30, \alpha = 0.6$
- $0.15 < y < 0.20, \alpha = 0.3$
- $0.10 < y < 0.15, \alpha = 0.0$

M. Stolarski (LIP)
Multiplicities of K^+

COMPASS proton data preliminary

- $0.50 < y < 0.70, \alpha = 0.4$
- $0.30 < y < 0.50, \alpha = 0.3$
- $0.20 < y < 0.30, \alpha = 0.2$
- $0.15 < y < 0.20, \alpha = 0.1$
- $0.10 < y < 0.15, \alpha = 0.0$

M. Stolarski (LIP)

DIS 2024, Grenoble
Multiplicities of K^-

COMPASS proton data preliminary

- $0.50 < y < 0.70, \alpha = 0.4$
- $0.30 < y < 0.50, \alpha = 0.3$
- $0.20 < y < 0.30, \alpha = 0.2$
- $0.15 < y < 0.20, \alpha = 0.1$
- $0.10 < y < 0.15, \alpha = 0.0$

M. Stolarski (LIP)
DIS 2024, Grenoble
10 IV 2024
13 / 18
Sum of Pion Multiplicities

- Let $D_{\text{fav},(\text{unf})} = D^h_q$ where q is (not) the valence quark of h
- For proton and isoscalar targets in LO pQCD:
 \[\frac{dM^+_{\pi}}{dz} + \frac{M^-_{\pi}}{dz} \approx D_{\text{fav}} + D_{\text{unf}}, \] i.e. results are expected to be very similar
- $D(Q^2, z)$ obtained from multiplicity sum is effectively independent of x
- $M^+_{\pi} + M^-_{\pi} = \int_{0.2}^{0.85} (\frac{dM^+_{\pi}}{dz} + \frac{dM^-_{\pi}}{dz}) dz$
Sum of Kaon Multiplicities

- Contrary to pion case, here $D_s^{K^-}, D_s^{K^+}$ are dominant, larger than e.g. $D_u^{K^+}$
- Since there are not too many s, \bar{s} at high x, we should see some turn-on effect related to the increased density of strange quark PDFs at lower x
- Perhaps x values accessed by COMPASS is too low to assure low density of s, \bar{s}

\[\mathcal{M}^{K^+} + \mathcal{M}^{K^-} = \int_{0.2}^{0.85} \left(\frac{dM^{K^+}}{dz} + \frac{dM^{K^-}}{dz} \right) dz \]
In the multiplicity ratio a lot experimental and theoretical uncertainties cancel

In LO pQCD one can calculate a lower limit for the ratio

\[R_K(x, Q^2, z) = \frac{dM_{K^-}(x, Q^2, z)/dz}{dM_{K^+}(x, Q^2, z)/dz} > \frac{\bar{u} + \bar{d}}{u + d} \]

\[R_p(x, Q^2, z) = \frac{dM_{\bar{p}}(x, Q^2, z)/dz}{dM_p(x, Q^2, z)/dz} > \frac{\bar{u} + \bar{d}}{u + d} \]

The lower limits predicted by LO pQCD for \(R_K \) and \(R_p \) are the same

Actual value of \(R_K \) is expected to be 10-15% higher than \(R_p \) because of large \(D_{str} \)

\(R_\pi \) suffers from large contamination of decay products of diffractive \(\rho^0 \)
R_K and R_p from Isoscalar Target

- Results published PLB 786 (2018) 390 and PLB 807 (2020) 135600
- At high z, R_K and R_p are found below lower limits expected from pQCD in (N)LO
- Kaon results presented for $x < 0.05$
- Effect more pronounced for \bar{p}/p and starts at lower z
Summary

- SIDIS data are crucial for understanding quark fragmentation into hadrons
- COMPASS already published several papers based on isoscalar data analysis
- Today, results for h^\pm, π^\pm, K^\pm multiplicities on proton target were shown
- Impact of Radiative Correction is larger than originally anticipated in early isoscalar data analyses
- Analysis is considered as finished - paper is in preparation