Transverse spin-dependent asymmetries at COMPASS experiment

International Workshop DIS 2024

Małgorzata Niemiec on behalf of COMPASS Collaboration University of Warsaw

10 IV 2024, Grenoble

N CE NER MA

Transverse Momentum Dependent Parton Distribution Functions

"Well begun is half done." Old Proverb

Nucleon spin structure

 $h_{1}^{q}(x, k_{T}^{2})$ Transversity $h_{1\mathrm{T}}^{q\perp}(x, k_{\mathrm{T}}^2)$ Pretzelosity

Single polarised Drell-Yan process

"Polarisation data has often been the graveyard of fashionable theories. If theorists had their way, they might well ban such measurements altogether out of self-protection." James Bjorken

Single polarised Drell-Yan process

Cross-section, LO TMD approach for transversely polarised target:

$$\frac{\mathrm{d}\sigma^{LO}}{\mathrm{d}x_{\mathrm{p}}\mathrm{d}x_{\mathrm{n}}\mathrm{d}^{2}q_{T}\mathrm{d}\varphi\mathrm{d}(\cos\theta)\mathrm{d}\varphi_{\mathrm{S}}} = C_{0} \begin{cases} (1+\cos^{2}\theta)F_{\mathrm{U}}^{1}+\sin^{2}\theta\cos2\varphi F_{\mathrm{U}}^{\cos2\varphi} \\ (1+\cos^{2}\theta)\mathrm{sin}(\varphi_{\mathrm{S}})F_{\mathrm{T}}^{\mathrm{sin}(\varphi)} + \\ +|S_{T}| \begin{bmatrix} (1+\cos^{2}\theta)\mathrm{sin}(\varphi_{\mathrm{S}})F_{\mathrm{T}}^{\mathrm{sin}(\varphi)} + \\ \sin^{2}\theta \begin{pmatrix} \mathrm{sin}(2\varphi+\varphi_{\mathrm{S}})F_{\mathrm{T}}^{\mathrm{sin}(2\varphi+\varphi_{\mathrm{S}})} \\ + \\ \sin(2\varphi-\varphi_{\mathrm{S}})F_{\mathrm{T}}^{\mathrm{sin}(2\varphi-\varphi_{\mathrm{S}})} \end{bmatrix}$$

Collin-Soper frame

Target frame

Boer-Mulders

 $F_{\rm U}^{\cos(2\varphi)} \propto h_{1,\pi}^{q\perp} \otimes h_{1,N}^{q\perp}$

Sivers $F_{T}^{\sin(\varphi_{S})} \propto f_{1,\pi}^{q} \otimes f_{1T,N}^{q\perp}$

Pretzelosity

$$E_{\mathrm{T}}^{\sin(2\varphi+\varphi_S)} \propto h_{1,\pi}^{q\perp} \otimes h_{1,\pi}^{q\perp}$$

Transversity

$$F_{\rm T}^{\sin(2\varphi-\varphi_S)} \propto h_{1,\pi}^{q\perp} \otimes h_{1,{\rm N}}^q$$

Single polarised Drell-Yan process

The convolution of TMD PDFs runs aver the intrinsic transverse momenta k_{T} .

TMD PDFs are accessed through measurement of target spin dependent azimuthal asymmetries TSAs.

COMPASS Experiment

"Knowledge is of no value unless you put it into practice."

Anton Chekhov

COMPASS Collaboration

Common Muon and Proton Apparatus for Structure and Spectroscopy

An extensive research programme on the structure of nucleons, including spin and on hadron spectroscopy

Drell Yan data taking 2015 + 2018

- 24 institutions from 13 countries (approximately 220 physicists)
- CERN SPS North Area
- Fixed target experiment

COMPASS experimental setup: DY programme

Drell-Yan measurement at COMPASS

 $\longrightarrow 4.3 < M_{\mu\mu}/(\text{GeV}/c^2) < 8.5$

$\langle x_{\pi} \rangle$	0.5
$\langle x_N \rangle$	0.17
$\langle q_{\mathrm{T}} angle$	$1.17 { m GeV}/c^2$
$\langle M_{\mu\mu} \rangle$	5.3 GeV/ c^{2}
Statistics	
2015	~40 000 events
2018	~43 000 events
Total	~83 000 events

Standard TSAs

Transverse spin-dependent asymmetries at COMPASS experiment

Transverse spin-dependent asymmetries at COMPASS experiment

Transverse spin-dependent asymmetries at COMPASS experiment

Weighted TSAs

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

John von Neumann

Weighted TSAs in Drell-Yan

The convolution cannot be resolved without assumptions about the dependence of the TMD PDF on the intrinsic transverse momentum.

Weighting with powers of the transverse momentum allows to avoid assumptions on $k_{\rm T}$.

WTSA Results: Pretzelosity (DY)

WTSA Results: Transversity (DY)

Conclusions

- COMPASS probes 3-dimensional structure of nucleon
- COMPASS SIDIS and Drell-Yan TSAs measurements represent a unique experimental input to study the universality of TMD PDFs

Drell-Yan TSAs

- 1σ positive **Sivers TSA**
- Pretzelosity TSA found to be small and compatible with zero
- 2σ negative **Transversity TSA**
- Results agree with theoretical predictions and consistent with analogous measurements for SIDIS

Transverse momentum weighted Drell-Yan TSA

- A way to overcome the convolution over intrinsic $k_{\rm T}$
- A direct access to the $k_{\rm T}^2$ -moments of TMD PDFs
- \circ ~ 1 σ positive **Sivers WTSA** compatible with DY TSA and SIDIS P_T-weighted TSA
- $\sim 2\sigma$ negative **Pretzelosity WTSA** effect
- $\circ ~ \sim 2\sigma$ negative **Transversity WTSA** consistent with TSAs

Prospects

• Analysis of a WTSA ongoing, paper in preparation

 $A_{DY} \propto PDF_N \otimes PDF_{\pi^-}$

Thank you for attention!

"All of physics is either impossible or trivial. It is impossible until you understand it, and then it becomes trivial."

Ernest Rutherford

Backup: Single Polarised Drell-Yan Process

Each structure function can be written as a TMD PDF convolution over the instrinsic transverse momenta.

TMD PDFs can be accessed through measurement of target spin (in)dependent azimuthal asymmetries

$$A_{\rm U}^{\cos 2\varphi} = \frac{F_{\rm U}^{\cos 2\varphi}}{F_{\rm U}^1} \quad A_{\rm T}^{\sin \varphi_S} = \frac{F_{\rm T}^{\sin \varphi_S}}{F_{\rm U}^1} \quad A_{\rm T}^{\sin (2\varphi_{CS} + \varphi_S)} = \frac{F_{\rm T}^{\sin (2\varphi_{CS} + \varphi_S)}}{2F_{\rm U}^1} \quad A_{\rm T}^{\sin (2\varphi_{CS} - \varphi_S)} = \frac{F_{\rm T}^{\sin (2\varphi_{CS} - \varphi_S)}}{2F_{\rm U}^1}$$