Strange-Meson Spectroscopy with COMPASS

Stefan Wallner
(swallner@mpp.mpg.de)

Max Planck Institute for Physics

PWA13/ATHOS8
May 28, 2024
The Strange-Meson Spectrum

![Graph showing the strange-meson spectrum with mass on the y-axis and parity on the x-axis.]

PDG lists 25 strange mesons

- 16 established states, 9 need further confirmation
- Missing states with respect to quark-model predictions
- Many measurements performed more than 30 years ago
CEDARs
* beam PID

Beam
* 191 GeV
* 2.4 % K⁻

RICH
* final-state PID

H₂ Target
RPD

30 m CEDARs

Strange-Meson Spectroscopy with COMPASS
COMPASS Setup for Hadron Beams
Diffractive scattering of high-energy kaon beam
Strange mesons appear as intermediate resonances X^-
Decay to multi-body hadronic final states
$K^-\pi^-\pi^+$ final state
Study in principle all strange mesons
Study a wide mass range
COMPASS measured world's largest data set of about 720 k events
Diffractive scattering of high-energy kaon beam
- Strange mesons appear as intermediate resonances X^-
- Decay to multi-body hadronic final states
- $K^- \pi^- \pi^+$ final state
 - Study in principle all strange mesons
 - Study a wide mass range
 - COMPASS measured world’s largest data set of about 720 k events
Partial-Wave Analysis of the $K^-\pi^-\pi^+$ Final State

Partial wave: $J^P M^\varepsilon \xi b^- L$

- J^P spin and parity
- M^ε spin projection
- ξ isobar resonance
- b^- bachelor particle
- L orbital angular momentum
Partial-Wave Analysis of the $K^-\pi^-\pi^+$ Final State

Partial wave: $J^P M^\varepsilon \xi b^- L$

- J^P spin and parity
- M^ε spin projection
- ξ isobar resonance
- b^- bachelor particle
- L orbital angular momentum
Partial-Wave Analysis of the $K^-\pi^-\pi^+$ Final State

Data: 720 k diffractively produced $K^-\pi^-\pi^+$ candidates
Partial-Wave Analysis of the $K^-\pi^-\pi^+$ Final State

Data: 720 k diffractively produced $K^-\pi^-\pi^+$ candidates

(I) **Partial-Wave Decomposition**
Performed independently in narrow $(m_{K\pi\pi}, t')$ cells
No assumption about $K\pi\pi$ resonances

Partial waves: Intensities and relative phases as a function of $(m_{K\pi\pi}, t')$
Partial-Wave Analysis of the $K^-\pi^-\pi^+$ Final State

Data: 720 k diffractively produced $K^-\pi^-\pi^+$ candidates

1. **Partial-Wave Decomposition**
 - Performed independently in narrow $(m_{K\pi\pi}, t')$ cells
 - No assumption about $K\pi\pi$ resonances

2. **Partial waves:** Intensities and relative phases as a function of $(m_{K\pi\pi}, t')$

3. **Resonance-Model Fit**
 - Model $m_{K\pi\pi}$ dependence of partial waves
 - $K\pi\pi$ resonances and background

4. **Resonance parameters:** Masses and widths of the strange-meson resonances
Partial-Wave Analysis of the $K^-\pi^-\pi^+$ Final State

Partial-Wave Decomposition

$$I(\tau, m_{K\pi\pi}, t') = \sum_{a, b \in \mathbb{W}_z(m_{K\pi\pi}, t')} \Psi_a(\tau) \rho_{ab}(m_{K\pi\pi}, t') [\Psi_b(\tau)]^*$$

- Measure spin-density matrix $\rho_{ab}(m_{K\pi\pi}, t')$ in independently $(m_{K\pi\pi}, t')$ cells
 - No assumption about $K^-\pi^-\pi^+$ resonances
- Wave set $\mathbb{W}_z(m_{K\pi\pi}, t')$ inferred from data using regularization-based model-selection techniques
- Bootstrap resampling to improve uncertainty estimates
 - Performed about 20 M fits
- Detailed Monte Carlo input-output studies

Preliminary
Partial-Wave Analysis of the $K^-\pi^-\pi^+$ Final State

Resonance-Model Fit

\[\hat{\rho}_{ab}^{K\pi\pi}(m_{K\pi\pi}, t') = \hat{T}_a(m_{K\pi\pi}, t') \left[\hat{T}_b(m_{K\pi\pi}, t') \right]^* \]

\[\hat{T}_a(m_{K\pi\pi}, t') = \sum_{k \in S_a} K(m_{K\pi\pi}, t')^k C_a(t') D_k(m_{K\pi\pi}; \zeta_k) \]

- Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- Breit-Wigner amplitudes for $K^-\pi^-\pi^+$ resonance components
- Coherent non-resonant component parameterizing other $K^-\pi^-\pi^+$ production mechanisms

S. Wallner
Strange-Meson Spectroscopy with COMPASS

\[0.10 \leq t' < 1.00 \, (\text{GeV/c})^2 \]

COMPASS

Intensity $[\text{(GeV/c}^2)^{-1}]$
Partial-Wave Analysis of the $K^-\pi^-\pi^+$ Final State

Resonance-Model Fit

\[\hat{\rho}_{ab}^{K\pi\pi}(m_{K\pi\pi}, t') = \hat{T}_a(m_{K\pi\pi}, t') \left[\hat{T}_b(m_{K\pi\pi}, t') \right]^* \]

\[\hat{T}_a(m_{K\pi\pi}, t') = \sum_{k \in S_a} K(m_{K\pi\pi}, t')^k C_a(t') D_k(m_{K\pi\pi}; \zeta_k) \]

- Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- Breit-Wigner amplitudes for $K^-\pi^-\pi^+$ resonance components
- Coherent non-resonant component parameterizing other $K^-\pi^-\pi^+$ production mechanisms
Resonance-Model Fit

\[\hat{\rho}_{ab}^{K\pi\pi}(m_{K\pi\pi}, t') = \hat{T}_a(m_{K\pi\pi}, t') \left[\hat{T}_b(m_{K\pi\pi}, t') \right]^* \]

\[\hat{T}_a(m_{K\pi\pi}, t') = \sum_{k \in S_a} K(m_{K\pi\pi}, t')^k C_a(t') D_k(m_{K\pi\pi}; \zeta_k) \]

- Model \(m_{K\pi\pi} \) dependence of partial-wave amplitudes
- Breit-Wigner amplitudes for \(K^-\pi^-\pi^+ \) resonance components
- Coherent non-resonant component parameterizing other \(K^-\pi^-\pi^+ \) production mechanisms
Incoherent Backgrounds

- **Incoherent background** from π^- diffraction to $\pi^-\pi^-\pi^+$ and other reactions (in total about 10%)
- Very good model for dominant $\pi^-\pi^-\pi^+$ background from COMPASS $\pi^-\pi^-\pi^+$ analysis
 - Study background in partial waves by
 - Generate pseudodata from $\pi^-\pi^-\pi^+$ model
 - Apply $K^-\pi^-\pi^+$ reconstruction event selection
 - Project into $K^-\pi^-\pi^+$ partial waves
 - Large in some waves, e.g. with $\rho(770)$ isobar
 - Small in other waves, e.g. with $K^*(892)$ isobar
Incoherent Backgrounds

- Incoherent background from π^- diffraction to $\pi^-\pi^-\pi^+$ and other reactions (in total about 10%)
- Very good model for dominant $\pi^-\pi^-\pi^+$ background from COMPASS $\pi^-\pi^-\pi^+$ analysis
 - Study background in partial waves by
 - Generate pseudodata from $\pi^-\pi^-\pi^+$ model
 - Apply $K^-\pi^-\pi^+$ reconstruction event selection
 - Project into $K^-\pi^-\pi^+$ partial waves
- Large in some waves, e.g. with $\rho(770)$ isobar
- Small in other waves, e.g. with $K^*(892)$ isobar
Incoherent Backgrounds

- **Incoherent background** from π^- diffraction to $\pi^-\pi^-\pi^+$ and other reactions (in total about 10%)
- **Very good model for dominant $\pi^-\pi^-\pi^+$ background** from COMPASS $\pi^-\pi^-\pi^+$ analysis
 - Study background in partial waves by
 - Generate pseudodata from $\pi^-\pi^-\pi^+$ model
 - Apply $K^-\pi^-\pi^+$ reconstruction event selection
 - Project into $K^-\pi^-\pi^+$ partial waves
- Large in some waves, e.g. with $\rho(770)$ isobar
- Small in other waves, e.g. with $K^*(892)$ isobar
Handling of Incoherent Backgrounds

- Challenging to explicitly treat in partial-wave decomposition
 - Effectively taken into account
 \[\rho_{ab} = \sum_z T_a^z [\bar{T}_b^z]^\ast \]
 - Measured \(\rho_{ab} \) include background
- Explicitly model them in resonance-model fit
 \[\hat{\rho}_{ab}(m_{K\pi\pi}, t') = \hat{\rho}_{ab}^{K\pi\pi}(m_{K\pi\pi}, t') + \hat{\rho}_{bkg}(m_{K\pi\pi}, t') \]
 - \(\pi^-\pi^-\pi^+ \) background modeled by partial-wave projection of \(\pi^-\pi^-\pi^+ \) pseudodata
 - Yield is only free parameter
 - Incoherent effective background component for other background processes
Partial-Wave Analysis of the $K^-\pi^-\pi^+$ Final State

Handling of Incoherent Backgrounds

- Challenging to explicitly treat in partial-wave decomposition
 - Effectively taken into account
 \[\rho_{ab} = \sum_z T^z_a \bar{T}^z_b \]
 - Measured ρ_{ab} include background
- Explicitly model them in resonance-model fit
 \[\hat{\rho}_{ab}(m_{K\pi\pi}, t') = \hat{\rho}_{ab}^{K\pi\pi}(m_{K\pi\pi}, t') \]

- $\pi^-\pi^-\pi^+$ background modeled by partial-wave projection of $\pi^-\pi^-\pi^+$ pseudodata
 - Yield is only free parameter
- Incoherent effective background component for other background processes
Handling of Incoherent Backgrounds

- Challenging to explicitly treat in partial-wave decomposition
 - Effectively taken into account
 \[\rho_{ab} = \sum_z \mathcal{T}_a^z [\mathcal{T}_b^z]^* \]
 - Measured \(\rho_{ab} \) include background

- Explicitly model them in resonance-model fit
 \[\hat{\rho}_{ab}(m_{K\pi\pi}, t') = \hat{\rho}_{ab}^{K\pi\pi}(m_{K\pi\pi}, t') + \hat{\rho}_{ab}^{3\pi}(m_{K\pi\pi}, t') \]

- \(\pi^-\pi^-\pi^+ \) background modeled by partial-wave projection of \(\pi^-\pi^-\pi^+ \) pseudodata
 - Yield is only free parameter

- Incoherent effective background component for other background processes
Partial-Wave Analysis of the $K^-\pi^-\pi^+$ Final State

Handling of Incoherent Backgrounds

- Challenging to explicitly treat in partial-wave decomposition
 - Effectively taken into account
 \[\rho_{ab} = \sum_z T_a^z \bar{T}_b^z \]
 - Measured ρ_{ab} include background
- Explicitly model them in resonance-model fit
 \[\hat{\rho}_{ab}(m_{K\pi\pi}, t') = \hat{\rho}_{ab}^{K\pi\pi}(m_{K\pi\pi}, t') + \hat{\rho}_{ab}^{3\pi}(m_{K\pi\pi}, t') + \hat{\rho}_{ab}^{Bkg}(m_{K\pi\pi}, t') \]

- $\pi^-\pi^-\pi^+$ background modeled by partial-wave projection of $\pi^-\pi^-\pi^+$ pseudodata
 - Yield is only free parameter
- Incoherent effective background component for other background processes
Simultaneously included 14 partial waves in resonance-model fit
Modeled by 13 strange-meson resonance components
Using measured intensities and interference terms (relative phases)
Partial-Wave Analysis of the $K^-\pi^-\pi^+$ Final State

- Simultaneously included 14 partial waves in resonance-model fit
- Modeled by 13 strange-meson resonance components
- Using measured intensities and interference terms (relative phases)
Partial-Wave Analysis of the $K^\pm \pi^- \pi^+$ Final State

- Simultaneously included 14 partial waves in resonance-model fit
- Modeled by 13 strange-meson resonance components
- Using measured intensities and interference terms (relative phases)
Partial Waves with $J^P = 2^+$

$K_2^*(1430)$ well known resonance
Partial Waves with $J^P = 2^+$

- $K_2^*(1430)$ signal
 - $m_0 = (1430.9 \pm 1.4^{+3.1}_{-1.5})$ MeV/c^2
 - $\Gamma_0 = (111 \pm 3^{+4}_{-16})$ MeV/c^2
- In different decays
 - $\rho(770) K D$
 - $K^*(892) \pi D$
- In agreement with previous measurements
- Cleaner signal in COMPASS data
- Fitted yield of $\pi^-\pi^-\pi^+$ background consistent with expectation
Partial Waves with $J^P = 2^+$

- $K_2^*(1430)$ signal
 - $m_0 = (1430.9 \pm 1.4^{+3.1}_{-1.5})$ MeV/c^2
 - $\Gamma_0 = (111 \pm 3^{+4}_{-16})$ MeV/c^2

- In different decays
 - $\rho(770) K \bar{D}$
 - $K^*(892)\pi\bar{D}$

- In agreement with previous measurements
- Cleaner signal in COMPASS data
- Fitted yield of $\pi^-\pi^-\pi^+$ background consistent with expectation
Partial Waves with $J^P = 2^+$

- $K^*_2(1430)$ signal
 - $m_0 = (1430.9 \pm 1.4^{+3.1}_{-1.5})$ MeV/c^2
 - $\Gamma_0 = (111 \pm 3^{+4}_{-16})$ MeV/c^2

- In different decays
 - $\rho(770) K D$
 - $K^*(892) \pi D$

- In agreement with previous measurements

- Cleaner signal in COMPASS data
 - Fitted yield of $\pi^-\pi^-\pi^+$ background consistent with expectation

Partial Waves with $J^P = 2^+$

- $K_2^*(1430)$ signal
 - $m_0 = (1430.9 \pm 1.4^{+3.1}_{-1.5})$ MeV$/c^2$
 - $\Gamma_0 = (111 \pm 3^{+4}_{-16})$ MeV$/c^2$
- In different decays
 - $\rho(770) KD$
 - $K^*(892) \pi D$
- In agreement with previous measurements
- Cleaner signal in COMPASS data
- Fitted yield of $\pi^-\pi^-\pi^+$ background consistent with expectation

$\rho(770)$ KD

$0.10 \leq t' < 1.00$ (GeV$/c)^2$

COMPASS

$K\pi\pi$ [GeV$/c^2$]

$2^+ 1^+ \rho(770) KD$

Intensity [(GeV$/c^2)^{-1}] \times 10^5$

10^5

$2^+ 1^+$

$0.10 \leq t' < 1.00$ (GeV$/c)^2$

COMPASS

Searching for Exotic Strange Mesons with $J^P = 0^-$

- $K(1460)$ and $K(1830)$
 - $K(1630)$
 - Unexpectedly small width of only 16 MeV/c^2
 - J^P of $K(1630)$ unclear
Searching for Exotic Strange Mesons with $J^P = 0^-$

- $K(1460)$ and $K(1830)$
- $K(1630)$
 - Unexpectedly small width of only 16 MeV/c^2
 - J^P of $K(1630)$ unclear
Searching for Exotic Strange Mesons with $J^P = 0^-$

COMPASS $K^-\pi^-\pi^+$ data

- Peak at about 1.4 GeV/c2
 - Established $K(1460)$
 - But, $m_{K\pi\pi} \lesssim 1.5$ GeV/c2 region weakly affected by known analysis artifacts
- Second peak at about 1.7 GeV/c2
 - $K(1630)$ signal with 8.3 σ statistical significance
 - Accompanied by rising phase
- Weak signal at about 2.0 GeV/c2
 - $K(1830)$ signal with 5.4 σ statistical significance

Intensity

$$[(\text{GeV}/c^2)^{-1}] \times 10^5$$

$0 \leq t' < 0.15 \, (\text{GeV}/c)^2$

COMPASS Preliminary

Additional keywords:
total resonance model, resonances, non-resonant, $\pi\pi\pi$ background, effective background
Searching for Exotic Strange Mesons with $J^P = 0^-$

COMPASS $K^−π^−π^+$ data

- Peak at about 1.4 GeV/c^2
 - Established $K(1460)$
 - But, $m_{Kππ} \lesssim 1.5$ GeV/c^2 region weakly affected by known analysis artifacts

- Second peak at about 1.7 GeV/c^2
 - $K(1630)$ signal with 8.3 σ statistical significance
 - Accompanied by rising phase

- Weak signal at about 2.0 GeV/c^2
 - $K(1830)$ signal with 5.4 σ statistical significance

Intensity [(GeV/c^2)$^{-1}$]$\times 10^5$

$0^{-+} \rho(770)KP$

$0.10 \leq t' < 0.15$ (GeV/c)2

$m_{Kππ}$ [GeV/c^2]

1.0 1.5 2.0 2.5 3.0

$0.10 \leq t' < 0.15$ (GeV/c)2

Preliminary

S. Wallner
Strange-Meson Spectroscopy with COMPASS

total resonance model, resonances, non-resonant, πππ background, effective background
Searching for Exotic Strange Mesons with $J^P = 0^-$

COMPASS $K^-\pi^-\pi^+$ data

- Peak at about 1.4 GeV/c^2
 - Established $K(1460)$
 - But, $m_{K\pi\pi} \lesssim 1.5$ GeV/c^2 region weakly affected by known analysis artifacts
- Second peak at about 1.7 GeV/c^2
 - $K(1630)$ signal with 8.3 σ statistical significance
 - Accompanied by rising phase
- Weak signal at about 2.0 GeV/c^2
 - $K(1830)$ signal with 5.4 σ statistical significance

![Graph showing $\Delta\phi_{ab}$ and $m_{K\pi\pi}$](image-url)

- Preliminary
- S. Wallner Strange-Meson Spectroscopy with COMPASS

Keywords: total resonance model, resonances, non-resonant, $\pi\pi\pi$ background, effective background
Searching for Exotic Strange Mesons with $J^P = 0^-$

COMPASS $K^-\pi^-\pi^+$ data

- Peak at about 1.4 GeV/c^2
 - Established $K(1460)$
 - But, $m_{K\pi\pi} \lesssim 1.5$ GeV/c^2 region weakly affected by known analysis artifacts

- Second peak at about 1.7 GeV/c^2
 - $K(1630)$ signal with 8.3 σ statistical significance
 - Accompanied by rising phase

- Weak signal at about 2.0 GeV/c^2
 - $K(1830)$ signal with 5.4 σ statistical significance

Graph

- Intensity $\times 10^5$ vs. $m_{K\pi\pi}$ [GeV/c^2]
- $0^{-+}\rho(770)KP$
 - $0.10 \leq t' < 0.15$ (GeV/c^2)2
 - COMPASS

References

- total resonance model, resonances, non-resonant, $\pi\pi\pi$ background, effective background
Searching for Exotic Strange Mesons with $J^P = 0^-$

- $K(1830)$ parameters in good agreement with LHCb measurement [PRL 118 (2017) 022003]
- Expected $K(1630)$ width of about 140 MeV/c^2
Searching for Exotic Strange Mesons with $J^P = 0^-$

- Indications for 3 excited K from a single analysis
- Quark-model predicts only two excited states: potentially $K(1460)$ and $K(1830)$
 - $K(1630)$ supernumerary signal
 - Candidate for exotic non-$q\bar{q}$ state; other explanations possible ($K^*(892)$ ω threshold nearby)

Ebert et al., PRD 79 (2009) 114029
Searching for Exotic Strange Mesons with $J^P = 0^-$

- Indications for 3 excited K from a single analysis
- Quark-model predicts only two excited states: potentially $K(1460)$ and $K(1830)$
 - $K(1630)$ supernumerary signal
 - Candidate for exotic non-$q\bar{q}$ state; other explanations possible ($K^*(892)$ ω threshold nearby)
Searching for Exotic Strange Mesons with $J^P = 0^-$

- Indications for 3 excited K from a single analysis

- Quark-model predicts only two excited states: potentially $K(1460)$ and $K(1830)$
 - $K(1630)$ supernumerary signal
 - Candidate for exotic non-$q\bar{q}$ state; other explanations possible ($K^*(892)$ ω threshold nearby)
The Strange-Meson Spectrum

- Many strange mesons require further confirmation
- Search for strange partners of exotic non-strange light mesons
Summary

<table>
<thead>
<tr>
<th>Mass [GeV/c²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Established</td>
</tr>
<tr>
<td>Not Established</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quark Model</th>
</tr>
</thead>
</table>

COMPASS

- **World's largest data sample on** $K^-\pi^-\pi^+$ ⇒ Most detailed and comprehensive analysis
- **Candidate for exotic strange-meson signal with** $J^P = 0^-$
Summary

COMPASS

- World's largest data sample on $K^-\pi^-\pi^+$ ⇒ Most detailed and comprehensive analysis
- Candidate for exotic strange-meson signal with $J^P = 0^-$
AMBER: Proposal for High-Precision Strange-Meson Spectroscopy

- Goal: Collect 10 – 20 × 10^6 K^−\pi^−\pi^+ events using high-energy kaon beam
- AMBER is open for interested collaborators to join
World's largest data sample on $K^-\pi^-\pi^+$ \Rightarrow Most detailed and comprehensive analysis

Candidate for exotic strange-meson signal with $J^P = 0^-$
Backup
Partial-Wave Decomposition
- Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

Resonance-Model Fit
- Modeling the $K^-\pi^-\pi^+$ Signal
- Modeling the $\pi^-\pi^-\pi^+$ Background
- Modeling the Effective Background
- χ^2 Fit Procedure

Wave-Set Selection
- Regularization: LASSO
- Regularization: Generalized Pareto
- Regularization: Cauchy
- For the $K^-\pi^-\pi^+$ Final State

14-Wave Resonance-Model Fit

- Searching for Exotic Strange Mesons with $J^P = 0^-$
- Partial Waves with $J^P = 2^+$
- Partial Waves with $J^P = 2^-$
- Partial Waves with $J^P = 4^+$

Kinematic Distribution of $K^-\pi^-\pi^+$ Events
- Subsystem
- $m_{K^-\pi^-}$
- t' Spectrum
- Exclusivity

Systematic Studies of the Partial-Wave Decomposition
- 14 Waves
- Leakage Waves

Leakage Effect

Incoherent $\pi^-\pi^-\pi^+$ Background
Partial-Wave Decomposition

Partial wave

\[J^P M^\varepsilon \xi bL \]

- \(J^P M^\varepsilon \): Spin, parity, and spin projection of \(X^- \)
- \(\xi \): Isobar
- \(b \): Bachelor particle. Here: Spectator \(K^- \)
- \(L \): Angular momentum between bachelor and isobar
Partial-Wave Decomposition

Model intensity

\[I(\tau, m_{K\pi\pi}, t') = \left| \sum_z \sum_{a \in W_z(m_{K\pi\pi}, t')} T^z_a(m_{K\pi\pi}, t') \Psi^z_a(\tau; m_{K\pi\pi}) \right|^2 \]

- **Model intensity distribution**
 - in 5D $K^-\pi^-\pi^+$ phase-space
 - for a given $(m_{K\pi\pi}, t')$ cell
 - as incoherent sum over coherent sectors z
 - “Rank” of the partial-wave model = number of coherent sectors

- Ψ^z_a known, assuming the isobar model
- Wave set $W_z(m_{K\pi\pi}, t')$ inferred from data using regularization-based model-selection techniques
- T^z_a extracted in maximum-likelihood fit, independently for each $(m_{K\pi\pi}, t')$ cell

Spin-Density Matrix

\[\rho_{ab} = \sum_z T^z_a [T^z_b]^* \]
Partial-Wave Decomposition

Model intensity

\[I(\tau, m_{K\pi\pi}, t') = \sum_z \left| \sum_{a \in W_z(m_{K\pi\pi}, t')} T^z_a(m_{K\pi\pi}, t') \Psi^z_a(\tau; m_{K\pi\pi}) \right|^2 \]

- Model intensity distribution
 - in 5D \(K^-\pi^-\pi^+ \) phase-space
 - for a given \((m_{K\pi\pi}, t') \) cell
 - as incoherent sum over coherent sectors \(z \)
 - “Rank” of the partial-wave model = number of coherent sectors

- \(\Psi^z_a \) known, assuming the isobar model

- Wave set \(W_z(m_{K\pi\pi}, t') \) inferred from data using regularization-based model-selection techniques

- \(T^z_a \) extracted in maximum-likelihood fit, independently for each \((m_{K\pi\pi}, t') \) cell

Spin-Density Matrix

\[\rho_{ab} = \sum_z T^z_a \left[T^z_b \right]^* \]
Partial-Wave Decomposition

Model intensity

\[I(\tau, m_{K\pi\pi}, t') = \sum_z \left| \sum_{a \in W_z(m_{K\pi\pi}, t')} T_a^z(m_{K\pi\pi}, t') \Psi_a^z(\tau; m_{K\pi\pi}) \right|^2 \]

- Model intensity distribution
 - in 5D \(K^-\pi^-\pi^+ \) phase-space
 - for a given \((m_{K\pi\pi}, t')\) cell
 - as incoherent sum over coherent sectors \(z \)
 - “Rank” of the partial-wave model = number of coherent sectors
- \(\Psi_a^z \) known, assuming the isobar model
- Wave set \(W_z(m_{K\pi\pi}, t') \) inferred from data using regularization-based model-selection techniques
- \(T_a^z \) extracted in maximum-likelihood fit, independently for each \((m_{K\pi\pi}, t')\) cell

Spin-Density Matrix

\[\rho_{ab} = \sum_z T_a^z [T_b^z]^* \]
Effectively take into account in partial-wave decomposition by incoherently adding additional coherent sectors z

(Model background by $K^-\pi^-\pi^+$ partial waves)

- Increasing the rank of the spin-density matrix ρ_{ab}
- Signal not separated from background in partial-wave decomposition
- Partial-wave amplitudes include background

Model signal and background contributions in resonance-model fit using more constrained signal model

- Separate signal from background

$$\mathcal{I}(\tau, m_{K\pi\pi}, t') = \sum_z \left| \sum_{a \in \mathcal{W}_z} T^z_a (m_{K\pi\pi}, t') \bar{\psi}^z_a (\tau; m_{K\pi\pi}) \right|^2$$

$$\rho_{ab} = \sum_z T^z_a \left[T^z_b \right]^*$$
Partial-Wave Decomposition

Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

True physics intensity distribution

\[
I(\tau) = \left| \sum_a T_a \Psi_a(\tau) \right|^2
\]

Experimentally measured intensity distribution

\[
I_{\text{measured}}(\tau) = \eta(\tau) I(\tau)
\]

- Take into account different processes p
 - Different model intensities I^p
 - Different experimental acceptance η^p
 - Formulated in terms of different phase-space variables τ^p
 - Jacobian terms $J(\tau^{K\pi\pi} \rightarrow \tau^p)$ from variable transformation
Partial-Wave Decomposition
Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

True physics intensity distribution for process p

$$I^p(\tau) = \left| \sum_a T^p_a \Psi^p_a(\tau) \right|^2$$

Experimentally measured intensity distribution

$$I_{\text{measured}}(\tau) = \sum_p \eta^p(\tau) I^p(\tau)$$

- Take into account different processes p
 - Different model intensities I^p
 - Different experimental acceptance η^p
 - Formulated in terms of different phase-space variables τ^p
 - Jacobian terms $J(\tau^{K\pi\pi} \rightarrow \tau^p)$ from variable transformation
True physics intensity distribution for process p

$$I^p(\tau^p) = \left| \sum_a T^a_p \Psi^p_a(\tau^p) \right|^2$$

Experimentally measured intensity distribution

$$I_{\text{measured}}(\tau^{K\pi\pi}) = \sum_p \eta^p(\tau^p) I^p(\tau^p) J(\tau^{K\pi\pi} \rightarrow \tau^p)$$

- Take into account different processes p
- Different model intensities $I^p(\tau^p)$
- Different experimental acceptance $\eta^p(\tau^p)$
- Formulated in terms of different phase-space variables τ^p
 - Jacobian terms $J(\tau^{K\pi\pi} \rightarrow \tau^p)$ from variable transformation
Partial-Wave Decomposition
Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

True physics intensity distribution for process p

$$I^p(\tau^p) = \left| \sum_a T^p_a \psi^p_a(\tau^p) \right|^2$$

Experimentally measured intensity distribution

$$I_{\text{measured}}(\tau^{K\pi\pi}) = \sum_p \eta^p(\tau^p) \; I^p(\tau^p) \; J(\tau^{K\pi\pi} \rightarrow \tau^p)$$

- $I^{\pi\pi\pi}$ known by COMPASS analysis
- $\eta^{\pi\pi\pi}$ from detector simulation
- $\eta^{\pi\pi\pi}$ computationally expensive
- Different $m_{3\pi}$ bins enter one $m_{K\pi\pi}$ bin
- Other background channels: $K^-K^-K^+$, ...
 - I^p unknown
 - Unknown background channels
True Physics Intensity Distribution for Process p

$$
Theoretical \ intensity \ distribution: \ \mathcal{I}^p(\tau^p) = \left| \sum_a T^a \psi^a(\tau^p) \right|^2
$$

Experimentally Measured Intensity Distribution

$$
Experimental \ intensity \ distribution: \ \mathcal{I}_{measured}(\tau^{\pi\pi\pi}) = \sum_p \eta^p(\tau^p) \mathcal{I}^p(\tau^p) J(\tau^{\pi\pi\pi} \rightarrow \tau^p)
$$

- $\eta^{\pi\pi\pi}$ computationally expensive
- Different $m_{3\pi}$ bins enter one $m_{K\pi\pi}$ bin
- Other background channels: $K^-K^-K^+$, ...
 - \mathcal{I}^p unknown
 - Unknown background channels
- $\mathcal{I}^p(\tau^p)$ unknown

- $\mathcal{I}^{\pi\pi\pi}$ known by COMPASS analysis
- $\eta^{\pi\pi\pi}$ from detector simulation
True physics intensity distribution for process \(p \)

\[
\mathcal{I}^p(\tau^p) = \left| \sum_a T^p_a \Psi^p_a(\tau^p) \right|^2
\]

Experimentally measured intensity distribution

\[
\mathcal{I}_{\text{measured}}(\tau^{K\pi\pi}) = \sum_p \eta^p(\tau^p) \mathcal{I}^p(\tau^p) J(\tau^{K\pi\pi} \rightarrow \tau^p)
\]

- \(\mathcal{I}^{\pi\pi\pi} \) known by COMPASS analysis
- \(\eta^{\pi\pi\pi} \) from detector simulation
- \(\eta^{\pi\pi\pi} \) computationally expensive
- Different \(m_{3\pi} \) bins enter one \(m_{K\pi\pi} \) bin
- Other background channels: \(K^-K^-K^+, \ldots \)
 - \(\mathcal{I}^p \) unknown
 - Unknown background channels
Approximate model for process p by $K^-\pi^-\pi^+$ partial waves

\[\eta^p(\tau^p) \left| \sum_a \mathcal{T}_a^p \Psi_a^p(\tau^p) \right|^2 \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \left| \sum_a \tilde{\mathcal{T}}_a^p \Psi_a^{K\pi\pi}(\tau^{K\pi\pi}) \right|^2 \]

Total true physics intensity distribution

\[\mathcal{I}(\tau^{K\pi\pi}) = \sum_p \left| \sum_a \mathcal{T}_a^p \Psi_a^{K\pi\pi}(\tau^{K\pi\pi}) \right|^2 \]

Experimentally measured intensity distribution

\[\mathcal{I}_{\text{measured}}(\tau^{K\pi\pi}) = \eta^{K\pi\pi}(\tau^{K\pi\pi}) \mathcal{I}(\tau^{K\pi\pi}) \]

- How well can $K^-\pi^-\pi^+$ partial waves approximate the distribution of process p?
- Is the set of $K^-\pi^-\pi^+$ partial waves sufficient?
- Automatic wave-set selection using model-selection techniques
Approximate model for process p by $K^-\pi^-\pi^+$ partial waves

$$
\eta^p(\tau^p) \left| \sum_a T^p_a \Psi^p_a(\tau^p) \right|^2 \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \left| \sum_a \tilde{T}^p_a \Psi^{K\pi\pi}_a(\tau^{K\pi\pi}) \right|^2
$$

Total true physics intensity distribution

$$
I(\tau^{K\pi\pi}) = \sum_p \left| \sum_a T^p_a \Psi^{K\pi\pi}_a(\tau^{K\pi\pi}) \right|^2
$$

Experimentally measured intensity distribution

$$
I_{\text{measured}}(\tau^{K\pi\pi}) = \eta^{K\pi\pi}(\tau^{K\pi\pi}) I(\tau^{K\pi\pi})
$$

- How well can $K^-\pi^-\pi^+$ partial waves approximate the distribution of process p?
- Is the set of $K^-\pi^-\pi^+$ partial waves sufficient?
 - Automatic wave-set selection using model-selection techniques
Partial-Wave Decomposition
Treating the $\pi^+\pi^-\pi^+$ and Other Backgrounds

Approximate model for process p by $K^-\pi^-\pi^+$ partial waves

$$\eta^p(\tau^p) \left| \sum_a T^p_a \Psi^p_a(\tau^p) \right|^2 \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \left| \sum_a \tilde{T}^p_a \Psi^{K\pi\pi}_a(\tau^{K\pi\pi}) \right|^2$$

Total true physics intensity distribution

$$\mathcal{I}(\tau^{K\pi\pi}) = \sum_{a,b} \Psi^{K\pi\pi}_a(\tau^{K\pi\pi}) \rho_{a,b} [\Psi^{K\pi\pi}_b(\tau^{K\pi\pi})]^*$$

Spin-density matrix with rank $N_r > 1$

$$\rho_{a,b} = \sum_p T^p_a [T^p_b]^*$$

How well can $K^-\pi^-\pi^+$ partial waves approximate the distribution of process p?

Is the set of $K^-\pi^-\pi^+$ partial waves sufficient?

Automatic wave-set selection using model-selection techniques
Partial-Wave Decomposition
Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

Approximate model for process p by $K^-\pi^-\pi^+$ partial waves

\[\eta^p(\tau^p) \bigg| \sum_a \tilde{T}_a^p \Psi_a^p(\tau^p) \bigg|_2^2 \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \bigg| \sum_a \tilde{T}_a^p \Psi_a^{K\pi\pi}(\tau^{K\pi\pi}) \bigg|_2^2 \]

Total true physics intensity distribution

\[\mathcal{I}(\tau^{K\pi\pi}) = \sum_{a,b} \Psi_a^{K\pi\pi}(\tau^{K\pi\pi}) \rho_{a,b} [\Psi_b^{K\pi\pi}(\tau^{K\pi\pi})]^* \]

Spin-density matrix with rank $N_r > 1$

\[\rho_{a,b} = \sum_p T_a^p [T_b^p]^* \]

- How well can $K^-\pi^-\pi^+$ partial waves approximate the distribution of process p?
- Is the set of $K^-\pi^-\pi^+$ partial waves sufficient?
 - Automatic wave-set selection using model-selection techniques
Partial-Wave Decomposition
Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

Approximate model for process p by $K^-\pi^-\pi^+$ partial waves

$$
\eta^p(\tau^p) \left| \sum_a T^p_a \Psi^p_a(\tau^p) \right|^2 \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \left| \sum_a \tilde{T}^p_a \Psi^{K\pi\pi}_a(\tau^{K\pi\pi}) \right|^2
$$

Total true physics intensity distribution

$$
I(\tau^{K\pi\pi}) = \sum_{a,b} \Psi^{K\pi\pi}_a(\tau^{K\pi\pi}) \rho_{a,b} [\Psi^{K\pi\pi}_b(\tau^{K\pi\pi})]^*
$$

Spin-density matrix with rank $N_r > 1$

$$
\rho_{a,b} = \sum_r T^r_a [T^r_b]^*
$$

▶ Experimentally measurable quantities are spin-density matrix elements

⇒ Transition amplitudes T^p_a are only effective parameters
⇒ Cannot determine T^p_a of individual processes
⇒ Cannot separate different processes
Partial-Wave Decomposition

Treating the $\pi^-\pi^-\pi^+$ and Other Backgrounds

Approximate model for process p by $K^-\pi^-\pi^+$ partial waves

$$
\eta^p(\tau^p) \left| \sum_a T_a^p \Psi_a^p(\tau^p) \right|^2 \approx \eta^{K\pi\pi}(\tau^{K\pi\pi}) \left| \sum_a \tilde{T}_a^p \Psi_a^{K\pi\pi}(\tau^{K\pi\pi}) \right|^2
$$

Total true physics intensity distribution

$$
I(\tau^{K\pi\pi}) = \sum_{a,b} \Psi_a^{K\pi\pi}(\tau^{K\pi\pi}) \rho_{a,b} \left[\Psi_b^{K\pi\pi}(\tau^{K\pi\pi}) \right]^*
$$

Spin-density matrix with rank $N_r > 1$

$$
\rho_{a,b} = \sum_{r} T_a^r \left[T_b^r \right]^*
$$

- **Large number of fit parameters:** $N_{\text{para}} = N_r (2N_{\text{waves}} - N_r)$
- **Sufficient rank of spin-density matrix must be determined**
 - Rank two needed to describe pure $\pi^-\pi^-\pi^+$ Monte Carlo sample using $K^-\pi^-\pi^+$ partial waves
 - Used rank three to model $K^-\pi^-\pi^+$ sample
Resonance-Model Fit

- **Data**
 - 720k diffractively produced $K^-\pi^-\pi^+$ candidates

- **(I) Partial-Wave Decomposition**
 - Partial Waves
 - Intensities and relative phases of the partial waves

- **(II) Resonance-Model Fit**
 - Resonance Parameters
 - Masses and widths of the meson resonances
Spin-density matrix $\rho_{ab}(m_{K\pi\pi}, t')$ measured in partial-wave decomposition

Model spin-density matrix in resonance-model fit

$$\hat{\rho}_{ab}(m_{K\pi\pi}, t') = \hat{\rho}_{ab}^{K\pi\pi}(m_{K\pi\pi}, t') + \hat{\rho}_{ab}^{3\pi}(m_{K\pi\pi}, t') + \hat{\rho}_{ab}^{\text{Bkg}}(m_{K\pi\pi}, t')$$
Model transition amplitudes as coherent sum over various components

\[\hat{T}_z(m_{K\pi\pi}, t') = \sum_{k \in S_a} K(m_{K\pi\pi}, t')^k C_{aK\pi\pi}^{K\pi\pi}(t') D_k(m_{K\pi\pi}; \zeta_k) \]

- **Dynamic functions** \(D_k(m_{K\pi\pi}; \zeta_k) \)
 - For resonances: rel. Breit-Wigner
 - For non-resonant terms: \(D^{NR}_k(m_{K\pi\pi}; a_k, c_k) = (m_{K\pi\pi} - m_{thr})^{a_k} e^{-b(c_k)} q^2_k(m_{K\pi\pi}) \)

- “Coupling amplitudes”: \(k C_{aK\pi\pi}^{K\pi\pi}(t') \)
 - Independent coupling amplitude for each \(t' \) bin

- Kinematic factor \(K(m_{K\pi\pi}, t') \)

- Coherently summed over all assumed model components
Model transition amplitudes as coherent sum over various components

\[\hat{F}_a^z(m_{K\pi\pi}, t') = \sum_{k \in S_a} K(m_{K\pi\pi}, t')^k C_{a}^{K\pi\pi}(t') D_k(m_{K\pi\pi}; \zeta_k) \]

- Dynamic functions \(D_k(m_{K\pi\pi}; \zeta_k) \)
 - For resonances: rel. Breit-Wigner
 - For non-resonant terms: \(D_{k}^{NR}(m_{K\pi\pi}; a_k, c_k) = (m_{K\pi\pi} - m_{\text{thr}})^{a_k} e^{-b(c_k)} q_k^2(m_{K\pi\pi}) \)
- "Coupling amplitudes": \(k C_{a}^{z}(t') \)
 - Independent coupling amplitude for each \(t' \) bin
- Kinematic factor \(K(m_{K\pi\pi}, t') \)
- Coherently summed over all assumed model components
Model transition amplitudes as coherent sum over various components

\[\hat{T}_a^z(m_{K\pi\pi}, t') = \sum_{k \in S_a} K(m_{K\pi\pi}, t')^{k} C_{a}^{K_{\pi\pi}}(t') D_k(m_{K\pi\pi}; \zeta_k) \]

- Dynamic functions \(D_k(m_{K\pi\pi}; \zeta_k)\)
 - For resonances: rel. Breit-Wigner
 - For non-resonant terms: \(D_k^{NR}(m_{K\pi\pi}; a_k, c_k) = (m_{K\pi\pi} - m_{thr})^{a_k} e^{-b(c_k) q_k^2(m_{K\pi\pi})}\)
- “Coupling amplitudes”: \(k C_{a}^z(t')\)
 - Independent coupling amplitude for each \(t'\) bin
- Kinematic factor \(K(m_{K\pi\pi}, t')\)
- Coherently summed over all assumed model components
Resonance-Model Fit
Modeling the $K^-\pi^-\pi^+$ Signal

Model transition amplitudes as coherent sum over various components

$$\hat{\mathcal{T}}^z_a(m_{K\pi\pi}, t') = \sum_{k \in S_a} K(m_{K\pi\pi}, t')^k C^Z_a (t') D_k(m_{K\pi\pi}; \zeta_k)$$

- Dynamic functions $D_k(m_{K\pi\pi}; \zeta_k)$
 - For resonances: rel. Breit-Wigner
 - For non-resonant terms: $D^{NR}_k(m_{K\pi\pi}; a_k, c_k) = (m_{K\pi\pi} - m_{thr})^{a_k} e^{-b(c_k) q^2_k(m_{K\pi\pi})}$
- “Coupling amplitudes”: $C^Z_a (t')$
 - Independent coupling amplitude for each t' bin
- Kinematic factor $K(m_{K\pi\pi}, t')$
- Coherently summed over all assumed model components
Resonance-Model Fit
Modeling the $\pi^-\pi^-\pi^+$ Background

3π spin-density matrix

$$\hat{\rho}_{ab}^{\pi\pi\pi}(m_{K\pi\pi}, t') = \left| C^{\pi\pi\pi} \right|^2 \rho_{ab}^{\pi\pi\pi}(m_{K\pi\pi}, t')$$

- $\rho_{ab}^{\pi\pi\pi}(m_{K\pi\pi}, t')$ obtained from PWD of $\pi^-\pi^-\pi^+$ pseudodata sample
 - $m_{K\pi\pi}$ dependence fixed
 - t' dependence fixed
 - Rel. strength between partial waves fixed (freed in a study)
- One global real-valued yield parameter $|C^{\pi\pi\pi}|^2$
Background spin-density matrix

- Additional incoherent contribution form other processes: $K^- K^- K^+$, ...
- Transition amplitudes modeled by non-resonant parameterizations for each partial wave

$$\hat{f}_a^{\text{eBKG}} (m_{K\pi\pi}, t') = K(m_{K\pi\pi}, t') \ C_a^{\text{eBKG}} (t') \ D_{ka}^{\text{eBKG}} (m_{K\pi\pi}; a_k, c_k)$$
Resonance-Model Fit

χ^2 Fit Procedure

- χ^2 fit of the real and imaginary parts of the spin-density matrix
- Taking into account correlations between spin-density matrix elements
- Shape parameters (m_0, Γ_0, ...) and coupling amplitudes are free parameters

- For the main fit, we performed 2000 fit attempts with random start-parameter values for the shape parameters, e.g. mass and width parameters, and the coupling and branching amplitudes.
- Start-parameter ranges for the shape parameters are chosen according to previous measurements (see note)
- The best result is the one which yielded the smallest χ^2 value
χ² Fit of the real and imaginary parts of the spin-density matrix
- Taking into account correlations between spin-density matrix elements
- Shape parameters \((m_0, \Gamma_0, \ldots)\) and coupling amplitudes are free parameters

For the main fit, we performed 2000 fit attempts with random start-parameter values for the shape parameters, e.g. mass and width parameters, and the coupling and branching amplitudes.

Start-parameter ranges for the shape parameters are chosen according to previous measurements (see note)

The best result is the one which yielded the smallest \(\chi^2\) value
Wave-Set Selection

\[I(\tau, m_{K\pi\pi}, t') = \left| \sum_{a \in W(\tau, m_{K\pi\pi}, t')} T_a(m_{K\pi\pi}, t') \psi_a(\tau; m_{K\pi\pi}) \right|^2 \]

Challenge: Find the “best” set of waves that describes the data

- If the wave set is too large
 - Starting to describe statistical fluctuations
- If waves that contribute to the data are missing
 - Intensity can be wrongly attributed to other waves
 - Model leakage
Wave-Set Selection

Infer wave set from data

- **Systematically construct** large set of allowed partial waves
 - “Wave pool”
- Fit wave pool to data
 - Impose penalty on $|T_a|^2 \Rightarrow \text{regularization}$
 - Suppress insignificant waves
- **Select waves** that significantly contribute to data
 - “Best” subset of waves that describe the data
Wave-Set Selection

$\pi^–\pi^–\pi^+$ Monte Carlo mock data set with 126 partial waves

- Fitting wave pool of 753 waves
 - Massive overfitting
 - Almost all waves pick up intensity

Courtesy F. Kaspar, TUM
Wave-Set Selection

- $\pi^–\pi^–\pi^+$ Monte Carlo mock data set with 126 partial waves
- Fitting wave pool of 753 waves
 - Massive overfitting
 - Almost all waves pick up intensity

Courtesy F. Kaspar, TUM
Wave-Set Selection

Regularization: LASSO

\[
\ln \mathcal{L}_{\text{fit}} = \ln \mathcal{L}_{\text{extended}} + \sum_a \ln \mathcal{L}_{\text{reg}}(|T_a|; \{c_{\text{para}}\})
\]

LASSO/L1 regularization\(^1\)

\[
\ln \mathcal{L}_{\text{reg}}(|T_a|; \lambda) = -\lambda |T_a|
\]

- Maximum at \(|T_a| = 0\)
- Well established\(^2\)
- “Smoothing” at \(|T_a| = 0\)
 \[
 |T_a| \to \sqrt{|T_a|^2 + \epsilon}
 \]

\(^2\) Baptiste Guegan et al. "Model selection for amplitude analysis". In: JINST 10.09 (2015), P09002
Wave-Set Selection
Regularization: LASSO

\[
\ln L_{\text{fit}} = \ln L_{\text{extended}} + \sum_{a}^{\text{waves}} \ln L_{\text{reg}}(|T_a|; \{c_{\text{para}}\})
\]

LASSO/L1 regularization\(^1\)

\[
\ln L_{\text{reg}}(|T_a|; \lambda) = -\lambda |T_a|
\]

- Maximum at \(|T_a| = 0 \)
- Well established\(^2\)
- “Smoothing” at \(|T_a| = 0 \)

\[
|T_a| \rightarrow \sqrt{|T_a|^2 + \epsilon}
\]

\(^2\) Baptiste Guegan et al. "Model selection for amplitude analysis". In: JINST 10.09 (2015), P09002
Wave-Set Selection
Regularization: LASSO

\[
\ln \mathcal{L}_{\text{fit}} = \ln \mathcal{L}_{\text{extended}} + \sum_a \ln \mathcal{L}_{\text{reg}}(|T_a|; \{c_{\text{para}}\})
\]

LASSO/L1 regularization\(^1\)

\[
\ln \mathcal{L}_{\text{reg}}(|T_a|; \lambda) = -\lambda |T_a|
\]

- Maximum at \(|T_a| = 0\)
- Well established\(^2\)
- "Smoothing" at \(|T_a| = 0\)

\[
|T_a| \rightarrow \sqrt{|T_a|^2 + \varepsilon}
\]

\(^2\) Baptiste Guegan et al. "Model selection for amplitude analysis". In: JINST 10.09 (2015), P09002
Wave-Set Selection
Regularization: LASSO

- Bias also on large transition amplitudes
- Some additional waves
- Some waves missing

\[\lambda = 0.3 \]
\[\varepsilon = 10^{-5} \]

Courtesy F. Kaspar, TUM
Wave-Set Selection
Regularization: Generalized Pareto

Generalized Pareto\(^1\)

\[
\ln \mathcal{L}_{\text{reg}}(|T_a|; \Gamma, \zeta) = -\frac{1}{\zeta} \ln \left[1 + \zeta \frac{|T_a|}{\Gamma} \right]
\]

- Wave intensities spread over orders of magnitudes
- Use logarithmic prior
 - Heavy-tailed
 - Less bias on large waves
- LASSO-like for \(|T_a| \to 0\)
- “Smoothing” at \(|T_a| = 0\)

\[
|T_a| \to \sqrt{|T_a|^2 + \varepsilon}
\]

Wave-Set Selection
Regularization: Generalized Pareto

- Less bias on large transition amplitudes
- Clear kink in intensity distribution to smoothing scale \Rightarrow Selection
- Less additional waves
- Some small waves missing

Courtesy F. Kaspar, TUM
Wave-Set Selection
Regularization: Cauchy

“Cauchy”

\[
\ln \mathcal{L}_{\text{reg}}(|\mathcal{T}_a|; \Gamma) = -\ln \left[1 + \frac{|\mathcal{T}_a|^2}{\Gamma^2_a} \right]
\]

- Logarithmic prior
- L2-like for $|\mathcal{T}_a| \to 0$
Wave-Set Selection
Regularization: Cauchy

Less bias on large transition amplitudes
Clear kink in intensity distribution
Few additional waves
Few small waves missing

Courtesy F. Kaspar, TUM
Wave-Set Selection
For the $K^-\pi^-\pi^+$ Final State

Wave pool

- Spin $J \leq 7$
- Angular momentum $L \leq 7$
- Positive naturality of exchange particle
- 12 isobars
 - $[K\pi]_S^K\pi$, $[K\pi]_S^K\eta$, $K^*(892)$, $K^*(1680)$, $K_2^*(1430)$, $K_3^*(1780)$
 - $[\pi\pi]_S$, $f_0(980)$, $f_0(1500)$, $\rho(770)$, $f_2(1270)$, $\rho_3(1690)$

\Rightarrow “Wave pool” of 596 waves

“only” 720 k events
Wave-Set Selection
For the $K^\pi^\pi^+$ Final State

Wave pool

- Spin $J \leq 7$
- Angular momentum $L \leq 7$
- Positive naturality of exchange particle
- 12 isobars
 - $[K\pi]^K\pi, [K\pi]^K\eta, K^*(892), K^*(1680), K_2^*(1430), K_3^*(1780)$
 - $[\pi\pi], f_0(980), f_0(1500), \rho(770), f_2(1270), \rho_3(1690)$

⇒ “Wave pool” of 596 waves

“only” 720 k events
Wave-Set Selection
For the $K^−\pi^−\pi^+$ Final State

Regularization

$\ln \mathcal{L}_{\text{reg}} (|T_a|; \Gamma) = -\ln \left[1 + \frac{|T_a|^2}{\Gamma_a^2} \right]$

- Use Cauchy regularization
- Scale of $|T_a|$ depends on experimental acceptance
 - Apply penalty on expected number \bar{N}_a of observed events
 \[\Gamma_a = \frac{\Gamma}{\sqrt{\bar{N}_a}} \implies \frac{|T_a|^2}{\Gamma_a^2} = \frac{\bar{N}_a}{\Gamma^2} \]
- Γ is a universal parameter
Wave-Set Selection
For the $K^-\pi^-\pi^+$ Final State

Regularization

$$\ln \mathcal{L}_{\text{reg}}(|T_a|; \Gamma) = -\ln \left[1 + \frac{|T_a|^2}{\Gamma_a^2} \right]$$

- Use Cauchy regularization
- Scale of $|T_a|$ depends on experimental acceptance
 - Apply penalty on expected number \tilde{N}_a of observed events
 $$\Gamma_a = \frac{\Gamma}{\sqrt{\eta_a}} \Rightarrow \frac{|T_a|^2}{\Gamma_a^2} = \frac{\tilde{N}_a}{\Gamma^2}$$
 - Γ is a universal parameter

$\ln \mathcal{L}_{\text{reg}}(|T_a|; \Gamma) = -\ln \left[1 + \frac{|T_a|^2}{\Gamma_a^2} \right]$
Wave-Set Selection
For the $K^-\pi^-\pi^+$ Final State

Regularization

\[\ln L_{\text{reg}}(|T_a|; \Gamma) = -\ln \left[1 + \frac{|T_a|^2}{\Gamma_a^2} \right] \]

- Use Cauchy regularization
- Scale of $|T_a|$ depends on experimental acceptance
 - Apply penalty on expected number \bar{N}_a of observed events
 \[\Gamma_a = \frac{\Gamma}{\sqrt{\eta_a}} \Rightarrow \frac{|T_a|^2}{\Gamma_a^2} = \frac{\bar{N}_a}{\Gamma^2} \]
- Γ is a universal parameter

COMPASS

\[m_{K\pi\pi} \text{ [GeV/c}^2\text{]} \]

Graph showing various lines representing different states.
Wave-Set Selection
For the $K^-\pi^-\pi^+$ Final State

Regularization

\[\ln \mathcal{L}_{\text{reg}}(|T_a|; \Gamma) = -\ln \left(1 + \frac{|T_a|^2}{\Gamma_a^2} \right) \]

- Use Cauchy regularization
- Scale of $|T_a|$ depends on experimental acceptance
 - Apply penalty on expected number \tilde{N}_a of observed events

\[\Gamma_a = \frac{\Gamma}{\sqrt{\eta}_a} \Rightarrow \frac{|T_a|^2}{\Gamma_a^2} = \frac{\tilde{N}_a}{\Gamma^2} \]

- Γ is a universal parameter

COMPASS

0$^-0^+ \bar{K}^*(892)\pi P$
1$^+0^+ \bar{K}^*(892)\pi S$
2$^+1^+ \rho(770) K D$
Flat

S. Wallner Strange-Meson Spectroscopy with COMPASS
Wave-Set Selection
For the $K^-\pi^-\pi^+$ Final State

Imposing continuity of the wave set

- Wave-set inferred independently for each $(m_{K\pi\pi}, t')$ cell
- Impose continuity of the wave set in $m_{K\pi\pi}$ by adding additional regularization term

$$\ln \mathcal{L}_{\text{cont}}(\{T_a(m_{K\pi\pi}, t')\}; \lambda) = \sum_{j=i-3}^{j=i+3} \lambda \left| T_a(m_{K\pi\pi}, t')(m_{K\pi\pi}^{j+1}) - T_a(m_{K\pi\pi}, t')(m_{K\pi\pi}^j) \right|^2,$$

which suppresses fluctuations among neighboring $m_{K\pi\pi}$ bins.
Wave-Set Selection
For the $K^-\pi^-\pi^+$ Final State

Wave-set size

- 5 to 90 waves per $(m_{K\pi\pi}, t')$ cell
- Larger wave set for larger binning in $m_{K\pi\pi}$
- Larger wave set in t' bins with more events
Wave-Set Selection
For the $K^-\pi^-\pi^+$ Final State

- Selection of large signals
- as well as of signals at per-mil level

![Graph showing intensity vs. $m_{K\pi\pi}$]
Selection of large signals
as well as of signals at per-mil level
14-Wave Resonance-Model Fit
Searching for Exotic Strange Mesons with $J^P = 0^-$

- **K(1460) and K(1830)**
 - **K(1630)**
 - Unexpectedly small width of only 16 MeV/c²
 - J^P of K(1630) unclear

PDG (2022)

- **K(1460)**
- **K(1830)**
- **K(1630)**
- **Unexpectedly small width of only 16 MeV/c²**
- **J^P of K(1630) unclear**
14-Wave Resonance-Model Fit
Searching for Exotic Strange Mesons with $J^P = 0^-$

PDG

- $K(1460)$ and $K(1830)$
- $K(1630)$
 - Unexpectedly small width of only 16 MeV/c^2
 - J^P of $K(1630)$ unclear
Searching for Exotic Strange Mesons with $J^P = 0^-$

COMPASS $K^-\pi^-\pi^+$ data

- Peak at about 1.4 GeV/c^2
 - Potentially from established $K(1460)$
 - But, $m_{K\pi\pi} \lesssim 1.5$ GeV/c^2 region affected by analysis artifacts
- Second peak at about 1.7 GeV/c^2
 - $K(1630)$ signal with 8.3σ statistical significance
 - Accompanied by rising phase
- Weak signal at about 2.0 GeV/c^2
 - $K(1830)$ signal with 5.4σ statistical significance
14-Wave Resonance-Model Fit
Searching for Exotic Strange Mesons with $J^P = 0^-$

COMPASS $K^-\pi^-\pi^+$ data

- Peak at about 1.4 GeV/c^2
 - Potentially from established $K(1460)$
 - But, $m_{K\pi\pi}\lesssim 1.5$ GeV/c^2 region affected by analysis artifacts
- Second peak at about 1.7 GeV/c^2
 - $K(1630)$ signal with 8.3 σ statistical significance
 - Accompanied by rising phase
- Weak signal at about 2.0 GeV/c^2
 - $K(1830)$ signal with 5.4 σ statistical significance
Searching for Exotic Strange Mesons with $J^P = 0^-$

COMPASS $K^-\pi^-\pi^+$ data

- Peak at about 1.4 GeV/c^2
 - Potentially from established $K(1460)$
 - But, $m_{K\pi\pi} \lesssim 1.5$ GeV/c^2 region affected by analysis artifacts
- Second peak at about 1.7 GeV/c^2
 - $K(1630)$ signal with 8.3 σ statistical significance
 - Accompanied by rising phase
- Weak signal at about 2.0 GeV/c^2
 - $K(1830)$ signal with 5.4 σ statistical significance
14-Wave Resonance-Model Fit
Searching for Exotic Strange Mesons with $J^P = 0^-$

COMPASS $K^−\pi^−\pi^+$ data

- Peak at about 1.4 GeV/c^2
 - Potentially from established $K(1460)$
 - But, $m_{K\pi\pi} \lesssim 1.5$ GeV/c^2 region affected by analysis artifacts

- Second peak at about 1.7 GeV/c^2
 - $K(1630)$ signal with 8.3 σ statistical significance
 - Accompanied by rising phase

- Weak signal at about 2.0 GeV/c^2
 - $K(1830)$ signal with 5.4 σ statistical significance
14-Wave Resonance-Model Fit
Searching for Exotic Strange Mesons with $J^P = 0^-$

COMPASS
$0.10 \leq t' < 0.15\ (GeV/c)^2$

Total model

Resonance components

Non-resonant component

$\pi^-\pi^-\pi^+$ background

Effective background
14-Wave Resonance-Model Fit
Searching for Exotic Strange Mesons with $J^P = 0^-$

COMPASS
$0.15 \leq t' < 0.24 \text{(GeV/c)}^2$

Total model
Resonance components
Non-resonant component
$\pi^-\pi^-\pi^+$ background
Effective background
14-Wave Resonance-Model Fit
Searching for Exotic Strange Mesons with $J^P = 0^-$

COMPASS
$0.24 \leq t' < 0.34 \text{ (GeV/c)}^2$

Total model
Resonance components
Non-resonant component
$\pi^-\pi^+\pi^+$ background
Effective background
14-Wave Resonance-Model Fit
Searching for Exotic Strange Mesons with $J^P = 0^-$

COMPASS
$0.34 \leq t' < 1.00$ (GeV/c)2

- Total model
- Resonance components
- Non-resonant component
- $\pi^-\pi^-\pi^+$ background
- Effective background
$K(1830)$ parameters in good agreement with LCHb measurement [PRL 118 (2017) 022003]

Realistic $K(1630)$ width of about 140 MeV/c^2
Indications for 3 excited K from a single analysis

- Quark-model predicts only two excited states: potentially $K(1460)$ and $K(1830)$
- $K(1630)$ supernumerary signal
- Candidate for exotic non-$q\bar{q}$ state; other explanations possible ($K^*(892)\omega$ threshold nearby)
Indications for 3 excited K from a single analysis

Quark-model predicts only two excited states: potentially $K(1460)$ and $K(1830)$

$K(1630)$ supernumerary signal

Candidate for exotic non-$q\bar{q}$ state; other explanations possible ($K^*(892)$ ω threshold nearby)
Indications for 3 excited K from a single analysis

- Quark-model predicts only two excited states: potentially $K(1460)$ and $K(1830)$
 - $K(1630)$ supernumerary signal
 - Candidate for exotic non-$q\bar{q}$ state; other explanations possible ($K^*(892)$ ω threshold nearby)
14-Wave Resonance-Model Fit
Searching for Exotic Strange Mesons with $J^P = 0^-$

$0^{-0^+} \rho(770) K P$

$0.10 \leq t' < 1.00 \ (GeV/c)^2$

COMPASS
14-Wave Resonance-Model Fit
Searching for Exotic Strange Mesons with $J^P = 0^-$
14-Wave Resonance-Model Fit
Searching for Exotic Strange Mesons with $J^P = 0^-$

$K^-\pi^-\pi^+$ from ACCMOR

- Potential $K(1630)$ signal already in ACCMOR analysis

$K^-\pi^-\pi^+$ from LHCb

- Measurement of $D^0 \rightarrow K^\mp\pi^\pm\pi^\pm\pi^\mp$ at LHCb
- Study strange mesons in $K\pi\pi$ subsystem
- MIPWA of $J^P = 0^-$ amplitude
- Potential signal above 1.6 GeV/c^2
- Limited by kinematic range

14-Wave Resonance-Model Fit
Searching for Exotic Strange Mesons with $J^P = 0^-$

$K^-\pi^-\pi^+$ from ACCMOR

- Potential $K(1630)$ signal already in ACCMOR analysis

$K^-\pi^-\pi^+$ from LHCb

- Measurement of $D^0 \rightarrow K^\mp\pi^\pm\pi^\pm\pi^\mp$ at LHCb
 - Study strange mesons in $K\pi\pi$ subsystem
 - MIPWA of $J^P = 0^-$ amplitude
 - Potential signal above 1.6 GeV/c^2
 - Limited by kinematic range

14-Wave Resonance-Model Fit
Searching for Exotic Strange Mesons with $J^P = 0^-$

- $K^-\pi^-\pi^+$ from ACCMOR
 - Potential $K(1630)$ signal already in ACCMOR analysis

- $K^-\pi^-\pi^+$ from LHCb
 - Measurement of $D^0 \rightarrow K^\mp\pi^\pm\pi^\pm\pi^\mp$ at LHCb
 - Study strange mesons in $K\pi\pi$ subsystem
 - MIPWA of $J^P = 0^-$ amplitude
 - Potential signal above 1.6 GeV/c^2
 - Limited by kinematic range

14-Wave Resonance-Model Fit
Partial Waves with $J^P = 2^+$

$K^*_2(1430)$ well known resonance
Partial Waves with $J^P = 2^+$

- Signal in $K_2^*(1430)$ mass region
- In different decays
 - $\rho(770)\ K\ D$
 - $K^*(892)\ \pi\ D$
- In agreement with previous measurements
- Cleaner signal in COMPASS data

Total Resonance Model, resonances, non-resonant, $\pi\pi\pi$ background, effective background
14-Wave Resonance-Model Fit
Partial Waves with $J^P = 2^+$

- Signal in $K_2^*(1430)$ mass region
- In different decays
 - $\rho(770) K D$
 - $K^*(892) \pi D$
- In agreement with previous measurements
- Cleaner signal in COMPASS data
Signal in $K_2^*(1430)$ mass region

In different decays

- $\rho(770) K D$
- $K^*(892) \pi D$

In agreement with previous measurements

Cleaner signal in COMPASS data
14-Wave Resonance-Model Fit
Partial Waves with $J^P = 2^+$

- $K_2^*(1430)$ parameters consistent with previous observations
- Better agreement with PDG average values for neutral $K_2^*(1430)$
14-Wave Resonance-Model Fit
Partial Waves with $J^P = 2^-$

PDG

- Established $K_2(1770)$ and $K_2(1820)$
- $K_2(2250)$ need further confirmation
Simultaneously fit 4 waves with $J^P = 2^-$
- 1.8 GeV/c^2 peak modeled by $K_2(1770)$, $K_2(1820)$
- High-mass shoulder modeled by $K_2(2250)$
- Different intensity spectra and large phase motions among 2^- waves
Simultaneously fit 4 waves with $J^P = 2^-$

1.8 GeV/c^2 peak modeled by $K_2(1770)$, $K_2(1820)$

High-mass shoulder modeled by $K_2(2250)$

Different intensity spectra and large phase motions among 2^- waves
14-Wave Resonance-Model Fit
Partial Waves with \(J^P = 2^- \)

\(K_2(1770) \) and \(K_2(1820) \)

- Two states were considered by only three measurements ACCMOR, LASS, LHCb
- Only LHCb measurement could confirm two states (3 \(\sigma \) statistical significance)
- We observe two states with 11 \(\sigma \) statistical significance
14-Wave Resonance-Model Fit
Partial Waves with $J^P = 2^-$

- Studied so far mainly in $\Lambda(\bar{p})$ final states
- First simultaneous measurement of $K_2(1770)$, $K_2(1820)$, and $K_2(2250)$
- Resonance parameters consistent with previous observations

$K_2(2250)$
14-Wave Resonance-Model Fit

Partial Waves with $J^P = 2^-$

Mass [GeV/c^2]

K, K_0^*, K^*, K_1, K_2, K_2^*, K_3^*, K_3, K_4, K_4^*, K_5^*

- Established
- Not Established
- Quark Model

[Ebert et al., PRD 79 (2009) 114029]
14-Wave Resonance-Model Fit
Partial Waves with $J^P = 2^-$
14-Wave Resonance-Model Fit
Partial Waves with $J^P = 4^+$

$K^*_4(2045)$ known resonance
Signal $K_4^*(2045)$ signal in $K^*(892)\pi$ and $\rho(770)K$ decays
14-Wave Resonance-Model Fit
Partial Waves with $J^P = 4^+$

- Signal $K_4^*(2045)$ signal in $K^*(892)\,\pi$ and $\rho(770)\,K$ decays
Partial Waves with \(J^P = 4^+ \)

- Signal \(K_4^*(2045) \) signal in \(K^*(892)\pi \) and \(\rho(770) \) \(K \) decays
14-Wave Resonance-Model Fit
Partial Waves with $J^P = 4^+$

\[m_0 [\text{MeV}/c^2] \]

\[\Gamma_0 [\text{MeV}/c^2] \]

\(K_4^*(2045) \) COMPASS
\(K_4^*(2045) \) PDG average
\(K_4^*(2045) \) Prev. exp.
14-Wave Resonance-Model Fit
Partial Waves with \(J^P = 4^+ \)

- Imperfect description of magnitude of intensity,

- Also, real and imaginary parts of interference terms described well, including their magnitude

- Intensities and real and imaginary parts of interference terms not directly related as \(\text{Rank}[\rho_{ab}] > 1 \)
 \(|\rho_{ab}| \neq \sqrt{|\rho_{aa}| |\rho_{bb}|} \)
 - Analysis artifacts in intensities of small waves, which are the least constrained by data

- Results validated by Monte Carlo input-output and systematic studies

- Imperfections considered in systematic uncertainties

- Results in agreement with previous experiments

total resonance model, resonances, non-resonant, \(\pi \pi \) background, effective background
14-Wave Resonance-Model Fit
Partial Waves with $J^P = 4^+$

- Imperfect description of magnitude of intensity, while relative phase described well
- Also, real and imaginary parts of interference terms described well, including their magnitude
- Intensities and real and imaginary parts of interference terms not directly related as $\text{Rank}[
ho_{ab}] > 1$
 \[|\rho_{ab}| \neq \sqrt{|\rho_{aa}| |\rho_{bb}|} \]
- Analysis artifacts in intensities of small waves, which are the least constrained by data

- Results validated by Monte Carlo input-output and systematic studies
- Imperfections considered in systematic uncertainties
- Results in agreement with previous experiments

total resonance model, resonances, non-resonant, $\pi \pi \pi$ background, effective background
Partial Waves with $J^P = 4^+$

- Imperfect description of magnitude of intensity, while relative phase described well
- Also, real and imaginary parts of interference terms described well, including their magnitude
 - Intensities and real and imaginary parts of interference terms not directly related as $\text{Rank}[\rho_{ab}] > 1$
 - $|\rho_{ab}| \neq \sqrt{|\rho_{aa}| |\rho_{bb}|}$
 - Analysis artifacts in intensities of small waves, which are the least constrained by data

- Results validated by Monte Carlo input-output and systematic studies
- Imperfections considered in systematic uncertainties
- Results in agreement with previous experiments

Graph:
- Real part of the interference term $\Re(\rho_{ab})$ for $m_{K\pi\pi} \in [1, 3] \text{ GeV}/c^2$
- $0.10 \leq t' < 0.15 \text{ (GeV}/c)^2$

Keywords:
- total resonance model
- resonances
- non-resonant
- $\pi\pi\pi$ background
- effective background
14-Wave Resonance-Model Fit
Partial Waves with \(J^P = 4^+ \)

- Imperfect description of magnitude of intensity, \(\rho_{ab} \), while relative phase described well
- Also, real and imaginary parts of interference terms described well, including their magnitude
- Intensities and real and imaginary parts of interference terms not directly related as \(\text{Rank}[\rho_{ab}] > 1 \)
 \[|\rho_{ab}| \neq \sqrt{|\rho_{aa}| |\rho_{bb}|} \]
 - Analysis artifacts in intensities of small waves, which are the least constrained by data

- Results validated by Monte Carlo input-output and systematic studies
- Imperfections considered in systematic uncertainties
- Results in agreement with previous experiments
14-Wave Resonance-Model Fit

Partial Waves with $J^P = 4^+$

- Imperfect description of magnitude of intensity, while relative phase described well
- Also, real and imaginary parts of interference terms described well, including their magnitude
- Intensities and real and imaginary parts of interference terms not directly related as $\text{Rank}[\rho_{ab}] > 1$
 \[|\rho_{ab}| \neq \sqrt{|\rho_{aa}| |\rho_{bb}|} \]
 - Analysis artifacts in intensities of small waves, which are the least constrained by data

- Results validated by Monte Carlo input-output and systematic studies
- Imperfections considered in systematic uncertainties
- Results in agreement with previous experiments

\[\Imag([4^+1^+ K^* (892) \pi G][2^{-0^+} K^*_2 (1430) \pi S]^*) \times 10^4 \]

\[S(\rho_{ab}) \text{ [GeV/c}^2\text{]}^{-1} \]

$0.10 \leq t' < 0.15 \text{ (GeV/c)}^2$

$1.0 \leq m_{K\pi\pi} \text{ [GeV/c}^2\text{]} \leq 3.0$

total resonance model, resonances, non-resonant, $\pi\pi\pi$ background, effective background
14-Wave Resonance-Model Fit
Partial Waves with $J^P = 4^+$

- Imperfect description of magnitude of intensity, while relative phase described well
- Also, real and imaginary parts of interference terms described well, including their magnitude
- Intensities and real and imaginary parts of interference terms not directly related as $\text{Rank}[\rho_{ab}] > 1$

\[|\rho_{ab}| \neq \sqrt{|\rho_{aa}| |\rho_{bb}|} \]

- Analysis artifacts in intensities of small waves, which are the least constrained by data

- Results validated by Monte Carlo input-output and systematic studies
- Imperfections considered in systematic uncertainties
- Results in agreement with previous experiments

Total resonance model, resonances, non-resonant, πππ background, effective background
14-Wave Resonance-Model Fit
Partial Waves with $J^P = 4^+$

- Imperfect description of magnitude of intensity, while relative phase described well
- Also, real and imaginary parts of interference terms described well, including their magnitude
- Intensities and real and imaginary parts of interference terms not directly related as $\text{Rank}[\rho_{ab}] > 1$
 \[|\rho_{ab}| \neq \sqrt{|\rho_{aa}| |\rho_{bb}|} \]
 - Analysis artifacts in intensities of small waves, which are the least constrained by data

- Results validated by Monte Carlo input-output and systematic studies
- Imperfections considered in systematic uncertainties
- Results in agreement with previous experiments

$\Im([4^+1^+ K^*(892)\pi G][2^0^+ K^*_2(1430)\pi S]^*)$

$0.10 \leq t' < 0.15 \text{ (GeV/c)}^2$

$\Im(\rho_{ab}) \times 10^4$

$\Im([4^+1^+ K^*(892)\pi G][2^0^+ K^*_2(1430)\pi S]^*)$

$0.10 \leq t' < 0.15 \text{ (GeV/c)}^2$

$\Im(\rho_{ab}) \times 10^4$

$\Im([4^+1^+ K^*(892)\pi G][2^0^+ K^*_2(1430)\pi S]^*)$

$0.10 \leq t' < 0.15 \text{ (GeV/c)}^2$

$\Im(\rho_{ab}) \times 10^4$

$\Im([4^+1^+ K^*(892)\pi G][2^0^+ K^*_2(1430)\pi S]^*)$

$0.10 \leq t' < 0.15 \text{ (GeV/c)}^2$

$\Im(\rho_{ab}) \times 10^4$

$\Im([4^+1^+ K^*(892)\pi G][2^0^+ K^*_2(1430)\pi S]^*)$

$0.10 \leq t' < 0.15 \text{ (GeV/c)}^2$

$\Im(\rho_{ab}) \times 10^4$

$\Im([4^+1^+ K^*(892)\pi G][2^0^+ K^*_2(1430)\pi S]^*)$

$0.10 \leq t' < 0.15 \text{ (GeV/c)}^2$

$\Im(\rho_{ab}) \times 10^4$

$\Im([4^+1^+ K^*(892)\pi G][2^0^+ K^*_2(1430)\pi S]^*)$

$0.10 \leq t' < 0.15 \text{ (GeV/c)}^2$

$\Im(\rho_{ab}) \times 10^4$

$\Im([4^+1^+ K^*(892)\pi G][2^0^+ K^*_2(1430)\pi S]^*)$

$0.10 \leq t' < 0.15 \text{ (GeV/c)}^2$

$\Im(\rho_{ab}) \times 10^4$

$\Im([4^+1^+ K^*(892)\pi G][2^0^+ K^*_2(1430)\pi S]^*)$

$0.10 \leq t' < 0.15 \text{ (GeV/c)}^2$

$\Im(\rho_{ab}) \times 10^4$
Kinematic Distribution of $K^-\pi^-\pi^+$ Events

Subsystem

Also structure in $\pi^-\pi^+$ and $K^-\pi^+$ subsystems

- Successive 2-body decay via $\pi^-\pi^+ / K^-\pi^+$ resonance called isobar

Also structure in angular distributions
Kinematic Distribution of $K^-\pi^-\pi^+$ Events

Subsystem

![Diagram of K^-pi^-pi+ subsystem with an X- meson and K* resonance]

- Also structure in $\pi^-\pi^+$ and $K^-\pi^+$ subsystems
 - Successive 2-body decay via $\pi^-\pi^+$ / $K^-\pi^+$ resonance called isobar
- Also structure in angular distributions
Kinematic Distribution of $K^-\pi^-\pi^+$ Events

Subsystem

Also structure in $\pi^-\pi^+$ and $K^-\pi^+$ subsystems

- Successive 2-body decay via $\pi^-\pi^+$ / $K^-\pi^+$ resonance called isobar

- Also structure in angular distributions
Kinematic Distribution of $K^-\pi^-\pi^+$ Events

Subsystem

$1.2 < m_{K\pi\pi} < 1.4 \text{ GeV}/c^2$

$1.5 < m_{K\pi\pi} < 2.0 \text{ GeV}/c^2$

$K^*(892)$

$K^*_0(1430)$

$K^*_2(1430)$

$\rho(770)$

S. Wallner Strange-Meson Spectroscopy with COMPASS 47 / 57
Kinematic Distribution of $K^-\pi^-\pi^+$ Events

$\Delta m_{K^-\pi^-}$

No dominant resonant structures

Preliminary

S. Wallner
Strange-Meson Spectroscopy with COMPASS

Events / (4 MeV/c^2) $\times 10^3$
Kinematic Distribution of $K^-\pi^-\pi^+$ Events

t' Spectrum

- Exponential shape
- Shallower for larger t'
Kinematic Distribution of $K^{-}\pi^{-}\pi^{+}$ Events

Exclusivity

E_{beam} [GeV]

$\Delta\phi_{\text{recoil}}$ [deg]

Events / (0.1 GeV) $	imes 10^4$

Events / (0.11 deg) $	imes 10^4$
Kinematic Distribution of $K^-\pi^-\pi^+$ Events

Exclusivity

- E_{beam} [GeV]
- Events / (0.1 GeV) $\times 10^4$

$\Delta \phi_{\text{recoil}}$ [deg]

Preliminary
$\times 10^5 \quad 0^{-0^+} \rho(770) K\pi$

$0.10 \leq t' < 1.00 \text{ (GeV/c)}^2$

COMPASS Main Studies

Preliminary
Systematic Studies of the Partial-Wave Decomposition

14 Waves

\[1^+0^+ \rho(770) K S \]

\[0.10 \leq t' < 1.00 \text{ (GeV/c)}^2 \]

COMPASS Main Studies

Preliminary
Systematic Studies of the Partial-Wave Decomposition

14 Waves

$1^+ 1^+ \rho(770) KS$

$0.10 \leq t' < 1.00 \text{ (GeV/c)}^2$

COMPASS Main Studies

S. Wallner Strange-Meson Spectroscopy with COMPASS
Systematic Studies of the Partial-Wave Decomposition

14 Waves

$1.0 \ 1.5 \ 2.0 \ 2.5 \ 3.0$

$\times 10^6 \ 2^{+1} K^\ast(892) \pi D$

$0.10 \leq t' < 1.00 \text{ (GeV/c)}^2$

COMPASS Main Studies

Preliminary

S. Wallner Strange-Meson Spectroscopy with COMPASS

Intensity $[(\text{GeV/c}^2)^{-1}] \times 10^6$

$2+1+K^*(892)\pi D$

$0.10 \leq t' < 1.00 \text{ (GeV/c)}^2$

COMPASS Main Studies

Int. $[(\text{GeV/c}^2)^{-1}] \times 10^6$

$2+1+K^*(892)\pi D$

$0.10 \leq t' < 1.00 \text{ (GeV/c)}^2$

COMPASS Main Studies

Int. $[(\text{GeV/c}^2)^{-1}] \times 10^6$

$2+1+K^*(892)\pi D$

$0.10 \leq t' < 1.00 \text{ (GeV/c)}^2$

COMPASS Main Studies

Int. $[(\text{GeV/c}^2)^{-1}] \times 10^6$

$2+1+K^*(892)\pi D$

$0.10 \leq t' < 1.00 \text{ (GeV/c)}^2$

COMPASS Main Studies

Int. $[(\text{GeV/c}^2)^{-1}] \times 10^6$

$2+1+K^*(892)\pi D$

$0.10 \leq t' < 1.00 \text{ (GeV/c)}^2$
Systematic Studies of the Partial-Wave Decomposition

14 Waves

\[2^+ 1^+ \rho(770) K D \]

\[0.10 \leq t' < 1.00 \text{ (GeV}/c)^2 \]

COMPASS

Main Studies

Preliminary

S. Wallner Strange-Meson Spectroscopy with COMPASS
Systematic Studies of the Partial-Wave Decomposition

14 Waves

$m_{K\pi\pi}$ [GeV/c2]

Intensity [(GeV/c2)$^{-1}$] $\times 10^5$

$2^{-0^+} K^*(892)\pi F$

$0.10 \leq t' < 1.00$ (GeV/c2)2

COMPASS Main Studies

$2^{-0^+} K^*(892)\pi F$

Intensity [(GeV/c2)$^{-1}$] $\times 10^5$

$0.10 \leq t' < 1.00$ (GeV/c2)2

COMPASS Main Studies

$2^{-0^+} K^*(892)\pi F$

Intensity [(GeV/c2)$^{-1}$] $\times 10^5$

$0.10 \leq t' < 1.00$ (GeV/c2)2

COMPASS Main Studies

$2^{-0^+} K^*(892)\pi F$

Intensity [(GeV/c2)$^{-1}$] $\times 10^5$

$0.10 \leq t' < 1.00$ (GeV/c2)2

COMPASS Main Studies

$2^{-0^+} K^*(892)\pi F$
Systematic Studies of the Partial-Wave Decomposition

14 Waves

\[2^{-0^+} \rho(770) KF \]

\[0.10 \leq t' < 1.00 \text{ (GeV}/c)^2 \]

COMPASS Main Studies

Preliminary

S. Wallner
Strange-Meson Spectroscopy with COMPASS

Intensity \([\text{GeV}/c^2]^{-1}\) \times 10^5

\[m_{K\pi\pi} \text{ [GeV}/c^2] \]
Systematic Studies of the Partial-Wave Decomposition

14 Waves

14 Waves

$1.0 \ 1.5 \ 2.0 \ 2.5 \ 3.0$

$m_{K\pi\pi} \ [\text{GeV/c}^2]$

$0 \ 2 \ 4$

Intensity $[(\text{GeV/c}^2)^{-1}] \times 10^5$

$2^{-0^+} K^*_2(1430) \pi S$

$0.10 \leq t' < 1.00 \ (\text{GeV/c})^2$

COMPASS Main Studies

Preliminary

S. Wallner Strange-Meson Spectroscopy with COMPASS 51 / 57
Systematic Studies of the Partial-Wave Decomposition

14 Waves

\[\times 10^5 \quad 2^{-0^+} f_2(1270) K S \]

\[0.10 \leq t' < 1.00 \text{ (GeV/c)}^2 \]

COMPASS Main Studies

Preliminary

S. Wallner
Strange-Meson Spectroscopy with COMPASS

51 / 57
Systematic Studies of the Partial-Wave Decomposition

14 Waves

\[
\times 10^4 \quad 3^+ 0^+ K_3^*(1780) \pi S
\]

$0.10 \leq t' < 1.00 \text{ (GeV}/c)^2$

COMPASS Main Studies

\[\text{Intensity } [(\text{GeV}/c^2)^{-1}] \times 10^4 \]

\[3^+ 0^+ K_3^*(1780) \pi S \]

$0.10 \leq t' < 1.00 \text{ (GeV}/c)^2$

COMPASS Main Studies

\[\text{Intensity } [(\text{GeV}/c^2)^{-1}] \times 10^4 \]

\[3^+ 0^+ K_3^*(1780) \pi S \]

$0.10 \leq t' < 1.00 \text{ (GeV}/c)^2$

COMPASS Main Studies

\[\text{Intensity } [(\text{GeV}/c^2)^{-1}] \times 10^4 \]

\[3^+ 0^+ K_3^*(1780) \pi S \]

$0.10 \leq t' < 1.00 \text{ (GeV}/c)^2$

COMPASS Main Studies

\[\text{Intensity } [(\text{GeV}/c^2)^{-1}] \times 10^4 \]

\[3^+ 0^+ K_3^*(1780) \pi S \]

$0.10 \leq t' < 1.00 \text{ (GeV}/c)^2$

COMPASS Main Studies

\[\text{Intensity } [(\text{GeV}/c^2)^{-1}] \times 10^4 \]

\[3^+ 0^+ K_3^*(1780) \pi S \]

$0.10 \leq t' < 1.00 \text{ (GeV}/c)^2$

COMPASS Main Studies

\[\text{Intensity } [(\text{GeV}/c^2)^{-1}] \times 10^4 \]

\[3^+ 0^+ K_3^*(1780) \pi S \]

$0.10 \leq t' < 1.00 \text{ (GeV}/c)^2$

COMPASS Main Studies

\[\text{Intensity } [(\text{GeV}/c^2)^{-1}] \times 10^4 \]

\[3^+ 0^+ K_3^*(1780) \pi S \]

$0.10 \leq t' < 1.00 \text{ (GeV}/c)^2$

COMPASS Main Studies

\[\text{Intensity } [(\text{GeV}/c^2)^{-1}] \times 10^4 \]

\[3^+ 0^+ K_3^*(1780) \pi S \]

$0.10 \leq t' < 1.00 \text{ (GeV}/c)^2$

COMPASS Main Studies

\[\text{Intensity } [(\text{GeV}/c^2)^{-1}] \times 10^4 \]

\[3^+ 0^+ K_3^*(1780) \pi S \]

$0.10 \leq t' < 1.00 \text{ (GeV}/c)^2$

COMPASS Main Studies

\[\text{Intensity } [(\text{GeV}/c^2)^{-1}] \times 10^4 \]

\[3^+ 0^+ K_3^*(1780) \pi S \]

$0.10 \leq t' < 1.00 \text{ (GeV}/c)^2$

COMPASS Main Studies

\[\text{Intensity } [(\text{GeV}/c^2)^{-1}] \times 10^4 \]

\[3^+ 0^+ K_3^*(1780) \pi S \]

$0.10 \leq t' < 1.00 \text{ (GeV}/c)^2$

COMPASS Main Studies

\[\text{Intensity } [(\text{GeV}/c^2)^{-1}] \times 10^4 \]

\[3^+ 0^+ K_3^*(1780) \pi S \]

$0.10 \leq t' < 1.00 \text{ (GeV}/c)^2$

COMPASS Main Studies

\[\text{Intensity } [(\text{GeV}/c^2)^{-1}] \times 10^4 \]

\[3^+ 0^+ K_3^*(1780) \pi S \]

$0.10 \leq t' < 1.00 \text{ (GeV}/c)^2$

COMPASS Main Studies

\[\text{Intensity } [(\text{GeV}/c^2)^{-1}] \times 10^4 \]

\[3^+ 0^+ K_3^*(1780) \pi S \]

$0.10 \leq t' < 1.00 \text{ (GeV}/c)^2$

COMPASS Main Studies

\[\text{Intensity } [(\text{GeV}/c^2)^{-1}] \times 10^4 \]

\[3^+ 0^+ K_3^*(1780) \pi S \]

$0.10 \leq t' < 1.00 \text{ (GeV}/c)^2$

COMPASS Main Studies

\[\text{Intensity } [(\text{GeV}/c^2)^{-1}] \times 10^4 \]

\[3^+ 0^+ K_3^*(1780) \pi S \]

$0.10 \leq t' < 1.00 \text{ (GeV}/c)^2$

COMPASS Main Studies

\[\text{Intensity } [(\text{GeV}/c^2)^{-1}] \times 10^4 \]

\[3^+ 0^+ K_3^*(1780) \pi S \]

$0.10 \leq t' < 1.00 \text{ (GeV}/c)^2$

COMPASS Main Studies

\[\text{Intensity } [(\text{GeV}/c^2)^{-1}] \times 10^4 \]

\[3^+ 0^+ K_3^*(1780) \pi S \]

$0.10 \leq t' < 1.00 \text{ (GeV}/c)^2$
Systematic Studies of the Partial-Wave Decomposition

14 Waves

$3^{+} 1^{+} K_{2}^{*}(1430) \pi P$

$0.10 \leq t' < 1.00 \text{ (GeV/c)}^2$

COMPASS

Main Studies

$\times 10^4$

Intensity $[(\text{GeV/c}^2)^{-1}]$

$0 \leq m_{K\pi\pi} \text{ [GeV/c}^2]\leq 3.0$

$3+1+K_2^*(1430)\pi P$

$0.10 \leq t' < 1.00 \text{ (GeV/c)}^2$

COMPASS

Main Studies
Systematic Studies of the Partial-Wave Decomposition

14 Waves

\[4^{+}1^{+} K^{*}(892) \pi G \]

\[0.10 \leq t' < 1.00 \text{ (GeV/c)}^2 \]

COMPASS Main Studies

Preliminary
Systematic Studies of the Partial-Wave Decomposition

14 Waves

\[\times 10^4 \quad 4^+1^+ \rho(770) KG \]

\[0.10 \leq t' < 1.00 \ (\text{GeV/c})^2 \]

COMPASS Main Studies

\[\text{Intensity} \quad [(\text{GeV/c}^2)^{-1}] \times 10^4 \]

\[4^+1^+ \rho(770) KG \]

\[m_{K\pi\pi} \quad [\text{GeV/c}^2] \]
Systematic Studies of the Partial-Wave Decomposition

14 Waves

\[4^{-0+} K_2^*(1430) \pi D \]

\[0.10 \leq t' < 1.00 \text{ (GeV/c)}^2 \]

COMPASS Main Studies

Preliminary

S. Wallner Strange-Meson Spectroscopy with COMPASS
Systematic Studies of the Partial-Wave Decomposition

Leakage Waves

\[m_{K\pi\pi} \ [\text{GeV}/c^2] \]

Intensity \[(\text{GeV}/c^2)^{-1} \times 10^6 \]

0.10 \leq t' < 1.00 (GeV/c)^2

COMPASS Main Studies

S. Wallner Strange-Meson Spectroscopy with COMPASS
Systematic Studies of the Partial-Wave Decomposition

Leakage Waves

\[\times 10^7 \quad 0^{-0^+} K^*(892) \pi P \]

\[0.10 \leq t' < 1.00 \text{ (GeV/c)}^2 \]

COMPASS

Main Studies

Preliminary

Intensity \([(\text{GeV/c}^2)^{-1}] \times 10^7 \]

\[0^{-0^+} K^*(892) \pi P \]

\[0.10 \leq t' < 1.00 \text{ (GeV/c)}^2 \]

COMPASS

Main Studies
Systematic Studies of the Partial-Wave Decomposition

Leakage Waves

\[1.0 \ 1.5 \ 2.0 \ 2.5 \ 3.0 \]

\[m_{K\pi\pi} \ [\text{GeV}/c^2] \]

\[\times 10^7 \]

\[1^{+0+} K^*(892) \pi S \]

\[0.10 \leq t' < 1.00 \ (\text{GeV}/c)^2 \]

COMPASS Main Studies

Preliminary
Systematic Studies of the Partial-Wave Decomposition
Leakage Waves

\[3^{+1+} K^*(892) \pi D \]

\[0.10 \leq t' < 1.00 \text{ (GeV/c)}^2 \]

COMPASS Main Studies

Preliminary

S. Wallner
Strange-Meson Spectroscopy with COMPASS
Leakage Effect

- Unexpected low-mass enhancement in $3^+ 1^+ K^*(892)\pi D$ wave
- Similar to dominant 1^+ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected
Leakage Effect

- Unexpected low-mass enhancement in $3^{+} 1^{+} K^{*}(892) \pi D$ wave
- Similar to dominant 1^{+} wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected

- $m_{K \pi \pi}$ [GeV/c2]
- $1^{0+} K^{*}(892) \pi S$
- $0.10 \leq t' < 1.00$ (GeV/c2)

COMPASS Main Studies

Preliminary
Leakage Effect

- Unexpected low-mass enhancement in $3^+ 1^+ K^*(892) \pi D$ wave
- Similar to dominant 1^+ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected

\[
\bar{s} \to \bar{p} l^- l^+
\]

\[
\sum_{i=1}^{3} I_{\text{int}}(m_{K\pi\pi}) \times 10^7
\]

\[
0.10 \leq t' < 1.00 \text{(GeV/c)}^2
\]

COMPASS Main Studies

Preliminary
Leakage Effect

- Unexpected low-mass enhancement in $3^+ 1^+ K^*(892) \pi D$ wave
- Similar to dominant 1^+ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected

\[I_{a,b} = \int d\varphi_3(\tau) \Psi_a(\tau)\Psi^*_b(\tau) \]
Leakage Effect

- Unexpected low-mass enhancement in $3^+ 1^+ K^*(892) \pi D$ wave
- Similar to dominant 1^+ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
 - Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
 - Only a sub-set of partial waves affected
Leakage Effect

- Unexpected low-mass enhancement in $3^+ 1^+ K^*(892) \pi D$ wave
- Similar to dominant 1^+ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected
Leakage Effect

- Unexpected low-mass enhancement in $3^+ 1^+ K^*(892) \pi D$ wave
- Similar to dominant 1^+ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected

\[I_{a,b} = \int d\varphi_3(\tau) \eta(\tau) \Psi_a(\tau) \Psi_b^*(\tau) \]
Leakage Effect

- Unexpected low-mass enhancement in $3^+ 1^+ K^*(892) \pi D$ wave
- Similar to dominant 1^+ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected
Leakage Effect

- Unexpected low-mass enhancement in $3^+ 1^+ K^*(892)\pi D$ wave
- Similar to dominant 1^+ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Event selection requires to identify one of the two negative particles
 - Limited acceptance due to limited kinematic range of final-state PID
- Loss of orthogonality taking acceptance into account
 - Reduced differentiability of certain partial waves
- Only a sub-set of partial waves affected
Incoherent $\pi^- \pi^- \pi^+$ Background

- $K^- \pi^- \pi^+$ and $\pi^- \pi^- \pi^+$ similar experimental footprint

- Distinguishable only by
 - Beam particle identification
 - Final-state particle identification

- Excellent beam PID:
 - Expect small contamination from beam π^-

- Final-state PID does not suppress $\pi^- \pi^- \pi^+$ background
 - Non-negligible $\pi^- \pi^- \pi^+$ background in $K^- \pi^- \pi^+$ sample of about 7%
 - Dominant background in $K^- \pi^- \pi^+$ sample
Incoherent $\pi^-\pi^-\pi^+$ Background

- $K^-\pi^-\pi^+$ and $\pi^-\pi^-\pi^+$ similar experimental footprint
- Distinguishable only by
 - Beam particle identification
 - Final-state particle identification
- Excellent beam PID:
 - Expect small contamination from beam π^-
- Final-state PID does not suppress $\pi^-\pi^-\pi^+$ background
 - Non-negligible $\pi^-\pi^-\pi^+$ background in $K^-\pi^-\pi^+$ sample of about 7 %
 - Dominant background in $K^-\pi^-\pi^+$ sample
Incoherent $\pi^-\pi^-\pi^+$ Background

- $K^-\pi^-\pi^+$ and $\pi^-\pi^-\pi^+$ similar experimental footprint
- Distinguishable only by
 - Beam particle identification
 - Final-state particle identification
- Excellent beam PID:
 - Expect small contamination from beam π^-
- Final-state PID does not suppress $\pi^-\pi^-\pi^+$ background
 - Non-negligible $\pi^-\pi^-\pi^+$ background in $K^-\pi^-\pi^+$ sample of about 7%
 - Dominant background in $K^-\pi^-\pi^+$ sample
Incoherent $\pi^-\pi^-\pi^+$ Background

- $K^-\pi^-\pi^+$ and $\pi^-\pi^-\pi^+$ similar experimental footprint
- Distinguishable only by
 - Beam particle identification
 - Final-state particle identification
- Excellent beam PID:
 - Expect small contamination from beam π^-
- Final-state PID does not suppress $\pi^-\pi^-\pi^+$ background
 - Non-negligible $\pi^-\pi^-\pi^+$ background in $K^-\pi^-\pi^+$ sample of about 7%
 - Dominant background in $K^-\pi^-\pi^+$ sample
Incoherent $\pi^-\pi^-\pi^+$ Background

- Well established model for $\pi^- + p \rightarrow \pi^-\pi^-\pi^+ + p$
 - From very same data set
 - Measured with high precision
 - Acceptance corrected
- Generate $\pi^-\pi^-\pi^+$ Monte Carlo sample
- Mis-interpret $\pi^-\pi^-\pi^+$ Monte Carlo events as $K^-\pi^-\pi^+$
 - Apply wrong mass assumption
 - Same event reconstruction and selection as for $K^-\pi^-\pi^+$
- Perform partial-wave decomposition of mis-interpreted $\pi^-\pi^-\pi^+$ Monte Carlo sample
 - Using the same PWA model as for measured $K^-\pi^-\pi^+$ sample
Well established model for $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p$
- From very same data set
- Measured with high precision
- Acceptance corrected

Generate $\pi^- \pi^- \pi^+$ Monte Carlo sample
- Mis-interpret $\pi^- \pi^- \pi^+$ Monte Carlo events as $K^- \pi^- \pi^+$
 - Apply wrong mass assumption
 - Same event reconstruction and selection as for $K^- \pi^- \pi^+$
- Perform partial-wave decomposition of mis-interpreted $\pi^- \pi^- \pi^+$ Monte Carlo sample
 - Using the same PWA model as for measured $K^- \pi^- \pi^+$ sample
Incoherent $\pi^-\pi^-\pi^+$ Background

- Well established model for $\pi^- + p \to \pi^-\pi^-\pi^+ + p$
 - From very same data set
 - Measured with high precision
 - Acceptance corrected
- Generate $\pi^-\pi^-\pi^+$ Monte Carlo sample
- Mis-interpret $\pi^-\pi^-\pi^+$ Monte Carlo events as $K^-\pi^-\pi^+$
 - Apply wrong mass assumption
 - Same event reconstruction and selection as for $K^-\pi^-\pi^+$
- Perform partial-wave decomposition of mis-interpreted $\pi^-\pi^-\pi^+$ Monte Carlo sample
 - Using the same PWA model as for measured $K^-\pi^-\pi^+$ sample
Incoherent $\pi^-\pi^-\pi^+$ Background

- Well established model for $\pi^- + p \rightarrow \pi^-\pi^-\pi^+ + p$
 - From very same data set
 - Measured with high precision
 - Acceptance corrected
- Generate $\pi^-\pi^-\pi^+$ Monte Carlo sample
- Mis-interpret $\pi^-\pi^-\pi^+$ Monte Carlo events as $K^-\pi^-\pi^+$
 - Apply wrong mass assumption
 - Same event reconstruction and selection as for $K^-\pi^-\pi^+$
- Perform partial-wave decomposition of mis-interpreted $\pi^-\pi^-\pi^+$ Monte Carlo sample
 - Using the same PWA model as for measured $K^-\pi^-\pi^+$ sample
- Study $\pi^-\pi^-\pi^+$ background in individual $K^-\pi^-\pi^+$ partial waves
Incoherent $\pi^-\pi^-\pi^+$ Background

- Significant contribution to waves with $\rho(770)$ isobar
- $\pi^-\pi^-\pi^+$ produces peaking structures
- Largest relative contribution to $2^+ 1^+ \rho(770) K D$ wave
- Small contribution to waves with $K^*(892)$ isobar
- Also significant contribution to waves with $f_2(1270)$ and $K^*_2(1430)$ isobars
- No contribution to flat wave

\[K^-\pi^-\pi^+ \text{ data, } \pi^-\pi^-\pi^+ \text{ pseudo data} \]
Incoherent $\pi^-\pi^-\pi^+$ Background

- Significant contribution to waves with $\rho(770)$ isobar
- $\pi^-\pi^-\pi^+$ produces peaking structures
- Largest relative contribution to $2^+ 1^+ \rho(770) K D$ wave
- Small contribution to waves with $K^*(892)$ isobar
- Also significant contribution to waves with $f_2(1270)$ and $K_2^*(1430)$ isobars
- No contribution to flat wave

$K^-\pi^-\pi^+$ data, $\pi^-\pi^-\pi^+$ pseudo data
Incoherent $\pi^-\pi^-\pi^+$ Background

- Significant contribution to waves with $\rho(770)$ isobar
- $\pi^-\pi^-\pi^+$ produces peaking structures
- Largest relative contribution to $2^+ 1^+ \rho(770) K D$ wave
- Small contribution to waves with $K^*(892)$ isobar
- Also significant contribution to waves with $f_2(1270)$ and $K_2^*(1430)$ isobars
- No contribution to flat wave

![Graph showing $2^{-0} f_2(1270) K S$ intensity vs. $m_{K\pi\pi}$ and t' range]

$K^-\pi^-\pi^+$ data, $\pi^-\pi^-\pi^+$ pseudo data
Incoherent $\pi^-\pi^-\pi^+$ Background

- Significant contribution to waves with $\rho(770)$ isobar
- $\pi^-\pi^-\pi^+$ produces peaking structures
- Largest relative contribution to $2^+ 1^+ \rho(770) K D$ wave
- Small contribution to waves with $K^*(892)$ isobar
- Also significant contribution to waves with $f_2(1270)$ and $K^*_2(1430)$ isobars
- No contribution to flat wave
Incoherent $\pi^-\pi^-\pi^+$ Background

- Significant contribution to waves with $\rho(770)$ isobar
- $\pi^-\pi^-\pi^+$ produces peaking structures
- Largest relative contribution to $2^+ 1^+ \rho(770) K D$ wave
- Small contribution to waves with $K^*(892)$ isobar
- Also significant contribution to waves with $f_2(1270)$ and $K^*_2(1430)$ isobars
- No contribution to flat wave
Incoherent $\pi^- \pi^- \pi^+$ Background

- 238-wave set can describe main features of $\pi^- \pi^- \pi^+$ pseudodata sufficiently well
- Largest deviation for $K^- \pi^+$ isobar system at thigh $m_{K\pi\pi}$

$\pi^- \pi^- \pi^+$ pseudo data, prediction (weighted-MC) of $K^- \pi^- \pi^+$ PWD to $\pi^- \pi^- \pi^+$ pseudo data