GPD measurements at COMPASS

Jan Matoušek
Faculty of Mathematics and Physics
Charles University, Prague, Czechia
On behalf of the COMPASS collaboration

25. 9. 2023,
25th International Spin Symposium (SPIN 2023)
Duke University, Durham, North Carolina, USA
Outline

1 Introduction
2 DVCS
3 DVMP
4 π^0 production
5 Vector mesons
6 Conclusion
4 chiral-even, 4 chiral-odd (subscript T).
2 T-odd (E, \bar{E}_T).
Introduction: COMPASS

- M2 beamline of CERN’s SPS.
- 24 institutes, 13 countries.

- **SIDIS** with 160 GeV (200 GeV) μ^+ beam and longitudinally/transversely-polarised proton (NH_3) or deuteron (^6LiD) target.
 - A. Martin (Wed, TMDs),
 - G. Reicherz (Wed, Polarised targets),
 - B. Parsamyan (Thu, plenary)

- **Hadron spectroscopy** with hadron beams and nuclear targets.

- **Drell–Yan** with 190 GeV π^- beam and p^+ (NH_3), Al, W targets.
 - V. Andrieux (Wed, TMDs),
 - A. Vijayakumar (poster).

- Hard exclusive processes and **SIDIS** with 160 GeV/c μ^\pm beam and liquid H_2 target.
 - This talk and SIDIS on Tue in TMDs.

2022 setup with $^6\text{LiD}^+$ target: Experiments concluded, now in analysis phase.
Outline

1. Introduction
2. DVCS
3. DVMP
4. π^0 production
5. Vector mesons
6. Conclusion
Deeply virtual Compton scattering

- GPDs appear in the cross-sections via Compton form-factors
 \[\mathcal{H}(\xi, t) = \mathcal{P} \int_{-1}^{1} dx \frac{H(x, \xi, t)}{x - \xi} - i\pi H(\pm \xi, t). \]
 (convolution GPD \(\otimes \) hard process).
- Sensitive to
 - \(H \) (unpolarised proton target),
 - \(E, \tilde{H}, \tilde{E} \) (neutron or polarised targets).
- Interference with Bethe–Heitler process.

\[q = (p_\mu - p_{\mu'}): \text{4-momentum of virtual photon} \]
\[Q^2 = -q^2: \text{virtual photon virtuality} \]
\[t = (p_P - p_{P'}^2): \text{4-momentum transfer to nucleon squared} \]
\[x: \text{average longitudinal momentum fraction} \]
\[\xi: \text{half of longitudinal momentum fraction transfer} \]
DVCS: Experimental setup

- 160 GeV/c beam
 - μ^+: $P_{\mu^+} \approx -80\%$ (from $\pi^+ \to \mu^+ \nu_\mu$)
 - μ^-: $P_{\mu^-} \approx +80\%$ (from $\pi^- \to \mu^- \bar{\nu}_\mu$)
- 2.5 m long liquid H target.
- 2-stage magnetic spectrometer.
- CAMERA, ECAL0, ECAL1, ECAL2.
- 2012 pilot run (1 month)
 - Published results [PLB 793 (2019) 188]
- 2016–2017 runs
 - Larger ECAL0.
 - $10 \times$ more statistics.
 - The same μ^+ and μ^- beam intensity.
 - Preliminary results using 1/3 statistics.

Event selection:

- $\mu p \to \mu' p' \gamma$
- $E_\gamma > 4, 5, 10$ GeV in ECAL 0, 1, 2.
CAMERA recoil proton detector

- Exclusive $\mu p \rightarrow \mu' p' \gamma$:
- $|\Delta p_T| < 0.3 \text{ GeV/c}$,
- $|\Delta \phi| < 0.4 \text{ rad}$,
- $|\Delta z_A| < 16 \text{ cm}$,
- $|M_X^2| < 0.3 (\text{GeV/c}^2)^2$
- Over-constrained measurement – Kinematic fit performed
- $\chi^2_{\text{fit}} < 10.$
DVCS: Kinematic domain, Bethe–Heitler

DVCS cross section in bins of t, ϕ, Q^2, ν:

$$\left(\frac{d\sigma_{DVCS}}{dt d\phi dQ^2 d\nu} \right)_{t_i \phi_j Q^2_k \nu_l}^{\pm} = \frac{1}{\mathcal{L}^{\pm} \Delta t_i \Delta \phi_j \Delta Q_k^2 \Delta \nu_l} \left[\left(a_{ijkl}^{\pm} \right)^{-1} (\text{data} - \text{BH}_{MC} - \pi^0_{MC}) \right]$$

- a_{ijkl}^{\pm} Acceptance \approx 40\% and flat
- BH$_{MC}$ Exclusive single photon MC sample
- π^0_{MC} π^0 MC sample (background estimation)

- 160 GeV/c beam
- $Q^2 \in (1, 10)$ (GeV/c)2
- $|t| \in (0.08, 0.64)$ (GeV/c)2

- Bethe–Heitler (BH) background:
 - Well known – QED MC.
 - Checked in BH-dominated region of $\nu \in (80, 144)$ GeV.
 - Subtracted in the DVCS region of $\nu \in (10, 32)$ GeV.
DVCS: Kinematic domain, Bethe–Heitler

DVCS cross section in bins of t, ϕ, Q^2, ν:

\[
\left(\frac{d\sigma_{\text{DVCS}}}{dt d\phi dQ^2 d\nu} \right)_{t_i \phi_j Q_k^2 \nu_l} \bigg|_{t_i \phi_j Q_k^2 \nu_l} =
\frac{1}{\mathcal{L} \Delta t_i \Delta \phi_j \Delta Q_k^2 \Delta \nu_l} \left[\left(a_{ijkl}^\pm \right)^{-1} \left(\text{data} - \text{BH}_{MC} - \pi_{MC}^0 \right) \right]
\]

- a_{ijkl}^\pm Acceptance \approx 40% and flat
- BH$_{MC}$ Exclusive single photon MC sample
- π_{MC}^0 π^0 MC sample (background estimation)

- **160 GeV/c beam**
- $Q^2 \in (1, 10) \ (\text{GeV/c})^2$
- $|t| \in (0.08, 0.64) \ (\text{GeV/c})^2$

Bethe–Heitler (BH) background:
- Well known – QED MC.
- Checked in BH-dominated region of $\nu \in (80, 144) \ \text{GeV}$.
- Subtracted in the DVCS region of $\nu \in (10, 32) \ \text{GeV}$.

Jan Matoušek (Charles University)
DVCS: π^0 background

DVCS cross section in bins of t, ϕ, Q^2, ν:

$$
\left\langle \frac{d\sigma_{\text{DVCS}}}{d|t|d\phi dQ^2 d\nu} \right\rangle_{t,\phi,Q^2,\nu} \propto
\frac{1}{L^\pm \Delta t_i \Delta \phi_j \Delta Q_k^2 \Delta \nu_l} \left[(a_{ijkl}^\pm)^{-1} (\text{data} - \text{BH}_{MC} - \pi_{MC}^0) \right]
$$

- a_{ijkl}^\pm: Acceptance $\approx 40\%$ and flat
- BH_{MC}: Exclusive single photon MC sample
- π_{MC}^0: π^0 MC sample (background estimation)

Visible π^0 background
- Both γ detected.
- Rejected in event selection.
- Used to normalize π^0 MC

Non-visible π^0 background
- Only one γ detected.
- Subtracted using π^0 MC.
- Inclusive (LEPTO) and exclusive (HEPGEN) MC.
DVCS: Results

Measurement as a function of $|t|$, integrating over ϕ:

\[
\frac{d\sigma}{dt} \leftrightarrow \frac{d\sigma}{d\phi} = 2[do^{BH} + do^{DVCS}_{impol} + \text{Im } I] \\
= 2[do^{BH} + c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi + s_1^I \sin \phi + s_2^I \sin 2\phi]
\]

c_0^{DVCS}: related to the Compton form-factor H.

In COMPASS kinematics ($\frac{2\xi}{1+\xi} = x_B \approx 0.06$):

- Dominance of $\text{Im } H$
 (97% in GK model, 94% in KM model)
- $c_0^{DVCS} \propto (\text{Im } H)^2$
- H: related to the GPD H (at LT and LO):
 $H(x, t) = \mathcal{P} \int_{-1}^{1} dx \frac{H(x, \xi, t)}{x-\xi} - i\pi H(\pm \xi, t)$.
- $q(x, b_\perp) = \int \frac{d^2\Delta_\perp}{(2\pi)^2} e^{-ib_\perp \cdot \Delta_\perp} H(x, 0, -\Delta_\perp^2)$

\[
\langle b_\perp^2 \rangle = \frac{\int d^2b_\perp b_\perp^2 q(x, b_\perp)}{\int d^2b_\perp q(x, b_\perp)} = -4 \frac{\partial}{\partial t} \ln H(x, 0, t) \bigg|_{t=0}
\]

\[
\frac{d\sigma^{DVCS}}{dt} \propto e^{-B|t|} = e^{-\frac{1}{2} \langle b_\perp^2 \rangle |t|}
\]
DVCS: Results

Measurement as a function of $|t|$, integrating over ϕ:

$$\begin{align*}
d\sigma^{\uparrow} + d\sigma^{\downarrow} &= 2[d\sigma^{BH} + d\sigma^{DVCS}_{impol} + \text{Im } I] \\
&= 2[d\sigma^{BH} + c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi + s_1^I \sin \phi + s_2^I \sin 2\phi] \\
\end{align*}$$

c_0^{DVCS}: related to the Compton form-factor H.

In COMPASS kinematics ($\frac{2\xi}{1+\xi} = x_B \approx 0.06$):

- Dominance of $\text{Im } H$ (97% in GK model, 94% in KM model)
- $c_0^{DVCS} \propto (\text{Im } H)^2$
- H: related to the GPD H (at LT and LO):
 $$H(x, t) = \mathcal{P} \int_{-1}^{1} dx \frac{H(x, \xi, t)}{x-\xi} - i\pi H(\pm \xi, t).$$
- $q(x, b_\perp) = \int \frac{d^2 \Delta_\perp}{(2\pi)^2} e^{-ib_\perp \cdot \Delta_\perp} H(x, 0, -\Delta_\perp^2)$

$$\langle b_\perp^2 \rangle = \frac{\int d^2 b_\perp b_\perp^2 q(x, b_\perp)}{\int d^2 b_\perp q(x, b_\perp)} = -4 \frac{\partial}{\partial t} \ln H(x, 0, t) \bigg|_{t=0}$$

$$\frac{d\sigma^{DVCS}}{dt} \propto e^{-B|t|} = e^{-\frac{1}{2} \langle b_\perp^2 \rangle |t|}$$

2016: preliminary, 1/3 of available statistics.
Re-analysis of 2016 data is being finalised → publication soon.

Study the ϕ-dependence
- $s_1^I \propto \text{Im} H$ → further constrain transverse extension of partons.

Cross-section difference to be extracted
- $d\sigma^+ - d\sigma^- \propto \text{Re} F \propto \text{Re} H$ → related to D-term and pressure distribution.

2017 data analysis starting.

Study the x_B-dependence → tomography.

Analysis slowed down recently due to lack of people.

New groups interested in GPD analyses joined COMPASS recently.
DVMP: Introduction

- Factorisation (collinear) proven only for longitudinally polarised γ^*.
- Phenomenological models postulating k_\perp-factorisation.
- Flavour separation possible thanks to different quark content of mesons.
- **Pseudoscalar mesons**
 - At leading twist: sensitive to $\tilde{H}, \tilde{E}, H_T, \tilde{E}_T$.
- **Vector mesons**
 - Gluons and quarks enter at the same order of α_S
 - Sensitive to H, E, H_T, \tilde{E}_T.
Outline

1 Introduction

2 DVCS

3 DVMP

4 π^0 production

5 Vector mesons

6 Conclusion
π^0 production: Event selection

- 2012 pilot run (1 month)
 - Published results [PLB 805 (2020) 135454]
- 2016–2017 runs
 - Larger ECAL0.
 - 10× more statistics.
 - The same μ^+ and μ^- beam intensity.
 - Preliminary results using 1/3 statistics.

μp → μ'p'π^0
π^0 → γγ

E_γ thresholds in ECAL 0, 1, 2.

Exclusivity with CAMERA:
- ∆φ < 0.4 rad,
- ∆p_T < 0.3 GeV/c,
- ∆z_A < 16 cm,
- M_X^2 < 0.3 (GeV/c^2)^2

Kinematic fit
- χ^2_{fit} < 10

Kinematic domain:
- ν ∈ (6.4, 40) GeV,
- Q^2 ∈ (1, 8) (GeV/c)^2,
- |t| ∈ (0.08, 0.64) GeV/c.

Improved acceptance with respect to 2012.
Non-exclusive background

- π^0 from deep inelastic scattering.
- Simulated by LEPTO MC.
- Exclusive π^0 simulated by HEPGEN MC.
- Mix of HEPGEN and LEPTO fitted to exclusivity distributions in the data.
- Result: $(17 \pm 5)\%$ of nonexclusive background.
\[\frac{d\sigma_{\mu^+p\to\mu'p+\pi^0}}{dtd\phi} + \frac{d\sigma_{\mu^-p\to\mu'p-\pi^0}}{dtd\phi} = \frac{\Gamma(Q^2, \nu)}{2\pi} \]

\[\times \left[\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} + \epsilon \cos 2\phi \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi \frac{d\sigma_{LT}}{dt} \right] \]

Cross section in 2012 kinematic range.
GK'16 model: Goloskokov–Kroll (2016),
Other models: Goldstein–Gonzalez–Liuti, PRD91 (2015)

Statistical uncertainty shown, the systematic one is 10% to 20% (in low cross section bins).
π^0 production: Results

\[
\frac{d\sigma^{\mu^+ p \rightarrow \mu^' p^+ \pi^0}}{dt d\phi} + \frac{d\sigma^{\mu^- p \rightarrow \mu^' p^- \pi^0}}{dt d\phi} = \frac{\Gamma(Q^2, \nu)}{2\pi} \\
\times \left[\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} + \epsilon \cos 2\phi \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi \frac{d\sigma_{LT}}{dt} \right]
\]

\[d\sigma_L \propto \langle H_T \rangle^2 - \frac{t^'}{4m^2} |\langle E_T \rangle|^2\]

\[d\sigma_T \propto |\langle H_T \rangle|^2 - \frac{t^'}{8m^2} |\langle E_T \rangle|^2\]

\[\sigma_{TT} \propto \frac{t^'}{16m^2} |\langle E_T \rangle|^2\]

\[\sigma_{LT} \propto \frac{\sqrt{-t^'}}{2m} \text{Re} \left[\langle H_T \rangle^* \langle E_T \rangle \right]\]

Cross section in **2012 kinematic range.**
GK16 model: Goloskokov–Kroll (2016),
Other models: Goldstein–Gonzalez–Liuti, PRD91 (2015)

New 2016 preliminary results [K. Lavičková, IWHSS 2023, Prague] (using 1/3 statistics):
Statistical uncertainty shown, the systematic one is 10% to 20% (in low cross section bins).

Jan Matoušek (Charles University)
GPD measurements at COMPASS
25. 9. 2023, SPIN 2023 18 / 28
The 2016 analysis is being finalised → publication soon.
Comparison with theory predictions, once they are available in our kinematic domain.
2017 data analysis starting.
Study the ν, x_B or Q^2 dependence.
Cross-section difference $(d\sigma^+ - d\sigma^-) \to \sin \text{ modulation amplitude.}$
Outline

1 Introduction

2 DVCS

3 DVMP

4 π^0 production

5 Vector mesons

6 Conclusion
Vector mesons: Transverse asymmetries

- $\mu p \rightarrow \mu' p' \rho^0$ and $\mu p \rightarrow \mu' p' \omega$
- $\rho^0 \rightarrow \pi^+ \pi^-$
- $\omega \rightarrow \pi^+ \pi^- \pi^0$
- No recoil proton detector.
- Exclusivity imposed via energy conservation.
- Target: transversely polarised p (H in NH$_3$).

Contribution of pion pole important for ω, as $\Gamma(\omega \rightarrow \pi^0 \gamma) \approx 9 \Gamma(\rho^0 \rightarrow \pi^0 \gamma)$
Spin density matrix elements (SDMEs) – parametrize experimental angular distributions of vector meson production on unpolarised target:
2012 data with LH target, not using CAMERA here (to access low t).

- *s*-channel helicity conservation model (SCHC): $\lambda_\gamma = \lambda_V$

 Sum of SDMEs in the yellow boxes should be 0, all others 0.
Vector mesons: SDMEs

Natural (N) to unnatural (U) parity exchange

\[P = \frac{2r_{1-1}^1}{1 - r_{00}^{04} - 2r_{1-1}^{04}} \approx \frac{d\sigma_T^N (\gamma^*_T \rightarrow V_T) - d\sigma_T^U (\gamma^*_T \rightarrow V_T)}{d\sigma_T^N (\gamma^*_T \rightarrow V_T) + d\sigma_T^U (\gamma^*_T \rightarrow V_T)} \]

- NPE: GPDs \(H, E \),
- UPE: GPDs \(\tilde{H}, \tilde{E} \) and the pion pole.

Pion pole exchange contributes to UPE,
\[\Gamma(\omega \rightarrow \pi^0 \gamma) \approx 9 \Gamma(\rho^0 \rightarrow \pi^0 \gamma) \]

\(\rho^0 \): \(P \approx 1 \rightarrow \) dominance of NPE

\(\omega \): \(P \approx 0 \rightarrow \) NPE \(\approx \) UPE
Longitudinal-to-transverse cross section ratio for ρ^0 production

$$R = \frac{d\sigma_L(\gamma^*_L \rightarrow V)}{d\sigma_T(\gamma^*_T \rightarrow V)}$$

To obtain it from the data:

- Assuming SCHC: $R' = \frac{1}{\epsilon} \frac{r_{04}^{00}}{1-r_{00}^{04}}$
 (standard, used by many experiments)
- Assuming only NPE: \tilde{R}

![Graph showing data points and line of fit]

for all the experiments with $Q^2 > 1$ GeV2
Vector mesons: Outlook

- Exclusive ϕ production: ongoing analysis (SMDEs, cross section).
- Exclusive J/ψ production: feasibility studies.
Conclusion

- **2016–2017 data** with LH target and 160 GeV/c μ^{\pm} beam
- Preliminary results using 1/3 of statistics (part of 2016 data)
 - DVCS t-slope of the cross section \(\rightarrow\) transverse extension of partons at \(x_B = 0.06\).
 - Deep virtual π^0 production cross-section: **new results (6/2023).**
 \(\rightarrow\) large contribution of σ_{TT} confirmed – significant role of γ_T and the GPD \bar{E}_T.
 - Both measurements are being finalised, to be published soon.

- **SDMEs in hard ω production** [EPJC (2021) 81 126]
- **SDMEs in hard ρ^0 production:** Paper accepted to EPJC [hep-ex/2210.16932]
 \(\rightarrow\) Importance of γ_T and the GPD H_T
- ρ^0 and ω production on polarised target [NPB 915 (2017) 454] [PLB B731 (2014) 19]

Outlook:

- **2017 data:** starting with new people joining the analysis – promising!
- Extensions of the DVCS and π^0 analyses:
 - Kinematic dependencies \((\nu, x_B, Q^2)\),
 - Azimuthal dependence of the DVCS cross section,
 - Cross section difference \(d\sigma^+ - d\sigma^-\)
- **Deep virtual ϕ production cross section and SDMEs:** work in progress on 2016 data.
- **Deep virtual J/ψ production:** feasibility studies.
Conclusion

- **2016–2017 data** with LH target and 160 GeV/c μ^\pm beam
- Preliminary results using 1/3 of statistics (part of 2016 data)
 - DVCS t-slope of the cross section \rightarrow transverse extension of partons at $x_B = 0.06$.
 - Deep virtual π^0 production cross-section: new results (6/2023).
 \rightarrow large contribution of σ_{TT} confirmed – significant role of γ_T and the GPD \bar{E}_T.
 - Both measurements are being finalised, to be published soon.

- SDMEs in hard ω production [EPJC (2021) 81 126]
- SDMEs in hard ρ^0 production: Paper accepted to EPJC [hep-ex/2210.16932]
 \rightarrow Importance of γ_T and the GPD H_T
- ρ^0 and ω production on polarised target [NPB 915 (2017) 454] [PLB B731 (2014) 19]

Outlook:

- **2017 data**: starting with new people joining the analysis – promising!
- Extensions of the DVCS and π^0 analyses:
 - Kinematic dependencies (ν, x_B, Q^2),
 - Azimuthal dependence of the DVCS cross section,
 - Cross section difference $d\sigma^+ - d\sigma^-$
- Deep virtual ϕ production cross section and SDMEs: work in progress on 2016 data.
- Deep virtual J/ψ production: feasibility studies.

Thank you for your attention!