Drell-Yan cross-section measurement at COMPASS

Vincent Andrieux on behalf of the COMPASS Collaboration

University of Illinois at Urbana-Champaign

25th International Spin Symposium 24th-30th September 2023 Durham (North Carolina)

Pion structure

In principle the simplest hadron and yet still pretty unknown structure

Renew of interest with foreseen measurements at AMBER, JLab and EIC ...

COMPASS can already contribute

COMPASS Collaboration at CERN

 \sim 200 physicists from 25 institutions from 13 countries

Beam line:

- High intensity hadron beam: ∼70 MHz
- High energy: 190 GeV
- Negative hadron beam composition:
 - 97% pions
 - 2% kaons
 - 1% anti proton

Apparatus: Two-stage spectrometer

Key elements:

- Versatile target area configuration
- 2 triggering systems
- 2 spectrometers in 1 for a wide coverage: 8mrad< θ_{μ} <160mrad \rightarrow -0.2< $x_{\rm F}$ <0.9
- 2 Muon filters
- $\bullet \sim 400$ tracking planes

Variable definitions:

$$M^2=(p_{\mu^+}+p_{\mu^-})^2$$

 q_L^* : Photon long. momentum in π -N rest frame

$$x_{\mathsf{F}} = \frac{2q_{\mathsf{L}}^*}{\sqrt{s}}$$

$$x_{\pi/N} = \frac{1}{2} \left(\sqrt{x_{\mathsf{F}}^2 + 4 \frac{M^2}{s}} \pm x_{\mathsf{F}} \right)$$

Zoom on the target region

Light nuclei from spin average polarised target: mixture of **NH**₃ & **LHe**:

molar fraction of nucleons:

Н	He	N
15.7%	11.1%	73.2%

 $\sim \pm 2\%$ in the accessible region

Target will be denoted NH₃-He in the following

Two nuclear targets: intermediate and large A: **AI** & **W**

Mass spectra and region of interest

Several channels contribute to inclusive dimuon final state production:

- Combinatorial background
- Open-Charm production in low mass
- Resonances: J/ψ and ψ'
- Drell-Yan in high mass

Statistical separation based on the different kinematic dependence with various Monte-Carlo samples and the combinatorial background distribution assessed from like-sign pairs in real data $(2\sqrt{N^{++}N^{--}})$: "Cocktail fit"

Collected pairs in the region of interest 4.3 GeV/ c^2 to 8.5 GeV/ c^2 : NH₃-He: 36 000 AI: 6 000 W: 43 000

Long way to cross-section measurement

Recorded number of dimuons

Drell-Yan cross section

- Process purity > 90% for $M/(\text{GeV}/c^2) > 4.3$, 4.9 and 5.5 in NH₃-He, Al and W
- Acceptance: between 1 and 20 %
- Luminosity
- Trigger system normalisation
- **5** . .

3 dimensional Drell-Yan cross section on NH₃-He

- First high statistics measurement with light material
- Red line/shaded area: statistical / total (stat. and syst.) uncertainties
- Dominated by statistical uncertainty

q_T dependence of Drell-Yan cross section on NH₃-He

Unique inputs to extract π TMD PDF with minimum nuclear effects

Systematics uncertainty at the level of statistical precision

3 dimensional Drell-Yan cross section on W

- Wide kinematic coverage
- Red line/shaded area: statistical / total (stat. and syst.) uncertainties
- Dominated by systematic uncertainty

Drell-Yan cross section on W and comparison to E615

 $\sqrt{\tau} = M/\sqrt{s}$

- New results since 30 years
- Similar kinematic coverage as E615
- Better statistics, similar total systematics except for the low mass region

Drell-Yan cross section on W and comparison to NA10

$$\sqrt{\tau} = M/\sqrt{s}$$

- Wider kinematic coverage
- Worse accuracy in statistics as well as in systematics

Nuclear dependence studies

Flavour dependent EMC effect:

Unlike DIS, π -induced Drell-Yan process tags the quark flavour

nCTEQ15: unconstrained flavour

dependence

EPS09: no flavour dependence

Flavour dependence of $R_{\pi A}^{DY}(x_{\rm N}) = (A_2 d\sigma_{\pi A_1}^{DY})/(A_1 d\sigma_{\pi A_2}^{DY})$

- Ratio of integrated DY cross section per nucleon in all but x_N variable
- Covering the domain of EMC effect and end of anti-shadowing
- General trend as expected...
- ... Currently limited by systematics except possibly for AI/(NH₃-He)

Parton energy loss and Cronin effects

Parton crossing nuclear medium, looses energy due to multiple scattering and gluon emission

Signatures:

- Gain of transverse momentum:
 q_T Broadening
- Loss of longitudinal momentum:
 Suppression at large x_F

Drell-Yan nuclear modification factor $R_{\pi A}^{DY} = (A_2 d\sigma_{\pi A_1}^{DY})/(A_1 d\sigma_{\pi A_2}^{DY})$ vs q_T

- Ratio of integrated DY cross section per nucleon in all but q_T variable
- Measurements are in agreement with effective effects encoded in nPDF
- Currently limited by systematics except possibly for $AI/(NH_3-He)$

Drell-Yan nuclear modification factor $R(A_1/A_2)$ in x_F for various q_T bins

Steeper slope in x_F at large q_T mainly in W/(NH₃-He) and Al/(NH₃-He) Soon in bins of x_N to disentangle from anti-shadowing and EMC effects

Conclusion and Outlook

- ⇒ COMPASS has released a wealth of preliminary Drell-Yan cross sections
- ⇒ High statistics measurement is available on a light target
- ⇒ Systematics uncertainties are at the same order of magnitude as E615

Perspective:

Finalisation of Drell-Yan cross-section measurements in the coming months expected

BACKUP

How to probe the meson structure?

Drell-Yan

Prompt photon

Sullivan process

 π^- -induced Drell-Yan measurements: $_{
m W.J.~Stirling~and~M.R.~Whalley~1993~J.~Phys.~G:~Nucl.~Part.~Phys.~19~D1}$

Experiment	Target type	Beam energy (GeV)	DY mass (GeV/c²)	DY events	Systematics
NA3	30cm H ₂ 6cm Pt	200 200	4.10 - 8.50 4.20 - 8.50	121 4,961	12.6%
NA10	120cm D ₂	286 140	4.2 - 8.5 4.35 - 8.5	7,800 3,200	6.5%
	12cm W	286 194 140	4.2 - 8.5 4.07-15.19 4.35 - 8.5	49,600 155,000 (inc. Υ) 29,300	
E615	20cm W	252	4.05 - 8.55	30,000	16%

Situation for the other experiments

- NA10: Estimated to be negligeable and no correction
- E615: Evaluation with MC technique and subtraction

