# Exotic meson candidates in COMPASS

MESON 2023 in Kraków, Poland

David Spülbeck on behalf of the COMPASS Collaboration spuelbeck@hiskp.uni-bonn.de

23<sup>rd</sup> June 2023



# LIGHT MESONS: $m < 3 \,\text{GeV}/\text{c}^2$

#### Constituent-Quark Model

- $\blacktriangleright \ |q\bar{q}'\rangle$  system with q=u,d,s
- Quantum numbers  $J^{P(C)}$





# LIGHT MESONS: $m < 3 \,\text{GeV}/\text{c}^2$

#### Constituent-Quark Model

- $\blacktriangleright \ |q\bar{q}'\rangle$  system with q=u,d,s
- Quantum numbers  $J^{P(C)}$

## In unflavoured sector: Spin-exotics

- ▶ Not possible in Constituent-Quark Model:  $J^{PC} = 0^{--}, (odd)^{-+}, (even)^{+-}$
- Access to exotic states that do not overlap with ordinary mesons

#### Hybrids

- Excited gluonic flied contributes to  $J^{PC}$
- ▶ Predictions from theory: lightest hybrids have  $J^{PC} = (0, \mathbf{1}, 2)^{-(+)}, 1^{-(-)}$



#### David Spülbeck

# COMPASS

- ► COmmon Muon Proton Apparatus for Structure and Spectroscopy
- Data taken for two decades 2002-2022
- Located at the M2 beam line in the north area of CERN
- ▶ Part of the Hadron program: Light-Meson Spectroscopy



#### David Spülbeck

# PARTIAL-WAVE ANALYSIS

- Analysis in two steps:
  - 1. Partial-Wave Decomposition: Amplitudes of contributing waves are determined
  - 2. Resonance-Model Fit: Extraction of resonance parameters  $(m_0, \Gamma_0)$  and couplings

### Partial-Wave Decomposition

- ► Data arranged into bins of  $(m_X, t')$  $\mathcal{I}(\tau_i) = \left| \sum_{a}^{N_{\text{waves}}} \mathcal{T}_a \Psi_a(\tau_i) \right|^2$
- $\blacktriangleright$  Decay Amplitudes  $\Psi_i$  are calculated from data using isobar model
- $\blacktriangleright$  Production amplitudes  $\mathcal{T}_i$  are determined in extended Likelihood fit



# PARTIAL-WAVE ANALYSIS

- Analysis in two steps:
  - 1. Partial-Wave Decomposition: Amplitudes of contributing waves are determined
  - 2. Resonance-Model Fit: Extraction of resonance parameters  $(m_0, \Gamma_0)$  and couplings

### Partial-Wave Decomposition

► Data arranged into bins of 
$$(m_X, t')$$
  
$$\mathcal{I}(\tau_i) = \left| \sum_{a}^{N_{\text{waves}}} \mathcal{T}_a | \Psi_a(\tau_i) \right|^2$$

- Decay Amplitudes  $\Psi_i$  are calculated from data using isobar model
- ► Production amplitudes *T<sub>i</sub>* are determined in extended Likelihood fit

#### Resonance-Model Fit

 Measured amplitudes are modeled by sum of resonant and non-resonant components (S)

$$\hat{\mathcal{T}}_{a}(m_{X},t') \propto \mathcal{P}_{\mathbb{P}} \sum_{j \in \mathbb{S}_{a}} \mathcal{C}_{a}^{j}(t') \mathcal{D}_{j}(m_{X},t')$$

- ▶ Dynamics of resonant components: D<sub>res.</sub>(m<sub>X</sub>)
- ▶ Dynamics of non-resonant component:  $\mathcal{D}_{\text{n-res.}}(m_X,t')$

# Exotic meson candidate in unflavoured sector



#### Theory predictions

Several effective models (e.g. flux-tube, bag model, constituent gluon) expect the lightest hybrid meson to have spin-exotic QN: J<sup>PC</sup> = 1<sup>-+</sup>

#### First result from IQCD simulation

- Decay of hybrid meson with  $J^{PC} = 1^{-+}$  via several channels
- At SU(3) symmetry point:
  - $\rightarrow m_{u,d,s} = m_s^{\text{exp.}}$
  - $\rightarrow m_{\pi} \approx 700 \, \mathrm{MeV/c}^2$
  - $\rightarrow 3m_{\pi}$  pushed to high energy
- Result:  $b_1\pi$  most dominant

David Spülbeck



#### COMPASS



► Result: t'-dependence of background  $m_{\pi_1} = 1600^{+110}_{-60} \text{ MeV/c}^2$  $\Gamma_{\pi_1} = 590^{+100}_{-230} \text{ MeV/c}^2$   $\pi_1$ 

#### COMPASS





#### COMPASS



 $\pi_1$ 

#### 

- ▶ 46.0 M events
- ▶  $\pi + p \rightarrow 3\pi + p$  at  $190 \, {\rm GeV/c}$
- ► 11 bins  $0.1 < t' < 1.0 \left( \text{GeV/c} \right)^2$
- Result:

 $\begin{array}{l} t'\text{-dependence of background} \\ m_{\pi_1} = 1600^{+110}_{-60}\,\text{MeV/c}^2 \\ \Gamma_{\pi_1} = 590^{+100}_{-230}\,\text{MeV/c}^2 \end{array}$ 

## Freed Isobar Analysis

- In conventional analysis dynamical shape of isobars are fixed in decay amplitude
- Free the dynamics of the isobar and fit it with data

#### David Spülbeck

#### Exotic meson candidates in COMPASS

 $\pi_1$ 

#### COMPASS $10^{-11} P (770) \pi P$ $10^{-724} < t' < 1.000 (GeV/c)^{2}$ Nodel curve Resonances Nones. comp. 0.5 1 1.5 $m_{3x}$ [GeV/c<sup>2</sup>]

[COMPASS, PRD 98, 2018]

- ▶ 46.0 M events
- ▶  $\pi + p \rightarrow 3\pi + p$  at  $190 \, {\rm GeV/c}$
- 11 bins  $0.1 < t' < 1.0 (\text{GeV/c})^2$
- ► Result: t'-dependence of background  $m_{\pi_1} = 1600^{+110}_{-60} \text{ MeV/c}^2$  $\Gamma_{\pi_1} = 590^{+100}_{-230} \text{ MeV/c}^2$

#### Freed Isobar Analysis

- In conventional analysis dynamical shape of isobars are fixed in decay amplitude
- Free the dynamics of the isobar and fit it with data

## Results:

- Same result as conventional fit
- $\rightarrow$  Spin-exotic wave shows clear  $\rho(770)$  signature
- $\rightarrow$  Supports assumptions of isobar model



 $\pi_1$ 

<sup>[</sup>COMPASS, PRD 105, 2022]

#### Final state

- ▶ No modelation t'
- Precise shower description in ECALs needed

## Results from other Experiments

- BNL, VES and Crystal Barrel observed two states:
  - at  $1.4 \text{ GeV/c}^2$  in  $\eta \pi$ • at  $1.6 \text{ GeV/c}^2$  in  $\eta' \pi$





 $\pi_1$ 



[COMPASS PLB 740, (2015)]

(Gray region: ill defined phases in  $\eta\pi$  data)

### Final state

- ▶ No modelation t'
- Precise shower description in ECALs needed

## Coupled-channel fit by JPAC

- Performed resonance model fit using K-matrix formalism
- Conclusion: one pole is sufficient to describe both!

 $\rightarrow m = (1564 \pm 24 \pm 86) \text{ MeV/c}^2$  $\rightarrow \Gamma = (492 \pm 54 \pm 102) \text{ MeV/c}^2$ 



 $\pi_1$ 

[PRL, 122, 042002 (2019)]

## Final state

- ▶ No modelation t'
- Precise shower description in ECALs needed

## Coupled-channel fit by JPAC

- Performed resonance model fit using K-matrix formalism
- ► Conclusion: one pole is sufficient to describe both!  $\rightarrow m = (1564 \pm 24 \pm 86) \text{ MeV/c}^2$ 
  - $\rightarrow \Gamma = (492 \pm 54 \pm 102) \text{ MeV/c}^2$

Confirmed by Kopf et al. in c.c. fit using  $\overline{p}p,\ \pi^-p$  and  $\pi\pi$  data

## COMPASS data with fit from Kopf et al.



<sup>[</sup>Kopf et al., EPJ C 81, 1056, (2021)]

 $\pi_1$  -

#### David Spülbeck

## Final state

- ▶ PWA:  $\omega \pi^{-} \pi^{0}$
- Final state: of  $\pi^{-}\pi^{+}\pi^{-}\pi^{0}(\gamma\gamma)\pi^{0}(\gamma\gamma)$

## COMPASS data

- Selected 720k  $\omega \pi^- \pi^0$  events  $\rightarrow$  Analysis in t' possible
- New results from Partial-Wave decomposition
- Clear signal and phase motion in expected region

## Results from other Experiments

- $\blacktriangleright$  BNL and VES observed spin-exotic  $1^{-+}$  state at  $\sim 1.6\,{\rm GeV/c}^2$
- BNL observed a second state

#### COMPASS data vs. BNL data



#### David Spülbeck

#### Exotic meson candidates in COMPASS

 $\rightarrow b_1 \pi$ 

 $\pi_1$ 

## $f_1(1285)\pi^-$ at COMPASS

- Final state  $\pi^-\pi^+\pi^-\eta(\gamma\gamma)$
- Selected 625k  $\pi^-\pi^+\pi^-\eta$  events  $\rightarrow$  Analysis in t' possible
- Next Step: PWA



 $\pi_1 \rightarrow f_1(1285)\pi \& K^*\overline{K}$ 

## $f_1(1285)\pi^-$ at COMPASS

- Final state  $\pi^-\pi^+\pi^-\eta(\gamma\gamma)$
- ► Selected 625k  $\pi^-\pi^+\pi^-\eta$  events → Analysis in t' possible
- Next Step: PWA

## $K^*\overline{K}$ at COMPASS

• Final state  $\pi^{-}K^{0}_{S}(\pi^{+}\pi^{-})K^{0}_{S}(\pi^{+}\pi^{-})$ 

 $\pi_1 \to f_1(1285)\pi \& K^*\overline{K}$ 

- ► Selected 240k  $\pi^- K_S^0 K_S^0$  events → Analysis in t' possible
- Next Step: PWA



# Exotic meson candidate in strange sector



# LIGHT STRANGE-MESONS: $m < 3 \,\text{GeV}/\text{c}^2$

## COMPASS: Data

- $K^- + p \rightarrow K^- \pi^+ \pi^- p$  at 190 GeV/c
- $\blacktriangleright$  720 k events

David Spülbeck

- Four t'-bins in range  $0.1 < t' < 1.0 \, ({\rm GeV/c})^2$
- Limited by PID in spectrometer



#### COMPASS: Resonance-Model Fit

- Agreement with at least five established states
- Agreement with at least three not established states

## PDG: Light Strange Sector

▶ 25 states listed, nine need further confirmation



# LIGHT STRANGE-MESONS: $m < 3 \,\text{GeV}/\text{c}^2$

## COMPASS: Data

- $K^- + p \rightarrow K^- \pi^+ \pi^- p$  at 190 GeV/c
- $\blacktriangleright$  720 k events

David Spülbeck

- Four t'-bins in range  $0.1 < t' < 1.0 \, (\text{GeV/c})^2$
- Limited by PID in spectrometer



## Exotic state in $0^-$ sector?

- Constituent-Quark Model predicts two excited states
- Three exited signals are observed

## PDG: Light Strange Sector

> 25 states listed, nine need further confirmation



# EXOTIC STATE IN $0^-$ SECTOR?

- Only  $0^{-}0^{+}\rho(770)KP$  wave is reliable
- ► Three resonances needed:
  - 1. K(1460) fixed PDG values m = 1482.4 MeV/c<sup>2</sup> and  $\Gamma = 335.6$  MeV/c<sup>2</sup>
  - 2. K(1630),  $m = 1687 \pm 10^{+2}_{-67} \text{ MeV/c}^2$  and  $\Gamma = 140 \pm 20^{+50}_{-50} \text{ MeV/c}^2$  ( $\sigma = 8.3$ )
  - 3. K(1830),  $m = 1893 \pm 17^{+13}_{-39}$  MeV/c<sup>2</sup> and  $\Gamma = 160 \pm 40^{+60}_{-80}$  MeV/c<sup>2</sup>



# SUMMARY & OUTLOOK

Exotic candidate in unflavoured sector with  $J^{PC} = 1^{-+} (\pi_1(1600))$ :

| Γ <sub>i</sub> /MeV                                                                  | Channel                        | Final state                 | Status                     | Outlook                       |
|--------------------------------------------------------------------------------------|--------------------------------|-----------------------------|----------------------------|-------------------------------|
| ΣίΓι                                                                                 |                                | $\pi^{-}\pi^{+}\pi^{-}$     | -[COMPASS, PRD 98, 2018]   | -Increase data set            |
| $600 - b_1 \pi$                                                                      | $ ho\pi$                       | 71 71 71                    | -[COMPASS, PRD 105, 2022]  | - Use new analysis techniques |
|                                                                                      | $(85)\pi$ $\eta^{(\prime)}\pi$ | $\pi^-\pi^+\pi^-\pi^0/\eta$ |                            | - Increase data set           |
| $200 - f_1(1285)\pi$                                                                 |                                |                             | -[COMPASS PLB 740, (2015)] | - Improve shower              |
| $30 \rho \pi$                                                                        |                                |                             | -[JPAC, PRL 122 (2019)]    | reconstruction                |
| $\int_{10}^{20} \int_{\pi} \frac{\eta' \pi}{f_1(1420)\pi} \frac{f_1(1420)\pi}{K' K}$ | $b_1\pi$                       | $\omega \pi^{-} \pi^{0}$    | - Partial-Wave             | - Resonance-Model             |
|                                                                                      |                                |                             | Decomposition              | Fit                           |
|                                                                                      | $f_1(1285)\pi$                 | $\pi^{-}\pi^{+}\pi^{-}\eta$ | - Event Selection          | - PWA                         |
| m <sub>r</sub> =1.7GeV                                                               | $K^*\overline{K}$              | $K_S \overline{K}_S \pi$    | - Event Selection          | - PWA                         |
| Modified: [PRD 103,<br>(2021) 054502]                                                |                                | 5-5.                        |                            |                               |

#### Exotic candidate in strange sector:

- Analysis limited by PID
- ▶ Clear evidence for three excited states in  $J^P = 0^-$  sector
  - $\rightarrow$  Exotic candidate K(1630)

#### Outlook:

$$\blacktriangleright K^- + p \to K^0_S \pi^- + p \& K^- + p \to \Lambda \overline{p} + p$$



Apparatus for Meson and Baryon Experimental Research

# Back Up



# Experimental results

### Freed Isobar Analysis

- In conventional analysis dynamical shape of isobars are fixed in decay amplitude
- Free the dynamics of the isobar and fit it with data:

$$\begin{split} \mathcal{I}(\tau_i) &= \\ \left| \sum_{a}^{N_{\text{waves}}} \sum_{k}^{N_{m_{\xi}\text{bins}}} \mathcal{T}_{a,k} \Psi_{a,k}'(\tau_i) \right|^2 \\ \text{with} \end{split}$$

$$\mathcal{T}_a \to \mathcal{T}_{a,k} = \mathcal{T}_a \mathbb{T}_{a,k}$$

► The set 𝔅<sub>a,k</sub> describes the dynamics of the isobar in wave (a)

#### Results:

- Same result as conventional fit
- $\rightarrow\,$  Spin-exotic wave shows clear  $\rho(770)$  signature
- $\rightarrow$  Supports assumptions of isobar model



 $\pi_1$ 

#### David Spülbeck

# Updated kinematic distributions: $\eta^{\scriptscriptstyle(\prime)}\pi^-$



David Spülbeck

# BACKUP: RESULTS

## Final state

- ► PWA:  $\omega \pi^{-} \pi^{0}$
- Final state: of  $\pi^{-}\pi^{+}\pi^{-}\pi^{0}(\gamma\gamma)\pi^{0}(\gamma\gamma)$

## COMPASS data

- Selected 720k  $\omega \pi^- \pi^0$  events  $\rightarrow$  Analysis in t' possible
- New results from Partial-Wave decomposition
- Clear signal in expected region

## Results from other Experiments

- ▶ BNL and VES observed spin-exotic  $1^{-+}$  state at  $\sim 1.6 \text{ GeV/c}^2$
- BNL observed a second state

#### COMPASS data vs. BNL data



 $\pi_1 \rightarrow b_1 \pi$ 

#### David Spülbeck

# BACKUP: RESULTS



▶ LQCD: if  $\pi_1 \rightarrow \rho \omega$  is present, then it is very small

 $\pi_1 \to \rho \omega$  ?

# KINEMATIC DISTRIBUTIONS: $X \to f_1(1285)\pi^-$



# EFFEKT OF LIMITED PID



# KINEMATIC DISTRIBUTIONS: $K^- + p \rightarrow K_S^0 \pi^- + p$

