Exotic meson candidates in COMPASS
MESON 2023 in Kraków, Poland

David Spülbeck
on behalf of the COMPASS Collaboration
spuelbeck@hiskp.uni-bonn.de

23rd June 2023
Light Mesons: $m < 3$ GeV/c^2

Constituent-Quark Model

- $|qq'\rangle$ system with $q = u, d, s$
- Quantum numbers $J^{P(C)}$

In unflavoured sector: Spin-exotics

- Not possible in Constituent-Quark Model: $J^{PC} = 0^{--}, (odd)$ $-^{++}, (even)$

- Access to exotic states that do not overlap with ordinary mesons

Hybrids

- Excited gluonic field contributes to J^{PC}

Predictions from theory: lightest hybrids have $J^{PC} = (0^-, 1^+, 2^-)^{(+)}$, $1^-^{(-)}$

David Spühlbeck
Exotic meson candidates in COMPASS
Light Mesons: \(m < 3 \text{GeV/c}^2 \)

Constituent-Quark Model

- |\(qq'\) system with \(q = u, d, s \)
- Quantum numbers \(J^{P(C)} \)

In unflavoured sector: Spin-exotics

- Not possible in Constituent-Quark Model:
 \(J^{PC} = 0^{--}, (odd)^{++}, (even)^{+-} \)
- Access to exotic states that do not overlap with ordinary mesons

Hybrids

- Excited gluonic field contributes to \(J^{PC} \)
- Predictions from theory: lightest hybrids have
 \(J^{PC} = (0, 1, 2)^{-(+)} , 1^{-(+)} \)

David Spülbeck

Exotic meson candidates in COMPASS

1/13
COMPASS

- **COmmom Muon Proton Apparatus for Structure and Spectroscopy**
- Data taken for two decades 2002-2022
- Located at the M2 beam line in the north area of CERN
- Part of the Hadron program: Light-Meson Spectroscopy

Setup for Hadron beams

Diffractive Resonance Production

\[(\pi^-, K^-, \bar{p}) \]

- Beam hadrons at 190 GeV/c
 → mainly Pomeron exchange
Partial-Wave Analysis

- Analysis in two steps:
 1. Partial-Wave Decomposition: Amplitudes of contributing waves are determined
 2. Resonance-Model Fit: Extraction of resonance parameters \((m_0, \Gamma_0)\) and couplings

Partial-Wave Decomposition

- Data arranged into bins of \((m_X, t')\)
 \[
 \mathcal{I}(\tau_i) = \left| \sum_{a} N_{\text{waves}} \mathcal{T}_a \Psi_a(\tau_i) \right|^2
 \]
- Decay Amplitudes \(\Psi_i\) are calculated from data using isobar model
- Production amplitudes \(\mathcal{T}_i\) are determined in extended Likelihood fit

(Diffraction Resonance Production and subsequent two-body decays)
Partial-Wave Analysis

Analysis in two steps:

1. Partial-Wave Decomposition: Amplitudes of contributing waves are determined
2. Resonance-Model Fit: Extraction of resonance parameters \((m_0, \Gamma_0)\) and couplings

Partial-Wave Decomposition

- Data arranged into bins of \((m_X, t')\)

\[
I(\tau_i) = \left| \sum_{a}^{N_{\text{waves}}} T_a \Psi_a(\tau_i) \right|^2
\]

- Decay Amplitudes \(\Psi_i\) are calculated from data using isobar model
- Production amplitudes \(T_i\) are determined in extended Likelihood fit

Resonance-Model Fit

- Measured amplitudes are modeled by sum of resonant and non-resonant components \((S)\)

\[
\hat{T}_a(m_X, t') \propto \mathcal{P}_P \sum_{j \in S_a} C_a^j(t') D_j(m_X, t')
\]

- Dynamics of resonant components: \(D_{\text{res.}}(m_X)\)
- Dynamics of non-resonant component: \(D_{\text{n-res.}}(m_X, t')\)
Exotic meson candidate in unflavoured sector
Theory predictions

- Several effective models (e.g. flux-tube, bag model, constituent gluon) expect the lightest hybrid meson to have spin-exotic QN: $J^{PC} = 1^{-+}$

First result from lQCD simulation

- Decay of hybrid meson with $J^{PC} = 1^{-+}$ via several channels
- At $SU(3)$ symmetry point:
 - $m_{u,d,s} = m_s^{\text{exp.}}$
 - $m_\pi \approx 700 \text{ MeV}/c^2$
 - $3m_\pi$ pushed to high energy
- Result: $b_1\pi$ most dominant

[PRD 103, (2021) 054502]
Experimental results

COMPASS

[COMPASS, PRD 98, 2018]

- 46.0 M events
- $\pi + p \rightarrow 3\pi + p$ at 190 GeV/c
- 11 bins
 $0.1 < t' < 1.0$ (GeV/c)2
- Result:
 t'-dependence of background
 $m_{\pi_1} = 1600^{+110}_{-60}$ MeV/c2
 $\Gamma_{\pi_1} = 590^{+100}_{-230}$ MeV/c2

David Spülbeck
Exotic meson candidates in COMPASS

6/13
Experimental results

COMPASS

\[\pi_1 \rightarrow \rho \pi \]

[COMPASS, PRD 98, 2018]

- 46.0 M events
- \(\pi + p \rightarrow 3\pi + p \) at 190 GeV/c
- 11 bins
 \(0.1 < t' < 1.0 \) (GeV/c)^2
- Result:
 \(t' \)-dependence of background
 \[m_{\pi_1} = 1600^{+110}_{-60} \text{ MeV/c}^2 \]
 \[\Gamma_{\pi_1} = 590^{+100}_{-230} \text{ MeV/c}^2 \]
Experimental results

\[\pi_1 \rightarrow \rho\pi \]

COMPASS

[COMPASS, PRD 98, 2018]

46.0 M events

\(\pi + p \rightarrow 3\pi + p \) at 190 GeV/c

11 bins

\(0.1 < t' < 1.0 \) (GeV/c)²

Result:

- \(t' \)-dependence of background
- \(m_{\pi_1} = 1600^{+110}_{-60} \) MeV/c²
- \(\Gamma_{\pi_1} = 590^{+100}_{-230} \) MeV/c²
Freed Isobar Analysis

- In conventional analysis, dynamical shape of isobars are fixed in decay amplitude.
- Free the dynamics of the isobar and fit it with data.

Experimental Results

COMPASS

![Graph showing experimental results](image)

- 46.0 M events
- $\pi + p \rightarrow 3\pi + p$ at 190 GeV/c
- 11 bins
 - $0.1 < t' < 1.0$ (GeV/c2)
- Result:
 - t'-dependence of background
 - $m_{\pi_1} = 1600^{+110}_{-60}$ MeV/c2
 - $\Gamma_{\pi_1} = 590^{+100}_{-230}$ MeV/c2

[COMPASS, PRD 98, 2018]
Experimental results

COMPASS

Freed Isobar Analysis

- In conventional analysis, dynamical shape of isobars are fixed in decay amplitude.
- Free the dynamics of the isobar and fit it with data.

Results:

- Same result as conventional fit.
- Spin-exotic wave shows clear $\rho(770)$ signature.
- Supports assumptions of isobar model.

[1] COMPASS, PRD 98, 2018

- 46.0 M events
- $\pi + p \rightarrow 3\pi + p$ at 190 GeV/c
- 11 bins
- $0.1 < t' < 1.0 \ (\text{GeV}/c)^2$

Result:

$$m_{\pi_1} = 1600^{+110}_{-60} \text{ MeV}/c^2$$

$$\Gamma_{\pi_1} = 590^{+100}_{-230} \text{ MeV}/c^2$$

David Spühlbeck
Exotic meson candidates in COMPASS
6/13
Experimental Results

Final state
- $\pi^- \eta^{(s)} (\rightarrow \pi^+ \pi^- \pi^0 / \eta (\rightarrow \gamma \gamma))$
- No modelation t'
- Precise shower description in ECALs needed

Results from other Experiments
- BNL, VES and Crystal Barrel observed two states:
 - at 1.4 GeV/c² in $\eta \pi$
 - at 1.6 GeV/c² in $\eta' \pi$

COMPASS data - $1^{-+} \eta^{(s)} \pi P$

(Gray region: ill defined phases in $\eta \pi$ data)
Experimental Results

Final state
- $\pi^- \eta^{(i)}(\rightarrow \pi^+ \pi^- \pi^0/\eta(\rightarrow \gamma\gamma))$
- No modelation t'
- Precise shower description in ECALs needed

Coupled-channel fit by JPAC
- Performed resonance model fit using K-matrix formalism
- Conclusion: one pole is sufficient to describe both!
 - $m = (1564 \pm 24 \pm 86) \text{ MeV}/c^2$
 - $\Gamma = (492 \pm 54 \pm 102) \text{ MeV}/c^2$

COMPASS data with JPAC fit - $1^- \eta^{(i)} \pi P$

COMPASS data with JPAC fit – 1$^-$$\eta^{(i)}$$\pi P$

David Spülbeck
Exotic meson candidates in COMPASS
Experimental results

Final state
- $\pi^-\eta^{(')}(\rightarrow \pi^+\pi^-\pi^0/\eta(\rightarrow \gamma\gamma))$
- No modelation t'
- Precise shower description in ECALs needed

Coupled-channel fit by JPAC
- Performed resonance model fit using K-matrix formalism
- Conclusion: one pole is sufficient to describe both!
 $m = (1564 \pm 24 \pm 86) \text{ MeV}/c^2$
 $\Gamma = (492 \pm 54 \pm 102) \text{ MeV}/c^2$

Confirmed by Kopf et al. in c.c. fit using $\bar{p}p$, π^-p and $\pi\pi$ data

COMPASS data with fit from Kopf et al.
[Kopf et al., EPJ C 81, 1056, (2021)]
Experimental results

Final state

- PWA: $\omega \pi^- \pi^0$
- Final state: $\pi^- \pi^+ \pi^- \pi^0 (\gamma \gamma) \pi^0 (\gamma \gamma)$

COMPASS data

- Selected 720k $\omega \pi^- \pi^0$ events
 → Analysis in t' possible
- New results from Partial-Wave decomposition
- Clear signal and phase motion in expected region

Results from other Experiments

- BNL and VES observed spin-exotic 1^{-+} state at ~ 1.6 GeV/c2
- BNL observed a second state
Experimental results

\[\pi_1 \rightarrow f_1(1285)\pi & K^*\overline{K} \]

\(f_1(1285)\pi^- \) at COMPASS

- Final state \(\pi^- \pi^+ \pi^- \eta(\gamma\gamma) \)
- Selected 625k \(\pi^- \pi^+ \pi^- \eta \) events
 \(\rightarrow \) Analysis in \(t' \) possible
- Next Step: PWA

![Graph showing experimental data](image)

David Spülbeck

Exotic meson candidates in COMPASS

9/13
Experimental results

\[\pi_1 \rightarrow f_1(1285)\pi \land K^*\overline{K} \]

\(f_1(1285)\pi^-\) at COMPASS

- Final state \(\pi^-\pi^+\pi^-\eta(\gamma\gamma)\)
- Selected 625k \(\pi^-\pi^+\pi^-\eta\) events
 \(\rightarrow\) Analysis in \(t'\) possible
- Next Step: PWA

\(K^*\overline{K}\) at COMPASS

- Final state \(\pi^-K^0_S(\pi^+\pi^-)K^0_S(\pi^+\pi^-)\)
- Selected 240k \(\pi^-K^0_SK^0_S\) events
 \(\rightarrow\) Analysis in \(t'\) possible
- Next Step: PWA
Exotic meson candidate in strange sector
COMPASS: Data

- $K^- + p \rightarrow K^-\pi^+\pi^-p$ at 190 GeV/c
- 720 k events
- Four t'-bins in range $0.1 < t' < 1.0$ (GeV/c)2
- Limited by PID in spectrometer

COMPASS: Resonance-Model Fit

- Agreement with at least five established states
- Agreement with at least three not established states

PDG: Light Strange Sector

- 25 states listed, nine need further confirmation

David Spühlbeck
Exotic meson candidates in COMPASS
Light Strange-Mesons: $m < 3 \text{ GeV/c}^2$

COMPASS: Data
- $K^- + p \rightarrow K^- \pi^+ \pi^- p$ at 190 GeV/c
- 720 k events
- Four t'-bins in range $0.1 < t' < 1.0 \text{ (GeV/c)}^2$
- Limited by PID in spectrometer

Exotic state in 0^- sector?
- Constituent-Quark Model predicts two excited states
- Three exitated signals are observed

PDG: Light Strange Sector
- 25 states listed, nine need further confirmation

Exotic meson candidates in COMPASS

David Spülbeck

11/13
Exotic state in 0^- sector?

- Only $0^-0^+ \rho(770)KP$ wave is reliable
- Three resonances needed:
 1. $K(1460)$ fixed PDG values $m = 1482.4 \text{ MeV/c}^2$ and $\Gamma = 335.6 \text{ MeV/c}^2$
 2. $K(1630)$, $m = 1687 \pm 10^{+2}_{-67} \text{ MeV/c}^2$ and $\Gamma = 140 \pm 20^{+50}_{-50} \text{ MeV/c}^2$ ($\sigma = 8.3$)
 3. $K(1830)$, $m = 1893 \pm 17^{+13}_{-39} \text{ MeV/c}^2$ and $\Gamma = 160 \pm 40^{+60}_{-80} \text{ MeV/c}^2$
Summary & Outlook

Exotic candidate in unflavoured sector with $J^{PC} = 1^{-+} (\pi_1(1600))$:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Final state</th>
<th>Status</th>
<th>Outlook</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho \pi$</td>
<td>$\pi^- \pi^+ \pi^-$</td>
<td>-[COMPASS, PRD 98, 2018]</td>
<td>-Increase data set</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-[COMPASS, PRD 105, 2022]</td>
<td>- Use new analysis techniques</td>
</tr>
<tr>
<td>$\eta(\rho \pi)$</td>
<td>$\pi^- \pi^+ \pi^- \pi^0 /\eta$</td>
<td>-[COMPASS PLB 740, (2015)]</td>
<td>- Increase data set</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-[JPAC, PRL 122 (2019)]</td>
<td>- Improve shower reconstruction</td>
</tr>
<tr>
<td>$b_1 \pi$</td>
<td>$\omega \pi^- \pi^0$</td>
<td>- Partial-Wave Decomposition</td>
<td>- Resonance-Model Fit</td>
</tr>
<tr>
<td>$f_1(1285)\pi$</td>
<td>$\pi^- \pi^+ \pi^- \pi^0$</td>
<td>- Event Selection</td>
<td>- PWA</td>
</tr>
<tr>
<td>$K^* K$</td>
<td>$K_S \bar{K}_S \pi$</td>
<td>- Event Selection</td>
<td>- PWA</td>
</tr>
</tbody>
</table>

Exotic candidate in strange sector:

- Analysis limited by PID
- Clear evidence for three excited states in $J^P = 0^-$ sector
 → Exotic candidate $K(1630)$

Outlook:

- $K^- + p \rightarrow K_S^0 \pi^- + p \& K^- + p \rightarrow \Lambda \bar{p} + p$
Back Up
Freed Isobar Analysis

- In conventional analysis, dynamical shape of isobars are fixed in decay amplitude.
- Free the dynamics of the isobar and fit it with data:

\[I(\tau_i) = \left| \sum_{a} \sum_{k} T_{a,k} \Psi'_{a,k}(\tau_i) \right|^2 \]

with

\[T_a \rightarrow T_{a,k} = T_a \mathcal{J}_{a,k} \]

- The set \(\mathcal{J}_{a,k} \) describes the dynamics of the isobar in wave \(a \).

Results:

- Same result as conventional fit.
- Spin-exotic wave shows clear \(\rho(770) \) signature.
- Supports assumptions of isobar model.

\[\begin{align*}
0.69 &< m_{3\pi} < 0.91 \\
0.326 &< t' < 1.000 \text{ (GeV/c)}^2
\end{align*} \]
Updated kinematic distributions: $\eta^{(')}\pi ^-$

David Spühlbeck

Exotic meson candidates in COMPASS

16/13
Final state

- PWA: $\omega\pi^-\pi^0$
- Final state: of $\pi^-\pi^+\pi^-\pi^0(\gamma\gamma)\pi^0(\gamma\gamma)$

COMPASS data

- Selected 720k $\omega\pi^-\pi^0$ events
 → Analysis in t' possible
- New results from Partial-Wave decomposition
- Clear signal in expected region

Results from other Experiments

- BNL and VES observed spin-exotic 1^{++} state at ~ 1.6 GeV/c^2
- BNL observed a second state
LQCD: if $\pi_1 \rightarrow \rho \omega$ is present, then it is very small
Kinematic distributions: $X \rightarrow f_1(1285)\pi^-$

$1.232 < m_{\pi\pi\eta} < 1.332$ (GeV/c^2)

Events / (40 MeV/c^2)

$m_{\pi\pi\eta}$ [GeV/c^2]

$\cos \theta_{GJ}$
Study of limited PID

Preliminary

0.10 \leq t' < 1.00 \text{(GeV/c)}^2

COMPASS Main Studies

David Spulbeck

Exotic meson candidates in COMPASS
Kinematic Distributions: $K^- + p \rightarrow K_S^0 \pi^- + p$

Graphs:

1. **Left Graph:**
 - **Label:** $m_{K_S\pi}$ [GeV/c2]
 - **Y-axis:** Events / (5 MeV/c2) × 103
 - **Data Points:**
 - $K^+(892)$
 - $K^*_2(1430)$

2. **Right Graph:**
 - **Label:** $m_{K_S\pi}$ [GeV/c2]
 - **X-axis:** $m_{K_S\pi}$ [GeV/c2]
 - **Y-axis:** $\cos \theta_{GJ}$
 - **Color Bar:**
 - 0
 - 11
 - 22

Legend:
- **COMPASS $K_S^0 \pi^-$**
- **$K_S^0 \pi^-$ COMPASS**
- **Preliminary**