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Studies of Excited Light Mesons at COMPASS



Different Hadronic Final States
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— search for ag, a,

— Probe for same resonances in different channels: Systematics!
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— search for ag, a,

— Probe for same resonances in different channels: Systematics!



Partial-Wave Analysis TLT

Two Steps: Krimy, t) = | Y T,(my. )y (z:my)

1) mass-independent fit

model I(my,1;7,) in (my, ) bins d
— factorization in 7 (my, ') and v, (7; my) X~
— parametrize 7, as step-wise functions

— extract constant 7, in each bin

2) mass-dependent fit: model resonances 100 10" p(770) 7 §

: : i ) '<0. eV/c)
1. results of first step: input - O el surer
- Resonances
2. )(2 fit of resonant + background L 0 Nonres. comp.
parameterization to subset of T (1, t') =
9\
2 01k
=
— resonance parameters = physics E
O.SLHIIHHI{S” 2 I”2.5
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Details of the Partial-Wave Decomposition in: COMPASS Collaboration, Phys. Rev. D 95 (2017) 032004, arXiv:1509.00992 [hep-ex]. ©



Ambiguities in the Partial-Wave Decomposition of
the KgK_ Final State



Ambiguities in the Partial-Wave Decomposition TLTI

For any final state with two spinless particles (zx, KK, nr, ...):

Decomposition of intensity into {77} is not unique

lead to the same 1(9, qb) in each (my, t') bin

I<0’ ¢) = 2 Tﬁ\} Wm0, P) Z W0, P)

JM JM

Cannot distinguish between the mathematically equivalent solutions!



Ambiguities in the Partial-Wave Decomposition TLTI
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Chung, PRD 56 7299-7316 (1997) Barrelet, Nuov Cim A 8, 331-371 (1972)



Ambiguities in the Partial-Wave Decomposition TLTI
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Conjugation of roots — different solution! *# {1}



Study of Ambiguities TUM
Study Continuous Intensity Model JPC

17 p(1450)
Input: 2+t a,(1320),a,(1700)
- amplitude model for four selected partial waves 33—~ None
- my-dependence by Breit-Wigner amplitudes 4++ a,(1970)
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Study of Ambiguities

Calculate Ambiguous Solutions:

« Ambiguous intensities are also

continuous in my

e Not all solutions are different from each

other!

« Highest-spin (417) intensity is invariant!
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Study of Ambiguities

Pseudo-Data Study

e generate pseudo-data according to model
(10° events)

e perform a partial-wave decomposition fit

— 3000 attempts with random start values

Ambiguous Solutions from Fit:
« 4*T intensity is still invariant!

e Overall, amplitude values found by the fit
follow the calculated distributions

 Not all solutions are found in each m, bin

— PWD fit distorts the intensity
distribution!
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Resolving Ambiguities TLT

 highest-spin wave is unaffected by ambiguities
e Including M > 2 — additional angular structure — resolves ambiguities

« Remove one wave with J < J.

max — resolves ambiguities
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— next: other possible solution




Continuity Constraints for Partial-\Wave Analyses



Challenges of the z7 7~z Final State um

7~ 7T Final State: T
* no ambiguities \\o—.—.

» large amount of data P X~

Different Challenges:

* many contributing signals

* need to consider many partial-waves

* new signals are small / hidden among large ones

* selection of partial-wave model source of systematic uncertainty
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Continuous Amplitude Models TUM

Limitations of conventional PWA:
* Binned analysis limits statistics, especially for small signals
* We need to select (“small’’) subset of partial waves to include in the model

— important source of systematic uncertainty

More prior knowledge about T(my, t’):
» Physics should be (mostly) continuous in m, and ¢’

— Solutions in close-by bins should be similar — correlations
« Amplitudes should follow phase-space and production kinematics

— use this information
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Continuous Amplitude Models

— Replace discrete amplitudes with smooth, non-parametric

Use of this information to stabilize partial-wave decomposition: N
curves *

dl

— Incorporate kinematic factors https://ift.pages.mpcdf.de/nifty/

Reconstruction

— Include regularization for small amplitudes e

Framework by group of Torsten Enf3lin from the Max-Planck S
Institute for Astrophysics: 1 F

NIFTy: “Numerical Information Field Theory”

* Provides continuous non-parametric models
« Adapt to partial-wave analysis model
 Learns smoothness and shape of the amplitude curves

This work is done in collaboration with Jakob Knollm{ller
(TUM / ORIGINS Excellence Cluster )

: : M87* Black Hole: hitps://
A first attempt has been made together with Stefan www.moa-garching. mpa.de/

Wallner and Philipp Frank 1029092/h1202201 18



https://www.mpa-garching.mpg.de/1029092/hl202201
https://www.mpa-garching.mpg.de/1029092/hl202201
https://www.mpa-garching.mpg.de/1029092/hl202201

Verification on Simulated Data

Create Pseudo-Data and try to recover!

Input-Output Study:

1. generate MC data according to:
— smooth NIFTy model
- 81 partial-waves
— 5 resonances

2. try to recover input:

* resonance(s) (Breit-Wigner)
* nonres. component (broad curve)

« Combined signal — input model
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Input-Output Study
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Input-Output Study
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Input-Output Study
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Input-Output Study TUM
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Single-Step Resonance Model Fit

170" prS
%103 0.100 < t' < 1.000 (GreV/c)2
We can go one step further: 7t | o
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Application to KK~ Final State TUT

First attempts on simulated data: NIFTy seems to separate ambiguous solutions!

— Apply NIFTy method on ambiguity problem in KgK_

* try separate ambiguous solutions over entire mass range
 improve fit quality
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Conclusions & Outlook



Conclusions and Outlook

Ambiguities of two-body states

« ambiguous amplitudes are continuous and can be calculated
« PWD fit/finite data has an effect on ambiguous solutions

» several approaches to treat them

NIFTy + Partial-Wave Analysis:

* new approach to PWA

« continuity, kinematics and regularization
« combined with resonance-model fit

Currently:
+ NIFTy method for K 9K~
* NIFTy method successfully applied to real data

27



Thank you for your attention!
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Questions?



Backup Slides



Partial-Wave Analysis: Limitations

mass-independent fit:

- select set of partial-waves {i} — partial-wave model
* in principle: infinitely many waves

« in practice: finite data — select relevant waves

— truncate high spins: large wavepool (several hundred waves)
— select subset (otherwise unstable inference)

— partial-wave model is a large systematic uncertainty

mass-dependent fit:
« fit to mass-independent result
e approximate uncertainties as Gaussian

— source of systematic uncertainty

— How can we improve the extraction?

32



Likelihood & Thresholds



Likelihood TUm

n _
Z = ﬁe_nHP(T] 3pi’ tJ) = _e_nHI(T] 3pl

with expected number of events 71 = J I(7; My, t )d LIPS(7) ~ TTMT within one bin
Q

— maximize log(#’) — transition amplitudes in binT € C"
i

\/ M;:M;;

« within one bin the phase-space information is moved to the transition amplitudeST e C"orin
other words: the fit chooses the value

Integral Matrix Mij = J I,U(T)l-l//(f);kd LIPS(7) and M;; =
0

This way:

T |2 normalized to nmb. events

. Mii contains information of the wave opening with phase-space
« M;; =1

- M;; are overlaps of decay amplitudes
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Generative Model



Generative Model (per wave): TLUT

Modified NIFTy correlated field maker:
— fixed fluctuations to 1

— loglog average slope -4 e.g. nothing or sum of Breit-Wigners:

— flexibility Priors in masses and width

— offset Non- P tri — Lognormal

el o Parametric arameitric Prior on complex-valued scale:
g part indiv. — 2d-normal

functi . \ / (scale to set relative prior strength)
unctions as:
— coh. background if there is a parametric model

— description of transition amplitude

coherent sum

. . multiply with kinematic factor:
kinematic factor phase space of wave times production factor

scale for combined signal: 1d normal scale

Smooth Model

36



Gaussian Processes

Formalize continuity:

« Gaussian Process: Infinite dimensional multivariate normal distribution
- Continuity given by covariance function: x(x, x”)
- encode our prior knowledge within choice of x(x, x”)

— l‘_lv"
. . /
K —exp( — ) Kk =min(z,z)
21 : 20
I 1 I 1 I 1 I I I I

https://upload.wikimedia.org/wikipedia/commons/b/b4/Gaussian_process draws from prior distribution.png

How to chose k(x, x")? — learn from data — NIFTy software framework
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Model & Fit:

Bayes Theorem:
PD|{6:}H)P({0.
P60 p) = FRIEDPAGD
P(D)

* Prior: NIFTy: Generative Model — encodes:
— smoothness
— kinematic factor
— prior on resonance parameters

* Likelihood: From PWA framework:
log Z(T;|D) = ) log Z(T;| Dyg;,)
iBin

— cannot fit bins individually — likelihood calculation

needs all bins at the same time! — distribute on
multiple CPUs / machines with MPI
— needs tens to hundreds of GB of memory

» Posterior: NIFTy Model & Likelihood

— Fit to posterior

likelihood

T~

TuTi

Non-
Parametric

Parametric

\/

coherent sum

kinematic factor

scale

|

prior model

/

posterior
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Regularized Fit



MC Model: Larger Fit Model

Non-Parametric (NIFTy) + Breit-Wigner resonance = model curve
Hybrid and mass-indep. fit reconstruction (NOW: 330 waves):

Mass-Indep. Fit with reqularization:

FLAT
(107 0.100 < ' < 1.000 (GeV/c)?
14 - MC input +
- "Model curve i 1 “%"*H
12 F Mass-indep. fit

| —
(@) 00 )
T T T T T T T T T T T T

Intensity / (20 MeV /c?)

S
L I T T
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MC Model: Larger Fit Model

Non-Parametric (NIFTy) + Breit-Wigner resonance = model curve

Hybrid and mass-indep. fit reconstruction (NOW: 330 waves):

Mass-Indep. Fit with regularization:
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Verification on MC: Extended Model TUm

More realistic: consider 332 waves for fit
* mass-indep. fit: signs of overfitting bias
* single-stage fit: prior informations stabilizes fit

- still able to recover & to separate and resonant components
170" pmS FLAT
0.100 < ' < 1.000 (GeV /c)? 104 0.100 < ¢ < 1.000 (GeV /c)?

Model curve | Model curve
Mass-indep. fit | Mass-indep. fit
Resonances [

Nonres. comp.

Intensity / (20 MeV/c?)
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