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Studies of Excited Light Mesons at COMPASS



Different Hadronic Final States
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For this talk:
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• COMPASS flagship channel: 

> 100 Mio events


 and  resonances 

( ) 


→ 𝝅𝑱 𝒂𝑱

𝐽𝑃𝐶 = 0−+, 1−+, 1++, …

highly selective:


Final State: 


Final State  + dominant Pomeron exchange 


 


  search for 


𝐽𝑃𝐶 = 1−−, 2++, 3−−, …

→ 𝒂𝑱  for even 𝐽

→ a6, a′￼4

 Probe for same resonances in different channels: Systematics!→
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Partial-Wave Analysis

Details of the Partial-Wave Decomposition in: COMPASS Collaboration, Phys. Rev. D 95 (2017) 032004, arXiv:1509.00992 [hep-ex].

I(τ; mX, t′￼) = ∑
a

Ta(mX, t′￼) ψa(τ; mX)

2

PRD 98 (2018) 092003

Two Steps:


1) mass-independent fit

 model  in  bins


− factorization in  and  


− parametrize  as step-wise functions


− extract constant  in each bin


2) mass-dependent fit: model resonances

1. results of first step: input

2.  fit of resonant + background 

parameterization to subset of 


 resonance parameters = physics

𝐼(𝑚𝑋, 𝑡′￼; 𝜏𝑛) (𝒎𝑿, 𝒕′￼)
Ta(mX, t′￼) ψa(τ; mX)

𝑇𝑎

𝑇𝑎

χ2

Ta(mX, t′￼)

→



Ambiguities in the Partial-Wave Decomposition of 
the  Final StateK0

SK−



Ambiguities in the Partial-Wave Decomposition
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For any final state with two spinless particles ( ):


Decomposition of intensity into  is not unique


 Several sets of   lead to the same  in each  bin





Cannot distinguish between the mathematically equivalent solutions!

𝜋𝜋, 𝐾𝐾, 𝜂𝜋, …

{𝑇 
𝐽}

→ {𝑇 
𝐽} 𝑰(𝜽, 𝝓) (𝑚𝑋, 𝑡′￼)

𝐼(𝜃, 𝜙) = ∑
𝐽𝑀

𝑇 (1)
𝐽𝑀 𝜓𝐽𝑀(𝜃, 𝜙)

2

= ∑
𝐽𝑀

𝑇 (2)
𝐽𝑀𝜓𝐽𝑀(𝜃, 𝜙)

2
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𝑎(𝜃) =
𝑱𝐦𝐚𝐱−𝟏

∑
𝑗=0

𝑐𝑗({𝑇𝐽}) tan2𝑗(𝜃)

𝑌1
𝐽(𝜃, 0) =

𝐽−1

∑
𝑗=0

𝑦𝑗tan2𝑗𝜃

𝑎(tan2𝜃 = 𝑟𝑘) = 0root decomposition

= 𝑐({𝑇𝐽}) 
𝐽max−1

∏
𝑘=1

(tan2(𝜃) − 𝒓𝒌({𝑇𝐽})) 

“Barrelet zeros”

𝒂(𝜽)

𝐼(𝜃, 𝜙) = ∑
𝐽

𝑇𝐽 𝜓𝐽(𝜃, 𝜙)

2

= ∑
𝐽

𝑇𝐽 𝑌1
𝐽(𝜃, 0)

2

  sin𝜙
2

Polynomial in  tan2𝜃

Barrelet, Nuov Cim A 8, 331–371 (1972)Chung, PRD 56 7299–7316 (1997)
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𝐼(𝜃, 𝜙) = ∑
𝐽

𝑇𝐽 𝑌1
𝐽(𝜃, 0)

2

  sin𝜙
2

=  
𝑱𝐦𝐚𝐱−𝟏

∑
𝑗=0

𝑐𝑗({𝑇𝐽}) tan2𝑗(𝜃)

2

sin𝜙
2

= 𝑐2 
𝐽max−1

∏
𝑘=1

tan2(𝜃) − 𝒓𝒌
2
  sin𝜙

2
= 𝑐2 

𝐽max−1

∏
𝑘=1

tan2(𝜃) − 𝒓∗
𝒌 

2
  sin𝜙

2

{𝑇𝐽′￼} ≠ {𝑇𝐽}Conjugation of roots  different solution!→



Study of Ambiguities
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Study Continuous Intensity Model


Input:

• amplitude model for four selected partial waves

• -dependence by Breit-Wigner amplitudes
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Calculate Ambiguous Solutions:


• Ambiguous intensities are also 
continuous in 


• Not all solutions are different from each 
other!


• Highest-spin ( ) intensity is invariant!

mX

4++
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Pseudo-Data Study


• generate pseudo-data according to model 
(  events)


• perform a partial-wave decomposition fit

 3000 attempts with random start values


Ambiguous Solutions from Fit:


•  intensity is still invariant!


• Overall, amplitude values found by the fit 
follow the calculated distributions


• Not all solutions are found in each  bin


 PWD fit distorts the intensity 
distribution!

105

→

4++

𝑚𝑋

→

simulation simulation

simulationsimulation



Resolving Ambiguities
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• highest-spin wave is unaffected by ambiguities


• Including  additional angular structure  resolves ambiguities


• Remove one wave with   resolves ambiguities
𝑀 ≥ 2  → →

𝐽 < 𝐽max  →

 next: other possible solution→

simulation simulation simulation



Continuity Constraints for Partial-Wave Analyses



 Final State:

• no ambiguities

• large amount of data


Different Challenges:

• many contributing signals

• need to consider many partial-waves

• new signals are small / hidden among large ones

• selection of partial-wave model source of systematic uncertainty

π−π−π+

16

Challenges of the  Final State π−π−π+
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Continuous Amplitude Models

Limitations of conventional PWA:

• Binned analysis limits statistics, especially for small signals

• We need to select (“small”) subset of partial waves to include in the model


 important source of systematic uncertainty


More prior knowledge about :


• Physics should be (mostly) continuous in  and 

  Solutions in close-by bins should be similar  correlations

• Amplitudes should follow phase-space and production kinematics


 use this information


→

𝑇(𝑚𝑋, 𝑡′￼)
𝑚𝑋 𝑡′￼

→ →

→
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Continuous Amplitude Models

Use of this information to stabilize partial-wave decomposition:


 Replace discrete amplitudes with smooth, non-parametric 
curves


 Incorporate kinematic factors


 Include regularization for small amplitudes


Framework by group of Torsten Enßlin from the Max-Planck 
Institute for Astrophysics:

NIFTy: “Numerical Information Field Theory”


• Provides continuous non-parametric models

• Adapt to partial-wave analysis model

• Learns smoothness and shape of the amplitude curves

→

→
→

https://ift.pages.mpcdf.de/nifty/

This work is done in collaboration with Jakob Knollmüller

(TUM / ORIGINS Excellence Cluster )


A first attempt has been made together with Stefan 
Wallner and Philipp Frank

M87* Black Hole: https://
www.mpa-garching.mpg.de/
1029092/hl202201

https://www.mpa-garching.mpg.de/1029092/hl202201
https://www.mpa-garching.mpg.de/1029092/hl202201
https://www.mpa-garching.mpg.de/1029092/hl202201
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Verification on Simulated Data

Create Pseudo-Data and try to recover!


Input-Output Study:

1. generate MC data according to:

− smooth NIFTy model

− 81 partial-waves

− 5 resonances


2. try to recover input:


• resonance(s) (Breit-Wigner)

• nonres. component (broad curve)

• Combined signal  input model→



20

Input-Output Study
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Input-Output Study

on
go
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Input-Output Study
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Input-Output Study
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Single-Step Resonance Model Fit

We can go one step further:


for selected waves add resonant part

• from NIFTy: flexible non-res. 

background

• resonant signal sum of Breit-Wigners

• coherent sum describes  


Goal: overcome limitations of the 
conventional approach


Ti(m3π, t′￼)
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Application to  Final StateK0
SK−

First attempts on simulated data: NIFTy seems to separate ambiguous solutions!


 Apply NIFTy method on ambiguity problem in 

• try separate ambiguous solutions over entire mass range

• improve fit quality


→ 𝐾0
𝑆𝐾−

simulation simulation



Conclusions & Outlook
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Conclusions and Outlook
Ambiguities of two-body states

• ambiguous amplitudes are continuous and can be calculated

• PWD fit/finite data has an effect on ambiguous solutions

• several approaches to treat them


NIFTy + Partial-Wave Analysis:

• new approach to PWA

• continuity, kinematics and regularization

• combined with resonance-model fit


Currently:


• NIFTy method for 

• NIFTy method successfully applied to real data

𝐾0
𝑆𝐾−



Thank you for your attention!
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Partial-Wave Analysis: Limitations
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mass-independent fit:


• select set of partial-waves   partial-wave model

• in principle: infinitely many waves


• in practice: finite data  select relevant waves

− truncate high spins: large wavepool (several hundred waves)

− select subset (otherwise unstable inference)


 partial-wave model is a large systematic uncertainty


mass-dependent fit:

• fit to mass-independent result

• approximate uncertainties as Gaussian


 source of systematic uncertainty


 How can we improve the extraction? 

{i} →

→

→

→

→



Likelihood & Thresholds
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Likelihood




with expected number of events  within one bin


 maximize   transition amplitudes in bin 


Integral Matrix  and 


This way:

• within one bin the phase-space information is moved to the transition amplitudes  or in 

other words: the fit chooses the value

•  normalized to nmb. events


•  contains information of the wave opening with phase-space


•  = 1


•  are overlaps of decay amplitudes

ℒ =
n̄n

n!
e−n̄

n

∏
j

P(τ j; mj
3pi, t′￼j) =

1
n!

e−n̄
n

∏
j

I(τ j; mj
3pi, t′￼j)

n̄ = ∫Ω
I(τ; m3pi, t′￼)d LIPS(τ) ≈ ⃗T †M ⃗T

→ log(ℒ) → ⃗T ∈ ℂn

M̃ij = ∫Ω
ψ(τ)iψ(τ)*j d LIPS(τ) Mij =

M̃ij

M̃iiM̃jj

⃗T ∈ ℂn

|Ti |
2

M̃ii
Mii
Mij



Generative Model
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Generative Model (per wave):

Non-
Parametric Parametric

coherent sum

kinematic factor

scale

e.g. nothing or sum of Breit-Wigners:

Priors in masses and width


 Lognormal

Prior on complex-valued scale:


 2d-normal

(scale to set relative prior strength) 

→

→

Modified NIFTy correlated field maker:

 fixed fluctuations to 1

 loglog average slope -4

 flexibility

 offset


for real and imag part indiv.


functions as:

 coh. background if there is a parametric model

 description of transition amplitude  

→
→
→
→

→
→

multiply with kinematic factor:

phase space of wave times production factor

scale for combined signal: 1d normal

Smooth Model



Formalize continuity:


• Gaussian Process: Infinite dimensional multivariate normal distribution

• Continuity given by covariance function: 

• encode our prior knowledge within choice of 


How to chose ?  learn from data  NIFTy software framework

κ(x, x′￼)
κ(x, x′￼)

κ(x, x′￼) → →

37

Gaussian Processes

https://upload.wikimedia.org/wikipedia/commons/b/b4/Gaussian_process_draws_from_prior_distribution.png

https://upload.wikimedia.org/wikipedia/commons/b/b4/Gaussian_process_draws_from_prior_distribution.png
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Model & Fit:

Non-
Parametric

Parametric

coherent sum

kinematic factor

scale

likelihood prior model

posterior

Bayes Theorem:             




• Prior: NIFTy: Generative Model  encodes:

− smoothness 

− kinematic factor

− prior on resonance parameters


• Likelihood: From PWA framework:




− cannot fit bins individually  likelihood calculation 
needs all bins at the same time!  distribute on 
multiple CPUs / machines with MPI


− needs tens to hundreds of GB of memory


• Posterior: NIFTy Model & Likelihood


 Fit to posterior


P({θi} |D) =
P(D |{θi})P({θi})

P(D)

→

log ℒ(Ti |D) = ∑
iBin

log ℒ(Ti |DiBin)

→
→

→



Regularized Fit



Non-Parametric (NIFTy) + Breit-Wigner resonance = model curve


Hybrid and mass-indep. fit reconstruction (NOW: 330 waves):


Mass-Indep. Fit with regularization:

40

MC Model: Larger Fit Model
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Non-Parametric (NIFTy) + Breit-Wigner resonance = model curve


Hybrid and mass-indep. fit reconstruction (NOW: 330 waves):


Mass-Indep. Fit with regularization:
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MC Model: Larger Fit Model
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More realistic: consider 332 waves for fit

• mass-indep. fit: signs of overfitting bias

• single-stage fit: prior informations stabilizes fit

• still able to recover input & to separate non-res. and resonant components
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Verification on MC: Extended Model


