COMPASS Results on Pion and Kaon Multiplicities from SIDIS on Proton Target

M. Stolarski LIP

On behalf of the COMPASS Collaboration

19 X 2023

COMPASS at CERN

M. Stolarski (LIP)

COMPASS Spectrometer 2016

TARGET

- Liquid H target
- 250 cm total length
- BEAM

•
$$\mu^\pm$$
 at 160 GeV/ c

- FEATURES
 - $\bullet\,$ angular acceptance: $\pm 180\,$ mrad
 - track reconstruction:

 $p > 0.5 \,\,{
m GeV}/c$

- identification *h*, *e*, *µ*: calorimeters and muon filters
- identification: π , K, p (RICH)
 - p> 2, 9, 18 GeV/c respectively

- COLLABORATION
 - about 210 physicists
 - 27 institutes

DETECTOR

- two stage spectrometer
- 60 m length
- about 350 detector planes

Motivation

- Fragmentation functions (FF(s), D_q^h) describe parton fragmentation into hadrons
- FFs are needed in analyses which deal with a hadron(s) in the final state
- In Leading Order QCD D_q^h describes probability density for a quark of flavour q to fragment into a hadron of type h
- The cleanest way to access FFs is in e^+e^- annihilation. However,
 - only sensitive to the sum of $q + ar{q}$ fragmentation
 - flavour separation possibilities are limited
- In the SIDIS ($\mu^{\pm} + p \rightarrow \mu^{\pm'} + h + X$) data, FF are convoluted with PDFs. However,
 - possibility to separate fragmentation from q and $ar{q}$
 - full flavour separation possible
- By studying pp collisions with high p_T hadrons, access to gluon fragmentation functions
- SIDIS data are crucial to understand quark fragmentation process

Multiplicity Measurement

- Fragmentation studies in SIDIS can be done using hadron multiplicity data
- Hadron multiplicities are defined as number of observed hadrons per DIS event
- $\frac{dM^h(x,z,Q^2)}{dz} = \frac{d^3\sigma^h(x,z,Q^2)/dxdQ^2dz}{d^2\sigma^{DIS}(x,Q^2)/dxdQ^2}$
- Experimentally measured hadron multiplicities need to be corrected for various effects e.g.
 - spectrometer acceptance and reconstruction program efficiency
 - RICH efficiency and purity (for π and K)
 - radiative corrections
 - diffractive vector meson production
- COMPASS already published several articles based on isoscalar target data
 - PLB 764 (2017) 001
 - PLB 767 (2017) 133
 - PRD 97 (2018) 032006
 - PLB 786 (2018) 390
 - PLB 807 (2020) 135600
- Today, preliminary results from the proton target are presented

Radiative Corrections

- Correction due to radiative effects is a multiplicative factor to the multiplicity itself, and can be large, especially at low x and high y
- The DJANGOH programme is used for RC simulations
- It was tested against COMPASS data and the TERAD program
- Some early results were shown already in 2019

Radiative Corrections cont.

- COMPASS was always showing results with and without our estimate for RC
- Thus, new results can be easily implemented to older COMPASS multiplicity papers
- Note: according to our present knowledge the data from PLB 764 (2017) 001 (π^{\pm}, h^{\pm}) need correction sometimes above 10%

Data Selection - Main Cuts

- DIS selection:
 - Reconstructed μ and $\mu'\text{,}$
 - $Q^2 > 1 \; (\text{GeV}/c)^2$
 - $W > 5 \text{ GeV}/c^2$,
 - 0.1 < y < 0.7, fraction of beam energy, *E*, carried by virtual gamma
- Hadron cuts:
 - 0.2 < z < 0.85, fraction of the virtual photon energy carried by a hadron
 - 12 GeV/c 40 GeV/<math>c, momentum cut due to RICH PID acceptance,
 - $\theta < 0.12$, |dy/dz| < 0.08, RICH acceptance
- Analysis is performed in 9 bins of Bjorken x, 5 bins of y and 12 bins of z
- To avoid the "zero-acceptance" region, DIS sample is bin-by-bin restricted using

•
$$\nu_{max} = \frac{\sqrt{p_{max}^2 + m_h^2}}{z_{max}}$$
,
• $\nu_{min} = \frac{\sqrt{p_{min}^2 + m_h^2}}{z_{min}}$,
• where $\nu = E - E'$,
• $p_{min} = 12 \text{ GeV}/c$ and $p_{max} = 40 \text{ GeV}/c$,
• z_{min} and z_{max} - correspond to the edges of a given bin in z variable.

Kinematic Distributions

- The bottom right plot shows the impact of the ν cuts on z distribution
- Total sample of events:
 - DIS: 5.5M
 - unidentified hadrons: 1.7M (π : 1.3M, K: 280k)

RESULTS

Multiplicities of Unidentified Hadrons

Multiplicities of π^+

Multiplicities of π^-

Multiplicities of K^+

Multiplicities of K^-

Sum of Pion Multiplicities

- Let $D_{fav,(unf)} = D_q^h$ where q is (not) the valence quark of h, in LO pQCD:
- For proton target in LO pQCD:

•
$$\frac{dM^{\pi^+}}{dz} + \frac{M^{\pi}}{dz} = D_{fav} + D_{unf} - \frac{s+\bar{s}}{4u+4\bar{u}+d+\bar{d}+s+\bar{s}}(D_{fav} - D_{unf}) \approx D_{fav} + D_{unf}$$

For isoscalar target in LO pQCD:

•
$$\frac{dM^{\pi^+}}{dz} + \frac{M^{\pi^-}}{dz} = D_{fav} + D_{unf} - \frac{2(s+\bar{s})}{5(u+\bar{u}+d+d)+2(s+\bar{s})}(D_{fav} - D_{unf}) \approx D_{fav} + D_{unf}$$

- Results for proton and isoscalar targets are expected to be very similar
- $D(Q^2, z) \rightarrow$ obtained from multiplicity sum is effectively independent of x

M. Stolarski (LIP)

MAINZ 2023

Sum of Kaon Multiplicities

- Contrary to pion case, here $D_s^{K^-}, D_{\bar{s}}^{K^+}$ are dominant, larger than e.g. $D_u^{K^+}$
- Since there are not too many s, s at high x, we should see some turn-on effect related to the increased density of strange quark PDFs at lower x
- Perhaps x values accessed by COMPASS is too low to assure low density of s, \bar{s}

•
$$\mathcal{M}^{K^+} + \mathcal{M}^{K^-} = \int_{0.2}^{0.85} (\frac{dM^{K^+}}{dz} + \frac{dM^{K^-}}{dz}) dz$$

Multiplicity Ratios π^-/π^+ and K^-/K^+

M. Stolarski (LIP)

MAINZ 2023

19 X 2023 18 / 21

Multiplicity Ratios K^-/K^+ and \bar{p}/p from Isoscalar Target

- In the multiplicity ratio a lot experimental and theoretical uncertainties cancel
- In LO pQCD one can calculate a lower limit for the ratio

•
$$R_K(x, Q^2, z) = \frac{\mathrm{d}M^{\overline{K^-}(x, Q^2, z)/\mathrm{d}z}}{\mathrm{d}M^{\overline{K^+}(x, Q^2, z)/\mathrm{d}z}} = \frac{4(\bar{u}+\bar{d})D_{\mathrm{fav}} + (5\bar{u}+5\bar{d}+\bar{u}+\bar{d}+s+\bar{s})D_{\mathrm{unf}} + (s+\bar{s})D_{\mathrm{str}}}{4(u+d)D_{\mathrm{fav}} + (5\bar{u}+5\bar{d}+u+d+s+\bar{s})D_{\mathrm{unf}} + (s+\bar{s})D_{\mathrm{str}}}$$

• $R_p(x, Q^2, z) = \frac{\mathrm{d}M^{\bar{p}}(x, Q^2, z)/\mathrm{d}z}{\mathrm{d}M^p(x, Q^2, z)/\mathrm{d}z} = \frac{(5\bar{u}+5\bar{d})D_{fav} + (5u+5d+2s+2\bar{s})D_{unf}}{(5u+5d)D_{fav} + (5\bar{u}+5d+2s+2\bar{s})D_{unf}}$

• D_{unf} is expected to be small at large z, thus can be neglected

•
$$R_K = rac{4(ar{u}+d)D_{\mathrm{fav}}+(\mathbf{s}+ar{\mathbf{s}})D_{\mathrm{str}}}{4(\mathbf{u}+d)D_{\mathrm{fav}}+(\mathbf{s}+ar{\mathbf{s}})D_{\mathrm{str}}}$$

• $R_p = rac{ar{u}+ar{d}}{u+d}$

• since $(s + \bar{s})D_{str}$ is positive, it can also be neglected for the lower limit calculation

•
$$R_K > \frac{\bar{u} + \bar{d}}{u + d}$$

• $R_p > \frac{\bar{u} + \bar{d}}{u + d}$

- The lower limits predicted by LO pQCD for R_K and R_p are the same
- R_K expected to be 10-15% higher than R_p because of D_{str}
- R_{π} suffers from large contamination of decay products of diffractive ho^0

M. Stolarski (LIP)

Multiplicity Ratios K^-/K^+ and \bar{p}/p from Isoscalar Target cont.

- Results published PLB 786 (2018) 390 and PLB 807 (2020) 135600
- At high z multiplicity ratio for K⁻/K⁺ and p
 /p in data are below lower limits expected from pQCD in (N)LO
- Kaon results presented for x < 0.05
- Effect more pronounced for \bar{p}/p and starts at lower z

- SIDIS data are crucial for understanding quark fragmentation into hadrons
- COMPASS already published several papers based on isoscalar data analysis
- Today, results for $h^{\pm}, \pi^{\pm}, K^{\pm}$ multiplicities on proton target were shown
- Impact of Radiative Correction is larger than originally anticipated in early isoscalar data analyses
- Otherwise, there is a good agreement between proton and isoscalar data
- Analysis is considered as finished paper is in preparation