Strange-Meson Spectroscopy with COMPASS

Stefan Wallner for the COMPASS collaboration (swallner@mpp.mpg.de)

Max Planck Institute for Physics

20th International Conference on Hadron Spectroscopy and Structure June 8, 2023

MAX PLANCK INS

FOR PHYSICS

The Strange-Meson Spectrum

Understanding the light-meson spectrum

- Completing SU(3)_{flavor} multiplets
- Identifying supernumerous states
 - ➡ Search for exotic strange mesons

nput to other fields of physics

- Strange mesons appear as resonances in multi-body hadronic final states with kaons
- Searches for CP violation
- Searches for physics beyond SM

The Strange-Meson Spectrum

Understanding the light-meson spectrum

- Completing SU(3)_{flavor} multiplets
- Identifying supernumerous states
 - ➡ Search for exotic strange mesons

Input to other fields of physics

- Strange mesons appear as resonances in multi-body hadronic final states with kaons
- Searches for CP violation
- Searches for physics beyond SM

The Strange-Meson Spectrum

PDG lists 25 strange mesons

- 16 established states, 9 need further confirmation
- Missing states with respect to quark-model predictions
- Many measurements performed more than 30 years ago

Strange-Meson Spectroscopy with COMPASS COMPASS Setup for Hadron Beams

TAR Agatt [COMPASS, Nucl. Instrum, Methods 779 (2015) 69]

Strange-Meson Spectroscopy with COMPASS

Production of Strange Mesons

- Diffractive scattering of high-energy kaon beam
- Strange mesons appear as intermediate resonances X^-
- Decay to multi-body hadronic final states
- \blacktriangleright $K^-\pi^-\pi^+$ final state
 - Study in principle all strange mesons
 - Study a wide mass range
 - Study different decay mod

Strange-Meson Spectroscopy with COMPASS

Production of Strange Mesons

- Diffractive scattering of high-energy kaon beam
- Strange mesons appear as intermediate resonances X⁻
- Decay to multi-body hadronic final states
- $K^-\pi^-\pi^+$ final state
 - Study in principle all strange mesons
 - Study a wide mass range
 - Study different decay modes

Strange-Meson Spectroscopy with COMPASS The ${\cal K}^-\pi^-\pi^+$ Data Sample

- World's largest data set of about 720 k events
- Rich spectrum of overlapping and interfering X⁻
 - Dominant well known states
 - States with lower intensity are "hidden"

Partial wave: $J^P M^{\varepsilon} \xi b^- L$

- ► *J^P* spin and parity
- M^e spin projection
- ξ isobar resonance
- ▶ b[−] bachelor particle
- L orbital angular momentum

Partial wave: $J^P M^{\varepsilon} \xi b^- L$

- ► *J^P* spin and parity
- ▶ *M^ε* spin projection
- ξ isobar resonance
- ▶ b[−] bachelor particle
- L orbital angular momentum

Data: 720 k diffractively produced $K^-\pi^-\pi^+$ candidates

Strange-Meson Spectroscopy with COMPASS

- Partial-wave amplitudes in $(m_{K\pi\pi}, t')$ bins
 - Inferred wave set from data using regularization-based model-selection techniques
 - Bootstrap resampling to improve uncertainty estimates
 - Detailed Monte Carlo input-output studies
- Model m_{Kππ} dependence of partial-wave amplitudes
- Breit-Wigner amplitudes for K⁻π⁻π⁺ resonance components
- Coherent non-resonant component parameterizing other $K^-\pi^-\pi^+$ production mechanisms
- Developed scheme to handle incoherent backgrounds
 - Incoherent background from π⁻ diffraction to π⁻π⁻ explicitly modeled by COMPASS π⁻π⁻π⁺ analysis
 - Incoherent effective background component parameterizing other background processes

- Partial-wave amplitudes in $(m_{K\pi\pi}, t')$ bins
 - Inferred wave set from data using regularization-based model-selection techniques
 - Bootstrap resampling to improve uncertainty estimates
 - Detailed Monte Carlo input-output studies
- Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- Breit-Wigner amplitudes for K⁻π⁻π⁺ resonance components
- Coherent non-resonant component parameterizing other $K^-\pi^-\pi^+$ production mechanisms
- Developed scheme to handle incoherent backgrounds
 - Incoherent background from π⁻ diffraction to π⁻π⁻
 explicitly modeled by COMPASS π⁻π⁻π⁺ analysis
 - Incoherent effective background component parameterizing other background processes

- Partial-wave amplitudes in $(m_{K\pi\pi}, t')$ bins
 - Inferred wave set from data using regularization-based model-selection techniques
 - Bootstrap resampling to improve uncertainty estimates
 - Detailed Monte Carlo input-output studies
- Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- Breit-Wigner amplitudes for $K^-\pi^-\pi^+$ resonance components
- Coherent non-resonant component parameterizing other $K^-\pi^-\pi^+$ production mechanisms
- Developed scheme to handle incoherent backgrounds
 - Incoherent background from π⁻ diffraction to π⁻π⁻
 explicitly modeled by COMPASS π⁻π⁻π⁺ analysis
 - Incoherent effective background component parameterizing other background processes

- Partial-wave amplitudes in $(m_{K\pi\pi}, t')$ bins
 - Inferred wave set from data using regularization-based model-selection techniques
 - Bootstrap resampling to improve uncertainty estimates
 - Detailed Monte Carlo input-output studies
- Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- Breit-Wigner amplitudes for K⁻π⁻π⁺ resonance components
- Coherent non-resonant component parameterizing other $K^-\pi^-\pi^+$ production mechanisms
- Developed scheme to handle incoherent backgrounds
 - Incoherent background from π^- diffraction to $\pi^-\pi^$ explicitly modeled by COMPASS $\pi^-\pi^-\pi^+$ analysis
 - Incoherent effective background component parameterizing other background processes

- Partial-wave amplitudes in $(m_{K\pi\pi}, t')$ bins
 - Inferred wave set from data using regularization-based model-selection techniques
 - Bootstrap resampling to improve uncertainty estimates
 - Detailed Monte Carlo input-output studies
- Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- Breit-Wigner amplitudes for $K^-\pi^-\pi^+$ resonance components
- Coherent non-resonant component parameterizing other $K^-\pi^-\pi^+$ production mechanisms
- Developed scheme to handle incoherent backgrounds
 - lncoherent background from π^- diffraction to $\pi^-\pi^-\pi^$ explicitly modeled by COMPASS $\pi^-\pi^-\pi^+$ analysis
 - Incoherent effective background component parameterizing other background processes

- Partial-wave amplitudes in $(m_{K\pi\pi}, t')$ bins
 - Inferred wave set from data using regularization-based model-selection techniques
 - Bootstrap resampling to improve uncertainty estimates
 - Detailed Monte Carlo input-output studies
- Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- Breit-Wigner amplitudes for $K^-\pi^-\pi^+$ resonance components
- Coherent non-resonant component parameterizing other $K^-\pi^-\pi^+$ production mechanisms
- Developed scheme to handle incoherent backgrounds
 - ► Incoherent background from π^- diffraction to $\pi^-\pi^-\pi^+$ explicitly modeled by COMPASS $\pi^-\pi^-\pi^+$ analysis
 - Incoherent effective background component parameterizing other background processes

- Partial-wave amplitudes in $(m_{K\pi\pi}, t')$ bins
 - Inferred wave set from data using regularization-based model-selection techniques
 - Bootstrap resampling to improve uncertainty estimates
 - Detailed Monte Carlo input-output studies
- Model $m_{K\pi\pi}$ dependence of partial-wave amplitudes
- Breit-Wigner amplitudes for K⁻π⁻π⁺ resonance components
- Coherent non-resonant component parameterizing other $K^-\pi^-\pi^+$ production mechanisms
- Developed scheme to handle incoherent backgrounds
 - ► Incoherent background from π^- diffraction to $\pi^-\pi^-\pi^+$ explicitly modeled by COMPASS $\pi^-\pi^-\pi^+$ analysis
 - Incoherent effective background component parameterizing other background processes

- Simultaneously included 14 partial waves in resonance-model fit
- Modeled by 13 strange-meson resonance components
- Using measured intensities and interference terms (relative phases)

A+ Ay >it

PDG

► $K_2^*(1430)$ well known resonance

- ► K₂*(1430) signal
 - $m_0 = (1430.9 \pm 1.4^{+3.1}_{-1.5}) \text{ MeV}/c^2$ • $\Gamma_0 = (111 \pm 3^{+4}_{-16}) \text{ MeV}/c^2$
- In different decays
 - ▶ ρ(770) K D
 - K*(892) π D
- In agreement with previous measurements
- Cleaner signal in COMPASS data

- ► K₂*(1430) signal
 - $m_0 = (1430.9 \pm 1.4^{+3.1}_{-1.5}) \text{ MeV}/c^2$ • $\Gamma_0 = (111 \pm 3^{+4}_{-16}) \text{ MeV}/c^2$
- In different decays
 - ρ(770) K D
 - K^{*}(892) π D
- In agreement with previous measurements
- Cleaner signal in COMPASS data

- In agreement with previous measurements
- Cleaner signal in COMPASS data

WA03 (CERN), 200 000 events, ACCMOR, Nucl. Phys. B 187 (1981)

PDG

- Established $K_2(1770)$ and $K_2(1820)$
- \blacktriangleright K₂(2250) need further confirmation

- ▶ Simultaneously fit 4 waves with $J^P = 2^-$
- 1.8 GeV/c² peak modeled by K₂(1770), K₂(1820)
- High-mass shoulder modeled by $K_2(2250)$
- Different intensity spectra and large phase motions among 2⁻ waves

- Simultaneously fit 4 waves with $J^P = 2^-$
- 1.8 GeV/c² peak modeled by K₂(1770), K₂(1820)
- High-mass shoulder modeled by $K_2(2250)$
- Different intensity spectra and large phase motions among 2⁻ waves

$K_2(1770)$ and $K_2(1820)$

- ▶ Two states were considered by only three measurements ACCMOR, LASS, LHCb
- Only LHCb measurement could confirm two states (3 σ statistical significance)
- We observe two sates with 11σ statistical significance

$K_2(1770)$ and $K_2(1820)$

- ► Two states were considered by only three measurements ACCMOR, LASS, LHCb
- Only LHCb measurement could confirm two states (3 σ statistical significance)
- \blacktriangleright We observe two sates with $11\,\sigma$ statistical significance

$K_2(2250)$

- Studied so far mainly in $\overline{\Lambda}^{'}\overline{\rho}^{'}$ final states
- First simultaneous measurement of $K_2(1770)$, $K_2(1820)$, and $K_2(2250)$
- Resonance parameters consistent with previous observations

PDG

- ► *K*(1460) and *K*(1830)
- ► K(1630)
 - Unexpectedly small width of only $16 \text{ MeV}/c^2$
 - ▶ J^P of K(1630) unclear

PDG

- ► *K*(1460) and *K*(1830)
- ► K(1630)
 - Unexpectedly small width of only $16 \text{ MeV}/c^2$
 - J^P of K(1630) unclear

COMPASS $K^-\pi^-\pi^+$ data

- Peak at about 1.4 GeV/ c^2
 - Established K(1460)
 - But, $m_{K\pi\pi} \lesssim 1.5 \, {\rm GeV}/c^2$ region affected by known analysis artifacts

$^\circ$ Second peak at about 1.7 GeV/ c^2

- K(1630) signal with 8.3 σ statistical significance
 Accompanied by rising phase
- Weak signal at about 2.0 GeV/c

K(1830) signal with 5.4 σ statistical significance

total resonance model, resonances, non-resonant, $\pi\pi\pi$ background, effective background

COMPASS $K^-\pi^-\pi^+$ data

- Peak at about 1.4 GeV/ c^2
 - Established K(1460)
 - But, $m_{K\pi\pi} \lesssim 1.5 \, {\rm GeV}/c^2$ region affected by known analysis artifacts
- Second peak at about 1.7 GeV/c²
 - K(1630) signal with 8.3 σ statistical significance
 - Accompanied by rising phase
- Weak signal at about 2.0 GeV/c

K(1830) signal with 5.4 σ statistical significance

total resonance model, resonances, non-resonant, $\pi\pi\pi$ background, effective background

COMPASS $K^-\pi^-\pi^+$ data

- Peak at about 1.4 GeV/ c^2
 - Established K(1460)
 - But, $m_{K\pi\pi} \lesssim 1.5 \, {\rm GeV}/c^2$ region affected by known analysis artifacts
- Second peak at about 1.7 GeV/c²
 - K(1630) signal with 8.3 σ statistical significance
 - Accompanied by rising phase
- Weak signal at about 2.0 GeV/c

K(1830) signal with 5.4 σ statistical significance

total resonance model, resonances, non-resonant, $\pi\pi\pi$ background, effective background

COMPASS $K^{-}\pi^{-}\pi^{+}$ data

- Peak at about 1.4 GeV/ c^2
 - Established K(1460)
 - ▶ But, $m_{K\pi\pi} \lesssim 1.5 \,\text{GeV}/c^2$ region affected by known analysis artifacts
- Second peak at about 1.7 GeV/c²
 - K(1630) signal with 8.3 σ statistical significance
 - Accompanied by rising phase
- Weak signal at about 2.0 GeV/c²
 - K(1830) signal with 5.4 σ statistical significance

- ► K(1830) parameters in good agreement with LCHb measurement [PRL 118 (2017) 022003]
- Expected K(1630) width of about 140 MeV/ c^2

- Indications for 3 excited K from a single analysis
- Quark-model predicts only two excited states: potentially K(1460) and K(1830)
- \blacktriangleright K(1630) supernumerary signal
- Solution Candidate for exotic non- $q\bar{q}$ state; other explanations possible ($K^*(892) \omega$ threshold nearby)

Indications for 3 excited K from a single analysis

- Quark-model predicts only two excited states: potentially K(1460) and K(1830)
 - ➡ K(1630) supernumerary signal
 - Solution Candidate for exotic non- $q\bar{q}$ state; other explanations possible ($K^*(892) \omega$ threshold nearby)

- Indications for 3 excited K from a single analysis
- Quark-model predicts only two excited states: potentially K(1460) and K(1830)
 - ➡ K(1630) supernumerary signal
 - Candidate for exotic non- $q\bar{q}$ state; other explanations possible ($K^*(892) \omega$ threshold nearby)

The Strange-Meson Spectrum

- Many strange mesons require further confirmation
- Search for strange partners of exotic non-strange light mesons

COMPASS

- World's largest data sample on $K^-\pi^-\pi^+ \Rightarrow$ Most detailed and comprehensive analysis
- Candidate for exotic strange-meson signal with $J^P = 0^-$

COMPASS

- World's largest data sample on $K^-\pi^-\pi^+ \Rightarrow$ Most detailed and comprehensive analysis
- Candidate for exotic strange-meson signal with $J^P = 0^-$

► Goal: Collect $10 - 20 \times 10^6 \ K^- \pi^- \pi^+$ events using high-intensity and high-energy kaon beam

AMBER is open for interested collaborators to join

COMPASS

- World's largest data sample on $K^-\pi^-\pi^+ \Rightarrow$ Most detailed and comprehensive analysis
- Candidate for exotic strange-meson signal with $J^P = 0^-$