Testing Predictions of the Chiral Anomaly in Primakoff Reactions at COMPASS

Dominik Ecker, Andrii Maltsev on behalf of the COMPASS collaboration
The chiral anomaly

- Lagrange density of QCD:

\[\mathcal{L}_{QCD} = \sum_{f=u,d,s, c,b,t} \bar{q}_f (i \gamma^\mu \not{\psi} - m_f) q_f - \frac{1}{4} G_{\mu \nu}^a G_a^{\mu \nu} \]
The chiral anomaly

• Lagrange density of QCD:

\[\mathcal{L}_{QCD} = \sum_{f=u,d,s,} \bar{q}_f (i\slashed{\partial} - m_f) q_f - \frac{1}{4} G^{\alpha}_{\mu\nu} G^{\mu\nu}_{\alpha} \]

Symmetry breaking term: \(m_f = \begin{pmatrix} m_u & m_d & m_s \end{pmatrix} \)

Chiral limit: \(m_u, m_d, m_s = 0 \)
The chiral anomaly

- Lagrange density of QCD:
 \[\mathcal{L}_{QCD} = \sum_{f=u,d,s,c,b,t} \bar{q}_f (i\not{\partial} - m_f) q_f - \frac{1}{4} G_{\mu \nu}^a G_a^{\mu \nu} \]

- Features axial $U(1)$-symmetry in chiral limit:
 \[q(x) \rightarrow e^{i\theta \gamma_5} q(x) \]
The chiral anomaly

• Lagrange density of QCD:
\[\mathcal{L}_{QCD} = \sum_{f=u,d,s,c,b,t} \bar{q}_f(i\gamma^5 - m_f)q_f - \frac{1}{4} G_{\mu\nu}^a G_a^{\mu\nu} \]

• Features axial $U(1)$-symmetry in chiral limit:
\[q(x) \to e^{i\theta \gamma_5} q(x) \]

\[\partial_\mu A_0^\mu = \sum_{f=u,d,s} i2m_f \bar{q}_f \gamma_5 q^f \]
The chiral anomaly

• Lagrange density of QCD:

\[\mathcal{L}_{QCD} = \sum_{f=u,d,s} \bar{q}_f (i\slashed{D} - m_f) q_f - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_a \]

• Features axial $U(1)$-symmetry in chiral limit:

\[q(x) \rightarrow e^{i\theta \gamma_5} q(x) \]

\[\partial_\mu A_0^\mu = \sum_{f=u,d,s} i 2m_f q_f \gamma_5 q^f \]
The chiral anomaly

- Lagrange density of QCD:
 \[\mathcal{L}_{QCD} = \sum_{f=\text{u,d,s, } c, b, t} \bar{q}_f (i\not\!\!\!D - m_f) q_f - \frac{1}{4} G_{\mu\nu}^a G_a^{\mu\nu} \]

- Features axial $U(1)$-symmetry in chiral limit:
 \[q(x) \rightarrow e^{i\theta \gamma_5} q(x) \]

\[\partial_\mu A_0^\mu = \sum_{f=u,d,s} i2m_f \bar{q}_f \gamma_5 q^f + \frac{3\alpha_s}{4\pi} \epsilon_{\mu\nu\rho\sigma} G_{\mu\nu} \epsilon_{\rho\sigma} G_{\mu\nu} \]
The chiral anomaly

- Lagrange density of QCD:
 \[\mathcal{L}_{QCD} = \sum_{f=u,d,s,}^{c,b,t} \bar{q}_f (i\gamma^5 - m_f) q_f - \frac{1}{4} G_{\mu\nu}^a G^a_{\mu\nu} \]

- Features axial $U(1)$-symmetry in chiral limit:
 \[q(x) \rightarrow e^{i\theta_5} q(x) \]

- Anomaly: Symmetry of classical Lagrangian violated at quantum level (by renormalization choice)

\[\partial_\mu A_0^\mu = \sum_{f=u,d,s} i2m_f \bar{q}_f \gamma_5 q^f + \frac{3\alpha_s}{4\pi} \epsilon_{\mu\nu\rho\sigma} G^{\mu\nu} G_{\rho\sigma} \]
The chiral anomaly

- Lagrange density of QCD:
 \[\mathcal{L}_{QCD} = \sum_{f = u,d,s,c,b,t} \bar{q}_f (i \not{\! D} - m_f) q_f - \frac{1}{4} G_{\mu\nu}^a G_a^{\mu\nu} \]

- Features \textit{axial} \(U(1)\)-symmetry in chiral limit:
 \[q(x) \rightarrow e^{i \theta \gamma_5} q(x) \]

- \textbf{Anomaly}: Symmetry of classical Lagrangian violated at quantum level (by renormalization choice)

- Adler, Bell, Jackiw 1969: \(\tau_{\text{anom}}(\pi^0) = (9.5 \pm 1.5) \cdot 10^{-17} \text{s} \neq \tau_{\text{theory}}(\pi^0) \approx 10^{-13} \text{s} \)
The chiral anomaly

- Lagrange density of QCD:
 \[\mathcal{L}_{QCD} = \sum_{f=u,d,s} c_{b,t} \bar{q}_f (i\not{\partial} - m_f) q_f - \frac{1}{4} G_{\mu\nu}^a G_a^{\mu\nu} \]

- Features axial \(U(1) \)-symmetry in chiral limit:
 \[q(x) \rightarrow e^{i\theta \gamma_5} q(x) \]

- **Anomaly**: Symmetry of classical Lagrangian violated at quantum level (by renormalization choice)

- Adler, Bell, Jackiw 1969: \(\tau_{\text{anom}}(\pi^0) = (9.5 \pm 1.5) \cdot 10^{-17} \text{s} \)

well tested in \(\pi^0 \) decay
Anomalous processes

• Chiral anomaly governs couplings of odd number of Goldstone bosons:

<table>
<thead>
<tr>
<th>$SU(2)$ flavor</th>
<th>$SU(3)$ flavor</th>
</tr>
</thead>
<tbody>
<tr>
<td>$π^0 \rightarrow γγ$</td>
<td>$K^+K^- \rightarrow π^+π^-π^0$</td>
</tr>
<tr>
<td>$γπ^- \rightarrow π^-π^0$</td>
<td>$η \rightarrow π^+π^-γ$</td>
</tr>
<tr>
<td>$π^+ \rightarrow e^+ν_eγ$</td>
<td>$K^+ \rightarrow π^+π^-e^+ν_e$</td>
</tr>
<tr>
<td>etc.</td>
<td>etc.</td>
</tr>
</tbody>
</table>

• On tree-level: low-energy theorems with few parameters, e.g. pion decay constant $F_π$ measured from leptonic decays of the charged pion ($π^± \rightarrow μ^± + ν$)

• Higher order corrections via Chiral Perturbation Theory (ChPT)

\[F_{πγγ} = \frac{e^2N_C}{12π^2F_π} = 2.52 \cdot 10^{-2}\text{GeV}^{-1} \]

\[F_{3π} = \frac{eN_C}{12π^2F_π^3} = (9.78 ± 0.05)\text{GeV}^{-3} \]
Testing the chiral anomaly - $F_{3\pi}$

- $F_{3\pi}$: Direct coupling of γ to 3π - process proceeds primarily via the chiral anomaly

- Accessible in Primakoff reactions via: $\pi^- \gamma^* \rightarrow \pi^-\pi^0$ ultra-relativistic pion scatters in e.m. field of nucleus (characterized by very low momentum transfer)
Testing the chiral anomaly - $F_{3\pi}$

- $F_{3\pi}$: Direct coupling of γ to 3π - process proceeds primarily via the chiral anomaly

- Accessible in Primakoff reactions via: $\pi^- \gamma^* \to \pi^- \pi^0$ ultra-relativistic pion scatters in e.m. field of nucleus (characterized by very low momentum transfer)

- Problem of explicit chiral symmetry breaking:

 \[
 F_{3\pi} = \frac{eN_C}{12\pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \text{GeV}^{-3} = F(s = t = u = 0)
 \]

 We measure at $s > (2m_\pi)^2$: use ChPT to bridge "gap"

 \[
 F_{3\pi}(s, t, u) = F_{3\pi} \left(f^{(0)}(s, t, u) + f^{(1)}(s, t, u) + f^{(2)}(s, t, u) + \ldots \right)
 \]

Dominik Ecker | HADRON | 08/06/2023
Radiative width of ρ-meson

- Cross section of $\pi^-\pi^0$ final state result of two coherent processes:

- At kinematic threshold: dominated by chiral anomaly
- Interference between Chiral Anomaly and ρ gives additional information

\Rightarrow possibility of extraction of radiative width of ρ-meson: $\Gamma_{(\rho\rightarrow\pi\gamma)}/\Gamma_{\text{tot}} \approx 4.5 \cdot 10^{-4}$

Low-mass tail: mainly driven by $F_{3\pi}$
Radiative width of ρ-meson

- Cross section of $\pi^-\pi^0$ final state result of two coherent processes:

- At kinematic threshold: dominated by chiral anomaly
- Interference between Chiral Anomaly and ρ gives additional information
 \[\Rightarrow \text{possibility of extraction of radiative width of } \rho\text{-meson: } \Gamma_{(\rho \rightarrow \pi \gamma)} / \Gamma_{\text{tot}} \approx 4.5 \cdot 10^{-4} \]

Radiative width of ρ-meson

- Cross section of $\pi^-\pi^0$ final state result of two coherent processes:

- At kinematic threshold: dominated by chiral anomaly
- Interference between Chiral Anomaly and ρ gives additional information

\Rightarrow possibility of extraction of radiative width of ρ-meson: $\Gamma_{(\rho \rightarrow \pi \gamma)} / \Gamma_{\text{tot}} \approx 4.5 \cdot 10^{-4}$

Previous measurements – $F_{3\pi}$

Antipov, Y. et al. PRD 36 (1987) 101103
and reanalyzed by
Ametller, L. et al. PRD 64 (2001) 094009

$$F_{3\pi} = (10.7 \pm 1.2) \text{ GeV}^{-3}$$

- Neglecting s-channel production of ρ meson
- No proper consideration of systematics

from cross-section data of
Amendolia, S.R. et al., PLB 155, 457 (1985)

$$F_{3\pi} = (9.6 \pm 1.1) \text{ GeV}^{-3}$$

- Neglecting s-channel production of ρ meson
- No proper consideration of systematics
- Dominant background of elastically scattered pions
Previous measurements – $\Gamma_{\rho \rightarrow \pi \gamma}$

Radiative width of ρ-meson:

- From fit to cross section (BW shape):
 $\Gamma(\rho \rightarrow \pi \gamma) = (81 \pm 4 \pm 4)$ keV
Cross section:

\[
\sigma(s) = \frac{(s - 4m_{\pi}^2)^\frac{3}{2}(s - m_{\pi}^2)}{1024\pi\sqrt{s}} \int_{-1}^{+1} dz \ (1 - z^2)|F_{3\pi}(s, t, u)|^2
\]
\[\pi \gamma \to \pi \pi \text{ from dispersion relations} \]

- Cross section:
 \[
 \sigma(s) = \frac{(s - 4m^2_{\pi})^3(s - m^2_{\pi})}{1024\pi\sqrt{s}} \int_{-1}^{+1} dz \left(1 - z^2\right)|F_{3\pi}(s, t, u)|^2
 \]

- Dispersive framework to deduce \(F_{3\pi} \) from a fit to the full data set up to 1.0 GeV including the \(\rho(770) \)-resonance:
 \[
 F_{3\pi}^{DR}(s) = \frac{1}{3} \left(C_2^{(1)} + C_2^{(2)}s \right) + \frac{1}{\pi} \int \frac{ds'}{4m^2_{\pi}} \frac{s^2}{s'^2} \frac{C_2^{(1)}\text{Im} \mathcal{F}_2^{(1)}(s') + C_2^{(2)}\text{Im} \mathcal{F}_2^{(2)}(s')}{s' - s}
 \]
\[\pi \gamma \rightarrow \pi \pi \text{ from dispersion relations} \]

- Cross section:

\[
\sigma(s) = \frac{(s - 4m_{\pi}^2)^{\frac{3}{2}}(s - m_{\pi}^2)}{1024\pi\sqrt{s}} \int_{-1}^{+1} dz \frac{(1 - z^2)}{2} |F_{3\pi}(s, t, u)|^2
\]

- Dispersive framework to deduce \(F_{3\pi} \) from a fit to the full data set up to 1.0 GeV including the \(\rho(770) \)-resonance:

\[
F_{3\pi}^{DR}(s) = \frac{1}{3} \left(C_2^{(1)} + C_2^{(2)} s \right) + \frac{1}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{s'^2} \frac{s^2}{s' - s} \times \left(C_2^{(1)} \text{Im} F_2^{(1)}(s') + C_2^{(2)} \text{Im} F_2^{(2)}(s') \right)
\]

- Basis functions provided in:

M. Hoferichter, B. Kubis, and D. Sakkas, *PRD 86 (2012) 116009*

M. Hoferichter, B. Kubis, and M. Zanke, *PRD 96 (2017) 114016*
\(\pi \gamma \rightarrow \pi \pi \) from dispersion relations

- Cross section:
 \[
 \sigma(s) = \frac{(s - 4m_\pi^2)^3(s - m_\pi^2)}{1024\pi\sqrt{s}} \int_{-1}^{+1} dz (1 - z^2)|F_{3\pi}(s, t, u)|^2
 \]

- Dispersive framework to deduce \(F_{3\pi} \) from a fit to the full data set up to 1.0 GeV including the \(\rho(770) \)-resonance:
 \[
 F_{3\pi}^{DR}(s) = \frac{1}{3} \left(C_2^{(1)} + C_2^{(2)}s \right) + \frac{1}{\pi} \int \frac{ds'}{s'^2} \frac{s'^2}{s' - s} \times \left(C_2^{(1)} \text{Im}\,F_2^{(1)}(s') + C_2^{(2)} \text{Im}\,F_2^{(2)}(s') \right)
 \]

Fit parameters

Basis functions provided in:

M. Hoferichter, B. Kubis, and D. Sakkas, *PRD* 86 (2012) 116009

M. Hoferichter, B. Kubis, and M. Zanke, *PRD* 96 (2017) 114016
COmmom Muon and Proton Apparatus for Structure and Spectroscopy
COMPASS spectrometer

- 190 GeV negative hadron beam: 96.8% π^-, 2.4% K^-, 0.8% \bar{p}
- Beam PID by Cherenkov detectors
- Two stage magnetic spectrometer
- 4mm Ni target disk ($\approx 25\%$ X/X_0)
- Calorimetric trigger on photons

- Measure scattered π^- and photons of π^0 decay
- Select exclusive events at very low Q^2
Principle of measurement

- Measure scattered π^- and photons of π^0 decay
- Select exclusive events at very low Q^2
- For absolute cross-section measurements: Luminosity

Indirect determination of luminosity via free Kaon decays

\[(K^- \rightarrow \pi^-\pi^0 \text{ or } K^- \rightarrow \pi^-\pi^0\pi^0) \]

\[\int L \, dt = \left(5.21 \pm 0.04_{\text{stat}} \pm 0.48_{\text{syst}} \right) \text{nb}^{-1} \]
Potential background processes to $\pi \gamma \rightarrow \pi \pi$

$\pi^- \pi^0$ via strong interaction

- Pomeran exchange: forbidden by G-parity conservation
- π and ω exchange:
 low cross section at COMPASS beam energies

$\pi^- \pi^0 \pi^0$ via Pomeran exchange

- Large cross section
- Main background: loss of one (soft) π^0
- Approach:
 - Using the model from COMPASS $\pi^- \pi^0 \pi^0$ data
 - Apply $\pi^- \pi^0$ event selection -> realistic distributions of leakage in $\pi^- \pi^0$
Subtraction of 3π background

Model from COMPASS $\pi^-\pi^0\pi^0$ data:
- Realistic shapes for signal and background contributions
- Fit yields (signal vs background) to match observed momentum transfer distribution

$0.75 \text{ GeV}/c^2 < M_{\pi^-\pi^0} < 0.80 \text{ GeV}/c^2$
Subtraction of 3π background

COMPASS preliminary

- $0.30 \, \text{GeV}^2 < M_{3\pi} < 0.35 \, \text{GeV}^2$
- $0.35 \, \text{GeV}^2 < M_{3\pi} < 0.40 \, \text{GeV}^2$
- $0.40 \, \text{GeV}^2 < M_{3\pi} < 0.45 \, \text{GeV}^2$
- $0.45 \, \text{GeV}^2 < M_{3\pi} < 0.50 \, \text{GeV}^2$
- $0.50 \, \text{GeV}^2 < M_{3\pi} < 0.55 \, \text{GeV}^2$
- $0.55 \, \text{GeV}^2 < M_{3\pi} < 0.60 \, \text{GeV}^2$
- $0.60 \, \text{GeV}^2 < M_{3\pi} < 0.65 \, \text{GeV}^2$
- $0.65 \, \text{GeV}^2 < M_{3\pi} < 0.70 \, \text{GeV}^2$
- $0.70 \, \text{GeV}^2 < M_{3\pi} < 0.75 \, \text{GeV}^2$
- $0.75 \, \text{GeV}^2 < M_{3\pi} < 0.80 \, \text{GeV}^2$
- $0.80 \, \text{GeV}^2 < M_{3\pi} < 0.85 \, \text{GeV}^2$
- $0.85 \, \text{GeV}^2 < M_{3\pi} < 0.90 \, \text{GeV}^2$
- $0.90 \, \text{GeV}^2 < M_{3\pi} < 0.95 \, \text{GeV}^2$
- $0.95 \, \text{GeV}^2 < M_{3\pi} < 1.00 \, \text{GeV}^2$

- Data
- Primakoff MC
- 3π MC
- Sum of MC contributions
Results of dispersive fits

- Determine subtraction constants from fit
 - Use data up to 1 GeV/c^2
 - Exclude data around 500 MeV/c^2 due to background of free kaon decay

\[
C_2^{(1)} = \left(10.5 \pm 0.1_{\text{stat}} \pm 0.6_{\text{syst}} \right) \text{GeV}^{-3}
\]
\[
C_2^{(2)} = \left(24.5 \pm 0.1_{\text{stat}}^{+1.6}_{-1.4_{\text{syst}}} \right) \text{GeV}^{-5}
\]

- Use ChPT expansion (NLO) to determine $F_{3\pi}(0,0,0)$:

\[
F_{3\pi} = \left(10.3 \pm 0.1_{\text{stat}} \pm 0.6_{\text{syst}} \right) \text{GeV}^{-3}
\]
\[
\Gamma_{\rho \to \pi \gamma} = \left(76 \pm 1_{\text{stat}}^{+10}_{-8_{\text{syst}}} \right) \text{keV}
\]
Comparison to previous measurements

- **COMPASS**: First combined measurement of $F_{3\pi}$ and $\Gamma_{\rho\to\pi\gamma}$

 \[F_{3\pi} = (10.3 \pm 0.1_{\text{stat}} \pm 0.6_{\text{syst}}) \text{GeV}^{-3} \]
 \[\Gamma_{\rho\to\pi\gamma} = (76 \pm 1_{\text{stat}}^{+10}_{-8_{\text{syst}}}) \text{keV} \]

- Intensive test of systematics (dominant contributions):
 - Luminosity
 - Radiative corrections
 - Background of ω, π exchange
 - Background from $\pi\gamma$ final state

- Accompanied with intensive analysis of $\pi^-\text{Ni} \to \pi^-\pi^0\pi^0\text{Ni}$ for background estimation
Conclusion and outlook

- Measurement of $F_{3\pi}$ - fundamental test of low-energy QCD

- COMPASS did first combined measurement of $F_{3\pi}$ and $\Gamma_{\rho \rightarrow \pi \gamma}$

- Result for $F_{3\pi}$ is in agreement with prediction from ChPT

- Results dominated by systematic uncertainties -> improvement expected
 - Background prediction
 - Luminosity determination

- On the future program of successor experiment AMBER: similar program on kaon sector
 (see talk by Oleg Denisov, “From COMPASS to AMBER”, Fri 14:00)

Thank you for your attention
Backup
Cross sections for Primakoff effect
Chiral tree, chiral loop

- Direct (point-like) coupling of photon to 4 pions
- Prediction from ChPT at tree- and loop-level available

Grabmüller S. (2012). Cryogenic Silicon Detectors and Analysis of Primakoff Contributions to the Reaction $\pi^- Pb \rightarrow$

Krämer M. (2016) Evaluation and Optimization of a digital calorimetric trigger and analysis of $\pi^- Ni \rightarrow$
Pion-photon reactions through the Primakoff technique

- Photon is provided by the strong Coulomb field of a nucleus (typical field strength at \(d = 5R_N \): \(E \approx 300 \text{ kV/fm} \))

- Coulomb field of nucleus is a source of quasi-real \((P_\gamma \ll m_{\pi}^2)\) photons

- Large impact parameters (ultra-peripheral scattering)

\[
\frac{d\sigma}{ds dQ^2 d\Phi_n} = \frac{Z^2 \alpha}{\pi (s - m_{\pi}^2)} F^2(Q^2) \frac{Q^2 - Q_{\text{min}}^2}{Q^4} \cdot \frac{d\sigma_{\pi\gamma \rightarrow X}}{d\Phi_n}
\]

- Flux of quasi-real photons
- \(\pi\gamma\) scattering cross section
Integrated luminosity

- Needed for absolute cross section measurement: effective integrated luminosity

\[L_{\text{eff}} = L \cdot (1 - \varepsilon_{\text{DAQ}}) \]

- Can be determined via free kaon decays:
 - Use CEDAR detectors for beam PID
 - Free decays where no material
 - Exclusive events with no momentum transfer

\[N_K = \Phi_\pi \frac{n_K}{n_\pi} BR(K \to X) (1 - e^{-\frac{L}{\gamma_{\text{tr}}}}) \varepsilon_{K\to X} \]
Previous measurements – $F_{3\pi}$

Antipov, Y. et al. PRD 36 (1987) 101103

$F_{3\pi} = (12.9 \pm 0.9) \text{ GeV}^{-3}$

- Assuming $F_{3\pi} = \bar{F}_{3\pi}(s, t, u)$
- Neglecting s-channel production of ρ meson
- No proper consideration of systematics
Previous measurements – $F_{3\pi}$

Antipov, Y. et al. PRD 36 (1987) 101103

and reanalyzed by

Ametller, L. et al. PRD 64 (2001) 094009

$F_{3\pi} = (11.4 \pm 1.3) \text{ GeV}^{-3}$

- Neglecting s-channel production of ρ meson
- No proper consideration of systematics
- Using ChPT to extrapolate to chiral limit (NNLO)

$$F_{3\pi} = \frac{eN_C}{12\pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \text{ GeV}^{-3}$$
Previous measurements – $F_{3\pi}$

Antipov, Y. et al. PRD 36 (1987) 101103
and reanalyzed by
Ametller, L. et al. PRD 64 (2001) 094009

$$F_{3\pi} = (10.7 \pm 1.2) \text{ GeV}^{-3}$$

- Neglecting s-channel production of ρ meson
- No proper consideration of systematics
- Using ChPT to extrapolate to chiral limit (NNLO)
- Considering dominant correction

$$F_{3\pi} = \frac{e N_C}{12 \pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \text{ GeV}^{-3}$$