Tuning of GFlash for COMPASS calorimeter simulations

Henri Pekeler, Laney Klipphahn, David Spülbeck, Mathias Wagner, and Bernhard Ketzer

at the DPG in Dresden, HK 2.4 supported by BMBF

20th March 2023

COMPASS EXPERIMENT AT CERN

[COMPASS, NIM A779, 69-115 (2015)]

ECAL2 AT COMPASS

[Ketzer et al., Prog. Part. Nucl. Phys. 113, 103755 (2020)]

- ► Homogeneous (lead glass) modules
 - ► GAMS and GAMS-R
- ► Inhomogeneous Shashlik modules
 - ▶ 155 layers of scintillator / lead slices
 - ▶ Pierced with WLS Fibers for readout
 - Pierced with steal rods for stability

Calorimeter Modules at COMPASS

[V. Polyakov, IHEP Protvino, 2010]

	GAMS	GAMS-R	Shashlik
X_0	$27.4\mathrm{mm}$	$27.4\mathrm{mm}$	17.5 mm
R_M	47 mm	47 mm	36 mm
rad. hardness	$400\mathrm{rad}$	3 krad	$0.5\mathrm{Mrad}$
rad. dose	$400\mathrm{rad}$	2 krad	$40\mathrm{krad}$

rad. dose is for 350 days, $190\,\text{GeV}$ hadron beam, $5\cdot 10^7/\text{spill}$

Monte Carlo Simulations at COMPASS

General

- Based on GEANT4
- Every readout plane of every detector is implemented
- Holding structures are included, no optical photon tracking

Calorimeters

- Simulations in Shashlik modules require much time
- ▶ We use GFlash [Weng, CHEP 06, 2006] to shorten the simulation
 - Simulation of shower in effective homogeneous material
 - Simulation according to spatial energy distribution function, no secondary particles
 - ▶ Energy deposited with $\mathcal{O}(1000)$ space points
 - Realistic material taken into account during deposition
- Energy collection only in active material

SHOWER WITHOUT GFLASH

Physics behind GFlash

Spatial energy distribution

$$dE(\vec{r}) = Ef(t)dtf(r)drf(\phi)d\phi$$

Longitudinal component f(t), shower depth t in units of radiation lengths

- Described by gamma distribution
- Depends on energy of particle and critical energy

Radial component f(r), shower radius r in units of Molière radii

- Described by core and tail
- Depends on longitudinal position

Azimuthal component $f(\phi)$

Assumed to be uniformly distributed

SHOWER WITH GFLASH

FULL GFLASH SHOWER, 30 GeV ELECTRON

GFlash space points

Projection to $\emph{xy}\text{-plane}$

Projection to cell-plane

SHOWER RECONSTRUCTION

Describe shower by two dimensional arctan function

$$F(x,y) = \frac{1}{2\pi} \sum_{i=1}^{3} a_i \left(\arctan\left(\frac{x}{b_i}\right) + \arctan\left(\frac{y}{b_i}\right) + \arctan\left(\frac{x \cdot y}{b_i \sqrt{b_i^2 + x^2 + y^2}}\right)\right) + \frac{1}{4}$$

WHY TUNE GFLASH

Diffractive 2008 / 2009 COMPASS data

Monte Carlo data

[www.compass.cern.ch/compass/results/2022/february_evtsel_ 3Pi2G/Event_Selection_3Pi2G_06_04.pdf]

Tuning of GFlash – Shashlik Default

Monte Carlo — measured

Tuning of GFlash – Radial Tail x50

Monte Carlo - measured

Tuning of GFlash – Radial Core x50

Monte Carlo - measured

Tuning of GFlash – Best Approach

Henri Pekeler

π^0 Mass with updated GFLash Parameters

Diffractive 2008 / 2009 COMPASS data

Improved GFlash parameter set

[wwwcompass.cern.ch/compass/results/2022/february_evtsel_ 3Pi2G/Event_Selection_3Pi2G_06_04.pdf]

SUMMARY AND OUTLOOK

Summary

- Complicated COMPASS calorimeter modules built with GEANT4
- GFlash for COMPASS calorimeters yields a large time gain while taking material into account during energy deposition
- ► Tuning of radial GFlash parameters changes the shower shape a lot
- Improved on GFlash tuning parameters

Outlook

Fine tune the GFlash parameters even more to get rid of the π^0 asymmetry completely

SUMMARY AND OUTLOOK

Summary

- Complicated COMPASS calorimeter modules built with GEANT4
- GFlash for COMPASS calorimeters yields a large time gain while taking material into account during energy deposition
- ► Tuning of radial GFlash parameters changes the shower shape a lot
- Improved on GFlash tuning parameters

Outlook

Fine tune the GFlash parameters even more to get rid of the π^0 asymmetry completely

Thanks for your attention!

BACKUP

Backup

SHOWER WITHOUT GFLASH

