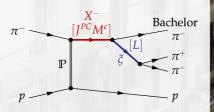


Study of the $\pi^-\pi^+$ subsystem with $J^{PC}=1^{--}$ in the diffractively produced $\pi^-\pi^-\pi^+$ final state at COMPASS



Martin Bartl for the COMPASS Collaboration

Institute for Hadronic Structure and Fundamental Symmetries, Technical University of Munich, Germany

Diffractive $\pi^-\pi^-\pi^+$ Production at COMPASS

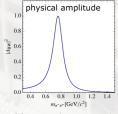
- ▶ 190 GeV π^- beam on p target
- World's largest sample: 46×10^6 exclusive events
- ▶ Data binned in $(m_{3\pi}, t')$ cells
- ▶ So far, focus on 3π resonances
 - ▶ Most detailed partial-wave analysis [1]
 - $\triangleright a_J$ and π_J states, such as $a_1(1420)$ or $\pi_1(1600)$

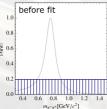
This analysis: Detailed Study of the $\pi^-\pi^+$ Subsystem Amplitude

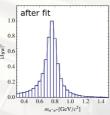
- \blacktriangleright Measure $\pi^-\pi^+$ amplitudes with well-defined J^{PC} quantum numbers using novel approach
- \blacktriangleright Study resonance content of amplitudes and extract pole parameters of $\pi^-\pi^-$ resonances
 - ightharpoonup Test and study resonance models
 - ightharpoonup Study source dependence and effects of the bachelor π^- on resonances
- Proof-of-principle analysis: study $\rho(770)$

Conventional Partial-Wave Analysis (PWA)

- ▶ Isobar model: decay of 3π resonances X^- via $\pi^-\pi^+$ isobar resonance
- ▶ Simplified intensity model in single $(m_{3\pi},t')$ cell as function of 5-dimensional phase-space variables $\vec{\tau}$:


$$\mathcal{I}(ec{ au}) = \Big| \sum_i \mathcal{T}_i \Psi_i(ec{ au}) \Big|^2$$


- lacksquare i represents partial wave: $J_{X^-}^{PC}M^\epsilon\xi\,\pi L$
- $\triangleright \xi$ is isobar resonance, e.g. $\rho(770)$
- ▶ Transition amplitudes \mathcal{T}_i determined from data in cells of $(m_{3\pi}, t')$
- ▶ Known decay amplitudes $\Psi_i(\vec{\tau}) = \psi_i(\vec{\tau}) \, \Delta_\xi(m_{\pi^-\pi^+}) + {\sf Bose}$ symm.
 - hickspace > Spin amplitude $\psi(\vec{ au})$ given by first principles
 - Dynamic isobar amplitude $\Delta_\xi(m_{\pi^-\pi^+})$ modeled, e.g. using relativistic Breit-Wigner with fixed mass m_0 and width Γ_0

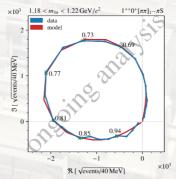

Novel Method: Freed-Isobar Partial-Wave Analysis

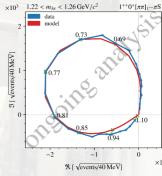
▶ Reduce model bias from assuming fixed parametrizations for dynamic isobar amplitudes Δ_{ε} by replacing them with step-like functions ("freed isobars"):

$$\begin{split} \Delta_{\xi}(m_{\pi^-\pi^+}) &\to \Delta_i(m_{\pi^-\pi^+}) = \sum_{\text{bin}}^{\text{bin}} \mathscr{T}_i^{\text{bin}} \Pi_i^{\text{bin}}(m_{\pi^-\pi^+}) = "[\pi\pi]_{J^{PC}}" \\ \Pi_i^{\text{bin}}(m_{\pi^-\pi^+}) &= \begin{cases} 1, & \text{if } m_{\pi^-\pi^+} \text{ in the bin} \\ 0, & \text{otherwise} \end{cases} \end{split}$$

- ▶ Measure dynamic isobar amplitudes \mathscr{T}_i of the $\pi^-\pi^+$ subsystem with well-defined $(J^{PC})_\xi$ from the data as function of $m_{\pi^-\pi^+}$, $m_{3\pi}$, and t'
 - \triangleright No assumptions on resonance content of the $\pi^-\pi^+$ subsystem
- Freed-isobar PWA model includes 8 waves with $(J^{PC})_{\xi}=1^{--}$:

References

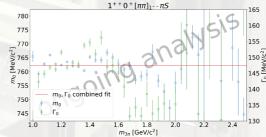

- [1] M. Aghasyan et al. [COMPASS], PRD 98 (2018) 092003, arXiv:1802.05913
- [2] M.G. Alexeev et al. [COMPASS], PRD 105 (2022) 012005, arXiv:2108.01744
- [3] Lukas Bayer, Bachelor's thesis 2019, University of Bonn
- [4] R. Garcia-Martin et al., PRD 107 (2011) 072001, arXiv:1107.1635


Resonance Model for the $\pi^-\pi^+$ Subsystem with $(J^{PC})_\xi=1^{--}$ [3]

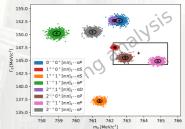
▶ Model for \mathscr{T}_i based on $\rho(770)$ form factor $\mathcal{F}(s)$ as function of $s=m_{\pi^-\pi^+}^2$ ▷ $\mathcal{F}(s)$ based on Lippmann-Schwinger equations and on Gounaris-Sakurai parametrization of pion form factor:

$$\mathcal{F}(s) = \left\{1 - {g_1}^2 \left[{\color{red} a_1} + \Sigma(0) \right] - {\color{red} a_1} \frac{{\color{red} m_1}^2 {\color{red} g_1}^2}}{{\color{red} s - {\color{red} m_1}^2}} \right\} \bigg/ \left\{1 + \left(\frac{{\color{red} m_1}^2 {\color{red} g_1}^2}}{{\color{red} s - {\color{red} m_1}^2}} \right) \Sigma(s, {\color{red} m_1}) \right\}$$

- $ightharpoonup m_1$ and g_1 : global fit parameters; a_1 : free parameter for each $(m_{3\pi},t')$ cell $ightharpoonup \Sigma$ is self energy
- \blacktriangleright Simultaneous χ^2 fit of model to all measured amplitudes \mathscr{T}_i for given wave i



- ▶ Data reasonably well described given their very small statistical uncertainties
- ightharpoonup Search for pole in complex s plane
 - ho Extract ho(770) parameters: $\sqrt{s_{
 m pole}}=m_0-{\rm i}\,\Gamma_0/2$
- Less process-dependent than Breit-Wigner parameters


Fits in Individual $(m_{3\pi},t')$ Cells: Example $1^{++}0^{+}[\pi\pi]_{1^{--}}\pi S$ Wave

- \blacktriangleright Fit range limited to $m_{\pi^-\pi^+} < 1.12\,{\rm GeV}/c^2$ to isolate the $\rho(770)$
- ▶ Reliable extraction of $\rho(770)$ parameters for 1.0 GeV/ $c^2 \lesssim m_{3\pi} \lesssim 1.6$ GeV/ c^2
- ightharpoonup Small deviations from combined fit of all $(m_{3\pi},t')$ cells (see below)
- lacktriangle No striking systematic dependence on $m_{3\pi}$ or t'

Combined Fit of All $(m_{3\pi},t')$ Cells for Individual Waves

- ▶ Fit all $(m_{3\pi}, t')$ cells simultaneously
- ightharpoonup
 ho(770) resonance parameters have small statistical uncertainties
 - ▷ Estimated using Monte-Carlo uncertainty propagation (data points)
- Systematic uncertainties: work in progress, but probably dominant

- ► Comparable results for most of the 8 studied partial waves
- ▶ Deviations of $\pm 4 \,\mathrm{MeV}/c^2$ for m_0 and $\pm 8 \,\mathrm{MeV}/c^2$ for Γ_0
 - \triangleright May partly be due to crossed-channel effects and/or 3π -source dependence
- ▶ Black box from Ref. [4]: $m_0 = 763.7^{+1.7}_{-1.5} \, \text{MeV}/c^2$, $\Gamma_0 = 146.4^{+2.0}_{-2.2} \, \text{MeV}/c^2$

Conclusions

- ▶ World's largest sample of diffractively produced $\pi^-\pi^-\pi^+$ final state
- \blacktriangleright Successful extraction of $\rho(770)$ pole parameters from results of novel freed-isobar PWA for 8 partial waves with $(J^{PC})_\xi=1^{--}$
- ► Small deviations of pole parameters could be hints of crossed-channel effects → Need to study systematic effects and uncertainties
- ▶ Future work: Extend fit range to study excited ρ states