Deeply Virtual Compton Scattering and Hard Exclusive π^0 Muoproduction at COMPASS

Anatolii Koval

on behalf of the COMPASS collaboration
National Centre for Nuclear Research, Poland

March 28, 2023
Plan

1. Generalized Parton Distribution functions
2. Measurements at COMPASS and experimental setup
3. DVCS cross-section extraction and its t-dependence
4. π^0 cross-section and its sensitivity to chiral-odd GPDs
5. Outlook and summary
Generalized Parton Distributions (GPDs)

Deeply Virtual Compton Scattering

\[\gamma^* + N \rightarrow \gamma + N' \]

- No nucleon spin flip
 \[H^f(x, \xi, t) \]
 \[\tilde{H}^f(x, \xi, t) \]

- With nucleon spin flip
 \[E^f(x, \xi, t) \]
 \[\tilde{E}^f(x, \xi, t) \]

GPDs are not experimentally accessible, but related to Compton Form Factors (CFFs)

CFFs are observables in cross section measurements

\[\mathcal{H}(\xi, t) = \int_{-1}^{1} \frac{H(x, \xi, t)}{x - \xi - i\epsilon} \, dx \]
GPDs and Hard Exclusive Meson Production

Chiral-even GPDs
helicity of parton unchanged

$$\begin{align*}
H^{q,g} & \quad \tilde{H}^{q,g} \\
E^{q,g} & \quad \tilde{E}^{q,g}
\end{align*}$$

Chiral-odd GPDs
helicity of parton changed

$$\begin{align*}
H_T^{q} & \quad \tilde{H}_T^{q} \\
E_T^{q} & \quad \tilde{E}_T^{q}
\end{align*}$$

- factorisation proven only for σ_L, σ_T suppressed by $1/Q^2$
- wave function of meson (DA) additional non-perturbative term
Measurement at COMPASS

Diff. cross section \(\frac{d\sigma^4}{dQ^2d\nu d|t|d\phi} \)

Kinematic dependence:
- \(Q^2 = -q^2 \): virtual photon virtuality
- \(\nu = E_\mu - E'_\mu \): energy of virt. photon
- \(t = (p_P - p_{P'})^2 \): 4-mom. transfer to nucleon squared
- \(\phi \): angle between scattering and production planes

Measured quantities:
- \(\mu \): beam muon
- \(\mu' \): scattered muon
- \(P' \): recoil proton
- \(\gamma \): real photon

- **2012** pilot run for 4 weeks → analysis finished and published
- **2016/17** long runs (2 × 6 months) dedicated to DVCS → analysis ongoing, preliminary results
COMPASS experiment setup

Common Muon and Proton Apparatus for Structure and Spectroscopy

- **2.5m long Liquid Hydrogen target**
- **Beam energy is 160 GeV**
- **Beam polarisations**: $\mu^+\downarrow$ and $\mu^-\uparrow$

\[
\pi^+ \rightarrow \mu^+ + \nu_\mu \quad P_{\mu^+} \approx -80\% \\
\pi^- \rightarrow \mu^- + \bar{\nu}_\mu \quad P_{\mu^-} \approx +80\%
\]
COMPASS experiment setup

Two stage forward spectrometer **SM1 + SM2**

- Beam flux determined with \(\approx 1\% \) precision
- **ECAL0, ECAL1 and ECAL2** for photon detection
- 300 tracking detector planes, muon trigger system
- Muon identification system
- CAMERA for recoil proton detection
Deeply Virtual Compton Scattering

\[\mu p \rightarrow \mu' p' \gamma \text{ process} \]
The observable products of these reactions are identical, therefore they can not be separated on per-event basis.

\[\sigma_\gamma \propto |A_{DVCS}|^2 + |A_{BH}|^2 + \text{Interference Term} \]

Interference Term \(\equiv A_{DVCS}A_{BH} \) - allows to study DVCS on the amplitude level.
Selection of events with a single γ topology

Vertex candidates:
- μ Beam muon
- μ' Scattered muon

Real photon candidate γ:
Single photon with the energy above DVCS threshold $E_\gamma > 4, 5, 10$ GeV in ECAL0, 1, 2

Recoil proton candidate P':
$|t|_{\text{exp}}^{\text{max}} = 0.64\ (\text{GeV}/c)^2$

Exclusivity selections:
- $|\Delta p_T| < 0.3 \text{ GeV}/c$
- $|\Delta \phi| < 0.4 \text{ rad}$
- $|\Delta z_A| < 16 \text{ cm}$
- $|M^2_{\text{Undet}}| < 0.3 (\text{GeV}/c^2)^2$
- $0.08 (\text{GeV}/c)^2 < |t_{\text{fit}}| < 0.64 (\text{GeV}/c)^2$

Perform kinematic fit:
- constrain on kinematic variables $\chi^2 < 10$

Only events with single valid combination
- Vertex candidate \times Real photon candidate \times Recoil proton candidate
Exclusive selections (COMPASS 2016 preliminary results)

\[\Delta \phi = \Delta \phi_{\text{Cam}} - \Delta \phi_{\text{Spec}} \]

Entries / 0.025 rad

\[\Delta p_T = \Delta p_{T,\text{Cam}} - \Delta p_{T,\text{Spec}} \]

Entries / 0.02 GeV/c

\[\Delta Z_A = Z_{A,\text{Cam}} - Z_{A,\text{Interp}} \]

Entries / cm

\[M_{\text{undet}}^2 = (k+p-k'-q'-p')^2 \]

Entries / 0.025 (GeV/c)^2

Anatolii Koval
The binned DVCS cross section

DVCS cross section in bins of t, ϕ, Q^2, ν:

$$\left\langle \frac{d\sigma_{\text{DVCS}}}{dt d\phi dQ^2 d\nu} \right\rangle_{t_i \phi_j Q^2_k \nu_l}^{\pm} = \frac{1}{\mathcal{L}^{\pm} \Delta t_i \Delta \phi_j \Delta Q^2_k \Delta \nu_l} \left[(a_{ijkl}^{\pm})^{-1} (\text{data} - BH_{\text{MC}} - \pi^0_{\text{MC}}) \right]$$

- a_{ijkl}^{\pm}: Acceptance
- BH\text{MC}: Exclusive single photon MC sample
- π^0_{MC}: π^0 MC sample (background estimation)
The Bethe-Heitler contribution

Bethe-Heitler process is well known, pure QED → evaluated using **Monte-Carlo sample** for BH

- Kinematic range where **BH is dominant** → The BH contribution is evaluated for the experimental integrated luminosity
- **BH subtracted** from the data in the DVCS region (small ν)
- data / BH = $(98.6 \pm 1 \pm 4)$% (for this bin)
The π^0 background contamination

- Photons from π^0 decay
- One photon identified as exclusive photon event \rightarrow above DVCS energy threshold in ECALs

- **Visible** (both γ are detected)
 - *subtracted*
 Combine γ_{he} and γ_{le} (below DVCS energy threshold)

- **Invisible** (second γ lost)
 - *estimated by MC*
 - **Inclusive**: LEPTO
 - **Exclusive**: HEPGEN π^0
ϕ distribution of exclusive photon events

$1 < Q^2 < 10 \ (\text{GeV}/c)^2$

- $80 < \nu \ [\text{GeV}] < 144$
 - $\langle x_B \rangle = 0.0085$
 - $\langle Q^2 \rangle = 1.8 \ (\text{GeV}/c)^2$

- $32 < \nu \ [\text{GeV}] < 80$
 - $\langle x_B \rangle = 0.020$
 - $\langle Q^2 \rangle = 2.0 \ (\text{GeV}/c)^2$

- $10 < \nu \ [\text{GeV}] < 32$
 - $\langle x_B \rangle = 0.063$
 - $\langle Q^2 \rangle = 2.1 \ (\text{GeV}/c)^2$

- **BH dominates**
 - DVCS negligible
 - 64% of events in data

- **BH and DVCS are comparable**
 - 24% of events in data

- **DVCS dominates BH**
 - 12% of events in data, where:
 - 37% BH contribution
 - 10% inv. π^0 contribution
The binned DVCS cross section

DVCS cross section in bins of t, ϕ, Q^2, ν:

$$
\left\langle \frac{d\sigma_{DVCS}}{dt|d\phi dQ^2 d\nu} \right\rangle_{t_i \phi_j Q_k^2 \nu_l}^{\pm} =
\frac{1}{\mathcal{L}^\pm \Delta t_i \Delta \phi_j \Delta Q_k^2 \Delta \nu_l} \left[(a_{ijkl}^\pm)^{-1} (\text{data} - \text{BH}_{MC} - \pi^0_{MC}) \right]
$$

$$
\pi^0_{MC} = (1 - R) \times \pi^0_{\text{HEPGEN}} + R \times \pi^0_{\text{LEPTO}}
$$

- **BH$_{MC}$**: BH MC sample
- **π^0_{HEPGEN}**: exclusive π^0 MC sample
- **π^0_{LEPTO}**: inclusive π^0 MC sample
- **R**: relative contrib. of LEPTO ($\approx 40\%$)
- **a_{ijkl}^\pm**: acceptance

Binning and kinematic range:

- 4 bins in $|t|$ between 0.08 and 0.64 (GeV/c)2 (equistatistics)
- 4 bins ν between 10 and 32 GeV (equidistant)
- 4 bins Q^2 between 1 and 5 (GeV/c)2 (equidistant)
- 8 bins ϕ between $-\pi$ and $+\pi$ (equidistant)

Analysis limited to region with mostly flat acceptance
avg. acc. $\approx 40\%$, good agreement between μ^+ and μ^-.
Accessing the t-dependence of the cross section

From μp to $\gamma^* p$:
$$ \frac{d\sigma^{\mu p}}{d|t|\phi dQ^2 d\nu} = \Gamma(Q^2, \nu) \times \frac{d\sigma^{\gamma^* p}}{d|t|\phi dQ^2 d\nu} $$

by weighting each event in data and MC by the inverse flux of the transverse polarized photons

→ Integrate over Q^2 and ν and average over μ^+/μ^-, then t-dependence of the cross section:

$$ \left\langle \frac{d\sigma_{DVCS}}{d|t|} \right\rangle_{t_i} = \frac{1}{2} \left(\left\langle \frac{d\sigma_{DVCS}}{d|t|} \right\rangle_{t_i}^+ + \left\langle \frac{d\sigma_{DVCS}}{d|t|} \right\rangle_{t_i}^- \right) $$

$$ S_{CS,U} = d\sigma^{+\downarrow} + d\sigma^{-\uparrow} = $$

$$ 2 \left[d\sigma^{BH} + c_0^{DVCS} + c_1^{DVCS} \cos\phi + c_2^{DVCS} \cos2\phi + s_1^I \sin\phi + s_2^I \sin2\phi \right] $$
Analyse the cross section t-slope

\[\frac{d\sigma^{\text{DVCS}}}{dt} \sim e^{-B|t|} \propto c_0^{\text{DVCS}} = (Im\mathcal{H})^2 \]

Perform binned maximum Likelihood-fit.

\[B = (6.6 \pm 0.6_{\text{stat}} \pm 0.3_{\text{sys}}) (\text{GeV}/c)^{-2} \]

Dominant source of systematics:
MC normalisation to visible π^0 in data.
Analyze the cross section t-slope

t-slope \Rightarrow proton trans. ext.

$$\langle b_{\perp}^2 (x_{Bj}) \rangle = 2 \langle B(x_{Bj}) \rangle \hbar^2$$

$$d\sigma^{DVCS}/dt \sim e^{-B|t|} \propto c_0^{DVCS} = (ImH)^2$$

Perform binned maximum Likelihood-fit.

$$B = (6.6 \pm 0.6_{stat} \pm 0.3_{sys}) (GeV/c)^{-2}$$

Dominant source of systematics:
MC normalisation to visible π^0 in data.

$$B = (4.3 \pm 0.6_{stat}^{+0.1}_{-0.3}|_{sys}) (GeV/c)^{-2}$$

2012 results PLB 793 (2019) 188
Hard Exclusive π^0 Meson Production

$\mu p \rightarrow \mu' p' \pi^0$ process
Selection of events with π^0 topology

Vertex candidates:
- μ Beam muon
- μ' Scattered muon

2-γ candidate:
from π^0 decay, with invariant mass $M_{\gamma\gamma}$ cut

Recoil proton candidate P':
- $|t|_{\text{max}}^{\text{exp}} = 0.64(\text{GeV}/c)^2$

Exclusivity selections:
- $|\Delta p_T| < 0.3\text{GeV}/c$
- $|\Delta \phi| < 0.4\text{rad}$
- $|\Delta z_A| < 16\text{cm}$
- $|M_{\text{Undet}}^2| < 0.3(\text{GeV}/c^2)^2$
- $0.08(\text{GeV}/c)^2 < |t_{\text{fit}}| < 0.64(\text{GeV}/c)^2$

Perform kinematic fit:
- constrain on kinematic variables $\chi^2 < 10$

Only events with single valid combination
- Vertex candidate \times 2-γ candidate \times Recoil proton candidate
Exclusive selections (COMPASS 2016 preliminary results)

\[\Delta \phi = \phi_{\text{cam}} - \phi_{\text{spect}} \]

\[\Delta p_T = |p_{T,\text{cam}}| - |p_{T,\text{spect}}| \]

\[\Delta Z_A = Z_{A,\text{cam}} - Z_{A,\text{extrapolated}} \]

\[M^2_{\text{Undet}} = (p_\mu + p_P - p_{\mu'} - p_{P'} - p_\gamma)^2 \]

\[\text{COMPASS 2016 } \mu^+ \text{ data} \]

\[\text{HEPGEN + LEPTO} \]

\[\text{HEPGEN} \]

\[\text{LEPTO} \]

LEPTO share: (35 ± 10)%
Exclusive π^0 production: SIDIS background estimation

- Main background of π^0 production \Rightarrow non-exclusive DIS process
- 2 MC simulations with the same π^0 selection criteria:
 - LEPTO for the non-exclusive background
 - HEPGEN++ shape of distributions of exclusive π^0 production (signal contribution)
- Search for best description of data fitting by mixture of both MC

![Graph](image)

- Non-exclusive background fraction is $(35 \pm 10)\%$
- Background fit method is the main source of systematic uncertainty
Exclusive π^0 cross section

$$\frac{d^2\sigma}{dt\,d\phi} = \frac{1}{2\pi} \left[\left(\epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} \right) + \epsilon \cos 2\phi \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1 + \epsilon)} \cos \phi \frac{d\sigma_{LT}}{dt} \right]$$

Factorization proven for σ_L, not for σ_T which is expected to be suppressed by a factor $1/Q^2$ BUT large contributions are observed at JLab.

$$\frac{d\sigma_L}{dt} \sim |\langle \tilde{H} \rangle|^2 - \frac{t'}{4m^2} |\langle \tilde{E} \rangle|^2$$

$$\frac{d\sigma_T}{dt} \sim |\langle H_T \rangle|^2 - \frac{t'}{8m^2} |\langle E_T \rangle|^2$$

$$\frac{d\sigma_{TT}}{dt} \sim \frac{t'}{16m^2} |\langle E_T \rangle|^2$$

$$\frac{d\sigma_{LT}}{dt} \sim \frac{\sqrt{-t'}}{2m} \text{Re} \left[\langle \tilde{H} \rangle \langle \tilde{E} \rangle \right]$$

$t' = t - t_{min}$, where $|t_{min}|$ is minimum value of $|t|$

Impact of E_T should be visible in $\frac{d\sigma_{TT}}{dt}$, and also a dip at small t of $\frac{d\sigma_T}{dt}$
Exclusive π^0 cross section

as a function of t

![Graph showing $d\sigma/d|t|$ as a function of $|t|$ (GeV/c)^2.]

- **GK 16**: Goloskokov Kroll (2016)
- **other models**: Golstein Gonzalez Liuti PRD91 (2015)

as a function of ϕ

![Graph showing $d^2\sigma/d|t|d\phi$ as a function of ϕ (rad).]
Outlook and summary

- **Analyse full statistics** of 2016 and 2017 (3 times more data than 2016)
- **DVCS**
 - Cross section study in few x_{Bj} regions \rightarrow tomography
 - More detailed studies of **systematic uncertainties**
 - **Study the azimuthal dependence** of the cross section
 \rightarrow Determine c_0^{DVCS}, c_1^{DVCS}, c_2^{DVCS}, s_1^\uparrow and s_2^\uparrow
 - **Cross section difference** $D_{CS,U} = d\sigma^{+\downarrow} - d\sigma^{-\uparrow}$
 \rightarrow Access to $Re\mathcal{H}$ and quark pressure distribution in the nucleon
- **Exclusive π^0**
 - New, preliminary results of 2016 COMPASS measurement at $\langle x_{Bj} \rangle = 0.096 \Rightarrow$ constraining phenomenological models (e.g. Goloskokov and Kroll; Goldstein, Gonzales and Liuti, etc.)
Thank you for your attention!
Backup
Cross section

\[d\sigma \propto |A_{BH}|^2 + |A_{DVCS}|^2 + \text{Interference Term} \]

\[
\frac{d^4\sigma(lp \rightarrow lp\gamma)}{dx_B dQ^2 dt d\phi} = d\sigma^{BH} + \left(d\sigma_{DVCS}^{\text{unpol}} + P_l d\sigma_{DVCS}^{\text{pol}} \right) + \left(e_l ReI + e_l P_l ImI \right)
\]

\[D_{CS,U} = d\sigma^{\uparrow\downarrow} - d\sigma^{\downarrow\uparrow} = 2 \left[e_\mu a^{BH} ReA^{DVCS} + |P_\mu| d\sigma_{DVCS}^{\text{pol}} + ReI \right] \]

\[= 2 \left[s_1^{DVCS} \sin \phi + c_0^I + c_1^I \cos \phi + c_2^I \cos 2\phi + c_3^I \cos 3\phi \right] \]

\[S_{CS,U} = d\sigma^{\uparrow\downarrow} + d\sigma^{\downarrow\uparrow} = 2 \left[d\sigma^{BH} + d\sigma_{DVCS}^{\text{unpol}} - |P_\mu| ImI \right] \]

\[= 2 \left[d\sigma^{BH} + c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi + s_1^{I} \sin \phi + s_2^{I} \sin 2\phi \right] \]
Cross section

\[S_{CS,U} = d\sigma^{+\downarrow} + d\sigma^{-\uparrow} \]

\[D_{CS,U} = d\sigma^{+\downarrow} - d\sigma^{-\uparrow} \]

- \[S_{CS,U} \] \(\propto c_0^{BH} + c_1^{BH} \cos \phi + c_2^{BH} \cos 2\phi \)
- \(S_{CS,U} \) \(\propto c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi \)
- \(D_{CS,U} \) \(\propto s_1^{DVCS} \sin \phi \)
- \(D_{CS,U} \) \(\propto c_0^I + c_1^I \cos \phi + c_2^I \cos 2\phi + c_3^I \cos 3\phi \)
- \(D_{CS,U} \) \(\propto s_1^I \sin \phi + s_2^I \sin 2\phi \)

\[S_{CS,U} \] \(\propto c_0^{BH} + c_1^{BH} \cos \phi + c_2^{BH} \cos 2\phi \)

LO, Twist-2

\[S_{CS,U} = d\sigma^{+\downarrow} + d\sigma^{-\uparrow} \]

LO, Twist-3

NLO, Twist-2

\[D_{CS,U} = d\sigma^{+\downarrow} - d\sigma^{-\uparrow} \]