Results from (un)polarised Drell-Yan & J/ ψ measurements at COMPASS

Vincent Andrieux on behalf of the COMPASS Collaboration

University of Illinois at Urbana-Champaign

DIS 2023 March 27th-31st East-Lansing (Michigan)

Vincent Andrieux (UIUC)

Motivations

11			Quark Polarisation		
····			Unpolarised (U)	Longitudinally polarised (L)	Tranversely polarised (T)
GPDs	Nucleon Polarisation	υ	H		\bar{E}_T
		L		$ ilde{H}$	$ ilde{E}_T$
		т	E	$ ilde{E}$	H_T, \tilde{H}_T

Nucleon is a complex object

Most comprehensive description provided by universal non perturbative functions:

- Transverse Momentum Dependent PDFs
- Generalised Parton Distributions

 $\delta z_{\perp} \sim 1/$

Motivations

Accessible via:

Vincent Andrieux (UIUC)

Nucleon is a complex object

Most comprehensive description provided by universal non perturbative functions:

- Transverse Momentum Dependent PDFs
- Generalised Parton Distributions

This talk: TMDs

- 4 Chiral-even: f_1 , f_{1T}^{\perp} , g_1 , g_{1T}^{\perp}
- 4 Chiral-odd: \mathbf{h}_{1}^{\perp} , \mathbf{h}_{1} , \mathbf{h}_{1T}^{\perp} , h_{1L}^{\perp}

 \Rightarrow SIDIS talk by C. Riedl for COMPASS results

 $\Rightarrow \text{ Drell-Yan muon-pair & J/}\psi$ production

Experimental access through azimuthal modulations

Synergy DY vs SIDIS on transversely polarised target

TMD PDFs are **universal** but final state interaction (SIDIS) *vs.* initial state interaction (DY) \rightarrow **Sign flip** for naive T-odd TMD PDFs

$$h_{1,p}^{\perp q}|_{DY} = -h_{1,p}^{\perp q}|_{SIDIS}$$
 $f_{1T,p}^{\perp q}|_{DY} = -f_{1T,p}^{\perp q}|_{SIDIS}$

Crucial test of TMD framework in QCD which can be addressed by COMPASS

COMPASS apparatus for polarised Drell-Yan measurements

NIMA 577 (2007) 455, NIMA 779 (2015) 69, NIMA 1025 (2022) 166069

Reaction:

<u>Beam:</u>

- 190 GeV/c h^- beam, 97% π^- and $I \sim$ 70MHz
- \bullet 160 GeV/c μ^\pm

Key elements:

- 2×55 cm NH₃ polarised target
- Al and W target (beam plug)
- 2.4m long hadron absorber
- \bullet ~ 400 tracking planes
- 2 Muon filters

Kinematic coverage

[💛] Vincent Andrieux (UIUC)

Drell-Yan selection

Restrict the analysis to $4.3 < M_{\mu\mu}/(\text{GeV}/c^2) < 8.5$

- Drell-Yan purity: 96%
- Probing $\langle x_N \rangle \sim 0.17$: *u*-quark dominance
- $q_T > 0.4$ (GeV/c) for angular resolution, $\langle q_T \rangle = 1.17 \; (\text{GeV}/c)$
- but low cross-section

2.5<M <4.3

 10^{-2}

 10^{-1}

2<M....<2.5

1<M....<2

 10^{-3}

10

0.9

0.8

0.6

0.5

0.4

0.2

0.1

10

 x_N

High mass Drell-Yan region: Transversity

High mass Drell-Yan region: Pretzelosity

High mass Drell-Yan region: Sivers

East-Lansing (MI) March-2023

Vincent Andrieux (UIUC)

-0.1

Unpolarised Drell-Yan angular dependencies

General expression for spin independent cross-section:

$$\frac{dN}{d\Omega} \propto \frac{3}{4\pi} \frac{1}{\lambda+3} \left(1 + \frac{\lambda}{\cos^2(\theta_{CS})} + \frac{\mu}{\sin(2\theta_{CS})} \cos(\phi_{CS}) + \frac{\nu}{2} \sin^2(\theta_{CS}) \cos(2\phi_{CS}) \right)$$

where $\lambda = A_U^1$, $\mu = A_U^{\cos(\phi_{CS})}$ and $\nu = 2A_U^{\cos(2\phi_{CS})} \propto h_{1,h}^{\perp q} \otimes h_{1,p}^{\perp q}$

In naive Drell-Yan: LO (pure electromagnetic) and no k_T : $\lambda = 1, \mu = \nu = 0$

Preliminary 2018 data results, systematic uncertainty (not shown) similar to the statistical ones

• Large effect from higher order corrections

Hint for non-zero Boer-Mulders effect

W-target

Lam-Tung relation

- Reflect the spin 1/2 of the quarks
- Less affected by first order QCD corrections

Preliminary systematic uncertainty (not shown) similar to the statistical ones

Vincent Andrieux (UIUC)

- Consistent with results obtained by past pion-induced Drell-Yan experiments
- Preliminary results indicate a possible violation of Lam-Tung relation
- This leaves some room for Boer-Mulders effects: $2\nu (1 \lambda) \approx 4 A_U^{cos(2\phi_{CS})}$

J/ψ region

Restrict the analysis to $2.85 < M_{\mu\mu}/({
m GeV}/c^2) < 3.4$

- Larger cross-section $\rightarrow \sim$ 30× more data compared to high-mass Drell-Yan region
- J/ ψ purity: 92%
- Probing $\langle x_N \rangle \sim 0.09$: \approx valence domain
- $q_T > 0.4$ (GeV/c) for angular resolution, $\langle q_T
 angle = 1.05$ (GeV/c)

Expectations for Sivers effects in ${\rm J}/\psi$

- TSA of π^0 production at PHENIX leaves small room for gluon Sivers effects
- Assuming $q\bar{q}$ dominance neglecting feed-down J/ ψ contribution
 - \Rightarrow Large signal expected

Expectations for Sivers effects in ${\rm J}/\psi$

- TSA of π^0 production at PHENIX leaves small room for gluon Sivers effects
- Assuming $q\bar{q}$ dominance neglecting feed-down J/ ψ contribution
 - \Rightarrow Large signal expected

TSA for J/ψ

Vincent Andrieux (UIUC)

No significant kinematic dependence All TSA are compatible with zero

Additional scale uncertainty \sim 10% not shown due to dilution factor, $A_U^1=0$ & polarisation

In favour of large gluon dilution

Parallel analyses ongoing on unpolarised angular distribution and absolute cross-section to provide further insights

 $\bullet\,$ Two nuclear targets: Al & W

- $\bullet\,$ Two complementary processes: DY and ${\rm J}/\psi$
 - Constrain nPDF (*x*_{target})
 - Cronin effects (p_T)
 - Parton energy loss (*x*_{beam})

We measure the nuclear modification factor:

$$R_{\pi^-\mathcal{A}}^{\mathsf{J}/\psi}(\mathcal{W}/\mathcal{A} \mathcal{I}) = rac{\mathcal{A}_{\mathcal{A} \mathcal{I}}}{\mathcal{A}_W} rac{\sigma_{\pi^-\mathcal{W}}^{J\psi}}{\sigma_{\pi^-\mathcal{A} \mathcal{I}}^{-\omega}}$$

AI: \sim 80 k J/ ψ & W: \sim 600 k J/ ψ

Results of nuclear modification factor

Ongoing analysis, preliminary systematic uncertainties $\leq 10\%$ (not shown)

- Similar effects as observed by past experiments, e.g NA03 Z.Phys.C20 (1983) 101
- Strong suppression towards large x_F (*i.e* low x_{target} and large x_{beam})
- Increase with p_T due Cronin effect

To better desentangle the various nuclear effects, the analysis is performed as a function of x_F and p_T

Systematics uncertainty not shown: $\leq 10\%$

Potentially more prominent suppression towards high x_F at low pTAdditional insights compared to past experiments

Conclusion and Outlook

- ⇒ Final TSA results from Drell-Yan process were shown Sivers asymmetry is measured 1-sigma positive, in favour of a sign change Results to be published this year
- \Rightarrow Preliminary TSA results from J/ ψ production are all compatible with zero
- ⇒ Preliminary unpolarised azimuthal asymmetries in Drell-Yan from W target leave some room for Boer-Mulders effects
- ⇒ Preliminary results of $R_{\pi A}(AI/W)$ for J/ ψ production in (x_F , p_T) were shown and can serve to constrain nuclear effects

Many ongoing analyses with new results expected soon: DY cross-section, DY cross-section ratio, J/ ψ cross section and angular dependence \ldots

Stay tuned

BACKUP

