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COMPASS Experiment at CERN

[COMPASS, NIM A779, 69-115 (2015)]
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https://www.sciencedirect.com/science/article/pii/S0168900215000662


Electromagnetic Calorimeters at COMPASS
ECAL1 ECAL2

[COMPASS, NIM A779, 69-115 (2015)]
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Calorimeter Modules at COMPASS

General
▶ Homogeneous (lead glass) modules: Mainz, GAMS, GAMS-R and OLGA

▶ Single cells composed of just one material
▶ Inhomogeneous module: Shashlik

Shashlik cells in ECAL2
▶ Complicated modules built of 154 layers of scintillator / lead slices
▶ Pierced with WLS Fibers for readout and holding rods for stability
▶ The Shashlik modules are built to withstand radiation doses up to 20 years of

data taking
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One Shashlik Cell
Shashlik module at COMPASS

[COMPASS, NIM A779, 69-115 (2015)]

▶ Upstream aluminium plate where
holding rods are fixed to

▶ Rods and fibers indicated in the left
picture

▶ Yellow nut is much bigger than
holding rod

Monte Carlo implementation

▶ Upstream, black: The aluminium
plate where holding rods are fixed to

▶ Black: lead layers
▶ Yellow: scintillator layers
▶ Blue circles: fibers
▶ Gray circles: holding rods
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Monte Carlo Simulations at COMPASS
Simulations with TGEANT
▶ Based on GEANT4
▶ Implementation of detectors
▶ Tracking of particles through the geometry
▶ Save detector hits, to be reconstructed

CORAL as reconstruction program
▶ Reconstruct events simulated with TGEANT
▶ Reconstruct events taken with the COMPASS spectrometer

PHAST as analysis program
▶ Analysis on event-by-event basis
▶ Event selection, efficiency studies and more
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Detector Design with GEANT4 at COMPASS

Construct geometry
▶ Build any 3D object with GEANT4 solids
▶ Construct logical volumes of these solids, specifying a material and more
▶ Place logical volume inside some other volume

Design philosophy
▶ Start with large (world) volume that holds all of COMPASS
▶ Place smaller volumes that can hold detectors in the world volume
▶ Repeat until all detectors are included

Benefit: Each (sub)detector can be developed independently and relative to its mother
▶ Daughter volume always supersedes mother volume
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Detector Design with GEANT4 at COMPASS

Readout of detectors
▶ A logical volume can be marked as sensitive detector
▶ Energy deposited in these volumes are stored within TGEANT and saved
▶ Energy deposited in non-sensitive volumes is lost
▶ One sensitive detector usually mirrors one readout plane of a COMPASS detector
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Calorimeter Modules in TGEANT

Layout of one calorimeter module
▶ Each module is build of multiple cells
▶ Cells are grouped in squares to simplify description
▶ These groups are read in by TGEANT

Implementation of one calorimeter module in TGEANT
▶ All groups are combined to one calorimeter module region (used by GFlash later)
▶ For each group, cells are built and placed in the modules volume
▶ Only scintillator volume is marked as sensitive
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Tracking with GEANT4
Layout
▶ Each particle is tracked one step at a time through the logical volumes
▶ At each step, registered physics processes are checked

▶ Transportation, decay, user processes such as event generators, ...
▶ They are invoked, when the trigger condition for the process is met

▶ Certain distance in target for event generator
▶ Lifetime hits 0 for deacys ...

▶ If triggered, the particle is changed within the process
▶ Processes can stop / destroy / change kinematics of particles

Note!
▶ Every particle type has its own physics processes associated
▶ Apart from this, neutral and charged particles are not treated differently
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Tracking through a Calorimeter Module
Physics processes in electromagnetic calorimeters
▶ Electrons and positrons will create photons via bremsstrahlung
▶ Photons will create electrons and positrons via pair production
▶ Leads to creation of many particles ⇒ electromagnetic shower

Figure: Schematic view of the start of an electromagnetic shower
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Tracking through a Calorimeter Module

Tracking electrons, positrons and photons the accurate way
▶ Tracking of every particle in the shower
▶ Especially time expensive in Shashlik cells (10 - 200 s) per initial particle

The fast way
▶ Using GFlash as fast shower simulation algorithm
▶ Originally developed for CMS
▶ Tuned for TGEANT, so that the energy yield of GFlash showers matches the

energy yield of showers without GFlash
▶ Simulation of the shower in effective material, No secondary particles
▶ Time per initial particle reduced to (1 - 5 s)
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Visual of an Electromagnetic Shower

Without GFlash With GFlash
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GFlash

General
▶ Works as any other physics process
▶ Trigger condition is checked during stepping
▶ Shower is simulated and energy deposit is fed back to detector geometry

Trigger condition
▶ Containment of 90% of the shower in the module region
▶ Radial containment estimated via Molière Radius
▶ Longitudinal containment estimated via radiation length and particle energy
▶ Calorimeter modules are large enough in longitudinal direction to always contain

the electromagnetic shower
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GFlash
Input to GFlash
▶ Materials and their weights ⇒ Compute effective material

▶ Radiation length, Molière Radius, critical energy ...

Workflow of GFlash
▶ Compute longitudinal profile for one shower
▶ Simulate shower in steps of this profile

▶ Look at the energy deposit in one longitudinal interval
▶ Smear energy with sampling resolution
▶ With this energy, determine the number of spots with equal energy in one interval
▶ For each spot the radius and angle are determined according to the respective profiles

▶ Feed spots to calorimeter geometry
▶ Only energy in sensitive detectors is stored within TGEANT
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Description of Electromagnetic Showers
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dE(r⃗) = Ef(t)dtf(r)drf(ϕ)dϕ

Longitudinal profile Radial profile

0 10 20 30
]

0
t [X

0

0.05

0.1

]
-1 0

f(
t)

 [
X

0 0.5 1
]

M
r [R

0

1

2

3

4]
-1 M

f(
r)

 [
R

50 GeV electron 50 GeV electron at 5 X0



Full GFlash Shower
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Nspot = 2349
Electron at 30 GeV



Shower Reconstruction in CORAL
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One dimensional Lednev function: F (x) = 1
π
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Reconstruction Function by Lednev
Two dimensionsional Lednev function:
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For real data showers
in Shashlik modules:
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Comparison between Reconstructed π0 Masses
Diffractive 2008 / 2009 COMPASS data
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How to fix the Asymmetry

a) Change reconstruction
+ Done already by Waldemar Renz

[wwwcompass.cern.ch/compass/notes/2019-1/2019-1.pdf]

− Different Lednev parameters for
simulated data compared to
COMPASS data

b) Improve on GFlash tuning
+ Nothing changes in reconstruction
+ Simulation is closer to reality
− Many parameters to tune
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How to tune GFlash

Change parametrisation
▶ Radial profile parameters
▶ Longitudinal profile parameters (less impact)

Reconstruction
▶ Keep Lednev parameters as for COMPASS data
▶ Reconstruct large enough sample of π0 data to see impact
▶ Iterative procedure

Current status
▶ Study ongoing, no final parameters yet
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Summary and Outlook

Summary
▶ Good understanding of Monte Carlo workflow at COMPASS
▶ ECAL2 Shashlik modules are built to highest precision in TGEANT
▶ Tracking of every shower particle takes much time
▶ GFlash shortens the process a lot while simulating the shower to a high accuracy

▶ Shashlik material is taken into account while depositing energy
▶ Good understanding of GFlash workflow within TGEANT

Outlook
▶ Tune GFlash to remove asymmetry without new lednev parameters (ongoing)
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Additional material
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GFlash trigger condition

GFlash is triggered when the 90% of the shower is contained in the given region, e.g.
Shashlik of ECAL2
▶ 90% longitudinal is estimated via the incoming energy, and the radiation length
▶ The Shashlik modules are large enough, so that this always happens
▶ 90% radial is estimated via 1.5 · RM

▶ Molière Radius; RM = Es
Ec

· X0

▶ Es = mec
√

4π/α = 21.2 MeV and α being the fine structure constant
▶ X0 is the radiation length, i.e. the distance after which an electron has only 1/e

of its original energy left
▶ Ec is the critical energy, i.e. the energy where energy loss due to ionization and

radiation is equal
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Effective material properties formulas

X0,eff = 1∑i=k
i=1 wi/X0,i

, RM,eff = ES∑i=k
i=1 wi · Ec,i/X0,i

, Ec,eff = X0,eff ·
i=n∑
i=1

wi · Ec,i
X0,i

With the weight wk of each material given as

wk = dk · ρk∑i=k
i=1 di · ρi

Where dk corresponds to the respective thickness, material k takes up in one layer, ρk
corresponding to the density of material k and Es = 21 MeV
Effective properties: X0 = 6.45 mm, Ec,eff = 7.26 MeV and RM,eff = 18.66 mm
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Longitudinal and Radial Profiles
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