Hard Exclusive Reactions at COMPASS at CERN

Exclusive photon (DVCS) and meson (HEMP) production at small transfer for GPD studies

DVCS : \(\mu \ p \rightarrow \mu' \ p' \ \gamma \)

Pseudo-Scalar Meson : \(\mu \ p \rightarrow \mu' \ p' \ \pi^0 \)

Vector Meson : \(\mu \ p \rightarrow \mu' \ p' \ \rho \ or \ \omega \ or \ \phi \ ...

Nicole d’Hose - CEA Université Paris-Saclay for the COMPASS Collaboration
Measurement of exclusive cross sections at COMPASS

DVCS: $\mu \ p \rightarrow \mu' \ p' \gamma$ at small transfer

Both μ^+ and μ^- beams
Polarisation $\sim \pm 80\%$
Momentum 160 GeV/c

COMPASS: Two stage magnetic spectrometer for large angular & momentum acceptance
Particle identification with RICH, HCALs, ECALs and muon filters

2012: 1 month pilot run

2016 - 17: 2 x 6 month data taking

DVCS: $\mu p \rightarrow \mu' p \gamma$

+ SIDIS on unpolarized protons
Deeply virtual Compton scattering (DVCS)

The GPDs depend on the following variables:

- \bar{x}: average quark longitudinal momentum fraction
- ξ: transferred momentum fraction
- t: proton momentum transfer squared related to b_\perp via Fourier transform
- Q^2: virtuality of the virtual photon

DVCS: $\ell p \rightarrow \ell' p' \gamma$

the golden channel because it interferes with the Bethe-Heitler process

also meson production $\ell p \rightarrow \ell' p' \pi, \rho, \omega$ or ϕ or J/ψ

The variables measured in the experiment:

$E_\ell, Q^2, \bar{x}_B \sim 2\xi/(1+\xi)$,
t (or $\theta_{\gamma^*\gamma}$) and ϕ ($\ell\ell'$ plane/$\gamma\gamma^*$ plane)
Deeply virtual Compton scattering (DVCS)

The amplitude DVCS at LT & LO in α_s (GPD H):

$$
\mathcal{H} = \int_{-1}^{+1} dx \frac{H(x, \xi, t)}{x - \xi + i\epsilon} = \mathcal{P} \int_{-1}^{+1} dx \frac{H(x, \xi, t)}{x - \xi} - i \pi H(x = \pm \xi, \xi, t)
$$

In an experiment we measure Compton Form Factor \mathcal{H}.
Deeply virtual Compton scattering (DVCS)

Lepton (P_l, e_l) and ϕ

\[
\frac{d^4\sigma(\ell p \rightarrow \ell p\gamma)}{dx_B dQ^2 d|l|d\phi} = d\sigma^{BH} + (d\sigma^{DVCS_{unpol}} + P_\ell d\sigma^{DVCS_{pol}}) - (e_\ell \text{Re } I + e_\ell P_\ell \text{Im } I)
\]

Well known

With unpolarized target:

Belitsky, Müller, Kirner, NPB629 (2002)

\[
\begin{align*}
\frac{d\sigma^{BH}}{dx_B dQ^2 d|l|d\phi} &\propto c_0^{BH} + c_1^{BH} \cos \phi + c_2^{BH} \cos 2\phi \\
\frac{d\sigma^{DVCS_{unpol}}}{dx_B dQ^2 d|l|d\phi} &\propto c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi \\
\frac{d\sigma^{DVCS_{pol}}}{dx_B dQ^2 d|l|d\phi} &\propto s_1^{DVCS} \sin \phi \\
\text{Re } I &\propto c_0^I + c_1^I \cos \phi + c_2^I \cos 2\phi + c_3^I \cos 3\phi \\
\text{Im } I &\propto s_1^I \sin \phi + s_2^I \sin 2\phi
\end{align*}
\]
Deeply virtual Compton scattering (DVCS)

With both μ^+ and μ^- beams we can build:

1. beam charge-spin sum

$$\Sigma \equiv \sigma^+ - \sigma^-$$

2. difference

$$\Delta \equiv \sigma^+ - \sigma^-$$

\[\begin{align*}
\Sigma & \equiv \sigma^+ + \sigma^- \\
\Delta & \equiv \sigma^+ - \sigma^-
\end{align*}\]

\[\begin{align*}
d\sigma^{BH} & \propto c_0^{BH} + c_1^{BH} \cos \phi + c_2^{BH} \cos 2\phi \\
d\sigma_{unpol}^{DVCS} & \propto c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi \\
d\sigma_{pol}^{DVCS} & \propto s_1^{DVCS} \sin \phi \\
\text{Re } I & \propto c_0^I + c_1^I \cos \phi + c_2^I \cos 2\phi + c_3^I \cos 3\phi \\
\text{Im } I & \propto s_1^I \sin \phi + s_2^I \sin 2\phi
\end{align*}\]

\[\begin{align*}
\Sigma & \equiv \sigma^+ + \sigma^- \Rightarrow s_1^I \propto \text{Im } F \\
\Delta & \equiv \sigma^+ - \sigma^- \Rightarrow c_1^I \propto \text{Re } F
\end{align*}\]

And $c_0^{DVCS} \propto (\text{Im } H)^2$

\[F = F_1 H + \xi_s (F_1 + F_2) H - t/4m^2 F_2 E \]

for proton

at small x_b

COMPASS domain
COMPASS 2016 data Selection of exclusive single photon production

Comparison between the observables given by the spectro or by CAMERA

DVCS: $\mu \ p \rightarrow \mu' \ p \ \gamma$

1) $\Delta \varphi = \varphi_{cam} - \varphi_{spec}$
2) $\Delta p_T = p_T^{cam} - p_T^{spec}$
3) $\Delta z_A = z_A^{cam} - z_A^{spec}$ and vertex
4) $M^2_{X=0} = (p_{j\mu}^{in} + p_{j\mu}^{out} - p_{\mu}^{out} - p_{\gamma})^2$

Good agreement between μ^+ and μ^- yields important achievement for:

1) $\sum \equiv d\sigma^+ - d\sigma^-$ **Easier, done first**
2) $\Delta \equiv d\sigma^+ - d\sigma^-$ **Challenging, but promising**

1) proton azimuthal angle
2) proton momentum
3) proton track position
4) Energy momentum balance
COMPASS 2016 data

DVCS+BH cross section at $E_\mu=160$ GeV

$$\Sigma = d\sigma (\mu^+) + d\sigma (\mu^-)$$

$$d\sigma \propto |T^{BH}|^2 + \text{Interference Term} + |T^{DVCS}|^2$$

$80 < v [\text{GeV}] < 144$

$32 < v [\text{GeV}] < 80$

$10 < v [\text{GeV}] < 32$

Pure BH contribution

$x_B \approx 0.0085$

$Q^2 \approx 1.8 \text{ GeV}^2$

$y \approx 0.75$

$32 < v [\text{GeV}] < 80$

$x_B \approx 0.020$

$Q^2 \approx 2 \text{ GeV}^2$

$y \approx 0.3$

$10 < v [\text{GeV}] < 32$

$x_B \approx 0.063$

$Q^2 \approx 2.1 \text{ GeV}^2$

$y \approx 0.1$

Data/BH = 98.6 ±1±4%

MC: BH contribution evaluated for the integrated luminosity

π^0 background contribution from SIDIS (LEPTO) + exclusive production (HEPGEN)
At COMPASS using polarized positive and negative muon beams:

\[
\sum \equiv \frac{d\sigma^+}{d\nu} + \frac{d\sigma^-}{d\nu} = 2[\frac{d\sigma^{BH}}{d\nu} + \frac{d\sigma^{DVCS}}{d\nu} + Im I]
\]

\[
= 2[\frac{d\sigma^{BH}}{d\nu} + c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi + s_1^I \sin \phi + s_2^I \sin 2\phi]
\]

All the other terms are cancelled in the integration over \(\phi \).

 Flux for transverse virtual photons

COMPASS preliminary

\[e^{-B|t|} \]

\[B = 6.6 \pm 0.6_{\text{stat}} \pm 0.3_{\text{sys}} \left(\text{GeV/c} \right)^2 \]

given by a binned maximum likelihood technique
\[\frac{d\sigma^{\text{DVCS}}}{dt} = e^{-B|t|} = c_0^{\text{DVCS}} \propto (\text{Im} \mathcal{H})^2 \]

\[c_0^{\text{DVCS}} \propto 4(\mathcal{H}^{*} \mathcal{H} + \tilde{\mathcal{H}}^{*} \tilde{\mathcal{H}}) + \frac{t}{M^2} \mathcal{E} \mathcal{E}^* \]

In the COMPASS kinematics, \(x_B \approx 0.06 \), dominance of \(\text{Im} \mathcal{H} \)
97% (GK model) 94% (KM model)

\(\text{Im} \mathcal{H} = H(\xi = \zeta, \xi, t) \)
\(x = \xi \approx x_B / 2 \) close to 0

\[q(x, b_\perp) = \int \frac{d^2 \Delta_\perp}{(2\pi)^2} e^{-ib_\perp \cdot \Delta_\perp} H^q(x, 0, -\Delta_\perp^2). \]

\[\langle b_{\perp}^2 \rangle_x = \left. \frac{\int d^2 b_\perp b_\perp^2 q_f(x, b_\perp)}{\int d^2 b_\perp q_f(x, b_\perp)} \right| = -4 \frac{\partial}{\partial t} \log H^f(x, \xi = 0, t) \bigg|_{t=0} \]

\[\langle b_{\perp}^2(x) \rangle \approx 2B(\xi) \]
\[\frac{d\sigma^{\text{DVCS}}}{dt} = e^{-B|t|} = c_0^{\text{DVCS}} \propto (\text{Im} \mathcal{M})^2 \]

\[\langle b_1^2(x) \rangle \approx 2B(\xi) \]

3σ difference between 2012 and 2016 data

- more advanced analysis with 2016 data
- \(\pi^0 \) contamination with different thresholds
- binning with 3 variables \((t,Q^2,v)\) or 4 variables \((t,\phi,Q^2,v)\)

2012 statistics = Ref
2016 analysed statistics = 2.3 \times \text{Ref}
2016+2017 expected statistics = 10 \times \text{Ref}
Possible next steps for DVCS

- DVCS and the sum $\sum \equiv d\sigma^+ + d\sigma^-$

 - $c_0 \sim (\text{Im}\ H)^2$ final conclusion using all the data sets 2012, 2016, 2017
 - $s_1 \sim \text{Im}\ H$

 constrain on $\text{Im}\ H$ and Transverse extension of partons

- DVCS and the difference $\Delta \equiv d\sigma^+ - d\sigma^-$

 - c_1 and constrain on $\text{Re}\ H$ (>0 as H1 or <0 as HERMES)

 for D-term and pressure distribution
Factorisation proven only for σ_L

The meson wave function is an additional non-perturbative term

Quark contribution

For *Pseudo-Scalar Meson, as π^0*

- Chiral-even GPDs: helicity of parton unchanged
 $$\tilde{H}^q(x, \xi, t) \quad \tilde{E}^q(x, \xi, t)$$

- Chiral-odd or transversity GPDs: helicity of parton changed
 $$\tilde{H}^q_T(x, \xi, t)$$ (as the transversity TMD)
 $$\tilde{E}^q_T = 2 \tilde{H}^q_T + E^q_T$$ (as the Boer-Mulders TMD)

σ_T is asymptotically suppressed by $1/Q^2$ but large contribution observed

GK model: k_T of q and \bar{q} and Sudakov suppression factor are considered

Chiral-odd GPDs with a twist-3 meson wave function
COMPASS 2012 - 16 Exclusive π^0 production on unpolarized proton

$\mu^\pm p \rightarrow \mu^\pm \pi^0 p$

$F_\pi^0 = 2/3 F_u + 1/3 F_d$

\[
\frac{d^2\sigma}{dt d\phi_\pi} = \frac{1}{2\pi} \left[(\epsilon \frac{d\sigma_L}{dt} + \epsilon \cos 2\phi_\pi \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_\pi \frac{d\sigma_{LT}}{dt} \right]
\]

$\frac{d\sigma_L}{dt} \propto \left| \langle H \rangle \right|^2 - \frac{t'}{4m^2} \left| \langle E \rangle \right|^2$

$\frac{d\sigma_T}{dt} \propto \left| \langle H_T \rangle \right|^2 - \frac{t'}{8m^2} \left| \langle E_T \rangle \right|^2$

$\frac{d\sigma_{LT}}{dt} \propto \frac{t'}{16m^2} \left| \langle E_T \rangle \right|^2$

$\langle \frac{d\sigma_T}{dt} \rangle = (8.2 \pm 0.9_{\text{stat}} \pm 1.2_{\text{sys}}) \text{nb} (\text{GeV}/c)^2$

$\langle \frac{d\sigma_L}{dt} \rangle = (-6.1 \pm 1.3_{\text{stat}} \pm 0.7_{\text{sys}}) \text{nb} (\text{GeV}/c)^2$

$\langle \frac{d\sigma_{LT}}{dt} \rangle = (1.5 \pm 0.5_{\text{stat}} \pm 0.3_{\text{sys}}) \text{nb} (\text{GeV}/c)^2$

σ_{TT} large - impact of E_T

σ_{LT} small but significantly positive as at CLAS

COMPASS

$Q^2 = 2.0$ GeV2

$x_B = 0.093$

$|t| \sim 0.26$ GeV2

ϵ close to 1

$8.5 < y < 26$ GeV

$1 < Q^2 < 5$ GeV2

PLB 805 (2020)

Next steps for pi0

Analysis of the 2016 data set should be completed by the end of the month

Extended kinematical domain at small and large ν to provide x_B evolution
\[8.5 < \nu < 26 \text{ GeV}\]
\[6.4 \, \checkmark \quad \nrightarrow \quad 40 \text{ GeV}\]

The 2017 data set will still increase the statistics
GPDs and Hard Exclusive Meson Production

Factorisation proven only for σ_L
The meson wave function
Is an additional non-perturbative term

For Vector Meson, as $\rho, \omega, \phi...$

Quark contribution

chiral-even GPDs: helicity of parton unchanged

\[H_q(x, \xi, t) \quad E^q(x, \xi, t) \]

+ chiral-odd or transversity GPDs: helicity of parton changed

\[H_T^q(x, \xi, t) \quad (as \ the \ transversity \ TMD) \]

\[\hat{E}_T^q = 2 H_T^q + E_T^q \quad (as \ the \ Boer-Mulders \ TMD) \]

Gluon contribution at the same order in α_s

Neutral Vector Meson $q\bar{q}$
$\rho^0 \rightarrow \pi^+ \pi^-$

$$E_{\rho^0} = \frac{1}{\sqrt{2}} \left(\frac{2}{3} E^u + \frac{1}{3} E^d + \frac{3}{4} E^a \right)$$

$\omega \rightarrow \pi^+ \pi^- \pi^0$

$$E_{\omega} = \frac{1}{\sqrt{2}} \left(\frac{2}{3} E^u - \frac{1}{3} E^d + \frac{1}{4} E^a \right)$$

E^u and E^d of opposite sign

ω is more promising (see the larger scale) but there is the inherent pion pole contribution

$\Gamma(\omega \rightarrow \pi^0 \gamma) = 9 \times \Gamma(\rho^0 \rightarrow \pi^0 \gamma)$

Same for $\pi \omega$ FF but sign unknown

COMPASS, NPB 865 (2012) 1-20, PLB731 (2014) 19

COMPASS, NPB 915 (2017)

$\sin(\phi_{\pi \pi})$

$\sin(\phi_{\pi \pi})$

A_{UT}

A_{UT}

$\sin(\phi_{\pi \pi})$

$\sin(\phi_{\pi \pi})$

E_{ρ^0}

E_{ω}

$Q^2 (\text{GeV}^2/c^2)$

$P_T (\text{GeV}^2/c^2)$

$Q^2 (\text{GeV}^2/c^2)$

$P_T (\text{GeV}^2/c^2)$

$\Gamma(\omega \rightarrow \pi^0 \gamma) = 9 \times \Gamma(\rho^0 \rightarrow \pi^0 \gamma)$

positive $\pi \omega$ form factor

no pion pole

negative $\pi \omega$ form factor

GK EPJC42,50,53,59,65,74
exclusive VM production with Unpolarised Target and SDME

experimental angular distributions:

\[\mathcal{W}^{U+L}(\Phi, \phi, \cos \Theta) = \mathcal{W}^U(\Phi, \phi, \cos \Theta) + \mathcal{P}_L \mathcal{W}^L(\Phi, \phi, \cos \Theta) \]

15 'unpolarized' and 8 'polarized' SDMEs

\[\mathcal{W}^U(\Phi, \phi, \cos \Theta) = \frac{3}{8\pi^2} \left[\frac{1}{2} (1 - r_{10}^{04}) + \frac{1}{2} (3r_{00}^{04} - 1) \cos^2 \Theta - \sqrt{2} \text{Re}\{r_{10}^{04}\} \sin 2\Theta \cos \phi - r_{11}^{04} \sin^2 \Theta \cos 2\phi \right. \\
- \epsilon \cos 2\Phi \left(r_{11}^{04} \sin^2 \Theta + r_{00}^{11} \cos^2 \Theta - \sqrt{2} \text{Re}\{r_{10}^{11}\} \sin 2\Theta \cos \phi - r_{11}^{11} \sin^2 \Theta \cos 2\phi \right) \\
- \epsilon \sin 2\Phi \left(\sqrt{2} \text{Im}\{r_{10}^{11}\} \sin 2\Theta \sin \phi + \text{Im}\{r_{11}^{11}\} \sin^2 \Theta \sin 2\phi \right) \\
\left. + \sqrt{2} (1 + \epsilon) \cos \Phi \left(r_{11}^{05} \sin^2 \Theta + r_{00}^{05} \cos^2 \Theta - \sqrt{2} \text{Re}\{r_{10}^{05}\} \sin 2\Theta \cos \phi - r_{11}^{05} \sin^2 \Theta \cos 2\phi \right) \\
+ \sqrt{2} (1 + \epsilon) \sin \Phi \left(\sqrt{2} \text{Im}\{r_{10}^{05}\} \sin 2\Theta \sin \phi + \text{Im}\{r_{11}^{05}\} \sin^2 \Theta \sin 2\phi \right) \right] \\
\]

\[\mathcal{W}^L(\Phi, \phi, \cos \Theta) = \frac{3}{8\pi^2} \left[\sqrt{1 - r^2} \left(\sqrt{2} \text{Im}\{r_{10}^{11}\} \sin 2\Theta \sin \phi + \text{Im}\{r_{11}^{11}\} \sin^2 \Theta \sin 2\phi \right) \\
+ \sqrt{2} (1 - \epsilon) \cos \Phi \left(\sqrt{2} \text{Im}\{r_{10}^{11}\} \sin 2\Theta \sin \phi + \text{Im}\{r_{11}^{11}\} \sin^2 \Theta \sin 2\phi \right) \\
+ \sqrt{2} (1 - \epsilon) \sin \Phi \left(r_{11}^{08} \sin^2 \Theta + r_{00}^{08} \cos^2 \Theta - \sqrt{2} \text{Re}\{r_{10}^{08}\} \sin 2\Theta \cos \phi - r_{11}^{08} \sin^2 \Theta \cos 2\phi \right) \right] \\
\]

\(\epsilon \) close to 1, small \(\mathcal{W}^L \)
no L/T separation
SCHC

\[\sum_{\text{SDME}} \approx 0 \text{ for } \gamma^*_L \rightarrow \omega_L \text{ and } \gamma^*_T \rightarrow \omega_T \]

The other SDMEs should be \(= 0 \)

\[r_{00}^5 \propto \text{Re} \left[(E_T)_{LT}^* (H)_{LL} + \frac{1}{2} (H_T)_{LT}^* (E)_{LL} \right] \]

COMPASS

Accepted in EPJC

\[Q^2 = 2.4 \text{ GeV}^2 \]
\[W = 9.9 \text{ GeV} \]
\[p_T^2 = 0.18 \text{ GeV}^2 \]

COMPASS

EPJC81 (2021) 126

\[Q^2 = 2.1 \text{ GeV}^2 \]
\[W = 7.6 \text{ GeV} \]
\[p_T^2 = 0.16 \text{ GeV}^2 \]
Natural (N) to Unnatural (U) Parity Exchange for $\gamma_T^* \rightarrow V_T$

The pion pole exchange (UPE) is large for ω compared to ρ^0

$$\Gamma(\omega \rightarrow \pi^0 \gamma) = 9 \times \Gamma(\rho^0 \rightarrow \pi^0 \gamma)$$

as for π^0 Vector Meson FF

It plays an important role in ω production for:

$\gamma_T^* \rightarrow V_T$

and

$\gamma_L^* \rightarrow V_T$

ρ^0: P~1 \Rightarrow NPE dominance P~1
NPE with GPDs H, E

ω: P~0 \Rightarrow NPE ~ UPE
UPE dominance at small W and p_T^2
UPE with GPDs \tilde{H}, \tilde{E} and the dominant pion pole
$R = \frac{\sigma_L}{\sigma_T}$ for exclusive ρ^0 production

![Graph showing R and \tilde{R} vs. Q^2](graph.png)

In COMPASS domain, evaluation of R and \tilde{R} considering violation of SCHC (and only NPE).

Deviation from the pQCD LO prediction in Q^2/M_{ρ}^2: QCD evolution and q_T

Transversize size effects of the meson smaller for σ_L than for σ_T
Analysis of the exclusive ϕ production is currently in progress

(with cross section and SDMEs)
COMPASS 2016+17

Outlook for DVCS and HEMP

- **DVCS** and the sum \(\sum \equiv d\sigma^+ + d\sigma^- \)
 - \(c_0 \) and \(s_1 \) and constrain on \(\text{Im} \mathcal{H} \) and Transverse extension of partons

- **DVCS** and the difference \(\Delta \equiv d\sigma^+ - d\sigma^- \)
 - \(c_1 \) and constrain on \(\text{Re} \mathcal{H} \) (>0 as H1 or <0 as HERMES)
 - for D-term and pressure distribution

- On-going analysis (Cross section, SDME) for HEMP of \(\pi^0, \rho^0, \omega, \phi, J/\psi \)
 - Transversity GPDs
 - Gluon GPDs
 - Flavor decomposition

Importance of e\(^+\) beam
- For Jlab 20+ GeV

Importance of large luminosity
- For DVCS, TCS, DDVCS, J/\(\psi \) ...
ImH and **ReH** using global fits of the world data

Global Fit KM15
Compared to GK Model GK

Global Fits using PARTONS framework
Compared to GK and VGG Models

ReH is still poorly known (importance of DVCS with μ^\pm at COMPASS, e^\pm at JLab
or TCS at JLab and EIC)