Hard exclusive meson production in muon scattering at COMPASS

Andrzej Sandacz

National Centre for Nuclear Research, Warsaw

on behalf of the COMPASS Collaboration

QCD@Work 2022

X Edition of the International Workshop on QCD

Lecce, Italy, June 27 - 30, 2022

Contents

• Introduction

- Generalised Parton Distributions
- Spin Density Matrix Elements
- COMPASS experiment and the data
- SDMEs for exclusive ρ^0 and ω production
- Cross section for exclusive π^0 production
- Summary and outlook

Introduction

Hard exclusive meson le $l \ N \rightarrow l' N' M$ in one 'Hard' \equiv high virtuality Q^2 of γ^*	eptoproduction (HEMP) -photon-approx. $\gamma^* N \rightarrow N'M$ or large mass of <i>M</i> (Quarkonia)
HEMP convenient tool for studying	 mechanism of reaction structure of the nucleon
Two approaches to describe HEMP	 color-dipol model (for VMs) color-dipol interaction with nucleon described either by Regge phenomenology or by pQCD GPD models (for VMs and PMs)

for a review cf. L. Favart, M. Guidal, T. Horn, P. Kroll , arXiv:1511.04535v2 (2018)

Generalised Parton Distributions (GPDs)

- Provide comprehensive description of 3-D partonic structure of the nucleon one of the central problems of non-perturbative QCD
- GPDs can be viewed as correlation functions between different partonic states
- 'Generalised' because they encompass 1-D descriptions by PDFs or by form factors

(the simplest) example: Deeply Virtual Compton Scattering (DVCS)

Factorisation for large $Q^{\mathbf{2}}$ and $\mid \mathbf{t} \mid << Q^{\mathbf{2}}$

4 GPDs for each quark flavour

$$H^{q}(x,\xi,t) \qquad E^{q}(x,\xi,t) \\ \tilde{H}^{q}(x,\xi,t) \qquad \tilde{E}^{q}(x,\xi,t)$$

for DVCS gluons contribute at higher orders in $\alpha_{\!s}$

GPDs and Hard Exclusive Meson Production

Factorisation proven only for $\sigma_{\rm L}$ $\sigma_{\rm T}$ suppressed by $1/Q^2$

wave function of meson (DA) additional non-perturbative term **Chiral-even GPDs** *helicity of parton unchanged*

 $H^{q,g}(x,\xi,t) \qquad E^{q,g}(x,\xi,t) \\ \widetilde{H}^{q,g}(x,\xi,t) \qquad \widetilde{E}^{q,g}(x,\xi,t)$

Chiral-odd GPDs *helicity of parton changed (not probed by DVCS)*

$$H^q_T(x,\xi,t) = E^q_T(x,\xi,t)$$

 $\widetilde{H}^q_T(x,\xi,t) = \widetilde{E}^q_T(x,\xi,t)$

Flavour separation for GPDs example:

$$E_{\rho^{0}} = \frac{1}{\sqrt{2}} \left(\frac{2}{3} E^{u(+)} + \frac{1}{3} E^{d(+)} + \frac{3}{4} E^{g} / x \right)$$

$$E_{\omega} = \frac{1}{\sqrt{2}} \left(\frac{2}{3} E^{u(+)} - \frac{1}{3} E^{d(+)} + \frac{1}{4} E^{g} / x \right)$$

$$E_{\phi} = -\frac{1}{3} E^{s(+)} + \frac{1}{4} E^{g} / x$$

Diehl, Vinnikov
PLB, 2005

- contribution from gluons at the same order of $a_{\rm s}$ as from quarks

28 Jun 2022

Vector meson spin-density matrix

- $\rho_{\lambda_V \lambda'_V} \text{ decomposes into nine matrices } \rho^{\alpha}_{\lambda_V \lambda'_V} \text{ corresponding to different photon polarisation states}$ $\alpha = 0 - 3 - \text{ transv., } 4 - \text{ long,, } 5 - 8 - \text{ interf.}$
- when contributions from transverse and longitudinal photons cannot be separeted

following SDMEs are introduced (K.Schilling and K. Wolf, NP B 61 (1973) 381)

28 Jun 2022

Andrzej Sandacz

6

Access to helicity amplitudes allows:

>test of s-channel helicity conservation ($\lambda_{\gamma} = \lambda_{V}$)

>quantify the role of transitions with helicity flip

decomposition into Natural (N) Parity and Unnatural (U) Parity exchange amplitudes

$$F_{\lambda_{V}\lambda_{N}^{\prime}\lambda_{\gamma}\lambda_{N}} = T_{\lambda_{V}\lambda_{N}^{\prime}\lambda_{\gamma}\lambda_{N}} + U_{\lambda_{V}\lambda_{N}^{\prime}\lambda_{\gamma}\lambda_{N}}$$

• in Regge framework NPE: $J^P = (0^+, 1^-, ...)$ (pomeron, ρ , ω , a_2 ... reggeons) UPE: $J^P = (0^-, 1^+, ...)$ (π , a_1 , b_1 ... reggeons)

➢tests of GPD models

• e.g. for SCHC-violating transitions $\gamma_T \rightarrow V_L$ test sensitivity to GPDs with exchanged-quark helicity flip (transversity GPDs)

>determination of the longitudinal-to-transverse cross-section ratio

Basic ingredients:

unique secondary beam line M2 from the SPS

delivers: • high energy naturally polarised μ^+ or μ^- beams, P \approx -80% / +80%

• negative or positive hadron beams

two-stage forward spectrometer SM1 + SM2

- ≈ 300 tracking detectors planes high redundancy
- flexible target area
 for the presented results

+ calorimetry, µID, RICH

2.5m long LH₂ target used

Data and selected samples

- Data collected within four weeks in 2012 pilot run
- Data with polarised ($|P| \approx 0.8$) μ^+ and μ^- beams taken separately
- Three paralell analyses:

(i)
$$\mu p \to \mu' p' \rho^0$$

 $\longrightarrow \pi^+ \pi^-$ BR $\approx 99\%$.

(ii)
$$\mu p \rightarrow \mu' p' \omega$$

 $\downarrow \rightarrow \pi^+ \pi^- \pi^0$ BR $\approx 89\%$
(iii) $\mu p \rightarrow \mu' p' \pi^0$ $\downarrow \gamma \gamma$ BR $\approx 99\%$.
BR $\approx 99\%$.

- (i) preliminary results (first shown at DIS 2021)
- (ii) published EPJC **81**,126 (2021)
- (iii) published PLB **81**,135454 (2020)

Selection of exclusive ρ^0 sample for SDMEs analysis

Experimental access to SDMEs

$$W^{U+L}(\Phi,\phi,\cos\Theta) = W^U(\Phi,\phi,\cos\Theta) + P_B W^L(\Phi,\phi,\cos\Theta) \propto$$

SDMEs: "amplitudes" of decomposition of W^{U+L} in the sum of 23 terms with different angular dependences

[K. Schilling and G. Wolf, Nucl. Phys. B61, 381 (1973)]

15 unpolarised SDMEs (in W^U) and 8 polarised (in W^L)

Extraction of SDMEs

- Unbinned ML fit to experimental W^{U+L} taking into account
 - total acceptance
 - fraction of background in the signal window
 - anglar distribution of background W^{U+L}_{bkg} (determined either from LEPTO MC or from real data side band)

 $d\sigma$

for ω : angle Θ between direction of ω and normal to decay plane

Results on SDMEs for exclusive ρ^0 production for total kin. range

 $\begin{array}{l} 1 \ {\rm GeV^2 < Q^2} & < 10 \ {\rm GeV^2} \\ 5 \ {\rm GeV} < W & < 17 \ {\rm GeV} \\ 0.01 \ {\rm GeV^2} < {\rm p_T^2} < 0.5 \ {\rm GeV^2} \end{array}$

 $< Q^{2} > = 2.4 \text{ GeV}^{2}$ < W > = 9.9 GeV $< p_{T}^{2} > = 0.18 \text{ GeV}^{2}$

- SDMEs grouped in clasess: A, B, C, D, E corresponding to different helicity transitions
- SDMEs coupled to the beam polarisation shown within green areas

if SCHC holds all elements in classes C, D, E should be 0

not obeyed for class C transitions $\gamma^*_{\ T} {\rightarrow} \rho_L$

28 Jun 2022

Transitions $\gamma^*_{T} \rightarrow \rho_{L}$

possible GPD interpretation Goloskokov and Kroll, EPJC 74 (2014) 2725

contribution of amplitudes depending on chiral-odd ("transversity") GPDs $H_T, \overline{E}_T = 2\tilde{H}_T + E_T$

Re r_{10}^{04} C: $\gamma_{T}^{*} \rightarrow \rho_{L}^{0}$ $\gamma^{*(+)}$ m Re r_{10}^1 example $Im r_{10}^2$ graph for amplitude F_{0-++} r⁵₀₀ r¹₀₀ $Im r_{10}^3$ p(+-0.3 0.2 -0.2 -0.1 0.1 0.3 0.4 -0 0.5 0.6 SDME value • $r_{00}^5 \propto \operatorname{Re}[\langle \overline{E}_T \rangle_{LT}^* \langle H \rangle_{LL} + \frac{1}{2} \langle H_T \rangle_{LT}^* \langle E \rangle_{LL}]$ Goloskokov and Kroll, ref. above interplay of interference of transversity GPDs H_T , $\overline{E}_T = 2\widetilde{H}_T + E_T$ with GPDs E and Hfor ρ^0 the first term in Eq. (•) dominates, thus r_{00}^5 essentially probes \overline{E}_{T} **COMPASS** preliminary 0.4 0.4 C: r_{00}^{3} C: r_{00} 0.2 0.2 0.2 0.1 0 0 15 2 5 10 0 0.2 0.4 0.6 0 $Q^2 (\text{GeV}/c)^2$ $p_T^2 (\text{GeV}/c)^2$ $W (\text{GeV}/c^2)$

28 Jun 2022

Andrzej Sandacz

COMPASS preliminary

Results on SDMEs for exclusive ω production for total kin. range

EPJC **81**,126 (2021)

 $\begin{array}{l} 1 \ {\rm GeV^2 < Q^2} \ < 10 \ {\rm GeV^2} \\ 5 \ {\rm GeV} < W \ \ < 17 \ \ {\rm GeV} \\ 0.01 \ {\rm GeV^2} \ < p_{\rm T}^2 \ < 0.5 \ {\rm GeV^2} \end{array}$

 $< Q^2 > = 2.1 \text{ GeV}^2$ < W > = 7.6 GeV $< p_T^2 > = 0.16 \text{ GeV}^2$

GK model, EPJA 50 (2014) 146 (1st version) parameters constrained mostly by HERMES results for ρ^0 and ω

COMPASS provides new constraints for parameterisation of the model

• ρ^0 and ω results for class C complementary

 \overline{E}_T and H have the same signs for u and d quarks H_T and E have opposite signs for u and d quarks

for ω the first term in Eq. (•) still dominates, but sensitivity to $H_{\rm T}$ is enhanced compared to ρ^0

28 Jun 2022

Unnatural parity exchange contribution

NPE-to-UPE asymmetry of cross sections

NPE-to-UPE asymmetry of cross sections for transitions $\gamma_T^* \rightarrow V_T$

$$P = \frac{d\sigma_T^N(\gamma_T^* \to V_T) - d\sigma_T^U(\gamma_T^* \to V_T)}{d\sigma_T^N(\gamma_T^* \to V_T) + d\sigma_T^U(\gamma_T^* \to V_T)} \approx \frac{2r_{1-1}^1}{1 - r_{00}^{04} - 2r_{1-1}^{04}}$$

GPDs in exclusive π^0 production on unpolarised protons

 $\frac{d^{2}\sigma}{dtd\phi} = \frac{1}{2\pi} \left[\frac{d\sigma_{T}}{dt} + \varepsilon \frac{d\sigma_{L}}{dt} + \varepsilon \cos 2\phi \frac{d\sigma_{TT}}{dt} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\phi \frac{d\sigma_{LT}}{dt}\right]$

averaged over muon beams polarisations

$$\frac{d\sigma_L}{dt} = \frac{4\pi\alpha}{k'} \frac{1}{Q^6} \left\{ \left(1 - \xi^2\right) \left| \langle \tilde{H} \rangle \right|^2 - 2\xi^2 \operatorname{Re}\left[\langle \tilde{H} \rangle^* \langle \tilde{E} \rangle \right] - \frac{t'}{4m^2} \xi^2 \left| \langle \tilde{E} \rangle \right|^2 \right\} \quad \text{leading twist} \\ \text{at JLAB only few\% of} \quad \frac{d\sigma_T}{dt}$$

other contributions arise from coupling of chiral-odd (quark helicity-flip) GPDs to twist-3 pion amplitude

$$\begin{split} \frac{d\sigma_T}{dt} &= \frac{4\pi\alpha}{2k'} \frac{\mu_\pi^2}{Q^8} \left[\left(1 - \xi^2\right) |\langle H_T \rangle|^2 - \frac{t'}{8m^2} |\langle \bar{E}_T \rangle|^2 \right] & \text{def.} \quad \overline{E}_T = 2\widetilde{H}_T + E_T \\ \frac{\sigma_{LT}}{dt} &= \frac{4\pi\alpha}{\sqrt{2}k'} \frac{\mu_\pi}{Q^7} \xi \sqrt{1 - \xi^2} \frac{\sqrt{-t'}}{2m} \operatorname{Re} \left[\langle H_T \rangle^* \langle \tilde{E} \rangle \right] \\ \frac{\sigma_{TT}}{dt} &= \frac{4\pi\alpha}{k'} \frac{\mu_\pi^2}{Q^8} \frac{t'}{16m^2} |\langle \bar{E}_T \rangle|^2 & \text{Impact of } \overline{E}_T \text{ should be visible in } \frac{\sigma_{TT}}{dt} \\ & \text{and in a dip at small } t' \text{ of } \frac{d\sigma_T}{dt} \end{split}$$

Andrzej Sandacz

M

Selection of exclusive π^0 production events

 μ , μ ' and vertex in the target volume

 $1 \text{ GeV}^2 < Q^2 < 5 \text{ GeV}^2$, 8.5 GeV < v < 28 GeV

 $0.08 \text{ GeV}^2 < |t| < 0.64 \text{ GeV}^2$

two photons with invariant mass consistent with π^0

Recoil Proton Detector essential for extraction of exclusive π^0 events

Overconstrained kinematics => a number of "exclusivity cuts" allows to select the exclusive sample

<u>kinematic fit</u> applied to determine the most precise particle kinematics and enhance purity of the sample background fraction $(29^+_{-6})^{(2)}_{(2)}$

Exclusive π^0 production cross sections as a function of |t|

28 Jun 2022

Andrzej Sandacz

19

Exclusive π^0 production cross sections as a function of ϕ

28 Jun 2022

Summary and outlook

> measured SDMEs in hard exclusive ρ^0 and ω muoproduction at energies 5 – 17 GeV

access to helicity amplitudes => constraints on GPD models

- SDMEs a sensitive tool to access subleading amplitudes (via interference)
- ➤ violatation of SCHC observed for transitions $\gamma^*_T \rightarrow V_L$ in GPD framework described by contribution of chiral-odd ("transversity") GPDs
- > large contribution of UPE transitions for ω , only a few % for ρ^0 in GK model described predominantly by the π^0 pole exchange
- > differential cross section for π^0 production is a sensitive probe of GPD \overline{E}_T
- > predictions for π^0 production from model of Goldstein, Gozales and Liuti PRD 91 (2015) expected to be available soon for COMPASS kinematics
- > ongoing COMPASS analyses of exclusive production of π^0 , ϕ , ω and J/ ψ using 2016+2017 data statistics ~ 10 times larger than from 2012

Thank you for your attention

Spares

Selection of exclusive ω sample for SDMEs analysis

UPE and NPE contributions (contd.)

GPD interpretation Goloskokov and Kroll, EPJA 50 (2014) 146

UPE amplitudes depend on helicity GPDs $\widetilde{E}, \widetilde{H}$

the former supplemented by π^0 pole contribution treated as one-boson exchange

parameters constrained by HERMES SDMEs for ω (except the sign of $\pi\omega$ transition form factor)

> the pion pole contribution dominates UPE at small W and $p_{\rm T}{}^2$

> $\pi\omega$ transition form factor $(g_{\pi\omega})$ about **3 times larger** than $\pi\rho^0$ transition f.f. $(g_{\pi\rho})$: $g_{\pi\rho} \simeq \frac{e_u + e_d}{e_u - e_d} g_{\pi\omega}$

NPE amplitudes depend on GPDs H and E

NPE contribution for ρ^0 production about **3 times larger** than for ω production (for amplitudes) this factor 3 is due to the dominant contribution from gluons and sea quark GPDs while the contribution from valence quarks is about the same for ω and ρ^0 production

Thus on the cross section level *leaving aside other small conributions*

$$d\sigma_T^N \approx d\sigma_T^U$$
 for ω *P* asymmetry ≈ 0
 $d\sigma_T^N \approx 9 \ d\sigma_T^U$ for ρ^0 *P* asymmetry ≈ 1

28 Jun 2022