

Light-Meson Spectroscopy – From COMPASS to AMBER

Bernhard Ketzer

Rheinische Friedrich-Wilhelms-Universität Bonn

MITP Workshop on Hadron Spectroscopy: The Next Big Steps

22 March 2022

The COMPASS Experiment

(ISKP

Two-stage spectrometer Dipole magnets MuonWall Tracking detectors RICH SM₂ El.-mag. calorimeter E/HCAI Hadronic calorimeter CAL Muon identification **MuonWall** SM1 X**Target** \mathbb{R}, \mathbb{P} RICH Beam N'N[COMPASS, P. Abbon et al., NIM A 779, 69 (2015)] COMPASS – AMBER **B.** Ketzer

UNIVERSITÄT BONN

Light-Meson Spectrum

Light-Meson Spectrum

UNIVERSITÄT BONN

COMPASS – AMBER

Comparison TS - BW

- Similar χ^2_{red} for both fits (slightly better for triangle)
- No new free parameters for $a_1(1420)$ signal by triangle mechanism

Light-Meson Spectrum

UNIVERSITÄT BONN

1⁻⁺ Partial Wave

Bad description of data without 1^{-+} resonance $\Rightarrow \pi_1(1600)$ needed to describe data

[M. Aghasyan et al. (COMPASS), Phys. Rev. D 98, 092003 (2018)]

COMPASS – AMBER

 $M_0 = 1600^{+110}_{-60} \text{ MeV}/c^2$

 $\Gamma_0 = 580^{+100}_{-230} \text{ MeV}/c^2$

1.0

0.5

0.0

0.5

1.0

 $m_{\pi^-\pi^+}$ [GeV/ c^2]

1.5

 $\overline{\mathcal{T}}_{a,k}|^2$

1⁻⁺ Partial Wave

-200

(f)

 \Rightarrow confirm decay of $\pi_1(1600)$ to $\rho\pi$

2.0

 \Rightarrow results consistent with those using fixed isobar parameterizations

 $\operatorname{Re}(\overline{\mathcal{T}}_{a,k})$

200

[COMPASS, G.D. Alexeev et al., Phys. Rev. D 105, 012005 (2022)]

(e)

COMPASS – AMBER

Hybrid π_1 Decays

Model	b ₁ π	$f_1\pi$	ρπ	ηπ	η'π	η (1295) π	Reference
Flux Tube, ³ P ₀	170	60	5 - 20	0 - 10	0 – 10		[Isgur (1985), Close (1995)]
Flux Tube, IKP m=1.6 GeV/c ²	24	5	9			2	[Isgur (1985)]
Flux Tube, PSS m=1.6 GeV/c ²	59	14	8			1	[Page (1999)]
L-QCD m=2.0 GeV/c ²	66	15					[McNeil, Michael (2006)]

Recent L-QCD results:

- hadronic decays of lightest exotic resonance
- SU(3) flavor symmetry
- $m_{\pi} \sim 700 \text{ MeV}$

B. Ketzer

- scattering amplitudes for 8 coupled channels
- analytical continuation to complex plane
- [A.J. Woss, et al., PRD 103 (2021) 054502]

COMPASS – AMBER

 $\pi^{-}\pi^{+}\pi^{-}\gamma\gamma$ final states \Rightarrow access to $\eta\pi, \eta'\pi, f_{1}\pi$

- new data production: improved shower reconstruction from calorimeter
- include full data set for the first time
- about 2× more data than previously published for $\eta\pi$, $\eta'\pi$

B. Ketzer

$\pi^{-}\pi^{+}\pi^{-}\gamma\gamma$ final states \Rightarrow access to $\eta\pi, \eta'\pi, f_{1}\pi$

- new data production: improved shower reconstruction from calorimeter
- include full data set for the first time
- about 2× more data than previously published for $\eta \pi$, $\eta' \pi$

Hybrid Decay Modes in COMPASS

$\pi^{-}\pi^{+}\pi^{-}\gamma\gamma$ final states \Rightarrow access to $\eta\pi, \eta'\pi, f_{1}\pi$

- new data production: improved shower reconstruction from calorimeter
- include full data set for the first time
- about 2× more data than previously published for $\eta \pi$, $\eta' \pi$

$\eta\pi^{-}/\eta'\pi^{-}$ Final States

3

$f_1\pi$ Final State

UNIVERSITÄT BONN

Dominant decay: $f_1 \rightarrow a_0(980)\pi$

t' dependence

$\pi^{-}\pi^{+}\pi^{-}\eta$ Final State

- PWA to be performed in full mass range
- $\eta'\pi$ excluded
- in addition: $\pi^+\pi^-$ and $\eta\pi$ isobars

Dominant decays:

- $X^- \to f_1(1285) + \pi^-$
- $X^- \rightarrow a_2(1320) + \eta$
- $X^- \rightarrow a_0(980) + \rho$
- $X^- \to a_0(980) + f_2(1270)$
- $X^- \rightarrow a_2(1320) + \rho$

$b_1\pi$ Final State

 $\pi^{-}\pi^{+}\pi^{-}4\gamma$ final states \Rightarrow access to $b_{1}\pi \rightarrow \omega\pi\pi$

- new data production: improved shower reconstruction from calorimeter
- full COMPASS data set
- 720 k exclusive events of $\pi^{-}\pi^{0}\omega(782)$
 - \Rightarrow largest data sample world-wide
 - \Rightarrow 5 × more data than BNL E852

B. Ketzer

 $b_1\pi$ Final State

 $\pi^{-}\pi^{+}\pi^{-}4\gamma$ final states \Rightarrow access to $b_{1}\pi \rightarrow \omega\pi\pi$

COMPASS – AMBER

 $b_1\pi$ Final State

 $\pi^{-}\pi^{+}\pi^{-}4\gamma$ final states \Rightarrow access to $b_{1}\pi \rightarrow \omega\pi\pi$

COMPASS – AMBER

Number of exclusive events in kin. range of experiment

	$\eta\pi$	$\eta'\pi$	$\pi^-\pi^+\pi^-\eta$	$\pi^{-}\pi^{0}\omega$
COMPASS	225 k	74 k	1066 k	720 k
BNL E852	47 k	6 k	83 k	145 k

Outlook: PWA

- \Rightarrow perform 2-D PWA in bins of m_X and t'
- \Rightarrow extend mass range up to 3.5 4 GeV
- \Rightarrow need to consider resonances in all 2-body systems
- \Rightarrow acceptance correction: need large MC samples (e.g. @Frontera)
- \Rightarrow coupled-channel analysis

Hybrid π_1 Multiplet

So far:

- resonant nature of only one member of the 1⁻⁺ multiplet confirmed
- branching fractions to dominant decay channels will be extracted

×, + i, 11 **K**₁** K_1 S=+1 usg dsg S=0 $u dg \pi_1$ π_1 dug π_1 uug/ddg/ssg sug S=-1sdg $\overline{K}_{1}^{*^{0}}$ **K**₁*⁻ Q=-1 Q=0 Q=+1

Need to:

- observe other members
- including ones with strangeness
- BES III
- AMBER

https://arxiv.org/abs/2202.00621 https://arxiv.org/abs/2202.00623

COMPASS – AMBER

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Letter of Intent (Draft 2.0)

A New QCD facility at the M2 beam line of the CERN SPS October 17, 2018

- Proton radius measurement using muon-proton elastic scattering
- Hard exclusive reactions using a muon beam and a transversely polarised target
- Drell-Yan and charmonium production
- Measurement of antiproton production cross sections for Dark Matter Search
- Spectroscopy with low-energy antiprotons
- Spectroscopy of kaons
- Study of the gluon distribution in the kaon via prompt-photon production
- Low-energy tests of QCD using Primakoff reactions
- Production of vector mesons and excited kaons off nuclei

https://arxiv.org/abs/1808.00848

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Letter of Intent (Draft 2.0)

A New QCD facility at the M2 beam line of the CERN SPS October 17, 2018

- Proton radius measurement using muon-proton elastic scattering
- Hard exclusive reactions using a muon beam and a transversely polarised target
- Drell-Yan and charmonium production
- Measurement of antiproton production cross sections for Dark Matter Search
- Spectroscopy with low-energy antiprotons
- Spectroscopy of kaons
- Study of the gluon distribution in the kaon via prompt-photon production
- Low-energy tests of QCD using Primakoff reactions
- Production of vector mesons and excited kaons off nuclei

https://arxiv.org/abs/1808.00848

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Letter of Intent (Draft 2.0)

A New QCD facility at the M2 beam line of the CERN SPS October 17, 2018

- Proton radius measurement using muon-proton elastic scattering
- Hard exclusive reactions using a muon beam and a transversely polarised target
- Drell-Yan and charmonium production
- Measurement of antiproton production cross sections for Dark Matter Search
- Spectroscopy with low-energy antiprotons
- Spectroscopy of kaons
- Study of the gluon distribution in the kaon via prompt-photon production
- Low-energy tests of QCD using Primakoff reactions
- Production of vector mesons and excited kaons off nuclei

https://arxiv.org/abs/1808.00848

Panofsky-Schnell-System with two cavities (CERN 68-29)

- Particle species: same momenta but different velocities, $\Delta p / p \sim 1\%$
- Time-dependent transverse kick by RF cavities in dipole mode
- Longitudinal separation of particle species after L_{RF}
- RF1 kick compensated or amplified by RF2, depending on phase difference $\Delta \varphi = 2\pi (L_{RF}f/c) (\beta_1^{-1} \beta_2^{-1})$
- Dump of unwanted species (in center beam dump)
- For large momenta: $\beta_1^{-1} \beta_2^{-1} \approx (m_1^2 m_2^2)/2p^2$
- Need high-frequency RF cavities ($f \approx 3.9 \text{ GHz}$) due to $L_{RF} \approx 830 \text{ m}$

Kaon Excitation Spectrum

- 25 kaon states listed by PDG (M < 3.1 GeV), 13 of those need confirmation
- many predicted quark-model states still missing
- some hints for supernumerary states

UNIVERSITÄT BONN

Preparatory Work

- existing data: h^- beam has ~2.4% admixture of K^-
- tagged by CEDAR detectors
- final states:
 - $K^-\pi^-\pi^+$ (720 k events) \Rightarrow access to all kaon states: K_J, K_J^*
 - $K_S \pi^-$, $K_S \to \pi^- \pi^+$ (60 k ev.) \Rightarrow access to K_J^* (natural parity series)
 - $\Lambda \bar{p}, \Lambda \to p\pi^-$ (4k ev.) \Rightarrow access to all kaon states: K_J, K_J^* (higher masses)

$K^{-}\pi^{-}\pi^{+}$ Final State

Study reaction $K^- + p \rightarrow K^- \pi^- \pi^+ + p$ by tagging beam kaons (2.4%)

- \Rightarrow access to all kaon states: K_J, K_I^*
- \Rightarrow world's largest data set so far: 720 000 exclusive events

$K^{-}\pi^{-}\pi^{+}$ Final State - PWA

- $1^+0^+ K^*(892)\pi S$ wave most dominant (~ 30% of total intensity)
- $K_1(1270)$ and $K_1(1400)$ visible, but large syst. effects for m < 1.5 GeV (due to limited PID)
- $K_1(1270)$ also visible in $1^+0^+ \rho K S$ wave, plus shoulder at ~1.6 GeV $(K_1(1650)?)$

$K^{-}\pi^{-}\pi^{+}$ Final State - PWA

- Broad peak and shoulder in $2^{-}0^{+} K_{2}^{*}(1430)\pi S$ wave: $K_{2}(1770)$, $K_{2}(1820)$, $K_{2}(2250)$?
- Various structures in $2^{-}0^{+}K^{*}(892)\pi F$ and $2^{-}0^{+}\rho K F$ waves
- need resonance-model fit to clarify nature of observed signal

Goal for AMBER: collect 20×10^6 exclusive $K^-\pi^-\pi^+$ events in one year

UNIVERSITÄT

BONN

UNIVERSITÄT BONN

- QCD in the strong coupling regime still far from being understood
- Identify (exotic) multiplets and measure decay patterns
- Need large data samples for
 - complementary production mechanisms
 - different final states
- Advanced analysis methods
 - simple BW fits may be misleading
 - reaction models satisfying principles of S-matrix theory
- Advances in Lattice QCD (multi-particle scattering states)
- AMBER: will perform precision spectroscopy of K_J and K_J^* states (among other measurements related to hadron structure)