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The COMPASS Experiment Introduction

@ Secondary hadron beam, mostly 7~ (~ 97 %)
@ Fixed liquid-hydrogen target (40 cm)

ECAL2
HCAL2

[COMPASS, NIM A779, 69-115 (2015)]
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The COMPASS Experiment Introduction

@ Secondary hadron beam, mostly 7~ (~ 97 %)
@ Epeam = 190GeV

@ Fixed liquid-hydrogen target (40 cm)

e +p — w4+ +at+p

@ PWA with 88 waves binned in ms,, t’
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BW-fit to resonance-like signal in 17" partial wave
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[COMPASS, PRL 115, 082001 (2015)]

@ a1(1420) narrow peak, strong phase motion
@ Very close to ground state a;(1260)
@ Narrower than ground state

= No ordinary radial excitation
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BW-fit to resonance-like signal in 17" partial wave
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[COMPASS, PRL 115, 082001 (2015)]

@ 4-quark state [H.-X. Chen et al. (2015)], [T. Gutsche et al. (2017)]
@ K* K molecule (similar to X(3872)) [T. Gutsche et al. (2017)]

@ Dynamic effect of interference with Deck-amplitude
[Basdevant & Berger, PRL 114, 192001 (2015)]

@ Triangle singularity (TS) [Mikhasenko et al., PRD 91, 094015 (2015)]
[Aceti et al., PRD 94, 096015 (2016)]
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Simple Model Triangle Diagram

@ Dispersive approach

+
(980)
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Simple Model Triangle Diagram

@ Dispersive approach ,
@ Include finite width of K*
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Simple Model Triangle Diagram

@ Dispersive approach
@ Include finite width of K*

@ Negligible contribution
from other triangles
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Simple Model Triangle Diagram

@ Dispersive approach direct decay:
@ Include finite width of K* *

@ Negligible contribution
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Simple Model Triangle Diagram

@ Dispersive approach
@ Include finite width of K*

() Negllglble contribution phenomenologica'
from other triangles background
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Simple Model Triangle Diagram

@ Dispersive approach
@ Include finite width of K* partial-wave projection:

@ Negligible contribution
from other triangles

@ Inclusion of spin distorts
shape
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Include Spin Triangle Diagram

Include spin via partial-wave projection:
1. Look at the partial wave for a;(1260) — KK with isobar K*

a1 Ko
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Include Spin Triangle Diagram

Include spin via partial-wave projection:
1. Look at the partial wave for a;(1260) — KK with isobar K*
2. Project it onto the 37 final state with isobar f,(980)

T b8
K* (12)
ai Ko a T2
_ fo (23)
Ks 3
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Include Spin Triangle Diagram

Include spin via partial-wave projection:
1. Look at the partial wave for a;(1260) — KK with isobar K*
2. Project it onto the 37 final state with isobar f,(980)
3. Obtain the first order approximation of the Khuri-Treiman

approach
T b8
K* (12)
T2
(23)
73
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Full Amplitude Partial-Wave Projection

A = D, |Fuls12)Z(Qs.12) + Fu(s28)Z3(Q1.25)
w=(JMLS)
Simple model: F(s12) = Ca, - tk-(S12)
@ A(7): full amplitude of kinematic variables 7
@ F,(sj): isobar amplitude of decay with isobar in (ij)-channel
@ Z,(Q,j): angular dependence of amplitude in (ij)-channel
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Full Amplitude Partial-Wave Projection

A= > [Fw(sm)zfv(ﬂs,m)+Fw(323)va(Q1,23)
w=(JMLS)

Projection to channel (23):

Aw(s2s) = fdQ1,232w(Q1,23)A(T)

= Fu(s23) + Fu(s23)

with IA:W(Sgg) = deW(823)Z FW/(S12)Z:V,(93,12)
W/
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Full Amplitude Partial-Wave Projection

A= > [Fw(Sm)ZV*V(QsAz)+Fw(323)va(Q1,23)
w=(JMLS)

Projection to channel (23):

Aw(sz3) = fdQ1,23Zw(Q1,23)A(T)

Fu(s23) + Fu(s23)

PN

with FW(Sgg) = deW(st)Z FW/(S12)Z‘:/,(93,12)
W/

unitarity for PW amplitude Ay :

1 °°p(§23)lt_w(-§23) =
- — (sl 4 b —= ~’d3§
= Fu(s2s) = te(S23) [ wt on fsm S23 — S23 ”
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Full Amplitude Partial-Wave Projection

A= D, [Fw(sm)zv*v(ﬂs,m)+Fw(323)va(Q1,23)
w=(JMLS)

Projection to channel (23):

Aw(sz) = fdQ1,23Zw(Q1,23)A(T)
= Fu(s2s) + Fu(s23)

with FW(Sgg) = deW(st)Z FW/(S12)Z‘:/,(§23,12)
W/

unitarity for PW amplitude Ay :

1 o0 p(§23)l:_w(§23) P
- _ Cu 4 —— ~’d§
= Fu(s2s) = te(S23) [ wt on fsm S23 — S23 ”

Problem: F depends on F as welll ~» solve iteratively
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lterative Procedure Partial-Wave Projection

p(823) | dZg(823) Ca i+ (812) 2k (Q23.12)

1 00
F(so3) =t (S23) — ds =
(s23) = t,( 23)27T f4m,2< 23 I——
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lterative Procedure Partial-Wave Projection

p(823) | dZg(823) Ca tie(812) 2k (Q23.12)

1 00
F(so3) =t (So3) — ds =
(s23) = t,( 23)27T f4m,2< 23 I——
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lterative Procedure Partial-Wave Projection

p(823) | dZg(823) Ca i (812) 2k (Q23.12)

1 00
F(so3) =t (So3) — ds =
(s23) = t,( 23)27T f4m,2< 23 I——
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lterative Procedure Partial-Wave Projection

p(323) | dZp,(823) Caytk(S12) 2 (23.12)

1 00
F(so3) =t (So3) — ds =
(s23) = t,( 23)27T f4m,2< 23 I——
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lterative Procedure Partial-Wave Projection

o p(523) | dZy(823) Ca, tk+(S12)Zk-(23,12)

F(so3) = tr(So3) — d Sos3 =
(s22) = ta )27T am2 S23 — S23
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lterative Procedure Partial-Wave Projection

p(823) | dZg(823) Ca i+ (812) 2k (Q23.12)

1 00
F(so3) =t (S03) — ds =
(s23) = i, ( 23)2ﬂ f4m,2< 23 I——
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lterative Procedure Partial-Wave Projection

oo p(823) | dZ;(823) tke(S12) 2k (23,12)

’
F(s23) = Cy, tr.(So3) — ds —
(s23) a0 11, ( 23)27T - 23 FI——
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Partial-Wave Projection

— vector  ----- scalar

Arg[Ap] / °
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@ Shape distorted, but similar
@ Peak and phase motion at the same position
= Scalar approximation reproduces main features
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Wave Selection Fit to Data

Minimal fit model ~» choose 3 of the 88 waves of the PWA

Notation: JPC Me én L [ T T
e 1+ 0% pr S-wave: < i
Contains source a1(1260), but 3 —
huge non-res. background St -
e 17T 0% f,(980)r P-wave: 2T
Signal of interest a(1420) Zost

0.0
0.5 1.0 1.5 2.0 2.5

5
max (GeV/c?)

@ 27T 1% pr D-wave:
Clean a»(1320) with almost no _
[B. Ketzer, B. Grube, D. Ryabchikov,
non-res. background PPNP 113, 0146-6410 (2020)]

Note: Fit all t’-slices with common resonance parameters.
Show only fit of first slice.
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Comparison Fit to Data

Intensity of the 17707 forr P-wave Interference of 170" (for P — pr S)
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[COMPASS, PRL 127, 082501]

@ Comparison between TS model (solid) and BW model
(dashed)

@ Similar fit quality
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Systematic Studies Fit to Data

C— f(x:)\?
Compare R2 | = Z (y,T(x,)) ;
; i
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(Almost) all studies show a better fit quality for the TS model.
(14/17)
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Conclusion Fit to Data

@ Scalar approximation already matches the data well
= @Good starting point for first investigation

ay(1420) fully explainable with rescattering
Similar fit quality as with Breit-Wigner

No free parameters needed to fix the position!
Triangle singularity expected to be present
Systematic studies also prefer the TS model

Occam’s razor: No need for a new genuine resonance

= First complete analysis in the light sector with a TS model

a1 (1420) as Triangle Singularity



Outlook Fit to Data

@ Investigate KK spectrum at COMPASS
@ Look into 7 — 37 + v, at BELLE Il, no Deck-like background

@ Heavy quarks: XYZ states
o Most peaks in data too narrow to be only TS
e “Observation of a Narrow Pentaquark State, P.(4312)", and
of the Two-Peak Structure of the P;(4450)%”
[LHCb, PRL 122, 222001 (2019)]
e “Amplitude analysis and the nature of the Z;(3900)”
[JPAC, Mod. Phys. Lett. B 772 (2017)]

@ Baryon sector
e “Photoproduction of K*A(1405) — K*x°%° extending to
forward angles and low momentum transfer”
[BGOOD, arXiv:2108.12235 (2021)]
o “Observation of a structure in the M, invariant mass
distribution near 1700 MeV/c? in the yp — pn°n reaction”
[CBELSA/TABS, Eur. Phys. J. A 57, 325 (2021)]
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Thank you for your
attention!
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Back-up
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Argand Diagram

Amplitude of the 170" for P-wave
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Basdevant-Berger Model
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Pole Positions

® grKR ®0nw ® branch point === Unitarity cut on Ist sheet
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Other Amplitudes

ms | GeV
5 3
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Comparison to KT

1 (™ p(32s)Fu(8ea) | ..
F _t c o e, P elds
w(S23) = te(s23) { wt 2n me So3 — So3 *

KT:

@ calculate effects of rescattering on the 2-body subsystem
invariant-mass dependence s;;

@ lterative framework to include rescattering to any order
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Comparison to KT

1 p(823)Fu(s, 823) ..
Fw(s’ 323) = tg(Sgg) [CW(S) + z_f p( 2:3) w( 23)d 323]
T Js So3 — S23

KT:

@ calculate effects of rescattering on the 2-body subsystem
invariant-mass dependence s;;

@ lterative framework to include rescattering to any order

Our method:

@ calculate effects of rescattering on the 3-body invariant-mass

—_ m?2
dependence s = m;_

@ Stop after the first iteration
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Unitarity & Iterative Procedure

Ais (o) = Fig () + Fig (o)
Unitarity:
Dischng’(O') = ité(O')p(O’)Ang/l(O')
Disc, Fi& (o) = ity (o)p(c)(F{¥ (o) + F{¥(0r))
From unitarity relation:

1 00 O-' ﬁJM O_I
.0( ) LS( )do_,}
o -

Fi¥(e) = b))+ 5 |
T Jow,
FY() = [azo)rtd o)z @)

Solve iteratively:

o) = 020 (o) FOo)(20())

ot 4 | ) d(,,p(cr')ﬁ““)(a')]
2r

/ _
OTthr o o

Fie) = ()
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Angular Dependence of the Amplitudes

Z(1.925) = (2L +1)(25 +1) D (L0; SAJD) D}y, (21)DSH(Qz2)
A
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