# Collins and Sivers asymmetries in inclusive $\rho^0$ production from COMPASS



#### BAKUR PARSAMYAN

CERN, INFN section of Turin

on behalf of the COMPASS Collaboration





"XXIX International Workshop on Deep Inelastic Scattering and Related Subjects"

Santiago de Compostela, Spain 2-6 May 2022

Bakur Parsamyan

#### Motivation

COMPASS

Transverse Spin Asymmetries (TSA) in Semi-Inclusive DIS (SIDIS) are being measured since 2005:

**Collins** asymmetries - **Sivers** asymmetries – **Di-hadron** asymmetries

measured at - HERMES (p target, 27.5 GeV  $e^+/e^-$  beam)

- COMPASS (p, d target, 160 GeV  $\mu$  beam)

- CLAS (<sup>3</sup>He target, 6 GeV *e*<sup>-</sup> beam)

for unidentified charged hadrons and for  $\pi^+$ ,  $\pi^-$ ,  $\pi^0$ ,  $K^+$ ,  $K^-$ ,  $K^0$ , p

well known results, used to extract transversity and Sivers functions...

 $\frac{d\sigma}{dxdydzdp_T^2 d\phi_h d\phi_s} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \dots + S_T A_{UT}^{\sin(\phi_h - \phi_s)} \sin\left(\phi_h - \phi_s\right) + S_T \varepsilon A_{UT}^{\sin(\phi_h + \phi_s)} \sin\left(\phi_h + \phi_s\right) \dots \right\}$   $F_{UT,T}^{\sin(\phi_h - \phi_s)} = C \left[-\frac{\hat{h} \cdot k_T}{M} f_{1T}^{\perp q} D_{1q}^h\right], F_{UT,L}^{\sin(\phi_h - \phi_s)} = 0 \qquad F_{UT}^{\sin(\phi_h + \phi_s)} = C \left[-\frac{\hat{h} \cdot p_T}{M_h} h_1^q H_{1q}^{\perp h}\right]$ 

#### TSAs for vector mesons: never measured so far

low statistics, high background

important insight on the quark fragmentation process into spin-1 particles

## Cross-section and model predictions



#### SIDIS cross-section for VM production in the one-photon exchange approximation

[A. Bacchetta & P. Mulders, Phys. Rev.D 62 (2000) 114004]

<u>Not to be confused with the dihadron asymmetries!</u> In that case, instead of  $\phi_{hh}$  one uses  $\phi_R$ : that is, the azimuthal angle of the vector  $\mathbf{R} = \frac{z_2 \mathbf{p}_1 - z_1 \mathbf{p}_2}{z_1 + z_2}$ 



### **Cross-section and model predictions**



#### SIDIS cross-section for VM production in the one-photon exchange approximation

[A. Bacchetta & P. Mulders, Phys. Rev.D 62 (2000) 114004]



#### VMs are expected to exhibit an opposite sign and smaller Collins asymmetry compared to $\pi^+$

[J. Czyzewski, Acta Phys. Polon. 27 (1996) 1759-1766; X. Artru, Proc. DSPIN2009 ; string+3P0 model]







### Cross-section and model predictions



#### SIDIS cross-section for VM production in the one-photon exchange approximation

[A. Bacchetta & P. Mulders, Phys. Rev.D 62 (2000) 114004]



#### COMPASS performed first ever measurements of Collins and Sivers asymmetries for inclusive $\rho^0$ vector mesons

in this talk: preliminary results

# **COMPASS** collaboration



- CERN
- Common Muon and Proton Apparatus for Structure and Spectroscopy
  - 25 institutions from 13 countries – nearly 200 physicists
- CERN SPS north area
- Fixed target experiment
- Approved in 1997
- Taking data since 2002

#### Wide physics program COMPASS-I

- Data taking 2002-2011
- Muon and hadron beams
- Nucleon spin structure
- Spectroscopy

#### COMPASS-II

- Data taking 2012-2022
- Primakoff
- DVCS (GPD+SIDIS)
- Polarized Drell-Yan
- Transverse deuteron SIDIS

See also COMPASS talks by J.Giarra (DVCS) and J.Matousek (SIDIS)



#### COMPASS web page: http://www.compass.cern.ch

Bakur Parsamyan

 $\odot$ 

\$

# **COMPASS** collaboration



- 25 institutions from 13 countries – nearly 200 physicists
- CERN SPS north area

CERN

- Fixed target experiment
- Approved in 1997 (25 years)
- Taking data since 2002 (20 years)

IWHSS-2022 workshop (anniversary edition) CERN Globe, August 29-31, 2022

https://indico.cern.ch/e/IWHSS-2022



 $\odot$ 

\$

\*

Bakur Parsamyan

# COMPASS experimental setup: Phase I (muon program)



OMPAS

# Selection of $\rho^0$ events



**Data sample:** data collected in 2010 with a transversely polarized  $NH_3$  (proton) target **DIS events selection** 

 $Q^2 > 1 (\text{GeV}/c)^2$ ,  $W > 5 \text{ GeV}/c^2$ , 0.003 < x < 0.700, 0.1 < y < 0.9

Two oppositely-charged hadrons selection

$$z_{h_{1(2)}} > 0.1$$
,  $P_{h_{1(2)}T} > 0.1 \text{ GeV}/c$ 

#### **Further cuts**

$$0.30 < z = z_{h_1} + z_{h_2} < 0.95$$
  

$$E_{miss} = (M_X^2 - M_p^2) / (2M_p) > 3 \text{ GeV}$$
  

$$0.1 < P_T / (\text{GeV}/c) < 4.0$$
  

$$0.35 < M_{hh} / (\text{GeV}/c^2) < 3.00$$

fractional energy of the pair (reduce background) missing energy (remove exclusive events) transverse momentum cuts (angular resolution) invariant mass range



# Selection of $\rho^0$ events



**Data sample:** data collected in 2010 with a transversely polarized  $NH_3$  (proton) target **DIS events selection** 

 $Q^2 > 1 (\text{GeV}/c)^2$ ,  $W > 5 \text{ GeV}/c^2$ , 0.003 < x < 0.700, 0.1 < y < 0.9

Two oppositely-charged hadrons selection

 $z_{h_{1(2)}} > 0.1$ ,  $P_{h_{1(2)}T} > 0.1 \text{ GeV}/c$ 

#### **Further cuts**

$$0.30 < z = z_{h_1} + z_{h_2} < 0.95$$
  

$$E_{miss} = (M_X^2 - M_p^2) / (2M_p) > 3 \text{ GeV}$$
  

$$0.1 < P_T / (\text{GeV}/c) < 4.0$$
  

$$0.35 < M_{hh} / (\text{GeV}/c^2) < 3.00$$

 $\begin{array}{c}
 & \text{Strength{1}{0}} \\
 & \text{Strength{1}{0}} \\
 & 0.8 \\
 & 0.6 \\
 & 0.4 \\
 & 0.2 \\
 & 0 \\
 & 0.5 \\
 & 1 \\
 & 1.5 \\
 & 1.5 \\
 & 2 \\
 & 0 \\
 & 0.5 \\
 & 1 \\
 & 1.5 \\
 & 2 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\
 & 0 \\$ 

fractional energy of the pair (reduce background) missing energy (remove exclusive events) transverse momentum cuts (angular resolution) invariant mass range

Large combinational background under the  $\rho^0$  peak

#### Procedure for the extraction of the asymmetries

The Collins and Sivers TSAs for inclusive  $\rho^0$  are extracted in 4 steps

- 1. Extraction of the uncorrected TSA for  $h^+h^-$  pairs  $a_{UT}^{\sin\phi_X}$
- 2. Estimation of the  $\rho^0$ -signal fraction  $f_s$
- 3. Extraction of background (side-band) TSA  $A_{UT,bg}^{sin \phi_X}$
- 4. Extraction of  $\rho^0$  TSA (subtracting the bacground TSA)

$$A_{UT}^{\sin\phi_X} = \frac{1}{f_s} \Big[ a_{UT}^{\sin\phi_X} - (1 - f_s) A_{UT,bg}^{\sin\phi_X} \Big]$$

where  $\phi_X = \phi_{Coll}, \phi_{Siv}$ 

# Extraction of the asymmetries

COMPASS

Standard COMPASS methods applied for the extraction of the asymmetries [COMPASS, Nucl. Phys. B765 (2007) 31–70]

- Data-taking is organized in (sub)periods coupled weeks
  - polarization reversal (in all 3 cells) once per week
  - Data from two sub-periods before/after reversal are combined into a period
  - minimization of systematic effects
- Asymmetries extracted for each period of data are then combined
- Six one-dimensional bins in x, z and  $P_T$
- Four invariant mass regions
- $I = 0.35 < M_{hh}/(\text{GeV}/c^2) < 0.52$
- II  $0.60 < M_{hh}/(\text{GeV}/c^2) < 0.94$
- III  $1.02 < M_{hh}/(\text{GeV}/c^2) < 1.22$
- $IV \ 1.22 < M_{hh}/(\text{GeV}/c^2) < 3.00$





## Collins asymmetries in four mass regions



COMPASS

 $\rho^0$  region indication for a positive Collins asymmetry at intermediate z and small  $P_T$ 

side-band asymmetries: compatible with zero in all 3 three regions

### Signal fraction estimation



The background shape is modeled using the  $M_{hh}$  distribution from  $h^+h^+ + h^-h^-$  sample

- $h^+h^+ + h^-h^-$  distribution normalized at  $M_{hh} \sim 0.50 \frac{\text{GeV}}{c^2}$
- scaled  $h^+h^+ + h^-h^-$  distribution subtracted from the  $h^+h^-$  one
- The signal distribution can be a fitted with the sum of three Breit-Wigner functions for  $\rho^0$ ,  $f_0$ ,  $f_2$
- Signal fraction calculated by counting the signal yields in  $\rho^0$  region as:

$$f_s = \frac{n_{\rho^0}}{n_{h^+h^-}}$$

¢OMP<sub>A</sub>S

## Signal fraction estimation



Same procedure is applied for each  $x, z, P_T$  bin

#### The background shape is modeled using the $M_{hh}$ distribution from $h^+h^+ + h^-h^-$ sample

- $h^+h^+ + h^-h^-$  distribution normalized at  $M_{hh} \sim 0.50 \frac{\text{GeV}}{c^2}$
- scaled  $h^+h^+ + h^-h^-$  distribution subtracted from the  $h^+h^-$  one
- The signal distribution can be a fitted with the sum of three Breit-Wigner functions for  $\rho^0$ ,  $f_0$ ,  $f_2$
- Signal fraction calculated by counting the signal yields in  $\rho^0$  region as:  $n_{0}^0$





OMPAS

### Signal fraction estimation



The background shape is modeled using the  $M_{hh}$  distribution from  $h^+h^+ + h^-h^-$  sample

- $h^+h^+ + h^-h^-$  distribution normalized at  $M_{hh} \sim 0.50 \frac{\text{GeV}}{c^2}$
- scaled  $h^+h^+ + h^-h^-$  distribution subtracted from the  $h^+h^-$  one
- The signal distribution can be a fitted with the sum of three Breit-Wigner functions for  $\rho^0$ ,  $f_0$ ,  $f_2$
- Signal fraction calculated by counting the signal yields in  $\rho^0$  region as:  $n_{-0}$

$$f_s = \frac{n_{\rho^0}}{n_{h^+h^-}}$$



Signal fraction is ~ 18%

- increases with z up to 38%
- as expected e.g. in the string fragmentation model

¢omp<sub>a</sub>e

## Background- and corrected Collins asymmetries





The background asymmetry  $A_{UT,bg}^{\sin \phi_{hh}+\phi_S-\pi}$ is the arithmetic mean of asymmetries in regions I and III



#### COLLINS ASYMMETRY FOR $\rho^0$

 indication for a positive asymmetry

• Large effect at small  $P_T$ 

only statistical uncertainties are shown

 $\sigma_{syst} \approx 0.3 \sigma_{stat}$ 

### Background- and corrected Collins asymmetries



MPA

# Sivers asymmetries in four mass regions





3 May 2022

#### Bakur Parsamyan

# Background- and corrected Sivers asymmetries





The background asymmetry  $A_{UT,bg}^{\sin\phi_{hh}-\phi_S}$ is the arithmetic mean of asymmetries in regions I and III



#### Background- and corrected Sivers asymmetries



Sivers asymmetry for  $\pi^+$ ,  $\pi^-$ [COMPASS, *PLB* 744 (2015) 250]





### Conclusions



- COMPASS measured the Collins and Sivers asymmetries for inclusively produced ρ<sup>0</sup> for the first time
- Indication for a positive *Collins asymmetry* for ρ<sup>0</sup>
   o opposite to the π<sup>+</sup> case, as expected from models
- Indication for a positive *Sivers asymmetry* for ρ<sup>0</sup>
   O In agreement with model expectations

